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Abstract

Detecting Advanced Botnets in Enterprise Networks

A botnet is a network composed of compromised computers that are controlled by a

botmaster through command and control (C&C) channel. Botnets are more destructive

compared to common virus and malware, because they control the resources from many

compromised computers. Botnets provide a very important platform for attacks, such as

Distributed Denial-of-Service (DDoS), spamming, scanning, and many more. To foil detec-

tion systems, botnets began to use various evasion techniques, including encrypted commu-

nications, dynamically generated C&C domains, and more. We call such botnets that use

evasion techniques as advanced botnets. In this dissertation, we introduce various algorithms

and systems to detect advanced botnets in enterprise-like network environment.

Encrypted botnets introduce several problems to detection. First, to enable research

in detecting encrypted botnets, researchers need samples of encrypted botnet traces with

ground truth, which are very hard to get. Traces that are available are not customizable,

which prevents testing under various controlled scenarios. To address this problem we intro-

duce BotTalker, a tool that can be used to generate customized encrypted botnet communi-

cation traffic. BotTalker emulates the actions a bot would take to encrypt communication.

To the best of our knowledge, BotTalker is the first work that provides users customized

encrypted botnet traffic.
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The second problem introduced by encrypted botnets is that Deep Packet Inspection

(DPI)-based security systems are foiled. We measure the effects of encryption on three se-

curity systems, including Snort, Suricata and BotHunter (BH) using the encrypted botnet

traffic generated by BotTalker. The results show that encryption foils these systems greatly.

Then, we introduce a method to detect encrypted botnet traffic based on the fact that en-

cryption increases data’s entropy. In particular, we present two high-entropy (HE) classifiers

and add one of them to enhance BH by utilizing the other detectors it provides. By doing

this HE classifier restores BH’s ability to detect bots, even when they use encryption.

Entropy calculation at line speed is expensive, especially when the flows are very long.

To deal with this issue, we introduce two algorithms to classify flows as HE by looking at

only part of a flow. In particular, we classify a flow as HE or low entropy (LE) by only

considering the first M packets of the flow. These early HE classifiers are used in two ways:

(a) to improve the speed of bot detection tools, and (b) as a filter to reduce the load on an

Intrusion Detection System (IDS). We implement the filter as a preprocessor in Snort. The

results show that by using the first 15 packets of a flow the traffic delivered to IDS is reduced

by more than 50% while maintaining more than 99.9% of the original alerts. Comparing our

traffic reduction scheme with other work we find that they need to inspect at least 13 times

more packets than ours or they miss about 70 times of the alerts.

To improve the resiliency of communication between bots and C&C servers, bot mas-

ters began utilizing Domain Generation Algorithms (DGA). DGA technique avoids static

blacklists as well as prevents security specialists from registering the C&C domain before

the botmaster. We introduce BotDigger, a system that detects DGA-based bots using DNS

traffic without a priori knowledge of the domain generation algorithm. BotDigger utilizes
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a chain of evidence, including quantity, temporal and linguistic evidence to detect an indi-

vidual bot by only monitoring traffic at the DNS servers of a single network. We evaluate

BotDigger’s performance using traces from two DGA-based botnets: Kraken and Conflicker,

as well as a one-week DNS trace captured from our university and three traces collected from

our research lab. Our results show that BotDigger detects all the Kraken bots and 99.8% of

Conficker bots with very low false positives.
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CHAPTER 1

Introduction

1.1. Botnets Overview

Internet has entirely changed the world in the last few decades. However, the tremendous

growth of Internet brought many cyber attacks. Cyber security constitutes one of the most

serious threats to the current society, costing hundreds of billions of dollars each year [16].

In 2015, 318 data breaches happened, and 9 of them exposed more than 10 million identities,

429 million identities were exposed in total [17]. The same year, approximately 100 billion

spam were sent every day; 431 million new malware variants were added; 362,000 Crypto-

Ransomware were reported; and 1 in 3,172 websites were found with malware. In October

2016, a large DDoS attack was aimed at Dyn [5], an Internet infrastructure company, im-

pacting access to a lot of companies in U.S., including PayPal, Twitter, GitHub, Amazon,

Netflix, and many more. One important question we would ask is that where these attacks

come from. The answer is that botnets provide platforms for them [87].

Figure 1.1. Botnet Example
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Botnet is a network composed of infected computers named bots, and all these bots

are controlled by a botmaster. An example of botnet is shown in Figure 1.1. Bots do not

have to be in the same network, instead, they can distribute in multiple networks. All

the bots follow the same commands from the botmaster via commands and control (C&C)

channel, shown in red lines in the figure. Botnets are more destructive compared to common

virus and malware, because they control the resources from a great number of compromised

computers. In addition, bots are coordinated by the botmaster, so the attacks can be well

designed and performed simultaneously. Botnets can be used to perform many attacks, we

list some examples of botnets and the corresponding attacks in Table 1.1.

