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ABSTRACT 

The structural analysis and mathematical models used for evaluation and removal of the periodicity and 
dependence from the hydrologic time series are reviewed, summarized and discussed. Records of daily runoff for 
seventeen river basins in the United States are used as t he basic research data and mathematical models were 
applied to analyze their periodicity and dependence. Periodicities in serial correlation coefficients, rk , 

oT 
of the stochastic components are also analyzed and found to be not negligibly small. Independent stochastic 
components (or the residuals) are obtained by removing the periodicity and dependence from the daily runoff 
series. Methods of testing the distributions of the tails of empirical frequency distributions are developed. 
Tails do not seem to belong to the class of heavy tails. Seven groups of probability distribution functions: 
classical, Pearson's family, probability density functions modified by polynomials, Weibull, double-branch 
gamma, mixture of probability functions, and family of st~ble distribution functions, are applied to fit the 
frequency distributions of the independent stochastic variables. The same techniques of removing periodicity 
and dependence were applied to series with larger time intervals, such as the 3-day, 7-day, 13-day and monthly 
series, which are derived from the daily runoff series, and the distributions of these variables are compared. 
It was found that the 3-parameter lognormal function fits well the frequency distributions of monthly indepen­
dent stochastic variables. Since the frequency distributions of variables with small time intervals are more 
skewed than for the large time interval series and since they have sharper peaks and longer tails, the probabil­
ity distribution functions with more parameters should be used to fit these empirical distributions. For 13-day 
variables, the 3-parameter lognormal and the 3-parameter gamma functions are found to fit the frequency distri­
butions quite well, while for 7-day and 3-day variables the double-branch gamma function with six parameters is 
found most appli cable. However, no distribution is found to fit consistently the frequency distributions of 
daily variables, because of the sharp peak and high skewness of these empirical distributions; hence, an 
empirical method of fitting is suggested. 

PREFACE 

The hydrologic time processes, either continuous or discrete for time intervals of a fraction of the year, 
are composed processes (with periodic parameters, non-homogeneous and/or inconsistent parameters, and a stochastic 
component). When a sample of such a process is mixed by using known deterministic and stochastic components, its 
decomposition (disegregation, separation, structural analysis) never leads to exact characteristics of the indi­
vidual components. Therefore, even if one starts with a normal independent process for the stochastic component, 
and mixes it with the periodic and/or trend parameters, the analysis of t he sample rarely produces a conclusive 
evidence that the resulting stochastic residuals of the sample decomposition are normally distributed. There­
fore, determination of probability distributions of obtained residuals in the form of independent stochastic com­
ponent of complex hydrologic series is subject to bias and/or incorrect conclusions due to difficulties inherent 
in the decomposition. · 

The following paper had as an objective the analysis of stochastic residuals in t heir two aspects: (1) 
the complete distribution of residuals, and (2} the character of distributi on tails. It was shown how difficult 
it is to fit simple probability distribution functions to residuals, because the inference on periodicity of 
parameters, on dependence model of remaining series after periodicity is removed, with an eventually unremoved 
nonhomogeneity and inconsistency in data, all lead to a mixed distribution of complex analytical expressions for 
residuals and not to simple functions as expected in practice. Stochastic residuals of daily flow series showed 
to be the most difficult to fit by simple probability distribution functions. 

The analysis of tails showed, regardless of above difficulties in fitting residuals by simple probability 
distribution functions, that they are exponential. The over-removed and/or under-removed harmonics of periodic 
parameters tend to make tails heavier and peaks sharper, than the true distribution would show. Regardless of 
this, one may conclude from the research results given in this paper, that hydrologic independent stochastic com­
ponents, represented in the paper by the independent residuals of daily runoff series, are exponential, and both, 
for the sharp rising left tail and the slow decreasing right tail of frequency density functions of residuals. 
This result does not support the theory of so-called heavy tails of stable distributions as the true character­
istics of stochastic component of hydrologic time processes. Therefore, mathematical models based on the heavy­
tail concept may be nothing else than a fit to biased estimations of independent stochastic components. 

January 1976 
Fort Col lins, Colorado 

iv 
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Professor-in-Charge 
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Chapter 1 

INTRODUCTION 

The prediction of future water supply is one of 
the basic goals of a program of water resources manage­
ment. In the absence or inadequacy of physical theory 
concerning the atmosphere-earth water cycle relation, 
hydrologists are predisposed to use statistics and 
simulation. 

The analysis of observed chronological sequences 
of physical phenomena lies within the time series anal ­
ysis. The process could be either probabilistic in 
nature, or deterministic with stochastic components 
superimposed [35]. The deterministic and stochastic 
components of the process could be statistically anal­
yzed using historical records. 

In this chapter, general properties of a 
hydrologic process are briefly reviewed. The objec­
tives and the procedures of this study are outlined, 
and the research data used are briefly described . 

1-1 General Composition of Hydrologic Time Series. 

The characteristics of hydrologic time series 
(34, 35] can be divided into long-range trends and 
other long-range persistencies, periodicities of the 
year, and randomness with time dependence in the sto­
chastic variation. These characteristics are consid­
ered as basic components of hydrologic time series. 

Long-range trends and other long-range 
persist.encies. Trend is defined as a systematic 
and continuous change over an entire sample in any 
parameter of a series. Inconsistency (systematic er­
ror} and nonhomogeneity (changes in nature by either 
man-made or natural processes) are the main causative 
factors for the long-range trends or eventual long­
range persistencies. They must be identified and re­
moved before hydrologic structural analysis is initi­
ated. Trends and cyclicities may often result from 
sampling fluctuations in short time series . When cy­
clicity is only a result of sampling variations, it is 
ca 11 ed the sampling eye li city. For a reg1i ona 1 study 
it is necessary to determine whether there is any sig­
nificant trend or cyclicity to be assigned to a par­
ticular series in the area. In addition, different 
hydrological, meteorological and geophysical time 
series may be compared. Without such a broadly based 
confirmation the apparent long-range trends and cy­
clicity should not be considered as permanent proper­
ties of any series of annual values of a hydrologic 
variable, even though the factors of the known non­
homogeneity and inconsistency are removed. Conse­
quently, those factors which are the resul t of sampling 
variati on, should not be perpetuated in structural 
analysis and mathematical description of time series. 

Wfthin-the-year periodicity . Astronomic cycles 
produce the periodicities in various hydrologic time 
series. In a given river basin , for example, high 
precipitation in summer seasons and low precipitation 
in winter seasons, or vice versa, may be expected. 
River flows are high or 1 ow in different seasons. 
Means and variances of stream flows are l arge in wet 
seasons and small in dry seasons. This phenomenon 
indicates the within-the-year periodicity in the means 
and variances. Usually, periodicities in a hydrologic 
time series would appear in one, two or several of its 
parameters, especially in the means, standard devia­
tions and autocorrelation coefficients. Periodic com­
ponents are deterministic properties of time series 
and their parameters. 

Randomness and time dependence. Randomness of 
hydrologic time series is caused by such factors as 
1urbulence, large-scale vorticities, heat transfer, 
air opacity for radiation waves and ~ther sources of 
randomness of atmospheric, oceanic and continental air 
and water movements. Time dependence in stochastic 
variation is created or increased by water storage of 
various types in hydrologic environments. A station­
ary stochastic process is assumed superimposed on a 
periodic or deterministic process in a given manner 
which can be described by an algebraic equation of 
time series composition. Therefore, hydrologic time 
series are basically nonstationary and could be decom­
posed into deterministic components and a stationary 
stochastic process. 

Definition of independent stochastic components. 
The above assumption of periodic components in a 
hydrologic time series being deterministic parameter 
processes implies that they can be removed by means of 
appropriate mathematical models. The remaining sta-. 
tionary stochastic component is in general sequen­
tially dependent. This dependence is often found to 
be approximately linear. Linear models such as the 
autoregressive type are commonly used in hydrology. 
Residuals in mathematical models of sequential depen­
dence of stationary stochastic series are called the 
independent stochastic component, the ~ variable. 
For a discrete time series, the independent stochastic 
components are designated by ~ , for which p and p,, 
, indicate the 1:-th discrete time interval position 
from a total of w positions in one cycle for the 
p-th period. One calendar year is, for example, one 
period; w is the number of interval subdivisions of 
the year, i.e. w = 365 for daily series, w = 12 for 
monthly series, etc., with , = l ,2, . .. ,w, as discrete 
values of the basic period; p = 1,2, ... ,n, is the 
successive year number and n is the number of years 
in the sample. The ~ variables are assumed ini-p,, 
tially to be independent and identically di stribut ed 
at all positions 1: of the period w. These ~ p, T 
variables should be nearly stationary and sequentially 
independent for subsequent analysis and statistical 
inference. 

l-2 Study Objectives. 

The objectives of this study are: 

l. To select mathematical models with there­
lated error analysis to be employed in the structural 
analysis of hydrologic time series. 

2. To condense the information in the data of 
the independent stochastic component by fitting appro­
priate probabi lity distribution functions to their 
frequency distributions. 

3. To study the extreme or unusual events of 
hydrologi c time series, which affect the selection of 
probability distribution functions for the independent 
stochastic components. An exceptionally high flood, 
for example, may produce a correspondingly very high 
value in the sample data of independent stochastic 
components. One of the objectives of this study is to 
find the best way of treating these extreme values of 
the independent stochastic components, by a proper 
selection or a modification of the probability distri­
bution functions selected to fit their frequency ciis­
tribution curves. 



4. To apply the central limit theorem so that 
the sums of random variables become asymptotically 
normally distributed, and in such a way that the prob­
ability distribution functions selected for the small­
interval independent stochastic variables converge to 
the normal function as the 6t-interval increases. For 
the random variables following a stable distribution 
wi t h the characteristic exponent, a, the distribution 
of sums of these random variables is also a stable 
distribution with the same characteristic exponent, 
a. For the variables to fo llow a stable distribution 
requires that an independent stochastic variable 
has the same characteristic exponent, a, for all 
interval values of 6t. Another objective of this 
study is to investigate jointly the applicability of 
the cen tral limit theorem and the stable distributions 
to hydro 1 ogy. 

l-3 Procedures of Investigation. 

The approach for this investigation is to study 
both the structure of deterministic components and 
the sequential dependence of resulting stochastic 
series. Statistical tests are used to infer the inde­
pendence of resulting stochastic variables, to all ow 
testing the adequacy of mathematical models used . In 
studying the frequency distribution of the independent 
stochastic variables, seven groups of probability 

distribution functions are studied and tested: 
classical probability distribution functions, Pearson's 
family of probability distribution functions, Weibull 
probability distribution functions, classical proba­
bility distribution functions modified by the polyno­
mials, double-branch gaJTJ!Ia functions, and a mixture of 
some probabil ity distribution functions and stable 
distributions . The procedures used are shown sc~emat­
ical ly in Fig . 1-1 . 

1-4 Research Data. 

The data used in this study [29] contain 
seventeen sets of daily runoff series, with the 3-day, 
7-day, 13-day , and monthly runoff ser ies derived from 
the daily series by taking averages of the daily 
values over the intervals of 3 days, 7 days, 13 days, 
and one month . 

These 17 daily runoff series are from the records 
published by the U.S. Geological Survey under the con­
dition that the flows are virgin or have not been al­
tered by significant man-made diversions or flow regu­
lations. Minor diversions, up to a maximum of one 
percent of the average annual flow, are tolerated. 
The names of stations selected are given in Table 1-l, 
with the approximate geographic location of stations 
shown in Fig. l-2. 

TEST INDEPENDENCE 
IN RESULTING 
INDEPENDENT 
STOCKASTIC SERIES 

FITTING INDEPENDENT STOCHASTIC 
OMPONENTS BY VARIOUS PROBABILITY 

DISTRIBUTION FUNCTIONS 

Fig. 1-1 Schematic flow chart of investigations. 
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Table 1-1 STATIONS SELECTED FOR INVESTIGATION. 

~Uil10n Loc•t;on (S:~e~Ll Records Moan SUndlrd RO"''rks on . 
F.,. It her It >tUde 01191 tude Av1lhblo D•lh n .,.. Oevluion Accuracy of Record 

1 Tioga nur £rwtns. l'f. 
L•C~I ~ent. a'i~ 

:J_a.~2ss T. 42°07" 77°08' 1370.0 1921-1960 1378.6 2777 .a :>eriod• of lc~...,.~ 

!...!.:f.I.!.JL I-::02~.!L.Cl!..1.!t.h._llhconsin I 
u•52·._ 88°18' 

Good. hi,. ou-rlng 
678.0 1921-1960 -· SCl .S Ul.O oerlod• of ice e.~~ 

~OO'd'.Poord"vrTng 
~7 .e670 Current at ~In Buren , Mo. 37"ro· 91°01' 1667.0 1922-1960 1921.0 2694.3 P~>riods of ke e.f~ 

IJ.•..:.'llO-e~~i· " "<ktnti• ••. Ore. 44°11" 12z•oe· 345.0 1924-1960 1638.2 7U •• ~ ..£<<.!)~----
tS.C335 :leches nur ~ockllnd Tu. 31°02 ' 94°24 ' 3539.0 1924-1960 2385.2 3813.0 Cood 

43°40' _115~44' 1921·1960 1172.7 
E>eelleiit:GO"od~ 

.IJ. ::'12...J..!ll•!.~lr Twin Sprlnq• ldollo 830.0 1C58.6 ~»rlods of ice ef~'!Sh 

6~~...!otl.I.!.C..•.t..!.~~~.!.tch-he~c~. Cal. 
Go0cr.0.f;:-"durTr.g 

37°:>8' 119°46' H.2 1923-19~--· 141 .2 234.2 ~rtods of lce_.~fEU:... 

~l-~.:.1§.li_ _G_rttnbrJ!.~t,!!"_Al~~son , W. VI. 31"44' 80° 38' 1357~0 1921-li60 1885 .}_ 
Good .Poor during 

3053_ . .!,__ i-ror'od' ot Ice effec;_t...:_ --- oor.-rrr;.-cfu'rrn.;--
6B.H05 .QU•~.!!.Ut Va l ley F11ls Kansas 39°21 ' 95°27' 922.0 1923-1960 375.9 --r-l!lL?_ r.im!n~: ~g~-o:.r.~-~9 
I6A. CJI5 ... M.a~.t s~ • .!2.•.!!.1!.:-.!!.1~s_t~.· Mont. 44"39 ' 1_11"04' 419.0 1924-1960 45_8.6 190.7 I per,!_D!!!,..2!.J.ce •-~ 
rlB.~320 Powell rtar Arthur, Tenn. 36"'32 ' 83"38' 6~_3.0 1921-1960 11_1 6.1 ~J .. 9..:.L_ Cood r-- CO"Od. Poor dur ng 

~b:.l.S.L _ll~~r:.ies near Lotus, Idaho 47°15 ' 116°38 ' 437.0 1923-1960 515.0 762.3 pedods of Ice effect. 

~2~ 01 G~ Coweasturt near C'llfton forge, Vt._ 1 .. 48 ' 79°46' 456.0 1926-1960 51i 6 762 . 3 Good 

3 .§.9..L Mod_n.!•! • ..S~':Ingti~1d ·~- 39°55' s3•sz• 1474.0 1921-1960 4D7.2 686.7 Good 

~.6!1. 
TtrteCI at ohono r . . 

37°43 ' ...lO.le!!ll!,,_Cal . 119°40' 321.0 1921-1960 595.7 979.4 Good 
booa. "r aur nq 

o1 8.~2~S 8a tten_ti!l..!l .. Botten•l11e, ~. y. 43°06' 13°25' 394.0 192~:J.lli_ r-....illJ 722.9 period> of lc\~ 

l.i)§.~ .J.!I."!L• t.!!:...S.h.eldon 
Good. Fa :r Tur ng 

Whcons1n 45°18' 90°57' 574. 0 1J21-1960 505.0 1162.0 ~eriods of Ice effect. 

•According to U.S.C.S., tho chnHicltion of the records are e•cellent , good, f1lr, or POOr depending on whethtr errors In t hem are less than S, 10, 
or 15 percent or gnater thln 15 pen;ent . r-especthely. 

Fig. 1-2 Geographic distribution runoff stations used in the study. 
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Chapter 2 
BRIEF REVIEW OF PERTINENT LITERATURE 

The first part of this chapter includes the 
mathematical models used for identifying and describ­
ing tlhe determi ni sti c characteristics of the hydro 1 ogi c 
time .series. The second part i nvo 1 ves the probability 
distribution functions applied to fitting the indepen­
dent stochastic hydrologic components of time series. 

2-1 Mathematical Models of Periodicity and Dependence 
in Hydrologic Time Series. 

Early attempts of modelling the hydrologic events 
were made by Sudler [32] and Barnes [2]. Sudler's 
model was simply to collect all the historical annual 
series followed by a random rearrangement of the order 
of these events in order to obtain a sequence of new 
combinations of the original series. Barnes assumed 
the observed annual flows were normally distributed. 
He used a table of random numbers to synthesize the 
annual flows with the same mean and standard deviation 
as the original record. Although Barnes' work made 
an improvement on Sudler's procedure, it sti ll ne­
glected the serial correlation that usually exists in 
annua 1 flows. 

