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Abstract

Detection of Multiple Correlated Time Series and its Application in

Synthetic Aperture Sonar Imagery

Detecting the presence of a common but unknown signal among two or more data

channels is a problem that finds its uses in many applications, including collaborative sensor

networks, geological monitoring of seismic activity, radar, and sonar. Some detection systems

in such situations use decision fusion to combine individual detection decisions into one global

decision. However, this detection paradigm can be sub-optimal as local decisions are based

on the perspective of a single sensory system. Thus, methods that capture the coherent or

mutual information among multiple data sets are needed. This work considers the problem of

testing for the independence among multiple (≥ 2) random vectors. The solution is attained

by considering a Generalized Likelihood Ratio Test (GLRT) that tests the null hypothesis

that the composite covariance matrix of the channels, a matrix containing all inter and intra-

channel second-order information, is block-diagonal. The test statistic becomes a generalized

Hadamard ratio given by the ratio of the determinant of the estimate of this composite

covariance matrix over the product of the determinant of its diagonal blocks.

One important question in the practical application of any likelihood ratio test is the

values of the test statistic needed to achieve sufficient evidence in support of the decision to

reject the null hypothesis. To gain some understanding of the false alarm probability or size

of the test for the generalized Hadamard ratio, we employ the theory of Gram determinants

to show that the likelihood ratio can be written as a product of ratios of the squared residual

from two linear prediction problems. This expression for the likelihood ratio leads quite sim-

ply to the fact that the generalized Hadamard ratio is stochastically equivalent to a product
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of independently distributed beta random variables under the null hypothesis. Asymptot-

ically, the scaled logarithm of the generalized Hadamard ratio converges in distribution to

a chi-squared random variable as the number of samples used to estimate the composite

covariance matrix grows large. The degrees of freedom for this chi-squared distribution are

closely related to the dimensions of the parameter spaces considered in the development of

the GLRT. Studies of this asymptotic distribution seem to indicate, however, that the rate

of convergence is particularly slow for all but the simplest of problems and may therefore

lack practicality. For this reason, we consider the use of saddlepoint approximations as a

practical alternative for this problem. This leads to methods that can be used to determine

the threshold needed to approximately achieve a desired false alarm probability.

We next turn our attention to an alternative implementation of the generalized Hadamard

ratio for 2-dimensional wide-sense stationary random processes. Although the true GLRT for

this problem would impose a Toeplitz structure (more specifically, a Toeplitz-block-Toeplitz

structure) on the estimate of the composite covariance matrix, an intractable problem with

no closed-form solution, the asymptotic theory of large Toeplitz matrices shows that the

generalized Hadamard ratio converges to a broadband coherence statistic as the size of the

composite covariance matrix grows large. Although an asymptotic result, simulations of

several applications show that even finite dimensional implementations of the broadband

coherence statistic can provide a significant improvement in detection performance. This

improvement in performance is most likely attributed to the fact that, by constraining the

model to incorporate stationarity, we have alleviated some of the difficulties associated with

estimating highly parameterized models. Although more generally applicable, the uncon-

strained covariance estimates used in the generalized Hadamard ratio require the estimation

of a much larger number of parameters.
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These methods are then applied to the detection of underwater targets in pairs of high

frequency and broadband sonar images coregistered over the seafloor. This is a difficult

problem due to various factors such as variations in the operating and environmental con-

ditions, presence of spatially varying clutter, and variations in target shapes, compositions,

and orientation. A comprehensive study of these methods is conducted using three sonar im-

agery datasets. The first two datasets are actual images of objects lying on the seafloor and

are collected at different geographical locations with the environments from each presenting

unique challenges. These two datasets will be used to demonstrate the usefulness of results

pertaining to the null distribution of the generalized Hadamard ratio and to study the effects

different clutter environments can have on its applicability. They are also used to compare

the performance of the broadband coherence detector to several alternative detection tech-

niques. The third dataset used in these studies contains actual images of the seafloor with

synthetically generated targets of different geometrical shapes inserted into the images. The

primary purpose of this dataset is to study the proposed detection technique’s robustness

to deviations from coregistration which may occur in practice due to the disparities in high

frequency and broadband sonar. Using the results of this section, we will show that the

fundamental principle of detecting underwater targets using coherence-based approaches is

itself a very useful solution for this problem and that the broadband coherence statistic is

adequately adept at achieving this.
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CHAPTER 1

Introduction

1.1. Problem Statement and Motivations

Detecting the presence of a common but unknown signal among two or more data channels

is a problem that finds its uses in many applications, including collaborative sensor networks

[1], geological monitoring of seismic activity [2], radar [3], and sonar [4]. Distributed sensor

networks consisting of spatially distributed sensors to monitor physical or environmental

conditions offer a solution to overcome the shortcomings possibly encountered in single sensor

situations by collecting observations at several distinct locations. Some detection systems

in such situations use decision fusion [5] to combine individual detection decisions into one

global decision. However, this detection paradigm can be sub-optimal as local decisions

are based on the perspective of a single sensory system and fail to jointly incorporate the

information from multiple sensors. Thus, methods designed without the need to perform

separate detection by capturing the coherent or mutual information among multiple data

sets are needed.

Nonparametric multichannel detection has been recently discussed in [6] and [7]. The

detection methods considered in these works are nonparametric in the sense that they do not

make any a priori assumptions about the signal that may be present in the observations of

each sensor but rather simply looks for high levels of coherence or linear dependence among

the observations from all channels. Here, the assumption is that the presence of a common

signal among all channels will provide a substantial increase in coherence compared to a

situation where each channel contains independent sensor noise.
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An important application where the nonparametric multichannel detection paradigm

discussed in [6] and [7] proves very useful is the detection of underwater targets in multiple

sonar images [8]. This problem is complicated due to various factors such as variations

in operating and environmental conditions, presence of spatially varying clutter, variations

in target shapes, compositions and orientation. Moreover, bottom features such as coral

reefs, sand formations, and vegetation may totally obscure a target or confuse the detection

process. Consequently, there is a need for robust detection methods that jointly incorporates

the information from multiple sonar images, maintains high performance in varying operating

and environmental conditions, and works well given the great variety in target conditions that

can be observed for this problem. Given the wide variation in both target and environmental

conditions, detection methods such as those developed in [6] and [7] which simply look for

high levels of coherence among multiple sonar images, as opposed to those that rely on

specific models (e.g. matched filtering), can in some cases be desirable.

In this dissertation, we address several aspects of the detection problem considered in

[7] and apply the results to the problem of underwater target detection in pairs of high

frequency (HF) and broadband (BB) sonar images coregistered over the seafloor. Although

the detection problem in [7] leads to a very simple test statistic that is easily computable,

often times the most difficult part of hypothesis testing lies not so much in deriving the

appropriate criteria but rather in finding its exact distribution when the hypotheses are

true and identifying the threshold needed to achieve a given false alarm probability. For

this reason, one of the main subjects of this dissertation is the null distribution of the test

statistic that arises from this analysis and the development of several methods that can be

used to determine such a threshold. This extends the result in [6] to the case of temporally

correlated time series and makes it possible to set thresholds for false alarm control. The
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second problem considered in this dissertation is the development of efficient test statistics for

2-dimensional wide-sense stationarity (WSS). Here, the goal is the development of methods

that exploit the inherent Toeplitz-block-Toeplitz structure of a composite covariance matrix

when the data is truly WSS. This extends the frequency domain technique developed in [7]

to the frequency/wavenumber domain when each observer employs an array of sensors. The

application of both of these results to underwater target detection among multiple sonar

images is then demonstrated using several real and synthetic sonar imagery datasets.

1.2. Literature Review on Multi-Channel Detection

Considerable research has been devoted to the development of different detection and

classification methodologies to detect and classify underwater objects from single sonar im-

agery. For instance, in [9] – [11] the authors utilize a matched filter to identify regions in the

image that match a template designed to capture the general behavior of targets lying on the

seafloor. Recently, however, multi-sensor detection and classification has been considered for

this problem. One such work that has looked at underwater target classification from mul-

tiple sonar images is given in [12] and [13], where three different sonar images with varying

frequency and bandwidth characteristics were used. The classification on each image is done

using a multistage classification approach, which entails a repeated application of a classifier.

During the training stage, it is determined how many times to apply the classifier and an

optimal subset of features are extracted. Each stage of the classifier results in a reduction

in the number of false alarms. The final classification decision is made by a fusion of the

three classification results from the three different sonar images. Although this work uses

disparate sonar systems (with disparateness in the operating frequency of the sonar), the
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classifier of this method processes each image individually and does not use the information

contained in the three images simultaneously to make classification calls.

Many of the methods considered in this work can be related in one way or another to

Canonical Correlation Analysis (CCA) [14] which is a well-established method of analyzing

the linear dependence among two datasets. The canonical coordinate decomposition method

not only determines linear dependence or coherence between two data channels but also ex-

tracts, via the canonical coordinates, a subset of the most coherent features for detection

and classification purposes. The CCA method has shown great promise in underwater tar-

get classification problems using sonar backscatter using data collected by the buried object

scanning sonar (BOSS) system [15], [16]. The work in these references presented a multi-

ping classification system that extracts coherence-based features from blocks of range cells

of time series associated with two sonar returns with single ping separation. These coher-

ence patterns were shown to be different for pairs of pings that contain mine-like objects

than those that contain non-mine-like objects. The canonical correlations that capture the

coherence patterns [15] were shown to have high discriminatory power for both detection

and classification.

The CCA technique was employed in [17] as an alternative to the decision fusion tech-

niques developed in [12] and [13] by forming a dual disparate detector in which detection

decisions are based on the amount of coherent information shared among pairs of coregistered

Regions of Interest (ROIs) from two different sonar images. This dual disparate detector is

then applied to a distributed detection framework [17] and is shown to exhibit high perfor-

mance with a low false alarm rate and high probability of detection. However, this work

considered the fusion of several independent dual-channel detection problems to incorporate

multiple sonar images. To fully incorporate the mutual information from multiple (≥ 2)
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sonar images, the dual-channel CCA-based detector was extended in [8] to multiple sonar

images by employing Multichannel Coherence Analysis (MCA) [18] which can be seen as a

natural extension of CCA to more than two channels. In this work, the standard Gauss-

Gauss detector was cast into the MCA coordinate system and used to detect targets by

looking at the amount of coherent information shared among coregistered ROIs in sonar im-

ages corresponding to different frequency bands. In [8], the performance of the MCA-based

detector to a different choice in the number of sonar images was studied and the detector

shown to be an adequate solution for this problem.

Multichannel detection has been considered in [6], [7], and [19]. In [6], a geometric ap-

proach to multi-channel detection is proposed by defining the generalized coherence (GC)

among multiple channels, which is shown to be a natural extension of the magnitude-squared

coherence (MSC) for more than two channels. Under the assumption that the observations

from each channel contain white, complex normal noise, the authors derived closed-form

expressions for the null distributions of both the MSC and three-channel GC measures. This

leads to a recursive formulation for finding the null distribution as one adds additional chan-

nels. In [4], the GC detector was applied to the problem of detecting a common signal among

multiple channels containing deep ocean noise. A similar technique was considered in [19]

by forming a Generalized Likelihood Ratio Test (GLRT) [20] and using the assumption that

observations are zero-mean, complex normal random vectors. Given multiple independent

realizations of this random vector, the GLRT involves testing whether the sample covariance

matrix has diagonal structure under the null hypothesis versus any arbitrary, positive-definite

(PD) covariance structure under the alternative. In both [6] and [19], the detection statistic

applies to temporally white but spatially correlated Gaussian sequences, and is given by the
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determinant of the sample covariance matrix over the product of its diagonal elements, i.e.

a Hadamard ratio.

The work in [6] and [19] was recently extended in [7] by considering the detection of

both spatially and temporally correlated time series. Given multiple independent realiza-

tions of a vector-valued time series, the GLRT of [7] tests whether or not the space-time

covariance matrix is block-diagonal. The GLRT is a generalized Hadamard ratio involving

the sample covariance matrix. Assuming temporally wide-sense stationary processes, and

allowing the length of each time series to grow large, the test statistic is shown to be a

function of frequency-dependent Hadamard ratios for narrowband cross spectral matrices.

At each frequency this Hadamard ratio is a narrowband coherence statistic that measures

linear dependence among the time series at that frequency. The log of each such narrow-

band coherence is integrated over the Nyquist band to produce the broadband coherence

statistic. This GLRT is shown to exhibit many appealing properties including invariance to

channel-by-channel filtering, a connection to mutual information for WSS Gaussian random

processes, as well as providing a generalization of the MSC spectrum for more than two

channels [7].

1.3. Research Objectives

The goal of the research in this dissertation is to address two aspects of a GLRT that

tests for the independence among multiple random vectors and to study its application to

the problem of underwater target detection in pairs of HF and BB images coregistered over

the seafloor. The ultimate goal of this work is the development of a detection technique that

jointly incorporates the information from multiple sonar images, maintains high performance

in varying operating and environmental conditions, and works well given the great variability
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in target conditions that can be observed for this problem. Due to this wide variation in

both target and environmental conditions, detection methods that take advantage of general

discriminative features in the data, as opposed to those that rely on specific models, can in

some cases be desirable. Such is the case for the solution presented here where the detection

principle simply relies on the assumption that the presence of targets in coregistered sonar

images will lead to a higher degree of coherence than when those images contain background

alone. Posing the problem as a test of independence, the GLRT relies on the computation

of a test statistic known as a generalized Hadamard ratio [7].

However, one of the questions that arises in the practical implementation of any likeli-

hood ratio test is the appropriate selection of thresholds. When setting this threshold to

achieve a given false alarm probability, an understanding of the likelihood ratio’s probabilis-

tic behavior under the null hypothesis is needed and this is thus one of the main subjects of

this dissertation. Using the theory of Gram determinants [21], we will show that the gen-

eralized Hadamard ratio can be written as a product of ratios of the squared residual from

two linear least-squares problems, each of which is independently beta distributed under the

null hypothesis. Once this stochastic representation is established, it becomes straightfor-

ward to derive various attributes of the null distribution of this test statistic including its

moments, characteristic function, and cumulant generating function. Asymptotically, this

random variable’s characteristic function is shown to converge to that of a chi-squared ran-

dom variable giving one a very simple way of determining thresholds that approximately

achieve a given false alarm probability when the situation applies. Results immediately sug-

gest, however, that the distribution is slow to converge. For this reason, we consider the

use of saddlepoint approximations [22] which prove to be a practical alternative to finding

thresholds that achieve a given false alarm probability in small sample support scenarios.
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The second topic of this dissertation is an alternative implementation of the generalized

Hadamard ratio for wide-sense stationary (WSS) random processes. The goal of this portion

of the dissertation is the development of methods that exploit the inherent Toeplitz-block-

Toeplitz structure of a composite covariance matrix when the data is truly WSS. Although

the true GLRT for this problem would impose this Toeplitz structure on the estimate of

the composite covariance matrix, this is an intractable problem with no closed-form solu-

tion. The asymptotic theory of large Toeplitz matrices, however, is well understood [23]

and leads to very tractable results involving the eigenvalues, multiplication, and inversion

of large Toeplitz matrices. Using this asymptotic theory, the generalized Hadamard ratio

converges to the broadband integral of a narrowband Hadamard ratio of cross-spectral ma-

trices, a test statistic referred to as broadband coherence. Although an asymptotic result,

simulations of several applications where this test statistic may apply demonstrate that even

finite-dimensional implementations of the broadband coherence statistic can bring substan-

tial improvements in performance.

The final objective of this dissertation is to test the methods developed here on three

datasets of sonar images containing both real and synthetically generated targets. The

first two datasets were collected at different geographical locations and consist of different

environments with each presenting unique challenges and difficulties. These two datasets,

which contain images of actual objects lying on the seafloor, are first used to not only

demonstrate the usefulness of the null distribution of the GLRT to this application but

also to study how different environments affect its applicability. The third dataset contains

actual images of the seafloor with synthetically generated targets of different geometrical

shapes inserted into the image. This dataset is used to study how a lack of coregistration

among the HF and BB images can affect the detectability of the proposed coherence-based
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methods. The two real sonar datasets are then once again used to evaluate the performance of

the broadband coherence statistic and to compare its performance with several alternatives

including the generalized Hadamard ratio and a matched subspace detector designed to

specifically look for the highlight and shadow characteristics typically associated with targets

lying on the seafloor.

1.4. Organization of the Dissertation

This dissertation is organized as follows. Chapter 2 gives a brief review of binary hypoth-

esis testing and detection using the Generalized Likelihood Ratio Test. Using this theory, we

then review the development of the GLRT for multichannel detection and discuss several of

its properties and implications. Chapter 3 presents the null distribution of the multichannel

GLRT and discusses its asymptotic form as the number of samples used to form maxi-

mum likelihood estimators grows large. Chapter 4 presents an alternative method of finding

closed-form approximations of the likelihood ratio’s null distribution using the saddlepoint

technique. Chapter 5 then extends the multichannel GLRT to 2-dimensional wide-sense sta-

tionary observations and presents results using several simulations. Chapter 6 applies the

theoretical developments presented in the dissertation to the problem of detecting the pres-

ence of underwater targets in pairs of high-frequency and broadband sonar images and gives

a comprehensive study of the effectiveness of the proposed methods by presenting results on

several sonar imagery datasets. Finally, Chapter 7 concludes the studies carried out in this

research and discusses the goals for future work.
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CHAPTER 2

Development of the GLRT for Multichannel

Detection

2.1. Introduction

Detection problems can be simply described as deciding which of a set of candidate

models most accurately describes or is most consistent with a set of measurements we have

collected. This is easily cast into the framework of statistical hypothesis testing, the most

basic being the binary hypothesis test where one must decide only among two competing

models. This decision paradigm establishes a dichotomy in the parametric description of

our observation in the form of a null (typically noise alone) and alternative (typically signal

plus noise) hypothesis. If this parametric characterization is completely specified under

both models, the Neyman-Pearson lemma [21] confirms intuitive reasoning that the optimal

decision criterion is obtained by comparing likelihoods through the use of a likelihood ratio

test.

In many practical scenarios, however, it can be difficult to ascertain a suitable parametric

description under either one or both hypotheses. Several techniques have been suggested

[20] for such a situation with each being different in how they approach the unknown set of

parameters. The first technique is the Bayesian approach [20] which treats the parameters

as random variables with known probabilistic properties and decides which hypothesis is

in force through the use of Bayes factors. The more common approach is the generalized

likelihood ratio test (GLRT) [20] which treats the parameters as unknown but deterministic

quantities, replaces them with their maximum likelihood (ML) estimates under each model,

and selects the hypothesis by conducting a likelihood ratio test.
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The GLRT is subsequently employed for the detection of coherence among L ≥ 2 tem-

porally correlated time series. The methods developed in this section will be used later for

the purposes of detecting underwater targets in pairs (L = 2) of coregistered sonar images.

Under the assumption that these time series are zero mean, complex normal random vec-

tors, their joint distribution is completely specified by a space-time covariance matrix that

captures all spatiotemporal second-order information. The objective of the analysis is to

determine whether the data channels contain a common but unknown signal by looking for

high levels of spatial correlation. Posing the problem as a test of independence among all

L channels boils down to testing the null hypothesis that the space-time covariance ma-

trix is block-diagonal through the use of a generalized Hadamard ratio [7]. This likelihood

ratio exhibits many appealing properties including invariance to different classes of linear

transformations and connections to Canonical Correlation Analysis (CCA).

The outline of this chapter is as follows. Section 2.2 gives a brief review of binary hypoth-

esis testing to provide some background to the methods employed in the later sections of

this chapter. Section 2.3 subsequently discusses the hypothesis test considered for this mul-

tichannel detection problem, develops the likelihood ratio used in the GLRT, and discusses

several properties and implications of the likelihood ratio statistic. Concluding remarks are

then given in Section 2.4.

2.2. Binary Hypothesis Testing - A Review

In this section, a brief review of detection theory (or hypothesis testing) is given so as

to provide some background into the methods developed in Section 2.3. A more detailed

treatment of this subject can be found in [20] – [24]. A binary hypothesis test is a method
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of deciding which of two candidate models most accurately describes a set of collected mea-

surements. The measurement x ∈ X is taken from the vector space X and is assumed to

be a real or complex-valued random vector distributed according to the probability density

function (PDF) f(x;θ). The values in the vector θ parameterize this distribution and are

assumed to be taken from some parameter space Θ. This space is partitioned into two

disjoint subsets Θ = Θ0 ∪ Θ1 with Θ0 containing the parameters associated with the null

hypothesis H0 and Θ1 containing those associated with the alternative hypothesis H1. If the

set Θi is a singleton set containing only one element, the hypothesis Hi is said to be simple

otherwise Hi is said to be composite. Our goal is simply to decide which of these two subsets

the unknown parameter vector θ belongs to given the measurement x. Stated succinctly, we

consider the binary hypothesis test

H0 : θ ∈ Θ0

H1 : θ ∈ Θ1

To make these formal statements more concrete, suppose that the vector x = [x1 · · · xM ]T ∈

RM is a vector of iid samples of a scalar normal distribution with unknown mean µ and known

variance σ2, i.e. xi
iid∼ N(µ, σ2). With θ = µ the unknown parameter in this example, the

vector x has PDF

f(x;µ) =
1

(2πσ2)M/2
exp

{
− 1

2σ2
||x− µ1M ||2

}
with 1M denoting an M -dimensional vector of ones. Table 2.1 gives several examples of

different classes of binary hypothesis tests that might be considered under this model and

the parameter space Θ associated with each.
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Table 2.1. Several examples of different classes of binary hypothesis tests for
a scalar distribution with unknown mean.

Simple Simple Composite
vs. vs. vs.

Simple Composite Composite

H0 : µ = 0
H1 : µ = 1

H0 : µ = 0
H1 : µ 6= 0

H0 : µ ≤ 0
H1 : µ > 0

Θ = {0, 1}
Θ0 = {0}
Θ1 = {1}

Θ = R
Θ0 = {0}

Θ1 = (−∞, 0) ∪ (0,∞)

Θ = R
Θ0 = (−∞, 0]
Θ1 = (0,∞)

To make a decision as to which hypothesis is in force, we can construct the arbitrary

decision function φ(x)

φ(x) =


1 ∼ H1 x ∈ R

0 ∼ H0 x ∈ A

with X = A ∪ R. Stated in words, our decision is to accept the null hypothesis H0 if our

measurement falls within the “acceptance” region A or to reject it in favor of the alternative

H1 if the measurement falls within the “rejection” region R. The trick is then to define these

regions according to an appropriate optimization criterion.

If both the null and alternative hypotheses are simple so that Θ = {θ0,θ1}, our intuition

tells us to reject the null hypothesis in favor of H1 if the likelihood of observing x under H1,

f(x;θ1), is large relative to that under H0, f(x;θ0). In other words, we should base our

decision on the likelihood ratio test

Λ(x) =
f(x;θ1)

f(x;θ0)

H1

≷
H0

λ (1)

for some λ ≥ 0. The Neyman-Pearson lemma [24], [21] establishes that this is in fact optimal

in the sense that, of all the test functions φ(·) that exhibit the same false alarm probability

(probability of incorrectly accepting H1), the likelihood ratio test is the one that maximizes

the probability of detection (probability of correctly accepting H1).
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1+ 2 ln

1+ 2 ln

Figure 2.1. Acceptance and rejection regions when testing µ = 0 versus
µ = 1 with two iid normal random variables.

The likelihood ratio test is also very convenient in that it implicitly tells us how to

construct the regions A and R in the measurement space. To see this, let’s go back to the

example considered earlier in this section involving iid scalar normal random variables along

with the hypothesis test given in the left column of Table 2.1. Noting that the logarithm is

monotone increasing and will thus not change the outcome of the test, we choose to reject

the null hypothesis in favor of H1 whenever the following inequality is satisfied

ln Λ(x) = ln
f(x;µ = 1)

f(x;µ = 0)
=

1

2σ2

(
||x||2 − ||x− 1M ||2

)
> lnλ

If M = 2 so that x = [x1 x2]T ∈ R2, the inequality can be rewritten as

x1 + x2 > 1 + σ2 lnλ

which describes the set of points lying to the right of a linear hyperplane that lies orthogonal

to the vector 12 as depicted in Figure 2.1.
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Although a very powerful and convenient result, it is often times difficult to implement

the Neyman-Pearson lemma in practice as the PDF f(x;θ) may not be completely known

under one or both hypotheses due to uncertainties in θ. Such is the case in radar/sonar where

the return from a target will be delayed and attenuated as the signal propagates through the

medium resulting in an unknown arrival time and amplitude. Composite hypothesis tests

therefore arise as a manifestation of our lack of a priori knowledge in the vector θ.

