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Abstract

Matter Effects On Neutrino Oscillations

An introduction to neutrino oscillations in vacuum is presented, followed by a survey of

various techniques for obtaining either exact or approximate expressions for νµ → νe oscil-

lations in matter. The method developed by Arafune, Koike, and Sato uses a perturbative

analysis to find an approximation for the evolution operator. The method used by Freund

yields an approximate oscillation probability by diagonalizing the Hamiltonian, finding the

eigenvalues and eigenvectors, and then using those to find modified mixing angles with the

matter effect taken into account. The method devised by Mann, Kafka, Schneps, and Alti-

nok produces an exact expression for the oscillation by determining explicitly the evolution

operator. These methods are compared to each other using the T2K, MINOS, NOνA, and

LBNE parameters.
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CHAPTER 1

Motivation and Neutrino Oscillations in Vacuum

The motivation for this thesis was to provide an overview of three different methods

for determining the oscillation probability in matter for νµ → νe. Taking into account these

effects is important as the values of the mixing parameters are altered by them. The three

papers studied were chosen to provide not only 3 different methods for modeling these mat-

ter effects, but to also give the reader some insight into the state of knowledge of matter

effects at 3 different points in time. The first method, published in 1999 and formulated by

Arafune, Koike and Sato involved a perturbative expansion of the Hamiltonian in order to

find the evolution operator. This method was an early one, at which time the value of θ13

was not known and presumed to be extremely small. This assumption has since been shown

to be invalid. The second method, published in 2001 and devised by Freund, attempts to find

modified mixing parameters with the matter effect taken into account in order to use them in

the standard vacuum oscillation expansion. At this time, there was a better understanding

of the values of the oscillation parameters. The third method, used by Mann, Kafka, Schneps

and Altinok and published in 2012, finds an exact expression for the oscillation probability.

By the time of the publication of this paper, values for most of the mixing parameters had

already been determined. The notation used in each chapter corresponds to the notation

used in the particular papers, which is different for each one, so a table relating the variables

used in that chapter to standard parameters is provided at the end of each chapter.
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Neutrinos can be described by either a mass eigenstate |νi〉 or a flavor eigenstate |να〉.

One can convert from one to the other by using a specific unitary mixing matrix:

|να〉 =
∑
i

Uαi |νi〉 (1.1)

The mixing matrix is known as the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix. The

PMNS matrix is defined as the product of the following unitary matrices:

Uαi =


1 0 0

0 c23 s23

0 −s23 c23




1 0 0

0 1 0

0 0 eiδ




c13 0 s13

0 1 0

−s13 0 c13




1 0 0

0 1 0

0 0 e−iδ




c12 s12 0

−s12 c12 0

0 0 1

 (1.2)

where sij ≡ sin(θij) and cij ≡ cos(θij).

This is often written as Û = R̂1(θ23)ÎδCP R̂2(θ13)Î−δCP R̂3(θ12) for short, where ÎδCP ≡

diag(1, 1, eiδCP ) and Î−δCP = Î†δCP .
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Multiplying the matrices in (1.2) together, the PMNS matrix reads:

Û =


c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 (1.3)

The time-dependence of a plane wave flavor eigenstate, given the initial mass eigenstate

|νi(t = 0)〉 is:

|να(t > 0)〉 =
∑
i

Uαie
−iEit/~ |νi(t = 0)〉 (1.4)

We can write a mass eigenstate in terms of a flavor eigenstate by using:

|νi〉 =
∑
β

Uβi |νβ〉 (1.5)

Applying it to (1.4), we see that:

|να(t > 0)〉 =
∑
i

Uαie
−iEit/~ |νi(t = 0)〉 =

∑
i

∑
β

Uαie
−iEit/~Uβi |νβ〉 (1.6)

The amplitude of a neutrino in flavor eigenstate α at t=0 being observed in eigenstate β at
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a later time t > 0 is:

〈νβ| να(t > 0)〉 =

〈
νβ

∣∣∣∣∣∑
i

∑
β

Uαie
−iEit/~Uβi

∣∣∣∣∣νβ
〉

=
∑
i

Uαie
−iEit/~Uβi (1.7)

The corresponding probability is then:

| 〈νβ| να(t > 0)〉 |2 = |
∑
i

Uαie
−iEit/~Uβi|2 =

∑
i,j

UαiU
∗
βiU

∗
αjUβje

−i(Ei−Ej)t (1.8)

Energy in relativity is can be approximated as:

E = (p2 +m2)1/2 ≈ p+ m2

2E
(for m� E)

so we can write:

Ei − Ej =
m2
i−m2

j

2E
=

∆m2
ij

2E

Each of the mass-squared splittings and mixing angles have been measured and listed in

PDG and have the values given in Table (1.1).
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Table 1.1. Measured Values of Neutrino Mixing Angles and Mass-Squared Splittings

Parameter Value
θ13 9.22o

θ23 45o

θ12 34.4o

∆m2
21 7.59 ∗ 10−5eV 2

∆m2
32 2.43 ∗ 10−3eV 2

∆m2
31 2.51 ∗ 10−3eV 2

According to Barger[1], using our mass-squared splittings, the probability becomes:

P (να → νβ) =
∑
i,j

UαiU
∗
βiU

∗
αjUβje

−i
∆m2

ij
2E

t (1.9)

According to Kayser [2], this can be rewritten as:

P (να → νβ) = δαβ − 4
∑

i>j <[UαiU
∗
βiU

∗
αjUβj] sin2(

∆m2
ijL

4E
)

+2
∑
i>j

=[UαiU
∗
βiU

∗
αjUβj] sin(

∆m2
ijL

2E
) (1.10)

According to Freund [4], expansion of (1.10) to order α2, where α =
∆m2

21

∆m2
31

(not to be confused

with the subscript α), yields:

P (να → νβ) ≈ P0 + Psin δ + Pcos δ + P3
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where:

P0 = sin2(θ23) sin2(2θ13) sin2(
∆m2

31L

4E
) (1.11a)

Psinδ = α sin(δ) cos(θ13) sin(2θ12) sin(2θ13) sin(2θ23) sin3(
∆m2

31L

4E
) (1.11b)

Pcosδ = α cos(δ) cos(θ13) sin(2θ12)

sin(2θ13) sin(2θ23) cos(
∆m2

31L

4E
) sin2(

∆m2
31L

4E
)

(1.11c)

P3 = α2 cos2(θ23) sin2(2θ12) sin2(
∆m2

31L

4E
) (1.11d)

Because we know the mass-squared splittings |m2
i − m2

j | and not the mass values mi,

we do not yet know whether m3 is significantly higher or lower than m1 and m2. We de-

note “normal” mass hierarchy if m3 > m1,m2 and ”inverted” mass hierarchy if m3 < m2,m1.