Thomas and Fiering [19] used the first-order 
autoregressive linear model to approximate the persis­
tence in the series of monthly runoff. In providing 
a justification for the application of autoregressive 
linear models to hydrologic series, Yevjevich [34] 
showed that, if a simple exponential function will fit 
the recession curves of the runoff, the persistence 
among the annual runoff values follows the first­
order linear autoregressive model. However, recession 
curves following the form; Qt = Q e-ctn (with c and 

0 . 
n constants, Q the initial runoff of the recession 

0 . -
curve, and Qt the recession ' discharge at the time 
t) will be fit better by the second-order or third­
order autoregressive linear models. Chow and 
Ramaseshen [6] found that autoregressive linear models 
were applicabl e to storm rainfall. 

All these applications of the autoregressive 
linear models ar~valid under the assumption that the 
proce.sses studied are stationary stochastic processes. 
Since the solar radiation input to hydrologic environ­
ments is periodic, the periodicity in the environmen­
tal hydrologic inputs and outputs cannot be avoided. 
For example, the correlogram of monthly stream flows 
is often periodic. Yevjevich [17] showed that for t~e 
monthly stream flow transformed by £ = (Q -p, ,- p,-r 
Q )/s , (with QP the stream flow of month r, and 

T 1' ,T 
s,. the standard deviation of the month ,. stream 
flow), the correlogram of EP may not be periodic. ,-r 
Quimpo [28] used the model of Qt = Pt + Et (with Pt 
the periodic component; and £t the stochastic com­
ponent) to approximate a periodic hydrologic process 
Qt. He found that an approximate second-order sta-
tionary stochastic series is usually obtained by iden­
tifyilng and removing the periodicities in the mean and 
standard deviation . The dependence of stochastic com­
ponents of daily flows could be approximated well by 
the second-order autoregressive linear model. 

In order to identify and remove the periodicities 
in parameters, the harmonic analysis is commonly used. 

4 

In spite of availability of some statistical methods 
for testing the significance of harmonics, these 
theoretical test methods show difficulties when ap­
plied to compl ex hydrologic time series . Quimpo [28] 
assumed that only the first six harmonics are poten­
tially significant, and used the variance explained 
by each of these six harmonics as a criterion to de­
termine how many harmonics are necessary to approxi­
mate the periodic components. Yevjevich [36] improved 
this procedure of testing the significance of har­
monics by using the sum of the explained variance of 
all harmonics and two predefined critical values, as 
an empirical method for testing the significance of 
harmonics. 

2-2 Probability Distribution Functions for Fitting 
Frequency Distributions of Hydrologic Stochastic 
Components. 

The normal density function has been used for 
centuries as the theoretical probability di stribution 
of error residuals. The gamma and lognormal proba­
bility density functions are widely used in hydrology 
and related fields. Markovic [20] investigated the 
distribution of annual precipitation and runoff series 
and pointed out that their frequency distributions may 
be fitted by normal, lognormal and gamma probability 
density functions. Matalas [22] assumed the histori­
cal series to follow either gamma or lognormal distri­
butions and developed the simulation schemes with the 
condition that the residuals of the dependence models 
are normally distributed. Attempts were made by Bonne 
[3] to use the lognormal, Pearson Type III (gamma 
probability density function), and logarithmic Pearson 
Type III distribution functions to fit the frequency 
distributions of monthly runoff. Normal variates are 
often obtained by various transformations which depend 
on the original distributions of stream flows. 

Distribution functions of more complex forms have 
been used in fitting the frequency distributions of 
hydrologic variables, when a simple probability den­
sity function fails. The normal function, modified by 
using the Hermite polynomials given by Edgeworth [23], 
and the gamma function modified by using the Laguerre 
polynomials investigated by Llamas and Siddiqui [18] 
are examples of more complex probability functions. 

The mixture of two or more probability density 
functions, under the assumption t hat the variables 
result from two or more populations, is also used to 
fit the frequency distributions . The mixture of two 
normal density functions was first studied by Karl 
Pearson in 1894, while the parameter estimation for 
this mixture was improved and summarized by Cohen [7]. 

Bryson [5] suggested that a probability density 
function becomes "heavy-tailed" when it converges to 
zero less rapidly than an exponential probability den­
sity function. He also found that some hydrologic 
variables may follow the probability distributions 
which fa 11 within the heavy-ta i1 ed category of functions. 

Mandelbrot [21] and Fama [9] applied the stable 
probability dis-tributions to economic variables such 
as the stock prices. Since the independent stochastic 
components, derived for the daily flow series, may have 
the similar properties as the stable distributions 
with heavy tails, the stable distributions are inves­
tigated also in this study. 



Chapter 3 
MATHEMATICAL MODELS USED FOR OBTAINING INDEPENDENT STOCHASTIC 

COMPONENTS, AND RELATED ERROR ANALYSIS 

Mathematical models used for the periodic 
components of hydrologic time series and the time de­
pendence of the stochastic components are summarized 
in t hi s chapter , which served to obtain the indepen­
dent stochastic variables. Even though the parameters 
of mathematical models are estimated from the sample 
data series by the best available estimation methods, 
they are inevitably subject to various sources of 
errors. Therefore, the analysis of these errors and 
their propagation through each step in obtaining the 
independent stochastic components is also presented in 
this chapter. 

3-1 Removal of Periodicity in Parameters. 

Two practical methods (nonparametric and 
parametric) may be used to remove the periodic compo­
nents from a time series. The errors involved in the 
harmonic analysis of these periodic components are 
discussed. 

The symbol Qp stands for discrete values of 
, "t 

an observed hydrologic time series with -r and p 
previously defined . The symbol v denotes any 

T 

periodic parameter to be estimated from the Q 
series. p,t 

The nonparametric method. The removing of 
periodicities in the mean and variance of Q is by p,t 

e: p,T (3-1} 

in which e:p,r is the stochastic component of Q , p,T 
Q and s are the sample mean and 

T "T 
sample standard 

deviation of QP at the position 
,T T . QT and ST 

are computed by 

n 

Q = 1 E 0 
t n p=l p, t (3-2) 

(3-3) 

The nonparametric method of removing the periodicities 
in Q and s by Eq. 3-1 is equivalent to the 

T t 

standardization of Q variable. It requires 2 w p,t 
statistics: w of Qt and w of st. The nonpara-
metric method is useful in any preliminary analysis 
when w is small. For monthly series, Eq. 3-1 is 
often used because 2 w ; 24 is not a very large number 
of statistics. However, there are two major drawbacks 
in using the nonparametric method: 

1. In case of daily series , the number of 
statistics of Eq. 3-1 becomes 2 w = 730. When some 
other parameters of daily series, such as the auto­
correlation coefficients, or the skewness coefficients 
are also periodic, and the periodicities must be iden­
tified, described and removed to obtain a second-order 
or third-order stationary stochastic component of 

5 

daily values, the total number of statistics in 
nonparametric approach is drastically increased. 
Since it is impossible to estimate so many parameters 
accurately from a limited size of sample series, these 
parameters must be subject to large sampling errors. 

2. Sampling errors are propagated by the 
nonparametric method. 

The general objectives of mathematical modelling 
of the deterministic-stochastic process are: (a) To 
effectively separate the deterministic and stochastic 
components; and (b) To condense the information by 
employing such models which use the number of parame­
ters parsimoniously. Since the nonparametric method 
does not satisfy these objectives, at least for large 
values of w, this method, therefore, is not used in 
the further investigations. 

The parametric method. Two types of periodic 
functions can be used in the description of periodic 
parameters, v , with the Fourier coefficients of sig­

T 

nificant harmonics either constants or also random 
variables. The first is 

v = v 
T X 

m 

+ L C. cos(2~.~-r + eJ. ) , 
j='l J w 

(3-4) 

and the second is 

v = v + 
T X 

cj cos( 211jT + ej ) , (3-5) p,t W p, T 

in which v is the mean of v , C. and eJ. the 
X T J 

constant amplitude and phase of the j-th harmonics, 
Cj and ej the random amplitude and random phase p,t p,T 
of the j-th harmonic, and j = 1 ,2, ... ,m and j = 
1,2, ... ,m the number of harmonics in the two cases. 

0 
Once v, C., and e ., with j = 1,2, ... ,m, are esti-x J J • 
mated from the sample series, Eq. 3-4 uniquely defines 
the v values at any t . However, v is the only 

T X 
constant of the whole process in Eq. 3-5, with the m

0 
pairs of random amplitudes and p~ases for ~0 har-
monics. The random variables cJ and elp may p,t , t 
not only be serially but also mutually correlated. 

The first periodic function, Eq. 3-4, is based on 
the assumption that the deterministic periodic param­
eters of the process can be separated , with the resid­
uals considered as the stochasticity of the process. 
The second periodic function, Eq. 3-5, means that 
nearly all the information is contained in various 
stochastic parts, such as the random Fourier coeffi­
cients and the random variable of the stochastic part. 

The hypothesis that all of the earth's hydrologic 
processes are composed of deterministic-periodic pa­
rameters and stochastic component seems supported by 
the basic periodic influx of solar energy. The envi­
ronmental responses to solar energy input modify cer­
tain properties of input cyclicity without changing 
the cyclicity itself, adding randomness to the output. 



It seems logical on the basis of geophysical evidence 
to conceive the responses of hydrologic environments 
as producing the outputs which are composed of peri­
odic parameters and a stochastic component than to 
conceive that the responses produce only a set of sto­
chastic variables in output. Therefore, Eq. 3-4 is · 
used to describe the periodic parameters of hydrologic 
time series. 

An alternative form to Eq. 3-4 is 

m 

v =v + L(A.cos 2rrJr+B.sin 2'1rh ) (3-6) 
T X j=l J w J w ' 

with m the number of significant harmonics, and Aj 
and Bj the Fourier coefficients estimated from the 
w values of V (with v sample values), by 

T T 

w 

Aj = £ L v 
w t=l l 

cos 2'1rjt 
w 

V sin 2rrJr 
T W ' 

with· t he amplitude and phase 

(3-7) 

(3-8) 

cj ,.jA~ + B~ ; and e j = tan-
1 

(- ~ ) • (3-9) 

The empirical method is used in selecting the 
significant harmonics. Let s2(v ) be the variance of 
computed vT. For a harmonic j,\ar hj = (Ai + si)/2, 
with Aj and Bj. computed by Eqs . 3-7 and 3-8. The 
ratio 

var h. 
t.Pj=~ 

T 

( 3-10) 

represents the part of the variance of vT explained 
by the j-th harmonic. These ratios oPj are then 
ordered in a descending sequence, and summed to 

j 

P j = ~ t.P; , for j = 1 ,2 ,3, ... ,m , ( 3-11} ,., 
with max(m) = w/2. The harmonics of any parameter of 
hydrollogic daily series, such as the daily mean, daily 
standard deviation, or daily autocorrelation coeffi­
cient, are usually not significant beyond the first 
six harmonics. The critical values of the sequence 
Pj are two empirical constants , Pmin and Pmax· 
With the critical values Pmin and Pmax selected, 
the criteria used to determine the significant har­
monics are: (a) if P6 ::Pmin' no harmonic is signif-

icant, or vT = vx as a constant; (b) if Pmin < P6 :: 

Pmax' al l six harmonics are signif i cant; and (c) if 
P
6 

> P , the first j harmonics, whose Pj values max 
first exceed Pmax' are considered as signi ficant. 
The empirical expression of Pmin and Pmax are: 

6 

pmin = a,jf (3-12) 

and 

p 
max = 1 - p 

min (3-13) 

in which c is the order of the highest moment used 
in estimating the parameter v , w and n are the 

T 

length of basic period and the number of years in 
record, and a is a constant (with the suggested 
value a= 0.033). 

With the periodic mean u and the periodic 
T 

standard deviation o , the model for Q is 
T p,T 

Q =u+o£ p,T T T p,T ' (3-14) 

with £p the stochastic component, which is sta-
. ,T 

tionary at least in the mean and standard deviation. 

The procedure for inferring the periodic mean and 
standard deviation and r.emoving them from the sample 
Q series, is as follows: p,T 

a. Estimate the sample means Q and the sample 
T 

standard deviations s , r = 1,2, ... ,w, by using Q 
T p,T 

and Eqs. 3-2 and 3-3, respectively. 
b. Replace v, in Eqs. 3-7 and 3-8 by mT and 

s,. and compute the Fourier Coefficients Aj and Bj' 
for j = 1,2, ... ,6, respectively. 

c. Use the empirical test for the significant 
harmonics in m and s . 

'T T 
d. Denote by uT and a, the periodic parts in 

m and · s , respectively, the equations to estimate 
u~ and o~ are 

ml 
VT '" m + E (A; 

X i 
cos 2'1rTi + B 

w i 
sin 21rd) 

w ' 
( 3-15) 

and 

m 
a =s +:i: (A; cos 2:Ti + B; sin 211'T

1) 
T X i w 

(3-16) 

with m and s the averages of m and s , and 
X X T T 

m1 and m
2 

the number of significant harmonics in 
v and o , respectively. 

T T 
e. The per iodic components are removed from 

Qp,r by 

Q - v y a p,t T 

p,T OT 
(3-17) 

Equation 3-17 is similar to Eq. 3-1 with the periodic 
models having a limited number of harmonics, as the 
parametric method. The y variable of Eq. 3-17 is p,T 
approximately standardized. With a further 
transformation, 

y - v 
£ = p,T y 
p,T av 

(3-18) 





The application of autoregressive linear models. 
The dependence of the stochastic hydrologic series can 
be approximated by various orders of linear autoregres ­
sive models. The f irst-, second- and third-order auto­
regressive linear models are most commonly applied 
rather than the higher-order models . These higher­
order models may show advantage only in case of very 
long sample series. Short sampl es hardly justify the 
application of higher-order autoregressive linear mod­
els [36]. Linear models seem sufficiently accurate 
for all practical purposes even though the true phys­
ical st ochastic dependence may be nonlinear. 

The general m-th order autoregressi ve linear 
model is 

£ p,t 

m 

=E 
1<=1 

ak £ + 0' t; ' ,T p,T- k ~ , T p,t (3-25) 

with a k, t the autoregression coefficients as func-

tions of serial correlation coefficients pk , either 
,T 

periodic or nonperiodic , o~ ._ ,T the standard deviation 

of c which is periodic if ak are p,t , T 

with ~ a standardized variable. The p,y 
relation coefficient pk of lag k, is 

, T 

periodic, 
serial cor-

(3-26) 

The coefficients cc and ak , with k l ,2, and 
" , T ,"'( 

3, are: For the first order model, 

(3- 27) 

with 
2 ~ 

= ( l + a
1 

- 2a )'2 0 c 1 Pl,t-1 · <, , T ,T ,T 
(3-28) 

For the second order model, 

(3-29) 

and 

(3- 30) 

with 

+ 2 a a p )~ 
1 , T 2,t l,t-2 ( 3-31) 

For the third order model, 

+ 
(3-32) 

8 

(3-33) 

and 

a3,< • -=.!...-"--~c.::!:..____:~~-'..:.::r..!.!..::T.!..!.!..,:......!..:::!:......!:..!..!C::..::.....!..!.!~ 

l+Zpl , t-2P2 , t-3Pl,t·3-Pl,t·3-Pl,t·2-P2 , t-3 

+ 
(3-34) 

with 
2 2 2 (l +a1 +a2 +a3 -2a1 pl _1-2a2 p2 _2 , L ,T ,'t' , T , T tt ,'t 

-2a p +2a a p 3, t 3,t-3 l, t 2,t l,T-2 

+2a a
3 

p
2 

+2a~ a p )~. 
l, t ,T , t-3 C:,T 3,T l, t-3 (3-35) 

The serial correlation coefficients 
estimated from the sample series by 

(3- 36) 

when n the number of years of record, and k t he 
lag. When the index 1 is equal to (w-k+l), the con­
stant n in Eq . 3-36 is replaced by (n-1) and £p ,t +k 

is replaced by £p+l,k" 

If estimated rk values are analyzed for 
,T 

periodicity by using the harmonic analysis, and are 
found to be periodic, the periodic function pk 

,T 
should be used to replace the rk values . If no 

,T 
periodicity is found in rk , the mean of rk , 

1 T , T 

denoted by rk' is used instead of rk or pi< . , T , T 
Consequently , ak is replaced by ak and c~ by 

, T ")t 
ct; in all previous equations, Eqs. 3-27 through 3-26. 

The statistical test of the adequacy of 
autoregressive linear models for large samples is 
gi ven by Quenouille [27]. This technique is a labo­
rious method whi ch includes computations of two sets 
of constants and a test parameter. Another approach 
is on the assumption that the model is of a given or­
der . It is t hen performed by estimating t he parame­
ters and the computation of the presumed independent 
stochastic component. This component is then tested 
for independence. If the hypothesi s of independence 
is accepted , the hypothesis that the model is of a 
given order is also accepted. This approach does not 
compare the various models, and may require large 
computations. 



