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ABSTRACT

MATTER EFFECTS ON NEUTRINO OSCILLATIONS

An introduction to neutrino oscillations in vacuum is presented, followed by a survey of
various techniques for obtaining either exact or approximate expressions for v, — v, oscil-
lations in matter. The method developed by Arafune, Koike, and Sato uses a perturbative
analysis to find an approximation for the evolution operator. The method used by Freund
yields an approximate oscillation probability by diagonalizing the Hamiltonian, finding the
eigenvalues and eigenvectors, and then using those to find modified mixing angles with the
matter effect taken into account. The method devised by Mann, Kafka, Schneps, and Alti-
nok produces an exact expression for the oscillation by determining explicitly the evolution
operator. These methods are compared to each other using the T2K, MINOS, NOvA, and

LBNE parameters.
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CHAPTER 1

MOTIVATION AND NEUTRINO OSCILLATIONS IN VACUUM

The motivation for this thesis was to provide an overview of three different methods
for determining the oscillation probability in matter for v, — 1,. Taking into account these
effects is important as the values of the mixing parameters are altered by them. The three
papers studied were chosen to provide not only 3 different methods for modeling these mat-
ter effects, but to also give the reader some insight into the state of knowledge of matter
effects at 3 different points in time. The first method, published in 1999 and formulated by
Arafune, Koike and Sato involved a perturbative expansion of the Hamiltonian in order to
find the evolution operator. This method was an early one, at which time the value of ;3
was not known and presumed to be extremely small. This assumption has since been shown
to be invalid. The second method, published in 2001 and devised by Freund, attempts to find
modified mixing parameters with the matter effect taken into account in order to use them in
the standard vacuum oscillation expansion. At this time, there was a better understanding
of the values of the oscillation parameters. The third method, used by Mann, Kafka, Schneps
and Altinok and published in 2012, finds an exact expression for the oscillation probability.
By the time of the publication of this paper, values for most of the mixing parameters had
already been determined. The notation used in each chapter corresponds to the notation
used in the particular papers, which is different for each one, so a table relating the variables

used in that chapter to standard parameters is provided at the end of each chapter.



Neutrinos can be described by either a mass eigenstate |v;) or a flavor eigenstate |v,).

One can convert from one to the other by using a specific unitary mixing matrix:
|Va> = ZUai‘Vi> (11)
i

The mixing matrix is known as the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix. The

PMNS matrix is defined as the product of the following unitary matrices:

1 0 0 1 0 0 ci3 0 si13
Usi= | 0 co3 503 01 0 0 1 0
0 —s93 Co3 0 0 ¢ —s13 0 cq3
1 0 0 ci2  S12 0
01 0 —s13 €12 0 (1.2)
00 e® 0 0 1

where s;; = sin(6;;) and ¢;; = cos(6;;).

This is often written as U = Rl(Hgg)jgchz(ng)j_(;opég(elg) for ShOl“t, where [A(;CP =

diag(1,1,e°P) and I_scp = I}, p.



Multiplying the matrices in (1.2) together, the PMNS matrix reads:

_‘5
C12C13 S512€13 s13€”"

-
[

) )
—812C23 — €12523513€ C12C23 — 512523513€ 523C13

6 6
512823 — C12C23513€ —C12523 — 512€23513€ C23C13

The time-dependence of a plane wave flavor eigenstate, given the initial mass eigenstate

lvi(t = 0)) is:

Vs (t > 0)) ZUme N |yt = 0)) (1.4)

We can write a mass eigenstate in terms of a flavor eigenstate by using:

;) = Z Us: |vs) (1.5)

Applying it to (1.4), we see that:

e (t > 0)) Z U, e tEit/h lvi(t = 0)) Z Z U,.e Fi t/hUﬁl 7)) (1.6)

The amplitude of a neutrino in flavor eigenstate o at t=0 being observed in eigenstate § at



a later time ¢t > 0 is:

{vs| va(t > 0)) = <V,B

Z Z UaiefiEit/ﬁUﬁi

i B

The corresponding probability is then:

[{(vgl valt > 0) P = | Unie” "M Usi* = Y UniU:UsjUpje™ B
) i, J

Energy in relativity is can be approximated as:

E=@+m*)?=p+ 2 (form < E)

SO we can write:

E_E — mf—m? _ Amfj
? J 2F 2F

1/5> = Z UaieiiEit/hUgi

(1.8)

Each of the mass-squared splittings and mixing angles have been measured and listed in

PDG and have the values given in Table (1.1).



TABLE 1.1. Measured Values of Neutrino Mixing Angles and Mass-Squared Splittings

Parameter Value
013 9.22°
O3 45°
012 34.4°

Am3, 759 %10 %eV?
Am3, 2.43 x 107 3eV?
AmZ 2.51 x 107 3eV?

According to Barger[1], using our mass-squared splittings, the probability becomes:

2

Ami]-
P(ve — v3) Z UaiU Uz Ugje ™ 28! (1.9)

According to Kayser [2], this can be rewritten as:

2

. Ams L
P<Va — Vﬁ) - 5045 421>J %[U@ZU[%U Uﬁ]] SIHQ( 4Ej )

Am2.L

+2) " S(UaiU5,U7, U] sin(— ) (1.10)
i>7

According to Freund [4], expansion of (1.10) to order o, where o = ﬁzgl (not to be confused
31

with the subscript «), yields:

P(VQ%VB)%PO+Psin5+Pcosé+P3
5



where:

Am3, L

Py = sin®(f3) sin®(26;3) sin?( 1B ) (1.11a)
Am2, L
Piins = asin(8) cos(f13) sin(26015) sin(26,3) sin(26,3) sin®( Tg ) (1.11b)
P.oss = acos(0) cos(fy3) sin(262)
2l Al (1.11c)
. . m m
sin(26;3) sin(26,3) cos( 4;’71 )sm2(4—g)
Am? L

Py = a” cos?(0y3) sin?(26,5) sin®( TES} ) (1.11d)

Because we know the mass-squared splittings |m? — m§| and not the mass values m,

we do not yet know whether mj is significantly higher or lower than m; and my. We de-

note “normal” mass hierarchy if ms > mq, my and ”inverted” mass hierarchy if mz < msg, m;.

