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ABSTRACT 

Existing effective viscosity models which have been very valuable 

in the mean field closure method for turbulent boundary layer computation 

have shown certain undesirable limitations for certain realistic but 

general boundary layer flows. The more general flows usually involve 

non-negligible considerations of pressure gradients and such wall con-

ditions as roughness, curvature and aspiration or transp i r a tion in 

varying degrees of importance. The effects of these external and wall 

influences have, unfortunately, been underplayed by most existing 

effective viscosity models. 

The present model of the effective viscosity is developed for a 

general flow and has shown remarkable agreement with experimentation, 

without being any more complex than existing models. 
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Turbulence functions in Van Driest and Smith 
eddy viscosity model s. 

Pressure gradient parameter 

Functions. 

Roughness height; Nikuradse ' roughness scale. 

Mixing length, value at wall . 
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Wall radius of curvature . 
K 
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Displacement thickness Reynolds number . 
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Streamwise space coordinate. 

Transverse space coordinate, 

Boundary layer thickness, 

Displacement thickness 

Viscous sublayer thickness, 

Molecular viscosity 

Kinemat ic viscosi t y 

U o 
T 
V 

Effective vis cosity (= v + s ) 

u y 
T 

V 

Apparent vis cosity in rough wall flows . 
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1. INTRODUCTION 

The use of an effective viscosity assumption provides closure fo r t he 

turbulent boundary layer equations of motion for enhanced mathematical 

treatment. Boussinesq introduced and assumed a linear relation, of the 

same form as the Newtonian Law of friction, between the Reynolds shear 

stress and the mean velocity gradient. The coefficient in this linear 

relation has since become known as eddy-viscosity. Although the concept 

of the eddy-viscosity, and worse still, a scalar eddy-viscosity, is 

physically unsound, it nevertheless allows reliable and useful predictions 

to be made for most types of flows. One is thus compelled to ignore the 

lack of physical rigor. 

An effective viscosity may therefore be defined as the sum of the 

kinematic molecular viscosity, and the eddy viscosity. 

i.e. v =v+e: 
e 

1.1 

If, further, it is assumed that the effect of wall roughness is very 

similar to the effect of the molecular viscosity on the flow, so that an 

apparent kinematic viscosity, 

\) = \) +e: e a 

\) 
a , may be defined, then: 

The form of equation (1.2) may then be used to reduce the turbulent 

1.2 

boundary layer momentum equations to a form similar to the laminar case, 

which is closed and soluble by some mathematical techniques. The form of 

the eddy-viscosity is difficult to establish especially near the wall. 

Many models of the eddy-viscosity have been introduced for the wall 

region of the boundary layer. Reichardt 5, for instance, assumed the 

following: 

E: - = 
\) 

K (y - ('/ + 1 tanh 1.3 
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on the basis that in the boundary layer, the eddy-viscosity, £ , increas-

es with +3 y as + 
y + 0, and changes monotonically into a linear functi on 

of y+ as the region beyond the overlap region is approached, Deissler6 

t r i ed to take account of a turbulence diminishing toward the wall and sug-

ges ted the relation: 

£ + + + + - = au y [ 1 - exp ( - au y ) ] 
\) 

1. 4 

Where, a, is a numerical constant. This relation gives an eddy viscosity 

which is proportional to 
+4 . 

y in the inner wall region. V D . 7 an r1est , on 

the basis of a modified Prandtl's mixing length, suggested the following 

form 

£ = K2y2 [ 1 - exp ( - Y +/A ) ] 2 I au I . ay 1.5 

where A= 26 for the zero pressure gradient flow along a smooth wall. 

This relation also approaches the wall as The more familiar recent 

additions to the eddy-viscosity models for the inner wall region are the 

models due to G. Mellor and A.M.O. Smith and their colleagues. Mellor 

et al~' 14 argued that in the wall region, the eddy-viscosity is a univer-

sal function of au 
y' ay ' and the molecular viscosity, 

be represented by the functional curve 

where X = !SLF, \) p ' and A is a constant ( = 6.9). 

v, which can 

1.6 

The form of equation 

(1.6) is as yet the most satisfactory form of the eddy-viscosity introduced 

for the wall region, and except in severe cases, it is only very slightly 

affected by pressure gradients and wall conditions. 

Smith et al., 1• 2 modified the Van-Driest model in the inner wall 

region obtaining an analytical relation for the general variation of the 

turbulence function A. 
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1. 7 

-1/2 

where A+= 26 [exp (ll·Sv) - 1·] 

In the outer region of the boundary layer, not many changes have been 

made to Clauser's original assumption of a constant eddy viscosity, 

e: c uo = 
1 

0.018). Mellor et al., 14 assumed a constant value of e: 
u o* 1 

= 0.016 

which they said could be modified by the curvature of the wall in the fol -

lowing manner: 

e: 
u o* 1 

= 0.016 (1 - A*~ r 
0 

where A* is a numerical constant. 