A simplified, practical method for determining 
the order of the autoregressive l inear model to be 
used is suggested by Yevjevich [36] . The measure of 
the goodness of fit of t he model used in t his method 
is expressed by the determination coefficients, Oi, 
i = 1 ,2 ,3, ... , which give the percentage of the total 
variance of t p exp lai ned by the i-th order term 

, T 
of an autoregressive equation, ~1hile the remaining 
portion of the variance of t p,t is explained by 
(a~ ~p )-term. 

"" "T :t ! 

Since Om ~ ... ~ o3 ~ o2 ~ 01, a criterion can 
be developed su t hat a model of the given order could 
be selected in comparison with the higher order mod­
els. For the purpose of this study, and with the 
first three autoregressive models used, the criteria 
are: 

a. If o2 - o1 ::: t.O, and o3 - o1 s 2 t.O, the 
first-order model is selected; 

b. If o2 - o1 > 40 , but o3 - o2 s dO , the 
second-order model is selected; and 

c . If o2 - o1 > t>D, and o3 - o2 > t:_D, the 
third-order model is selected, in whi ch (Oj - Oi), 
with j > i, is the difference between the percentages 
of the explained variance by the j -th and i-th 
order terms of the model, aD is a constant (suggested 
value is aD= 0.01, or one percent of t he total vari­
ance). The determinat ion of coefficients for t he 
first three order models are: 

D = 2 ( 3-37} 1 rl ' 

r2 + r2 - 2r2 
r2 

0 = 1 2 1 (3-38) 2 2 1 - r 1 

and 

03 = (r2 + r~ + r~ + 
3 

r 3 + 2r~ r~ + 2r1 
2 

1 2r1 r2 r3 

2 -2r1 r 2 - 4r1 r2 r3 -
4 

rl 
4 2 2 

- r2 - rl r3)/ 

( 1 - 2 2 2 2r1 - r 2 + 2r1 r 2) (3-39) 

in which r1, r 2, and r 3 are the mean values of 
r1 , r 2 , and r

3 
, respectively. ,.t' , T , T 

A test parameter of independence of the 
independent stochastic component, obtained by sub­
tracting the terms of t he autoregressive scheme from 
the stochastic components ~ provides a measure of 

p, r ' 
the adequacy of autoregressive schemes . The two-tail 
test for the autocorrelation coefficients for signif­
icant differences from the expected values at a given 
significant level is given by Anderson [1]. Thi s is 
derived for a circular time series. However , it may 
also be applied to an open series if the sample is 
sufficiently long which is the case in a daily series, 
bearing in mind other possible limitations [29]. Usu­
ally, the first autocorrelation coefficient is of the 
greatest importance. The tolerance limits (u,l) at 
95 percent level of significance are 

-1 :!: 1.96 IN=3 s = --'-.....::.....-7,-''£'-....:..;_~ 
U,£ N-2 (3-40) 
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with N the number of observations. By applying an 
open series approach, Siddiqui (unpublished study in 
1957) gave the distribution of r1 for normal inde­
pendent variables 

(1-r )(N-1)/2 (l+r )(N-3)/2 
1 1 1 f(r1) = --c:-...----:-:..,.,--~-- + 0 (- 2) , (3-41) 

2N-l B (N;l , Nzl) N 

with N the sample size, B(N;l., Nzl) the beta func­

tion and 0(~2 ) a small quantity decreasing rapidly 
as N increases. The mean and variance of r1 are 

and 

var(r
1

) N
3 

- 3N2 + 4 
N2 (N2-l) 

(3-42) 

(3-43) 

With suffi ciently large N(N 2 30), Eq. 3-41 is 
well approximated by a normal function. When N is 
very large and k is very small, Eqs. 3-41 through 
3-43 may be applied to the distributi ons of rk [ 37]. 
The tol erance limits for rk at 95 percent signifi­
cant level are 

(3-44) 

If Fi sher's z-transformation of rk is used with 
N l arge (N > 30) and k relatively small , the trans­
formed rk is normally distributed with mean equal to 
zero and variance equal to 1/n. The z-transform is 

(3-45) 

The tolerance l imits for zk at 95 percent signifi­
cant l evel are 

s ;!; l. 96 _!__ 
u, t IN (3-46) 

Error propagations. Let ± e and ± e denote 
X S 

the error terms in Eq. 3-19 corresponding to the peri­
odic mean and periodic standard deviation, respec· 
tively. If these error terms enter the stochastic 
component of Q , then p, r 

(3-47) 

with t.t the error in t he stochastic component. For 
a Taylor's series expansion applied to the denominator 
of t he right hand s ide of Eq. 3-47 and if all the sec­
ond or higher order error terms are negligible, the 
total error ~c of the stochastic component becomes 

± c e ± e p , r s X 
(J 

(3-48) 
T 

Equation 3-48 shows the error in the stochastic com­
ponent to be proportional to the stochastic component 
itself but inversely proportional to the standard 



deviation a . If e and ex are of the same 
t s 

order of magnitude and both proportional to a , in 
t 

the order of 5 percent of a , while E a stan-t p, t 
dard normal variable, then 6E = ± 0.148 for the 
95 percent confidence interval. 

Since the serial correlation coefficients, rk , 
,T 

computed by Eq. 3-36 are scale and location invariant, 

10 

the rk -values are the same as those estimated 
, t 

directly from Qp . Consequently, the errors in 
, T 

the periodic mean and standard deviation do not 
affect the estimates of rk . However, the gen-

,T 
eral autocorrelation coefficients (computed for 
the total series and not for each T separately) 
of the stochastic variable will be smaller by 
1/[1 + var(6E)]. 



Chapter 4 
THEORETICAL DISTRIBUTION FUNCTIONS, TESTS OF GOODNESS OF FIT, AND HEAVY 

TAILS 

4-1 Selection of Theoretical Distribution Functions 
with Estimation of Their Parameters. 

In this study, the probability distribution 
functions (abbreviated in the further text as PDF) 
selected to fit the frequency distributions obtained 
for the independent stochastic components are classi­
fied into seven groups . There are some other common 
PDF's such as Cauchy PDF, Pareto PDF, beta PDF, ... , 
etc., which are not used in this study either because 
they are not suitable for fitting the frequency dis­
tributions of the independent stochastic components or 
they are special cases of the seven groups . The clas­
sification of these seven groups depends mainly upon 
the characteristics of the PDF's selected for the 
analysis. Based on the properties of an independent 
stochastic component, the theoretical probability dis­
tribution function of best fit to an observed fre­
quency distribution should have the following proper­
ties: (1) it i s continuous and defined for all 
positive and negative values of the variable; (2) the 
upper tail is unbounded; (3) the density curve is 
asymptotic to the axis on the positive side and is 
also asymptotic on the negative side in case the lower 
tail is unbounded; and (4) it should be representative 
of a large range of skewness and kurtosis coefficients. 

Classical PDF's. The commonly used PDF's in 
hydrology include the normal, lognormal and gamma den­
sity functions. A voluminous literature related to 
these three probability density functions is availatllc. 
Therefore, only the functions and their parameters are 
summarized here. 

a. Normal PDF 

1 (x-11) 2 

f(x) " n;- e --::-y-2 • -oo~x~ .. 
afLll a 

(4-1) 

with x the variable, 11 the population mean, and o 
the population standard deviation. The maximum like­
lihood estimates of 11 and a , with N the sample 
size, are 

and 

f(x) 

• 1 N 
ll "' ff I: X; 

i=l 

b. Lognormal PDF 

e 

2 [ln(x-x
0

)-ln11 ] 

2a2 

(4-2) 

(4-3) 

X <X< oo o-:-
(4-4) 

with 11 the population geometric mean of (x-x
0

), o 

the population standard deviation of ln(x-x
0
), and 

x the lower boundary . Equation 4-4 is a three-a 
parameter lognormal function. It becomes a two­
parameter function for x = 0. The lower boundary 
• 0 
x0 is the maximum likelihood estimate of x0 , and is 
obtai ned by solving the following equation by an 

11 

iteration procedure: 

1 ~ • } l'l 
- -N E ln(x.-x ) + E 

i =1 1 0 
; =1 

1 n(x; -x
0

) 

x1-x
0 

0 . 

(4-5) 

The maximum likelihood estimates of ln 11 and a 
are 

and 

f(x) 

c. Gamma or Pearson's Type III PDF 

1 
x-x

0 
_ _ _ o 

( )

a-1 x-x 

=moT -6- e 6 • 
X < X< 00 

o- -

(4-6) 

(4-7) 

(4-8) 

with a the shape parameter, 6 the scale parameter, 
x

0 
the location parameter of the lower boundary, and 

r(a) the gamma function of a. The maximum likelihood 
estimate of the lower boundary is obtained by solving 
the following equation by an iterative procedure 

l+(l+jA)~ 

l+(l+)~-4A 

in whi ch 

. 1 N 
- (x - x0 ) N ;E _ 1 .- = o 

1=1 x.-x 
1 0 

A " ln (x- x
0

) l E ln (x.-~ ) - N i zl 1 0 

(4-9) 

{4-10) 

with x the mean of N values of x. Once x
0 

is 
determined, the parameter a is estimated by 

Q = 
{1 + ~)~ 

4A - t. a ( 4-11) 

with A given by Eq . 4-10 and L\a approximated by 

L\ Q = 0.04475 (0.26)Q (4-12) 

The parameter 6 is then estimated by 

1 e • &" (x-x
0

) (4-13) 

Pearson's Family of PDF's. From the general 
cl ass of functions originated by Karl Pearson [8], 
Types IV, VI and VII were selected for application. 
The parameters of these three selected functions are 
estimated by using the method of moments. with the 
highest order of moment being four. It was not prac­
tical in this study to use the maximum likelihood 
method for estimation of parameters because it 



requires the solution of simultaneous nonlinear 
equations . 

a. Pearson's Type IV PDF 

[ 
-m -1 ( x v) 

f(x)=y (1+~-~)2 ] e[vtan a- - y;l (4-14) 
o a r 

with 

r(r-2) IS] 
v = -;:::======== 116(r -1)-s1(r-2)2 

_1 ,------~ 
a - 4 j \J2[16( r-1)-s1(r-2) 2J , and 

(4-15) 

Five parameters in Eqs. 4-14 and 4-15 are functions of 
the fi r st four central moments of x. The curve of 
Eq. 4-13 is skewed with unbounded range on both tails, 
and v and \J3 have opposite signs. The origin of 
the curve is at the mean, with the mode at x • va/r. 

b. Pearson's Type VI PDF 

-q1 q 
f(x) = y (1 +..!.. ) (1 +..!.. ) 2 o A1 A2 

(4-16) 

with 

e2(r+2) 2+16(r+1) 

a(q1-1) 

a{q2-1) 
A - ; and 2- (q1-l)- {q2+1) 

q2 ql-q2 
(q2+1) (q,-q2- 2) r(ql) 

y : 
0 a(q1-l)q1 r(q1-q

2
-1) r (q2+1) 

(4-17) 

in whi ch 

r ,. 

( 4-18) 

These five parameters are functions of the first four 
central moments of x. The curve of Eq . 4-16 is 
skewed within t he range: -A to + ... If \J3 is 
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negative, t he range i s from A1 to - "' · The ori~i n 

of the curve is at the mean with the mode at x = 
-a(q1 -l);(q1 - q2 -2). For q1 =2 and q2 <1, 
Eq . 4-16 becomes the Pareto di stribution. 

with 

c. Pearson's Type VII PDF 

2 -m 
f(x) = y

0 
(1 + ~ ) 

a2 

. 1 y ,_ 
o a/; 

(4-19) 

(4-20) 

Weibull probability distribution function. The 
distribution of a random variable is a Wei bull distri-
bution [16] when y • [ (x-x

0
)/o]c is exponentially 

distributed wi th c > 0, a > 0, and x
0 

the lower 
boundary. The probability density function is 

(
x-x )c 

(
x-x ) c-1 - -

0 

f{x) = f. --0 e a 
a a (4-21) 

The maximum likelihood estimates c, a, and x
0 

of 
c, a , and x

0 
should satisfy the three equati ons 

~ " [ k t (x1 -x0l~]l/c (4-22) 
1 =1 

and (4-23) 

Since min{x1 ,x2, ... ,xn) is a maximum li kelihood 
estimate of xo' the practical way of solving for xo' 
a and c in the above three equations is by the 
following four steps: (a) Let x

0 
= 

min(x
1

,x2, ... ,xn) - 6X, with 6X a small positive 
quantity, like 0.0001; (b) Solve c from Eq. 4-23 
by an iterative procedure; (c) Substitute x

0
, c 

into Eq. 4-22 and compute a; and (d) Substitute x
0

, 

c, and a into Eq. 4-24. If the absolute value of 
the left side of Eq. 4-24 is not sufficiently close to 
zero , another value of 6x in the step (a) should be 
selected and the above procedure repeated . 

It is difficult to find physical reasons for 
using t he Weibull probabili ty distribution function 
to fit the frequency distributions of independent sto­
chastic components. However, thi s function gi ves a 
power transformation of the original variabl e , and 
becomes a practical and convenient way of introducing 
the flexibility in the fitting model which leads to 
an exponential probability distribution. 



I 

Probabilit distribution functions modified b 
pol ynomial s. With a given density fu nction, f x , 
another density function, g(x), might be expressed as 
a product of f{x) and a series expansion of x in 
the fonn 

k 
g(x) = f(x) ~ qJ, (x) 

J=O 
(4-25) 

with qj(x) a func tion of x, and k finite or 

infi nite number of terms. Two methods are used in 
solving Eq. 4-25. The first method restricts the 
polynomial qj{x) , j = 1,2, ... ,k, to the orthogonal 
relations, namely 

if i ~j Jq.(x) q .(x) f(x) dx I • 0 
' 

1 J "' 1 , 
(4-26) 

if i=j. 

The second method uses the Edgeworth series [23], 
starting with the characteristic function ~ (t) of 
g(x), g .. .. 

f [ L: (kJ. ej/j!)] 
e6x g(x) dx = e j=l ' (4-27) 

with e = it, i = ;:f, k. the j-th cumulant of 
J 

g(x), assuming t hat all kj (j • 1 , 2, ... ) exi st. If 
all cumulants nj of f(x) exist, f(x ) has the char­

acteristic function 

(4-28) 

which can be wri t ten as 

N 
lL: (k. -n .) ej/j!J 
j=l J J 

"' e (4-29) 

Using the inverse Fourier transform of ~f(t), 

00 

f(x) = J e-ex , f(t) dt 
_.., 

(4-30) 

and assumi ng it differentiable under the integral 
sign , then 

( -D)j f(x) (4-31) 
-oo 

in whi ch D = d./dx , j = 1 ,2, .... Since all the 
cumulants exist, one may combine Eqs. 4-29 through 
4-31 and take the inverse Fourier transformation of 
¢g(t) giving 

g(x) =[1 +f. a. (-D)j/j !J f(x) , (4-32) 
j=l J 

with aJ. depending on k. and n . . 
J J 

The normal density function modified by the 
Hermite polynomials [23] i s derived from this second 
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method. The gamma density function modified by the 
Laguerre polynomials (30] is derived by the first 
method. They are 

a. Normal function modified by Hermite 
polynomi als. 

f(x) = N( IJ,o) {1 + ;~ H3(x) + ;~ H
4 

(x) + ... } , 
. (4-33) 

with x the standardi zed random variable, of the 
norma l probabi lity density function, N(IJ ,o ) defi ned by 
Eq. 4-1, ym the m-th cumulant of x, and Hm the 
Hermite polynomial terms of order m, given by 

2 m 2 
H " (-1 )me-~ x iL_ (e-~ x ) 
m dxm 

(4-34) 

For m = 3 and 4, Eq. 4-34 gi ves H3 = x3 - 3x, and 
H = x4 -6x2 

+ 3. 4 

b. Gamma function modified by Laguerre 
polynomials. 

f(x) = G(a ,s ,x
0

) £ [mi r(a~ 
m=O r m+c. :~ L~a-l)(x~xo) 1 

(4-35) 

with G(a,s,x
0

) the gamma probability density function 
defined by Eq. 4-8, L~(y) the Laguerre polynomi al 
terms of order m, given by 

L~(y) = j~O (::; ) 

d = E (•n-l~x) 
m j=O m-J 

yj = E(x - x
0
)j 

~ j! , and 

with 

(4-36) 

With t he above polynomial modifications, •only the 
first few polynomials are important. As a general 
rule, the order of the last polynomial term considered 
must be such that : (a) no significant oscillations 
occur in the probability density function; (b) the 

coefficient with the xm term shou ld be very smal l in 
comparison with t he coefficients of the l ower order 
terms. Considering t he above two conditions, t he 
probability density function of x is usually t run­
cated with m = 3 or m = 4. 