As an example, let’s calculate the probability of muon to electron neutrino oscillation

using the T2K parameters in Table (1.2) and neutrino parameters in Table (1.1). Let us

further assume that δCP is 0. We would then obtain a value of .05047 for the oscillation

probability. So if the T2K experiment shoots 100 νµ neutrinos at the SK detector that is 295

km from the accelerator, they would expect to measure 5 νe neutrinos at SK. Parameters

for three other baselines, MINOS, NOνA, and LBNE are also given in Table (1.2) and the

corresponding oscillation probabilities are presented in Table (1.3). However, all of these
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baselines involve travel through matter and not vacuum, so interactions with the electrons

in the Earth need to be accounted for. The following three chapters provide 3 different

methods for measuring the adjustments needed to account for these extra interactions.
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Table 1.2. Experimental Parameters for T2K, MINOS, NOνA, and LBNE

Experiment Baseline (km) Peak Eν (GeV) ne(
g
cm3 )

T2K 295 .6 2.76
MINOS 735 4 2.76
NOνA 810 2 2.76
LBNE 1300 3 2.76

Table 1.3. Oscillation Probabilities for T2K, MINOS, NOνA, and LBNE for
δCP = 0

Experiment Probability
T2K 0.0504768

MINOS 0.017606
NOνA 0.0487862
LBNE 0.0502134
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CHAPTER 2

Arafune, Koike, and Sato (AKS) Method

The publication by J. Arafune, M. Koike, and J. Sato entitled “CP Violation and

Matter Effect in Long Baseline Neutrino Oscillation Experiments”[3] provides a method for

finding the time evolution operator, using perturbation theory. AKS starts out with a par-

ticular Hamiltonian and then decomposes it into an unperturbed part and a perturbed part.

An attempt to solve the wave equation for the time-evolution operator using perturbation

theory is made and the probability of neutrino oscillation is estimated.

We begin with a slightly modified version of the PMNS matrix, following the AKS nota-

tion:

U (0) =


1 0 0

0 cψ sψ

0 −sψ cψ




1 0 0

0 1 0

0 0 eiδ




cφ 0 sφ

0 1 0

−sφ 0 cφ




cω sω 0

−sω cω 0

0 0 1



=


cφcω cφsω sφ

−cψsω − sψsφcωeiδ cψcω − sψsφsωeiδ sψcφe
iδ

sψsω − cψsφcωeiδ −sψcω − cψsφsωeiδ cψcφe
iδ

 (2.1)

where sψ = sinψ and cψ = cosψ, etc. Table (2.1) defines the angles given in Equation (2.1)

in terms of more standard notation, as well as other variables used in this chapter.
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Table 2.1. Variables used in AKS

AKS Variable Definition
a 23/2GFneEν
ψ θ23

φ θ13

ω θ12

The time-dependent Schrodinger Equation (TDSE) for a flavor eigenstate vector in vac-

uum is (using natural units, where length and time are treated equally):

i
dν

dx
= −U (0)diag(p1, p2, p3)U (0)†ν ' (−p1Î +

1

2E
U (0)diag(0, δm2

21, δm
2
31)U (0)†)ν (2.2)

where pi are the momenta of the 3 mass eigenstates, δm2
ij ≡ m2

i −m2
j are the mass squared

splittings of the different neutrinos and E is the energy. The second line of (2.2) is calculated

by expanding the relativistic energy formula about small mass m. We can neglect the −p1Î

term since it just gives an overall global phase.

The TDSE for a flavor eigenstate vector in matter is given by the similar formula:

i
dν

dx
= Hν (2.3)

where H = 1
2E
Udiag(µ2

1, µ
2
2, µ

2
3)U †.
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The mixing matrix U and the masses µi are given by:

U


µ2

1 0 0

0 µ2
2 0

0 0 µ2
3

U † = U (0)


0 0 0

0 δm2
21 0

0 0 δm2
31

U (0)† +


a 0 0

0 0 0

0 0 0

 (2.4)

where a ≡ 23/2GFneE, GF is the Fermi coupling constant and ne is the electron density.

The solution of equation (2.3) is:

ν(x) = S(x)ν(0) (2.5)

where S(x) ≡ Te−iHx, assuming that the matter density is independent of position and time.

The oscillation probability P (να → νβ;L) is then just |Sαβ(L)|2.

If we assume that both a and δm2
21 are very small compared to δm2

31, we can proceed

with the following peturbative analysis:

We can separate H into two parts, a main part H0:

H0 =
1

2E
U (0)


0 0 0

0 0 0

0 0 δm2
31

U (0)† (2.6)
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and a perturbation H1:

H1 =
1

2E
(U (0)


0 0 0

0 δm2
21 0

0 0 0

U (0)† +


a 0 0

0 0 0

0 0 0

) (2.7)

If we make the following substitutions:

Ω(x) = eiH0xS(x) and H1(x) = eiH0xH1e
−iH0x,

we can write for our TDSE:

i
dΩ

dx
= H1(x)Ω(x) (2.8)

with

Ω(0) = 1

If we assume ax
2E
� 1 and

δm2
21x

2E
� 1, then we can obtain, as an approximate solution for

our TDSE:

Ω(x) ' 1− i
∫ x

0

H1(s) ds. (2.9)
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This, combined with our definition of Ω(x) yields:

S(x) ' e−iH0x + e−iH0x(−i)
∫ x

0

H1(s) ds (2.10)

If we call the first term S0(x) and the second term S1(x), it can be shown that:

S0(x)βα = δαβ + U
(0)
β3 U

(0)∗
α3 (e−i

δm2
31x

2E − 1) (2.11)

S1(x)βα = − iU (0)
βi U

(0)∗
γi (H1)γδU

(0)
δj U

(0)∗
αj (δi3δj3xe

−i δm
2
31x

2E

+ ((1− δi3)δj3 + δi3(1− δj3))(−iδm
2
31x

2E
)−1

× (e−i
δm2

31x

2E − 1) + (1− δi3)(1− δj3)x)

(2.12)

If we invoke the following identities:

U
(0)∗
γi (H1)γδU

(0)
δj = 1

2E
(diag(0, δm2

21, 0) + U (0)†diag(a, 0, 0)U (0))ij

=
δm2

21

2E
δi2δj2 +

a

2E
U

(0)∗
1i U

(0)
1j (2.13)
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and

2∑
k=1

U
(0)∗
αk U

(0)
1k = δα1 − U (0)∗

α3 U
(0)
13 (2.14)

we can extract the T-matrix from the S-matrix:

S(x)βα = δβα + iT (x)βα (2.15)

where

iT (x) = −2ie
−iδm2

31x

4E sin(
δm2

31x

4E
)U

(0)
β3 U

(0)∗
α3 [1− a

δm2
31

(2|U (0)
13 |2 − δα1 − δβ1)− i ax

2E
|U (0)

13 |2]

−i δm
2
31x

2E
[
δm2

21

δm2
31
U

(0)
β2 U

(0)∗
α2 + a

δm2
31

[δα1δβ1|U (0)
13 |2 + U

(0)
β3 U

(0)∗
α3 (2|U (0)

13 |2 − δα3 − δβ3)]]

To lowest order, the probability of a muon neutrino oscillating into an electron neutrino

can be shown to be:

P (νµ → νe;L) = 4sin2(
δm2

31L

4E
)c2
φs

2
φs

2
ψ[1 +

a

δm2
31

× 2(1− 2s2
φ)]

+ 2
δm2

31L

2E
sin(

δm2
31L

2E
)c2
φsφsψ[− a

δm2
31

sφsψ(1− 2s2
φ)

+
δm2

21

δm2
31

sω(−sφsψsω + cδcψcω)]

− 4
δm2

21L

2E
sin2(

δm2
31L

4E
)sδc

2
φsφcψsψcωsω

(2.16)
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If we assume the parameters given in Table (1.2) and δCP = 0, we find the following

oscillation probabilities for each baseline, using AKS’ formula:
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Table 2.2. Oscillation Probabilities for T2K, MINOS, NOνA, and LBNE for
δCP = 0

Experiment Probability
T2K 0.0579066

MINOS 0.0176483
NOνA 0.0534306
LBNE 0.0558083
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CHAPTER 3

Martin Freund Method: Eigenvectors of the PMNS

Matrix

The calculation used by M. Freund in “Analytic Approximations for Three Neutrino

Oscillation Parameters and Probabilities in Matter”[4] determines the oscillation probability

in matter by finding modified mixing parameters, with the matter effects taken into account,

and substituting them into Barger’s approximate oscillation probability for the vacuum case

given in the introduction. This is accomplished by directly finding the eigenvalues and

eigenvectors of the PMNS matrix with matter effects included, and then comparing with the

vacuum PMNS matrix. As a reminder, the PMNS Matrix is:

Û(mix) =


c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 (3.1)

According to Freund, the oscillation probability in vacuum is given by:

P (νel → νem) = δlm − 4
∑
i>j

<J lmij sin2(∆̂ij)− 2
∑
i>j

=J lmij sin(2∆̂ij) (3.2)

where J lmij = UliU
∗
ljU
∗
miUmj. These and other variables used by Freund are summarized in

Table (3.1).
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Table 3.1. Variables used in Freund

Freund Variable Definition

α
∆m2

21

∆m2
31

∆ m2
31

∆̂ ∆L
4E

A 23/2GFneEν
Â A

∆

Ĉ ((Â− cos(2θ13))2 + sin2(2θ13))1/2

This oscillation probability for neutrinos in vacuum can be approximated by:

P (νe → νµ) = P0 + Psin δ + Pcos δ + P3 (3.3)

where

P0 = sin2(θ23) sin2(2θ13) sin2 ∆̂,

Psin δ = α sin(δ) cos(θ13) sin(2θ13) sin(2θ23)) sin3 ∆̂,

Pcosδ = α cos(δ) cos(θ13) sin(2θ12) sin(2θ13) sin(2θ23) cos ∆̂ sin2 ∆̂,

P3 = α2 cos2 θ23 sin2 2θ12 sin2 ∆̂

∆ = ∆m2
31, α∆ = ∆m2

21, and ∆̂ = ∆L
4E

The full Hamiltonian with matter effects is:

H =
1

2E
[U


m2

1 0 0

0 m2
2 0

0 0 m2
3

U † +


A 0 0

0 0 0

0 0 0

] (3.4)
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where U = U23(θ23)U13(θ23, δ)U12(θ12), and A = 23/2GFneEν . GF is the Fermi coupling con-

stant, ne is the electron density in matter and Eν is the neutrino beam energy.

By extracting m2
1Î from (3.4) and using the relations:

U †δU13(θ13, δ)Uδ = U13(θ13, 0),

U †δU12(θ12)Uδ = U12(θ12), and

U †δ


a 0 0

0 b 0

0 0 c

Uδ =


a 0 0

0 b 0

0 0 c

,

where

Uδ =


1 0 0

0 1 0

0 0 eiδ


it can be shown that:

H =
∆

2E
U23Uδ[U13(θ13, 0)U12


0 0 0

0 α 0

0 0 1

U †12U13(θ13, 0)† +


A
∆

0 0

0 0 0

0 0 0

] U †δU
†
23 (3.5)

where we shall denote the term in brackets as M.
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Let’s now diagonalize M with Û = U23(θ̂23)U13(θ̂13)U12(θ̂12), with eigenvalues λi. Then:

H = ∆
2E
U23UδÛ


λ1 0 0

0 λ2 0

0 0 λ3

 Û †U †δU
†
23 = ∆

2E
U ′


λ1 0 0

0 λ2 0

0 0 λ3

U ′†

gives us the mixing matrix U ′ in matter, where:

U ′ = U23(θ23)UδU13(θ̂13)U12(θ̂12).

This has the same form as the vacuum mixing matrix.

To bring U ′ to standard parameterized form, with U ′ = U(θ′23)U13(θ̂, δ′)U12(θ̂12), we can

make the matrix:

U23(θ23)UδU(θ̂23) =


1 0 0

0 C S

0 −eiδS∗ eiδC∗

 (3.6)

where:

C = cos(θ23) cos(θ̂23)− eiδ sin(θ23) sin(θ̂23)

and

S = cos(θ23) sin(θ̂23) + eiδ sin(θ23) cos(θ̂23)
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real by introducing the following phase rotations:

β = −argC, γ = argS, γ′ = argC − argS

This gives us:


1 0 0

0 e−iβ 0

0 0 −ei(−δ−γ)

U23(θ23)UδU23(θ̂23)


1 0 0

0 1 0

0 0 e−iδ
′

 =


1 0 0

0 |C| |S|

0 −|S| |C|

 (3.7)

From this, we can write U ′ as:

U ′ =


1 0 0

0 eiβ 0

0 0 −ei(δ+γ)




1 0 0

0 |C| |S|

0 −|S| |C|

Uδ′U13(θ̂13)U †δ′U12(θ̂12)Uδ′ (3.8)

By absorbing the phase rotations into the other matrices, we are left with U ′ in standard

parameterized form.