As an example, let’s calculate the probability of muon to electron neutrino oscillation

using the T2K parameters in Table (1.2) and neutrino parameters in Table (1.1). Let us

further assume that dcp is 0. We would then obtain a value of .05047 for the oscillation

probability. So if the T2K experiment shoots 100 v, neutrinos at the SK detector that is 295

km from the accelerator, they would expect to measure 5 v, neutrinos at SK. Parameters

for three other baselines, MINOS, NOvA, and LBNE are also given in Table (1.2) and the

corresponding oscillation probabilities are presented in Table (1.3). However, all of these

6



baselines involve travel through matter and not vacuum, so interactions with the electrons
in the Earth need to be accounted for. The following three chapters provide 3 different

methods for measuring the adjustments needed to account for these extra interactions.



TABLE 1.2. Experimental Parameters for T2K, MINOS, NOvA, and LBNE

Experiment Baseline (km) Peak E, (GeV) n.(;%3)

T2K 295 .6 2.76
MINOS 735 4 2.76
NOvA 810 2 2.76
LBNE 1300 3 2.76

TABLE 1.3. Oscillation Probabilities for T2K, MINOS, NOvA, and LBNE for
ocp =0

Experiment Probability
T2K 0.0504768
MINOS 0.017606
NOvA 0.0487862
LBNE 0.0502134




CHAPTER 2

ARAFUNE, KOIKE, AND SATO (AKS) METHOD

The publication by J. Arafune, M. Koike, and J. Sato entitled “CP Violation and
Matter Effect in Long Baseline Neutrino Oscillation Experiments” 3] provides a method for
finding the time evolution operator, using perturbation theory. AKS starts out with a par-
ticular Hamiltonian and then decomposes it into an unperturbed part and a perturbed part.
An attempt to solve the wave equation for the time-evolution operator using perturbation

theory is made and the probability of neutrino oscillation is estimated.

We begin with a slightly modified version of the PMNS matrix, following the AKS nota-

tion:

1 0 0 1 0 O cy 0 s4 Co Su O
U —
0 ¢y sy 01 0 0O 1 0 —S, ¢, 0
0 —sy ¢y 0 0 €° —345 0 ¢ 0 0 1
CopCu CopSw S¢
= | —ySe — SpSeCue  Cyly — SySeSwe”  sypcye (2.1)
SypSuw — CpSCwe™  —SypCy — CpSeSwe™  cycye

where sy, = sin and ¢, = cos®, etc. Table (2.1) defines the angles given in Equation (2.1)

in terms of more standard notation, as well as other variables used in this chapter.



TABLE 2.1. Variables used in AKS
AKS Variable Definition

a 23 QGFneEl,
(G 023
¢ 013
w 012

The time-dependent Schrodinger Equation (TDSE) for a flavor eigenstate vector in vac-

uum is (using natural units, where length and time are treated equally):

d A 1
i—dy = —U(O)diag(pl,pg,pg)U(O)TV ~ (—pil + —2EU(0)diag(0,5mgl,5m§1)U(O)T)I/ (2.2)
T

2 — m?2 are the mass squared

where p; are the momenta of the 3 mass eigenstates, 5m§j =m; —m;

splittings of the different neutrinos and F is the energy. The second line of (2.2) is calculated
by expanding the relativistic energy formula about small mass m. We can neglect the —plf
term since it just gives an overall global phase.

The TDSE for a flavor eigenstate vector in matter is given by the similar formula:

i— = Hv (2.3)

where H = 5=Udiag(pi3, 13, u3)U'.

10



The mixing matrix U and the masses p; are given by:

@200 0 0 0 a 0 0
Ul o w2 o [U'=U0200sm2 o U2+ 00 0 (2.4)
0 0 0 0 oml 00 0

where a = 22Gpn.E, G is the Fermi coupling constant and n, is the electron density.

The solution of equation (2.3) is:

v(z) = S(z)r(0) (2.5)

where S(z) = Te "% assuming that the matter density is independent of position and time.

The oscillation probability P(v, — vg; L) is then just |S,s(L)|?.

If we assume that both a and dm3; are very small compared to dm3,, we can proceed

with the following peturbative analysis:

We can separate H into two parts, a main part Hy:

00 0
1
Hy=—U© yof 2.6
0= 55 00 0 (2.6)
0 0 om3

11



and a perturbation Hi:

0 0 0 a 00
1
Hi= =09 0 6m3 o |[U”"+ 000 | (2.7)
0 0 0 00 0

If we make the following substitutions:

Q(x) = eiHOIS(x) and Hl(x) — eiHoJ;Hle_iHom’

we can write for our TDSE:

i— = Hi(z)Q(x) (2.8)

with

2
oms,x

52— < 1, then we can obtain, as an approximate solution for

If we assume % < 1 and

our TDSE:

Qx) ~1- z'/oz Hi(s)ds. (2.9)

12



This, combined with our definition of Q(x) yields:

S(x) ~ e Hor 4 eiHOx(—i)/ Hi(s)ds
0

If we call the first term Sy(z) and the second term S;(z), it can be shown that:

2
.dm3 @
i 31

So()pa = Sap + U U (7728~ — 1)

2
.dm3x

Sl(flf)ﬁa = — ZUé?)U,g(l))*(Hl)wsU(g))U(O)*(5135J31E6_Z 2E

aj

2
0m3,x

+ ((1 = 013)dj5 + 0i3(1 — dj3) ) (—1 2F

)—1

2
. dm3 |z

X (e = 1)+ (1= dig)(1 = 0j3))