Double-branch gamma probability density function. 

p 
(xo-x) al-1 

x
0

-x 
f(x) = e - ""61 

sal r(a1) 1 

x-x 
1-P (x-x )a2-l 

0 
+ e - ~ 

sa2 r (C12) 0 
2 



with P defined as P = P (xsx ) and 1-P = r o 
Pr(x>x

0
), x

0 
the mode , ~1 and s1 the parameters of 

t he left branch, and a 2 and a2 the parameter s of 
the r ight branch [36]. The mode x

0 
is best esti­

mated by selecting the class interval ~x . like 0.001 
or smaller, which has the largest frequency , and is 
approximately computed by x

0 
= xL + ax/2, in whi ch 

xL is the lower bound of the interval ax with the 
largest frequency. The parameter P is determi ned by 
P = n1/ N, wi t h n1 t he number of x values sat i s-
fying x1 ~x0 . The parameters a 1 and s

1 
of the 

left branch are estimated by using only t he n1 val­
ues with x1 ~x0 , while a 2 and s2 of the right 
branch are estimated by using the remaining n2 sam­
ple values with n2 = N-n1, for xi>x

0
. The param­

eters ~, and a1 are estimat ed by 

= 
1+.}+, 

- 0.04475 (0.26)Ql (4-38} al 4A1 
with 

[ xo 
_ _L nl 

x;] _ _L 
n, 

A1 = 1 n I: I: ln (x -x. ) ' nl i=l n, i=l 0 1 

(4-39) 

and 
. 1 

(xo I: X;) (4-40) s, .,_ 
a, nl i=l 

Simi larly, parameters a2 and B2 are estimated by 
using Eqs . 4-38 through 4-40 with the ·term x

0
-xi 

substituted by x1-x
0 

and n1 by n2. The shape 
parameters a 1 and a

2 
of the two branches should be 

~qua~ to or less than unity . If Eq. 4- 38 gives a val­
ue greater than unity, the one-peak gamma function 
shou ld be replaced by a j -shaped exponential function. 

Mixture of probability distribution f unctions. 
Distributions resulting from mixing of two or more 
component distribution functions are denoted as the 
mixed distributions. Intuitively, a mixture may be 
conceived as two or more populations of random vari­
ables , physically mixed but neither the population 
distribution nor the proportion of the component pop­
ulation distributions of the mixture are known. Dif­
ficul t ies arise in parameter estimations of these dis­
tributions. Karl Pear son att empted t he est imation of 
parameters in a mixture of two normal populations, 
cons idering two means , two variances, and a proportion 
fac tor. He equated the first five moments with their 
sample val ues . In order to solve these equations for 
five unknown parameters, a ninth-order polynomial 
equation is required. The computations are not dif­
ficu l t with a digital computer , but more than one real 
root may exist in t he ninth-order polynomia l , which 
demands a correct se lection between two or more sets 
of estimates [7]. The estimation procedures for pa­
rameters of the mixture of k normal functions by the 
maximum likelihood method results in (3k - 1) non­
linear equations involving the (3k- 1) unknown param­
eter s [15] . This is an obstacle to both the general 
and practical applications of t he mixture of distr ibu­
tion functions. However, the problem may be 
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simplified by assuming that some properties of these 
mixed functions are known. Three examples are given 
here . 

a. Mixtures of t wo normal density functions with 
the same means. 

-~ f(x) = _P_ e 2 
ol/2; 2ol 

(4-41) 

wi t h P the parameter of the proportion of t he t wo 
normal functions, ~ the population mean , a 1 and a2 
the populations standard deviations of these two nor­
mal functions. The parameter ~ is estimated by u 
given by Eq. 4-2, a1, a2 , and P by o1, o2, and ~ . 

respectively, by the following equati ons [7]: 

(4-42) 

with a the sample standard deviation given by 
Eq. 4-3, t 1 and t 2, with t 2 > t

1
, t he roots of 

quadrati c equation 

(4-43) 

and k4 and k6 the 4-th and 6-th sample cumu­
lants, respecti vely. 

Equation 4-41 is applicable for fit ti ng the 
frequency distributions of x under the conditions 
that the distributions are symmetrical in respect to 
their means, and the kurtosis coefficients are greater 
than three. 

b. Mixtures of normal and gamma density 
functions. 

f(x) 

(4-44) 

with x
0 

the mode defi ned by Eq. 4-37, P the 
weight ing factor denot ing the proportion of the t wo 
functions, estimated by P • 2n1/N, with n1 the 
number of all values of x

1 
and x

1 
s x

0
, a1 the 

standard deviation of the normal function computed by 

[ 
n, 

" 1 "" o•- L, 
1 nl i =1 

" 2] ~ (x. -x ) , 0 (4-45) 

~ and B the 
mated by 

parameters of the gamma function esti-

A2 
& .. f. 

g 

v 
0 = ....9. 
" A • g 

and (4-46) 



with 

- 2 -2 ( 2 • 2) a +!J -P a 1+x 
and vg = 0 

1-P 
2 

- A • g ( 4-47) 

with ~ and a the mean and standard deviation of x. 

Equation 4-48 is valid to fit the frequency 
distribution of x under the conditions that N>2n

1
, 

Vg computed by Eq. 4-47 is positive, and the statis­
tic 

[ 

nl 
s • l E 
2 "1 i=l 

is close to three. 

(4-48) 

c. Mixtures of Pearson's Type VII and gamma 
density functions. 

f(x) 

1-P 
+ srrxr 

x-x 
0 

--S-I(x )' 
o, ... 

with y
0

, a, and m the parameters of Pearson's 

(4-49) 

Type VII function, to be estimated by using Eqs. 4-20 
and 4-48, for m, a2, y

0
, and e2• respectively. The 

other parameters in Eq. 4-49 can be estimated by using 
Eqs. 4-46 and 4-47. Equation 4-49 is appf~cable under 
the conditions of N>2n1 and s2>3. 

Family of stable distributions. The family of 
stable distributions [9,12] is defined as the loga­
rithm of their characteristic functions which have 
the general form 

ln [~x(t)] = ln [E (eixt)] 

i 6t-y l t l ~ [l+is (Tfrl w (t.~)J, (4-50) 

with x the random variable, t any real number, i = 
r-T, and 

I 
tan.!!!. 

w(t,<l) "' 2 2 
illn!t l , 

for xJ'i 
(4-51} 

for x=l 

The stable distributions have four parameters: o , s , 
6, and y. 

The parameter a is called the characteristic 
exponent of the dist ribution determining the rate of 
convergence of the extreme tails of distributions. It 
can take any value in the interval 0 < a < 2. For 
e1 = 2 and ~ = 1, the stable distributions are the 
normal and Cauchy distributions, respectively. For 
0 < e1 < 2, the extreme tails of stable distributions 
are higher than those of the normal distribution. 
The larger the total probability in the extreme tails 
for given x, the smaller the value of a. The vari­
ance only exists in a limit case for a = 2. The 
mean exists for e1 > 1. 
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The parameter S is an index of skewness taking 
any value in the interval -1 s s ~ 1. The distribu­
tion is symmetric for s = 0 and positively skewed 
for s > 0, with the positive skewness increasing as 
S increases. Si milarly, for s < 0 the distribution 
is negatively skewed, and the absolute skewness in­
creases as the abs~lute value of s increases. 

' The parameter 6 is the distribution location 
parameter. For a > 1, 6 is the expected value, or 
the mean of distribution; however, for a ~ 1, the 
mean is not defined. In this case 6 is some other 
parameter that describes the location. 

The parameter y defines the scale of a stable 
distribution. For example, if e1 • 2, y is one half 
of the variance. For e1 < 2, the variance of the dis­
tribution is finite. In this case a finite y param­
eter still defines the scale of the distribution, how­
ever, y is not one half of the variance. 

The three most important properties of stable 
distributions are: the extreme tail areas follow the 
asymptotic form of the Pareto law; they are stable or 
tnvariant under addition; and these distributions are 
the only limiting distributions for sums of indepen­
dent identica.lly distributed random variables. 

a. Asymptotic form of the Pareto law. Because 
the tails of stable di stributions follow a weak or 
asymptotic form ,of the Pareto law, then 

1-F(x) ~ c1 x-0
, for x ~ ... (4-52) 

and 

F(x) + c
2 

lxl-0 
, for x ~ _.., , (4- 53) 

with x the random variable, and c1 and c2 con­
stants. This implies that if ln(l-F(x)] is ~lotted 
against lnx for the right tail, or ln[F(x)] is 
plotted against ln(-x) for the left tail, there­
sulting curve should be asymptotic to a straight line 
with the slope equal to -o, as x approaches 
infinity. 

b. Stability or invariance under addition. The 
distributions of sums of independent , identically dis­
tributed stable variables are themselves stable with 
the same distribution as the individual variables. 
The logarithm of the characteristic function of the 
sum of independent, identically distributed stable 
variables is 

n ln [~x(t)] • i(n6)t - (ny) lt !0 [l+i sm w(t,x)], 
(4-54) 

with n the number of variables in the sum and 
ln[+ (t}] the logarithm of the characteristic func-

x 
tion of individual variables. Equation 4-54 is the 
same as Eq . 4-50, except that the parameters o and 
y are multiplied by n. Except for the origin and 
the scale, the distribution of the sum is exactly the 
same as that of individual variables. Briefly, the 
stability means that the parameters a and B re­
main constants after addition. 

c. Limit distributions. Stability or invarianc~ 
under addition is related to an important corollary 
property of stable distributions, namely, they are the 
only possible limiting distributions for sums of 

I· 



independent , identically distributed random variables. 
If these variables have the finite vari ance, the 
limiting distribution for their sum is a normal dis­
tri bution. If their sum fol lows a limiting distribu­
tion, the limiting distribution must be stable, with 
0 < a s 2. 

In summary, the sum of independent identically 
distributed stable variabl es is also a stable varia­
ble, with the samr. characteristic exponent as the dis­
tribution of the . individual variables. The process of 
taking the sum changes only the scale of the distribu­
tion. To findla constant weight each variable in t he 
sum so that the scale parameter of the distribution of 
the sum is the same as that of the individual vari­
ables, the constant b must satisfy 

(4-55) 

giving 

- l 
b = n a . (4-56) 

This implies that each of the component variables must 
be divided by nl/a. The converse proposition is that 
the scale of the distribution of an unwei ghted sum i s 
nl/a times that of the individual variables. 

For example, the interquartile range (0.75 
fractile to 0.25 fractile) of the distribution of t he 
sum of n independent, identically distributed stable 
variables will be nl/a times that of the individual 
vari ables . This property provides the basis of t he 
spacing of the order statistics approach to the esti­
mation of a . It is not possible to express the 
stable density function in a closed form except fo r 
the cases of a= 1/2, a = 1, (Cauchy), and a = 2, 
(normal). However, Bergstrom, Fama and Roll [10], 
present the expansions series capable of approxi­
mating the stable functions. Since the parameter 
estimations of stable distributions for both the sym­
metric and asymmetric cases are of importance, they 
are discussed below. 

a. Symmetric stable distributions. The 
logarithmic characteristic function of symmetric 
stable distributions is given by setting s = 0 in 
Eq . 4-50 so that 

Consider ing the transformation by 

x-o 
u =--c 

(4-57) 

(4-58) 

1/a with c = y , then for Eq. 4-57 (with the applica-
tion of properties of the characteristic function, u 
is stable with the parameters a , unaffected by the 
transformation, 6 = 0 and y = c = 1), the logarith­
mic characteristic function of the symmetric stable 
variable is 

(4-59) 

Bergstrom presented the series expansions which can be 
used to approximate functions as given by Eq . 4-59. 
For a > 1, his results yield the series 
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For a > l, he also provided a limit series for 
u > 0, namely 

n k 
f(u) = - l L i.:..!..L. r (ok+l) sin (k~u) + R(u) , 

11 k=l k! UO<+l (4-61) 

with t he remainder term 

R(u) = 0 [u-a (n+l)-1] (4-G2) 

Term by term integrations of Eqs. 4-60 and 4-61 yield 
series for the cumulative distribution f unction F(u) 
of u with o > l. Using the cumulative distribution 
function, Fama and Roll [10] tabulated the values of 
this function for twelve different values of a in 
the interval 1 s a s 2. 

With t he help of the tabulated values of F(u}, 
aq estimate of the parameter c can be obtained from 
the sample fractiles. The 0.72 fractile of the sym­
metric stable distribution with a= 0 and c = 1. is 
located at the interval 0.827±0.003 for 1 s a s 2. 
which is a minimum error value of 0.003 among all the 
fractiles [10], given a random sample of size N. 
Therefore, as a special case an estimate of c is 

(4-63) 

with x0_72 and x0_28 referri ng to the (0.72) 
(N+l)-st and (0.28)(N+l)-st order statistics, re­
spectively. To estimate x0_72 and x0_28, the 0.72 
and 0.28 fractiles of the distribution of x are 
used. This estimate has an asymptotic bias less than 
0.4 percent (11]. 

The characteristic exponent a can be estimated 
from the sample by 

• xf-xl-f 0.872 x,-xl-f 
uf = --"Ic = xo.72-x0.28 (4-64) 

with the suggested values for f from 0.92 to 0.99. 
Since x has a symmetric stable distribution with the 
characteristic exponent a , t he scale parameter y = 
ca, and the location 6 , Gf is a~ estimate of the 
f-fractile of the symmetric stable distributions with 
the characteristic exponent o, of the scale parameter 
y = c = l, and the location parameter 6 = 0. There­
fore, an estimate of a can be obtained by searching 
from the tables of F(u) for the value, af' with its 
f-fractile most closely matching u,. Since different 
f values will give different af' Fama and Roll [11] 
suggested using the equation 

(4-65) 

Finally, the location parameter 6 can be estimated 
by the sample mean of x under the condition 1 < a s 
2. 

b. Asymmet ric stable distributions. Press [26] 
proposed a procedure to estimate the parameters a . 



a, 5, and y of the asymmetric stabl e distri butions 
by us ing the method of moments approach on the charac­
teristic function. The procedure is as follows . From 
Eq. 4-50 for al l a 

ln l ~x(t ) l = -y ltl a . (4-66) 

Replacing ¢x(t) by t he sample characteristic 
function, 

_l N itx· 
; x(t) -- L: e 1 (4-67) 

N i=l 

after selecting t he two nonzero values of t (Jike t
1 

a.nd t 2 , with t 1 = t
2

) . For a t- 1 , -y I t
1

1 a = 
- ln l¢x( t 1)1 and y lt 21a = -l n jq,x(t2) 1 . By 
solvi ng these two equations simultaneous ly for a and 
y, then 

a (4-68) 

and 

1 n.Y = 
1 n I t 1 ll n [ - 1 n I$ x ( t 2) I ] -1 n I t 21 [-1 n I ~ x ( t 1 ) I ] 

l n~ :~ ~ (4-69) 

The imaginary part of logarithms of the characteristic 
function of Eq. 4-50 is defined by Z(t) = 
ot-yit ia B w(t ,a ). The nonzero values of t are 
again selected as t

3 
and t

4
, with t

3 
t- t

4
; for 

a ~ and, 

Since 

whici"l 
v:here 

and 

' 1 N 1 
<l>x( x) = N ~ cos t xJ. + i N 

J=l 
in polar coordinates is ~x(t ) 

(4-70) 

N 

L: sin t xJ. 
j=l 
= p(t ) exp [ i e(t)], 

(~ t cos txJ·)
2 

+ (~ t sin t x.) 
2 

, 
J=l J=l J 

t an [e(t)] = c~l sin t xj) I ( j~ cos txj) . 

Hence l n$x(t) = p( t) + i e(t), and 

Z(t) = tan-1 [(j~l sin t xj)/C~ cos t xj)J. 
( 4- 71) 

Replacing Z(tk ) in Eq . 4-70 by its estimated 
value from Eq . 4-71, and sol vi ng the two implied equa­
tions simultaneously for a and o, t he estimates are 
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(4-72) 

and 

. ( 4-73) 

The above estimates are t he consistent estimates , i .e., 
estimates t hat converge to correct as n ... "", since 
both are based on $ (t) , which is a consi stent esti-x 
mate for •x(t). However, t he rate of convergence to 
the population parameters varies depending on the 
selected values of t

1 
t hroug h t

4
. 

The above equations used for estimating 
parameters are applied to the independent stochasti c 
variabl es, but with di f ferent sets of t 1 , t

2
, t

3 
and 

t 4. Thus, t he complete different values of estimates 
for a, y, §, and 6 are obtai ned. Since t he proba­
bility density funct ions of asymmetri c stable distri­
butions are not available , t he optima l choice of t

1
, 

t 2 , t 3 and t 4 is not def ined. 

4-2 Test for Goodness of Fit of Frequency 
Distri butions . 