From this, we can read off the conversions from the diagonalization matrix angles to the

modified matter effect-corrected angles:

θ′13 = θ̂13,
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θ′12 = θ̂12,

sin2(θ′23) = cos2(θ23) sin2(θ̂23) + sin2(θ23) cos2(θ̂23)

+2 cos(δ) sin(θ23) cos(θ23) sin(θ̂23) cos(θ̂23),

sin(δ′) = sin(δ) sin(2θ23)
sin(2θ′23)

This yields the matrix M, defined as the term in brackets in equation (3.5):

M =


s2

13 + Â+ αc2
13s

2
12 αs12c12c13 s13c13 − αs13c13s

2
12

αs12c12c13 αc2
12 −αs12c12s13

s13c13 − αs13c13s
2
12 −αs12c12s13 c2

13 + αs2
12s

2
13

 (3.9)

where Â ≡ A
∆

We can now obtain the eigenvalues and eigenvectors of M. To first order, the eigenvalues

are:

λ1 =
1

2
(Â+ 1− Ĉ) + α

(Ĉ + 1− Â cos(2θ13)) sin2 θ12

2Ĉ
(3.10)

λ2 = α cos2(θ12) (3.11)

λ3 =
1

2
(Â+ 1 + Ĉ) + α

(Ĉ − 1 + Â cos(2θ13)) sin2 θ12

2Ĉ
(3.12)
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where Ĉ = ((Â− cos(2θ12))2 + sin2(2θ13))1/2

To first order, then, the corresponding eigenvectors are:

v1 =


sin(2θ13)

(2Ĉ(Â+Ĉ−cos(2θ13)))1/2 −
αÂ sin2(θ12) sin2(2θ13)

2Ĉ(2Ĉ2(−Â+Ĉ+cos(2θ13)))1/2

α(1+Â−Ĉ) sin(2θ12) sin(θ13)

(1+Â+Ĉ)(2Ĉ(Â+Ĉ−cos(2θ13)))1/2

− sin(2θ13)

(2Ĉ(−Â+Ĉ+cos(2θ13)))1/2 −
αÂ sin2(θ12) sin2(2θ13)

2Ĉ(2Ĉ2(Â+Ĉ−cos(2θ13)))1/2

 (3.13)

v2 =


−α cos(θ12) sin(θ12)

Â cos(θ13)

1

α(1+Â) cos(θ12) sin(θ12) sin(θ13)

Â cos2(θ13)

 (3.14)

v3 =


sin(2θ13)

(2Ĉ(−Â+Ĉ+cos(2θ13)))1/2 + αÂ sin2(θ12) sin2(2θ13)

2Ĉ(2Ĉ2(Â+Ĉ−cos(2θ13)))1/2

α(1+Â−Ĉ) sin(2θ12) sin(θ13)

(1+Â+Ĉ)(2Ĉ(−Â+Ĉ+cos(2θ13)))1/2

sin(2θ13)

(2Ĉ(Â+Ĉ−cos(2θ13)))1/2 −
αÂ sin2(θ12) sin2(2θ13)

2Ĉ(2Ĉ2(−Â+Ĉ+cos(2θ13)))1/2

 (3.15)

Using our eigenvectors, we can construct Û . The first order of business is to identify the

correct order of the eigenvectors. According to Freund, when Â < cos(2θ13), which is the

case for both T2K and LBNE, the correct order is:

Û = (v1v2v3)T (3.16)

Next, we must bring U ′ to a form consistent with the standard parameterization. As an

example, we will now examine the case of Â < 0.
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By looking at the (µ, 3) element of Û , it can be seen that the matter perturbation angle

θ̂23 will be of order α. Also, by looking at the (e, 2) element of Û , it can be seen that the

matter perturbation angle θ̂12 is also of order α.

If we make the following replacements:

ŝ12 = αŝ
(α)
12 , ŝ23 = αŝ

(α)
23 , ŝ13 = ŝ

(0)
13 + αŝ

(α)
23

and assume that θ13 is very close to 0, we can write Û as:

Û =


ĉ13 αĉ

(0)
13 ŝ

(α)
12 ŝ13

−α(ŝ
(α)
12 + ŝ

(0)
13 ŝ

(α)
23 ) 1 αĉ

(0)
13 ŝ

(α)
23

−ŝ13 −α(ŝ
(α)
12 ŝ

(0)
13 + ŝ

(α)
23 ) ĉ13

 (3.17)

From Ue3, Uµ3, and Uτ3, we can directly read off sin(θ̂13) and sin(θ̂23):

sin(θ̂13) =
sin(2θ13)

(2Ĉ(−Â+ Ĉ + cos(2θ13)))1/2
+

αÂ sin2(θ12) sin2(2θ13)

2Ĉ(2Ĉ2(Â+ Ĉ − cos(2θ13)))1/2
(3.18)

sin(θ̂23)
α(1 + Â− Ĉ) sin(2θ12) sin(θ13)

2(1− Â+ Ĉ) cos2(θ13)
(3.19)
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To find sin(θ̂12), we need to separate θ̂23 from Û . The remainder of Û = UT
23(θ̂23)Û ′ needs

to be brought to the form:


ĉ13 αĉ

(0)
13 ŝ

(α)
12 ŝ13

−αŝ(α)
12 1 0

−ŝ′13 −αŝ(α)
12 ŝ

(0)
13 ĉ13

 (3.20)

The angle θ̂12 can then be read off from Û ′µ1:

sin(θ̂12) = − αĈ sin(2θ12)

Â cos(θ13)(2Ĉ(−Â+ Ĉ + cos(2θ13)))1/2
(3.21)

We can now assemble formulas to convert from the vacuum angles to the modified angles:

sin(θ′13) =
sin(2θ13)

(2Ĉ(−Â+ Ĉ + cos(2θ13)))1/2
+

αÂ sin2(θ12) sin2(2θ13)

2Ĉ(2Ĉ2(Â+ Ĉ − cos(2θ13)))1/2
(3.22)

sin(θ′12) = − αĈ sin(2θ12)

ˆ|A| cos(θ13)(2Ĉ(−Â+ Ĉ + cos(2θ13)))1/2
(3.23)
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sin(θ′23) = sin(θ23) + αcos(δ)
Âsin(2θ12)sin(θ13)cos(θ23)

1 + Ĉ − Âcos(2θ13)
(3.24)

sin(δ′) = sin(δ)(1− α cos(δ)

tan(2θ23)

2Â sin(2θ12) sin(θ13)

1 + Ĉ − Â cos(2θ13)
) (3.25)

These other expressions can also be derived from the above parameter mapping:

sin2(2θ′13) =
sin2(2θ13)

Ĉ2
+ α

2Â(−Â+ cos(2θ13) sin2 θ12 sin2(2θ13)

Ĉ4
(3.26)

sin(2θ′12) = α
2Ĉ sin(2θ12)

|Â| cos(θ13)(2Ĉ(−Â+ Ĉ + cos(2θ13))1/2
(3.27)

sin(2θ′23) = sin(2θ23) + α cos(δ)
2Â sin(2θ12) sin(θ13) cos(2θ23)