1.8 

Smith et al., 2 modified their outer region constant eddy viscosity 

with an intermittency factor and thus obtained: 

= 0.0168 [ 1 + s.sn 6 
1 

1.9 

Most other researchers in this field have simply chosen a constant in the 

neighborhood of 0.018 which satisfied their particular kind of flow. 

In the overlap region of the turbulent boundary layer, Smith 

et al. 2 applied the constraint of continuity of the eddy-viscosity from 

the wall outward. Their wall eddy viscosity function however approximates 

a linear function of + y in this region. Mellor et al. 14 assumed that 

the eddy viscosity in the overlap region must be some universal 



function of au 
Y, ay , and u o* 1 

4 

(chosen as a suitable scaling parameter), 

and obtained the following linear function: 

1.10 

Earlier , Rotta8 had assumed that the mixing length at y = 0 is not 

necessarily zero (especially in rough-wall flows) but has some finite 

value l 
0 

Hence the applicable mixing length in the transition region 

should be l = l + Ky. 
0 

1.11 

Most of the models introduced here have been obtained essentially 

on the basis of wide experience with turbulent boundary layers, leading 

to intuitive guesses that satisfy some boundary constraints and approximate 

turbulence characteristics on a large scale. In fact, all the wall eddy-

viscosity models, including the one presented herein, are curve fits 

scaled on suitable wall region parameters. Fortunately the wall region 

boundary layer is virtually insensitive to external influences, so that 

curves for the eddy-viscosity obtained in that region give the illusion 

of a universal character. 

In the overlap region of the turbulent boundary layer, the 

dimensionless eddy-viscosity (E/U1o*) appears to be a linear function 

of + y as assumed by all the models. The influence of external and wall 

conditions on the eddy-viscosity in this region is only quantitative, 

linearity still being maintained, as the overlap region is virtually a 

constant shear stress region. 

All the models except that of Smith et al., 1 , 2 assumed a constant 

value for the non-dimensional eddy-viscosity in the outer region of the 
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boundary layer. Clearly the eddy-viscosity is not a constant in this 

region but decreases far from the wall across the zone of intermittency. 

When corrected for intermittency, a sizeable portion of the outer bound-

ary layer shows a fairly constant value for £/U1o* Hence the assump-

tion of a constant outer region eddy viscosity will not be expected to 

have a large influence on predictions of velocity profiles except in the 

outermost region where, anyway, the vertical gradient, au/ ay, of the 

velocity is usually very small. In predicting shear stress distribu-

tions; in diffusion problems and generally in problems involving large 

gradients of mean quantities as in the atmosphere, the use of a constant 

outer eddy viscosity should be noticeably erroneous. Moreover, all 

experimental data indicate that the outer region eddy viscosity is not 

only intermittency controlled but is also quantitatively dependent on 

streamwise pressure gradients and wall condition. The reader is 
11 10 referred to the data of Moffat et al., and Fraser . This is obvious 

also from an examination of the boundary layer momentum equations for 

the outer region. Only in the simple case of fully developed channel 

and pipe flows can a constant eddy-viscosity be compatible in the outer 

boundary layer. 
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2. THE EFFECTIVE VISCOSITY IN WALL BOUNDARY LAYERS 

Having reviewed the developments in boundary layer eddy viscosity 

modelling, we will now try to establish a satisfactory functional form for 

the effective viscosity in the wall boundary layer. The ef fective visco-

sity was defined as: 

V = V + 8 e a 2.1 

where, V a is the apparent kinematic molecular viscosity due to wall 

roughness. 

It is clear that what we are trying to do by defining, V a is to 

increase the effective viscosity close to the rough wall . In that case, 

we can alternatively effect all such changes via the eddy viscosity. 

If the roughness geometry is such that an equivalent Nikuradse 1 2 sand 

roughness height, ks , can be meaningfully defined (i.e., flow effects 

and turbulence mechanism are preserved, under the transformation) then 

we may define an augmented dimensionless vertical distance. 

X = ~(y + ks) IT/p 
V 

2.2 

Certainly, if we cannot mathematically model the roughness geometry by 

some transformation which preserves turbulence mechanism, we cannot hope 

to obtain a mathematical model of the roughness influence on an effective 

viscosity. Perry and Joubert 13 discuss an alternative approach to model-

ling the apparent viscosity. 