Several methods can be used for testing the 
goodness of fit of a pr obability di stri but ion fu ncti on 
to frequency distributions. Such methods are the chi­
square test, the likelihood ratio test (whi ch is 
equivalent to chi-square test [35]), and the 
Kolmogorov-Smi rnov distri bution free test. The chi­
square test is selected for this st udy because t hi s 
t est i s wel l known and frequently appl ied both i n 
statistics and hydrology. 

The basi c properti es of t he chi-square test are 
summari zed as follows [20) . The tota l range of sample 
observations is divided into k mutually exclus ive 
and exhaustive cl ass interva l s, each having the ob­
served class probabil i ty Oj and the corresponding 
expected class probability Ej{j = 1,2, . .. ,k). The 

expected value E. i s used as the norm of any class 
interval and the ~uantity (Oj-Ej)2 is used as a mea­
sure of departure from the norm. The (O.-E. )2 val-

J J 
ues cannot be compared from one cl ass to another if 
the scale of each class interval i s not nearly propor­
tional to t he expected value E .. Therefore , a more 
suitabl e measure i s obtained byJusing (O.-E.) 2/E .. 

2 J J J 
The measure of total discrepancy , x , between t he 
observations and the expectations becomes 

(4-74) 



Thi s statistic is asymptotical ly distributed as t he 
chi-square distribution with k-1 degree of freedom 
for the case of population parameters are estimated 
from the sample data, the number of degr.ees of free­
dom is further decreased by the number of estimated 
parameter s. For m parameters, t he total number of 
degrees of freedom is 

f = k-1-m . (4-75) 

The number of class intervals k has to be first 
selected for the application of chi-square test. If 
too many classes are used, the obtained frequency dis­
tribution will be very irregular. If there are too 
few classes, with large portions of frequencies 
fa ll ing in one or two classes , much information is 
lost. Sturges [ 31 ] gives the empirical expression for 
the n~mber of class intervals k as 

k" 1+3.3 lnN , (4-76) 

wi t h ln N the natural l ogarithm of t he sampl e size . 
For N = 14,600, k = 33 for 40 years of daily values. 
For N = 480, k = 22 for 40 years of monthly values . 

Since Eq. 4-75 is empirical , no generally 
accepted method for determi nat ion of the number of 
class intervals exists. The number of class intervals 
selected for this study is 30 , because it is conve­
nient and lies between 22 and 33 for the cases of 
monthl y and daily values, respectively. 

Equal probabil i ty cl ass intervals are used for 
the chi-square test in this study. The probability 
of each class interval is then determined by: 

P j " t , with j = 1 , 2 , ... , k. ( 4-77) 

With these equal probabilities, the corresponding 
lengths of class intervals are obtained from the 
c.d.f. The percentages of the chi-square distribu-
tion with (k-1-m) degrees of freedom at F(x2) = 0.95, 
0.99 and 0.995 are summarized in Table 4-1. 

Table 4-1 PERCENTAGES OF CHI-SQUARE DISTRIBUTION. 

Degrees of Freedom 

F(X2) 
30 29 28 27 26 25 24 23 22 

0.95 43 .8 42.6 41.3 40. 1 38.9 37.7 36.4 35.2 33 .9 

0.99 50.9 49.6 48.3 47 .o 45.6 44.3 43.0 41. 6 40.3 

0.995 53.7 52.3 51.0 49.6 48.3 46.9 45.6 44.2 47.8 

4-3 Confidence Limits to Test for Departures from 
Exponentiality in Frequency Di stributions. 

Ordinarily it i s difficult to select the 
theoretical probability density functions that will 
suitably model the heavy tails and the center parts of 
some frequency distributions of hydrologi c random 
vari abl es. Since the number of observations in t he 
tails of these frequency distributions is usually 
small , the chi-square test may not adequately distin­
~uish the goodness-of-fit for a selected probability 
density function. Because the cumulative probability 
di str i bution functions have values of zero and one at 
the tai l s, the Kolmogorov-Smirnov test also fai l s to 
determine how good this fit is [5]. Failure to find 
the proper t heoretical density function which fits 
the frequency distribution of independent stochastic 
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component in i ts tai l s resul t s in a fa i lure to 
preserve the properties of its extreme values. Conse­
quently, it becomes difficult to generate new samples 
by the Monte Car lo method ~th i ch possess the same or 
similar characteristics of extremes as the hi storical 
sample . 

As reviewed in Chapter 2, Bryson (5] gives the 
definition of heavy-tailed probability distributions 
as distributions that converge to zero much less 
rapidly than an exponential function. Using the mean 
residual l ife time theorem, and the l ikelihood ratio 
approach, he derived the expression for the T-statis­
tic in terms of exponentially distributed random vari­
ables . The expression for the T-statistic may be used 
for the test of hypothesis of how heavy the tails are 
in a distribution from a set of samples of random 
variables , at the given signifi cance l evel . This 
expression is 

T = ____ x_x...J(..:.:N.~...) - -,.....,.., 

.~/·· . :~~/ r . (4-78) 

(N-1) 

with x1 the exponentially distributed random 
variable , x the mean of x

1
, N the sample size . and 

x(N) the largest observed value of x
1 

' s. 

Unfortunately, the distribution of the 
T-statisti cs cannot be fou nd i n an explicit form. The 
10, 5, and 1 percent critical values can be estimated 
only by simulating many T values, and taking the 
90-th , 95-th, and 99-th percentiles of the frequency 
distribution of simulated values of T. Each T 
value is obtai ned by generating N exponenti ally dis­
tributed random variables x1 and substi t ut ing t hem 
into Eq . 4-78. These critical values of percentiles 
cannot be accurate wi thout simulating a large sample 
of T values. Using both a l arge number of T 
values and a large N, this method t hen becomes 
applicable. 

Because of the need for generati ng large samples, 
a simpler method of testing the heavy tails was ob­
tained by Tao [ 33] by deriving the tolerance limits 
for the tail from an exponential funct ion . 

The exponential cumulative distribution function 
(c.d.f.) is of the form 

(4-79) 

Plotting 1-Fe(x) against x on a semi -logarithmic 
paper produces a stra ight li ne from the origin with 
the slope - >.. For a heavy-tailed c .d .f., the same 
plotting technique will not show the linearity; 
instead, the curve will be concave up~tard. In the 
opposite case, for the light-tailed c.d.f., the 
plotted graph wi ll be concave downward. These tails 
are il l ustrated in Fi g. 4-l, wi t h the light-tailed 
distribution in the case of normal c.d.f., heavy­
tailed distribution in the class of stable c .d.f., 
and the tail of the exponential c.d.f. 

The tolerance limits for the tail of an emp iri cal 
frequency distribution are derived as follows: assume 
the empirical distribution denoted as F>. (x) is 
exponential with the scale parameter ~ . then the 
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Fig. 4-2 Graphical representation of distributions 
with different types of tails: (1) standard 
normal c.d.f., light tail; (2) symmetrical 
stable c.d.f., with a = 1.5, y = 0.5, and 
6 = 0, heavy tails; (3) exponential c.d.f., 
F(x) = 1 -te-l. 155x; and (4) 90 percent 
tolerance limits for the exponential tail in 
case of sample size 500. 

relationship between ln[1-FA(x)) and x is linear, 
t he probabili ty P that ln[l-FA(x)] is wi thin cer­
tain 1 imits is 

P = Pr { e1 (x) :: ln[l-FA (x)] :: e2(x}} , (4-80) 

with e1 and e2 the functions of x and the lower 
and the upper tolerance limits, respectively. Sub­
stituting Eq. 4-79 into Eq. 4-80 for FA(x) andre-
arranging , 

[
-e1(x) -e2(x) ] 

P = Pr - -x- ~ A ~ - -x- ( 4-81) 

with x > 0. The parameter A is estimated from the 
random variables xi with sample size N by 

i = 1 
1 N 
N i~ X; 

(4-82) 

Substituting Eq . 4-82 into Eq. 4-81 and rearrangi ng 
it, 
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p = Pr r~ < t Xi !: e2·(xx) ] . 81 (x) - 1=1 
(4-83) 

With the estimate ~ and the random variable x1 , the 
probabil ity P of Eq. 4-83 is equal to or smaller 
than 1. If x. is exponential ly distributed, 
N 1 

I x. has a gamma distribution with the shape param­
i • 1 1 

eter N and the scale parameter ~- For a large 
shape parameter. the gamma distribution converges to 
a normal distribution with the mean N/i , and the 
variance N/A2 [24). The application to Eq. 4-83 at 
the 90 percent tolerance level results in 

P=0.90 = Pr -::-r:7\s :L; x.s--
[ 

Nx N -Nx ] 
e1,x, i=l 1 62(x) 

[ N ~ N N #' J = Pr .,._ 1.645 :-2 ~ ~::Xi ~-;;-+ 1.645 72 . 
A A 1=1 A A 

(4-84) 

After rearranging, the tolerance limits for 
ln(l-Fe(x)] at 90 percent level become, for the lower 
and upper limits are 

( ) · AX ( ) e1 x = 
1 

_ 1. 645 , and e2 x 

IN 

-AX 
+ 1.645 , 

IN (4-85) 

where A is estimated by Eq. 4-82 and N is the 
sample size. 

With these tolerance limits for the exponential 
tail and a given significance level, the test of the 
hypothesis that the probability distribution of a 
variable has the heavy tail can then be made. 
Fig. 4-l gives three types of tails: for the standard 
normal c.d . f ., curve (1); for the symmetric stable 
c.d.f., curve (2); and the exponential c.d.f., 
curve (3). Curve (4) gi ves the tolerance limits for 
the exponential tail at the 90 percent l evel, and the 
sample N = 500. To make the tails comparable, two 
conditions are designed for c.d.f . 's: 

a. All three c.d.f. 's should satisfy F(O) = 0.5 
and F(m) = l; and 

b. Since the variance of the stable distribution 
does not exist, it is not possible to compare these 
three c.d.f. ' s with equal variance. Therefore, all 
three c.d.f. 's should intersect at an arbitrarily 
selected point, like the 85 percent percentile. For 
the first condition, the exponential c.d.f. shoul d be 
i n the fo rm of Fe(x) = 1 - t e·AX. For the second 
condition, the scale parameter of the exponential 
c.d.f. should be A K 1.155, whil e the parameters of 
the symmetric stable c.d.f. should be: location. 
6 = O; scale , y = 1/2, (note that for standard normal 
function, a= 2, 6 • 0 and y = 0.5) , and the charac­
teristic exponent a equal approximately 1.5. 

With the above conditions for plotting the c .d.f., 
Fig . 4-1 shows that the tail of the normal function 
converges to zero much faster and is significantly 
higher than that of the exponential function for 
x ~ 1.2. The tail of the stable function is much 
heavier than that of exponential function, for x ~ 
2.8 . The tolerance limits are rather narrow because 



e
1

(x) and e2lxl are estimated under the assumption 

that the random variable x are exponentially dis­
tributed and e1(x) and e2(x) are good for every x 
but not simultaneously for all x. It is easy to use 
the tolerance limits e1(x) and e2(x), derived for 
the exponential tail, to test the empirical tail dis­
tribution of the independent stochastic variables in 
order to show how rapidly this tail converges to zero 
in comparison with the corresponding exponential tail. 

4-4 Use of Gnedenko's F-Criterion Statistic to Test 
the Nature of the Tails of Frequency 
Distributions. 

The generalized exponential cumulative 
distribution function is of the form 

F(x) = l - e for x > a ~ 
->.(x-a) 

0 for x s a (4-86) 

Here, >. and a are constants. The hypothesis 
that a sample of data is part of an exponential popu­
lation against an alternative hypothesis that A is 
not a constant but a function of x could be tested 
using the F-criterion test suggested by Gnedenko [13]. 

If X; , i = 1,2, ... ,n, form an ordered sample of 
data, with x1 as the lowest, a new variable Si may 
be defined as 

S. = (n-i+l)(x.-x. 1), x
0 

= 0, i = 1,2, ... ,n. 
1 1 1-

After dividing the Si into two groups of length 
r and n-r, the following random variable, known as 
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Gnedenko's statistic, is obtained: 

r n 
Q(r,n-r) = L (S./r)/ L: (S./(n-r)). 

i=l 1 i=r+l 1 
(4-87) 

This statistic has the F-distribution with 2r 
and 2(n-r) degrees of freedom under the null hypo­
thesis, H

0
, which is that x is exponentially distri-

buted. This means that, if a is the level of 
significance, 

Q(r,n-r) < f(l-a/2)(r,n-r) 

and 

Q(r,n-r)-l < f(l-a/2)(n-r,r) 

(4-88) 

(4-89) 

The alternative hypothesis is that A is either an 
increasing or a decreasing function of x. 

If either constraint does not hold the null 
hypothesis is rejected at the level of significance a 
and the given division of the sample into segments of 
length r and n-r. I t is obvious that in every case 
at least one constraint is satisfied. If constraint 
of Eq. 4-88 does not hold, one concludes that A is a 
decreasing function of x and that the tail is light. 
On the other hand if Eq. 4-89 does not hold the con­
clusion is that A is an increasing function of x 
and that the tail is heavy. In the terminology of 
failure rates [Fercho and Ringer, 13], the first of 
these nonconforming conditions signify that the 
failure rate decreases and the second that the failure 
rate increases. The null hypothesis corresponds to a 
constant failure rate. 



Chapter 5 
EMPIRICAL RESULTS AND THEIR DISCUSSION 

Seventeen daily runoff series are used as the 
basic research data in this study. Patterns of these 
runoff series vary depending on the geographic loca­
tion and climatic conditions of the river basin. 
Figures 5-l and 5-2 show two selected years of daily 
flows, the daily flow means and daily flow standard 
deviations for the Tiogi ii:'ld Boise Rivers. It is 
obvious from the curves of the Tioga River that hi ghly 
fluctuating runoff series result in highly fluctuating 
daily means and daily standard deviations. The 
smoother daily runoff series of the Boise River result 
in smoother daily means and standard deviation curves. 
This pattern should be expected taking into account 
the sampling variations. 

Removal of periodicities from the daily means 
and dai ly standard deviatfons, followed by removing 
the· dependence from t he remaining series , produce the 
independent stochastic component. Frequency distri­
butions of independent stochastic variables of the 
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daily runoff series are of interest in this study. 
Frequency distributions of these seventeen daily 
series are plotted in Fig. 5-3. A general pattern 
of these curves is that the peaks are high and sharp 
at the center while the tails are long. Daily runoff 
series and the 3-day, 7-day, 13-day and monthly 
average runoff series are processed by using the same 
technique. 

5- l Procedure Used in Producing the Independent 
Stochastic Components and Their Properties. 

The procedure used. The procedure and equations 
used to obtain the independent stochastic components 
from the observed series are summarized in the form of 
the flow chart. 

The independent stochastic component obtained by 
the above procedure is denoted as the ~-variable. . 
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Fig . 5-l (1) Daily flow series for the dry year, 1926; (2) daily flow series for the wet year , 1929; 
(3) daily means; (4) daily standard deviations , with (a) the computed values, and (b) the 
fitted periodic function, for the Tioga River (1921-1960). 
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Fig. 5-2 (l) Daily flow series for the year 1926; (2) daily flow series for the year 1933; (3) daily means, 
(4) daily standard deviations, with (a) the computed values, and (b) the fitted periodic function, 
for the Boise River (1921-1960) . 
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!ll Tioga River 
2 Oconto River 
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8 Grcenbri er River 
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!16j Bitten Kill River 
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Fig. 5-3 Frequency distributions of daily independent stochastic components for 120 equal size class intervals 
(ordinates of curves are the absolute frequencies). 

STEP 1 

STEP 2 

STEP 3 

Prepare the series 
t=l ,2, ... ,w. 

Qp ' p , t 
1,2, ... ,n, 

Compute means Q , standard deviations 
t 

s
1

, by Eqs. 3-2 and 3-3. 

Substitute Q series into Eq. 3-6, and 
t 

compute the first six harmonics; determine 
the significant harmonics by using the 
empirical test method; compute the 
periodic component i n Q by using 

T 

Eq. 3-15. Apply the same procedure to 
s series. 

t 

STEP 4 

STEP 5 

STEP 6 

STEP 7 
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Use Eq. 3- 17 to remove periodicities in 
the mean and standard deviation . 

Use Eq. 3-18 to standardize the remaining 
series of Eq. 3-17. 

Compute serial correlation coefficients 
rl,t' r 2,t and r 3,t by Eq. 3-36. 

Apply the 
r 2 , and •r 
procedure 

harmonic analysis to r1 , 
, T 

r 3 series, following the 
,t 

of STEP 3. 



STEP 8 

STEP 9 

STEP 10 

Compute the determination coefficients 
o1, o2, and 03 by Eqs. 3-37 through 
3-39, and determine the order of the 
autoregressive linear model. 

Estimate the parameters of the 
autoregressive linear model by using 
Eqs. 3-27 through 3-35. 

Compute the independent stochastic 
component by using Eq. 3-25. 