1 + Ĉ − Â cos(2θ13)
(3.28)

We also obtain for the mass squared differences, with the order again stipulated by Freund:

(∆m′221,∆m
′2
31,∆m

′2
32) = (∆m2

3,∆m
2
2,∆m

2
1) (3.29)

with ∆m′21 = ∆(λ3 − λ2), ∆m′22 = ∆(λ3 − λ1), and ∆m′23 = ∆(λ2 − λ1)
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We can now write (to second order):

<J ′eµ12 = − cos(δ′) sin(θ′12) cos2(θ′13) sin(θ′13) cos(θ′23) sin(θ′23)

− sin2(θ′12) cos2(θ′23)

(3.30)

<J ′eµ13 = − cos(δ′) sin(θ′12) cos2(θ′13) sin(θ′13) cos(θ′23) sin(θ′23)

− sin2(2θ′13) sin2(θ′23)

(3.31)

<J ′eµ23 = cos(δ′) sin(θ′12) cos2(θ′13) sin(θ′13) cos(θ′23) sin(θ′23) (3.32)

=J ′eµ12 = −=J ′eµ13 = =J ′eµ23

= cos(δ′) sin(θ′12) cos2(θ′13) sin(θ′13) cos(θ′23) sin(θ′23) (3.33)

We need to go to second order because the second term of <J ′eµ12 isn’t suppressed by θ13,

so it is not negligible.

We can obtain, then from these, P (νe → νµ):

27



P0 = sin2(θ23)
sin2(2θ13)

Ĉ2
sin2(∆̂Ĉ) (3.34)

Psin δ = 1
2
α sin(δ) cos(θ13) sin(2θ12) sin(2θ13) sin(2θ23)

ÂĈ cos(θ2
13)

sin(Ĉ∆̂)

×[cos(Ĉ∆̂)− cos((1 + Â)∆̂] (3.35)

Pcos δ = 1
2
α cos(δ) cos(θ13) sin(2θ12) sin(2θ13) sin(2θ23)

ÂĈ cos(θ2
13)

sin(Ĉ∆̂)

×[sin((1 + Â)∆̂− sin(Ĉ∆̂)] (3.36)

P1 = −α 1−Â cos(2θ13)

Ĉ3
sin2(θ12) sin2(2θ13) sin2(θ23)∆̂

× sin(2∆̂Ĉ) + α 2Â(−Â+cos(2θ13))

Ĉ4

× sin2(θ12) sin2(2θ13) sin2(θ23) sin2(∆̂Ĉ) (3.37)

P2 = α
−1 + Ĉ + Â cos(2θ13)

2Ĉ2Â cos2(θ13)

cos(θ13) sin(2θ12) sin(2θ13) sin(2θ23) sin2(∆̂Ĉ)

(3.38)

P3 = α2 2Ĉ cos2(θ23) sin2(2θ12)

Â2 cos2(θ13)(−Â+ Ĉ + cos(2θ13)
sin2(

1

2
(1 + Â− Ĉ)∆̂) (3.39)

We can expand the Â-dependent parts of P1, P2, and P3 to first order in θ13 to obtain:
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1− Â cos(2θ13)

Ĉ3
= +

1

(Â− 1)2
(3.40)

2Â(−Â+ cos(2θ13))

Ĉ4
= − 2Â

(Â− 1)3
(3.41)

−1 + Ĉ + Â cos(2θ13)

2Ĉ2Â cos2(θ13)
= 0 (3.42)

2Ĉ

cos2(θ13)(−Â+ Ĉ + cos(2θ13))
= 1 (3.43)

Because P1 is quadratic in sin(θ13) and P2 is 0 to first order, we can conclude that they

are negligibly small compared to Psin δ and Pcos δ and can be dropped. However, we need to

keep P3 because it isn’t suppressed by θ13.

The expressions for the eigenvalues and eigenvectors are not good at the atmospheric

resonance. The source of this problem is second order in θ13. This issue only affects the

Pcos δ term and only for large values of θ13. This problem can be mitigated by neglecting the

subleading terms. The modified Psin δ and Pcos δ are then:

Psin δ = α sin(δ) cos(θ13) sin(2θ12) sin(2θ13) sin(2θ23)

ÂĈ cos(θ2
13)

× sin(Ĉ∆̂) sin(∆̂) sin(Â∆̂) (3.44)
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Pcos δ = α cos(δ) cos(θ13) sin(2θ12) sin(2θ13) sin(2θ23)

ÂĈ cos(θ2
13)

× sin(Ĉ∆̂) sin(∆̂) sin(Â∆̂) (3.45)

Neglecting all subleading terms in θ13, we obtain as our final probability:

P0 = sin2(θ23)
sin2(2θ13)

(Â− 1)2
sin2((Â− 1)∆̂) (3.46)

Psin δ = α
sin(δ) cos(θ13) sin(2θ12) sin(2θ13) sin(2θ23)

Â(1− Â)
sin(∆̂)

sin(Â∆̂) sin((1− Â)∆̂)

(3.47)

Pcos δ = α
cos(δ) cos(θ13) sin(2θ12) sin(2θ13) sin(2θ23)

Â(1− Â)

cos(∆̂) sin(Â∆̂) sin((1− Â)∆̂)

(3.48)

P3 = α2 cos2(θ23) sin2(2θ12)

Â2
sin2(Â∆̂) (3.49)
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Using the experimental parameters in Table (1.2) and the neutrino physics parameters

in Table (1.1), with δCP = 0, we obtain the following probabilities:
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Table 3.2. Oscillation Probabilities for T2K, MINOS, NOνA, and LBNE for
δCP = 0

Experiment Probability
T2K 0.0594878

MINOS 0.0180609
NOνA 0.0547998
LBNE 0.0572652
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CHAPTER 4

Mann, Kafka, Schneps, and Altinok (MKSA) Method

4.1. Preliminaries

The goal of the paper “Exact Probability with Perturbative Form for νµ → νe Oscilla-

tions in Matter of Constant Density” by W. Mann, T. Kafka, J. Schneps, and O. Altinok[5]

is to obtain the exact oscillation probability of neutrinos in matter by determining the evolu-

tion operator. MKSA starts with the Hamiltonian for vacuum oscillations in the mass basis

and then transforms into the flavor basis, before adding a matter perturbation to it. They

then transform into the propagation basis and finally into the interaction picture. After ex-

ponentiating the Hamiltonian, for which a closed form can be found, the resultant evolution

operator is transformed back into the flavor basis. The probability amplitude can be read

from this evolution operator.