Two general approaches have been considered when dealing with composite hypothesis

testing with each differing in how they philosophically treat the unknown vector θ. The first

approach relies on Bayesian inference [20] by treating the unknown vector θi as a random

vector distributed according to the prior PDF f(θi) which probabilistically captures our

uncertainty in θi. With these assumptions, the marginal PDF of the measurement

f(x) =

∫
f(x|θ)f(θ)dθ

is completely specified, no longer dependent on the vector θ. In accordance with the Neyman-

Pearson lemma, the optimal test is

Λ(x) =

∫
f(x|θ1)f(θ1)dθ1∫
f(x|θ0)f(θ0)dθ0

H1

≷
H0

λ

which is simply a ratio of likelihoods averaged over the appropriate prior PDF f(θi). The

ratio given in this expression is often times referred to as the Bayes factor [25]. The Bayesian

approach, however, can still be fairly difficult to implement in practice as the probabilistic

characteristics of the parameters must be known a priori and the need for multidimensional

integration in the construction of the likelihood ratio for vector-valued parameters.
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The more common approach to composite hypothesis testing is the generalized likelihood

ratio test (GLRT) [20] which treats θ as deterministic but unknown and replaces it with the

value that is most likely under each hypothesis. That is, the GLRT asks us to produce ML

estimates of the parameters under each hypothesis

θ̂1 = arg max
θ∈Θ1

f(x;θ)

θ̂0 = arg max
θ∈Θ0

f(x;θ)

and construct the following likelihood ratio test

ΛG(x) =
max
θ∈Θ1

f(x;θ)

max
θ∈Θ0

f(x;θ)
=
f(x; θ̂1)

f(x; θ̂0)

H1

≷
H0

λ

Note that if Θ1 and Θ0 are both singleton sets corresponding to simple hypotheses, then the

expression given above reverts back the test given in (1), hence the term “generalized” in

GLRT. While no notion of optimality can be ascribed to the GLRT in general, it seems to

perform fairly well in practice. It is also conceptually very intuitive and simple to implement,

the only possible difficulty arising from finding closed-form solutions for the ML estimator.

Although subtly different from the expression of the GLRT given above, it is very common

[26] to express the problem as a nested set of hypotheses and to consider the following

likelihood ratio test as an alternative

ΛG(x) =
max
θ∈Θ0

f(x;θ)

max
θ∈Θ

f(x;θ)

H0

≷
H1

γ (2)

for some 0 ≤ γ ≤ 1. In this expression, the likelihood ratio is simply the likelihood of the best

model under the null hypothesis (maximizes likelihood over Θ0) normalized by the likelihood

of the best model overall (maximizes likelihood over Θ = Θ1 ∪ Θ0). As a consequence, it
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Figure 2.2. In many cases, the random vector xi represents the collection of
a length N time series at one sensor location.

intuitively follows that the likelihood ratio given in (2) satisfies the following inequality

0 ≤
max
θ∈Θ0

f(x;θ)

max
θ∈Θ

f(x;θ)
≤ 1

The test statistic given in (2) will be employed in the next section for the purposes of

multichannel detection.

2.3. Multichannel GLRT

Detecting the presence of a common but unknown signal among multiple channels is a

problem that finds its uses in many applications, including collaborative sensor networks [1],

geological monitoring of seismic activity [2], radar [3], and sonar [4]. Consider the setup

shown in Figure 2.2 consisting of L spatially distributed sensors and define the random

vector xi = [xi[0] · · · xi[N − 1]]T ∈ CN to be the length N time series captured at sensor

i. Assuming the collection of random vectors {xi}Li=1 to be zero mean, the composite vector
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z =
[
xT1 · · · xTL

]T ∈ CLN has covariance matrix

R = E
[
zzH

]
=



R11 R12 · · · R1L

RH
12 R22 · · · R2L

...
...

. . .
...

RH
1L RH

2L · · · RLL


∈ CLN×LN (3)

with Rik = RH
ki = E

[
xix

H
k

]
∈ CN×N . This matrix not only characterizes the second-order

information for each channel individually via Rii but also captures the interdependence

between every pair of channels via Rik for all i 6= k.

Without making any a priori assumption about the signal observed by each sensor, one

very intuitive way of determining if a common signal exists among all L channels is to test

for deviations from statistical independence. If the set of random vectors {xi}Li=1 is jointly

proper complex normal [27], testing for independence among all L channels boils down to

testing whether or not the covariance matrix R is block-diagonal. Casting this problem into

the standard inference framework, we consider the hypothesis test,

H0 : R ∈ R0

H1 : R ∈ R , (4)

with R denoting the set of all PD Hermitian matrices and R0 denoting the set of all matrices

in R which are block-diagonal. Thus, we wish to test the null hypothesis that all L channels

are spatially uncorrelated yet possibly temporally correlated versus the alternative that they

are both spatially and temporally correlated. In the context of Section 2.2, the parameter
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vector θ represents the covariance matrix R, the parameter space Θ corresponds to the set

R, and Θ0 represents the set R0.

We now assume we are given an experiment producingM ≥ LN iid realizations {xi[m]}Mm=1

of the random vector from each channel i, where

xi[m] = [xi[0,m] · · · xi[N − 1,m]]T ∈ CN

The composite vectors z[m] =
[
xT1 [m] · · ·xTL[m]

]T
are organized into a data matrix Z:

Z = [z[1] · · · z[M ]] =


x1[1] · · · x1[M ]

...
. . .

...

xL[1] · · · xL[M ]

 ∈ CLN×M (5)

The probability density function (PDF) of Z is

f(Z;R) =
M∏
m=1

f (z[m];R) =
1

πLNMdet (R)M
exp

{
−Mtr

(
R−1R̂

)}

In this expression R̂ is the estimated composite covariance matrix

R̂ =
1

M
ZZH =

1

M

M∑
m=1

z[m]zH [m] =



R̂11 R̂12 · · · R̂1L

R̂H
12 R̂22 · · · R̂2L

...
...

. . .
...

R̂H
1L R̂H

2L · · · R̂LL


and R̂ik is an M sample estimate of the N ×N cross-covariance matrix Rik.

As described in Section 2.2, the first step in computing the GLRT is to derive ML

estimators for the matrix R. Noting that the function 1
M

lnx + LN ln π is monotonically
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increasing and will not affect our answer, one arrives at the following log-likelihood function

`(R) =
1

M
ln f(Z;R) + LN lnπ = − ln det(R)− tr(R−1R̂)

Using identities concerning the derivative of the determinant and trace of a PD Hermitian

matrix, namely d ln det(R)
dR

= R−1 and d tr(R−1R̂)
dR

= −R−1R̂R−1, taking the derivative of this

expression with respect to R and setting it equal to zero yields

d`(R)

dR
= −R−1 +R−1R̂R−1 = OLN ⇒ R = R̂

where OLN represents an LN × LN matrix of zeros. In other words, the unconstrained ML

estimate of R is simply the estimated composite covariance matrix R̂

R̂ = arg max
R∈R

f(Z;R)

Under the constraint that R = D = blkdiag {R11, . . . , RLL} ∈ R0, the log-likelihood function

becomes

`(D) = −
L∑
i=1

ln det(Rii)−
L∑
i=1

tr(R−1
ii R̂ii)

In a manner very similar to before, we may take the partial derivative of this expression with

respect to Rii and set it equal to zero

∂`(D)

∂Rii

= −R−1
ii +R−1

ii R̂iiR
−1
ii = ON ⇒ Rii = R̂ii
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In other words, the ML estimate of the N×N matrix Rii is simply the corresponding N×N

diagonal block of R̂ so that

D̂ = blkdiag
{
R̂11, . . . , R̂LL

}
= arg max

R∈R0

f(Z;R)

Using these ML estimators, the Mth-root of the likelihood ratio given in (2) becomes

Λ =

max
R∈R0

f(Z;R)

max
R∈R

f(Z;R)

1/M

=

(
f(Z; D̂)

f(Z; R̂)

)1/M

=
det R̂

detD̂
exp

{
tr
[
R̂(R̂−1 − D̂−1)

]}
=

det R̂

detD̂
=

det R̂∏L
i=1 det R̂ii

= det Ĉ (6)

where Ĉ = D̂−1/2R̂D̂−H/2 is referred to as the coherence matrix [7] as it measures the cross-

correlation between the “whitened” random vectors R̂
−1/2
ii xi for i = 1, . . . , L. Note that in

developing the expression given in (6), we have used the fact that

exp
{

tr
[
R̂
(
R̂−1 − D̂−1

)]}
= exp {LN − LN} = 1

The likelihood ratio given in (6) is referred to as a generalized Hadamard ratio in [7] to

differentiate it from the Hadamard ratio [28] representing the determinant of a covariance

matrix over the product of its diagonal elements.

2.3.1. Invariance Properties of the Multichannel GLRT. Many inference prob-

lems in statistics possess inherent symmetry or invariance properties that quite naturally

impose restrictions on the possible procedures that should be used. As a simple motivating

example, suppose that x = [x1 x2]T ∈ C2 is a zero-mean, proper complex normal random
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vector. Given M samples of this vector, x[m] for m = 1, . . . ,M , consider the problem of

estimating the population correlation coefficient

ρ =
E[x1x

∗
2]√

E[|x1|2]E[|x2|2]

The correlation coefficient ρ is itself unchanged by, or is invariant under, the transformation

x̃ =

 x̃1

x̃2

 =

 t1 0

0 t2


 x1

x2


for any real-valued, strictly positive values of t1 and t2. If the statistic φ (x[1], . . . ,x[M ])

is to be used as an estimate of ρ, then it makes sense to restrict our attention to those

estimators that exhibit the same invariance property, i.e. the set of estimators φ(·) such that

φ (x[1], . . . ,x[M ]) = φ (x̃[1], . . . , x̃[M ]), since both sides of this equality are estimating the

same quantity. The sample correlation coefficient

ρ̂ =

∑M
m=1 x1[m]x∗2[m]√(∑M

m=1 |x1[m]|2
)(∑M

m=1 |x2[m]|2
)

is an example of such an estimator.

The same argument holds true for many hypothesis testing problems where there is often a

natural group of transformations with respect to which a specific testing problem is invariant.

It is sensible in these situations to restrict our attention to the class of invariant tests, i.e.

tests based on statistics that are invariant under this group of transformations. Turning our

attention to the multichannel problem once again, the hypothesis testing problem in (4) and

the likelihood ratio statistic in (6) are invariant under the transformation z̃ = Tz for certain

classes of matrix T . If we denote the estimated composite covariance matrix of the original
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data vector z as R̂(z), then it is easy to see that the new data vector z̃ will have the estimate

R̂(z̃) =
1

M

M∑
m=1

Tz[m]zH [m]TH = T

(
1

M

M∑
m=1

z[m]zH [m]

)
TH = TR̂(z)TH

Two examples of such linear transformations are given below.

(i) Invertible Block-Diagonal Matrices

The set of all matrices T such that T = blkdiag {T1, . . . , TL} with Ti any N×N invertible

matrix. Substituting the matrix R̂(z̃) into the expression given in (6) and recalling properties

of the determinant, it is straightforward to see that the likelihood ratio remains invariant

det
(
R̂(z̃)

)
∏L

i=1 det
(
R̂

(z̃)
ii

) =
det
(
R̂(z)

)∏L
i=1 det (Ti)

2[∏L
i=1 det

(
R̂

(z)
ii

)] [∏L
i=1 det (Ti)

2
] =

det
(
R̂(z)

)
∏L

i=1 det
(
R̂

(z)
ii

)
This invariance property was noted in [7] and shows us that there exists no channel-by-

channel invertible linear transformation, including scaling and filtering, that moves a covari-

ance from H0 to H1 or vice versa. One of the practical implications of this property is that

it guarantees that the result of the test will be independent of the basis or coordinate system

used to measure and interpret the data. This fact will be used in Section 3.3 where we will

analyze the data in a coordinate system where each channel is white by setting Ti = R
−1/2
ii .

It will also be used in Section 5.3 where we will analyze the data in the frequency domain

by setting Ti = FN with FN denoting an N ×N DFT matrix.

23



(ii) Block-Permutation Matrices

The set of all matrices T such that T = P ⊗ IN with P any L× L permutation matrix.

To see that the likelihood ratio is invariant to this type of linear transformation, we can first

of all note that, for any n × n matrix A and any m ×m matrix B, the matrix A ⊗ B has

determinant det(A ⊗ B) = det(A)mdet(B)n. Using this property of the Kronecker product

along with the fact that permutation matrices are orthogonal (det(P ) = ±1), it is easy to

see that the determinant in the numerator of the likelihood ratio remains unchanged

det
(
R̂(z̃)

)
= det(P )2Ndet(IN)2Ldet

(
R̂(z)

)
= det

(
R̂(z)

)

In the denominator of the likelihood ratio, the linear operator T = P ⊗ IN only serves to

change the order in which terms are multiplied. However, as multiplication is commutative,

it follows that the denominator of the likelihood ratio remains unchanged as well. The

importance of this invariance property is that it gaurantees that the ordering in channel

index will have no influence on the result of the test.

2.3.2. Geometry of the GLRT. To get some notion of the geometry of the parameter

spaces R and R0 for this problem, we can consider the special case of real data with L = 2

channels and a length N = 1 time series, i.e. z = [x1 x2]T ∈ R2. In this case, the covariance

matrix R can be described as a point r ∈ R3

R =

 σ2
11 σ2

12

σ2
12 σ2

22

⇔ r =


σ2

11

σ2
22

σ2
12
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Figure 2.3. Geometry of the parameter spaces R and R0 in R3.

Note that we are interested in R3 and not R4 as the matrix R is symmetric, i.e. one of the two

off-diagonal variables is redundant. The set of points with σ2
11, σ

2
22 > 0 and |σ2

12| =
√
σ2

11σ
2
22

describes the convex cone of positive semidefinite matrices. The parameter spaceR therefore

corresponds to the set of points that strictly lie within this cone

R =

{
(σ2

11, σ
2
22, σ

2
12) : σ2

11 > 0, σ2
22 > 0,

∣∣σ2
12

∣∣ <√σ2
11σ

2
22

}

while R0 is a 2 dimensional plane that bisects this cone

R0 =
{

(σ2
11, σ

2
22, σ

2
12) : σ2

11 > 0, σ2
22 > 0, σ2

12 = 0
}
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The geometry of these two sets is depicted in Figure 2.3.

Upon identifying the most likely estimate of the composite covariance matrix R̂, the

GLRT tells us to find D̂ by simply taking the matrix R̂ and setting it’s off-diagonal elements

equal to zero, i.e. σ̂2
12 = 0. As depicted in Figure 2.3, this process corresponds to orthogonally

projecting the point R̂ into the subspace R0. In fact, it isn’t difficult to see that, in general,

D̂ satisfies the principle of orthogonality. That is, for any D = blkdiag {R11, . . . , RLL} ∈ R0

〈
R̂− D̂,D

〉
= tr

[
D
(
R̂− D̂

)]

= tr





R11 0 · · · 0

0 R22 · · · 0

...
...

. . .
...

0 0 · · · RLL





0 R̂12 · · · R̂1L

R̂H
12 0 · · · R̂2L

...
...

. . .
...

R̂H
1L R̂H

2L · · · 0




= 0

So, by simply nulling the off-diagonal blocks of R̂, we have effectively solved the optimization

problem

D̂ = arg min
D∈R0

∣∣∣∣∣∣R̂−D∣∣∣∣∣∣2
F

In addition to being the ML estimator under the null hypothesis, D̂ is also the block-diagonal

matrix, D, which minimizes the Euclidean distance from R̂, i.e. minimizes the Frobenius

norm of the error matrix E = R̂−D.

2.3.3. Connection with Adaptive Canonical Coordinates. Canonical correla-

tion analysis (CCA) [14] is a well-established method of analyzing and interpreting the linear

relationships among two sets of random variables. CCA achieves this by finding linear combi-

nations of each pair of random variables that produces maximum correlation between them.
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Many classical problems in detection [29] and estimation [28] can be posed in the coordinate

system produced by CCA. In fact, the author in [30] notes that “virtually all of the commonly

encountered parametric tests of significance can be treated as special cases of canonical cor-

relation analysis, which is the general procedure for investigating the relationships between

two sets of variables,” and the problem considered here is no exception.

For the time being, consider the two-channel composite observation z =
[
yT xT

]T
with

y ∈ Cm and x ∈ CN . Without any loss in generality, we will assume that N ≤ m. The

covariance matrix of the composite vector z may be decomposed into the product of a lower-

triangular matrix by a block-diagonal matrix by an upper-triangular matrix as follows

Rzz = E
[
zzH

]
=

 Ryy RH
xy

Rxy Rxx

 =

 I 0

W I


 Ryy 0

0 Qxx


 I WH

0 I


The matrices W and Qxx in this expression correspond to the Wiener filter and error covari-

ance matrices [28], respectively, when linearly estimating x from y

W = RxyR
−1
yy ∈ CN×m

and

Qxx = E
[
(x−Wy)(x−Wy)H

]
= Rxx −RxyR

−1
yy R

H
xy ∈ CN×N

From this decomposition, it becomes self-evident that the generalized Hadamard ratio of Rzz

can be written

detRzz

(detRyy) (detRxx)
=

detRyy

detRyy

detQxx

detRxx

=
detQxx

detRxx

This ratio is referred to as a relative filtering volume [28] in that it compares the volume of

the concentration ellipse associated with the a posteriori error êx = x −Wy to that of the
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prior “error” x. Defining the two-channel coherence matrix C = R
−1/2
xx RxyR

−H/2
yy , one may

take its singular value decomposition

C = FK̃GH ; FFH = IN ; GGH = Im

K̃ = [K 0]; K = diag {k1, . . . , kN}

It was shown in [28] that this relative filtering volume can be expressed solely in terms of

the squared canonical correlations, k2
n for n = 1, . . . , N , according to the relationship

detQxx

detRxx

=
N∏
n=1

(
1− k2

n

)
(7)

Given M iid realizations of the vectors x and y, these results extend to the case in which

Rzz is replaced by its sample estimate R̂zz, resulting in a framework referred to in [28] as

adaptive canonical coordinates.

Returning to the multichannel detection problem, let the vector x represent the time

series for the Lth channel, x = xL ∈ CN , and the vector y represent the time series corre-

sponding to channels 1 through L − 1, y = zL−1 =
[
xT1 · · · xTL−1

]T ∈ C(L−1)N . According

to the arguments given above, the determinant of the space-time covariance matrix R in (3)

can be written

detR = (detRzL−1zL−1
)(detQLL)

where RzL−1zL−1
contains all spatiotemporal second-order information for the first L − 1

channels

RzL−1zL−1
=


R11 · · · R1,L−1

...
. . .

...

RH
1,L−1 · · · RL−1,L−1
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andQLL is the error covariance matrix associated with linearly estimating xL from x1, . . . ,xL−1

collectively. Similarly, one may then define x = xL−1 ∈ CN and y = zL−2 =
[
xT1 · · · xTL−1

]T ∈
C(L−2)N to decompose the determinant of RzL−1zL−1

as

detRzL−1zL−1
= (detRzL−2zL−2

)(detQL−1,L−1)

where QL−1,L−1 is the error covariance matrix when estimating xL−1 from x1, . . . ,xL−2.

Proceeding in this manner, it then follows that

detR = detR11

L∏
i=2

detQii

with Qii denoting the error covariance matrix when linearly estimating the time series xi

from x1, . . . ,xi−1. Replacing these matrices with their sample estimates and using (7), this

course-grained filtering procedure shows us that the generalized Hadamard ratio given in (6)

can be written as

det R̂∏L
i=1 det R̂ii

=
det R̂11

det R̂11

L∏
i=2

det Q̂ii

det R̂ii

=
L∏
i=2

N∏
n=1

[
1− k̂2

n(i)
]

where the adaptive canonical correlations k̂2
n(i), n = 1, . . . , N , are found by performing a

two-channel canonical correlation analysis using all M iid copies of the vector xi with the

iid copies of the vector zi−1 =
[
xT1 · · · xTi−1

]T
. The realization of the generalized Hadamard

ratio as an iterated sequence of two-channel CCA problems is depicted in Figure 2.4. The

process starts by measuring the linear dependence between the vectors z1 = x1 and x2

through their squared canonical correlations, k̂2
n(2). These vectors are concatenated to form

the vector z2 =
[
xT1 xT2

]T
and its linear dependence with the new vector x3 is likewise

measured through the squared canonical correlations, k̂2
n(3). Repeating this process until all
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CCA CCA CCA

Figure 2.4. The generalized Hadamard ratio in (6) can be realized as an
iterated sequence of two-channel adaptive CCA problems.

L channels have been incorporated while multiplying the results of each CCA problem all

the way through yields the test statistic Λ. Thus, one can see that the generalized Hadamard

ratio has close connections to measuring coherence using two-channel CCA.

2.4. Conclusion

In this chapter, a general overview of binary hypothesis testing was given. Detection

problems involving binary hypotheses is simply the problem of deciding which of a pair of

competing models is most consistent with a set of collected measurements. If the parametric

description of this measurement is completely specified under both hypotheses, the optimal

test is given by a likelihood ratio test. The GLRT is an extension of this principle to combat

situations where this parametric description may not be completely known under one or

both hypotheses and accomplishes this by substituting parameters with their ML estimate.

The GLRT is then employed for the detection of multiple temporally correlated time

series. The joint probabilistic characteristics of these time series are solely determined by

a space-time covariance matrix which captures all spatiotemporal second-order information.

Testing the null hypothesis that this space-time covariance matrix is block-diagonal, imple-

menting the GLRT results in a likelihood ratio that becomes a generalized Hadamard ratio.
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This likelihood ratio exhibits many appealing properties including invariance to different

classes of linear transformations and connections to Canonical Correlation Analysis (CCA).

The generalized Hadamard ratio will be the subject of much of the upcoming chapters

in this work. In Chapters 3 and 4 we will derive the null distribution and saddlepoint

approximations, respectively, of this test statistic for the purposes of defining thresholds

for achieving a specific false alarm rate. In Chapter 5 we will extend the likelihood ratio

to situations in which the random vector from each channel arises from a 2D wide sense

stationary random process. Finally, in Chapter 6 these methods will be applied for the

purpose of the detection of underwater targets in pairs of synthetic aperture sonar images.
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CHAPTER 3

Null Distribution of the GLRT for Multichannel

Detection

3.1. Introduction

In Chapter 2 we discussed the generalized Hadamard ratio and its manifestation as the

likelihood ratio of a GLRT that tests for linear dependence among a collection of spatially

distributed time series. One important question that arises in the practical application

of this likelihood ratio (and any likelihood ratio test for that matter) is “what values of

this test statistic constitute sufficient evidence in support of the decision to reject the null

hypothesis?” Although the GLRT may be very easy to implement, often times the most

difficult part of hypothesis testing lies not so much in deriving the appropriate criteria but

rather in finding its exact distribution when the hypotheses are true and identifying the

threshold needed to achieve a given false alarm probability. To be able to characterize the

false alarm rate, however, an explicit understanding of the probabilistic behavior of the test

statistic under the null hypothesis is needed.

In this chapter we start by taking a second look at the generalized Hadamard ratio.

Using the theory of Gram determinants, it is shown that this test statistic can be written

as a product of ratios of the squared residual from two linear prediction problems. Geomet-

rical insights into the structure of these ratios leads to the conclusion that, under the null

hypothesis that the space-time covariance matrix R is truly block-diagonal, the generalized

Hadamard ratio is stochastically equivalent to a product of independent but not identically

distributed beta random variables. This stochastic representation makes it clear that the

null distribution of this test is solely dependent on the number of channels (L), the length
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of each time series (N), and the number of samples (M) used to construct the estimated

covariance matrix R̂ but in no way dependent on the second-order temporal characteristics

of each individual channel.

We then turn our attention to applying this result for the purposes of determining thresh-

olds which approximately achieve a desired false alarm probability. Knowing that the null

distribution of the test is statistically equivalent to a product of betas makes it very straight-

forward to derive certain characteristics of this random variable including its moments as

well as the characteristic function of its logarithm. Employing results concerning the as-

ymptotic behavior of the log-gamma function, we begin by showing that, for large M , the

log-likelihood ratio converges in distribution to a chi-squared random variable. Moreover,

the degrees of freedom of this chi-squared distribution can be interpreted in terms of the di-

mensions of the parameter spaces R and R0 considered in the construction of the likelihood

ratio. Both of these results (the fact that the null distribution is asymptotically chi-squared

as well as the interpretation for the degrees of freedom) are in complete agreement with a

well-established result [31] concerning the null distribution of the GLRT in general.

The remainder of this chapter is organized as follows. In Section 3.2, we use the theory

of Gram determinants to demonstrate that the generalized Hadamard ratio can alternatively

be expressed as a product of ratios involving the error from two linear prediction problems.