In case the logarithmic transformation is used in the 
form of: 

Y~.~ = ln (yp ,t - y) (5-1) 

with yp obtained in STEP 4, and y the lower 
, T 

boundary of yp , a new STEP 4a is included with all 
, T 

other steps remaining unchanged. The independent sto­
chastic component obtained by the logarithmic trans­
formation of Eq. 5-1 is denoted as the t -variable. 
Since there are no negative observations in · Q , it p,t 
follows that min(Qp ) = 0. Consequently , 

, T 

This transformation is approximately equivalent to 
substituting the autoregressive linear model of 
Eq. 3-25 by a dependence model of the form 

In the application of the logarithmic transformation 
to Q in STEP 1, for Q > 0, Q in STEP 1 is 

p,~ p.~ p,t 
replaced by ln(QP ). For QP = 0, any small value 

,L tT 
such as 0.01, 0.001, or 0.0001 may be assigned to 
Q in order to permit the logarithmic transforma-
p,~ 

tion, all other steps remaining unchanged. By this 
approach the resulting independent stochastic compo­
nent is denoted as the n-variable. 

Characteristics of independent stochastic 
components of seventeen daily flow series. The basic 
stat istical characteristics of the t . ~. and n 
variables of the selected daily flow series, each with 
approximately 40 years of data, are given i n 
Tables 5-l through 5-3, respectively. 

Since the independent stochastic components are 
derived from the standardized dependent stochastic 
variables, t , as demonstrated by STEP 5, the mean 

p.~ 

and the variance of these independent stochastic com­
ponents should be zero and one , respectively. Tables 
5-1 through 5-3 show that the means of t. c. and n 
variables for all 17 daily runoff series are 
practically zero. However, the varia·nces of the 
~-variable are closest to unity. In addition, the 

n-variable has the smallest skewness and kurtosis 
coefficients, and the absolute values of extremes. 
The t -variable has the largest parameters. 

When the standard deviation is proportional to 
the mean, t he use of logarithmically transformed vari­
ables leads to the more consistent results for the 
independent stochastic component than the use of the 
original variables, because the transformed variable 
has a constant standard deviation over the t posi­
tions. Although the application of logarithmic trans­
formation does not convert the standard deviations to 
constant s for all the 17 daily runoff series, this 
transformation still produces a substantial improve­
ment. In addition, the logarithmic transformation has 
the advantage of not generating negative values when 
the new samples are generated. 

The correlogram of independent stochastic 
components of 17 daily flow series up to 200 lags are 
given in Fig . 5-4. In order to test the independence 
of these variables, the tolerance limits of r1, given 
by Anderson and computed by using Eq. 3-40, and 

~ -0.1629 and +0.01615 for samples of 40 years, at the 
95 percent significance level. With the same sample 
size and the same significance level , the tolerance 
limits of rk' given by Siddiqui, are computed by 
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using Eq. 3-44. These results are practically the 
same as the Anderson's. The tolerance limits of the 
Fisher's z-transformation of rk' computed by Eq. 3-46 
ar~ ±0.01622. 

The tolerance intervals of these three tests were 
found to be too narrow for practical use. Since rk 
is asymptotically normally distributed with mean and 
variance given by Eqs. 3-42 and 3-43, respectively, an 
al ternative test of rk may be formulated by testing 
the frequency distribution of rk. If the hypothesis 
that the frequency distribution of rk is normal with 
the mean and variance given by Eqs. 3-42 and 3-43 is 
accepted , then the hypothesis of the independence of 
the tested stochastic component is also accepted. 

The chi-square statistic may be used to test the 
goodness-of-fit of the theoretical r.ormal function to 
the frequency distribution of rk. Three st~tions 
passed this test at 99 percent significance level (the 
Tioga , Mckenzie, and Falls Creek Rivers) and two sta­
tions passed this test at 99.5 percent significance 
level (the St. Maries, and Merced Rivers). If this 
test is applied to the theoretical normal function 
for fitting the z-transform of rk' five stations 
passed the test at 99 percent significance level (the 
Tioga, Mckenzie, Falls Creek, Greenbrier, and Powell 
Rivers) and three stations passed the test at 
99.5 percent significance level (the St. Maries, 
Cowpasture, and Merced Rivers). 

The models for the periodic-deterministic 
components. The three main sources of stream runoff 
are groundwater effluence, rainfall, and snowmelt. In 
areas where runoff is produced predominately by rain­
fall, the runoff is highly irregular because of 
randomness in rainfall. On the other hand, when the 
groundwater or snowmelt have large influences on run­
off, the runoff is more regular because of the water 
storage of these two factors. 

The daily runoff series of the Tioga River is 
used as an example to demonstrate the above points. 



Table 5-1 BASIC CHARACTERISTlCS OF THE DAILY ~-VARIABLE FOR SEVENTEEN RUNOFF STATIONS IN USA. 

Skewness Kurtosis Observed Second Min. (t) Observed Second Max. (~;) 
River Mean Variance Coefficient Coefficient Min. (() Observed Max. {t) Observed 

Tioga -0.00005 1.0000 12.47 292.10 -13 .32 -10.22 32.45 30.42 
2 Oconto 0.00013 0.9999 36.63 4130.09 -46.10 -26 .37 86.18 14.33 
3 Current -0.00003 1. 0000 29.15 2329.47 -36.53 - 7.67 74.48 20.71 
4 Mckenzie -0.00013 1.0000 4.96 203.57 -29.38 -12.66 31.33 19.58 
5 Neches 0.00005 0.9999 5.53 322.69 -32.62 -17.73 36.26 23.18 
6 Boise -0.00021 1.0000 3.82 210.34 -25.65 -18.53 30.25 26.78 
7 Fall Creek -0.00001 1.0000 5.89 196.08 -17.39 -14.22 35.93 16.37 
8 Greenbrier -0.00001 1.0000 8.26 156.35 -18.41 - 7.33 32.04 19.15 
9 Delaware -0.00001 1.0000 8.10 115.59 -10.55 - 9.94 20.23 17.69 

10 Madison -0.00009 1. 0000 0.43 160.40 -28.64 -21.04 27.23 19.50 
11 Powell 0.00007 1. 0000 4.68 80.32 -17.72 -1 0.20 20.53 18.18 
12 St. Maries 0.00000 1. 0000 47.62 4490.51 -34.83 -16.30 88.16 21.23 
13 Cow~asture -0.00001 1.0000 8.66 140.80 -10.27 - 9. 75 26.45 20.16 
14 Mad -0.00003 1.0000 8.47 149.67 -12. 91 -10.10 28.12 24.02 
15 Merced 0.00000 1.0000 21.31 555.57 -14.15 - 2.43 38.29 31.76 
16 Batten Ki 11 0.00004 1.0000 18.26 772.26 -21.66 -11.32 49.77 42.73 
17 Jum~ -0.00000 1. 0000 10.44 211.37 -11.24 - 9.86 29.70 23.04 

Table 5-2 BASIC CHARACTERISTICS OF THE DAILY ~-VARIABLE FOR SEVENTEEN RUNOFF STATIONS IN USA. 

Skewness Kurtosis Observed Second Observed Second 
River Mean Variance Coeff. 

1 Tioqa -0.0022 1.340 1.51 
2 Octonto 0.0004 1.087 0.96 
3 Current -0.0007 1.578 -0.01 
4 Mckenzie -0.0005 1.240 0.92 
5 Neches 0.0003 1.094 1.45 
6 Bohe -0.0005 1.189 0.36 
7 Falls Creek -0.0013 1 .457 1.97 
8 Greenbr ier 0.0089 1.354 1.78 
9 Delaware -0.0039 1 .336 1.16 

10 Madison -0 .0003 l.ll4 0.41 
11 Powell 0.0058 1.401 0.67 
12 St. Maries 0.0019 1.142 1.46 
13 Cowoasture 0.0048 1.550 1.06 
14 Mad -0.0018 1.279 2.03 
15 Merced -0.0000 1.357 -1.51 
16 Batten Kill -0.0013 1.1 66 1.85 
17 Jumo 0.0053 1.476 0.93 

In Fig. 5-1 the daily series of two typical years, 
dry and wet, (1) and (2), are given together with the 
365 daily means, (3), and the 365 daily standard devia­
tions, (4). Periodic functions used for daily means 
and standard deviations are the deterministic periodic 
components of the series. Because of large variations 
in the runoff process, daily means and its inferred 
periodic function depart significantly from the series 
of individual years. Under this high fluctuation, the 

Coeff. Min. (d Min. ( r; ) Max. (r;) Max. (t) 
Observed Observed 

49.99 -5.67 -5.62 26.8 8 .93 
T4.03 -5.20 -5. 17 10.0 12.84 
45.24 -7.76 -7.69 17.8 11.08 
20.75 -5.95 -5.90 14.7 12.09 
13.19 -4 .33 - 4.31 8.3 7.91 
35.14 -4.98 -4 .96 18.9 11.86 
61 .32 -6.65 -6.61 30.4 14.39 

19.93 -4.94 -4.93 16.4 11 .62 
28.92 -6.59 -6.48 12.8 11 .56 
15.57 -5.30 -5.27 11.6 10.93 
21 .26 -6.00 -5 .94 13.4 12.06 
15.00 -4.83 -4 .79 11.2 8.52 
23.25 -6.67 -6.61 15.3 12.82 . 

28.87 -5.70 -5.64 17.7 11 .93 
56.19 -5.81 -5.74 14.6 12.22 
15.69 -4.11 -4.07 13.5 11.39 
33.48 -6.41 -6.35 17.4 17.08 

estimated periodic function of parameters must deviate 
highly from the true population periodic component. 
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The opposite example is the daily flow series of 
the Boise River. The dai ly series of two years, and 
daily means and standard deviations are shown in 
Fig. 5-2. Fluctuations are much less than for the 
Tioga River. The daily flow series of individual 
years of the Boise River have similar general patterns 



Table 5-3 BASIC CHARACTERISTICS OF THE DAILY n-VARIABLE FOR SEVENTEEN RUNOFF STATIONS IN USA. 

Skewness Kurtosis Observed Second Observed Second 
River Mean Variance Coeff. Coeff. Min . ( n) Min. (n) Max. (n) Max. (n) 

Observed Observed 
1 Tioga -0 .2011 1.104 2.09 13.74 -5.75 -5.69 15.22 7.26 
2 Oconto 0.0003 1.066 0.83 11.92 -7.56 -6.82 7.49 11.92 
3 Current -0.0001 1.214 1.47 19.32 -12.25 -8.75 14.42 8. 71 
4 Mckenzie -0.0006 1.150 1.11 14.11 -8.46 -7.63 10.84 8.71 
5 Neches -0.0000 1.068 1.43 10.40 -6.77 -6.11 6.59 6.45 
6 Boise -0.0008 1.080 0.74 11.19 -9.05 -8.78 8.62 7.58 
7 Fall Creek 0.0006 1.072 0.92 10.14 -7.32 -6.99 7.00 6.76 
8 Greenbrier 0.0057 1.113 1.67 9.50 -6.53 -5.53 7.27 6.52 
9 Delaware 0.0000 1.080 1.30 10.76 -6.87 -6.21 6.74 6.63 

10 Madison -0.0009 1 .092 0.30 13.69 -12.59 -10.66 8.69 8.24 
11 Powell 0.0041 1.146 1.3B 10.54 -7.8B -6 .23 13.12 7.88 
12 St. Maries 0.0005 1.078 1.38 11.28 -7.37 -5.79 11.21 8.11 
13 Cowpasture -0.0020 1.138 1 .66 13.08 - 11 .74 9.86 7.45 7.17 

14 Mad -0.0004 1.100 1 .52 18.66 -17.32 -6.85 10.58 8.37 
15 Merced 0.0000 1.110 0.63 12.63 -9.85 -8. 62 8.26 7.65 
16 Batten Kill -0.0009 1.077 1.86 9.15 -4.81 -4.34 7.55 7.01 
17 Jump -0.0003 1.072 1.29 9.20 -6.53 -6.22 7.01 6.86 
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Fig. 5-4 Correlograms of the n-variable of daily runoff series (to continue). 
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Fig. 5-4 Correlograms of the 

as the means and standard deviations. The periodic 
mean and standard deviation are, therefore, subject to 
smaller sampling errors than for the Tioga River. 

5-2 Periodicities in Serial Correlation Coefficients. 

The serial correlation coefficients, rk , with 
>t 

k s 1, 2, and 3, computed by Eq. 3-36 are independent 
of the removal of periodicities in the mean and stan­
dard deviation from the original variable, Q . p,T 
These coefficients indicate the correlation between 
the r-th and the {t +k)-th values for the available 
sample series. The periodicity may exist i n rk,t " 
Figure 5-5 shows periodicities in the 13-day, 7-day, 
and 3-day values of r1 . However, r1 of daily 

, T ,"t 

series has a high fluctuation so that the periodicity 
must be inferred by an objective test, and not con­
cluded by a vi sual inspection. Figures 5-6 and 5-7 
show the r2 and r3 series, for the Tioga River, 

, T , t 

respecti vely, and Figs. 5-8 through 5-10 the rl,k' 
r 2,k and r3,k series for the Neches River. 

The fluctuations of a dai ly runoff series is 
somewhat decreased by averaging the flows of ot con­
secutive days. This may be the reason why the period­
icity in the serial correlation coefficient becomes 
more obvious for larger values of ot. 

For a better insight into the periodic parameters, 
the cumulative periodograms of rk are plotted in 

t T 
Fig. 5-11 for the daily runoff series of 17 stations. 
Figure 5-11 shows the sums of explained variance of 
the first m harmonics versus m for r 1 , r 2 , 't' , T 

n-variable of daily runoff series. 
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and r3 , with m the sequential index of harmonics. 
, T 

The frequency of the m- th harmonic is m/w, and for 
the daily series, w = 365. The shape of P = f (m) is 
convex upward as shown for all 51 curves plotted in 
Fig. 5-11. A sudden rise of the cumulative periodo­
gram of rk , for a few harmonics with lowest fre-, r 
quencies i ndi cates periodicities in autocorrelation 
coefficients. In the application of empirical tests 
to determine the significant harmonics in rk , 

,t 

k = 1,2,3, the critical value, ?min = 0.071, as gi ven 
by Eq . 3-12, wi th c = 2, a = 0.033, and n = 40. 
Only three stations show the sum of the explained 
variances in r1 by the first six harmonics to be 

,T 

smaller than the critica l value Pmin: the Oconto (2), 

Neches (5), and Mad (14) Rivers. In general, the 
rivers with the runoff predominately produced by rain­
fall demonstrate less periodicity in serial correla­
tion coefficients than rivers with runoff produced by 
both rainfall and snow accumulati on and melt. 

The P f(m) curves for r1 , T 
are below the 

curves for r2 , T 
is below that for 

and r3 while the curve for r 2 ,T, , T 
r
3 

. These are the general pat­
,t 

terns for all 17 daily series. One of the reasons for 
this pattern may be that the autocorrelation of suc-
cessive values (c and t +l) is affected by more p,T p, r 
sampling variation than the autocorrelation for the 
lags 2 and 3 (e and t p +Z; t p and t +3). p,T tT ,T p,T 

For the daily series of the Tioga River, the 
total explained variance of the first six harmoni cs of 
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Fig. 5- 11 Explained variances, P, by m harmonics in 
transformed 17 daily flow series , with m 

r1 ,, ' r 2,,, and r3,, , of the logarithmical ly 
ranging from 1 to 182. 

r1,,, as shown in Fig. 5-5 , is about 12 percent, which 

is greater than Pmin 7.1 percent. 

these means replace rk,, of Eqs. 3-27 through 3-35, 
the constant values of ak should also be used to 
replace the peri odic autoregressive coefficients ak , It seems desirable to use the mean daily values 

of r1, , because of its high fluctuation over 365 
values of •· Figure 5-11 shows for most cases that 
the first six harmonics explain only a small portion 
of variances of r1 , r2 and r3 . Hence , the 

,T ,T ,1" 

use of mean values (r1, r2, r 3) is j ustified. If 
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,1 

and the constant value of o~ should also be used to 
replace the periodic standard deviation ot ,•· 

The effect of using the constant autoregressive 
coefficients may be tested by finding whether they 
stil l yield satisfactory results in removing the 



dependence from stochastic variables, £ However, p,T 
a. is highly sensitive to variations in rk . 

C;. , T , T 

Taki ng the Tioga River as an example, the first-order 
autoregressive linear model is found appropriate to 
describe the dependence of the stochastic component 
wi th the maximum and minimum of r1 for the fitted 

>t 
periodic function are approximately 0.95 and 0.85, 
with the mean of 0.90. For the values 0.85, 0.90, and 
0.95 of r1 , the oc values of Eq. 3-28 are 0.316, 

, T ; , t 
0.447, and 0.530, respectively. For 365 values of 
r 1 approximated by its mean value, the error in 

,T 
oc is greater than !20 percent . Thi s error may . ,r 
affect significantly the computation of the indepen­
dent stochastic component by Eq. 3-25. 