Due to the large number of variables in this section, the table which summarizes them

all is given at the end of the chapter.

For neutrino propagation in vacuum, the Hamiltonian in the mass basis ~νi (i=1,2,3) is:

Ĥ
(i)
0 =


0 0 0

0
∆m2

21

2E
0

0 0
∆m2

31

2E

 (4.1)
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One can transform from the mass basis |νi〉 to the flavor basis |να〉 by using the PMNS

matrix in the following manner:

~ν(α) = Û(mix)~ν
(i) (4.2)

The PMNS matrix is defined as the product of the following matrices:

Û(mix) ≡ R̂1(θ23)ÎδCP R̂2(θ13)Î−δCP R̂3(θ12)

where:

ÎδCP ≡


1 0 0

0 1 0

0 0 eiδCP



and R̂1(θ23), R̂2(θ13), and R̂3(θ12) are defined in Chapter 1.

Together, this can be written as:
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Û(mix) =


c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13e
iδCP c12c23 − s12s23s13e

iδCP s23c13

s12s23 − c12c23s13e
iδCP −c12s23 − s12c23s13e

iδCP c23c13

 (4.3)

The time-dependent Schrodinger equation (TDSE) for flavor eigenstates is:

i
d

dt
~ν(α)(t) = Ĥ

(α)
0 ~ν(α)(t) (4.4)

The Hamiltonian in the flavor basis is then given by the following rotation:

Ĥ
(α)
0 = (R̂1ÎδCP R̂2Î−δCP R̂3)Ĥ

(i)
0 (R̂T

3 ÎδCP R̂
T
2 Î−δCP R̂

T
1 ) (4.5)

Because Î−δCP commutes with R̂3 and R̂T
3 commutes with ÎδCP , and

because Î−δCP Ĥ
(i)
0 ÎδCP = Ĥ

(i)
0 , we can rewrite the Hamiltonian in the flavor basis as:

Ĥ
(α)
0 = (R̂1ÎδCP )Ĥ

(23)
0 (Î−δCP R̂

T
1 ) (4.6)
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where Ĥ
(23)
0 = R̂2R̂3Ĥ

(i)
0 R̂T

3 R̂
T
2

Written out explicitly:

Ĥ
(23)
0 =


s2

12c
2
13α + s2

13
1
2
c13α

′ 1
2

sin 2θ̃13

1
2
c13α

′ c2
12α −1

2
s13α

′

1
2

sin 2θ̃13 −1
2
s13α

′ s2
12s

2
13α + c2

13

 (4.7)

where α′ ≡ sin2θ12α and α ≡ ∆m2
21

∆m2
31
' 1/32

The discussion of this method has, until now, concerned only oscillations in vacuum.

For oscillations in matter, a matter interaction perturbation term is added to the main

Hamiltonian:

Ĥ
(α)
matter =


Ve 0 0

0 0 0

0 0 0

 (4.8)

where Ve ≡ A
2lν

, lv ≡ Eν
∆m2

31
is the vacuum oscillation length, A ≡ ±23/2GfneEν

∆m2
31

is the matter

potential, Gf is the Fermi coupling constant, and ne is the electron density in matter. The

reason why we have an interaction term in the 1,1 position in the matrix is that while all

three flavors of neutrinos can react with the electrons in the earth via a neutral current

interaction, electron neutrinos can also interact via a charged current interaction. This extra
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interaction pathway means that electron neutrinos will interact with electrons in the earth

far more than other types of neutrinos.

4.2. Oscillations in Matter

The Hamiltonian must now be transformed into the propagation basis. The TDSE for

such an eigenstate is:

i
d

dt
~ν(p) = Ĥ(p)~ν(p) (4.9)

where Ĥ(p) ≡ Ĥ
(23)
0 + Ĥ

(α)
matter

An eigenstate in the propagation basis can be obtained from an eigenstate in the flavor

basis by the following transformation, which can be derived by using Equations (4.6) and

(4.8) in (4.4):

~ν(p) = Î−δCP R̂
T
1 (θ23)~ν(α) (4.10)
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We can “re-phase” this Hamiltonian by subtracting out the following terms, all of which

are proportional to the identity matrix and which just give a global phase:

c213

2lν
Î, 1

4lν
(A− cos 2θ13)Î, 1

4lν
s2

12αÎ

This then yields:

Ĥ(p) =
1

4lν


−(cos 2θ̃13 − A) c13α

′ sin 2θ̃13

c13α
′ −[(1 + A) + α′′] −s13α

′

sin 2θ̃13 −s13α
′ +(cos 2θ̃13 − A)

 (4.11)

where α′′ ≡ (1− 3c2
13)α

We can simplify this by defining the following five new variables:

G ≡ 1
4lν

[(1 + A) + α′′], Q ≡ 1
4lν

[cos 2θ̃13 − A], f ≡ 1
4lν

sin 2θ̃13,

a ≡ 1
4lν

[c13α
′], b ≡ 1

4lν
[−s13α

′]

yielding:
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Ĥ(p) =


−Q a f

a −G b

f b +Q

 (4.12)

Now that the Hamiltonian is in the propagation basis, it must be formulated in the inter-

action picture. To do so, we separate Ĥ(p) into the unperturbed piece Ĥ
(p)
0 and the perturbed

piece V̂ :

Ĥ(p) = Ĥ
(p)
0 + V̂ =


−Q 0 f

0 −G 0

f 0 +Q

+


0 a 0

a 0 b

0 b 0

 (4.13)

An eigenstate in the propagation basis can be transformed into one in the interaction

picture by:

~ν(I)(t) = eiĤ
(p)
0 t~ν(p)(t), (4.14)

yielding a TDSE of :

i
d

dt
~ν(I)(t) = V̂I~ν

(I)(t) (4.15)
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where V̂I ≡ eiĤ
(p)
0 tV̂ e−iĤ

(p)
0 t

As stated earlier, we are interested in the time evolution operator in the interaction pic-

ture:

~ν(I)(t) = ÛI(t, 0)~ν(I)(0) (4.16)

Using this, we can rewrite our wave equation as:

i
d

dt
ÛI(t, 0) = V̂I(t)ÛI(t, 0) (4.17)

To obtain our evolution operator, we must exponentiate our unperturbed Hamiltonian

in the propagation basis. We use the following expansion:

Ŵ ≡ eiĤ
(p)
0 t =

∞∑
i=0

(iĤ
(p)
0 t)n

n!
(4.18)

This yields:
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eiĤ
(p)
0 t =


W11 0 W13

0 e−iGt 0

W31 0 W33

 (4.19)

Because neither the middle row, nor the middle column of Ĥ
(p)
0 mix with the other rows

and columns, we can work in a reduced 2×2 space:

Ĥ
(p)
R =

 −Q f

f +Q

 = fσ̂x −Qσ̂z (4.20)

where we have invoked the Pauli matrices. We can write Ĥ
(p)
R as ~N • σ̂ where ~N = (f, 0,−Q).