If we invoke the following identities:

U (H)),sUL) = J(diag(0, 5m3,, 0) + U diag(a, 0,0)U®),;

om3,; A - (0)%77(0)
= g 0 oyt U

13

(2.10)

(2.11)

(2.12)

(2.13)



and

UUY) = 60 — U U (2.14)

]~

b
Il
—

we can extract the T-matrix from the S-matrix:

S($>5a = 55a + iT(SB)ga (2.15)

where

. 2
—idm3 T

. . . om3ix 0) 7 r(0)* @ 0 . ax 0
iT(x) = =2ie= 3% sin(=) U Uy (1 — 5 21U 2 — Saa — 631) — i (U35 |

_Z-zsm%l:c [6m%1 Uﬁ(g)U(g)* +

2E lom3,

(601861 U3 2 + Uy U U |? — a3 — 33)]]

_a_
2
omsg;

To lowest order, the probability of a muon neutrino oscillating into an electron neutrino

can be shown to be:

P(v, — ve; L) = 4sin®( 1E )Ca8gSyl1 + x 2(1 — 2s3)]

2
om3,

2 2
my L omg L., a 2
+2 5 sin( 5E )c¢s¢sw[—W§13¢s¢(l — 2sy)
(2.16)
TR R
——225,(—845pS0 + C5ChCy
5m§1 ¢ (0
om2, L om2, L
—4 77212 sin?( TZ% )55cés¢cwswcwsw

14



If we assume the parameters given in Table (1.2) and dcp = 0, we find the following

oscillation probabilities for each baseline, using AKS’ formula:

15



TABLE 2.2. Oscillation Probabilities for T2K, MINOS, NOvA, and LBNE for
5013 =0

Experiment Probability
T2K 0.0579066
MINOS 0.0176483
NOvA 0.0534306
LBNE 0.0558083

16



CHAPTER 3

MARTIN FREUND METHOD: EIGENVECTORS OF THE PMNS

MATRIX

The calculation used by M. Freund in “Analytic Approximations for Three Neutrino
Oscillation Parameters and Probabilities in Matter” [4] determines the oscillation probability
in matter by finding modified mixing parameters, with the matter effects taken into account,
and substituting them into Barger’s approximate oscillation probability for the vacuum case
given in the introduction. This is accomplished by directly finding the eigenvalues and
eigenvectors of the PMNS matrix with matter effects included, and then comparing with the

vacuum PMNS matrix. As a reminder, the PMNS Matrix is:

—id

C12€13 512C13 513€
T = i i
U(mwc) —812C23 — C12523513€ C12C23 — S12523513€ 523C13 (3'1)
N i . i6
5128523 — C12€23513€ C12523 — 512€23513€ C23C13

According to Freund, the oscillation probability in vacuum is given by:

P(ve, = ve,,) = Oum — 42 RJ" si —2 Z S0 sin(24) (3.2)

i>7 i>]

where ijm Ul,UlJU ;Unmj. These and other variables used by Freund are summarized in

Table (3.1).

17



TABLE 3.1. Variables used in Freund

Freund Variable Definition

a A

A m3,

A AL

A 23/2Gpn E,

i A

A ) 3

C ((A — cos(2013))? + sin?(20,3))"/?

This oscillation probability for neutrinos in vacuum can be approximated by:

P(Ve_>Vu):PD+Psin5+Pcosé+P3

where

Py = sin®(a3) sin®(20y3) sin® A,

Pins = asin(6) cos(f3) sin(26;3) sin(2053)) sin® A,

Poss = v cos(0) cos(f3) sin(2612) sin(20y3) sin(263) cos Asin? A,

P3 = 042 COS2 (923 SiIl2 2912 sin2 A

— 2 — 2 A _ AL

The full Hamiltonian with matter effects is:

18

A0 0
000 |l
0 0 0

(3.3)

(3.4)



where U = Uys(093)Uy3(093, 6)Uz(012), and A = 232G pn,E,. Gp is the Fermi coupling con-

stant, n. is the electron density in matter and FE, is the neutrino beam energy.

By extracting m2I from (3.4) and using the relations:

UlU13(613,6)Us = Uns(613,0),

U§U12(912)U5 = U12(912)7 and

0 0 ¢ 0 0 ¢
where
10 0
Us=| 01 0
0 0 ¢
it can be shown that:
000 400
A
H = —UnUslUis(015,0Ui2 | 0 o 0 | UbUi(ts.0) + | 0 0 o [JUIUL (35)
00 1 0 0 0

where we shall denote the term in brackets as M.

19



Let’s now diagonalize M with U= UQg(éQg)Ulg(élg)Ulg(élg), with eigenvalues \;. Then:

A 000 A 000

H:%U%U(SU 0 X O 0TUgU2T3:%U/ 0 X O U't

0 0 X3 0 0 As

gives us the mixing matrix U’ in matter, where:

U = U23(923)U5U13(é13)U12(912)~

This has the same form as the vacuum mixing matrix.

To bring U’ to standard parameterized form, with U’ = U(6)3)Uys(6, 8")Ura(612), we can

make the matrix:

1 0 0
Uzs(023)UsU(03) = | 0 ¢ S (3.6)
0 —eidg* s
where:

C' = c0s(033) cos(fa3) — € sin(fy3) sin(Hys)

and

S = cos(fy3) sin(faz) + € sin(0y3) cos(fas)

20



real by introducing the following phase rotations:

B =—argC,~v=uargS,y =argC —argS

This gives us:

1 0 0 1 0 O 0 0
0 e iB 0 U23(923)U6U23(é23) 01 O =10 [C] [5] (3.7)
0 0 —eit-5-) 00 e 0 -S| |C]

From this, we can write U’ as:

1 0 0 1 0 0
U = 0 eiﬂ 0 0 |C| |S| U(;/Ulg(élg)Ug,Ulg(élg)U(;/ (38)
0 0 —el+ 0 —I[S| |C]

By absorbing the phase rotations into the other matrices, we are left with U’ in standard

parameterized form.