Building on this result, Section 3.3 shows that the null distribution of the test is statisti-

cally equivalent to a product of beta random variables and demonstrates the result using a

Monte Carlo simulation. This stochastic representation is subsequently employed in Section

3.4 for determining the asymptotic form of the likelihood ratio’s probability distribution.

Concluding remarks are finally given in Section 3.5.
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3.2. The GLRT Revisited

As stated in the preceding section, the goal of this chapter is to develop an understanding

of how the generalized Hadamard ratio given in (6) behaves probabilistically under the

null hypothesis. In this section, we will show that the generalized Hadamard ratio can

equivalently be expressed as a product of ratios of squared residuals from two linear least

squares problems. This fact will be used in the next section to show that the likelihood ratio

in (6) is stochastically equivalent to a product of independent beta random variables under

the null hypothesis.

We’ll begin by noting that, for any i ≥ 2 and any n = 0, . . . , N − 1, the data matrix Z

given in (5) can be partitioned as follows

Z =



Zi

Xin

xHin

...


where the matrix Zi ∈ C(i−1)N×M contains all M realizations of the time-series x1, . . . ,xi−1

(sensor channels 1 to i− 1)

Zi =



x1[1] x1[2] · · · x1[M ]

x2[1] x2[2] · · · x2[M ]

...
...

. . .
...

xi−1[1] xi−1[2] · · · xi−1[M ]
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the matrix Xin ∈ Cn×M contains all M realizations of the ith time-series up to temporal

sample n− 1 (first n temporal samples of channel i)

Xin =



xi[0, 1] xi[0, 2] · · · xi[0,M ]

xi[1, 1] xi[1, 2] · · · xi[1,M ]

...
...

. . .
...

xi[n− 1, 1] xi[n− 1, 2] · · · xi[n− 1,M ]


and the vector xin = [xi[n, 1] xi[n, 2] · · · xi[n,M ]]H ∈ CM contains all M realizations of

random variable xi[n] (nth temporal sample of channel i). With this partition in the data

matrix, the northwest corner of the Gram matrix ZZH has the structure

ZZH =



R̂ZZ R̂ZX r̂Zx

R̂H
ZX R̂XX r̂Xx

r̂HZx r̂HXx r̂xx

· · ·

...
. . .


,

with entries defined as follows

R̂ZZ = ZiZ
H
i , R̂ZX = ZiX

H
in , R̂XX = XinX

H
in

r̂Zx = Zixin, r̂Xx = Xinxin

r̂xx = xHinxin

Note that the “ˆ” notation is used here simply to remind one of the connection these terms

share with estimated covariance matrices. With L = 3 and N = 5, Figure 3.1 gives a color

coded demonstration of this partition when i = 3 and n = 2.
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Figure 3.1. Partitioning of the northwest corner of matrix ZZH .

Using results concerning the determinants of Gram matrices discussed in Appendix A,

it is straightforward to show using (A-2) that the determinant of the estimated composite

covariance matrix can be decomposed into a product of scalars as follows

MLNdet R̂ = det
(
ZZH

)
= det

(
X1NX

H
1N

) L∏
i=2

N−1∏
n=0

σ2
in(R̂)

where

σ2
in(R̂) = r̂xx −

[
r̂HZx r̂HXx

] R̂ZZ R̂ZX

R̂H
ZX R̂XX


−1  r̂Zx

r̂Xx


Using the definition of these matrices given above, this term can be written

σ2
in(R̂) = xHin

I − [ZH
i X

H
in

]  R̂ZZ R̂ZX

R̂H
ZX R̂XX


−1  Zi

Xin


xin

= xHin (I − PZX)xin = xHinP
⊥
ZXxin

36



where PZX denotes the projection onto the (i−1)N+n dimensional subspace 〈ZX〉 spanned

by the columns of matrix [ZH
i XH

in ]. Moreover, using the block-wise inversion identity

 R̂ZZ R̂ZX

R̂H
ZX R̂XX


−1

=

 ∆−1 −∆−1R̂ZXR̂
−1
XX

−R̂−1
XXR̂

H
ZX∆−1 R̂−1

XX + R̂−1
XXR̂

H
ZX∆−1R̂ZXR̂

−1
XX


with the Schur complement ∆ = R̂ZZ− R̂ZXR̂

−1
XXR̂

H
ZX , one can derive yet another equivalent

expression for this term

σ2
in(R̂) = xHinP

⊥
ZXxin

= xHin

(
P⊥X − P⊥XZH

i

(
ZiP

⊥
XZ

H
i

)−1
ZiP

⊥
X

)
xin

= xHinP
⊥
Xxin − xHinPP⊥XZxin (8)

where PX = XH
inR

−1
XXXin and PP⊥XZ denote the projection onto the n dimensional subspace

spanned by the columns of matrix XH
in and the projection onto the (i − 1)N dimensional

subspace spanned by the columns of matrix P⊥XZ
H
i , respectively.

To compute the determinant of the block-diagonal matrix D̂ in the denominator of the

likelihood ratio in (6), one can take a very similar approach to show that

MNdet R̂ii = det
(
XiNX

H
iN

)
=

N−1∏
n=0

σ2
in(R̂ii)

where

σ2
in(R̂ii) = r̂xx − r̂HXxR̂

−1
XX r̂Xx

= xHin

(
I −XH

in

(
XinX

H
in

)−1
Xin

)
xin = xHinP

⊥
Xxin
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⊥
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⊥
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x
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Figure 3.2. Orthogonal decomposition of the projection P⊥Xxin into P⊥ZXxin
and PP⊥XZxin.

Recalling the relationship given in (8), note that this term can alternatively be expressed as

follows:

σ2
in(R̂ii) = xHinP

⊥
Xxin = xHinP

⊥
ZXxin + xHinPP⊥XZxin (9)

The geometry of this decomposition is depicted in Figure 3.2.

Using the decompositions of the determinants of these matrices, it is then straightforward

to see that the likelihood ratio given in (6) can finally be written

Λ =
det R̂

detD̂
=

det
(
ZZH

)∏L
i=1 det (XiNXH

iN)
=

det
(
X1NX

H
1N

)
det (X1NXH

1N)

L∏
i=2

∏N−1
n=0 σ

2
in(R̂)

det (XiNXH
iN)

=
L∏
i=2

N−1∏
n=0

σ2
in(R̂)

σ2
in(R̂ii)

=
L∏
i=2

N−1∏
n=0

xHinP
⊥
ZXxin

xHinP
⊥
ZXxin + xHinPP⊥XZxin

(10)

Each term within the product of this expression represents the ratio of the estimated variance

of a residual from two different linear least squares problems: the numerator, σ2
in(R̂), is
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found by regressing xi[n] onto all the random variables previous to it while the denominator,

σ2
in(R̂ii), is found by regressing xi[n] onto those random variables associated with channel

i only. Recalling the second invariance property in Section 2.3.1, one must keep in mind

that the order in channel index used when constructing this sequence of estimation problems

ultimately has no effect on the likelihood ratio. That is, switching orders of channels will

lead to different estimation problems generally leading to different individual ratios within

the product in (10). However, the product as a whole is invariant to order.

Figure 3.2 depicts the geometry of the projections P⊥ZXxin and PP⊥XZxin used to construct

each term of the likelihood ratio in (10). As demonstrated by the relationship given in (9),

the squared length of the vector PP⊥XZxin in essence represents the increase in mean-squared

error incurred by excluding channels x1, . . . ,xi−1 from the estimation problem. The smaller

the length of this vector relative to the length of P⊥ZXxin, the more evidence in support of the

null hypothesis of independence as it indicates that one can just as accurately estimate xi[n]

by ignoring the previous channels. Although the expression of the likelihood ratio given in

(10) is no easier to compute than that in (6), it shows that (6) can be written as a product

of scalar random variables whose null distribution is the subject of the upcoming section.

3.3. Stochastic Representation under the Null Hypothesis

To characterize the distribution of the likelihood ratio under the null hypothesis, we begin

by imposing the assumption that the composite vector z =
[
xT1 · · · xTL

]T ∼ CN (0, D) for

any D = blkdiag {R11, . . . , RLL} ∈ R0. Recalling the first invariance property in Section

2.3.1, we note that under these circumstances we can always apply the linear transformation

T = D−1/2 = blkdiag
{
R
−1/2
11 , . . . , R

−1/2
LL

}
,
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a pre-whitener, to the random vector z without any consequence to the likelihood ratio.

Thus, there is no loss in generality to assume that D = ILN (note that ILN ∈ R0) or

equivalently that xin
iid∼ CN (0, IM).

Looking again at Figure 3.2, it is clear that the two projections P⊥ZXxin and PP⊥XZxin lie in

two orthogonal subspaces of CM , i.e. 〈P⊥ZXxin, PP⊥XZxin〉 = 0. A straightforward application

of Cochran’s Theorem [32] then shows that 2xHinP
⊥
ZXxin and 2xHinPP⊥XZxin are statistically

independent chi-squared random variables with degrees of freedom 2 rank
(
P⊥ZX

)
= 2αin and

2 rank
(
PP⊥XZ

)
= 2βi, respectively, where

αin = M − (i− 1)N − n

βi = (i− 1)N

Similar to the arguments given at the end of Appendix A concerning the distribution of the

determinant of a complex Wishart distributed matrix, we can also see that, although the

random variables σ2
in(R̂) and σ2

in(R̂ii) given in (10) are functionally dependent on the data

matrix
[
ZH
i XH

in

]
through the construction of the projection matrices P⊥ZX and P⊥X , respec-

tively, they are in fact statistically independent making the sequence of squared residuals

σ2
in(R̂)

σ2
in(R̂ii)

=
xHinP

⊥
ZXxin

xHinP
⊥
ZXxin + xHinPP⊥XZxin

; i = 2, . . . , L

a set of mutually independent random variables. Note that the two quadratic forms 2xHinP
⊥
ZXxin

and 2xHinPP⊥XZxin will be chi-squared distributed with degrees of freedom 2αin and 2βi, respec-

tively, whenever the random vector xin is distributed according to any spherically symmetric

distribution [26]. That is, this result holds for any random vector whose probability density
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depends on the data only through the squared-norm ||xin||2. However, the normal distribu-

tion is the only example of an elliptically symmetric distribution [26] which can be made

spherically symmetric using a linear transformation.

As discussed in Appendix B, if X and Y represent two independent chi-squared random

variables with degrees of freedom νX and νY , respectively, then the random variable X
X+Y

is

distributed according to a beta distribution with parameters νX/2 and νY /2. This fact leads

us to conclude that [33], [34]

Λ|H0
d
=

L∏
i=2

N−1∏
n=0

Yin (11)

where Yin denotes a random variable with distribution Yin ∼ Beta(αin, βi), all distributed

independently of one another. Equation (11) says, “under the null hypothesis, the likelihood

ratio statistic is distributed as the product of beta random variables, Beta(αin, βi)”. Note

that if the assumption of a complex normal distribution for the data channels is replaced

with a real-valued multivariate normal, we can modify the above statements accordingly by

simply halving the parameters of these beta random variables, i.e. Yin ∼ Beta(αin/2, βi/2).

Figure 3.3. Two statistically equivalent realizations of (6) under the null hypothesis.

With the result given in (11), Figure 3.3 demonstrates two statistically equivalent means

of simulating the test statistic under the null hypothesis. For both the real and complex-

valued versions of the GLR and with L = 3, N = 24, and M = 100, Figure 3.4 displays
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Figure 3.4. Histogram Comparison with L = 3, N = 24, and M = 100.

histograms of Monte Carlo trials generated according to these two methods. The blue plots in

Figure 3.4 are formed by generating the data matrix Z using the complex normal distribution,

forming the sample covariance matrix, and computing the ratio of determinants given in (6)

as depicted in the top of Figure 3.3. Likewise, the red plots are formed by generating

the independent but not identically distributed scalars Yin using the beta distribution and

forming the product given in (11) as depicted in the bottom of Figure 3.3. These figures show

good agreement in the histograms, illustrating stochastically the mathematical fact that the

null distribution of (6) can be generated by drawing independent beta random variables and

forming their product.

3.4. Asymptotic Null Distribution

Although an interesting conclusion in its own right, the result given in (11) fails to

get us any closer to attaining a closed-form expression for the PDF of the likelihood ratio

under the null hypothesis. One of the more convenient and beautiful results concerning the

GLRT, however, is the distribution that it takes as the number of samples, M , used to form

ML estimators goes to infinity. Let {xi}Mi=1 be a collection of iid samples from the PDF
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f(x;θ) where θ ∈ Θ ⊆ Rr+s. Furthermore, assume that the unknown parameter vector is

partitioned θ =
[
ηT ξT

]T
with η ∈ Rr, ξ ∈ Rs representing a vector of nuisance parameters,

and consider the s-dimensional subspace Θ0 = {(η, ξ) ∈ Θ : η = η0}. Then, under the null

hypothesis H0 : η = η0, it follows that the log-likelihood ratio converges in distribution to a

chi-squared random variable [31]

−2 ln


max
θ∈Θ0

M∏
i=1

f(xi;θ)

max
θ∈Θ

M∏
i=1

f(xi;θ)

 M→∞−→ χ2
ν (12)

with degrees of freedom ν = r = (r+s)−s = dim (Θ)−dim (Θ0). In this section, we will use

the fact that the generalized Hadamard ratio in (6) is stochastically equivalent to a product

of independent beta random variables to derive this result for this specific test statistic.

Moreover, we will find that it is possible to scale the generalized Hadamard ratio to improve

the rate at which the test statistic converges to its asymptotic chi-squared distribution.

Given the definition of the beta function B(x, y) and its connection with the gamma

function Γ(z)

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
=

∫ 1

0

zx−1(1− z)y−1dz (13)

every random variable within the product given in (11) has kth raw moment

E
[
Y k
in

]
=

∫ 1

0

xkf (x;αin, βi) dx =
1

B(αin, βi)

∫ 1

0

x(αin+k)−1(1− x)βi−1dx

=
B(αin + k, βi)

B(αin, βi)
=

Γ(βi)

Γ(βi)

Γ(αin + k)Γ(αin + βi)

Γ(αin)Γ(αin + βi + k)

=
Γ(αin + k)Γ(αin + βi)

Γ(αin)Γ(αin + βi + k)
(14)
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where f(x;αin, βi) denotes the PDF of a beta random variable with parameters αin and βi.

Using (14) along with the fact that these random variables are independent, one can see that

the likelihood ratio has the following kth order moment under the null hypothesis

µΛ(k) = E
[
Λk|H0

]
=

L∏
i=2

N−1∏
n=0

E
[
Y k
in

]
=

L∏
i=2

N−1∏
n=0

Γ(M − n)Γ(M − (i− 1)N − n+ k)

Γ(M − (i− 1)N − n)Γ(M − n+ k)
(15)

If we define ξn = (1−ρ)M−n with 0 ≤ ρ ≤ 1 an arbitrary real number, the characteristic

function of the random variable Z = −2ρM ln Λ can be written

φZ(jt) = E
[
ejtZ |H0

]
= E

[
Λ−2jρMt|H0

]
= µΛ(−2jρMt)

=
L∏
i=2

N−1∏
n=0

Γ(ρM + ξn)Γ(ρM(1− 2jt) + ξn − (i− 1)N)

Γ(ρM + ξn − (i− 1)N)Γ(ρM(1− 2jt) + ξn)

Its cumulant generating function is

ψZ(jt) = lnφZ(jt)

=
L∑
i=2

N−1∑
n=0

[ln Γ(ρM + ξn)− ln Γ (ρM + ξn − (i− 1)N)]

+
L∑
i=2

N−1∑
n=0

[ln Γ (ρM(1− 2jt) + ξn − (i− 1)N)− ln Γ (ρM(1− 2jt) + ξn)] (16)

To investigate the properties of this cumulant generating function for large M , one may

employ the following asymptotic expansion [26], [35]

ln Γ(z + a) =
1

2
ln 2π + (z + a− 1

2
) ln z − z +

∞∑
n=1

(−1)n+1 Bn+1(a)

n(n+ 1)zn
(17)
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where Bn(x) denotes an nth order Bernoulli polynomial

Bn(x) =
n∑
k=0

(
n

k

)
bn−kx

k

and bn for n ≥ 0 are Bernoulli numbers [36]. The series given in (17) converges as |z| → ∞

provided that |arg z| < π. Assuming that the variable ρ does not go to zero as M becomes

large (in fact we’ll find that (1− ρ) will be chosen to be O(M−1)), then the expression given

above can be used to expand the log-gamma functions in the cumulant generating function

for large M . As described in detail in Appendix C, this expansion of the log-gamma function

allows one to obtain the asymptotic expression

ψZ(jt) = −ν
2

ln(1− 2jt) + ω1(ρ)
[
(1− 2jt)−1 − 1

]
+O(M−2) (18)

where

ν = 2
L∑
i=2

N−1∑
n=0

(i− 1)N = L2N2 − LN2

ω1(ρ) =
1

2ρM

L∑
i=2

N−1∑
n=0

[
(i− 1)2N2 + (1− 2ξn)(i− 1)N

]
=

1

2ρ

(
−ν(1− ρ) +

L(L2 − 1)N3

6M

)

The purpose behind the variable ρ in this story is to manipulate the higher order terms

in the expansion so that one obtains a more accurate approximation [37]. Namely, it is clear

that if we choose the following value for ρ

ρ∗ = 1− L(L2 − 1)N3

6Mν
= 1− (L+ 1)N

6M
,

then the first order term in the asymptotic expansion of ψZ(t) can be made to vanish as

ω1(ρ∗) = 0. This effectively produces an approximation whose error is O(M−2) compared
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to an error that is O(M−1) if one were to set ρ = 1. Letting M tend to infinity and

exponentiating the resulting cumulant generating function, we find that

φZ(jt) = eψZ(jt) M→∞−→ (1− 2jt)−ν/2

which one recognizes as the characteristic function of a chi-squared random variable with ν

degrees of freedom. Thus, for large M it follows that [33]

P [−2ρ∗M ln Λ ≤ x] = P

[(
1

3
(L+ 1)N − 2M

)
ln Λ ≤ x

]
M→∞−→ P

[
χ2
ν ≤ x

]
; ν = L2N2 − LN2

Carefully counting the number of independent real parameters that must be estimated un-

der the alternative and null hypotheses, respectively, one finds that dim (R) = L2N2 and

dim (R0) = LN2. Thus, it is clear that the degrees of freedom ν associated with this chi-

squared distribution can be related to the dimensions of these two spaces

ν = dim (R)− dim (R0)

in accordance with the result given in (12).

With N = 12, Figures 3.5 (a)-(c) display empirical false alarm probabilities versus M

for the random variable −2ρM ln Λ when ρ = 1 (shown by a darker line) and when ρ = ρ∗

(shown by a lighter line) for L = 2, 3, and 4, respectively. Here the threshold is chosen

from the asymptotic chi-squared distribution and set to achieve a desired false alarm rate

of PFA = 0.05 (shown by a dashed line). From the figure we can see that, by incorporating

a scaling and allowing it to deviate from unity, one can achieve false alarm rates that are

closer to the desired value for any finite M by selecting the appropriate value for ρ. Even
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Figure 3.5. Asymptotic Empirical False Alarm Probabilities,
P [−2ρM ln Λ > η] for ρ = 1 and ρ = ρ∗.

for moderate values of L and N , however, one can also see that this approximation requires

very large values for M to achieve convergence of the false alarm probability to the desired

value of 0.05.

3.5. Conclusion

This chapter discusses the probabilistic behavior of the generalized Hadamard ratio under

the null hypothesis when all L channels are truly independent. Using the theory of Gram

determinants presented in Appendix A, it was shown that this test statistic can be written

as a product of scalars regardless of what hypothesis is truly in force. Each term within

this product represents the ratio of the squared residual associated with two linear least-

squares problems which look to predict the random variable xi[n] from the sensory channels

x1, . . . ,xi−1 and the first n temporal samples of channel i, xi[0], . . . , xi[n−1]. The numerator

of the ratio, σ2
in(R̂), uses both x1, . . . ,xi−1 and xi[0], . . . , xi[n − 1] while the denominator,

σ2
in(R̂ii), uses only xi[0], . . . , xi[n−1]. This result leads directly to the conclusion that, under

the null hypothesis, the generalized Hadamard ratio is stochastically equivalent to a product

of independent beta random variables - a stochastic representation which is solely dependent
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on the number of channels (L), the length of each time series (N), and the number of samples

(M).

Although an appealing result, this stochastic representation fails to bring us any closer

to finding simple, closed-form expressions for the PDF of the generalized Hadamard ratio

under the null hypothesis. This is critical if a multichannel detector that uses this gen-

eralized Hadamard ratio is to achieve a desired false alarm probability. One of the more

convenient results concerning the GLRT in general, however, is the asymptotic distribution

it converges to as M grows large. Using the fact that the null distribution of the test is

statistically equivalent to a product of betas makes it very straightforward to show that its

characteristic function can be written as a product of ratios of gamma functions. Employing

results concerning the asymptotic behavior of the log-gamma function, we showed that the

log-likelihood ratio converges in distribution to a chi-squared random variable. Moreover,

the degrees of freedom of this chi-squared distribution can be interpreted in terms of the

dimensions of the parameter spaces R and R0 considered in the construction of the likeli-

hood ratio. This result is significant as it allows one to set thresholds to achieve a desired

false alarm in situations where M is large. Even with the inclusion of a scaling designed

to improve the rate of convergence, however, results show that the approximation is slow

to converge for even moderate values for L and N . For this reason, we will next turn our

attention to the use of the saddlepoint method for approximating the PDF of the likelihood

ratio under the null hypothesis.
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CHAPTER 4

Approximating the Null Distribution using the

Saddlepoint Method

4.1. Introduction

In the previous chapter, we discussed the null distribution of the GLRT developed in

Chapter 2 and discovered that the likelihood ratio is stochastically equivalent to a product

of independent beta random variables. Asymptotically, the log-likelihood ratio converges in

distribution for any value of L and N to a chi-squared random variable as M grows large.

Although theoretically interesting, results immediately show that, even for moderate values

of L and N , one requires an overwhelming number of samples to achieve convergence to

this asymptotic chi-squared distribution. For this reason, we turn our attention to the use

of saddlepoint approximations for estimating this random variable’s probability distribution

when M is not so large.

Saddlepoint approximations [22] – [39] are powerful tools for obtaining accurate approxi-

mations for densities and distribution functions. The saddlepoint method accomplishes this

by approximating the inverse Fourier transform of a random variable’s known characteristic

function. In this chapter, we will begin by giving a general overview of the saddlepoint

approximation starting from simple Taylor series expansions and the Laplace approximation

of integrals [39]. This general theory is subsequently applied to the null distribution of the

GLRT using the characteristic function derived in Section 3.4. The ability of the saddlepoint

approximation in achieving a desired false alarm rate as a function of M is demonstrated for

various choices of L and N using Monte Carlo simulations and compared to the asymptotic

result derived in Chapter 3.
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The remainder of this chapter is organized as follows. In Section 4.2, we briefly review

the theory of saddlepoint approximations and give several pedagogical examples. Section

4.3 applies this theory to the null distribution of the multichannel GLRT and compares

its ability to match a desired false alarm rate to the asymptotic chi-squared distribution.

Concluding remarks are finally given in Section 4.4.

4.2. Saddlepoint Approximations

In this section, we will give a brief review of the saddlepoint method starting with fun-

damental Taylor series expansions and the Laplace approximation for integrals. Let f(x)

denote some twice continuously differentiable function with f(x) ≥ 0. We can always ap-

proximate the value of this function in the neighborhood of the point xo by retaining the

first few terms (up to the 2nd derivative) of the Taylor series expansion of its logarithm,

g(x) = ln f(x)

f(x) ≈ exp

{
g(xo) + g′(xo)(x− xo) +

1

2
g′′(xo)(x− xo)2

}

where g′(x) and g′′(x) denote the first and second-order derivatives of g(x), respectively.

This expression simplifies even further if we choose xo = x̂ with x̂ a stationary point of g(x)

such that g′(x̂) = 0

f(x) ≈ exp

{
g(x̂) +

1

2
g′′(x̂)(x− x̂)2

}
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Figure 4.1. Demonstration of the Laplace approximation with f(x) = x2e−
1
2
x.