Further defining n̂ as
~N
N

and noting that in natural units, t=l, we obtain:

eiĤ
(p)
R (t=l) = ein̂•~σ(Nl) = ein̂•~σφ (4.21)

where φ ≡ nl is the rotation angle about n̂, which serves as our axis of rotation in this

reduced space.

With n̂ = (nx, 0, nz), we can now write:
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ein̂•~σφ =

 cosφ+ inzsinφ inx sinφ

inx sinφ cosφ− inz sinφ

 (4.22)

If we define γ ≡ cosφ+ inz sinφ and β ≡ nx sinφ, then we can write:

eiĤ
(p)
0 t =


γ 0 iβ

0 e−iGt 0

iβ 0 γ∗

 (4.23)

Using this, we can now express V̂I(t) as:

V̂I(l) =


0 (γa+ iβb)eiGl 0

(γ∗a− iβb)e−iGl 0 (γb− iβa)e−iGl

0 (γ∗b+ iβa)eiGl 0

 (4.24)

If we define u ≡ (γa+ iβb)eiGl and v ≡ (γb− iβa)e−iGl, we can write:
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V̂I(l) =


0 u 0

u∗ 0 v

0 v∗ 0

 (4.25)

To obtain the evolution operator, we must exponentiate (4.25). It can be shown that

(V̂I)
n=odd = ηn−1V̂I and (V̂I)

n=even = ηn−2V̂ 2
I where η ≡ α′

4lv
and η2 = |u|2 + |v|2. Therefore:

eiV̂I l =
∞∑
n=0

(−iV̂I l)n

n!
= 1̂− (

V̂I
η

)2(1− cos(ηl))− i V̂I
η

sin(ηl) (4.26)

If we make the following substitutions:

θ ≡ ηl, ū ≡ u
η
, v̄ ≡ v

η
, (1− cos θ) = 2 sin2 θ

2

We can write the evolution operator in the interaction picture as:

ÛI(l, 0) =


1− 2|ū|2 sin2 θ

2
−iū sin θ −2ūv̄ sin2 θ

2

−iū∗ sin θ cos θ −iv̄ sin θ

−2(ūv̄)∗ sin2 θ
2
−iv̄∗ sin θ 1− 2|v̄|2 sin2 θ

2

 (4.27)
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Before continuing, it is helpful to make the following substitutions to simplify the algebra:

Du ≡ 1− 2|ū|2 sin2 θ
2
, Dv ≡ 1− 2|v̄|2 sin2 θ

2
,

d ≡ cos θ, e ≡ ū sin θ, p ≡ −2ūv̄ sin2 θ
2
, k ≡ v̄ sin θ

Now that we have the evolution operator in the interaction picture, we can now trans-

form it back to the flavor basis. The transformation from the interaction picture to the

propagation basis is:

Û (p)(l, 0) = e−iĤ
(p)
0 ÛI(l, 0) (4.28)

The evolution operator in the propagation basis, using the substitutions preceding (4.28)

is:

Û (p)(l, 0) =


(γ∗Du − iβp∗) (γ∗(−ie)− βk∗) (γ∗p− iβDv)

(−ie∗)eiGl deiGl (−ik)eiGl

(γp∗ − iβDu) (γ(−ik∗)− βe) (γDv − iβp)

 (4.29)

To switch into the flavor basis, the following transformation is used:
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Û (α)(l, 0) = R̂1(θ23)ÎδcpÛ
(p)(l, 0)Î−δcpR̂

T
1 (θ23) (4.30)

The full matrix is presented in Appendix A. For νµ → νe, we need element U
(α)
12 =A(νµ →

νe), which equals, after some substitutions back into earlier notations:

A(νµ → νe) = (−i)s23βe
−iδcp + (−i)c23[γ∗ū− iβv̄∗] sin θ

+2s23[iβ|v̄|2 − γ∗ūv̄] sin2(
θ

2
)e−iδCP (4.31)

Recalling that P (νµ → νe) = |A(νµ → νe)|2, it can be shown that the probability for

muon neutrinos to shapeshift into electron neutrinos is:

45



P (νµ → νe) = (sin 2θ̃13)2s2
23

sin2(D∆)

D2
+ sin 2θ̃13c13 sin 2θ23 sin(α′∆)

× sin(D∆)

D
[cos ∆′ cos δcp − sin ∆′ sin δcp]

+ c2
13c

2
23 sin2(α′∆)

− 2 sin 2θ13 sin 2θ̃13s
2
23FA sin2(

α′∆

2
)
sin2(D∆)

D2
]]

+ sin 2θ13c13 sin 2θ23 sin(α′∆) sin2(
α′∆

2
)

[cos(D∆) sin(∆′ + δCP )− FA
sin(D∆)

D
cos(∆′ + δcp)]

+ sin2 2θ13s
2
23 sin4(

α′∆

2
)[cos2(D∆) + F 2

A

sin2(D∆)

D2
]

(4.32)

where

∆ ≡ ∆m2
31l

4Eν
= l

4lν
, sin 2θ̃13 = (1− s2

12α) sin 2θ13, ∆′ ≡ Gl = ∆[(1 + A) + α′′]

α′′ ≡ (1− 3c2
12)α, and FA ≡ [c2

13(1− s2
12α)− (cos2θ̃13 − A)]

Assuming a δCP of 0, the oscillation probabilities for the four baselines are given in Table

(4.2).
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Table 4.1. Variables used in MKSA

MKSA Variable Definition

α
∆m2

21

∆m2
31

∆
∆m2

31l

4Eν

A 23/2GFneEν
∆m2

31

Ve
A

2lν
α′ sin(2θ12)α
α′′ (1− 3c2

12)α

sin(2θ̃13) (1− s2
12α) sin(2θ13)

cos(2θ̃13) (1− s2
12α) cos(2θ13)

N 1
4lν

[(sin(2θ̃13))2 + (cos(2θ̃13)− A)2]1/2

η α′

4lν
G 1

4lν
[(1 + A) + α′′]

FA [c2
13(1− s2

12α)− (cos(2θ̃13)− A)]
D 4lνN
∆′ Gl

Q 1
4lν

(cos(2θ̃13)− A)

f 1
4lν

(sin(2θ̃13))

a 1
4lν

[c13α
′]

b 1
4lν

[−s13α
′]

γ cosφ+ inz sinφ
β nx sinφ
u (γa+ iβb)eiGl

v (γb+ iβa)e−iGl

θ ηl
ū u

η

v̄ v
η

Du 1− 2|ū|2 sin2( θ
2
)

Dv 1− 2|v̄|2 sin2( θ
2
)

d cos θ
e ū sin θ
p −2ūv̄ sin2( θ

2
)

k v̄ sin θ

Table 4.2. Oscillation Probabilities for T2K, MINOS, NOνA, and LBNE for
δCP = 0

Experiment Probability
T2K 0.0576435

MINOS 0.0177052
NOνA 0.0533319
LBNE 0.0556574
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CHAPTER 5

Comparison of the Methods

In this section, we present and compare the probabilities versus δCP and versus Eν

for δCP = 0 of νµ → νe oscillations for each formula, using the T2K, MINOS, NOνA, and

LBNE parameters, given in Table (1.2).