From this, we can read off the conversions from the diagonalization matrix angles to the

modified matter effect-corrected angles:

;4
013 — 9137

21



9,12 = é127
sin?(0h) = cos2(63) sin?(fas) + sin®(fas) cos?(6as)

+2 cos(9) sin(faz) cos(fas) sin(fasz) cos(bas),

sin(8") = sin() 5252

This yields the matrix M, defined as the term in brackets in equation (3.5):

2 A 2 2 2
813 + A+ aci3siy  QSi2Ci12C13 S13C13 — A4S13C13572
M = 2
r512C12C13 QCyy —(512C12513
2 2 2 .2
S§13C13 — (¥S13C13S72  —(¢S12C12513 Ci3 + 579573

where A = %

(3.9)

We can now obtain the eigenvalues and eigenvectors of M. To first order, the eigenvalues

are:

C' +1— Acos(203)) sin? b1
2C'

1 - N
M:§M+1—®+a(

/\2 = OéCOS2(912)

(é —14+ A cos(2013)) sin? 01,
20

1 - ~
M= (A+1+C) +a

22

(3.10)

(3.11)

(3.12)



where ' = ((A — c0s(2012))? + sin?(26,3)) /2

To first order, then, the corresponding eigenvectors are:

sin(2613) . aAsin?(012) sin?(26013)
(2C(A+C—cos(2013)))1/2  2C(2C2(—A+C+cos(2613)))1/2
vy = a(1+A—C) sin(26012) sin(013) (3.13)

(1+A+C)(2C(A+C—cos(2613)))1/2

—sin(26013) . aAsin?(612) sin?(2613)
(2C(—A+C+cos(2013)))1/2  2C(2C2(A+C—cos(26013)))1/2

—acos(612) sin(012)

Acos(613)
Vg = 1 (3.14)
Oé(l-i—A) COS£912) Sin(@lg) sin(613)
A cos?(613)
sin(26013) aAsin?(012) sin?(260;3)
(2C(—A+CHcos(26013)))1/2 2C(2C2 (A+C—cos(26013)))1/2
V3 = a(1+A—C) sin(2612) sin(6:3) (3_15)

(14+A+C)(2C (— A+C+cos(2013)))1/2

sin(26013) o aAsin?(60;2) sin?(2613)
(2C(A+C—cos(2013)))1/2  20(2C2(—A+C+cos(2613)))1/2

Using our eigenvectors, we can construct U. The first order of business is to identify the
correct order of the eigenvectors. According to Freund, when A < cos(26,3), which is the

case for both T2K and LBNE, the correct order is:

A~

U= (U1U2U3)T (316)

Next, we must bring U’ to a form consistent with the standard parameterization. As an

example, we will now examine the case of A<o.

23



By looking at the (u,3) element of U , it can be seen that the matter perturbation angle
655 will be of order . Also, by looking at the (e,2) element of U, it can be seen that the

matter perturbation angle 912 is also of order «.

If we make the following replacements:

(a)

PPN (- (a)

. (@) 5 A0, )
, 823 = (853", 813 = S13 + (Sy3

and assume that 63 is very close to 0, we can write U as:

. ~(0) A(cx) .

T IN( ~(0) ~(a ~(0) ~(a
U= _04(5§2) + 3§3)Sé3)) 1 acgii)sgii) (3.17)
—513 —a(é%@&? + 3’%)) C13

From Ues, U,3, and U3, we can directly read off sin(élg) and sin(é23):

sin(fh) = ——— 81{1(2013) i ozfl SiAn2(0}2) sin?(26;3) (3.18)
(2C(—A + C + cos(2613)))1/2  2C(2C%*(A + C — cos(26,3)))1/?
sin(fs) a(l+ A — () sin(20,5) sin(6;3) (3.19)

2(1 — A+ C) cos?(6s3)
24



To find sin(f;), we need to separate 0o from U. The remainder of U = UL (05)U" needs

to be brought to the form:

0) zla) &

—asly 1 0 (3.20)
At a(@) A(0) 4
—S813  TOS19°513 (13

The angle élg can then be read off from IA];LI:

. ' sin (2
sin(fh2) = —— AOZC SAm( 1912) (3:21)
Acos(b13)(2C(—A + C + cos(2013)))1/?

We can now assemble formulas to convert from the vacuum angles to the modified angles:

. T -9 <9
sin(fly) = —— 81{1(2913) L ozAA sin (6}2)8111 (2613) (3.22)
(2C(—=A+ C + cos(2013)))1/2  2C(2C?*(A+ C — cos(26,3)))"/?
5 il
sin(f,) = aC'sin(201,) (3.23)

Al cos(613)(2C(— A + C + cos(26013)))1/2
25



Asin(26,2)sin(013)cos(6a3)

sin(0h.) = sin(fy3) + acos(d - .
(623) (62s) (¥) 1+ C — Acos(26:3)

cos(8) 2Asin(20;,) sin(6;3)

. 5/ — & 5 1 _ N ~
sin(0") = sin(d)( atan(2923) 1+ C — Acos(2013)

These other expressions can also be derived from the above parameter mapping:

.9 ~ B ~ . 5 -y
sin(20,) = sin 222913) n CYQA( A+ cos(291g)4s1n 012 sin”(2613)

. 2C sin(2615)
|A| cos(613)(2C(—A + C + cos(26,3))1/2

sin(207,) =

214 sin(2912) SiH(Glg) COS(2023)
1+ C — Acos(20y3)

sin(265;) = sin(2643) + a cos(9)