Table 1.1. Botnets and Attacks

Attack Botnets

DDoS BlackEnergy, MrBlack, Nitol, Metulji, Mariposa

Spam Conficker, Kraken, Rustock, Waldec, Grum, Windigo, Cutwail, Srizbi,
Storm, Bobax, Ozdok, OneWordSub, Nucrypt, Wopla

Phishing and
Pharming

Asprox, Tequila

Click Fraud ZeroAccess, Chameleon

Ransomware Vundo, Gameover ZeuS

Steal Data Sinowal, Alureon, Gameover ZeuS

Install
Malware

Monkif, Rimecud, Pushbot

Attackers can use botnets to make money in many ways. For example, they can steal

victims’ personal and business information and sell them, perform DDoS attacks to blackmail

enterprises, encrypt victims’ files and ask for ransom. Another common way to make money

is advertised-spamming. Spam-advertised sites are built on the affiliate programs, which

provide retail contents and back-end services to a set of client affiliates. The affiliates are

responsible to attract the customers in any advertising way and they get paid on a commission
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basis. In [48], Kanich et al. estimate that seven counterfeit pharmacies and three counterfeit

software stores have more than 82,000 and 37,000 orders, producing revenues of 5.9 million

and 3.9 million, respectively. Besides, botnets can also make profits through Pay-Per-Install

(PPI) service. In PPI service, a botmaster can be the PPI provider who installs client

provided malware on compromised computers and charges the clients based on the number

of successful installations. An attacker can easily build his own botnet by buying installations

from PPI providers with very low cost. The installation fees vary from $100 to $180 for a

thousand unique successful installation in the most popular regions but only $7 to $8 in the

least demanded regions [27].

We want to emphasize that besides malicious bots, there are some legitimate bots. As-

suming a group of enterprises buy the same service from a network security company. With

approved permission, the security company may collect information from the monitors in

each enterprise, and then make decisions based on the combined information. In addition,

the security company also sends updates to the machines in enterprises. In this scenario,

the machines installing the security software and the security company can be considered

as legitimate “bots” and “botmaster”, respectively. In this dissertation, we do not consider

such legitimate botnets, but only focus on the malicious botnets composed of compromised

computers.

1.2. Botnet Architecture

One important component in botnet is the C&C channel, which is used to exchange

commands between bots and botmaster. Based on the C&C protocol, the botnets can be

classified into centralized and decentralized.
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1.2.1. Centralized Botnets. In a centralized botnet, there is a central node between

the botmaster and bots, the botmaster publishes commands to this central node and then

this central node sends the commands to the bots or the bots fetch the commands from

it. IRC-based (Internet Relay Chat) and HTTP-based botnets are the two main types of

centralized botnets. In IRC-based botnets, the botmaster and bots connect to the same IRC

server. Once the botmaster sends a command in the channel, the bots connected to the

same channel can receive it. IRC-based botnets include Rbot, Spybot, Agobot, SDBot, GT

Bot [38], [23]. In HTTP-based botnets, botmaster publishes commands on a HTTP server,

and then the bots periodically query the server to fetch the commands. Compared to IRC-

based botnets, it is harder to detect and block HTTP-based botnet traffic. First, the HTTP-

based C&C traffic is hidden in a great amount of legitimate HTTP traffic, and analyzing all

these traffic is time consuming. Second, we cannot block HTTP traffic because it is used by

many legitimate applications. HTTP-based botnets include Kraken [75], Conficker [53], [52],

Bamital [3], Torpig [87], Srizbi [95], Murofet [78].

1.2.2. Decentralized Botnets. Different from centralized botnets, there is no central

server in a decentralized botnet and it uses peer-to-peer technology to exchange commands,

so it is also named P2P botnet. P2P botnets include Storm [71], Nugache [88], Waledac [80]

and Zbot [60]. In recent years, decentralized botnet is getting more popular because they are

hard to detect and shut down. In centralized botnets, there is a central server to publish the

commands, when this central server is detected and cleaned, the entire botnet is shut down

because the bots cannot receive the commands any more. On the contrary, decentralized

botnets do not rely on a single server to exchange information.
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1.3. Advanced Botnets

The arms race between botnets and security specialists has lasted for years. On one hand,

security specialists spend lots of time and money on inventing botnet detection systems. On

the other hand, botnets utilize various techniques to become more robust and stealthy,

evading existing detection systems. In the context of this dissertation, we call the botnets

that use evasion techniques as Advanced Botnets .

Botnets pay much attention on evolving and protecting the C&C channels, because once

the C&C channels are detected and blocked, the botmaster will lose the control of its entire

army.

To evade DPI-based detection systems, bots began using encrypted C&C channels: Storm

utilizes XOR for encrypted communications [45], [71]; Waledac’s communication is encrypted

by AES [80]; all the C&C traffic in Rustock is encrypted using RC4 [29]. In [93], Wang et al.

design an advanced hybrid peer-to-peer botnet with several new features to make it hard to

detect. One of these features is that each bot randomly generates a symmetric encryption

key for communication. In [86], Stinson et al. evaluate the evadability of botnet detection

systems, and present several approaches a botnet can use to defeat detection systems. One

of the approaches encrypts connections between the botmaster and bots and among the bots

themselves.