In addition to having well-established applications for function approximation, this idea

is particularly useful for approximating the integral of f(x) over the real line

∫ ∞
−∞

f(x)dx ≈
∫ ∞
−∞

exp

{
g(x̂) +

1

2
g′′(x̂)(x− x̂)2

}
dx

= exp {g(x̂)}
∫ ∞
−∞

exp

{
1

2
g′′(x̂)(x− x̂)2

}
dx (19)

If we further assume that x̂ is a unique global maximum of g(x) (and hence a unique global

maximum of f(x) as the logarithm is monotonic) with g′′(x̂) < 0, then one can see that the

integral given in (19) is the integral of a Gaussian function with mean x̂ and variance − 1
g′′(x̂)

so that ∫ ∞
−∞

f(x)dx ≈

√
− 2π

g′′(x̂)
exp {g(x̂)} (20)

Thus to gain an approximation of the integral of the function f(x), one simply requires the

value of the function g(·) and its curvature g′′(·) at the stationary point x̂. This technique for

approximating the integral of a function is commonly referred to as the Laplace approximation

[39]. For the function f(x) = x2e−
1
2
x, Figure 4.1 (a) displays a graph of the function along
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with several of its quadratic approximations with different choices in the expansion point xo,

one of them being the stationary point xo = x̂ = 4. Figure 4.1 (b) likewise shows the area

under each of these quadratic approximations as a function of the expansion point xo and

compares it to the true value of the integral which is shown with a dashed horizontal line.

From these figures we can see that, by choosing the expansion point to correspond with this

function’s maximum, the approximation given in (20) gives an answer that is just shy of its

true value.

In addition to being useful for approximating the integral of a function, this idea also

finds its uses in approximating functions of the form

f(x) =

∫ ∞
−∞

m(x, t)dt

where m(x, t) ≥ 0. Assuming that, for any fixed value of x, the function m(x, t) exhibits a

unique global maximum in the dummy variable t and defining k(x, t) = lnm(x, t), one may

take a very similar approach as before to derive the approximation

f(x) ≈
∫ ∞
−∞

exp

{
k
(
x, t̂(x)

)
+

1

2

∂2k(x, t)

∂t2

∣∣∣∣
t̂(x)

(
t− t̂(x)

)2

}
dt

=

√√√√− 2π
∂2k(x,t)
∂t2

∣∣∣
t̂(x)

exp
{
k
(
x, t̂(x)

)}
(21)

where t̂(x) is the value of t such that ∂k(x,t)
∂t

∣∣∣
t̂(x)

= 0 and ∂2k(x,t)
∂t2

∣∣∣
t̂(x)

< 0. This expression

is commonly referred to as the saddlepoint approximation [22], [38] and the value t̂(x) is

referred to as the saddlepoint.

One application where the approximation in (21) finds its uses is in the approximation

of the inverse Fourier transform of a random variable’s known characteristic function [40].
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Given the random variable X with moment generating function φX(t), one may obtain the

random variable’s PDF fX(x) by using the inversion formula

fX(x) =
1

2π

∫ ∞
−∞

φX(jt) exp {−jtx} dt =
1

2π

∫ ∞
−∞

exp {ψX(jt)− jtx} dt (22)

The function ψX(t) = ln φX(t) is the cumulant generating function for the random variable

X with the property that, similar to the moment generating function, one may obtain the

random variables cumulants, κn for n = 0, 1, . . ., by differentiating and evaluating at zero

dnψX(t)

dtn

∣∣∣∣
t=0

= κn

Making a change of variable (t′ = jt), one may express the inversion formula (22) as

fX(x) =
1

j2π

∫ τ+j∞

τ−j∞
exp {ψX(t′)− t′x} dt′ (23)

for τ = 0. Let ψ′X(t) = dψX(t)
dt

and ψ′′X(t) = d2ψX(t)
dt2

denote the first and second-order

derivative of the cumulant generating function, respectively. Then using the approximation

given in (21) with k(x, t) = ψX(t)− tx, we first find the saddlepoint, the point t̂(x) such that

ψ′X
(
t̂(x)

)
= x. Expanding the exponent of (23) around t̂(x) we have

k(x, t) ≈ ψX
(
t̂(x)

)
− t̂(x)x− 1

2
ψ′′X
(
t̂(x)

) (
t− t̂(x)

)2

We then substitute this quadratic approximation into (23) and integrate along the line that

runs parallel to the imaginary axis and passes through the saddlepoint by setting τ = t̂(x) in

the limits of the integral [38]. Applying expression (21), one finally obtains the saddlepoint
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approximation of the PDF fX(x)

fX(x) ≈ 1

j2π

(
j

√
2π

ψ′′X
(
t̂(x)

) exp
{
ψX
(
t̂(x)

)
− t̂(x)x

})

=
1√

2πψ′′X
(
t̂(x)

) exp
{
ψX
(
t̂(x)

)
− t̂(x)x

}
(24)

where, because of the complex integration, we now require t̂(x) to be a minimum with

ψ′′X
(
t̂(x)

)
> 0. We’ll now take a look at several simple examples to demonstrate this ap-

proximation before moving on to the null distribution of the multichannel GLRT.

4.2.1. Normal Distribution. Suppose that X ∼ N (µ, σ2) with PDF and cumulant

generating function

fX(x) =
1√

2πσ2
exp

{
−1

2

(x− µ)2

σ2

}
ψX(t) = µt+

1

2
σ2t2 ; t ∈ R

This cumulant generating function has the following first and second-order derivatives ψ′X(t) =

µ+ σ2t and ψ′′X(t) = σ2, respectively, from which we obtain the unique saddlepoint

ψ′X(t) = x ⇒ t̂(x) =
x− µ
σ2

(25)

Evaluating the cumulant generating function and its second derivative at the saddlepoint

ψX
(
t̂(x)

)
= µ

(
x− µ
σ2

)
+

1

2

(x− µ)2

σ2

ψ′′X
(
t̂(x)

)
= σ2
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and substituting these expressions into (24), the saddlepoint approximation, which we will

denote f̂X(x), becomes

f̂X(x) =
1√

2πσ2
exp

{
µ

(
x− µ
σ2

)
+

1

2

(x− µ)2

σ2
− x

(
x− µ
σ2

)}
=

1√
2πσ2

exp

{
−1

2

(x− µ)2

σ2

}
= fX(x)

So, for a normal distribution the saddlepoint approximation is exact which is to be expected

as the cumulant generating function in this case is a quadratic function of t.

4.2.2. Gamma Distribution. Suppose now that X ∼ Γ(k, θ) with PDF and cumulant

generating function

fX(x) =
1

θkΓ(k)
xk−1 exp

{
−x
θ

}
ψX(t) = −k ln(1− θt) ; t <

1

θ

Simple calculus shows that the cumulant generating function for this example has the deriva-

tives

ψ′X(t) =
kθ

1− θt

ψ′′X(t) =
kθ2

(1− θt)2

which leads to the unique saddlepoint

ψ′X(t) = x ⇒ t̂(x) =
1

θ
− k

x
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At the saddlepoint the cumulant generating function and its second derivative become

ψX
(
t̂(x)

)
= −k ln

(
kθ

x

)
ψ′′X
(
t̂(x)

)
=

x2

k

which yield the saddlepoint approximation

f̂X(x) =

√
k

2πx2
exp

{
−k ln

(
kθ

x

)
−
(

1

θ
− k

x

)
x

}
=

1

θk
(√

2πkk−
1
2 exp {−k}

)xk−1 exp
{
−x
θ

}

Comparing this approximation to the expression for the actual PDF fX(x), one can see that

the two are exact with the exception of the scaling term Γ(k) in the actual expression being

replaced by Γ̂(k) =
√

2πkk−1/2 exp {−k}. The scaling Γ̂(k) is in fact an approximation of

Γ(k) that improves with increasing k and is very closely related to the asymptotic expansion

given in (17). Indeed, ignoring the sum containing Bernoulli polynomials, setting z = k,

a = 0, and exponentiating (17), one obtains

exp {ln Γ(k)} ≈ exp

{
1

2
ln 2π + (k − 1

2
) ln k − k

}
=
√

2πkk−
1
2 exp {−k} = Γ̂(k)

With θ = 1 and differnt choices in k, Figure 4.2 plots the saddlepoint density for several

gamma distributions and compares each to the actual PDF. For k equal to 1 and 2, one can

see slight differences between each density and its approximation but as k increases to 4 one

can see that the approximation is nearly exact.
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Figure 4.2. Actual (solid) and saddlepoint approximation (dashed) for sev-
eral gamma densities.

4.2.3. Laplace Distribution. Finally, we’ll consider the case that X ∼ Laplace(µ, λ)

with PDF and cumulant generating function

fX(x) =
1

2λ
exp

{
−1

λ
|x− µ|

}
ψX(t) = µt− ln

(
1− λ2t2

)
; |t| < 1

λ

As before, the first step involves taking the first and second-order derivative of this cumulant

generating function leading to the expressions

ψ′X(t) = µ+
2λ2t

1− λ2t2

ψ′′X(t) = 2λ2 1 + λ2t2

(1− λ2t2)2

Solving the saddlepoint equation in this example is equivalent to finding the roots of a

second-order polynomial in t

ψ′X(t) = x ⇒ −(x− µ)λ2t2 − 2λ2t+ (x− µ) = 0
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in which case one finds the pair of solutions

t̂(x) = − 1

x− µ

(
1±

√
λ2 + (x− µ)2

λ

)

At first glance it would appear that we have come across an example where there exists no

unique solution for the saddlepoint. However, recalling the fact that the cumulant generating

function for this example exists only for arguments satisfying |t| < 1
λ
, one can use this

condition to set a constraint on the saddlepoint equation and determine which solution is

truly valid. We first of all note that the condition that |t̂(x)| < 1
λ

is equivalent to the

condition that
∣∣∣λ±√λ2 + (x− µ)2

∣∣∣ < |x − µ|. Using the subadditivity property of the

square root (
√
x+ y ≤

√
x+
√
y), one obtains the pair of inequalities

∣∣∣λ+
√
λ2 + (x− µ)2

∣∣∣ ≤ 2λ+ |x− µ|∣∣∣λ−√λ2 + (x− µ)2

∣∣∣ ≤ |x− µ|

with equality when x = µ. From these inequalities, it becomes clear that the valid saddle-

point is the one that involves subtraction

t̂(x) = − 1

x− µ

(
1−

√
λ2 + (x− µ)2

λ

)

Substituting this solution into (24) yields the saddlepoint approximation

f̂X(x) =
1

2λ

√√√√ (x− µ)2

2π
(
λ2 + (x− µ)2 − λ

√
λ2 + (x− µ)2

) exp

{
1−

√
λ2 + (x− µ)2

λ

}

which bears little resemblance to the true expression for the PDF fX(x). For several choices

in the parameters µ and λ, Figure 4.3 compares this saddlepoint approximation to the
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Figure 4.3. Actual (solid) and saddlepoint approximation (dashed) for sev-
eral Laplace densities.

actual PDF. From these plots we can see that the saddlepoint approximation in this case

has poor accuracy in a neighborhood of the mean but excels at approximating the tails of

the distribution.

4.3. Application to the Multichannel GLRT

In this section, we discuss the saddlepoint approximation as it applies to the null distri-

bution of the GLRT developed in Chapter 3. Recalling the arguments leading to expression

(15), the generalized Hadamard ratio, Λ, has the following moments under the null hypoth-

esis

µΛ(k) = E
[
Λk|H0

]
=

L∏
i=2

N−1∏
n=0

Γ(M − n)Γ(M − (i− 1)N − n+ k)

Γ(M − (i− 1)N − n)Γ(M − n+ k)

For any real-valued scalar c, the random variable Z = c ln Λ|H0 has the moment generating

function φZ(t)

φZ(t) = E
[
etZ |H0

]
= E

[
Λct|H0

]
= µΛ(ct) =

L∏
i=2

N−1∏
n=0

Γ(M − n)Γ(M − (i− 1)N − n+ ct)

Γ(M − (i− 1)N − n)Γ(m− n+ ct)
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from which we obtain the cumulant generating function

ψZ(t) = ln φZ(t)

=
L∑
i=2

N−1∑
n=0

[ln Γ(M − n)− ln Γ(M − (i− 1)N − n)]

+
L∑
i=2

N−1∑
n=0

[ln Γ(M − (i− 1)N − n+ ct)− ln Γ(M − n+ ct)]

Letting γk(x) denote the polygamma function [36] of order k

γk(x) =
d(k+1) ln Γ(x)

dx(k+1)

this cumulant generating function has kth-order derivative

dkψZ(t)

dtk
= ck

L∑
i=2

N−1∑
n=0

[γk−1 (M − (i− 1)N − n+ ct)− γk−1 (M − n+ ct)]

As described in Section 4.2, the first step is to find the saddlepoint, the value of t such

that

ψ′Z(t) = c
L∑
i=2

N−1∑
n=0

[γ0 (M − (i− 1)N − n+ ct)− γ0 (M − n+ ct)] = x (26)

Unfortunately, for all but one particular value for x, there is no simple closed-form solution

to this problem. That specific value of x corresponds to the approximation of the density

at the mean of the distribution. Knowing that the first-order cumulant is the mean, i.e.

ψ′Z(0) = E[Z] = µZ , at x = µZ it follows that the saddlepoint must be zero, t̂(µZ) = 0.

However, this fact is not specific to this distribution and must be true in general.

In lieu of the fact that there is no closed-form solution to the saddlepoint equation, one

must resort to numerical root-finding algorithms to find the saddlepoint. One very simple
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method for accomplishing this is the Newton–Raphson method where, for every value of

x, one calculates the sequence of iterations, t̂n(x) for n = 0, 1, . . ., satisfying the recursive

relationship

t̂n+1(x) = t̂n(x)−
ψ′Z
(
t̂n(x)

)
− x

ψ′′Z
(
t̂n(x)

)
One of the things required by the Newton–Raphson method is an initial guess at what

the saddlepoint may be. One possible choice for this situation is to use the saddlepoint

associated with a normal distribution with known mean and variance to initialize the search.

Using properties of the cumulant generating function, the random variable Z has mean and

variance

µZ = ψ′Z(0) = c
L∑
i=2

N−1∑
n=0

[γ0(M − (i− 1)N − n)− γ0(M − n)]

σ2
Z = ψ′′Z(0) = c2

L∑
i=2

N−1∑
n=0

[γ1(M − (i− 1)N − n)− γ1(M − n)]

Recalling the result given in (25), one can then initialize the saddlepoint using the following

affine function of x

t̂0(x) =
x− µZ
σ2
Z

Scaling the log-likelihood ratio by the factor c = 1
3
(L+1)N−2M to compare the results of

the saddlepoint approximation to those of the asymptotic distribution developed in Section

3.4, Figure 4.4 (a) plots the saddlepoint approximation and compares it to the asymptotic

chi-squared distribution and a Monte Carlo simulation using (11) when L = 3, N = 1 and

M = 250. From this plot, one can see that the asymptotic chi-squared distribution accurately

captures the distribution of the random variable Z while one sees a slight deviation in the

saddlepoint approximation. Figure 4.4 (b) shows the initial saddlepoint t̂0(x) and the actual
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Figure 4.4. Saddlepoint approximation and the saddlepoint with L = 3,
N = 1, and M = 250.
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Figure 4.5. Saddlepoint approximation and the saddlepoint with L = 3,
N = 12, and M = 250.

saddlepoint found using the Newton–Raphson recursions. From this plot one can see that

the initialization t̂0(x) is not a bad guess of the saddlepoint when considering values of x that

are within a neighborhood of the mean µZ (shown by a vertical dashed line in the figure).

However, the farther one gets into the tails of the distribution, the larger the deviation

between the initialization and the true saddlepoint. For comparison, Figure 4.5 displays the

same plots as Figure 4.4 but with a time series of length N = 12. From this figure we can see
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that the saddlepoint approximation is much more capable of capturing the distribution of

the log-likelihood ratio compared to the asymptotic chi-squared distribution in this scenario.

250 500 750 1000 1250 1500 1750 2000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

M

P
F
A

(a) L = 2

250 500 750 1000 1250 1500 1750 2000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

M
P
F
A

(b) L = 3

250 500 750 1000 1250 1500 1750 2000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

M

P
F

A

Asymptotic χ2

Saddlepoint Approximation

(c) L = 4

Figure 4.6. Asymptotic and saddlepoint density false alarm probabilities
with N = 12.
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Figure 4.7. Asymptotic and saddlepoint density false alarm probabilities
with N = 1.

Using the saddlepoint approximation to determine the threshold needed to achieve a false

alarm rate of PFA = 0.05, Figure 4.6 plots empirical false alarm probabilities versus M with

N = 12 and several choices in L. These plots are compared to the same results pertaining

to the asymptotic chi-squared distribution with ρ = ρ∗ = 1 − (L+1)N
6M

that were given in

Figure 3.5. In these three plots, it is clear that choosing a threshold using the saddlepoint

approximation is much more capable of achieving the desired false alarm probability. Finally,

Figure 4.7 shows the same plots as those shown in Figure 4.6 but with N = 1. In this
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situation, choosing a threshold based on the asymptotic chi-squared distribution is much

more practical and, for all but the smallest values for M , tends to produce a false alarm rate

that is closer to what is desired.

4.4. Conclusion

In this chapter, we extended the results of Chapter 3 by investigating the saddlepoint

approximation and its application to the null distribution of the generalized Hadamard ra-

tio. The saddlepoint approximation can be interpreted as a straightforward extension of the

Laplace method for approximating integrals. In statistics, one of the applications of the sad-

dlepoint method is the approximation of the inverse Fourier transform of a random variable’s

known characteristic function. Determining the saddlepoint approximation requires finding

the unique, real root of the saddlepoint equation, an equation involving the derivative of the

cumulant generating function and the point x at which we wish to approximate the PDF.

The general theory of the saddlepoint approximation is then applied to the multichannel

GLRT in Section 2.3. Using the fact that the generalized Hadamard ratio is stochastically

equivalent to a product of independent beta random variables under the null hypothesis,

it becomes very straightforward to derive the cumulant generating function of any scale

multiple of the log-likelihood ratio. This results in an expression for the cumulant gener-

ating function which contains a sum of log-gamma functions and derivatives that consist

of a sum of polygamma functions. These expressions lead to a saddlepoint equation which

unfortunately cannot be solved in closed-form. Numerical root-finding algorithms such as

the Newton-Raphson method must then be employed instead. The saddlepoint approxi-

mation is compared to the asymptotic chi-squared distribution developed in Section 3.4 to

what improvement it brings in terms of matching a desired false alarm probability. These
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results show that the saddlepoint approximation is a very useful alternative for capturing

the distribution of the log-likelihood ratio under the null hypothesis, especially in situations

where L or N is large. If both L and N are small, however, results show that the asymptotic

chi-squared distribution is probably more practical in these scenarios and tends to produce

false alarm rates closer to what is desired.
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CHAPTER 5

Multichannel Detection for 2D WSS Processes

5.1. Introduction

In this chapter, we turn our attention away from the null distribution of the generalized

Hadamard ratio and discuss an alternative implementation of this test statistic for wide-sense

stationary (WSS) random processes. Recall from Section 2.3 that, in many multichannel

detection problems, L ≥ 2 sensors are used to collect a length-N time series at multiple

distinct spatial locations. To test for independence among all L channels, the generalized

Hadamard ratio in (6) relies on an unconstrained ML estimate of the space-time covariance

matrix R, i.e. a matrix with no constraints imposed on its structure other than Hermitian

symmetry and positive definiteness. While making as few assumptions about the structure

of R can be advantageous, a clear disadvantage is the large number of parameters that must

be estimated as a result. In fact, we noted in Section 3.4 that dim (R) = L2N2, i.e. the

number of parameters in the set of PD Hermitian matrices R grows quadratically in both

the number of channels (L) and the length of each channel’s time series (N). When the

collection of time series {xi}Li=1 are jointly WSS, every N × N block Rik = E
[
xix

H
k

]
of

matrix R will assume the form of a Toeplitz matrix [21]. Thus, in such situations it makes

sense to develop methods that exploit this structure for multichannel detection.

Unfortunately, ML estimation of Toeplitz matrices [41] is an intractable problem with

no closed-form solution. However, the asymptotic behavior of Toeplitz matrices as N grows

large is well understood and leads to very tractable results involving the eigenvalues, multipli-

cation, and inversion of large Toeplitz matrices [23]. When all L time series are jointly WSS,

this asymptotic theory, and more specifically its extension to block-Toeplitz matrices, shows
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that the generalized Hadamard ratio developed in Section 2.3 converges to the broadband

integral of a narrowband Hadamard ratio, a test statistic referred to as broadband coherence

[7]. We then turn our attention to the problem of multichannel detection for 2-dimensional

WSS processes. In this case, every covariance matrix Rik = E
[
xix

H
k

]
will assume the form of

a Toeplitz-block-Toeplitz matrix, i.e. a matrix with constant diagonal blocks with the blocks

themselves being Toeplitz. As the number of blocks in each of these matrices as well as the

size of the block itself goes to infinity, the same asymptotic theory on large Toeplitz matrices

shows that the generalized Hadamard ratio can again be expressed as a broadband coherence

statistic, although in this case computed over a 2-dimensional frequency spectrum. Several

applications where this test statistic may apply, namely multichannel detection in a network

of sensor arrays and in coregistered images, are then demonstrated through simulation.

The remainder of this chapter is organized as follows. In Section 5.2, we briefly review the

generalized Hadamard ratio in the frequency domain and the development of the broadband

coherence statistic. Section 5.3 extends the broadband coherence detector to the case of 2-

dimensional WSS processes and demonstrates its performance through simulation in Section

5.4. Concluding remarks are finally given in Section 5.5.

5.2. Generalized Hadamard Ratio in the Frequency Domain

In this section we give a review of the generalized Hadamard ratio given in (6) imple-

mented in the frequency domain and the development of the broadband coherence statis-

tic as presented in [7]. Recall the problem setup considered in Section 2.3 consisting of

L spatially distributed sensors with each sensor collecting the length-N time series xi =

[xi[0] · · · xi[N − 1]]T ∈ CN as depicted in Figure 5.1. The goal of this analysis is the devel-

opment of an alternative detection technique that exploits the inherent Toeplitz structure
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Figure 5.1. The collection of multiple time series at several distinct locations.

that each cross-covariance matrix Rik = E
[
xix

H
k

]
will assume when the collection of time

series {xi}Li=1 are jointly WSS.

As described in [7], the extension of the likelihood ratio given in (6) can be accomplished

by applying the linear transformation T = FN to the data from each channel. Here, the

matrix FN denotes an N×N Discrete Fourier Transform (DFT) matrix with entries [FN ]`,k =

1√
N
e−j2π`k/N . Recalling the first invariance property discussed in Section 2.3.1, it follows that

both sets of signals, {xi} and {FNxi}, share the same likelihood ratio so that (6) can be

written

Λ = det
(

(FN ⊗ IL)Ĉ(FN ⊗ IL)H
)

where Ĉ = D̂−1/2R̂D̂−H/2 is the coherence matrix defined in Section 2.3. Introducing a

simple permutation to the rows and columns of the matrix inside the determinant of this
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matrix, the likelihood ratio may be rewritten as Λ = det C̃ where

C̃ =



Ĉ(ejθ0) Ĉ(ejθ0 , ejθ1) · · · Ĉ(ejθ0 , ejθN−1)

Ĉ(ejθ1 , ejθ0) Ĉ(ejθ1) · · · Ĉ(ejθ1 , ejθN−1)

...
...

. . .
...

Ĉ(ejθN−1 , ejθ0) Ĉ(ejθN−1 , ejθ1) · · · Ĉ(ejθN−1)


(27)

is a global coherence matrix in the frequency domain with frequency θ` = 2π`
N

for ` =

0, . . . , N − 1 and we have used the convention Ĉ(ejθ`) = Ĉ(ejθ` , ejθ`). The elements of each

L× L block Ĉ(ejθ` , ejθm) of this global coherence matrix are given by

[
Ĉ(ejθ` , ejθm)

]
i,k

= fHN (ejθ`)R̂
−1/2
ii R̂ikR̂

−H/2
kk f(ejθm)

where fN(ejθ) denotes a length-N DFT vector

fN(ejθ) =
1√
N

[
1 ejθ ej2θ · · · ej(N−1)θ

]T
That is, if we define the DFT of the ”whitened” random vector of each channel

w
(m)
i (ejθ`) = fHN (ejθ`)R̂

−1/2
ii xi[m]

then the (i, k)th element of matrix Ĉ(ejθ` , ejθm) represents the sample cross-covariance be-

tween the random variable for channel i at frequency θ` and the random variable for channel

k at frequency θm

[
Ĉ(ejθ` , ejθm)

]
i,k

=
1

M

M∑
m=1

w
(m)
i (ejθ`)

(
w

(m)
k (ejθm)

)∗
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So far, taking the determinant of the global coherence matrix in (27) is no different than

computing the generalized Hadamard ratio in (6). We now assume that the collection of

time series {xi}Li=1 is jointly WSS so that, for any pair of channels i and k, there exists a

complex-valued sequence {γik[`]} such that

E [xi[n+ `]x∗k[n]] = γik[`] ∈ C

in which case the cross-covariance matrix Rik = E
[
xix

H
k

]
∈ CN×N is Toeplitz. Invoking

results on large block-Toeplitz matrices and their asymptotic equivalence with block-circulant

matrices [42], the global coherence matrix in (27) is asymptotically block-diagonal

C̃ → blkdiag
{
Ĉ(ejθ0), . . . , Ĉ(ejθN−1)

}

so that as N and M grow large but L remains fixed the generalized Hadamard ratio in (6)

converges to the broadband coherence statistic [7]

Λ1/N N→∞−→ exp

{∫ π

−π
ln det Ĉ(ejθ)

dθ

2π

}
= exp

{∫ π

−π
ln

det Ŝ(ejθ)∏L
i=1 Ŝii(e

jθ)

dθ

2π

}
(28)

with Ŝ(ejθ), −π < θ ≤ π, an estimated cross-spectral matrix

Ŝ(ejθ) =



Ŝ11(ejθ) Ŝ12(ejθ) · · · Ŝ1L(ejθ)

Ŝ∗12(ejθ) Ŝ22(ejθ) · · · Ŝ2L(ejθ)

...
...