In the wall region of the boundary layer, perhaps the best way to 

look at the problem of the eddy-viscosity form is a method used by 

Meroney 15 • Meroney obtained an expression for the Reynolds shear stress 

distribution near the wall, by a Taylor series expansion of the total 

flow velocity. If such an expansion is repeated for the wall boundary 

layer as defined in the present study, one finds that: 



7 

[4vU4 -
V 1 dUl J --,-, = (_£) 2 (v oul - U-) y3 + [5vu

5 - VU ]y4 + ... U V \) 3! 1 dx 0 4 

2.3 

where 1 aiu 

I y=o 
u. =---• I al l. l.. 

From (2.3) it is seen that: 

[
1 VO 2 e: = - (-) 6 \) 

2.4 

It will now be assumed that at the wall where the Taylor series expansion 
a5u is valid -- is very small and may be dropped from equation (2.4), or 
ays 

in non-dimensional form, 

[ +' 
- 4 z] 

+ 

::3 
(v + FU+

3
) 

3 V Z e: 
cpw = x::_ + _o_ x4 u o* = 0 1 Ro* KRo* 1 

2.5 

where 
\)4 a4 u and F 

\) 
dU1 z =-- (--- ) = 2.6 

US K3 a 4 u2 dx 
T y y=o 1 

From equation (2.5) it becomes clear that only the wall condit i ons have 

any direct influence on the form of the eddy-viscosity in the wall region. 

In the absence of wall effects, the eddy-viscosity at the wall is pro-

portional to + 3 y , but is otherwise proportional to +n y , (3<n<4). 

In the transition region of the turbulent boundary layer, the eddy visco-

sity is directly proportional to x and may be written as 

_e:_= 
u o* 1 

where, g, is a simple functional constant for any particular flow 

through which pressure gradients and wall conditions quantitatively 

affect cpt. 

2.7 
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Except for the functions, Z and g in equations (2.6) and (2.7), 

we have now obtained the functional relations for the eddy viscosity at 

the wall and in the overlap region of the turbulent boundary layer. 

Since the eddy viscosity function must be continuous from the wall out-

ward, we will now fit an empirical curve to the two relations repre-

sented by equations (2.5) and (2.7). On the basis of the power law 

behavior observed in equation (2.5) and (2.7) we postulate a curve of 

the form 

[ Al 
x4 .>.. 2 x' J 1 qi - + 

Ro* WT (A3 + x3) (A2 + x2 ) 
2.8 

where 

+ 
[g - A2v+ 2 + 

FU~ 3) / K J /(v+ - 4K/ A) .>.. l = V (v -
0 0 0 0 

2 .9 

[ A2v : 2 (4gK/A - 4Av+ 2 (v+ - FU+3)] + +3 0 o 1 
.>..2 = (v - FU ) -o 1 (v + - 4K/ A) 

0 

For the curve of equation (2. 8), the function, g , varies with y by 

about 0.5 about the value unity, such that we can empirically approxi-

mate g by 

g = 1 + 0.031 X 10-3 (v + 
0 

x3) 2.10 

For this value of g, the value of A which consistently gives the 

best fit for a number of experimental results is A= 7.2. Herring and 

Mellon used a value of A= 6.9 in the absence of additional corrections 

on g. With these estimates, the wall region effective viscosity for 

the general turbulent wall boundary layer is satisfactorily described by 



1 \) = --
e R0* 

where 

A = 2 

9 

AlX4 A2X3 
------+------+l 
[7·23 + x3] [7·22 + x2] 

2.11 

2.12 

With reference to the data of Fraser10 , the eddy viscosity profile 

in the outer region of the turbulent boundary layer shows a distinct 

trend with the streamwise distance, x, which, however, may be 

diminished by non-dimensionalizing the eddy diffusity, E , with 

u1o* . A slight trend with x is still noticeable probably because 

the displacement thickness, o* , calculated in the conventional way, 

does not adequately represent the growth influence of the turbulent 

boundary layer especially when wall effects and external conditions 

on the flow are severe. Moreover, the eddy viscosity profile shows 

definite dependence on the external and wall conditions, i.e., pressure 

gradients, transpiration, etc., on the flow. Examination of the momen -

tum equation of fluid motion shows that the effects of transpiration, 

etc., on the eddy viscosity are local, not history-oriented as one 

would naturally anticipate. The experimental results of Fraser1 0 

also confirm this. 