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

We also obtain for the mass squared differences, with the order again stipulated by Freund:

(Am’221, Amgh Amgz) = (Amg, Am%, Amf)

with Am'f = A()\g — /\2), Am’22 = A()\g — )\1), and Am? = A()\Q — )\1)

26
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We can now write (to second order):

RIS = — cos(8') sin(8,,) cos®(6)3) sin(8;5) cos () sin ()

(3.30)
— sin®(6,) cos®(033)
RIF = — cos(8') sin(8),) cos®(6)5) sin(85) cos(6s) sin(Hhs)

(3.31)

— sin?(26);) sin®(05;)
R = cos(8') sin(#,) cos®(6)5) sin(65) cos(hs) sin(Fhs) (3.32)

N

= cos(d) sin(#),) cos?(013) sin(#)3) cos(fh3) sin(6h) (3.33)

We need to go to second order because the second term of R.J;5" isn’t suppressed by 63,

so it is not negligible.

We can obtain, then from these, P(v. — 1,):
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sin?(26;3)

o sin?(AC)

PO = sin2(023)

sin(d) cos(613) szléiaolsz()es%i:)@@ls) sin(2023) S]H(éA)

1
Pins = ;¢

A

x[cos(CA) — cos((1 + A)A]

cos(d) cos(013) sin(26012) sin(26013) sin(2023) - A
AC cos(GfS) Sln(cA)

1
Peoss = b1

Al A

x[sin((1 + A)A — sin(CA)]
P1 = —a% sin2(912) sin2(2«913) Sin2<923)A

x sin(2A0) 4 o2ACALen203)

x sin?(fy2) sin?(2613) sin? (Aa3) sin?(AC)

—1+C + Acos(263)

PQ = ~ =
202 A cos?(b,3)

cos(fy3) sin(2615) sin(26;3) sin(26043) sin?(AC)

2C cos%(03) sin?(2612)

’ A2 cos?(fy3)(— A + C + cos(2613)

Py = a? sinz(%(l—i-fl—CA')A)

(3.34)

(3.35)

(3.36)

(3.37)

(3.38)

We can expand the A—dependent parts of P, P,, and P to first order in 63 to obtain:
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1 — Acos(20;3) 1

NS S (3.40)
C3 (A—-1)2

2A(-A+cos(2013)) _ 24 (3.41)
C4 (A—-1)

—1+C + Acos(263)
2C2 A cos?(613)

=0 (3.42)

20
0082(913)(—121 +C+ cos(2613))

=1 (3.43)

Because P; is quadratic in sin(6;3) and P, is 0 to first order, we can conclude that they
are negligibly small compared to Pi,s and P,..s and can be dropped. However, we need to

keep P; because it isn’t suppressed by 6:3.

The expressions for the eigenvalues and eigenvectors are not good at the atmospheric
resonance. The source of this problem is second order in #,3. This issue only affects the
P.oss term and only for large values of #,3. This problem can be mitigated by neglecting the

subleading terms. The modified P, s and P..s are then:

- sin(d) cos(013) sin(2012) sin(2613) sin(2623)
Psm5 -« AC cos(673)

x sin(CA) sin(A) sin(AA) (3.44)
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P —a cos(0) cos(613) siAn£2012) sin(26013) sin(2623)
cos § AC cos(6%3)

x sin(C'A) sin(A) sin(AA) (3.45)

Neglecting all subleading terms in 63, we obtain as our final probability:

= sin? —sin2(2913) sin?((A — 1)A
Py = sin®(fa3) A1) (A-1)A) (3.46)

sin(6) cos(fy3) sin(26,2) sin(26;3) sin(2623)

Pons = o T1_ A sin(A)

(1=A4) (3.47)

sin(AA)sin((1 — A)A)

cos(0) cos(f;3) sin(26;2) sin(26;3) sin(2623)
Pcosé =« A 1 A)
(1- (3.48)
cos(A) sin(AA) sin((1 — A)A)

2 1 a2

Py = o2& (923>;21n (2012) 12 AA) (3.49)
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Using the experimental parameters in Table (1.2) and the neutrino physics parameters

in Table (1.1), with dcp = 0, we obtain the following probabilities:

31



TABLE 3.2. Oscillation Probabilities for T2K, MINOS, NOvA, and LBNE for
5013 =0

Experiment Probability
T2K 0.0594878
MINOS 0.0180609
NOvA 0.0547998
LBNE 0.0572652
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CHAPTER 4

MANN, KAFKA, SCHNEPS, AND ALTINOK (MKSA) METHOD

4.1. PRELIMINARIES

The goal of the paper “Exact Probability with Perturbative Form for v, — v, Oscilla-
tions in Matter of Constant Density” by W. Mann, T. Kafka, J. Schneps, and O. Altinok[5]
is to obtain the exact oscillation probability of neutrinos in matter by determining the evolu-
tion operator. MKSA starts with the Hamiltonian for vacuum oscillations in the mass basis
and then transforms into the flavor basis, before adding a matter perturbation to it. They
then transform into the propagation basis and finally into the interaction picture. After ex-
ponentiating the Hamiltonian, for which a closed form can be found, the resultant evolution
operator is transformed back into the flavor basis. The probability amplitude can be read

from this evolution operator.

Due to the large number of variables in this section, the table which summarizes them

all is given at the end of the chapter.

For neutrino propagation in vacuum, the Hamiltonian in the mass basis 7; (i=1,2,3) is:

0 0 0
HY = | o am g (4.1)
0 0 A



One can transform from the mass basis |v;) to the flavor basis |v,) by using the PMNS

matrix in the following manner:

The PMNS matrix is defined as the product of the following matrices:

U(mi:v) = ]:21 (923)125@1%2(913)150};}?3(912)

where:

10 0
Ler=|01 o0
0 0 eWcr

and Ry(03), Ro(013), and Rs(6:2) are defined in Chapter 1.