Many protocols can be utilized as C&C channels, such as IRC, HTTP, OVERNET [45],

and more. Although many botnets began to use P2P protocols as C&C channels, HTTP-

based botnets are still very popular because they are easy to implement and maintain. In

the early years, the C&C domain was hard-coded in binary, introducing a single point of

failure. Once the security specialists obtain the C&C domain (e.g., running the bot binary

5



in sandbox and analyzing the traffic), the domain can be blacklisted. To become more

robust, botnets generate C&C domains dynamically on the fly using Domain Generation

Algorithm (DGA), which foils the static blacklists. They are named DGA-based botnets. In

particular, hundreds or thousands of domains can be algorithmically generated every day,

but the botmaster only registers one or a few of them as C&C domains and publishes the

commands there. DGA technique has been used in many botnets, such as Kraken [75],

Conficker [53], [52], Bamital [3].

1.4. Problem Statement

Encrypted botnet traffic makes detection much harder because many security systems

rely on DPI techniques. Encryption also makes it very hard to get ground truth necessary

to develop detection algorithms. While bot communication can be captured in sandboxes

from binaries harvested around the net, traces collected from sandboxes are fairly static.

Researchers would like to adjust parameters such as encryption type, timing, etc., the same

way a bot might act to alter its signature and foil detection. Another disadvantage of using

captured encrypted botnet traffic is that the researchers do not know which part of traffic

is encrypted, nor the traffic is encrypted by which encryption algorithm. Consequently, it

is important to provide a tool that researchers can use to generate customized encrypted

botnet traffic based on unencrypted botnet traffic.

It is true that encryption foils DPI techniques, but it is different from that encryption

makes the DPI-based security systems totally blind. The reason is that some systems are

composed of multiple detection engines, and only one or a few of them reply on DPI tech-

niques, while the others may utilize hosts’ behaviors for detection. For example, as we show

in Section 5, BotHunter is a botnet detection system composed of eight malicious event
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detectors. Although the two detectors that rely on DPI are foiled by encryption, the other

six that do not rely on DPI are still able to detect some (not all) encrypted botnet traffic.

Consequently, we need to measure the damage result from encrypted botnet traffic on se-

curity systems. After evaluating three security systems that rely on DPI, we find that they

are significantly foiled by encrypted botnet traffic. It is therefore important to develop new

systems to detect encrypted botnet traffic, especially in the early stage.

Although DPI-based IDS is foiled by encrypted communications, it still plays an im-

portant role in protecting enterprise networks since many botnets and malware do not use

encryption. However, the overhead of DPI can be substantial: in [66], Namjoshi et al. in-

dicate that in the worst case it may take up to one second to find a match for the regular

expressions used in IDS. This computationally intensive analysis for every packet introduces

performance issues when the IDS is deployed on high speed links. Delivering certain content,

such as video, audio, encrypted or compressed data to IDS is a waste of computation re-

sources, since the IDS can not understand such content. As a result, we need to classify the

traffic into two groups. One group contains the traffic that can be understood by IDS, while

the other includes the traffic that cannot be understood. Then, only the traffic in the former

group is delivered to IDS. Note that we need to classify the traffic as early as possible. If we

make the decision at the end of a flow, all the packets will have already been delivered to

IDS, and the load on IDS is not reduced at all. Reducing the traffic to IDS does not directly

detect encrypted botnet traffic, but it helps save valuable computation resources. The saved

resources can be used to detect bots that use evasion techniques other than encryption, for

example, DGA-based bots. Consequently, reducing the load on IDS indirectly helps detect

advanced botnets.
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Besides encryption, botnets also use DGA technique for evasion. The main aim of using

DGA technique is to avoid static blacklists and single point of failure. In addition, another

advantage of using DGA technique is to prevent security specialists from registering the C&C

domain before the botmaster due to two reasons. First, learning the domain generation algo-

rithm requires reverse engineering of the bot binary, which is time consuming. In addition,

the botmaster can patch the bots and change the algorithm at any time, then the binary

has to be analyzed again. Second, even if the algorithm is successfully extracted, as the bots

usually randomly query the generated domains and botmaster can register any of them, so

the security specialists have to register many of the generated domains to catch the botnet

communications, costing lots of money. As a result, it is important to detect DGA-based

botnets. There are four reasons to detect DGA-based botnets using DNS traffic. First, the

DGA bots cannot get rid of DNS queries as they have to get the IP addresses of C&C do-

mains. Second, the amount of DNS traffic is comparable much less than the overall traffic.

Third, the DNS traffic of DGA bots has different patterns from legitimate one. Fourth,

detecting bots based on DNS traffic enables us to stop the bots even before they perform

attacks. Consequently, we decide to introduce a method to detect DGA-based bots using

DNS traffic.

1.5. Research Contributions

In this dissertation, we introduce several algorithms and systems to detect advanced

botnets in enterprise networks. An enterprise networks can be a company network, a univer-

sity network, or a local area network (LAN). This dissertation makes the following specific

contributions:

(1) BotTalker: generating encrypted, customizable C&C Traces
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We design and implement BotTalker, the first work that provides user customized

encrypted botnet traffic converted from real botnet traffic, rather than simulated

traffic. BotTalker contributes to the community in the following ways.

• Benefits IDS Developers: BotTalker provides IDS developers the ability to gen-

erate customized encrypted botnet traffic from real botnet traces to test their

detection algorithms.