. . .
...

Ŝ∗1L(ejθ) Ŝ∗2L(ejθ) · · · ŜLL(ejθ)


∈ CL×L

Here, Ŝik(e
jθ) = fHN (ejθ)R̂ikfN(ejθ) is a quadratic estimator of the cross power spectrum

between channels i and k at frequency θ.
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Figure 5.2. Formation of the broadband coherence statistic given in (28).

Figure 5.2 gives a block diagram implementation of the broadband coherence statistic.

Here, each sample of the composite vector z[m] is passed through a bank of analysis filters,

each producing the composite vector Z(m)(ejθ`) at frequency θ` = 2π`
N

Z(m)(ejθ`) =
(
fN(ejθ`)⊗ IL

)H
z[m] =

[
X

(m)
1 (ejθ`) · · · X(m)

L (ejθ`)
]T
∈ CL

X
(m)
i (ejθ`) = fHN (ejθ`)xi[m]

The periodograms for all M samples are subsequently averaged to produce the estimated

cross-spectral matrix Ŝ(ejθ`)

Ŝ(ejθ`) =
1

M

M∑
m=1

Z(m)(ejθ`)
(
Z(m)(ejθ`)

)H ∈ CL×L

The narrowband coherence at each frequency is then measured using the Hadamard ratio

det Ŝ(ejθ`)/
∏L

i=1 Ŝii(e
jθ`) and accumulated through broadband integration to yield the test

statistic given in (28). Although the true GLRT for this problem would enforce a Toeplitz

structure on the ML estimates of each N×N block Rik of matrix R, this is again a nontrivial

problem with no closed-form solution. On the other hand, the broadband coherence statistic

is computationally efficient and easy to implement. Moreover, by using only the diagonal
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Source

Figure 5.3. Detection of a common source using several distributed sensor arrays.

blocks of the coherence matrix given in (27), the broadband coherence statistic only requires

the estimation of L2N parameters (L2 parameters for each cross-spectral matrix Ŝ(ejθ) com-

puted at N discrete frequencies) versus the L2N2 parameters required by the unconstrained

covariance estimators used in the generalized Hadamard ratio of (6).

5.3. Extensions to 2D WSS Processes

In certain examples of multi-channel detection applications, one may have the oppor-

tunity of collecting multiple time series from each channel when deciding if a phenomenon

common to all channels exists. One such example is a problem where several platforms each

employ an array of sensors to take advantage of the spatial diversity such a sensing para-

digm might have [43]. Consider the setup depicted in Figure 5.3 consisting of L spatially

distributed sensor arrays observing a common event. In this case, we assume that the ran-

dom vector from each channel xi =
[
xTi [0] · · · xTi [N − 1]

]T ∈ CNP now contains N samples

of a P -dimensional vector-valued time series xi[n] = [xi[n, 0] · · · xi[n, P − 1]]T ∈ CP where

xi[n, p] corresponds to the nth temporal sample collected by the pth sensor of the ith array.

As in Chapter 2, the goal is to test for the independence among the random vectors {xi}Li=1

using the same likelihood ratio given in (6). The only difference is that each block of the
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composite covariance matrix, Rik, is now NP × NP rather than N × N . In the next two

sections we will discuss several extensions of the broadband coherence statistic (28) for this

problem.

5.3.1. Frequency Domain GLRT. We will first begin by discussing the direct exten-

sion of the likelihood ratio given in (28) for the type of data collection scenario considered

in Figure 5.3. Similar to that described in Section 5.2, the GLRT can be extended to the

frequency domain by first independently applying the linear transformation T = FN ⊗ IP ,

with FN again denoting an N × N DFT matrix, to the data from each channel. Defining

the matrix FN(ejθ`) = fN(ejθ`)⊗ IP ∈ CNP×P , note that the linear transformation

FH
N (ejθ`)xi =

1√
N

N−1∑
n=0

e−jθ`nxi[n]

simply corresponds to a unitary DFT analysis at frequency θ` = 2π`
N

, ` = 0, . . . , N−1, applied

temporally to all P sensors of the ith channel. As the linear transformation T = FN ⊗ IP is

an invertible matrix, the first invariance property in Section 2.3.1 guarantees that both sets

of signals, {xi} and {Txi}, share the same likelihood ratio in which case (6) can be written

Λ = det
(

(IL ⊗ T )Ĉ(IL ⊗ T )H
)

where Ĉ is the coherence matrix defined in (6). As in Section 5.2, a permutation to the rows

and columns of the matrix inside this determinant may be introduced so that the GLRT can

be written

Λ = det C̃
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where

C̃ =


Ĉ(ejθ0) · · · Ĉ(ejθ0 , ejθN−1)

...
. . .

...

Ĉ(ejθN−1 , ejθ0) · · · Ĉ(ejθN−1)


is a global coherence matrix in the frequency domain similar to that defined in (27). However,

in this case the matrix Ĉ(ejθ` , ejθm) ∈ CPL×PL is an L×L block matrix consisting of P × P

blocks of the form {
Ĉ(ejθ` , ejθm)

}
i,k

= FH
N (ejθ`)ĈikFN(ejθm)

where Ĉik = R̂
−1/2
ii R̂ikR̂

−H/2
kk and we use the convention Ĉ(ejθ`) = Ĉ(ejθ` , ejθ`).

We now assume that all channels are temporally WSS in the sense that, for any pair of

channels xi and xk, there exists a matrix-valued covariance sequence, {Γik[`]}, such that

E
[
xi[n+ `]xHk [n]

]
= Γik[`] ∈ CP×P

with no assumptions made about the structure of these matrices. Again using results on

large block-Toeplitz matrices [42], the matrix C̃ becomes asymptotically equivalent to the

block-diagonal matrix

C̃ → blkdiag
{
Ĉ(ejθ0), . . . , Ĉ(ejθN−1)

}
so that as N and M grow large but P and L remain fixed the GLRT becomes

Λ1/N N→∞−→ exp

{∫ π

−π
ln det Ĉ(ejθ)

dθ

2π

}

= exp

{∫ π

−π
ln

det Ŝ(ejθ)∏L
i=1 det Ŝii(ejθ)

dθ

2π

}
(29)
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Here, the matrix Ŝ(ejθ) ∈ CPL×PL is an L× L block-structured matrix consisting of P × P

submatrices of the form {
Ŝ(ejθ)

}
i,k

= FH
N (ejθ)R̂ikFN(ejθ)

which is a quadratic estimate of the cross-power spectral density matrix between channels i

and k at frequency θ and we use the convention Ŝii(e
jθ) =

{
Ŝ(ejθ)

}
i,i

. In other words, the

matrix Ŝ =
{
Ŝik

}
i,k

for i, k = 1, . . . , L is a cross-spectral matrix of cross-spectral matrices,

with Ŝik the cross-spectral matrix
[
Ŝ`mik

]
`,m

for `,m = 1, . . . , P .

5.3.2. Frequency/Wavenumber Domain GLRT. The likelihood ratio given in (29)

is a direct extension of the results in [7] to account for the situation being considered here

and is not a particularly interesting result in that it simply corresponds to replacing every

scalar-valued power spectral density estimate in (28) with a P × P matrix. Although this

result is perfectly general and nothing has been assumed about these vector-valued time

series other than that they are temporally WSS, we proceed under the context of multiple-

array detection in which case a notion of space can be ascribed to the time series of each

channel.

To take advantage of the spatiotemporal properties of the problem, we now consider

independently applying the linear transformation T = FN ⊗ FP to each channel (instead of

the matrix T = FN ⊗ IP considered earlier) with FP denoting a P × P DFT matrix. Note

that pre-multiplying the vector xi by the matrix T simply corresponds to the application of a

2-dimensional DFT, one applied temporally and the other spatially as opposed to previously

where the DFT was only applied temporally. For any frequency θ, we can then introduce a

permutation of the rows and columns of the previously defined matrix Ĉ(ejθ) so that

det Ĉ(ejθ) = det C̃(ejθ) (30)
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where

C̃(ejθ) =


Ĉ(ejθ, ejφ0) · · · Ĉ(ejθ, ejφ0 , ejφP−1)

...
. . .

...

Ĉ(ejθ, ejφP−1 , ejφ0) · · · Ĉ(ejθ, ejφP−1)

 (31)

and Ĉ(ejθ, ejφ`) = Ĉ(ejθ, ejφ` , ejφ`). Define the length-P DFT vector at frequency φ` = 2π`
P

for ` = 0, . . . , P − 1 as follows

fP (ejφ`) =
1√
P

[
1 ejφ` ej2φ` · · · ej(P−1)φ`

]T
.

Then the matrix Ĉ(ejθ, ejφ` , ejφm) ∈ CL×L has entries of the form

[
Ĉ(ejθ, ejφ` , ejφm)

]
i,k

= fHP (ejφ`)FH
N (ejθ)ĈikFN(ejθ)fP (ejφm) (32)

When the entries of xi[n] correspond to time series at different spatial locations, the frequency

variable φ is often referred to as the wavenumber and, to avoid confusion with the frequency

variable θ, we will adopt this terminology. Similar to 5.2, if we define the 2D DFT of the

“whitened” random vector at frequency θ and wavenumber φ

w
(m)
i (ejθ, ejφ) = fHP (ejφ)FH

N (ejθ)R̂
−1/2
ii xi[m]

then (32) represents the sample cross-covariance

[
Ĉ(ejθ, ejφ` , ejφm)

]
i,k

=
1

M

M∑
m=1

w
(m)
i (ejθ, ejφ`)

(
w

(m)
k (ejθ, ejφm)

)∗

We now impose additional structure on the problem at hand by assuming that all channels

are not only temporally WSS but spatially WSS as well so that the multivariate covariance
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function Γik[`] = E
[
xi[n+ `]xHk [n]

]
, ` = 0, . . . , N − 1, considered in Section 5.3.1 now

corresponds to a sequence of Toeplitz matrices. That is, for any pair of channels xi and xk,

we now assume that there exists a two-dimensional covariance sequence, {γik[`,m]}, such

that

E [xi[n+ `, p+m]x∗k[n, p]] = γik[`,m] ∈ C

with ` a temporal lag and m a spatial lag. An example of when this model would hold

would be a set of L sensor suites, laid out in an arbitrary geometry, but with their respective

P -element arrays laid out co-linearly as shown in Figure 5.4.

Given the assumption that the data is not only temporally WSS but spatially as well,

results on large block-Toeplitz matrices [42] again show that the matrix C̃(ejθ) is asymptot-

ically equivalent with the block-diagonal matrix

C̃(ejθ)→ blkdiag
{
Ĉ(ejθ, ejφ0), . . . , Ĉ(ejθ, ejφP−1)

}

so that as M , N , and P grow large but L remains fixed the GLRT becomes [33], [44]

Λ
1
NP = det

(
(IL ⊗ T )Ĉ(IL ⊗ T )H

) 1
NP

= det
(
C̃
) 1
NP

N→∞→ exp

{∫ π

−π
ln det

(
Ĉ(ejθ)

) 1
P dθ

2π

}
= exp

{∫ π

−π
ln det

(
C̃(ejθ)

) 1
P dθ

2π

}
P→∞→ exp

{∫ π

−π

∫ π

−π
ln det Ĉ(ejθ, ejφ)

dθdφ

4π2

}

= exp

{∫ π

−π

∫ π

−π
ln

det Ŝ(ejθ, ejφ)∏L
i=1 Ŝii(e

jθ, ejφ)

dθdφ

4π2

}
(33)
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The matrix Ŝ(ejθ, ejφ) ∈ CL×L has elements

[
Ŝ(ejθ, ejφ)

]L
i,k=1

= fHP (ejφ)FH
N (ejθ)R̂ikFN(ejθ)fP (ejφ)

which is a quadratic estimate of the cross power spectral density between channels i and k in

the frequency/wavenumber domain. Thus, similar to the expression in (28), the asymptotic

form of the generalized Hadamard ratio in (6) involves the computation of a Hadamard

ratio at each frequency/wavenumber pair (θ, φ), followed by broadband integration of its

logarithm. As we will see in the next section, even finite-dimensional implementations of

this statistic can bring a significant improvement in performance by taking advantage of the

WSS assumption and its manifestation in a Toeplitz structure for the NP × NP blocks of

R.

5.4. Simulation Results

In this section we provide simulation results to demonstrate several situations where the

likelihood ratio in (33) applies and to demonstrate the improvement in detection performance

that can be achieved in such applications. The first example is the detection of spatially

correlated time series in a network of sensor arrays where the observation xi[n, p] represents

the time series collected at the pth sensor of the ith array. The second simulation example is

the detection of correlation among two or more coregistered images. This simulation is more

in line with the underwater target detection application that will be discussed in Chapter 6

where xi[n, p] will represent the pixel location at a particular along-track/range location in

the ith sonar image. In this case, index i will correspond to one of the two sonar images,

either high frequency or broadband, employed in this dual-channel detection problem.
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Array 1

Array 2

Array 3

Figure 5.4. Detection of a Source using Multiple Linear Arrays.

5.4.1. Multichannel Detection in a Network of Sensor Arrays. For this

simulation, we consider a network of L = 3 sensor arrays, each of which is a uniform linear

array (ULA) of P = 16 sensor elements. Our aim is to generate a quite arbitrary field and

to propagate this field to all three sensor arrays as depicted in Figure 5.4. The propagating

signal s[n] for n = 0, . . . ,MN − 1 produced by the source is assumed to be a zero-mean

WSS random process. As such, it follows that there exists an orthogonal increment process

{ψ(θ),−π < θ ≤ π} such that [45]

s[n] =

∫ π

−π
ejnθdψ(θ)

The random measure dψ(θ), which may be treated as a narrowband component of the signal

s[n] at the instantaneous frequency θ, is a normal random variable with covariance

E [dψ(θ)dψ∗(ω)] = δ(θ − ω)σ2
s(e

jθ)dθ

and σ2
s(e

jθ) is the power spectral density

σ2
s(e

jθ) =
1

2π

∞∑
l=−∞

e−jlθE [s[n]s∗[n+ l]]
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This signal is then propagated to each sensor array so that the signal measured at the ith

sensor array, si[n], may be written

si[n] =

∫ π

−π
ejnθe−jθTidψ(θ)

with Ti a bulk propagation delay representing the time taken for the signal to reach the ith

array. For this simulation, it is assumed that s[n] arises from a first-order autoregressive

process with coefficient a and driven by a white noise sequence with variance σ2 so that the

spectral density σ2
s(e

jθ) may be written [45]

σ2
s(e

jθ) =
σ2

2π

1

|1− ae−jθ|2

The signal received at each array is then propagated as a planewave among its elements.

At each P -element array a temporally colored nonpropagating noise component is added

independently of all sensors so that the observation at the ith array, xi[n] ∈ CP , may be

written

xi[n] =

∫ π

−π
ejnθe−jθTia(ejθ)dψ(θ) + wi[n]

where the noise vector wi[n] has the cross spectral matrix

1

2π

∞∑
l=−∞

e−jlθE
[
wi[n]wH

i [n+ l]
]

= σ2
w(ejθ)IP

Also, the vector a(ejθ) denotes the array response or steering vector

a(ejθ) =
[
1 e−jθτ · · · e−j(P−1)θτ

]T
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with τ a propagation delay dependent on the properties of the medium, the distance between

sensor elements, and the Direction-of-Arrival (DOA) of the far-field source. Consequently,

each P × P block of the frequency-dependent spectral density matrix of the composite

observation can then be written as follows

{
S(ejθ)

}
i,k

=


σ2
s(e

jθ)a(ejθ)aH(ejθ) + σ2
w(ejθ)IP i = k

σ2
s(e

jθ)ejθ(Tk−Ti)a(ejθ)aH(ejθ) i 6= k

For this simulation, the sensor noise is generated by passing unit-variance white noise through

a 5th-order FIR filter with weights b0, . . . , b5 so that the noise spectral density may be written

σ2
w(ejθ) =

1

2π

∣∣∣∣∣
5∑

k=0

bke
−jkθ

∣∣∣∣∣
2

Upon collecting all MN measurements at each sensor element, the data record is tem-

porally partitioned into M non-overlapping copies of a time series of length N = 24. The

likelihood ratio given in (33), referred to as “Frequency/Wavenumber Domain GLRT”, is

then used to discriminate situations where a source is present from those in which each sensor

array observes its own correlated noise field only. The performance of this detector will be

compared to the classical likelihood ratio given in (6), referred to as “Time Domain GLRT”,

as well as its frequency domain version given in (29) which is referred to as “Frequency

Domain GLRT”.

As mentioned briefly at the beginning of Section 5.3, all of the results of Section 3

generalize to the situation considered here by simply replacing N with NP in which case
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(a) Channel Index i = 2
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(b) Channel Index i = 3

Figure 5.5. Ratio of squared residuals under H0.
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(a) Channel Index i = 2
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(b) Channel Index i = 3

Figure 5.6. Ratio of squared residuals under H1.

the stochastic representation given in (11) becomes

Λ|H0
d
=

L∏
i=2

NP−1∏
n=0

Yin (34)

Yin ∼ Beta (M − (i− 1)NP − n, (i− 1)NP )
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With M = 1200 realizations of the composite vector z[m] under the null hypothesis, Figure

5.5 plots the ratio of squared residuals, σ2
in(R̂) to σ2

in(R̂ii), given in (10)

ηin =
σ2
in(R̂)

σ2
in(R̂ii)

=
xHinP

⊥
ZXxin

xHinP
⊥
ZXxin + xHinPP⊥XZxin

for n = 0, . . . , NP − 1 when (a) the channel index of the product given in (34) is i = 2

and (b) when it is i = 3. The dashed lines in both of these plots show a 95% confidence

interval for each beta random variable Yin, i.e. the interval [a, b] such that P [Yin ≤ a] =

P [Yin ≥ b] = 0.025. Recall from Section 3.2 that what differentiates the values observed

in these two plots is that in Figure 5.5 (a) x1 is used to predict x2 while in Figure 5.5 (b)

both x1 and x2 are being used to predict x3. Likewise, with the presence of a source with

signal-to-noise ratio SNR = 10 log10 σ
2 = −3 dB, Figure 5.6 displays the same for M = 1200

realizations from the alternative hypothesis. Comparing these two figures, it is clear that

this interval traps ηin with high probability under the null hypothesis, but does not under

the alternative hypothesis where many values fall below the interval, signaling a deviation

from independence.
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Figure 5.7. Detection performance with M = 1200 and SNR = −30 dB.
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With M = 1200 and a SNR = −30 dB source, Figure 5.7 displays the Receiver Operating

Characteristic (ROC) curves for all three detection methods considered here. From Figure

5.7 we can see that the Frequency/Wavenumber Domain GLRT exhibits a performance that

exceeds that of the Frequency Domain GLRT when discriminating these two hypotheses

while the performance of the Time Domain GLRT is particularly poor. This is most likely

due to the fact that the Time Domain GLRT does not exploit the WSS assumption and

its manifestation in a Toeplitz structure for the N × N or the NP × NP blocks of R. A

true GLRT for this case would use a ML estimate for Toeplitz matrices, an intractable

problem with no analytical solution. So the time-domain GLRT, while generally applicable,

is actually mis-matched to the WSS problem. On the other hand, the frequency-domain

and frequency-wavenumber domain GLRTs, while not as generally applicable, are better

matched to the WSS case. Moreover, these forms estimate cross-spectral matrices, which

are approximately block-diagonal in the WSS case, and use only their block-diagonals. In

other words, they exploit the assumed wide-sense stationarity by using only diagonal blocks

of the cross spectral matrix. Asymptotically, this approaches a GLRT that is faithful to the

assumptions of wide-sense stationarity.

Finally, Figures 5.8 (a) and (b) compare the performances of the Frequency/Wavenumber

and Frequency Domain GLRTs for a successively smaller number of copies but with a higher

power source. Note that the Time Domain GLRT has been excluded from these two studies

because of insufficient sample support, i.e. M is too small to construct positive-definite

covariance estimates. Similar to the results of Figure 5.7, we can again see that the Fre-

quency/Wavenumber Domain GLRT outperforms in each case. Again, this is likely due to

the fact that the likelihood ratio given in (33) is better matched to the (spatially) WSS

case versus its alternative given in (29) which, while more generally applicable, does not
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(a) M = 250, SNR = −26 dB
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(b) M = 50, SNR = −20 dB

Figure 5.8. Detection performance with fewer samples but a higher power source.

fully exploit wide-sense stationarity, i.e. the cross-spectral matrices Ŝ(ejθ) ∈ CPL×PL in (33)

do not exploit the spatial WSS problem. Thus, by taking advantage of the spatiotemporal

properties of the problem at hand, we can see that the GLRT given in (33) presents an

appealing likelihood ratio that exhibits improved detection performance when compared to

the two alternatives considered in (6) and (29).

n

p

z[n,p]z[n-1,p]

z[n,p-1]z[n-1,p-1]

Figure 5.9. The support region for the 2D multivariate AR process.

5.4.2. Multichannel Detection in Coregistered Images. Another application

where the use of (33) might be useful is the detection of coherence among two or more
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coregistered images. This idea will be employed in Chapter 6 for the purposes of detecting

underwater targets in pairs of high frequency and broadband sonar images. In this simu-

lation, we assume a pair (L = 2) of real-valued images {xi[n, p]} whose composite vector

z[n, p] = [x1[n, p] x2[n, p]]T ∈ R2 follows the 2D multivariate autoregressive (AR) process

z[n, p] = A10z[n− 1, p] + A01z[n, p− 1] + A11z[n− 1, p− 1] + w[n, p] (35)

with coefficient matrices

Ajk =

 a11
jk a12

jk

a21
jk a22

jk

 , j, k = 0, 1

and composite white noise sequence w[n, p]
iid∼ N (0, σ2I2). The support region and generation

of the composite vector z[n, p] using this multivariate AR model for an arbitrary number of

images is depicted in Figure 5.9. For this simulation, we wish to test the null hypothesis

that Ajk = diag
(
a11
jk, a

22
jk

)
for all j, k = 0, 1, i.e. we consider the hypothesis test

H0 : ai`jk = 0 ∀ j, k = 0, 1 and i 6= `

H1 : ai`jk 6= 0 ∀ j, k = 0, 1 and i 6= `

Using the autoregressive model in (35) with σ2 = 0.25 and coefficient matrices

A10 =

 0.4 0.005

−0.05 0.25

 , A10 =

 0.25 0.005

0.05 0.3

 , A11 =

 0.3 0.005

0.01 0.25


windows of size 128 × 128 are generated and each pair is partitioned into non-overlapping

blocks of size N × P . Each corresponding block from the images of both channels is then

vectorized and concatenated to form the composite vector z[m] =
[
x1[m]T x2[m]T

]T ∈ R2NP .
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Figure 5.10. Formation of the data matrix Z used to compute the general-
ized Hadamard ratio Λ.

All block are subsequently accumulated into the data matrix Z given in (5) as is shown in

Figure 5.10. With a N = P = 8 block size and M = 1282/82 = 256 samples, the data matrix

Z is used to compute the generalized Hadamard ratio given in (6). This detection strategy

is compared to the broadband coherence detector given in (33) using a larger block size of

N = P = 32. For this detection strategy, the cross-spectral matrix Ŝ(ejθ, ejφ) is estimated

using Welch’s method [46] by partitioning each pair of images into blocks as in Figure 5.10

but with a 50% overlap in both dimensions. Each block is subsequently windowed using a

separable Hamming window, i.e. the 2D window function can be written w[n, p] = w[n]w[p]

with w[n] and w[p] representing two 1D Hamming windows [47]. A 2D FFT is subsequently

applied and the corresponding periodograms for each block are averaged to produce the

estimate Ŝ(ejθ, ejφ).