Together, this can be written as:
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_‘5
C12C13 S512€13 sz’

~

J— ) 0,
Utmia) —S512C23 — €12523513€"°CT  C1aCa3 — S12523513€"°CT  Sa3C13 (4.3)

is, is
S128923 — C12C23813€"°CF  —C12893 — $12C23513€°°F  Ca3C3

The time-dependent Schrodinger equation (TDSE) for flavor eigenstates is:

d .
zaﬁ@ (t) = M 7 (1) (4.4)

The Hamiltonian in the flavor basis is then given by the following rotation:

H[ga) = (le6CPR2[A750PR3>I:[(§i) (égflsCPRg[A* Rr{) (45)

dcp

Because [_s., commutes with R3 and R} commutes with /5, and
because ]_5CPH(§Z)]5CP = Hél), we can rewrite the Hamiltonian in the flavor basis as:

HYY = (Rilsop) HSY (150, RT) (4.6)
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where H* = RyRyH" RTRT

Written out explicitly:

1 / 1 n
§19Ci50 + S13  5C130Y 7 sin 203
Fr(23) 1 ,
= 2 1 /
HO 50130& CloX —58130 (47)
1 n 1 / 2 .2 2
5 SIn 2913 —5513Q0  S7o873¥ + Ci3

where o = sin205,a and o = 27"21 ~1/32

The discussion of this method has, until now, concerned only oscillations in vacuum.

For oscillations in matter, a matter interaction perturbation term is added to the main

Hamiltonian:
V. 0 0
=1 0 0 0 (4.8)
0 0 0
where V, = %, l, = AE”2 is the vacuum oscillation length, A = iwf—fz%& is the matter
v m3; m3y

potential, G is the Fermi coupling constant, and n. is the electron density in matter. The
reason why we have an interaction term in the 1,1 position in the matrix is that while all
three flavors of neutrinos can react with the electrons in the earth via a neutral current

interaction, electron neutrinos can also interact via a charged current interaction. This extra
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interaction pathway means that electron neutrinos will interact with electrons in the earth

far more than other types of neutrinos.

4.2. OSCILLATIONS IN MATTER

The Hamiltonian must now be transformed into the propagation basis. The TDSE for

such an eigenstate is:

d .
iag(p) — H® 5P (4.9)

where H®) = H'[SZS) + H,(,f)

atter

An eigenstate in the propagation basis can be obtained from an eigenstate in the flavor
basis by the following transformation, which can be derived by using Equations (4.6) and

(4.8) in (4.4):

7P =I5, R (05) 7 (4.10)
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We can “re-phase” this Hamiltonian by subtracting out the following terms, all of which

are proportional to the identity matrix and which just give a global phase:

sl i (A —cos2013) 1, g-sthal

This then yields:

—<COS 2913 — A) 0130/ sin 2913
A 1
H? = 1L c130/ -1+ A)+ " —$130/ (4.11)
sin 20,5 —$13¢ +(cos 2013 — A)

where o = (1 — 3c¢k;)a

We can simplify this by defining the following five new variables:

G=[(1+4)+a], Q= i[COSQélg — Al f= ﬁsin?ém,

a= g-lesd], b= [—s130]

yielding:
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B =| o ¢ b (4.12)

Now that the Hamiltonian is in the propagation basis, it must be formulated in the inter-
action picture. To do so, we separate H® into the unperturbed piece I:Iép ) and the perturbed

piece %€

Q 0 f 0 a0
A =HP+V=| o —a o |[+]| a0 b (4.13)
f0 40 0 b0

An eigenstate in the propagation basis can be transformed into one in the interaction

picture by:

7D () = 7w (¢), (4.14)

yielding a TDSE of :

Sy

d .
i—i () =V,

p D(t) (4.15)
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~ S (P) - 77(p)
where V; = etflo 1V et

As stated earlier, we are interested in the time evolution operator in the interaction pic-

ture:

S

D () = Uy(t, 0)7D(0) (4.16)

Using this, we can rewrite our wave equation as:

i%m@m:%@m@m (4.17)

To obtain our evolution operator, we must exponentiate our unperturbed Hamiltonian

in the propagation basis. We use the following expansion:

~

W = eifle”t = i GHt (4.18)

n!
i=0

This yields:
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eiﬁép)t: 0 e Gt (4.19)

Because neither the middle row, nor the middle column of ]:Iép ) mix with the other rows
and columns, we can work in a reduced 2x2 space:

HY = IR P (4.20)

fo+Q

where we have invoked the Pauli matrices. We can write ]:Ig’) as N e6 where N = (f,0,—-Q).

Further defining n as % and noting that in natural units, t=I, we obtain:

em;@ (t=) _ pined(NU)

= ¢n*0 (4.21)

where ¢ = nl is the rotation angle about n, which serves as our axis of rotation in this

reduced space.