• Benefits IDS Customers: BotTalker helps customers (e.g., network administra-

tors) evaluate a new IDS and make informed decisions. Customers test a new

IDS by blending background traffic collected from their network with encrypted

bot traffic generated by BotTalker, and then feed the traffic to the new IDS for

performance testing.

• Benchmark for IDS: Currently the detection systems use their own data sets

for evaluation and the data sets are not public. It is impossible to compare the

detection systems’ performance directly. Since BotTalker is public it can be

used as a benchmark to evaluate different IDSs.

(2) Measuring the damage result from encryption on security systems

• Using BotTalker, we evaluate the effect of encrypted botnet traffic on three

common security systems - BotHunter, Snort and Suricata. The results show

that encrypted traffic foils these systems greatly.

(3) Detecting encrypted botnet traffic using high entropy classifiers

• We show that encryption produces high entropy (HE) flows.
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• We introduce two HE classifiers to distinguish HE flows from low entropy (LE)

flows. The classifiers are robust to LE packets at the beginning of a flow, feature

common to many security protocols.

• We extend BotHunter with the HE classifier and restore its ability to detect

bots when they use encryption.

(4) Early high entropy classifiers and traffic reduction

• We introduce two early HE classifiers that can label HE flows by looking at

only part of a flow. The results show that only 2.38% to 7.78% of the packets

require entropy calculation.

• We enhance BotHunter with the early HE classifier to detect encrypted botnet

traffic.

• We develop a traffic filter using the early HE classifier and implement it as

a Snort preprocessor. The results show that the filter reduces the amount of

traffic delivered to Snort by more than 50%, while preserving more than 99.9%

of the alerts. We compare our traffic reduction method with similar work and

find that they must inspect at least 13 times more packets or they miss at least

70 times of the alerts.

(5) BotDigger: detecting DGA bots in a single network

• We introduce a chain of evidences, including quantity evidence, temporal evi-

dence and linguistic evidence, to detect DGA-based botnets.

• We introduce and implement BotDigger, a system that detects an individual

DGA-based bot using DNS traffic collected in a single network.
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• We evaluate BotDigger with two datasets from our university and lab, as well

as two DGA-based botnets. The results show that BotDigger detects more

than 99.8% of the bots with very low false positives.

1.6. Dissertation Organization

This dissertation is organized as follows. Background and related work are discussed in

Chapter 2. Chapter 3 describes the datasets of network traffic and static application content

used in our experiments. In Chapter 4, we present BotTalker, a tool that can generate

encrypted and customizable C&C traces. Next, the damage result from encrypted botnet

traffic on two widely used intrusion detection systems and one botnet detection system is

evaluated in Chapter 5. In Chapter 6, we build two classifiers to identify high entropy flows,

and use them to extend BotHunter, making it be able to detect encrypted botnet traffic.

In Chapter 7, we introduce two algorithms to detect high entropy flows in the early stage,

and use them to reduce the load on IDS. After that, a system named BotDigger to detect

DGA-based botnets using DNS traffic is presented in Chapter 8. Finally, we conclude the

dissertation and discuss future work in Chapter 9.
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CHAPTER 2

Background and Related Work

In this chapter, we first discuss the existing botnet detection systems and propose a

taxonomy of these systems, categorizing them into two groups. The first detects botnets by

focusing on C&C traffic, and the second utilizes distinguished botnet behaviors for detec-

tion. After that, we discuss the previous work related to detecting encrypted botnet traffic,

detecting DGA-based botnet and reducing load on IDS.

2.1. C&C Traffic-based Detection Systems

Many systems make use of C&C traffic for detection because there are several advantages

by doing so. First, the botmaster will lose its entire army if we can detect and block the

C&C traffic. Second, if the C&C traffic can be observed, we can generate signatures and

use them to extract more hidden bots or use them to detect bots later. These detection

systems can be categorized into three groups in further based on the C&C type, including

i) the systems that can only detect centralized botnets, ii) the systems that can only detect

decentralized botnets, iii) the systems that are independent of botnet architecture.

2.1.1. The systems that can only detect centralized botnets. In [42], Gu et

al. introduce BotProbe, a system detects IRC-based botnets using active probe techniques.

BotProbe is a Turing Test that tests whether an IRC client is a bot or human based on

the fact that bots have strong correlations between given C&C messages and the responses.

In particular, bots are preprogrammed to respond to a set of predefined commands, and

these responses are consistent for command repetition. One advantage of BotProbe is that
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it can detect obscure C&C messages, for example, some botnets use foreign language or XOR

encryption, which fail the signature-based detection.

In [43], Gu et al. propose BotSniffer, a system that detects both IRC-based and HTTP-

based botnets. BotSniffer is built on the observation that a group of bots have stronger

synchronization in responses than normal network services. In particular, after the bots

receive commands, they need to respond messages to the botmaster or perform corresponding

attacks. If there are multiple bots that belong to the same botnet responding to the same

commands, most of them are likely to respond in a similar way (e.g., bots send similar

messages or perform similar activities in a similar time window). On the contrary, for most

normal services, it is unlikely that they perform similar responses at similar times.