Plots of the methods for Probability vs δCP for each of the four baselines are given as

Figures (5.1)-(5.4).

Figure 5.1. Plots of the probability vs δCP for the three different methods
using T2K parameters. The curve colors include Freund (blue, top), MKSA
(purple, middle), and AKS (gold, bottom)

Each formula can be simplified down to three terms. This is calculated for the T2K case

and shown in Table 5.1:

From Table (5.1), it can be seen that the AKS formula differs significantly from the others

in that it has the lowest constant value and has a smaller sin(δ) value than the others. It

is a trivial exercise to show that if one combines the cos and sin terms in each formula into
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Table 5.1. Formulas using the T2K parameters for the Values of the Mass-
Squared Splittings and Mixing Angles

Source Formula
AKS .0544576 + .00344891 ∗ cos(δ)− .0068977 ∗ sin(δ)

Freund .0593976− .0000902519 ∗ cos(δ)− .0148669 ∗ sin(δ)
MKSA .0587505− .0110705 ∗ cos(δ)− .0147829 ∗ sin(δ)

a single phase-shifted cos term, the amplitudes of the resultant terms are extremely close

to .0148 for Freund and MKSA, but not AKS, which has an amplitude of .0077. It is easy

Figure 5.2. Plots of the probability vs δCP for the three different methods
using MINOS parameters. The curve colors include Freund (blue, top), MKSA
(purple, middle), and AKS (gold, bottom)

Figure 5.3. Plots of the probability vs δCP for the three different methods
using NOvA parameters. The curve colors include Freund (blue, top), MKSA
(purple, middle), and AKS (gold, bottom)
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to see in Figure 5.1 that the phase shifts from a pure cos term for the resultant expressions

is around 90 degrees for Freund and MKSA, but not AKS, where it is about 63 degrees,

since the MKSA and Freund formulas appear very close to − cos(δ). When plotting each of

these three formulas, if one “shuts off” the cos(δ) term in each one, the Freund and MKSA

formulas are very close to each other while the AKS formula differs significantly, suggesting

that the sin(δ) term plays a very important role in differentiating them. When the sin(δ)

term is eliminated, though, all three formulas differ from each other significantly, suggesting

that the difference is really a combination of both sinusoidal terms.

The MKSA formula, although different from the other fomulas in structure, due to it

being exact, does come remarkably close to the others when plotted. As it agrees well with

Freund, it suggests that both MKSA and Freund are quite accurate for the T2K case.

Figure 5.4. Plots of the probability vs δCP for the three different methods
using LBNE parameters. The curve colors include Freund (blue, top), MKSA
(purple, middle), and AKS (gold, bottom)
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Figures (5.5)-(5.8) are plots of the probability vs energy for each of the 4 baselines, using

δCP = 0.

Figure 5.5. Probability vs Energy for δCP = 0 for each of the five methods,
using T2K parameters (color coding is the same as in Figure 5.1)

Figure 5.6. Probability vs Energy for δCP = 0 for each of the five methods,
using MINOS parameters (color coding is the same as in Figure 5.1)

Based off of Figure (5.5), at the energy and baseline length of T2K, the three formulas

are close to each other, so it would seem that it does not matter greatly which formula is

used, though Figure (5.1) suggests that AKS should be avoided for other reasons. Figures
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(5.6)-(5.8), however, shows that at higher energies and longer baselines, the formulas diverge

a fair amount. The MKSA formula is very close to Freund in this circumstance. It would

appear that to be safe, the MKSA formula should be used as it is exact, despite being rela-

tively complicated, while the other formulas differ from it under various circumstances.

Figure 5.7. Probability vs Energy for δCP = 0 for each of the five methods,
using NOvA parameters (color coding is the same as in Figure 5.1)

Figure 5.8. Probability vs Energy for δCP = 0 for each of the five methods,
using LBNE parameters (color coding is the same as in Figure 5.1)
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APPENDIX A

The Evolution Operator for MKSA

Û
(α)
1,1 (l, 0) = −ip∗β +Duγ

∗ (A.1)

Û
(α)
1,2 (l, 0) = −(k∗β + ieγ∗) cos(θ23) + e−iδ(−iDvβ + pγ∗) sin(θ23) (A.2)

Û
(α)
1,3 (l, 0) = e−iδ(−iDvβ + pγ∗) cos(θ23) + (k∗β + ieγ∗) sin(θ23) (A.3)

Û
(α)
2,1 (l, 0) = −ieiGle∗ cos(θ23) + eiδ(−iDuβ + p∗γ) sin(θ23) (A.4)

Û
(α)
2,2 (l, 0) = deiGl cos2(θ23)−ie−iδ(eiGlk+e2iδ(−ieβ+k∗γ)) cos(θ23) sin(θ23)+(−ipβ+Dvγ) sin2(θ23)

(A.5)

Û
(α)
2,3 (l, 0) = −iei(Gl−δ)k cos2(θ23)−(deiGl+ipβ−Dvγ) cos(θ23) sin(θ23)+eiδ(eβ+ik∗γ) sin2(θ23)

(A.6)

Û
(α)
3,1 (l, 0) = eiδ(−iDuβ + p∗γ) cos(θ23) + ieiGle∗ sin(θ23) (A.7)
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Û
(α)
3,2 (l, 0) = e−iδ(−e2iδ(eβ+ik∗γ) cos2(θ23)−eiδ(deiGl+ipβ−Dvγ) cos(θ23) sin(θ23)+ieiGlk sin2(θ23)

(A.8)

Û
(α)
3,3 (l, 0) = (−ipβ+Dvγ) cos2(θ23)+e−iδ(ieiGlk+e2iδ(eβ+ik∗γ)) cos(θ23) sin(θ23)+deiGl sin2(θ23)

(A.9)
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APPENDIX B

Location of Mathematica Notebooks

The notebook for the Probability vs CP Angle plot is named ProbvsCP.nb and the

notebook for the Probability vs Energy plot is named ProbvsEnergy.nb Both notebooks are

located at http://hep.colostate.edu/t2k/jmla/
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