Figure 5.11 gives examples of the images from both channels, the unconstrained co-

variance estimate R̂ used in the computation of the generalized Hadamard ratio, and the

estimated magnitude coherence γ̂(ejθ, ejφ) defined as

γ̂(ejθ, ejφ) =
|Ŝ12(ejθ, ejφ)|√

Ŝ11(ejθ, ejφ)Ŝ22(ejθ, ejφ)
(36)
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(a) Uncorrelated (H0) (b) Correlated (H1)

Figure 5.11. Examples of the images for each channel, the estimated covari-
ance matrix R̂, and the estimated magnitude coherence γ̂(ejθ, ejφ).

Figure 5.12. The actual magnitude coherence γ(ejθ, ejφ) under H1.

when (a) both channels are uncorrelated (H0) and (b) when they are correlated (H1). Note

that when L = 2, the narrowband Hadamard ratio in the integrand of (33) can be expressed

in terms of γ̂(ejθ, ejφ) via

det Ŝ(ejθ, ejφ)∏L
i=1 Ŝii(e

jθ, ejφ)
= 1− γ̂2(ejθ, ejφ)

Comparing the results shown in Figure 5.11, one can see a very minor difference between

the covariance matrices R̂ in each case. The difference between the magnitude coherence
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Figure 5.13. Comparison of the ROC curves for the generalized Hadamard
ratio and broadband coherence detectors.

γ̂(ejθ, ejφ), however, is very noticeable as one sees much larger values when the data is

correlated in Figure 5.11 (b) versus when it is uncorrelated in Figure 5.11 (a). Under the

alternative hypothesis H1, Figure 5.12 plots the true coherence

γ(ejθ, ejφ) =
|S12(ejθ, ejφ)|√

S11(ejθ, ejφ)S22(ejθ, ejφ)

with cross-spectral matrix
[
S(ejθ, ejφ)

]2
i,k=1

= Sik(e
jθ, ejφ)

S(ejθ, ejφ) = σ2A−1(ejθ, ejφ)A−H(ejθ, ejφ)

A(ejθ, ejφ) = I2 − A10e
−jθ − A01e

−jφ − A11e
−j(θ+φ)

in which case one can see a fairly good correspondence between this image and the example of

its estimate given in the bottom right of Figure 5.11 (b). Note that, under the null hypothesis

H0, the true magnitude coherence is zero, i.e. γ(ejθ, ejφ) = 0 for all −π < θ, φ ≤ π.

Figure 5.13 compares the ROC curves of the generalized Hadamard ratio detector in (6)

and broadband coherence detector in (33) in which case one can see that the broadband

coherence detector is clearly better in performance. As a final demonstration, a pair of
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(a) Image Generation

(b) Channel 1 (c) Channel 2

Figure 5.14. Generation of two images which are uncorrelated except at
several arbitrarily chosen locations as illustrated in (a).

images of size 2048× 2048 were generated using the model in (35) which, by-and-large, are

uncorrelated by setting ai`jk = 0 for all i 6= `. However, for arbitrarily selected locations

within these images the data was generated to be correlated by switching ai`jk to its non-zero

value for all pixels within a 128 × 128 region of each location. The idea behind this setup

is depicted in Figure 5.14 (a) with the images for both channels shown in Figures 5.14 (b)

and (c). Trying to visually discern where these locations have been hidden in this pair of

images is difficult. A window of size 128× 128 is then scanned through each image and the

data applied to both detectors. Figure 5.15 (a) displays the negative log-likelihood ratio for

each window when employing the generalized Hadamard ratio in which case it is clear that

it too fails to determine where linear dependence has been enforced. However, the negative
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(a) Generalized Hadamard Ratio (b) Broadband Coherence

Figure 5.15. Likelihood ratio values for the pair of images shown in Figure
5.14 (b) and (c).

log-likelihood ratio values for the broadband coherence detector shown in Figure 5.15 (b)

make it obviously clear where these locations have been placed as indicated by the relatively

large values observed in each region. Thus, by exploiting the inherent Toeplitz-block-Toeplitz

behavior in each block of matrix R, one can again see that the broadband coherence detector

presents an appealing likelihood ratio that can improve the performance over the generalized

Hadamard ratio.

5.5. Conclusion

In this chapter we considered an extension of the generalized Hadamard ratio given in (6)

which exploits the inherent Toeplitz-block-Toeplitz structure that each block Rik of matrix

R will take when the set of observations {xi[n, p]}Li=1 correspond to 2D WSS processes.

Examples of where this model may apply is the temporally and spatially WSS observations

collected in a network of sensor arrays or the spatially WSS data observed among multiple

coregistered images. Although the true GLRT for this problem would impose this Toeplitz

structure on the ML estimate of R, this is an intractable problem with no closed-form
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solution. However, the asymptotic behavior of Toeplitz matrices is well understood and

leads to very tractable results. Taking advantage of this asymptotic theory, the GLRT is

expressed as the broadband integral of a narrowband Hadamard ratio over the 2D frequency

plane, a test statistic referred to as broadband coherence.

The broadband coherence detector is then demonstrated using simulations of two differ-

ent multichannel detection applications. These applications involve detection in a network

of sensor arrays and among multiple coregistered images. In the first simulation, we con-

sidered the problem of detecting a single wideband source using several ULAs laid out in a

linear geometry. For this problem, the broadband coherence detector was shown to provide

substantial improvement over the generalized Hadamard ratio and a likelihood ratio that is

analogous to that developed in [7]. In this case, the broadband coherence detector involves

the analysis of coherence in a frequency/wavenumber domain. For the second simulation,

we considered the problem of detecting correlation among a pair of images generated using

a 2D multivariate autoregressive model. In this situation it was shown that the broadband

coherence detector again provides substantial improvement in detection performance over

the generalized Hadamard ratio. For this application, the broadband coherence detector

involves the analysis of coherence in the 2D frequency domain. In the next chapter, the

broadband coherence detector will be applied to pairs of coregistered high frequency and

broadband sonar images for the detection of underwater targets on the seafloor.

92



CHAPTER 6

Application to Sonar Imagery

6.1. Introduction

In this chapter we will apply the results and methods developed in previous chapters

to the problem of automatic target detection in pairs of coregistered sonar images of the

seafloor. The detection of underwater objects in sonar imagery is a difficult problem due

to many factors such as variations in operating and environmental conditions, presence of

spatially varying clutter, variations in target shapes, compositions and orientation, as well as

different degrees with which a target may be buried in sediment. Moreover, bottom features

such as coral reefs, sand formations, and vegetation may obscure a target and can be a

source of high false alarm rates. Due to the wide variation in target conditions that can be

observed for this problem, detection methods that take advantage of general discriminative

features in the data, as opposed to those that rely on specific target models, can in some

cases be desirable. Such is the case for the solution presented here where the detection

principle simply relies on the assumption that the presence of targets in coregistered high

frequency (HF) and broadband (BB) images will lead to a higher degree of coherence than

when those images contain background alone. In other words, we expect the matrix R̂ to

be better approximated by a block-diagonal matrix when the image snippets taken from

this pair of images only contains returns from the seafloor compared to a situation where

they also contain a target. It is this deviation from a block-diagonal matrix as measured

by the generalized Hadamard ratio and broadband coherence detectors which we will use to

determine if and where targets are located within each pair of images.
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To demonstrate the methods developed in this dissertation, tests are conducted on three

datasets consisting of pairs of HF and BB sonar images collected using the Small Synthetic

Aperture Minehunter (SSAM) system [48]. Two of the datasets used in the studies of this

chapter contain images collected at different geographical locations with each environment

presenting different difficulty levels in clutter density. These datasets will be used to in-

vestigate the use of the null distribution developed in Chapters 3 and Chapters 4 and to

demonstrate the use of the broadband coherence detector developed in Chapter 5. The

other dataset used in this chapter consists of actual HF and BB sonar images of the seafloor

with simulated targets of different geometrical shapes inserted into the image. This dataset

will be primarily used to study the proposed method’s robustness to deviation from coreg-

istration, an issue which can arise in dual frequency band sonar imagery.

The remainder of this chapter is organized as follows. In Section 6.2, we give a brief

review of the three datasets used in the results of this chapter as well as the processing

methods used for these coherence-based detection algorithms. Section 6.3 investigates the

use of the null distribution of the generalized Hadamard ratio to sonar imagery and the

accuracy with which the distribution can capture the likelihood ratio of background for

various clutter difficulties. In Section 6.4 we discuss the proposed method’s robustness to

coregistration. We then present results of the broadband coherence detector when applied to

the two datasets containing actual targets and compare its performance to several alternative

detectors. Concluding remarks are finally given in Section 6.5.

6.2. Data Description and Processing

To test and compare the results presented in this dissertation, the methods were applied

to several dual-sonar data sets collected using the Small Synthetic Aperture Minehunter
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Figure 6.1. Collection of sonar data using synthetic aperture processing.

(SSAM) [48]. SSAM is a dual frequency band Synthetic Aperture Sonar (SAS) system capa-

ble of producing high resolution images of the seafloor. Although the real aperture mounted

on the autonomous underwater vehicle (AUV) only consists of 8 receiver elements, high

resolution images are produced by synthetic aperture processing and coherently combining

a number of acoustic pings as the AUV moves in along-track. A depiction of this data

collection scenario is given in Figure 6.1. With the SSAM system’s use of dual frequency

bands, each is used to construct one HF high-resolution sonar image as well as one BB

sonar image coregistered over the same region on the sea-floor. One of the advantages of

jointly employing both HF and BB sonar is the ability of HF sonar to provide higher spatial

resolution and a better ability to capture target details and characteristics while BB sonar

offers much better clutter suppression ability with lower spatial resolution. So although the

multichannel methods outlined in this dissertation apply to any number of channels L, the

results of this chapter only pertain to the use of L = 2 channels. Coregistration in these

images is easily achieved as the two sonar systems are mounted on the same autonomous

underwater vehicle (AUV) and use the same receive hydrophone array. The pinging for both

HF and BB systems is done simultaneously as they are sufficiently far apart in frequency

such that their returns are easily separable.
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The sonar images used in this work are generated at the output of a coherent processor,

in this case the k-space or wavenumber beamformer [49], [50]. Each impinging sound wave

on the receiver array elements of the sonar is converted to magnitude and phase. The delay

and sum beamforming algorithm [51] attempts to coherently combine the sound waves in

a way that resolves the echo returns into a complex-valued pixel. More specifically, the

k-space or wavenumber algorithm computes the 2-D Fourier transform of the raw or range-

compressed sonar data in the delay-time/aperture domain. This converts the data into the

spatial frequency/wavenumber (ω, k)-domain where it is multiplied by the power spectrum

of the transmitted wavefront. A change of variables is done by Stolt interpolation [52]. This

change of variables maps the frequency/wavenumber (ω, k)-domain into the wavenumber

domain (kx, ky). The inverse 2-D Fourier transform is then taken of the mapped data to

form the complex image.

Figure 6.2 gives an example of a corresponding pair of HF and BB images produced using

the SSAM system and beamforming procedures described above. Note that the images shown

in this figure only display the magnitude of each complex-valued pixel. When observing

a target lying proud on the seafloor, one typically notices two defining characteristics: a

highlight region corresponding to a strong sonar return from the target itself followed by

a shadow region as the target blocks the sonar return immediately behind it. An example

of a target that exhibits these characteristics can be seen in the images of Figure 6.2 at

approximately 14 m in along-track and -22 m in range. This highlight/shadow relationship

for targets will be exploited in Section 6.4.3 to construct a matched subspace detector which

will be used to benchmark the performance of the proposed coherence-based techniques.

The results of this chapter were generated using three sonar imagery datasets provided

by NSWC-Panama City. The first two datasets consist of sonar images containing actual
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(a) HF Image

(b) BB Image

Figure 6.2. An example of the HF and BB images produced by the SSAM sonar.

Table 6.1. Characteristics of Both Real Sonar Datasets

Clutter Difficulty Number of Images Number of Targets

Dataset 1 Medium/Hard 122 77

Dataset 2

Day 1 Easy 180 4
Day 2 Hard 136 17
Day 3 Easy 142 47
Total – 458 68

Dataset 3 Easy 145 580

targets lying on the seafloor. The first of these two datasets, from now on referred to as

“Dataset 1”, was collected from one geographical location with an environment consisting

of medium to hard clutter difficulty. The second dataset, referred to as “Dataset 2”, was

collected at a completely different geographical location from Dataset 1. Dataset 2 is further

partitioned into three days of data collection with each day consisting of different target

fields. Day 1 and day 3 of this dataset have minimal clutter density while day 2 contains
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very difficult clutter. Table 6.1 lists the total number of images as well as the number of

targets for each dataset. These two datasets will not only be used to test the validity of the

null distribution of the generalized Hadamard ratio in Section 6.3 but they will also be used

to evaluate the performance of the broadband coherence detector in Section 6.4.

The third dataset used in this chapter, referred to as “Dataset 3”, contains actual SAS

images of the seafloor with synthetically generated targets inserted into the images [53].

Using physics-based target scattering models, the images in this dataset are generated by

inserting the simulated sonar returns from the target into actual returns from the seafloor

prior to the beamforming process. This simulated sonar imagery dataset consists of 145 pairs

of HF and BB sonar images with each pair corresponding to a particular data collection sce-

nario characterized by its background and object configuration. Each image pair uses one of

29 different backgrounds that are real images of the seafloor and contains the synthetically

generated signatures of four different geometrical shapes that are inserted into the image ac-

cording to one of 5 different configurations that define the orientations and relative positions

of the objects with respect to the sonar. The total number of images and targets in this

dataset are given at the bottom of Table 6.1. Each pair of HF and BB images contains one of

each of the following four target types: block, cone, sphere, and cylinder. This dataset will

be used in Section 6.4 to investigate the sensitivity of the proposed methods to deviations

from coregistration as mentioned before.

When processing the images in the data sets for the detection methods considered in

this chapter, each pair of HF and BB images is first partitioned into coregistered regions

of interest (ROIs) with 50% overlap in both the range and along-track dimensions. ROIs

are formed in an overlapping fashion to ensure that the target will not be split among

different ROIs. Thus, if an ROI contains a target, it will encompass the entirety of the
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Figure 6.3. Partitioning of the HF and BB images into coregistered ROIs
and formation of the data matrix Z.

target structure. Based on the average target size, ROIs for both the HF and BB images are

chosen to be 80 pixels tall by 144 pixels wide. Once each pair of coregistered ROIs has been

extracted from the sonar images, the processing steps are exactly the same as that used in

the simulations of Section 5.4.2: each pair of ROIs is in turn partitioned into non-overlapping

blocks of size N×P , the blocks are vectorized and concatenated to form the composite vector

z[m] =
[
x1[m]T x2[m]T

]T ∈ R2NP , and all blocks are subsequently accumulated into the data

matrix Z given in (5). The size of each block (N and P ) as well as the number of samples

(M) are different depending on the detection method being considered. This processing

procedure is depicted in Figure 6.3. The processing for the broadband coherence detector

is also the same as that used in Section 5.4.2: ROIs are again partitioned into blocks but

with a 50% overlap in both the along-track and range dimensions, each block is windowed

using a 2D Hamming window, a 2D FFT is applied, and the periodograms for each block

are averaged to estimate the cross-spectral matrix Ŝ(ejθ, ejφ). As the realizations (blocks)

of the composite data vector z[m] used to form second-order estimates of the covariance

matrix R̂ and cross-spectral matrix Ŝ are spatially distributed over the area of the ROI, it is

difficult to argue that these realizations are independent and identically distributed. As we
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Figure 6.4. An example of one HF image with several locations correspond-
ing to both target and background chosen throughout the image.

shall see in the subsequent sections of this chapter, however, this data processing strategy

is still capable of producing estimates that can sufficiently discriminate between target and

background.

6.3. False Alarm Studies

One of the main subjects of this dissertation was the null distribution of the generalized

Hadamard ratio developed in Chapter 3 and the use of these results in defining thresholds

that match a desired false alarm rate. In this section, we will demonstrate the use of these

methods on the two datasets containing actual targets lying on the seafloor when employing

the generalized Hadamard ratio. To keep the number of samples relatively large compared

to the dimension of each channel, a fairly small block size of N = P = 8 was used resulting

in a total of M = 180 samples per every pair of ROIs. Using both Dataset 1 and Dataset

2, we will first demonstrate the stochastic behavior of the ratio of squared residuals given in

(10) and then test the use of the saddlepoint approximation in the different environments

presented by these two datasets.
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Figure 6.5. Ratio of squared residuals and their 95% confidence interval for
each target/non-target window shown in Figure 6.4
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Figure 6.4 gives an example of one HF image from Dataset 1 with several ROIs chosen

throughout the image and highlighted with a red box. Windows 1-3 in this image corre-

spond to targets, whereas windows 4-5 represent ROIs taken from the structured clutter

field observed in the upper-left portion of the image, and windows 7-9 correspond to ROIs

containing unstructured background. For each highlighted window in Figure 6.4, Figure 6.5

displays both the HF and BB ROIs as well as plots of the ratio of squared residuals given in

(10)

ηin =
σ2
in(R̂)

σ2
in(R̂ii)

=
xHinP

⊥
ZXxin

xHinP
⊥
ZXxin + xHinPP⊥XZxin

for i = 2 and n = 0, . . . , 63. Recall that the product of these ratios produces the generalized

Hadamard ratio Λ as demonstrated by the result given in (10). Exactly similar to the

plots shown in Figures 5.5 and 5.6, the red lines in each of these plots represent a 95%

confidence interval for these ratios under the null hypothesis and are constructed using

the appropriate beta distribution. For windows 1-3 each containing a target, one can see

a significant deviation from the interval indicating a strong deviation from independence.

In contrast, for windows 7-9 containing unstructured clutter one can see that the interval

accurately bounds these ratios giving a good indication that each pair of these ROIs are

indeed uncorrelated. However, for windows 4-6 containing difficult structured clutter, one

can see that the interval fails to bound the ratios and that there is a slight deviation from

independence for these ROIs as well. In other words, the assumption that each ηin follows a

beta distribution holds very well when the data contains no seafloor clutter but tends to be

less applicable when clutter is present.

As the number of samples M used here is fairly small relative to the dimensions of each

channel, the saddlepoint approximation was used to find the threshold needed to achieve a

false alarm rate of PFA = 0.01 for the scaled logarithm of the generalized Hadamard ratio,
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(a) Easy Background (b) Cluttered Background

Figure 6.6. Example of two HF images, the regions in each likelihood image
that fall above the threshold, and the histograms of the likelihood ratio.

Λ̃ =
(

1
3
(L+ 1)NP − 2M

)
ln Λ, given in (6). Recalling the discussion given in Section 4.3,

this saddlepoint density is constructed by solving the saddlepoint equation given in (26)

and substituting it into the density approximation given in (24). The threshold needed to

achieve a false alarm rate of PFA = 0.01 is then determined using this saddlepoint density

function. Using this threshold, this modified likelihood ratio was applied to both Dataset

1 and Dataset 2 by partitioning every image into ROIs with 50% overlap and applying the

data from each corresponding pair of HF and BB ROIs to the likelihood ratio. Figure 6.6

shows two examples of the results of this test for (a) a HF sonar image from Dataset 2 with
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no clutter and (b) a HF sonar image from Dataset 1 with difficult clutter in part of the

image. The top image in both of these plots shows the HF image with several instances

of target highlighted by a red box. The middle image displays the log-likelihood ratio Λ̃

for each ROI of this image and collections of ROIs that fall above the threshold have been

outlined in red. Finally, the bottom plot displays the histogram of the log-likelihood values

for that image in blue and compares it to the saddlepoint approximation of the density

function which is plotted in red. From these two figures, one can see that the detector

approximately achieves the desired false alarm rate in Figure 6.6 (a) and in the bottom-left

of Figure 6.6 (b). However, the observed false alarm rate in the top-right of Figure 6.6 (b)

is clearly much higher than what is desired and this clutter field’s effect on the histogram of

the log-likelihood ratio is clear.

Finally, Figures 6.7 (a) and (b) plot the empirical false alarm probability, i.e. the per-

centage of log-likelihood values for ROIs containing only background that fall above the

threshold, for each image in both Dataset 1 and Dataset 2, respectively. Again, we can con-

clude that the methods developed in Chapters 3 and 4 can be used to determine thresholds

that produce false alarm rates that are relatively close to what is desired in environments

that lack any significant amount of clutter, such as day 1 and day 3 in Dataset 2. However, in

environments where the clutter difficulty is medium to hard such as that observed in Dataset

1 and day 2 of Dataset 2, then the actual false alarm rate of the detector will be significantly

higher than what is desired. The wide range of values observed in Figure 6.7 demonstrates

just how difficult it can be to maintain a constant false alarm rate given the great variety of

different environments and bottom conditions that can be encountered in this problem.

104



20 40 60 80 100 120
10

-4

10
-3

10
-2

10
-1

10
0

Image Number

P
F

A

(a) Dataset 1

50 100 150 200 250 300 350 400 450
10

-4

10
-3

10
-2

10
-1

10
0

Image Number

P
F

A

Day 1 Day 2 Day 3

(b) Dataset 2

Figure 6.7. Probability of false alarm (PFA) for each image in Dataset1 and
Dataset 2 using the saddlepoint-based threshold.

6.4. Sonar Imagery Detection Results

In this section, we apply the broadband coherence detector developed in Section 5.3 to

the two datasets containing actual targets on the seafloor and compare its performance to the

generalized Hadamard ratio given in (6) as well as a matched subspace detector [54] which

specifically searches for highlight and shadow characteristics in the magnitude of the HF

image only. Additionally, we will discuss the effects time delays and translation can have on

these coherence-based methods and demonstrate these effects using the dataset containing

simulated objects of different geometrical shapes.

6.4.1. Application of Broadband Coherence to Sonar Imagery. In this sec-

tion, we give a preliminary demonstration of the broadband coherence detector by looking

at several examples of the estimated covariance matrix R̂ and the estimated magnitude co-

herence spectrum γ̂(ejθ, ejφ) for both targets and background. The problem considered here

is very similar to the simulations considered in Section 5.4.2. In this case, x1[n, p] repre-

sents the pixel of the HF image in the along-track/range coordinate system of the image
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Figure 6.8. The HF and BB snippets, estimated covariance matrix R̂, and
estimated magnitude coherence γ̂(ejθ, ejφ) for each window shown in Figure
6.4.
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and x2[n, p] is the corresponding pixel for the BB image. Recalling the second invariance

property discussed in Section 2.3.1, it’s important to note that the results presented here

would remain the same had we chosen to let x1 represent the BB image and x2 the HF image.

In applying the broadband coherence detector given in (33), we assume that the data in this

pair of images is spatially WSS, i.e. that there exists a sequence γik[l,m] for l = 0, . . . , N −1

and m = 0, . . . , P − 1 such that

E [xi[n+ l, p+m]x∗k[n, p]] = γik[l,m] ∈ C ∀ i, k = 1, 2

As discussed in Section 5.3, this assumption will, in theory, manifest itself in the form of

Toeplitz-block-Toeplitz structured matrices in each block Rik of matrix R.

Very similar to the plots shown in Figure 5.11, Figure 6.8 displays the HF and BB snippets

for each ROI delineated with a red box in the HF image shown in Figure 6.4 taken from

Dataset 1. Using the processing steps described in Section 6.2, the top right of each window

in this figure shows the estimated covariance matrix R̂ using a block size of N = P = 8

for that pair of HF and BB ROIs. Likewise, the bottom right of each window shows the

estimated magnitude coherence spectrum γ̂(ejθ, ejφ) for each HF and BB pair using Welch’s

method with a N = P = 32 block size. Note that a smaller block size is required by the

generalized Hadamard so as to produce a sufficiently large number of samples (M) such that

the unconstrained covariance estimate R̂ ∈ CLNP×LNP will be PD, i.e. large block sizes easily

result in sample poor conditions. On the other hand, the broadband coherence detector only

requires the estimation of the cross-spectral matrix Ŝ(ejθ, ejφ) ∈ CL×L, a matrix of much

lower dimension, and is thus not nearly as constrained when it comes to an appropriate block

size.
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Looking at the estimated covariance matrix for each example shown in Figure 6.8, one can

for the most part observe the Toeplitz-block-Toeplitz structure associated with WSS data in

the autocovariance matrices for both channels. This is especially true for the examples shown

in windows 7-9 containing unstructured clutter. However, the cross-covariance matrix R̂12 =

R̂H
21 generally lacks this Toeplitz-block-Toeplitz structure. In other words, the assumption

that each channel is individually WSS seems to be a fairly applicable assumption for this

problem but the assumption that they are jointly WSS is harder to argue. Be that as it

may, one can see that the magnitude coherence tends to be significantly higher for windows

1-3 containing targets than when those windows contain background and clutter. Moreover,

one can also see that the coherence patterns themselves tend to be different when comparing

target to structured clutter. Hence, although the WSS assumptions behind the broadband

coherence detector may not directly apply for this problem, the results shown in Figure

6.8 make it clear that broadband coherence is still a useful tool for discriminating between

those ROIs that contain target from those that only contain background (structured or

unstructured).