2.1.2. The systems that can only detect decentralized botnets. Decentral-

ized (P2P) botnets are becoming more popular in recent years. There are two challenges

in detecting P2P botnets, one is extracting P2P traffic from the background traffic, and

the other is distinguishing botnet P2P traffic from legitimate P2P traffic after we extract

P2P traffic. In [65] and [101], the authors introduce techniques to detect P2P botnets by

targeting at each of these two challenges, respectively.

Extracting P2P traffic from non-P2P traffic is hard because most P2P applications use

random port numbers, and some of them use encryption. In [65], Nagaraja et al. introduce

an algorithm named BotGrep to extract P2P traffic based on the fact that P2P network

topologies are much more structured than the others. After extracting P2P topologies, the

authors use misuse detection approaches, such as honeypots and blacklists, to distinguish

botnet traffic from legitimate traffic. However, if some hosts listed on blacklist belong to
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both P2P botnet and legitimate P2P networks, then the legitimate P2P network is also

considered as botnet related.

In [101], Yen et al. present a method to distinguish botnet P2P traffic from legitimate

P2P traffic. Although P2P botnet and legitimate applications are implemented on top of

similar protocols, they are used for totally different purposes, so there are some differences

in their communication patterns. In particular, three characterizing differences are utilized,

including amount of traffic, peer churn, and timing information. One limitation of this

algorithm is that it has to extract P2P traffic before applying the above three features. It

would be a good idea to combine the above two algorithms, using BotGrep to extract P2P

traffic and then using the latter technique to distinguish botnet P2P traffic from legitimate

P2P traffic.

2.1.3. The systems that are independent of botnet architecture. A system

to detect botnet without any prior knowledge about C&C communication is introduced by

Wurzinger et al [96]. In particular, the authors run bot binaries in controlled environment and

capture the traffic. Then, they look for the activities that indicate a response corresponded

to occurred C&C communications. After that, they scan the traffic around the responses to

detect C&C communications. However, this method requires bot binaries, so it is only able

to detect existing botnets.

In [40], Gu et al. introduce BotMiner, a botnet detection system independent of botnet

architecture and it does not require bot binaries and prior C&C knowledge. BotMiner is

designed based on the fact that the bots belonging to the same botnet perform similar

malicious activities as well as have similar communication patterns. However, BotMiner
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requires multiple bots for detection because it relies on the similarity in bots’ communications

and activity patterns.

2.1.4. Discussion of C&C Traffic-based Detection Systems. Three categories

including six different C&C traffic-based detection algorithms have been described above. A

crucial question to ask is that which is the best one. To answer this question, we introduce

the following seven criteria to compare these systems.

(1) Botnet architecture:

This criterion indicates which type of botnet can be detected. For this criterion,

the systems that are independent of botnet structure are preferable.

(2) Passive or active monitoring:

The passive monitoring algorithm does not add additional traffic to network

and only monitors the traffic as it passes by. On the contrary, active monitoring

algorithm injects packets into network or sends packets to servers and applications,

then watches how they respond. For this criterion, passive monitoring is better

than active monitoring because the latter introduces additional traffic and may

affect other intrusion detection systems or traffic measurements.

(3) DPI technique is used or not:

DPI technique is commonly used to search for intrusion, viruses or user defined

rules by examining the contents. However, it fails to work when the traffic is en-

crypted. For this criterion, the systems that do not rely on DPI technique are

better.

(4) Detect a single bot or not:
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This criterion indicates whether the system can detect single bot or it needs

a group of bots for detection. Many detection systems that use correlations be-

tween bots need multiple bots belonging to the same family for detection. For this

criterion, the systems that that can detect single bot are better.

(5) Blacklist is used or not:

This criterion indicates whether blacklist is used for detection. For this criterion,

the systems that do not rely on blacklists are better because botnets can easily evade

blacklists.

(6) Bot binary is used or not:

This criterion indicates whether bot binary is used for detection, for example,

bot binary is run in controlled environment and the traffic is captured for analysis.

One limitation of the systems that need bot binaries is that they can only detect

existing botnets. For this criterion, the systems that do not rely on binaries are

preferable.

(7) When to detect bots:

This criterion indicates when the system can detect the bots. For this criterion,

the systems that can detect bots before attacks are preferable, followed by the ones

during attacks and after attacks.

We compare the six botnet detection systems in Table 2.1 using the above seven criteria.

From the table we can find that there is no detection system is better than all the others

in all the seven aspects. This is not a surprising conclusion as there is no silver bullet for

botnet detection, and the botnets are evolving themselves for evasion all the time.
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Table 2.1. Comparison of C&C Traffic-based Detection Systems

Bot Probe [42] Bot
Sniffer
[43]

Bot
Grep [65]

Plotter
Trader [101]

Auto
Model [96]

Bot
Miner
[40]

Botnet
Architecture

IRC Central-
ized

Decen-
tralized

Decentral-
ized

Indepen-
dent

Indepen-
dent

Passive/
Active

Active Passive Passive Passive Passive Passive

DPI Yes Yes No No Yes Yes

Number of
Bots

Single Group Group Group Single Group

Blacklist No No Yes No No No

Binary No No No No Yes No

Detection
Time

Before &
During Attack

After
Attack

After
Attack

After Attack During
Attack

After
Attack

2.2. Bot Activity-based Detection Systems

In the previous section, we have described the systems that focus on C&C traffic for

detection. Besides the C&C traffic, many distinguishing behaviors of attacks can also be

used to detect botnets. We name them bot activity-based systems. The bot activity-based

systems can be categorized into three groups, including the systems that detect bots before

attack, during attack and after attack.