In the orthogonal system of parallel curves Fig. (6), the 

vorticity transport equation for two-dimensional fluid motion can be 

reduced to the following approximate form, for the outer boundary 

layer: 
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a u + ..L a cu2 

ay [<1 - cy) au] ax ay 
(V au) _ _L ( cuv ) 

ay ay 1 - cy ax <1 - cy) 

-.! lE. a 1 a2 l au -] a cu'v' 
= <1 ) + ~ \) a - u'v' + a <1 - cy) p ax ay cy ay y y 

where c(=l/r) is the wall curvature, and is positive for concave 
0 

curvature. In the absence of pressure gradients and wall effects, 

the outer region eddy viscosity is adequately represented by 

E: U o* = 0.016 x An Intermittency factor. 
1 

In that case, if we assumed a suitable power-law velocity profile, 

2.13 

Eq. (2.13) can be analyzed further to yield the following outer region 

effective viscosity profile (See Appendix for analytical details): 

\) 
e ao* ~o = u o* = 0.016 y(l+n -) 
1 ro 

2.15 

where y = an intermittency factor (=1/(1 + s·sn6)) and a, b, 

d, m and h are numerical constants. 

For the cases of interest, the strearnwise gradient of curvature is 

usually very small compared to the remaining terms in Eq. (2.15). Hence 

we finally obtain by comparison with experimental data of Fraser10 , that: 

o* ~o = 0.016 y(l+an-) ro ~
+(2·8 Vo - FR + m~) f(nj u o* r 1 o 

where f(n) - 500 sinh(n) , and a: 12·1 . 

2.16 
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Interestingly, Eq. (2.16) reduces to a form previously suggested by 

Mellor et al., 3 (except for an additional o*/r
0 

factor) , in the 

absence of pressure gradient and wall transpiration. The constant, 

m, has not been evaluated in the present work because adequate curved 

wall data were not available to the present authors . In the con -

tinuing research on analytical boundary layer predictions, the results 

of a mean turbulent closure method will be regressed to compute the 

constant, m, and to modify the present model for cases of thermally 

stratified flows. 
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3. COMPARISON WITH EXPERIMENTAL RES0LTS 

Prior to the formulation of the present effective viscosity model, 

the most satisfactory effective viscosity model in turbulent wall 

boundary layer computation appears to be that due to Herring and 

Mellor 1 4 • The forms of the Herring-Mellor model and the present model 

are compared against the experimental measurements of Moffat et al., 11 

in Fig. 1. The boundary layer studied by Moffat et al., is due to a 

highly accelerated flow with wall transpi ration. It seems obvious that 

the Herring-Mellor model is most satisfactory only for simple flat-

plate flows without mass transfer at the wall. When pressure gradients 

and wall transpiration may be considered, the Herring-Mellor model 

under-estimates the viscosity of the flow especially in the inner wall 

region and the outermost region of the turbulent boundary layer. The 

present model is an exact solution in the inner wall region but suffers 

negligible deviation in the lower overlap region. This deviation is 

a result of attempting to asymptote the wall region solution to a 

linear solution in the overlap region. The matching point between the 

inner wall and the overlap solutions fluctuates with the type of flow 

and is not exactly fixed by the present curve fit. However, apart 

from this small deviation in the overlap region of the boundary layer, 

the present model shows a much more satisfactory fit to the experimental 

results of very general types of flows. Further illustration of the 

superiority of the present effective viscosity model over previous 

models is obtained from the direct use of the models in boundary layer 

computations. The computer program of Herring and Mellor 3 was used 

for all computations, with modifications only in the effective viscosity 

models. 
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The example used is the imcompressible boundary layer flow studied 

by Moses 16 , which was used at the Stanford Symposium on the "Computation 

of Turbulent Boundary Layers." The first portion of the flow is in an 

adverse pressure gradient. Subsequently, the pressure gradient is 

removed and the layer relaxes to conditions of nearly zero pressure 

gradient. Comparisons with Moses' data are shown in Figs. (2) and (3), 

where theoretical skin friction, shape factor and mean velocity pro-

files are plotted against the data points. While the present method 

gives an almost exact fit to the experimental data points in all cases, 

the model of Herring and Mellor shows definite deviations (up to 15%) 

especially in the ski n friction distribution and in the outer region 

of the mean velocity distribution. Figure (4) shows most clearly 

the difference between the two models. The Herring-Mellor mode l shows 

marked deviations in the wall and outermost boundary layer regi ons. 

The present effective viscosity model has also been used for the 

compressible turbulent boundary layer of Moore and Harkness 17 , and has 

shown very good agreement with experiment, Fig. 7. 
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4. CONCLUDING REMARKS 

We may now conclude that if a scalar eddy viscosity is assumed to be 

a valid concept in wall turbulent boundary layer theory, then s uch an 

eddy viscosity has the following characteristics: 

It is a continuous function of y which approaches the wall surface 
+n 

as a power function, y of the vertical distance y from the wall. 