5-3 Tolerance Limit Test of Tails of Freguency 
Distributions of Independent Stochastic 
Component s . 

The basic hypothesis in this text is that both 
tails are well approximated by simple exponential 
functions . Then the tails plot as straight lines in 
graphs with semilo9arithmic scales. Instead of using 
the semilog graph paper for the independent s tochas­
tic t -component, ordinary graph paper can be used for 
the logarithmi c transformation of the original var i­
abl e xp, ~ ' with the resu lting independent stochastic 
n-component, as described i n t he previous t ext. When 
testing the tails of distributions of the ~- and 
n-variables, both cases should lead to the same infer­
ence for a par t icular series except that differences 
may originate from the estimates of coefficients of 
harmonics of periodic parameters because of the usc of 
xp and log xp , respectively. However, t he 

, 1 , r 
eff ects of differences in estimates by us ing xp on 

,T 
t he fi nal conclusions for t he tails should be negli­
gible. Therefore , the two approaches are applied in 
this study: (i) the tests of tails to be exponential 
by using the tolerance limits for the n-component , and 
(i i ) the tests by the Gnedenko statistic for tails to 
be exponential for the r,-component. The first ap­
proach is the subject of this section, and t he second 
approach i s t he subject of t he next secti on of t his 
chapter. 

Since either the ri ght or the left tail of 
probability distributions of independent stochastic 
components is of interest, only the par ts of tails 
with large absolute values are tested to determine if 
the tails are heave or not. The procedure for testing 
the right tail to be exponential is as follows: 

i . The largest 500 values of the ~-component of 
daily series are selected (approximately 3.5 percent 
of the total sample); 

ii. The mean and the lower boundary of n are 
500 

estimat ed by n =I n. and n • min(n.l . 
respectively; i= l 1 0 

1 

111. Use of Eq. 4-85, wi th X estimated by A= 
1/(Ti - n

0
), and o1(n) and e2(n) computed as the 

90 percent tolerance limits for the tails of the 
exponential function; 

iv. The 500 extreme values are sort ed into 30 
class intervals of equal length , with the relative 
frequenci es of these intervals denoted by 0 , 

n 

·- -
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k = 1 ,2, ... ,30, and their class marks denoted by 
nk' k = 1 ,2, . .. ,30; and 

v. The tail distribution, based on t he n; 
values, is tested only by usi ng these large nk 

k 
values; for &l (.,k) s ln[l- .l. 0 .] s ez( nk), the dis-

J=l J k 
tribution has an exponential tail; for ln[l - L 0.] ~ 

j:l J 
e2( nk) the distribution has a heavy tail ; and for 

k 
e1(nkl 2 ln[l - I o.J t he distribution has a light 

j =1 J ta i 1 . 

The same procedure is applied to investigate the left 
tail by using the smallest 500 values ef n, selected 
from the entire sample. 

As noted before , t his is a test of the hypothesis 
t hat the ni ' s are exponenti al ly di stributed, wi th 
t he shape parameter A= 1/(~-n ). The confidence 

0 
limits a1 and a2 depend on n and A, with A 

estimated by using only the ni values . Therefore, 
the confioence limits are subject to sampling errors 
in ni. 

The graphical representat ion of resul ts of this 
i nvestigation for the 17 dai ly series of n are shown 
in Fig. 5-12. The basic results, are: 

1. For the right-tail test of the n-frequency 
distributions of 17 stations, nine fall clearly into 
the exponential tail category, while eight cross the 
lower limit i nto the light-tail region . For the right 
tai l s which fa l l into the exponential tail category, 
only t he right tails of the Madi son and Merced Rivers 
(10, 15) close ly fol l ow the upper confidence limit . 

2. For the left-tail test , the tails tend to be 
close to the confidence limit at the heavy tail side . 
Only the Tioga, Current , and Boise River (1, 3, 6) 
show the left tails clearly crossing the upper confi­
dence limit into the heavy tail region , but for a 
1 imi ted range. 

3. There i s suff icient evidence in Fig. 5-12 
to conclude that the frequency distribut i ons of the 
independent stochastic components posses5 the exponen­
tial tails. 

4. The left tails are shorter than the ri yht 
tails. Therefore, the left tails seem to be heavier 
and the ri ght tails l ighter. This fact may be ex­
pl ai ned as fol lows: (i) Theoretical ly, there is 
always a l 01~er boundary for the stochast i c component 
of a runoff series whereas the higher l imit is un­
bounded, and (ii) The positive extreme values of sto­
chastic components result f rom floods and the negative 
values result frow low flows. The variation of floods 
is greater than of low flows. 

5-4 Jest s by Using the Gnedenko Stati stic for th~ 
Ta il s of the ( -Freguency D i ~tri butions. 

The relationship [ 1-F( ~ ) ] against [ ( -a] of 
Eq. 4-86 is approximately linear, for (> a, when 
plotted on semilogari thmic paper, if the distribution 
F(( ) of the independent stochastic component is ex­
ponential. Therefore, in the first instance, it was 
decided to regraph the ~umulative distr1bution of 
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Fig. 5-12 Test of t he left and right tail of the independent stochastic n-components: dotted l ine , t he tails 
of the frequency distributions; solid lines, the 90 percent confidence limits; with n the abscissa 
and F(n) the ordinates of the left tail, and 1-F(n) the ordi nates of the ri ght tail (to continue). 

tails of the frequency distribution of standardized, 
Independent stochastic components of the 17 daily 
series with more details than in Section 5-3 with the 
11-component. 

Three uncertainties are involved in tests based 
on the Gnedenko statistic. The first is related to 
the part icular application of this paper. It results 
from the choice of n, the length of sampl e or, in 
other words , the selected value a at whi ch the tail 
ht>cJins. In an attempt to resolve this uncertainty, 
the standardized independent (-variable of each series 
wn\ divided into six unequal class intervals (a total 
ut 102 i ntervals for the 17 series). Contributions 
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by values in each class interval to the total 
coefficients of skewness and kurtosis of the data are 
tabulated for all class intervals and all series. The 
abridged results are given in Table 5-4. Within a 
certain range of values of st andardized variabl es, 
such as between -5.5 and 5.5, it is seen that, if 
somehow the values beyond these t wo limits did not 
exist, the distribution would be nearly normal for 
almost all 17 series. Admittedly, the truncated data 
for the range - 5.5 to +5.5 may conform with some other 
type of symmetr ical distributions, such as Pearson ' s 
Type IV, Johnson's Su , [Pearson, 25]. However , with 
these range limits, leavi ng on the left tail about 
0.1 percent and on t he right tail about 1.0 percent 
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of the t otal of about 14,000 dai ly ( -values, i t was 
thought that a study of the 0.1 and 1 percent par ts 
should form an important basis for t he investigation. 
In addition, because t his choi ce of limits is too re­
strictive, extended tails formed from 5 percent of the 
val ues were also investigated . 

The second uncertainty comes from the division 
of the sample i nto groups of l ength r and n-r , 
which is arbitrary. However, if large values of r 
say equal to n-1 or n-2 are chosen, the Gnedenko 
statistic may have a large dependP.>~ce on observations 
at the ext1·emity [Bryson, 5]. Accordingly, it was de­
cided to examine va 1 ues of Q( 1 ,n-1), Q( 2 .,n-2) and 
reciprocals of the same. Nevertheless, in the program 
r was decreased in steps of 1 from n- 1 to n-16, 
wi t h limitations according to sampl e length, but the 
results of t he tests were not significantly different. 

Thirdly, one has to choose a level of 
si gni ficance a. For this two-sided test for exponen­
tiality in distribution, 95 percent confidence limits 
or ~ = 0.025 may be considered . Because the deci­
sion rules given by constraints of Eqs . 4-88 and 4-8g 
depend on the choice of a , va lues of a/2 around 
which the constraints are reversed should be known . 
These are obtained from tables of the F-di stribution 
and are presented in Tables 5-5 and 5-6. Tables cor­
respond to constraints of Eqs. 4-88 and 4-89 , 
respectively. 

As discussed in connection with Fig. 4-2 lig ht 
tail f unctions would be concave downwards and heavy 
tail functions wou ld be concave upwards when [1-F( ~ )] 
is plotted agai nst ~ on semi logarithmic paper. 
Figures 5-13 to 5-18 show t he empirical cumulative 
probability distributions or step functions of the 
data from the tai ls of the freq uency functions of 
standardized independent ~-residuals of daily flow 
data. The curvatures corresponding to t he cases where 
there are significant heavy or light tails as noted in 
the tables are clearly evident i n most of t he cases. 
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From Table 5-6 it is seen that the extreme 
0. 1 percent of the samples do not exhibit any signif­
icance regarding heavy tails. For the stations 2, 3, 
5, 12, 15 and 16, it appears that the tails containing 
1 percent or 5 percent of the total sample are heavy. 
There is sufficie nt reason to suspect that this behav­
ior may arise from errors in the estimates of coeffi ­
cients of harmonics used to form the standardized 
s-residuals. It is noted that in t he time series for 
these 6 st ations the periodicities in the standard 
deviations need 2 to 5 significant harmonics for 
representation. 

In a separate s tudy to be published, problems 
arising from the estimat ion and removal of harmonics 
in the standard deviation are presented. Part of the 
same study is on generated autoregressive processes 
with normally distributed random components and added 
periodici t ies in the mean and standard deviation. 
When the periodicities and linear dependence are esti­
mated and removed, t he independent F.-residual s exh i bit 
often the non-normal behavior particularly with 
respect to the standardized third and fourth moments, 
if the periodicity in the standard deviation is in i­
tially incorporated through two or more harmonics. 
The departure from normality increases with an in­
crease of t he number of these harmonics. Simi l ar dis­
tortions arise in application when the autoregressive 
structure is assumed to be linear but actual ly fl uc­
tuates in a manner related to the periodicity in the 
standard deviation. 

Therefore, as a matter of interest, the tests 
were repeated using a nonparametric analysis, without 
harmonics , for the removal of periodicities . Results 
in Table 5-5 , within brackets, show that the tails are 
now significantly light and not heavy. This apparent 
reversal in the nature of the tails shows the strong 
effects which might arise from harmonics whi ch are 
not ful ly representative. 



Table 5-4 COEFFICIENTS OF KURTOSIS AND SKEWNESS OF THE INDEPENDENT STOCHASTIC ( COMPONENT OF DAILY DATA 
WITH CONTRIBUTIONS FROM VALUES WITHIN DIFFERENT CLASS INTERVALS. 
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It was also thought worthwhile to investigate the 
stability of the tails of the distributions. As noted 
before, the tails of stable distributions follow an 
asymptotic form of the Pareto Law given by Eq. 4-52 

Figures 5-13 to 5-17 were redrawn using the 
logarithmic two-cycle paper. From these, the one per­
cent tail values are presented in Figs. 5-19 and 5-20. 
If one ignores the effect of the last one or two 
values whi ch are outliers and hence subject to high 
sampling bias, the slopes tend to some stable values 
asymptotically with a close to 2. However, on 
account of the finite sample sfzes no useful infer­
ences could be made. 
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Further investigations were made on whether the 
law which represents the three-parameter family of 
Weibull Distributions with its density function given 
by Eq. 5-2, holds instead of a simple exponential law. 
This is given by 

1-F(x) = e-A(x-a)P , (5-3) 

where p is a constant which is equal to 1 in the 
exponential case. If this law holds, a plot of 
[log log l-~(x)] against (x-a) should show a linear 
relationship for x > a provided that A is con­
stant. However, when applied to the tails of distri­
butions, the graphs showed that this law is not 
applicable. 



Table 5-5 SIGNIFICANCE LEVELS a/2 FOR EXPONENTIALITY IN THE DISTRIBUTION OF THE TAILS OF THE INDEPENDENT 
STOCHASTIC C COMPONENT OF DAILY DATA, ON THE SIDE OF LIGHT TAILS. VALUES OF o/2 < 0.025 ARE 

UNDERLINED . RESULTS FROM NONPARAMETRIC ANALYSIS ARE WITHIN BRACKETS. 
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The concl usions which would be reached from the 
results of this part of the study is that, as in t he 
previous section, t here is insufficient evidence to 
indicate that the tails of distributions of the inde­
pendent stochastic component differ from the exponen­
tial type on the side of heavy tails. Distributions 
do not seem to conform with those of the Weibull 
family. 

5-5 Probability Distributions of Independent 
Stochastic Components. 

The seven groups of probability distribution 
functions described in Chapter IV were used in fitting 
the frequency distributions of the independent sto­
chastic components of daily flows. The group of 
stable distributions possesses special characteristics 
different from those of the other six groups. The 
results of application of stable distributions are 
presented and discussed in Section 5-6. 

The goodness-of-fi t of a theoretical p.d.f. to 
the frequency distributions of a set of random vari­
ables is determined by comparing the chi-square value 
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obtai ned by Eq. 4-74 with the critical chi-square 
value for the gi ven significance level. If the chi ­
square value is smaller .. ; .·.·· the critical chi-square 
value, this p.d.f . is accepted. 

The frequency distribution of each set of random 
variables is fitted using all the six p.d.f. groups. 
In applying the chi -square test for goodness-of-fit 
to all the p.d.f . 's, it is desirable to investigate 
several p.d.f. 's. , compare their characteristics and 
then to select one which best fits the empirical 
frequency distribution. The p.d.f. whi ch possesses 
the mi nimum probability of the chi -square statistic 
should be selected as the functi on of best fit t o the 
frequency distribution . Si nce the chi-square proba­
bility density function with given degrees of freedom 
is well defined, the chi - square probability was com­
puted by integrating the chi-square p.d.f ., with the 
lower and upper integration limits being zer o and the 
chi-square value, respectively. 

Based on the chi-square test, the acceptance of 
each p.d . f. used to fit the frequency distributions of 
the independent stochastic components is shown in 
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Fig. 5-17 Empirical distribution, Log (1 -F) versus ~ of the left extreme 5 percent of the distribution of 
independent stochastic components. 

Tables 5-7 through 5-12. The number of times of 
successful and unsuccessful fits are given in these 
tables. If a p.d.f. is applicable for all the 17 sets 
of series, the sum of numbers of successful and unsuc­
cessful shoul d be 17; however, for t he p.d.f. ' s such 
as Pearson's fami ly f unctions, the good fit is deter­
mined only by certain criteria; therefore, the sum of 
the number of successful and unsuccessful fits is less 
than or equal to 17. By examining Tables 5-7 through 
5-12, the resul ts can be summarized as follows: 

1. Lognormal and gamma functions best fit the 
frequency distributions of monthly series. The normal 
function modified by the three- or four-term Hermite 
polynomials also gives a good fit. 

2. For the 13-day series, t he frequency 
distributions of the n-and t -series are fitted well 
by the lognormal, gamma, and normal, modified by 
three- and four-term Hermite polynomials , as shown in 
Tables 5-7 and 5-8. For the c-series, the 
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double-branch gamma and the mixture of Pearson' s Type 
VII and gamma are shown in Table 5-11 to be best 
applicable. 

3. For the 7-day series, t he f requency 
distribut ions of the , _ and ~-series are diff icult 
to fit by any of the p.d.f. studied except the double­
branch gamma and the mixture of Pearson 's Type VII and 
gamma functions, as shown in Tables 5-9 and 5-11. In 
the 1 atter case , the fit is good i n 9 out of 17 ser ies. 
For the frequency distributions of the n-series , the 
lognormal, the normal modifi ed by three- or four-
term Hermite polynomials, and the gamma modified by 
three-term Laguerre polynomials, fit well about one 
third of all 17 cases, while the double-branch gamma 
function fits wel l 10 series , and t he mixture of 
the normal and gamma f unctions applies to 8 out of 9 
cases. 

4. For the 3-day values, the double-branch gamma 
function fits wel l 9 out of the 17 n-series; however, 
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Table 5-7 RESULTS OF FITTING VARIOUS PDF TO FREQUENCY DISTRIBUTIONS OF THE 1-SERIES, WITH THE LEVEL OF 
SIGNIFICANCE 99 PERCENT; S = SUCCESSFUL FITS, F = UNSUCCESSFUL FITS. 

Function Mont_t11y senes 13-dav series 
No. of No. of No. of No. of 

s F s F 

Normal 16 1 3 14 
Norma 1 with 
Hermi te-3 terms 17 0 15 2 
Nonna l with 
Hermite -4 terms 17 0 16 1 

Loqnormal 17 0 16 1 
Tvoe IV 
Tvoe VI 
Gamma 17 0 15 2 
Gamma with 
Laauerre-3 terms 17 0 16 1 
Gamma w1th 
Laauerr·e-4 terms 

Wei bull 15 2 4 13 
Do ubi e- Branch 
Gan1na 1 16 2 15 
~1 xtures of 
rlorma 1 and Gamma 
~ixtures of 
Tvoe VII and Gamma ll 

1'10 p.d. f. studied fits well the frequency distributions 
of the ,_ and c.-variables. 