6.4.2. Sensitivity to Coregistration. As the proposed coherence-based detection

techniques require the use of pairs of HF and BB images that are coregistered over the

seafloor, one important question that arises in the practical application of these methods is

the effect relative translation and deviations from coregistration can have on target detection.

This question is very much equivalent to asking how relative time delays among two or more

length-N time series affects the ability of these methods to adequately determine whether

or not these time series are linearly dependent. To answer this question, we will begin by

investigating the effect of time delay on a particular performance criteria associated with the

generalized Hadmard ratio.
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The performance criteria which we are interested in studying is the absolute separation

between the mean of the log of the generalized Hadamard ratio under the alternative and

null hypotheses. To develop this criteria, we will begin by making the same assumption used

at the beginning of Section 3.3 and that is, under the null hypothesis, the data matrix Z

given in (5) contains iid realizations of CN (0, 1) random variables. What differentiates the

alternative hypothesis from the null hypothesis is that this data matrix will be colored with

the non-block-diagonal transformation R1/2 so that the absolute difference in mean, δ, can

be expressed as

δ = |E [ln Λ|H1]− E [ln Λ|H0]|

=

∣∣∣∣∣∣E
ln

det
(
R1/2ZZHRH/2

)∏L
i=1 det

(
R

1/2
ii XiNXH

iNR
H/2
ii

)
− E [ln

det
(
ZZH

)∏L
i=1 det (XiNXH

iN)

]∣∣∣∣∣∣
=

∣∣∣∣∣ln det R∏L
i=1 det Rii

+ E

[
ln

det
(
ZZH

)∏L
i=1 det (XiNXH

iN)

]
− E

[
ln

det
(
ZZH

)∏L
i=1 det (XiNXH

iN)

]∣∣∣∣∣
= − ln

det R∏L
i=1 det Rii

(37)

Here, we’ve used the same notation used in Section 3.3 where the data matrix XiN represents

the collection of all M samples of the time series xi = [xi[0] · · · xi[N − 1]]T , i.e.

XiN =



xi[0, 1] xi[0, 2] · · · xi[0,M ]

xi[1, 1] xi[1, 2] · · · xi[1,M ]

...
...

. . .
...

xi[N − 1, 1] xi[N − 1, 2] · · · xi[N − 1,M ]


Thus, the magnitude of the difference in mean of the log-likelihood ratio between these two

hypotheses is simply the negative log of the generalized Hadamard ratio of the true model
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Figure 6.9. Delaying the signal from one channel produces a shift in the
cross-covariance matrix R12 = RH

21.

represented by the matrix R under the alternative hypothesis. This measure is completely

independent of the number of samples M used in the formation of the generalized Hadamard

ratio.

To study the effects time delays have on value of δ, consider a situation where L = 2

channels observe a common autoregressive signal s[n] plus white Gaussian noise wi[n] where

the signal received by the second channel is delayed by an integer number of k samples. That

is, we consider the following model under the alternative hypothesis

x1[n] = s[n] + w1[n]

x2[n] = s[n− k] + w2[n]

where wi[n]
iid∼ CN (0, 1) for i = 1, 2 and n = 0, . . . , N − 1 and s[n] is a first-order autoregres-

sive process with coefficient a and white noise variance σ2. With a = 0.9 and σ2 = 2, Figure

6.9 displays the true covariance matrix R under this model with an increasing value of the

delay k as well as simulated examples of the time series for both channels in each case. As

the time delay grows large, one can see that the high correlation peak in the cross-covariance
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Figure 6.10. The relative separation in mean δ(k)/δ(0) as a function of
increasing time delay.

matrix R12 = RH
21 gradually shifts out of the picture. The farther the shift in this correlation

peak, the more and more block-diagonal the matrix R becomes making it more difficult to

discriminate the alternative hypothesis from the null hypothesis.

For several choices in N , Figure 6.10 plots the relative separation in mean δ(k)/δ(0),

i.e. the value of δ given in (37) with time delay k normalized by its maximum value at

k = 0. From this figure, one can see that the separation in mean generally decreases with an

increasing delay in time. However, one also sees that the detector is generally more robust

to time delays with the use of a longer time series for each channel, i.e. a larger value for

N . For example, the generalized Hadamard ratio with N = 24 exhibits a 20% decrease in

separation with every delay of 5 samples while there is only a 10% decrease when N = 48.

Thus, when it comes to the effects of relative time delays on the separation in mean of this

test statistic, the larger the value of N the more robust the detector.

Now, to demonstrate the effects of spatial translation on the detection of targets among

two HF and BB images, a test was conducted using Dataset 3 containing actual images of

the seafloor with synthetically generated targets inserted into the image. Figures 6.11 (a)-(c)

shows examples of the HF and BB snippets for the block, cone, cylinder, and sphere target
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(a) Block (b) Cone

(c) Cylinder (d) Sphere

Figure 6.11. The likelihood ratio for both broadband coherence and the
generalized Hadamard ratio as a function of translation in along-track and
range.

types, respectively. For each of these four targets, the BB image was then translated in both

the range and along-track directions while the HF image was left fixed to mimic deviations

from coregistration. The plot in the bottom left of each of these figures displays the log of

the likelihood ratio given in (33) with a N = P = 32 block size as a function of spatial

translation in meters. The plot in the bottom right of each figure likewise shows the log of

the likelihood ratio given in (6) with a N = P = 8 block size. Although the likelihood values

for the cone target in Figure 6.11 (b) are relatively low, one can again see that both detectors

maintain relatively high values for low spatial tranlation. Looking at the results in Figures
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6.10 and 6.11 one can conclude that, while these coherence-based detection methods are

not completely invariant to the effects of time delays and spatial translation, one can afford

some deviation from coregistration before completely losing the ability to detect a signal

common to multiple channels. In fact, the results in Figure 6.11 suggest that the broadband

coherence detector can withstand approximately 0.5 m of translation in either along-track

or range before losing the ability to detect these four targets. The results of Figure 6.11 also

make it clear that the broadband coherence detector’s use of a larger 32×32 block size results

in a detector that is generally more robust to deviations from coregistration compared to the

generalized Hadamard ratio using a smaller 8 × 8 block size. This conclusion is consistent

with the results given in Figure 6.10 which show that higher dimensional observations tend

to be more robust to the effects of relative translation.

6.4.3. Comparison Studies and Detection Results. In this section, we apply

the broadband coherence detector in (33) and compare its performance to the generalized

Hadamard ratio in (6) as well as a matched subspace detector [54] using Dataset 1 and

Dataset 2 in Table 6.1. The processing steps used to compute the likelihood ratio for both

the broadband coherence and generalized Hadamard ratio are the same as those mentioned

in Section 6.2. The detection methods studied in this section will be compared using per-

formance metrics such as Receiver Operating Characteristic (ROC) curve characteristics,

probability of detection (PD), and average number of false alarms per image (FA/Image).

In addition to studying the performance of the coherence-based detection methods given

in (6) and (33), we will also benchmark the performance of these methods with a detection

technique that specifically looks for the highlight and shadow characteristics typically asso-

ciated with targets. For this technique, let the vector x ∈ RM denote the vector formed by

vectorizing the magnitude of the pixels in the HF image only where M = 80× 144 = 11520
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Figure 6.12. The template h used in the matched subspace detector is
constructed to mimic the highlight/shadow attributes associated with targets
lying proud on the seafloor.

corresponds to the total number of pixels in each ROI. One technique commonly employed

for the detection of targets lying proud on the seafloor is to construct a template h ∈ RM

that mimics the highlight and shadow characteristics of targets and to find regions of the

seafloor that best match that template. Here, h is the vector formed by vectorizing the ide-

alistic template given on the right of Figure 6.12. Comparing this template to the example

of a HF ROI containing a target on the left-hand side of Figure 6.12, the resemblance with

the template is not exact but it generally captures the behavior of the target.

As this detection technique relies solely on the magnitude of the HF image, we assume

that the observation x ∈ RM follows the linear model

x = µh + φ1 + w

where w is a vector of white noise, w ∼ N (0, σ2I), with unknown variance σ2 and 1 denotes

an M -dimensional vector of ones. Thus, the data for any ROI is assumed to consist of signal,

µh, plus an unknown bias representing an unknown average pixel intensity, φ1, plus noise of

unknown variance, w. Given this model, the matched subspace detector [54] tests the null

hypothesis that the signal (target) is absent (µ = 0) versus the alternative that it is present
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with a strictly positive scaling (µ > 0), i.e. we consider the hypothesis test

H0 : µ = 0

H1 : µ > 0

Note that if the scaling µ associated with the signal were less than zero then the template

shown in Figure 6.12 would exhibit a region of relatively low intensity followed by a region of

relatively high intensity. However, the constraint that µ > 0 under the alternative hypothesis

is enforced as targets always exhibit a high intensity highlight followed by a low intensity

shadow. Letting θ = [µ φ σ2]
T

denote the vector of unknown parameters, employing the

GLRT given in (2) yields the likelihood ratio [54]

Λ =


0 µ̂ ≤ 0

xTP⊥1 PgP
⊥
1 x

xTP⊥1 P
⊥
g P

⊥
1 x

µ̂ > 0
(38)

where µ̂ =
hTP⊥1 x

hTP⊥1 h
is the ML estimate of µ and Pg is the projector Pg = PP⊥1 h. Note that the

projection matrix P⊥1 = I − 1
M
11T is an M ×M centering matrix which simply subtracts

the average value from any vector since if x = [x1 · · · xM ]T then

P⊥1 x = x− 1

M
11Tx = x−

(
1

M

M∑
i=1

xi

)
1

When applying this detection technique to the images of Dataset 1 and Dataset 2 the images

are again partitioned to ROIs and applied to the likelihood ratio given in (38). As the location

of the target in the ROI is important, however, a 90% overlap in both the along-track and

range dimensions is introduced as opposed to the 50% overlap employed for the broadband

coherence and generalized Hadamard ratio detectors. Again, the underlying principle behind

this detection technique is fundamentally different from the coherence-based methods given
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(b) Dataset 2

Figure 6.13. Comparison of the ROC curves for each detector.

in (6) and (33). While the likelihood ratios of (6) and (33) are used to find regions where the

complex-valued data within the HF and BB images is highly correlated, the likelihood ratio

given in (38) is designed to find regions in the magnitude of the HF image which provide a

good match with the template shown in Figure 6.12.

The detection methods developed in this work were then applied to the two datasets

containing actual targets lying on the seafloor. For the studies of this section, four different

detection methods were considered: the broadband coherence detector given in (33) with a

N = P = 32 block size, the generalized Hadamard ratio given in (6) with a N = P = 8 block

size, the likelihood ratio given in (6) but with N = P = 1 so that the pixels in each pair

of ROIs are treated as independent samples and the likelihood ratio is a Hadamard ratio

[28], and finally the matched subspace detector given in (38). Using all the targets in both

Dataset 1 and Dataset 2 as well as a randomly selected set of background ROIs extracted

from the images of both datasets, Figures 6.13 (a) and (b) compare the ROC curves of all

four detectors for Dataset 1 and Dataset 2, respectively. For reference, the knee-point of

each ROC curve, i.e. the point where PD + PFA = 1, is shown as a small circle in both
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of these figures. Looking at the results in Figure 6.13 (a), one can see that the broadband

coherence, generalized Hadamard ratio, and matched subspace detectors all perform fairly

similarly on Dataset 1. However, the broadband coherence detector clearly outperforms all

the alternatives considered here for Dataset 2 as can be seen in Figure 6.13 (b) while matched

subspace detector tends to perform better than the generalized Hadamard ratio, especially

for high false alarm probabilities. Also, one can see from these figures that the Hadamard

ratio fails to discriminate target from background for both datasets. Recalling the arguments

made in Section 6.4.2 and the results shown in Figure 6.10, this poor performance may be

attributed to small deviations in coregistration between the HF and BB images of both

datasets which is particularly noticeable when using small block sizes.

Using a small subset of images from each dataset, a threshold was then selected for

each detector and empirically set based on the likelihood values from this subset of images

to achieve a false alarm rate of PFA = 10−2. Using these selected thresholds, all four

detection methods were then applied to both Dataset 1 and Dataset 2 with this subset of

images reinserted into both datasets. For each detection method, all overlapping ROIs that

produce a likelihood ratio that exceeds its corresponding threshold were accumulated into

one detection. If the location of that detection is within 2.5 m of the known ground truth

location of a target, the detection is labeled a correct detection else it is reported as a false

alarm. Using this performance criteria, Table 6.2 gives the detection rates for each method

on both Dataset 1 and each day (environment) of Dataset 2. Similar to what was observed

in Figure 6.13, the Hadamard ratio performs poorly on these datasets, detecting only about

a third of the total number of targets. The other three alternatives perform better, however,

with overall detection rates ranging from a low of about 70% to a high of nearly 90%.

From this table, one can also see that the broadband coherence detector performs well with
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Table 6.2. Comparison of the Detection Rates (PD) for Each Method

Dataset 1 Dataset 2
Detection Method – Day1 Day 2 Day 3 Total

Broadband Coherence 68 (88%) 4 (100%) 16 (94%) 39 (83%) 59 (87%)
Hadamard Ratio (N = P = 1) 29 (38%) 2 (50%) 7 (41%) 8 (17%) 17 (25%)

Gen. Hadamard Ratio (N = P = 8) 61 (79%) 4 (100%) 14 (82%) 31 (66%) 49 (72%)
Matched Subspace Detector 67 (87%) 4 (100%) 14 (82%) 38 (81%) 56 (82%)

Table 6.3. Comparison of the Average Number of False Alarms per Image
(FA/Image) for Each Method

Dataset 1 Dataset 2
Detection Method – Day1 Day 2 Day 3 Total

Broadband Coherence 12.6 0.5 26.0 2.4 8.64
Hadamard Ratio (N = P = 1) 12.4 8.7 14.3 8.0 10.13

Gen. Hadamard Ratio (N = P = 8) 10.2 1.1 24.6 3.4 8.83
Matched Subspace Detector 13.2 2.3 40.4 4.8 14.4

detection rates of 88% and 87% on Dataset 1 and Dataset 2, respectively, compared to its

closest competitor, the matched subspace detector, which achieves corresponding detection

rates of 87% and 82%. Finally, Table 6.3 gives the average number of false alarms per image

for each method when applied to both datasets. From this table it is clear that all methods

exhibit a relatively high false alarm rate for the difficult environments presented by Dataset

1 and day 2 of Dataset 2 while the false detection rates are significantly smaller for day 1

and 3 of Dataset 2. One can also see that, while the broadband coherence detector exhibits

the second highest false alarm rate on Dataset 1, it achieves the lowest overall false alarm

rate for Dataset 2 among all the alternatives considered here.

As a final comparison between the broadband coherence and matched subspace detectors,

the top two images of Figures 6.14 (a) and (b) give examples of two HF images with the

targets in each highlighted with a red box. The plot in the middle of each figure displays

the likelihood ratio of the broadband coherence detector for each ROI in their respective

image while the bottom two plots show the same for the matched subspace detector. Groups

of overlapping ROIs that fall above the empirically chosen threshold for each method are
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(a) Example Image 1 (b) Example Image 2

Figure 6.14. Two HF images with targets and comparison of the areas
detected by the broadband coherence and matched subspace detectors.

surrounded with a red box in these plots. The matched subspace detector fails to detect the

target at the far left of Figure 6.14 (a) which exhibits a low intensity highlight and short

shadow as the target is close to the AUV in range. The matched subspace detector also

fails to detect the target in Figure 6.14 (b) which exhibits no shadow region behind the

highlight. In both cases, the template in Figure 6.12 fails to adequately model these targets
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and produces low likelihood ratio values as a result. However, the broadband coherence

detector, which successfully detects both targets, does not rely on any specific model of the

target and simply looks for high levels coherence among the HF and BB data. These two

examples demonstrate why this simple principle can in some cases be an advantage for this

problem.

6.5. Conclusion

In this chapter we applied the results of Chapters 3, 4, and 5 to the detection of under-

water targets in pairs of coregistered HF and BB SAS images formed from the data collected

using the SSAM system. The underlying detection principle behind these coherence-based

approaches is that the presence of a target in any pair of ROIs produces a higher level of

coherence than when those ROIs contain background alone. To demonstrate the results of

this dissertation the methods were applied to three sonar imagery datasets, two consist-

ing of actual targets lying the seafloor with each being collected in different environments

with unique difficulties and one dataset consisting of actual SAS images of the seafloor with

synthetically generated targets of different geometrical shapes inserted into the images.

First, the usefulness of the results concerning the null distribution of the generalized

Hadamard ratio discussed in Chapters 3 and 4 was studied. Using one image containing

targets and both cluttered and smooth background as an example, the ratio of squared

residuals used in the construction of the likelihood ratio were compared to a 95% confidence

interval knowing the fact that each ratio is beta distributed under the null hypothesis. From

the few examples of ROIs chosen in this study, it was found that this bound tends to capture

the behavior of these ratios when that ROI contains background with no clutter. However,

the same bound fails to capture their behavior when that ROI contains difficult clutter
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density. A saddlepoint approximation was then used to find the threshold needed to achieve

a desired false alarm probability and the actual false alarm rate for that threshold was

measured when applied to both real datasets. From the results of this study it was observed

that these methods are capable of approximately achieving the desired false alarm rate in

environments with low or no clutter density. However, in environments with difficult clutter

density, the realized false alarm rates will be much higher than what is desired.

The broadband coherence detector developed in Chapter 5 was then applied to all three

datasets. Looking at the separation in mean of the generalized Hadamard ratio, we first

studied the effects time delays can have on detectability and observed that the robustness of

this performance criteria tends to increase with increasing time series length. This principle

was then demonstrated by comparing the likelihood ratio values produced by the broadband

coherence detector and generalized Hadamard ratio for several simulated targets of different

geometrical shapes as the data of the BB image is spatially translated relative to the HF

image. As a result of these studies we concluded that, while these coherence-based detection

methods are not completely invariant to spatial translation, the proposed technique can

withstand approximately 0.5 m of translation in either along-track or range before completely

losing the ability to detect each target. Moreover, we found that the broadband coherence

detector’s use of a larger block size results in a detector that is generally more robust to

deviations from coregistration compared to the smaller block sizes used for the generalized

Hadamard ratio. If the total amount of data, i.e. ROI size, remains fixed, however, the

disadvantage of using larger block sizes is that it reduces the number of samples used to form

estimates of the second-order parameters required by these coherence-based techniques.
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The performance of the broadband coherence detector on the two real sonar datasets was

then compared to the generalized Hadamard ratio using both pixel and block-based obser-

vations as well as a matched subspace detector designed to find regions in the magnitude of

the HF image that exhibit the highlight and shadow characteristics typical of targets lying

proud on the seafloor. A comparison of the results for each method shows that the broad-

band coherence, generalized Hadamard ratio, and matched subspace detectors all perform

fairly similarly on Dataset 1 but the broadband coherence detector clearly outperforms its

alternatives on Dataset 2. The Hadamard ratio performs poorly on both datasets which may

be attributed to a lack of robustness to even slight deviations from coregistration. Through

the results presented in this section, one can see that the fundamental principle of detecting

underwater targets using coherence-based approaches is itself a very useful solution for this

problem and that the broadband coherence statistic is adequately adept at achieving this.
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CHAPTER 7

Conclusions and Suggestions for Future Work

7.1. Conclusions and Discussions

The problem of underwater target detection in multiple sonar images is complicated due

to various factors such as variations in operating and environmental conditions, presence of

spatially varying clutter, variations in target shapes, compositions and orientation. More-

over, bottom features such as coral reefs, sand formations, and vegetation may obscure a

target and can be a source of high false alarm rates. Due to the wide variation in target

conditions that can be observed for this problem, detection methods that take advantage of

general discriminative features in the data, as opposed to those that rely on specific target

models, can in some cases be desirable. Such is the case for the solution presented here where

the detection principle simply relies on the assumption that the presence of targets in coreg-

istered HF and BB images will lead to a higher degree of coherence than when those images

contain background alone. Posing the problem as a test of independence among multiple

data channels, the Generalized Likelihood Ratio Test (GLRT) is a generalized Hadamard

ratio of a composite covariance matrix estimated from multiple iid samples.

The first subject discussed in this work was the characterization of the null distribution

of the generalized Hadamard ratio for finding thresholds that achieve a desired false alarm

probability. Using the theory of Gram determinants, it was shown in Chapter 3 that this test

statistic can be written as a product of ratios of the squared residual from two linear predic-

tion problems. Geometrical insights into these ratios leads to the conclusion that, under the

null hypothesis, the generalized Hadamard ratio is stochastically equivalent to a product of
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independent beta random variables. This stochastic representation makes it very straight-

forward to derive various attributes of the null distribution of this test statistic including

its moments, characteristic function, and cumulant generating function. Asymptotically, the

characteristic function of this random variable was shown to converge to a chi-squared ran-

dom variable as the number of iid samples used to form the estimated composite covariance

matrix grows large. However, even with the inclusion of a scaling designed to improve the

rate of convergence, results show that the distribution is slow to converge. For this reason,

we turned our attention to the use of saddlepoint approximations [22], [39] which, with the

help of numerical root-finding algorithms to find the saddlepoint, gives a practical alternative

for determining the threshold needed to approximately achieve a desired false alarm rate.

Simulation results show that the saddlepoint approximation is a very useful alternative for

capturing the distribution of the log-likelihood ratio under the null hypothesis, especially in

situations where L or N is large. If both L and N are small, however, results show that the

asymptotic chi-squared distribution is probably more practical in these scenarios and tends

to produce false alarm rates closer to what is desired.

The second subject of this dissertation was an alternative implementation of the gener-

alized Hadamard ratio which exploits the inherent Toeplitz-block-Toeplitz structure of the

composite covariance matrix when the data collected by each channel is jointly wide-sense

stationary (WSS) so as to produce detection methods that are better matched to the prob-

lem under the stationarity assumption. Although the true GLRT for this problem would

impose this Toeplitz structure on the ML estimate of the composite covariance matrix this

is an intractable problem with no closed-form solution. However, the asymptotic behavior

of Toeplitz matrices is well understood and leads to very tractable results involving various
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matrix operations for Toeplitz matrices. Using this asymptotic theory, the GLRT is ex-

pressed as the broadband integral of a narrowband Hadamard ratio over the 2D frequency

plane in Chapter 5, a test statistic referred to as broadband coherence. The broadband

coherence detector was then demonstrated using simulations of two different multichannel

detection applications. In the first simulation, we considered the problem of detecting a

single wideband source using several ULAs laid out in a linear geometry. For the second

simulation, we considered the problem of detecting correlation among a pair of images gener-

ated using a 2D multivariate autoregressive model. In both cases, this broadband coherence

detector is shown to provide substantial improvements in performance compared to alterna-

tive techniques which, while more generally applicable, do not exploit stationarity and its

manifistation in a Toeplitz structure for the composite covariance matrix.

These results were then applied in Chapter 6 to the problem of underwater target de-

tection in pairs of high frequency (HF) and broadband (BB) sonar images coregistered over

the seafloor. Here, the detection hypothesis is that the presence of a target in this pair of

images will lead to a higher level of coherence compared to situations where they contain

background alone and that the difference in coherence in these two situations will be suffi-

ciently high to adequately discriminate one from the other. To demonstrate the results of

this dissertation the methods were applied to three datasets, two consisting of actual targets

lying the seafloor with each being collected in different environments with unique difficulties

and one dataset consisting of actual sonar images of the seafloor with synthetically generated

targets of different geometrical shapes inserted into the images.

Using the two real sonar datasets, the first study involved the usefulness of the results

concerning the null distribution of the generalized Hadamard ratio developed in Chapters

3 and 4 for this problem. Using one pair of HF and BB sonar images as an example, the
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ratio of squared residuals that comprise the generalized Hadamard ratio were compared to a

confidence interval designed to capture their behavior under the null hypothesis. From these

few examples, it was observed that the bound accurately captures the behavior of these

ratios for uncluttered background but fails when the background contains significant clutter

density. As the number of samples used to form maximum likelihood (ML) estimates of the

composite covariance matrix were relatively small for this application, a saddlepoint approx-

imation was used to find the threshold needed to achieve a false alarm rate of PFA = 0.01.

The actual false alarm rate subsequently measured when applied to all the different envi-

ronments encompassed by the two real sonar datasets. These results seemed to suggest that

the saddlepoint approximation, and more importantly the fact that the likelihood ratio is

distributed as a product of independent betas under the null hypothesis, is capable of pro-

ducing thresholds which approximately achieve the desired false alarm rate in environments

with low clutter density. However, in environments with high clutter density, the realized

false alarm rates can be much higher than what is desired.