2.2.1. Detecting Bots Before Attack. In [72], Ramachandran et al. introduce

a system to detect spamming bots before the attacks based on DNS blacklist (DNSBL).

DNSBL is used by many Internet services to track IP addresses that have sent spam, so the

future spam from these addresses can be rejected. Besides the legitimate services, botnets

themselves also send query DNSBL to check whether they are on the list. These queries

from botnets are named reconnaissance queries. This system detects bots by taking use

of two features of these reconnaissance queries, named Spatial Relationship and Temporal
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Relationship. Spatial relationship indicates that the legitimate mail servers not only perform

queries for others but are also queried by other mail servers. On the contrary, the bots that

perform reconnaissance queries only perform queries but are not queried by others. Temporal

relationship assumes the DNSBL queries from legitimate mail servers reflect actual arrival

patterns of real emails. For example, the legitimate DNSBL queries from real emails tend

to be diurnal.

2.2.2. Detecting Bots During Attack. In [41], Gu et al. introduce BotHunter, a

system detects the botnets during the attack. BotHunter is the first real-time system that

can automatically derive a profile of the entire bot detection process. The main idea is that

bots should obey a sequence of suspicious events in loose order, named bot infection dialog

model composed of eight events. BotHunter scores hosts engaging in these activities and

flags them as bots if the score exceeds a threshold.

2.2.3. Detecting Bots After Attack. In [90], Stringhini et al. propose BotMagni-

fier, a system that learns spamming bots’ behavior patterns from a set of captured bots, and

then uses these patterns to extract additional bots by analyzing email transaction logs. The

assumption of BotMagnifier is that bots belonging to the same botnet share similar email

contents and the domains that they are sending spam to. Although this algorithm can only

detect spamming bots after attacks, it can extract a great amount of hidden bots every day.

2.2.4. Discussion of Bot Activity-based Algorithms. We compare the above

three bot activity-based detection systems in Table 2.2 using the seven criteria defined in

Section 2.1.4. From the table we can see that there is no detection system is better than all

the others in all the seven aspects.
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Table 2.2. Comparison of Bot Activity-based Detection Systems

DNSBL [72] BotHunter [41] BotMagnifier [90]

Botnet Architecture Independent Independent Independent

Passive/Active Passive Passive Passive

DPI No Yes Yes

Number of Bots Single Single Group

Blacklist Yes No Yes

Binary No No No

Detection Time Before Attack During Attack After Attack

2.3. Network Traffic Generator

When we introduce a new security system, it is necessary to evaluate its false positives

and true positives. Most of the introduced security systems use their own private datasets

for evaluation and the datasets are not public. A widely used public dataset is the Lincoln

Laboratory Darpa Dataset [59], [58], [44]. However, this dataset was introduced in 1998 while

attack behaviors have been changed greatly, and many new attacks have been introduced in

the last two decades. Besides, the Darpa dataset is static, but the researchers may want to

customize the dataset. To address these needs, many techniques have been introduced to

generate network traffic.

In [83], Sommers et al. introduce Malicious trAffic Composition Environment (MACE) -

a framework that aims at providing basic building blocks that can be used to compose both

existing and user customized attacks. MACE is composed of exploit model, obfuscation

model, propagation model and background traffic model. These models enable users to

generate a large set of attacks and also benign background traffic. In [79], Shiravi et al.

propose a systematic approach to generate benchmark datasets for intrusion detection. The

approach uses two profiles to generate traffic. The first profile describes the attacks using
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a attack description language, for example, ADeLe [64]. The second profile characterizes

the distribution and behaviors of normal traffic. In [22], Barford et al. introduce Scalable

URL Reference Generator (SURGE) to simulate a group of uses that access a Web server

by applying a set of observations of Web server usage.

Besides the IDSs that use packet level information for detection, many IDSs detect mali-

cious activities relying on flow level traffic [50], [84], [89]. These systems need flow-level data

for testing, evaluating and benchmarking. To address the needs for these systems, Sperotto

et al. provide a labeled flow-based data set [85]. In [81], Sommers et al. present Harpoon

- an application-independent tool for generating flow level traffic. The most distinguished

feature of Harpoon is that it can self-configure by automatically extracting parameters from

standard Netflow logs or packet traces. Then, in [82], Sommers et al. propose another

flow record generation tool named fs. fs aims at generating flow export records and also

basic SNMP-like router interface counts (e.g., byte, packet) in an efficient way, thus the flow

records of a large network topologies can be generated.

Some researchers focus on generating botnet traffic. In [21], Barford et al. introduce

Botnet Evaluation Environment (BEE). BBE is a OS/Bot image that can be run on machines

and it aims at providing ground truth behaviors of the bots by repeatedly running the bot

binaries and changing configurations. Our work - BotTalker, is most closely related to

SLINGbot [46], which is a tool that can generate user customized C&C traffic. There are

several differences, however, between SLINGbot and BotTalker. First, SLINGbot does not

emulate encrypted botnet communications although it supports certificates and password.