5. When the six p.d.f. groups are applied to 
frequency distri butions of the dai ly val ues of n. , , 
and C variables, with their sample sizes approxi­
mately 14,600, none passes t he chi-square test with 
the critical chi-square value 43.0 at the 99 percent 
significance level. However, the double- branch gamma 
functions have the smallest chi -squares. For the fre­
quency distribution of daily values of the , _ and 
c-variables, the double-branch gall1na functions have 
the chi-square values in the range of 200 to 3000, 
having the smal lest chi-squares for the n-series. As 
an example, the frequency distribution of n of the 
Fal ls Creek and the Merced Rivers were fitted by the 
double-branch gamma functions with chi -squares of 79.1 
and 79 . 8, respectively. However, even wi th these 
lowest chi-squares the fit is rejected. Frequency 
di~t~ibution~ and the fitted double-branch gamma prob­
ab1l1~Y dens1ty and cumulative functions of the daily 
n-ser1es of the Falls Creek and the Merced Rivers are 
s~own _ i n ~igs. 5-21 and 5-22 , respectively. Frequency 
d~str1but1ons of .n for all 17 series are plotted in 
F1g. 5-3. The dally series has a large sample size. 
Statist~cal parameters estimated from a sample of 
large s1ze should be close to population values , with 
the tol~rance interval of t hese parameters inverseiy 
proport1onal to the sample size. Gi ven t he narrow 
tolerance i nterval , the goodness of fit t ests fail 
even at a high level of significance. 

Since no probability density function can 
adequately fit the frequency distributions of inde­
pendent stochastic components of daily f low series, an 
empi rical method was attempted and is presented here. 

All values were sorted into certain class 
intervals of equal length and frequency densities of 
each class interval computed. When these relative 
frequencies became highly irregular , a moving average 
wa~ us~d to smooth them. The tails of frequency dis­
t~1but1ons were approximated by two exponential den­
Slty functions. Parameters of the two exponential 

1 
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1 -da v sen es 3-dav senes Daily senes 
No. of No. of No. of No. of No. of No. of 

s F s F s F 

0 17 0 17 0 17 

1 16 0 17 0 17 

7 10 0 17 0 17 

6 11 0 17 0 17 

0 2 0 6 0 12 
I 0 1 

3 14 0 I 16 0 13 

7 10 0 16 0 13 

0 17 0 16 0 13 

0 17 0 16 0 13 

10 7 9 8 0 17 

8 1 

4 4 1 7 0 17 

densi ty functions were estimated from the values as 
t he respective tails. 

An example of this approach is given in Fig . 5-23. 
The maximum and minimum 500 values of t he series f or 
the Neches River were fitted by the exponential den­
sity functions. The center part of the frequency dis­
tribution was divided into 45 equal length class 
intervals, with the relative frequencies computed and 
smoothed . 

5-6 Fitting of Symmetric Stable Distributions. 

The symmetric stable distributions were fitted to 
freq uency distri butions of independent stochastic com­
ponents of da il y seri es of the Madison and Batten Kil l 
Ri vers, for the purpose of demonstrating their use in 
compar ison with the use of the other distri bution 
functions . Parameters of symmetric stable di stribu­
tions were estimated by techniques described in 
Chapter IV , with the transformation of the original 
series into the u-variable by Eq. 4-58. Cumul ative 
frequency distributions of u, and the fitted synJOet­
ric stable distributions are shown in Fig. 5-24 for 
the Madison River and Fi g. 5-25 for the Batten Kill 
River. For the Madison Ri ver, the parameters of the 
stable distribution, estimated by percentiles, are 
c = 0.337, a = l .264, y c 0.253 and o = 0.0067. For 
the Batten Kil l River, parameters are: c = 0.338, a • 
1 .255, y = 0.257 and o = 0.0425. Usi ng the transfor­
mation by Eq . 4-58, t he u-variable has c = y =1, 
6 = 0, and a the same as for the untransformed 
series. For the Kolmogorov-Smirnov test used for the 
goodness-of-fit test, the syn~netric stable distribu­
tion fails to fit the frequency distribution of the 
u-variable even at the 99 percent confidence level, 
with the critical value of 0.0136. 

Several factors limit the fit of stable 
di stributi ons to frequency distributions of indepen­
dent stochastic components of daily runoff series: 

1. Density functions of stable distri butions are 
not available in closed forms ; 



Table 5-8 PROBABILITY DISTRIBUTION FUNCTIONS OF BEST 
FIT FOR FREQUENCY DISTRIBUTIONS OF THE 
n- SERIES. 

RIVER Monthly 13-day 7-day 3-day Daily 
series series series series series 

Tioga GL3 GL3 MNG MPG 

Oconto LN LN MPG DBG 

Current LN MNG 

McKenzie GL3 LN DBG 

Neches GL3 G MPG 

Boise GL3 LN MPG DBG 

Fal l s Creek LN LN MNG DBG 

Greenbrier GL3 GL3 MNG MPG 

Delaware GL3 LN DBG DBG 

Madison NH3 DBG DBG DBG 

Powell GL3 G MNG 

St. Maries GL3 LN MNG 

Cowpasture GL3 LN MNG 

Mad LN LN DBG 

Merce·d GL3 NH4 DBG DBG 

Batten Kill GL3 GL3 MNG DBG 

Jump GL3 LN NH4 . 

Abbreviations : LN, lognormal; G, gamma; NH3, normal 
modified by 3 terms Hermite polynomials; NH4, normal 
modified by 4 terms Hermite polynomials; DBG, double­
branch gamma; MNG, mixture of normal and gamma; MPG, 
mixture of Pearson's Type VII and gamma; PIV, Pearson's 
Type IV; GL3, gamma modified by 3 terms Laguerre 
polynomials. 

Table 5-10 PROBABILITY DISTRIBUTION FUNCTIONS OF BEST 
FIT TO FREQUENCY DISTRIBUTIONS OF THE 
~;-SERIES. 

RIVER 13-day 7-day 3-day Daily 
series series series Series 

Tioga NH4 

Oconto NH4 MPG 

Current MPG 

McKenzie MPG DBG 

Neches DBG DBG 

Boise DBG DBG DBG 

Fa 11 s Creek DBG DBG 

Greenbrier DBG 

Dalaware DBG 

Madi son LN MPG 

Powell MNG DBG 

St. Maries DBG DBG 

Cowpasture DBG 

~ad MNG MPG 

Merced DBG DBG 

Batten Kill MNG DBG 

Jump DBG 

Abbreviations: LN , lognormal; NH4, normal modified by 
4 terms Hermite polynomials; MNG, mixture of normal 
and gamma; MPG. mixture of Pearson's Type VII and 
gamma; DBG, double-branch gamma. 

Table 5-9 RESULTS OF FITTING VARIOUS PDF TO FREQUENCY DISTRIBUTIONS OF THE ~-SERIES, WITH THE LEVEL OF 
SIGNIFICANCE 99 PERCENT; S = SUCCESSFUL FITS AND F = UNSUCCESSFUL FITS. 

13-day series 7-day ser1es 3-dav ser1 es Da11y ser1es 
Function No. of No. of No. of No. of No. of No. of No. of No. of 

s F s F s F s F 

tlorma 1 l 16 0 17 0 17 0 17 
rtorma 1 wi th 
liermi te-3 terms 6 11 0 17 0 17 0 17 
~orma l with 
l;ermi te-4 terms 10 7 0 17 0 17 0 17 

oqnormal 8 9 0 17 0 17 0 17 
lfype IV 0 1 0 3 0 8 0 12 

lrvoe VI 0 4 

~amma 6 11 0 17 0 17 0 17 
~amma w1th 

aguerre-3 terms 6 11 0 17 0 17 0 17 
~amma with 

aguerre-4 terms 0 17 0 17 0 11 

~eibull 0 17 0 17 0 17 0 17 
pouble-Branch 
~amma 14 3 9 8 l 16 0 17 
Mixtures of 
Normal and Gamma 5 0 0 1 : 

Mixtures of 
Type VII and Gamma 5 3 7 5 0 17 0 8 
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Table 5-11 RESULTS OF FITTING VARIOUS PDF TO FREQUENCY DISTRIBUTIONS OF THE ~-SERIES, WITH THE LEVEL OF 
SIGNIFICANCE 99 PERCENT: S = SUCCESSFUL FITS AND F = UNSUCCESSFUL FITS. 

Monthly series 13-dav series 7-day series 3-day seri es Daily series 
Function No. of No. of No. of No. of No. of No. of No. of No. of No. of No. of 

s F s 
Normal 1 16 1 
Normal w1 th 
Hermite-3 terms 15 2 1 
Nonnal with 
Hermi te-4 terms 11 6 1 
Lognormal 16 1 2 
Tvoe IV 1 
Tvoe VI 
Ga11111a 14 0 1 
Gallllla wi th 
Laquerre- 3 terms 14 0 2 
Gamma with 
Laguerre-4 terms 0 
Wei bull 0 
1Qouble-Branch 
1Ga11111a 12 
f'1ixtures of 
Norma 1 and Ganma 3 
f'lixtures of 
~ype VI I and Ganma 7 

2. Parameters of symmetric stable distributions 
must be estimated by percentiles; no method is yet 
available for a successful estimation of asymmetric 
cases ; 

3. Distributions of independent stochastic 
components do not possess heavy tails, particularly 
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... 

... 
·" 
... 
... 
... 
... 

... ... 

F 
16 

16 

16 
15 

0 

11 

10 

17 
12 

5 

1 

1 

... 

s F s F s F 
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0 17 0 17 0 17 

0 17 0 17 0 17 

0 17 0 17 0 17 

3 14 0 17 0 17 

9 5 0 14 0 15 

the right tails, while the stable distributions may 
fit well only when such heavy tails exist; 

4. When 1 s a < 2, the second and higher-order 
moment of stable distributions do not exist; for a < 
1, the moments do not exist, while generally the inde­
pendent stochastic components are standardi zed with 
the mean of zero and the variance of unity. 

. ... 
... F(n) 

. .. 
·" 
. .. 
... 
. .. 
.II 

. .. 
·" ll 

'·' L l 

Fig. 5-21 Fitting the frequency distribution of the n-series of the Falls Creek River by the double-branch 
gamma density function: (1) frequency distribution, (2) fitted double-branch ga11111a density 
function, (3) cumulative frequency distribution and (4) fitted cumulative double-branch gamma 
distribution function. 
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Table 5-12 PROBABILITY DISTRIBUTION FUNCTIONS OF BEST FIT TO FREQUENCY DISTRIBUTIONS OF THE ~-SERIES. 

Fig. 5-22 

... 
f(Tl) 

·" .• 
... 
.. 
.. 
... 
... 

tM ·• 

RIVER Monthly 13-day · /-day 3-day Daily 
series series series series series 

Tioga LN MPG MPG 

Oconto LN MPG MPG 

Current LN MPG DBG 

McKenzie G MPG 

Neches LN DBG DBG 

Boise LN DBG 

Falls Creek NH4 DBG MPG 

Greenbrier LN DBG 

Dalaware MPG 

Madison LN MNG MPG 

Powell LN · MPG" MPG 

St. Maries LN DBG DBG 

~owpasture LN MNG MPG 

~d LN MPG MPG 

~erced NH4 DBG 

~atten Kill LN MPG MPG 

~ump LN I 
Abbreviations: LN, lognormal; G, gamma; NH3, normal 
modified by 3 terms Hermite polynomials; NH4, normal 
modified by 4 terms Hermite polynomials; DBG, double­
branch gamma; MNG, mixture of normal and gamma; MPG, 
mixture of Pearson's Type VII and gamma; PIV, Pearson's 
Type IV; GL3, gamma modified by 3 terms Laguerre 
polynomials . 

. ... 
... F(~ ) 

... 
·" . .. 
... 
. .. 
. . 
. . 
. .. 

II II .. •. ... ·• .. 
Fitting the frequency distri bution of t he n-series of t he Merced River by the double-branch gamma 
density function: (1) frequency distribution, (2) fitted double-branch gamma density function 
used, (3) cumulative frequency distribution and (4) fitted cumulative double-branch gamma distri­
bution function used. 
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1.0 

Fig. 5-23 (1) Empirica l frequency density curves; (2) smoothed frequency density curves; (3) f( n) = 
0.0370 e-1· 333(1· 538-n) I(-• ,-l. 538) f i tted to the negative tail, and (4) f( n) = 
0.0370 e-0· 755(n-2·172) 1( 2 . 172 .,~)' fitted to th~ pos itive tail of then-series of t he Neches River . 

........ 
1.0 :> 

u.. ....... ,, 
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u 
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Fig. 5-24 Fitting t he cumul ative frequency distribution of u-series of the Madison River by the symmetri c 
stable distribution: (1) cumulative frequency distri bution and (2) stable distri bution fitted, with 
o • 1.264, 6 ~ 0, and y = 1. 

u 

-10 -8 12 16 18 
Fig. 5-25 Fitti ng the cumula t ive frequency distribution of u-series of the Batten Kill River by the symmetri c 

stable distribution: (l) cumu lative frequency distribution and (2) stable distribution fitted, wi th 
o E 1.255, 6 = o, and y = 1. 
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Chapter 6 

CONCLUSIONS 

The following conclusions were drawn from the 
results of this study, namely: 

1. To infer the periodicity in parameters f rom a 
series , harmonic analysis is used and the significant 
harmonics are identifi ed. Errors in determining the 
number of signifi cant harmonics and errors in estimat­
ing thei r coefficients greatly affect the accuracy of 
i nferred periodic functions. For example, if a har­
monic explains only one percent of the total variance 
of a parameter of its est imates over the discrete 
value of the basic per iod, and is incorrectly either 
accepted or rejected by the usual tests of signifi­
cance, the maximum error i n the inferred periodic 
function ma.v be as hiQh as 14 oercent of the standard 
deviation of the periodic parameters. 

2. Although high sampling fluctuations always 
exist in the estimated serial correlation coeffi­
cient s. the periodicity in these series should be 
tested. Since the standard deviation of the indepen­
dent stochastic component, as the residuals of the 
linear autoregressive models for stochastic variables, 
are highly sensitive to error s in the estimates of 
serial correlation coefficients , a careful investiga­
tion of the periodicities in these coefficients is 
necessary for more real i stic models. 

3. The logarithmic transformation provided 
improvements by assigning different weights to values 
(by decreasing the weights of high values in compari­
son with the weights of low values } and by reducing 
flow fl uctuations in comparison with the original 
series. Consequently, the transformed data produced 
somewhat better results than the original series in 
f ittino the independent stochastic component by se­
l ected. probability distribution functions . 

4. Distributions of independent stochastic 
components tend to have very long tails especially in 
seri es with small time units such as daily series. 
However, the evidence in this study suggests that the 
tails are not heavy. Exponential functions are found 

to be good approximations for the tails of frequency 
distributions in a l arge majority of cases. 

5. Frequency distributions of the independent 
stochastic components cannot be adequately fitted by 
stable distributions wi th heavy tails and an infi ni te 
variance. 

6. Independent stochastic components obtained 
for the logarithmically transformed monthly runoff 
series were found to be approximately normally dis­
tributed , whi le the frequency distributions were found 
to be skewed but bell-shaped for the 13-day series. 
The normal function, modified by Hermite polynomials, 
the lognormal, and the gamma probabi lity distribution 
functions are found to fit well t hese frequency dis­
tributions. As the discrete time interval (in which 
the year is divi ded} becomes small er, such as the 7-
day and 3-day ser ies, the well-rounded , bell -shaped 
distributions of independent stochastic components 
change to highly skewed ·distributions with a sharper 
pea k and the longer tails. Mixed Pearson's Type VII 
and gamma functions and the double-branch gamma func­
tion are more suited for modeling this kind of distri­
butions. 
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7. Frequency distributions of independent 
stochastic components for different intervals 6t in­
dicate that the di stributions become closer to normal 
when 6t increases. The central limit theorem is 
t hen useful i n modeli ng probability distributions of 
hydrologic independent stochastic components. 

8. For the independent stochasti c components of 
the daily flow series, none of t he probability distri­
bution functions studied for fitting the frequency 
distributions could pass the chi-square test, even 
with the significance criterion of 99 percent. The 
double-branch gamma function had the smallest chi ­
square values. The Kolmogorov-Smirnov test also re­
jects the hypothesis of good fit for any probability 
distribution function used. This di fficulty results 
from very large samples with the resulting very narrow 
tolerance limits. This problem requires a special 
attention in future studies. 
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those IIIO<iified by polyno11ials, Wei bull, double-branch gamma, 
mixture of functions, and family of stable distribution 
functions, were applied to fit frequency distributions of 
independent stochastic components. The sa111e techniques were 
applied to the 3-day, 7-day, 13-day and 30-day monthly 
series. It was found that the 3-parameter lognormal func­
tion fits well the frequency distributions of monthly in­
dependent stochastic components. Since frequency 
distributions f or small t i me interval s were skeded, with 
shapr peaks and long tails, probability distribution 
functions with more parameters must be used to fit these 
distributions. 
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