All three sonar imagery datasets were then used to demonstrate the broadband coherence

detector developed in Chapter 5. Before analyzing the performance of the proposed detector,

we first studied the effects of deviation in coregistration among the HF and BB images.

This principle was then demonstrated by comparing the likelihood ratio values produced

by the broadband coherence detector and generalized Hadamard ratio for several simulated

targets of different geometrical shapes as a function of spatial translation. The results of

these studies showed that the broadband coherence detector can withstand approximately

0.5 m of translation in either along-track or range before completely losing the ability to

discriminate target from background. Another conclusion drawn from these results was that

the use of larger block sizes with the broadband coherence detector makes it more robust to
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spatial translation compared to the smaller block sizes used with the generalized Hadamard

ratio. This result is consistent with arguments made in the beginning of Section 6.4.2 which

show that the separation among the null and alternative hypotheses tends to be more robust

with the use of higher dimensional observations.

Finally, the performance of the broadband coherence detector on the two real sonar

datasets was then compared to the generalized Hadamard ratio using both pixel and block-

based observations as well as a matched subspace detector [54] designed to find regions

in the magnitude of the HF image that exhibit the highlight and shadow characteristics

typical of targets lying proud on the seafloor. A comparison of the results for each method

shows that the broadband coherence, generalized Hadamard ratio, and matched subspace

detectors all perform fairly similarly on the first real sonar dataset. However on the second

dataset, the broadband coherence detector provides a 5% improvement in PD along with

a significant reduction in false alarm rate compared to its closest competitor, the matched

subspace detector. The Hadamard ratio performed poorly on both datasets which may be

attributed to a lack of robustness to even slight deviations from coregistration. Through the

results presented in this dissertation, one can see that the fundamental principle of detecting

underwater targets using coherence-based approaches is itself a very useful solution for this

problem. Moreover, while not the true GLRT for WSS random processes, results show that

the broadband coherence detector is a computationally efficient method which is adequately

adept at achieving this.
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7.2. Future Work

Although, the coherence-based techniques discussed in this dissertation offers powerful

tools for detection of underwater targets from multiple sonar images, there are several im-

portant areas and extensions that can be pursued in the future. These include, but are not

limited to:

• As discussed in Chapter 5, the broadband coherence detector given in (33) is not

the true GLRT for WSS random processes in that it does not impose a Toeplitz

structure on the ML estimate of the composite covariance matrix. Instead, the

methods discussed in Chapter 5 all relied on asymptotic versions of the generalized

Hadamard ratio as results concerning large Toeplitz matrices are very practical.

Thus, one line of future work could involve the development of efficient means of

computing ML estimates of Toeplitz matrices that would be valid even for finite

dimensions. In addition to the problem considered here, the development of such

methods would find its uses in a wide range of applications.

• One of the conclusions drawn in the investigation of the geometry of the GLRT

in Section 2.3.2 was that the block-diagonal ML estimator D̂ used in (6) is also a

least-squares estimator in that it minimizes the Euclidean distance from the uncon-

strained ML estimator R̂. Along similar lines of the previous item, one line of future

research could be to investigate whether this principle extends beyond the ML prob-

lem considered here. That is, given a set of iid samples xi ∈ Cn for i = 1, . . . ,M

and some convex subspace R0 ⊂ R of the set of all PD Hermitian matrices R, the

goal of this work would be to establish necessary and sufficient conditions for the
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set R0 such that the ML estimator R∗ ∈ Cn×n satisfies

R∗ = arg max
R∈R0

M∏
i=1

f (xi;R) = arg min
R∈R0

∣∣∣∣∣∣R̂−R∣∣∣∣∣∣2
F

where f(xi;R) denotes the probability density of a zero-mean complex normal ran-

dom vector with covariance matrix R and R̂ = 1
M

∑M
i=1 xix

H
i . Such a result could

not only find its uses in statistical hypothesis testing but in the ML estimation of

structured covariance matrices in general.

• The data used in this study was limited to only a few environments and types of

underwater targets. Ideally, the next step in the development of the coherence-based

detection developed in this dissertation would be to test the performance on more

data to prove the usefulness of the detection systems developed here. The testing on

more difficult data sets as well as those including more man-made non-targets could

be done in the future. More specifically, a study on the effect of different bottom

types, target orientations, sonar aspect, resolution, and SNR on the performance of

the detector would be insightful and help to illustrate the real effectiveness of these

techniques for realistic underwater target detection problems.

• The coherence-based detection methods developed in this thesis are applicable not

only to sonar image detection, but could be used on other disparate sensory systems,

i.e. radar, infrared, and optical. A study of its usefulness on these types of sensing

modalities would be highly valuable. By finding the coherent information between

more than one type of sensor, the detection and classification performance could be

improved.

• Another line of possible future work could be the investigation of not only using

broadband coherence for detection but also using the coherence patterns themselves
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Figure 7.1. Several examples of the HF and BB snippets of different simu-
lated targets and their coherence patterns.

as a classification feature for discriminating one target type from another. Figure 7.1

gives examples of four simulated targets from Dataset 3 used in Chapter 6 as well as

the estimated magnitude coherence γ̂(ejθ, ejφ) defined in (36) for each pair of HF and

BB snippets. One can see from this figure that each target type, representing block,

cylinder, cone, and sphere respectively, does in fact exhibit a distinct coherence

pattern which may be used to discriminate one target type from the other. Work

along this line would involve studies to gain an understanding of how different

variables such as aspect angle and range effect the coherence patterns of each target

type as well as an investigation of how robust the coherence patterns are to different

data collection scenarios, e.g. proud versus partially buried. Work would also involve

the development of methods that exploit these patterns for classification.

• One of the conclusions that may be drawn from the false alarm results presented

in Chapter 6 is the difficulty in designing detectors that achieve a constant false

alarm rate given the wide variation in environmental and seafloor conditions that

can be encountered in this problem. Thus, one line of future work could involve the

development of robust methods which adaptively adjust the threshold when new
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environments are encountered in the hopes of achieving a constant false alarm rate.

Moreover, these methods might take advantage of environmental context or a priori

knowledge about the environment in which data is being collected to determine an

appropriate threshold.

• Beyond being a method well-suited to measuring coherence among multiple chan-

nels, one of the advantages of the broadband coherence detector in (33) is that it

makes it very straightforward to be selective in terms of what frequencies are and

are not used in the construction of the likelihood ratio. Thus, along the lines of the

previous item, one possible area of future research could involve the development of

frequency-selective detection techniques designed to reduce the effects of clutter in

the computation of the likelihood ratio. Here, the objective would be to remove or

suppress those frequencies typically associated with clutter while at the same time

retaining as much of the coherent information for targets as possible.
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APPENDIX A

Gram Determinants and Complex Wishart Matrices

In this appendix, we will briefly review the theory of Gram determinants and its connec-

tion to the distribution of the determinant of complex Wishart matrices [27]. The results of

this chapter will be used in Sections 3.2 and 3.3 when discussing the null distribution of the

generalized Hadamard ratio.

Consider the arbitrary set of vectors x0,x1, . . . ,xN−1 with xn ∈ CM . This collection of

vectors may be organized into the data matrix X = [x0 x1 · · · xN−1] ∈ CM×N . The Gram

matrix for X is the N ×N Hermitian matrix containing all pair-wise inner products for this

set of vectors

G = XHX =



〈x0,x0〉 〈x1,x0〉 · · · 〈xN−1,x0〉

〈x0,x1〉 〈x1,x1〉 · · · 〈xN−1,x1〉
...

...
. . .

...

〈x0,xN−1〉 〈x1,xN−1〉 · · · 〈xN−1,xN−1〉


where 〈xi,xk〉 = xHk xi. As discussed in [21], this set of vectors is linearly independent if and

only if the real-valued scalar detG, referred to as the Gram determinant, is nonzero.

The fact that a nonzero Gram determinant constitutes a necessary and sufficient condition

for linear independence gives us a procedure for sequentially testing each of these N vectors

to determine if xn is linearly independent of x0, . . . ,xn−1 for any n = 1, . . . , N −1. The data

matrix Xn = [Xn−1 xn] with Xn−1 = [x0 · · · xn−1] has the structured Gram matrix

Gn = XH
n Xn =

 Gn−1 hn

hHn gnn
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In this expression, Gn−1 = XH
n−1Xn−1 is the Gram matrix of Xn−1, hn = XH

n−1xn is a vector

of inner products between xi and xn for i = 0, . . . , n−1, and gnn = xHn xn is the squared-norm

of xn. Using results concerning the determinant of block matrices, one can show that the

Gram determinant with xn included is the Gram determinant without xn multiplied by the

Schur complement σ2
n

detGn = σ2
n detGn−1 (A-1)

σ2
n = gnn − hHn G

−1
n−1hn

This recursive expression may be iterated to express the Gram determinant as a product of

σ2
n for n = 0, . . . , N − 1

detG =
(
σ2
N−1

)
detG(N−1)−1 =

(
σ2
N−1

) (
σ2
N−2

)
detG(N−2)−1 = · · · =

N−1∏
n=0

σ2
n (A-2)

with σ2
0 = g00 = xH0 x0.

If the vector xn is linearly independent of x0, . . . ,xn−1, it is clear from the expression given

in (A-1) that detGn will be nonzero if and only if σ2
n is nonzero. Recalling the definitions of

Gn−1, hn, and gnn given above, we can rewrite the scalar σ2
n as a sole function of Xn−1 and

xn

σ2
n = xHn xn − xHn Xn−1

(
XH
n−1Xn−1

)−1
XH
n−1xn

= xHn

(
I −Xn−1

(
XH
n−1Xn−1

)−1
XH
n−1

)
xn

= xHn P
⊥
Xxn = ||P⊥Xxn||2
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Figure A-1. The incremental Gram determinant σ2
n is the squared-length

of the vector xn projected onto the M − n dimensional subspace 〈X〉⊥.

where PX = Xn−1

(
XH
n−1Xn−1

)−1
XH
n−1 denotes the orthogonal projection onto the n dimen-

sional subspace 〈Xn−1〉 spanned by the columns of matrix Xn−1. The geometry of this result

is depicted in Figure A-1. Thus, one can see that the scalar σ2
n represents the squared-length

of the vector xn projected onto the orthogonal complement 〈Xn−1〉⊥ and its connection with

linear dependence is clear: if the vector xn is linearly dependent on the columns of matrix

Xn−1 then there exists a vector a ∈ Cn such that xn = Xn−1a, the projection P⊥Xxn is the

null vector

P⊥Xxn =
(
I −Xn−1

(
XH
n−1Xn−1

)−1
XH
n−1

)
Xn−1a

= Xn−1a−Xn−1

(
XH
n−1Xn−1

)−1 (
XH
n−1Xn−1

)
a

= Xn−1a−Xn−1a = 0,

i.e. xn is in the null space of P⊥X , and hence σ2
n = 0.

Although the arguments given above are true for a general choice in the vector xn,

let’s consider the case where xn = [xn[1] xn[2] · · · xn[M ]]H with xn[m]
iid∼ CN (0, 1) for

n = 0, . . . , N−1 and m = 1, . . . ,M . We will use this collection of vectors, {xn}N−1
n=0 , to build
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the rows of the random data matrix X ∈ CN×M with M ≥ N

X =



x0[1] x0[2] · · · x0[M ]

x1[1] x1[2] · · · x1[M ]

...
...

. . .
...

xN−1[1] xN−1[2] · · · xN−1[M ]


One can think of the nth row of this matrix as M independent samples of the standard

complex normal random variable xn. These random variables have the sample covariance

matrix R̂ = 1
M
XXH . The random matrix MR̂ = XXH , which is a Gram matrix for the

rows of X, is said to be distributed according to the complex Wishart distribution [27] with

identity scaling matrix and M degrees of freedom, denoted XXH ∼ CWN(I,M). Recalling

the discussion on sequential Gram determinants given above, we may write the determinant

of the Gram matrix as det
(
XXH

)
=
∏N−1

n=0 σ
2
n where

σ2
n = xHn

(
I −XH

n−1(Xn−1X
H
n−1)−1Xn−1

)
xn = xHn P

⊥
Xxn

is again the squared length of the projection onto the orthogonal complement of the space

spanned by the columns of data matrix XH
n−1 = [x0, . . . ,xn−1], i.e. the set of random variables

x0, . . . , xn−1.

Conditioned on the data matrix Xn−1 ∈ Cn×M , the random scalar yn = 2xHn P
⊥
Xxn = 2σ2

n

is a quadratic involving standard complex normal random variables with a deterministic

idempotent matrix, i.e. if Xn−1 is known then PX = XH
n−1(Xn−1X

H
n−1)−1Xn−1 is determin-

istic, so that yn | Xn−1 ∼ χ2
2(M−n). This conditional probability distribution is dependent

on the number of rows (n) and columns (M) of Xn−1 but in no way dependent on what

value this data matrix actually takes making yn statistically independent of Xn−1. As the
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sequence of preceding random variables y0, . . . , yn−1 are all a function of Xn−1, this also im-

plies pair-wise independence between yn and y0, . . . , yn−1. By induction on n, it then follows

that the entire sequence of random variables y0, . . . , yN−1 are mutually independent so that

the scaled determinant of the complex Wishart distributed matrix XXH is probabilistically

equivalent to a product of independent chi-squared random variables

2Ndet
(
XXH

) d
=

N−1∏
n=0

χ2
2(M−n)

A more rigorous proof of this fact involving the characteristic function of the complex Wishart

distribution can be found in [55]. Thus, in addition to giving one a method for sequentially

determining if a set of vectors are linearly independent, Gram determinants are also a useful

tool for analyzing the probabilistic behavior of determinants of sample covariance matri-

ces.
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APPENDIX B

Chi-Squared and Beta Random Variables

In this appendix, we establish a well-known relationship between chi-squared and beta

random variables using the change of variables technique [40]. The purpose of this appendix

is to prove the statement given in Section 3.3 that “if X and Y represent two independent

chi-squared random variables with degrees of freedom νX and νY , respectively, then the

random variable X
X+Y

is distributed according to a beta distribution with parameters νX/2

and νY /2.”

Let X = [X1 · · · Xn]T ∈ D ⊆ Rn be a random vector with joint PDF fX(x) over the

domain D = {x : fX(x) > 0}. Let the transformation T : D → R denote some one-to-

one, continuously differentiable function that maps the domain D to the range R and set

Y = T (X). Then, it is well known that the joint PDF of the random vector Y = [Y1 · · · Yn]T

can be related to that of the random vector X through the equality

fY(y) = fX
[
T−1(y)

]
|detJT−1|1R(y)

where T−1(·) denotes the inverse transformation, JT−1 is the Jacobian matrix of the inverse

transformation

JT−1 =



∂x1
∂y1

∂x1
∂y2

· · · ∂x1
∂yn

∂x2
∂y1

∂x2
∂y2

· · · ∂x2
∂yn

...
...

. . .
...

∂xn
∂y1

∂xn
∂y2

· · · ∂xn
∂yn
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and 1R(y) denotes the indicator function for the range R

1R(y) =


1 y ∈ R

0 y /∈ R

Now, suppose that X = [X1 X2]T with X1 ∼ χ2
ν1

, X2 ∼ χ2
ν2

and X1 is independent of

X2. This pair of random variables has joint PDF

fX1X2(x1, x2) = fX1(x1)fX2(x2) =
1

2
ν1+ν2

2 Γ
(
ν1
2

)
Γ
(
ν2
2

)x ν12 −1

1 x
ν2
2
−1

2 e−
x1+x2

2 ; x1, x2 ≥ 0

Define the transform/inverse-transform pair

T : Y1 = X1 +X2; Y2 =
X1

X1 +X2

T−1 : X1 = Y1Y2; X2 = Y1(1− Y2)

with range R = (0,∞)× (0, 1) and Jacobian matrix

JT−1 =

 ∂x1
∂y1

∂x1
∂y2

∂x2
∂y1

∂x2
∂y2

 =

 y2 y1

1− y2 −y1


|detJT−1| = | − y1y2 − y1(1− y2)| = y1

With this, the pair of random variables Y1 and Y2 has joint PDF
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fY1Y2
(y1, y2) = fX1X2

(y1y2, y1(1− y2)) y11(0,∞)(y1)1(0,1)(y2)

=

(
1

2
ν1+ν2

2 Γ
(
ν1
2

)
Γ
(
ν2
2

) (y1y2)
ν1
2 −1 [y1(1− y2)]

ν2
2 −1 e−

y1y2+y1(1−y2)
2

)
y11(0,∞)(y1)1(0,1)(y2)

=

(
1

2
ν1+ν2

2

y
ν1+ν2

2 −1
1 e−

y1
2 1(0,∞)(y1)

)(
1

Γ(ν12 )Γ(ν22 )
y
ν1
2 −1

2 (1− y2)
ν2
2 −11(0,1)(y2)

)

Multiplying and dividing by Γ(ν1+ν2
2

) and using the relationship given in (13), this joint PDF

can finally be written

fY1Y2(y1, y2) = fY1(y1)fY2(y2)

=

(
1

2
ν1+ν2

2 Γ(ν1+ν22 )
y
ν1+ν2

2 −1
1 e−

y1
2 1(0,∞)(y1)

)(
1

B(ν12 ,
ν2
2 )
y
ν1
2 −1

2 (1− y2)
ν2
2 −11(0,1)(y2)

)

From this expression for the joint density fY1Y2(y1, y2), three consequences become self-

evident:

(1) If X1 ∼ χ2
ν1

, X2 ∼ χ2
ν2

, and X1 ⊥⊥ X2 then the random variable X1 +X2 is also chi-

squared with degrees of freedom ν1 + ν2 as evidenced by the expression for fY1(y1).

(2) If X1 ∼ χ2
ν1

, X2 ∼ χ2
ν2

, and X1 ⊥⊥ X2 then the random variable X1

X1+X2
is beta

distributed with parameters ν1/2 and ν2/2 as evidenced by the expression for fY2(y2).

(3) If X1 ∼ χ2
ν1

, X2 ∼ χ2
ν2

, and X1 ⊥⊥ X2 then the random variables X1 +X2 and X1

X1+X2

are independent as evidenced by the fact that fY1Y2(y1, y2) = fY1(y1)fY2(y2).
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APPENDIX C

Asymptotic Characteristic Function of the

Generalized Hadamard Ratio

In this appendix, we discuss in more detail the process of going from the cumulant

generating function of the random variable Z = −2ρM ln Λ given in (16) to the asymptotic

expression given in (18) as discussed in Section 3.4. Recall from the discussion in Chapter

3 that, as a consequence of knowing that the null distribution of the generalized Hadamard

ratio is stochastically equivalent to a product of independent beta random variables, the

cumulant generating function of the random variable Z given in (16) may be written as a

sum involving log-gamma functions with various arguments

ψZ(jt) =
L∑
i=2

N−1∑
n=0

S
(1)
in − S

(2)
in + S

(3)
in − S

(4)
in (C-1)

S
(1)
in = ln Γ (ρM + ξn) (C-2)

S
(2)
in = ln Γ (ρM + ξn − (i− 1)N) (C-3)

S
(3)
in = ln Γ (ρM(1− 2jt) + ξn − (i− 1)N) (C-4)

S
(4)
in = ln Γ (ρM(1− 2jt) + ξn) (C-5)

where ξn = (1− ρ)M − n. Also recall that the log-gamma function exhibits the asymptotic

expansion given in (17) which, using the 2nd order Bernoulli polynomial B2(x) = x2−x+ 1
6
,

can be written

ln Γ(z + a) =
1

2
ln(2π) + (z + a− 1

2
) ln z − z +

1

2z

(
a2 − a+

1

6

)
+O(|z|−2)
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Letting the variables z and a in this expansion represent the following terms for each log-

gamma function given in (C-2) – (C-5)

S
(1)
in : z = ρM, a = ξn

S
(2)
in : z = ρM, a = ξn − (i− 1)N

S
(3)
in : z = ρM(1− 2jt), a = ξn − (i− 1)N

S
(4)
in : z = ρM(1− 2jt), a = ξn

and ignoring higher order terms, each term S
(k)
in for k = 1, . . . , 4 in (C-2) – (C-5) may be

replaced with its respective approximation S̃
(k)
in

S̃
(1)
in =

1

2
ln(2π) +

(
ρM + ξn −

1

2

)
ln(ρM)− ρM +

1

2

(
ξ2
n − ξn +

1

6

)
(ρM)−1

S̃
(2)
in =

1

2
ln(2π) +

(
ρM + ξn − (i− 1)N − 1

2

)
ln(ρM)− ρM

+
1

2

(
ξ2
n − 2(i− 1)Nξn + (i− 1)2N2 − ξn + (i− 1)N +

1

6

)
(ρM)−1

S̃
(3)
in =

1

2
ln(2π) +

(
ρM(1− 2jt) + ξn − (i− 1)N − 1

2

)
ln [ρM(1− 2jt)]− ρM(1− 2jt)

+
1

2

(
ξ2
n − 2(i− 1)Nξn + (i− 1)2N2 − ξn + (i− 1)N +

1

6

)
[ρM(1− 2jt)]−1

S̃
(4)
in =

1

2
ln(2π) +

(
ρM(1− 2jt) + ξn −

1

2

)
ln [ρM(1− 2jt)]− ρM(1− 2jt)

+
1

2

(
ξ2
n − ξn +

1

6

)
[ρM(1− 2jt)]−1

145



These expressions are very unwieldy but, upon adding and subtracting them together, many

terms cancel yielding the fairly simple expression

4∑
k=1

(−1)k+1S̃
(k)
in = −(i− 1)N ln (1− 2jt)

+
1

2ρM

[
(i− 1)2N2 + (1− 2ξn)(i− 1)N

] [
(1− 2jt)−1 − 1

]
(C-6)

To find the approximation of the cumulant generating function in (C-1), we must then

sum the expression given in (C-6) for all i = 2, . . . , L and n = 0, . . . , N − 1. As this requires

sums of various powers of integers, one can employ the two series

m∑
k=1

k =
m(m+ 1)

2

m∑
k=1

k2 =
m(m+ 1)(2m+ 1)

6

to derive the following sums involving the number of channels (L), the length of each time

series (N), the number of samples (M), and the scaling factor (ρ)

L∑
i=2

N−1∑
n=0

(i− 1)N = N2

L−1∑
i=1

i =
1

2
(L2 − L)N2

L∑
i=2

N−1∑
n=0

(i− 1)2N2 = N3

L−1∑
i=1

i2 =
1

3

(
L3 − 3

2
L2 +

1

2
L

)
N3

2
L∑
i=2

N−1∑
n=0

(i− 1)Nξn = 2(1− ρ)M
L∑
i=2

N−1∑
n=0

(i− 1)N − 2
L∑
i=2

N−1∑
n=0

(i− 1)Nn

= (1− ρ)M(L2 − L)N2 − (N3 −N2)
L−1∑
i=1

i

= (1− ρ)M(L2 − L)N2 − 1

2
(L2 − L)(N3 −N2)
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With these three results, the sum of the latter term in (C-6) becomes

L∑
i=2

N−1∑
n=0

[
(i− 1)2N2 + (1− 2ξn)(i− 1)N

]
=

1

3

(
L3 − 3

2
L2 +

1

2
L

)
N3 +

1

2
(L2 − L)N2

− (1− ρ)M(L2 − L)N2 +
1

2
(L2 − L)(N3 −N2)

= −(1− ρ)M(L2 − L)N2 +
1

6
L(L2 − 1)N3

which can be used to finally obtain an asymptotic expression of the cumulant generating

function ψZ(jt)

ψZ(jt) =
L∑
i=2

N−1∑
n=0

S̃
(1)
in − S̃

(2)
in + S̃

(3)
in − S̃

(4)
in +O(M−2)

= − ln (1− 2jt)

L∑
i=2

N−1∑
n=0

(i− 1)N

+
1

2ρM

[
(1− 2jt)−1 − 1

] L∑
i=2

N−1∑
n=0

[
(i− 1)2N2 + (1− 2ξn)(i− 1)N

]
+O(M−2)

= −1

2
(L2 − L)N2 ln(1− 2jt)

+
1

2ρM

(
−(1− ρ)M(L2 − L)N2 +

1

6
L(L2 − 1)N3

)[
(1− 2jt)−1 − 1

]
+O(M−2)

Defining the two expressions for ν and ω1(ρ)

ν = L2N2 − LN2

ω1(ρ) =
1

2ρ

(
−ν(1− ρ) +

L(L2 − 1)N3

6M

)
,

one obtains the asymptotic expression of the cumulant generating function as it appears in

(18)

ψZ(jt) = −ν
2

ln(1− 2jt) + ω1(ρ)
[
(1− 2jt)−1 − 1

]
+O(M−2)
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