Second, SLINGbot only generates C&C traffic. Besides the C&C traffic, the traces provided

by BotTalker also include other traffic (e.g., propagation traffic), which can be used by
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detection systems, like BotHunter. In [54], Lee et al. propose Rubot - a framework that

allows researchers to build bot code and then deploy the botnet to a closed network. However,

the bots’ behaviors and communications are emulated, which could be different from the

real ones. The most significant difference between BotTalker and all the above efforts is

that they generate emulated traffic while BotTalker converts real C&C traffic to encrypted

traffic. BotTalker preserves all the network level characteristics (timing information, packet

size, etc.), which is important because many detection systems make decisions based on

them.

2.4. Encrypted Data Detection

An important feature of encrypted data is that it has high entropy. Consequently, entropy

has been widely used to detect encrypted data in previous work. Lyda et al. use entropy to

detect encrypted and packed malware based on the findings that their entropy is higher than

the entropy of native executables [61]. Malhotra et al. focus on detecting egress encrypted

communications by using various statistical methods, including Kolmogorov-Smirnov test,

arithmetic mean, index of coincidence test, information entropy and more [63]. However,

the approach does not work in the case where the flows begin with unencrypted packets,

followed by encrypted contents. Besides, the approach is only evaluated using offline files,

but not real network traffic. In [33], Dietrich et al. find that Feederbot uses DNS to carry

their C&C traffic, and the traffic is encrypted using RC4. Then, they introduce an approach

to detect such C&C traffic using entropy.

In [39], Olivain et al. introduce a method to classify data as high entropy (HE) and

use it to detect subverted traffic in encrypted communications. In particular, thresholds for

various lengths of data are calculated. The entropy of a chunk data is compared with the
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corresponding threshold to decide the data is HE or low entropy (LE). Based on the definition

of HE and LE data introduced by Olivain, Dorfinger et al. attempt to reduce the amount

of traffic passed to a Skype detector in real time in [37]. The assumption they make is that

Skype traffic is encrypted and the first packet of the flow should be HE. As a result, the flow

is considered as non-Skype if the first packet is LE. Then, the authors use a similar approach

to classify traffic as encrypted and unencrypted in real time by considering whether the first

packet of a flow is HE or LE [36], [35]. However, these approaches only work for the protocols

in which the encrypted conversion begins from the first packet. Although many protocols

encrypt data, they exchange packets at the beginning of a flow that are not encrypted. After

the initial exchange, subsequent packets are encrypted. In this case, the proposed approaches

will not work. On the contrary, our HE classifiers and early HE classifiers are able to skip

the unencrypted part and detect the following encrypted communications.

In [74], Rossow et al. introduce PROVEX to detect encrypted botnet traffic. In particu-

lar, PROVEX first collects botnet binaries and obtain a set of keys or key extraction functions

from them with the help of sandboxes and reverse engineering. After that, PROVEX de-

crypts the packets on the network to detect encrypted C&C communications. PROVEX

can only detect the bots whose keys are extracted. Besides, extracting keys and decrypting

all the traffic is computationally expensive. On the contrary, out method detects potential

encrypted traffic without decryption and it is independent of encryption algorithms.

2.5. DGA-based Botnet Detection

Among the works that detect malicious domains (e.g., C&C domains, phishing pages,

etc.) and DGA-based botnets, many of them share similar assumptions including 1) domains
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generated by the same DGA have similar attributes, 2) DGA bots have different DNS traffic

patterns than legitimate hosts.

In [25], Bilge et al. introduce EXPOSURE to find malicious domains. In particular, they

first extract 15 features from a domain and all the IPs that the domain is mapped to. Then,

they build a decision tree from training set. After that, any given domain can be classified

as malicious or legitimate using the tree.

In [18], Antonakakis et al. introduce a dynamic reputation system for DNS named No-

tos. Notos builds models of known legitimate and malicious domains using 18 network-based

features, 17 zone-based features, and 6 evidence-based features. The legitimate information

includes DNS information collected from multiple recursive DNS resolvers. Malicious infor-

mation includes malicious domains and IPs obtained from multiple sources. Then, these

models can be used to compute a reputation score for a new domain.

Antonakakis et al. introduce Pleiades in [20]. Pleiades uses NXDomains collected from

local recursive DNS (RDNS) servers to detect DGA-based bots by using both clustering

and classification algorithms. The clustering algorithm is used to find large clusters of

NXDomains that (i) have similar linguistic attributes, and (ii) are queried by multiple bots

during a given time interval. The classification algorithm is used to assign the generated

clusters to known DGA models.

In [19], Antonakakis et al. introduce Kopis, a system monitors upper level DNS traffic

collected from authoritative name servers or top level domain (TLD) servers to detect mal-

ware domains based on global view of DNS query resolution patterns. Kopis first analyzes

upper level DNS traffic and extracts three groups of statistical features, including requester
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diversity, requester profile and resolved-IPs reputation. Then, Kopis builds a statistical clas-

sification model from a given training set of known legitimate and malicious domains. After

that, this statistical classification model can be used to label a new domain as legitimate or

malicious.