With n = (n,,0,n,), we can now write:
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L coS @ + in,sing N, Sin ¢
e = (4.22)

1My SiN @ COS ¢ — 1N, sin ¢

If we define v = cos ¢ + in, sin ¢ and § = n, sin ¢, then we can write:

vy 0 B
GHSE 0 Gt | (4.23)
w0 v

Using this, we can now express V;(t) as:

0 (va + i3b)e'! 0
Vi(l) = (v*a — i8b)e~¢! 0 (vb — iBa)e (4.24)
0 (v*b + ifa)e’™ 0

If we define u = (ya + i8b)e’“" and v = (vb — ifa)e “!, we can write:
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! (4.25)

To obtain the evolution operator, we must exponentiate (4.25). It can be shown that

(V)r=odd — pn=1y and (V;)"=¢ve" = "=2V2 where 5 = % and n? = |u|* + |v|?. Therefore:

iV - <_ZVIZ)” 2 VI Vo
Vit = ZO =1 (?)2(1 — cos(nl)) — i sin(nl) (4.26)
If we make the following substitutions:
0=nl,u=7, 65%,(1—6080):2311123

We can write the evolution operator in the interaction picture as:

N|D

1—2luf*sin*g  —iusind  —2uvsin®
Ur(l,0) = —iu* sin 6 cos 6 —ivsin 0 (4.27)
—2(uv)*sin*g  —iv*sinf 1 — 2[o)*sin* &
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Before continuing, it is helpful to make the following substitutions to simplify the algebra:

D, =1-2u*sin’¢, D, =1 —2|v|*sin” &,

d=cosf, e = usinb, p = —2uv sin? g, k=wvsinf

Now that we have the evolution operator in the interaction picture, we can now trans-
form it back to the flavor basis. The transformation from the interaction picture to the

propagation basis is:

0®(1,0) = e~ 0,1, 0) (4.28)

The evolution operator in the propagation basis, using the substitutions preceding (4.28)

is:

(v* Dy —iBp*)  (v*(—ie) — Bk*) (v'p—iBD,)

U®(1,0) = (—ie*)eld! de’@! (—ik)ele! (4.29)

(yp* —iBD.) (v(—ik*) — Be) (yD, —iBp)

To switch into the flavor basis, the following transformation is used:
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U@ (1,0) = Ry (023) L5 UP (1,0) 1 _s0p RT (33) (4.30)

The full matrix is presented in Appendix A. For v,, — v,, we need element U 1(3):/1(1/“ —

ve), which equals, after some substitutions back into earlier notations:
Ay, = ve) = (—i)s238e™ 9P + (—i)co3[y*u — i30*] sin O

0 .
+2893[i8|0|* — y*u] sin2(§)e”5cp (4.31)

Recalling that P(v, — v.) = |A(v, — v.)|?, it can be shown that the probability for

muon neutrinos to shapeshift into electron neutrinos is:
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~ sin?(DA ~
P(I/# — Ve) = (sin 2913)2333% + sin 2913613 sin 2923 SiD(OZIA)

in(DA
X % [cos A’ cos b, — sin A’ sin 6]
+ 1355 sin*(/A)

~ 'A sin? (DA
— 258in 26,3 sin 20,355, Fa simz(&2 )Sln l<)2 )H (4.32)

o’ A
5 )
sin(DA)

+ sin 20;3¢13 sin 2053 sin(a’A) sin?(

[cos(DA) sin(A" + dcp) — Fa cos(A" + 8cp)]

'A ,sin?(DA)

)[cos?(DA) + I3 T ]

: e
+ sin? 203555 sin?(

where

A= Aﬁ;%ll = 4, sin 2015 = (1 — s2,a) sin 2015, A’ = Gl = A[(1 + A) + o]

o = (1 =3¢, and Fy = [24(1 — s%0) — (cos20,5 — A)]

Assuming a dcp of 0, the oscillation probabilities for the four baselines are given in Table

(4.2).
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TABLE 4.1. Variables used in MKSA

MKSA Variable Definition
Am3,
« m
Amz,l
N
Ami,
Ve 20,
o sin(26012)
o (1 —3c,)a
sin(26;3) (1 — s2,a) sin(2013)
cos(2613) (1 — s2,a) cos(26:3)

i[(sin(Qélg))2 + ((308(2513) — A2

al,
w1+ A4)+a]
[¢35(1 — 5hy0) — (cos(2f3) — A)]
41, N
Gl
L (cos(260,5) — A)

N
Ui
G
Fy
D
A/
Q i )
f i(81n(2913>)
a i[clga’]
b i[—slg@/]
v COS @ + in, sin ¢
B Ny Sin ¢
u (ya + i(3b)e’“!
v (vb + ifa)e~ !
0 nl
U u
"
v ,
D, 1 — 2|ul? sinQ(g)
D, 1 — 2|5|*sin®(5)
d cos
e usin 6
p —2uvsin®(%)
k vsinf

TABLE 4.2. Oscillation Probabilities for T2K, MINOS, NOvA, and LBNE for
oop =0

Experiment Probability
T2K 0.0576435
MINOS 0.0177052
NOvA 0.0533319
LBNE 0.0556574
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CHAPTER 5

COMPARISON OF THE METHODS

In this section, we present and compare the probabilities versus dcp and versus FE,
for dcp = 0 of v, — v, oscillations for each formula, using the T2K, MINOS, NOvA, and

LBNE parameters, given in Table (1.2).

Plots of the methods for Probability vs dcp for each of the four baselines are given as
Figures (5.1)-(5.4).

Probability
0070 f =,

poss [ i,
0.060 [ —
0.055 i k

0050 F W,

ooss | Y
AN

1 2 3 4 5 1]

CBE&

FIGURE 5.1. Plots of the probability vs dcp for the three different methods
using T2K parameters. The curve colors include Freund (blue, top), MKSA
(purple, middle), and AKS (gold, bottom)

Each formula can be simplified down to three terms. This is calculated for the T2K case

and shown in Table 5.1:

From Table (5.1), it can be seen that the AKS formula differs significantly from the others
in that it has the lowest constant value and has a smaller sin(J) value than the others. It

is a trivial exercise to show that if one combines the cos and sin terms in each formula into
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TABLE 5.1. Formulas using the T2K parameters for the Values of the Mass-
Squared Splittings and Mixing Angles