If the external and the wall conditions on the boundary layer flow are 

unimportant n + 3 , but n + 4 as the effects of the flow environment 

become important. 

Away from the wall the eddy viscosity function is a linear function 

of y, soon reaching a maximum and then gradually decreasing to zero 

very far from the wall. Even in the region away from the wall, the eddy 

viscosity function is at least quantitatively dependent on the conditions 

at the wall and in the free stream. 

For moderate roughness, it appears that when an equivalent Nikuradse 

sand roughness height can be meaningfully defined, the influence of 

roughness can adequately be modelled as an apparent y - shift effec t . 

Finally, a mean velocity field closure method which predicts the 

turbulent boundary layer downstream of a known station should yield very 

close predictions, as the iterative scheme of such a method usually 

corrects slight errors in the effective viscosity assumption. Moreover, 

the dimensionless effective viscosity appears to be a function of the 

local boundary layer parameters and is history-oriented only through 

such parameters. 
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APPENDIX 

The combined momentum equation (2.13), which is essentially the 

so-called vorticity transport equation is 

a cu'v' 
+ ay ( 1-cy ) 

Let u = u U, 

V =Vu, 
y = n*o* 

= a r u 
ay l (1-cy) 

(1) 

If we assume that after correction for intermittency, the dimensionless 

effective viscosity, v /U, o* , is fairly constant across a large portion 
e 

of the outer region boundary layer, the left hand side of equat i on (1) 

becomes: 

where 

terms 

.!_~ 
p ax 

V 
e 

u o* 1 

in equation 
V 

If e 
u o* = 

1 

(1) . 

cp 0 , 

V dUl 
F = U/ dx and 

( 2) 

has been neglected in comparison with other 

i-a u 
an*i 

= u . 
1 

u o* 1 R = --o* V 

, and if: 

Then, wit~ the fol l owing assumpt i ons: 



(i) 

(ii) 
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Terms in (~)2 and higher order are negligible. r 
0 

Terms in are smai1 in comparison to other terms in the 

equations. 

equation (1) becomes: 

!. ¢ [1 + ~ u2 ] = 
y o r

0 
u3 

o* a (u au)+ o* u an* ax r 3 0 

o* a (- au) 
u

3 
an* un* ax 

a u2 
an* Cu¾*) - 2 o* ] 1 a - au r + U an*(V an* 

o* 
r 

0 

1 a u an* (u v) 
3 

o* 
r 

0 

u3 o 3 

de 
dx (3) 

As y -+ 00 
au dUl 
ax-+ dx so that we can write 

au dUl 
ax= f(y) dx such that 

f(y)-+ 1 as y-+ 00 • The continuity equation is 

1 
(1-cy) 

au cy 
ax - (1-cy) 

av = - ay 

whence we can obtain that: 

and 

av 
an* 

o* -- -u r 
0 

o* (1 + n* :;-) f(n*) FRO* 
0 

o* n* n* 
V = v

0 
+ r f udn* - FR0* f (1 + i* n*) f(n*)dn* 

0 0 0 0 

We shall, further, make the following simplifications: 

(i) u = (An*)l/n 

(ii) In the absence of severe wall and free stream influences, the 

effective viscosity ¢
0 

is satisfactorily approximated by 

o* 
cp = 0.016Y = o u3 

a - au 
an* (u ax) (from equation (3)). 

(4) 

(5) 
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With these simplifications, equation (3) reduces to the following: 

i.e.' 

l_ <P [1 + 
o* 

c11!-2J] = -n* y 0 r 
0 

n-i< o* 
+ V [ 1 -0 (l/n-2) r 

0 

o* 
+ - H' (n*) r 

0 

0.016 + 0.016n* o* 
r 

0 

n* ] (l/n-1) + FR0* [1 - n* :: ]G' (n*) 

o* ] + ro H(n*) 

Let v
0
Q'(n*) + FR0*G(n*) + !* H(n*) _ 

0 

o* (bVO - dFRo* + m r) f(n*) 
0 

and n = 7 

where b d m are numerical constants. Then 

(6) 

(7) 

4>0 - 0.016y [1 + 12·1n :: ]~ + (bv"0 - dFR6, + m ::) f (nil (BJ 

The constants b, d, m and the function f(n) can be determined 

by comparing equation (8) with experimental results. The effect of 

(FR 0*) in equation (8) is so small that only for very severe pressure 

gradients (corresponding to very high S in Reference (3)) is that 

term of any importance. In that case, d is taken as unity. 
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