Source Formula

AKS 0544576 + .00344891 * cos(d) — .0068977 * sin(d)
Freund .0593976 — .0000902519 * cos(d) — .0148669 * sin(0)
MKSA 0587505 — .0110705 # cos(d) — 0147829 * sin(d)

a single phase-shifted cos term, the amplitudes of the resultant terms are extremely close
to .0148 for Freund and MKSA, but not AKS, which has an amplitude of .0077. It is easy
Probability

poml
o020l
- =
0.018 f /
- s
r .
0.016

0.014 F

/
\

po1zf

CB&

b2

1 3 4 5 6
FIGURE 5.2. Plots of the probability vs dcp for the three different methods
using MINOS parameters. The curve colors include Freund (blue, top), MKSA
(purple, middle), and AKS (gold, bottom)

Probability
[ — .
I o T,
0.065 [ -
[ / SN
L P O,
0.060 [ / 4 N\
i\‘x o Ry
0,055 By x";rr )
Rkl Y A
Y 4
L \ '\\ %
o.os0F N, e
F oo, ra
[ A 4
0.045 | “‘:“H».___//
1 1 1 1 1 1 1 1 1 1 EPIE
1 2 3 4 5 ]

F1GURE 5.3. Plots of the probability vs dcp for the three different methods
using NOvA parameters. The curve colors include Freund (blue, top), MKSA
(purple, middle), and AKS (gold, bottom)
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to see in Figure 5.1 that the phase shifts from a pure cos term for the resultant expressions
is around 90 degrees for Freund and MKSA, but not AKS, where it is about 63 degrees,
since the MKSA and Freund formulas appear very close to — cos(d). When plotting each of
these three formulas, if one “shuts off” the cos(d) term in each one, the Freund and MKSA
formulas are very close to each other while the AKS formula differs significantly, suggesting
that the sin(d) term plays a very important role in differentiating them. When the sin(J)
term is eliminated, though, all three formulas differ from each other significantly, suggesting

that the difference is really a combination of both sinusoidal terms.

The MKSA formula, although different from the other fomulas in structure, due to it
being exact, does come remarkably close to the others when plotted. As it agrees well with

Freund, it suggests that both MKSA and Freund are quite accurate for the T2K case.

Probability
0.080 | —

0.075 F / NN

ooTof S LN
0.070 /s NN

0080, N 4
possE N . 7

1 1 1 1 CRS
1 2 3 4 5 1]

F1GURE 5.4. Plots of the probability vs dcp for the three different methods
using LBNE parameters. The curve colors include Freund (blue, top), MKSA
(purple, middle), and AKS (gold, bottom)
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Figures (5.5)-(5.8) are plots of the probability vs energy for each of the 4 baselines, using

5cp =0.

Brobability
0.06]
0.05
osf
0.03

002 |

L " L L L L " L E:I'.arg_,'-
04 0.6 0.8 Lo

F1GURE 5.5. Probability vs Energy for dcp = 0 for each of the five methods,
using T2K parameters (color coding is the same as in Figure 5.1)

Probability

Al
0.05 5:.‘\

004t "\\

o.03 F {',}.

k] "b{‘\\
002 | \\\!2
o0l F

FIGURE 5.6. Probability vs Energy for dcp = 0 for each of the five methods,
using MINOS parameters (color coding is the same as in Figure 5.1)

Based off of Figure (5.5), at the energy and baseline length of T2K, the three formulas
are close to each other, so it would seem that it does not matter greatly which formula is

used, though Figure (5.1) suggests that AKS should be avoided for other reasons. Figures
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(5.6)-(5.8), however, shows that at higher energies and longer baselines, the formulas diverge
a fair amount. The MKSA formula is very close to Freund in this circumstance. It would
appear that to be safe, the MKSA formula should be used as it is exact, despite being rela-

tively complicated, while the other formulas differ from it under various circumstances.

Probability

F1GURE 5.7. Probability vs Energy for dcp = 0 for each of the five methods,
using NOvA parameters (color coding is the same as in Figure 5.1)

Probability

FI1GURE 5.8. Probability vs Energy for dcp = 0 for each of the five methods,
using LBNE parameters (color coding is the same as in Figure 5.1)
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APPENDIX A

THE EVOLUTION OPERATOR FOR MKSA

039(1,0) = —ip*B + Dy’ (A1)

U{3)(1,0) = — (k"5 + ien*) cos(Bag) + e (—iD, 3 + py*) sin(6s) (A.2)
U{%)(1,0) = e (=iD, 3 + py*) cos(bas) + (K5 + iey*) sin(6as) (A.3)
Uz(ﬁ)(l, 0) = —ie'“e* cos(fy3) + € (—iD, B + p*y) sin(fys) (A4)

Uég)(l, 0) = de'“! 0052(923)—ie_i(s(eile—i—eQi‘s(—ieﬂqu*y)) cos(fa3) sin(ba3)+(—ipS+Dyy) sin2(€23)

(A.5)

Ué%)(l, 0) = —ie" @0k cos?(By3) — (de’@ +ipB— Dyy) cos(fas) sin(Bas) €% (eS+ik*y) sin®(fy3)

(A.6)

Aéﬁ)(l, 0) = e(—iDyf 4 p*y) cos(fa3) + ie’“'e* sin(fy3) (A7)
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Uég)(l, 0) = e (—e*®(ef+ik*) cos?(0y3)—e® (de’“ +ipB—Dyy) cos(fas) sin(faz) +ie’“ k sin? (fy3)

(A.8)

Ué%)(l, 0) = (—ipf+D,7) COS2(923)+6_i6(i6ile+62i6(eﬁ—l-i]{*’)/)) cos(fa3) sin(@zg)—i-deim sin?(f3)

(A.9)
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APPENDIX B

LOCATION OF MATHEMATICA NOTEBOOKS

The notebook for the Probability vs CP Angle plot is named ProbvsCP.nb and the
notebook for the Probability vs Energy plot is named ProbvsEnergy.nb Both notebooks are

located at http://hep.colostate.edu/t2k/jmla/
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