In [91], Villamarn-Salomn et al. propose a Bayesian approach to detect bots based on the

assumption that bots in the same botnet have similar DNS traffic patterns. In [47], Jiang

et al. introduce a method to detect suspicious activities by building DNS failure graphs

that represent the relations between hosts and failed domains. After the graph is built, a

graph decomposition algorithm based on tri-nonnegative matrix factorization is applied to

extract dense subgraphs. The authors find that these dense subgraphs are related to various

malicious activities. This approach is then applied to 3G mobile network to detect botnets

by Br et al. in [26]. In [31] and [30], Choi et al. introduce BotGAD, a system detects botnets

by capturing group activities in DNS traffic.

The above techniques require multiple hosts infected by the same botnet existing in the

collected traces. Consequently, they have to collect DNS traffic at an upper level (e.g., TLD

servers, authoritative servers, etc), or from multiple RDNS servers among networks. The

advantage of these works is that evidences from multiple bots can be collected and analyzed.

However, they also introduce several challenges. First, the DNS traffic at an upper level is

hard to access for most of enterprise and/or university network operators. Second, sharing

DNS traffic among networks may introduce privacy issues. Third, it is computationally

expensive to run clustering/classification algorithms on large traces collected from multiple

networks. Finally, the most significant challenge is that an enterprise network may not have
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multiple bots, especially belonging to the same botnet. On the contrary, BotDigger can

detect an individual bot by only using DNS traffic collected from a single network .

Schiavoni et al. introduce Phoenix to distinguish DGA domains from non-DGA domains

by using both linguistic and IP features [76]. First, Phoenix models pronounceable domains

that are generated by human, and assumes DGA domains violate these models. Based on

these models, DGA domains are extracted from well-known blacklists. After that, Phoenix

groups these extracted domains using domain-to-IP relations. Finally, fingerprints are ex-

tracted to label new DGA domains. In [99] and [98], Yadav et al. introduce algorithms to

detect DGA domains based on the assumption that current botnets do not use pronounce-

able language words to avoid conflicting with existing domains. First, the authors use three

ways to group DNS queries, for example, all the domains that are mapped to the same IP

address are grouped together. Next, the authors calculate several metrics to characterize the

distribution of the alphanumeric characters or bigrams of the domains in each group. These

metrics include information entropy, Jaccard index and edit-distance. Finally, the above

metrics are used to differentiate legitimate domain names from malicious ones. These works

can only detect the unpronounceable DGA domains while BotDigger can detect the DGA

domains composed of pronounceable words.

In [97], Yadav et al. analyze failed DNS queries around successful DNS queries and use

entropy of domains to detect DGA bots. Besides, the authors also introduce a method to

speed up the detection of the C&C server IPs. However, the algorithm requires C&C server

IP occurring in multiple time windows.
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2.6. Traffic Reduction on IDS

Many algorithms reduce load on IDS based on the idea that instead of dropping packets

arbitrarily, the packets that are unlikely to contain malicious contents should be discarded.

In [67], Papadogiannakis et al. indicate that the traffic in the early stage of connections

are more likely to trigger alerts. In particular, they find that the first 30 packets of the

flow trigger 90% of the alerts, and the packets after the 100th packet only trigger 3% of the

alerts. Based on these findings, they introduce a technique named selective packet discarding

to improve the accuracy of network intrusion detection systems under load. When the IDS is

about or already drop some packets, the packets within the cutoff limit are delivered to the

IDS and the rest is discarded. A similar idea is used in [28], where the authors only sample

a fixed initial set of packets and discard all the remaining traffic. Besides, Maier et al. also

indicate that a cutoff of 10−20 KB per connection is able to retain a complete record of the

vast majority of connections based on the heavy-tailed nature of network traffic [62].

In [57] and [56], Limmer et al. improve the IDS performance using dialog-based payload

aggregation. The assumption authors make is that most of the signature matches either

occur at the beginning of connections or directly after direction changes in data streams.

In [55], Limmer et al. introduce Front Payload Aggregation (FPA) technique, in which the

first n payload bytes of a flow are added to IPFIX data stream, and then delivered to IDS.

This proposed method can work with Vermont [51], a monitoring system that can process

Netflow.v9 and IPFIX flow data.

The assumption of the above work is that the first part of a flow is sufficient to raise

most alerts. However, the later part of a flow may still include important information. For

example, since many browsers use persistent HTTP connections containing multiple HTTP
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requests [57], some alerts (e.g., a malware binary download, a botnet C&C exchange, etc.)

may be missed. To deal with this problem, White et al. introduce a method focusing

on “interesting” packets without considering flows [94]. Specifically, they use Sequential

Probability Ratio Test (SPRT) to classify individual packets as transparent if they can be

understood by the IDS, and opaque otherwise, based on the fact that distribution of byte

values in opaque traffic is different from that in transparent traffic. After classification,

only transparent packets are delivered to IDS. The downside of this method is that it must

examine every packet.

The filtering technique we present is resilient to the above limitations. Our early HE

classifiers similarly classify flows as clear and opaque but do not have to examine every

packet. Instead, we calculate the entropy of the first M packets in order to classify a flow.

Similar to other approaches our filters deliver the first M packets of both clear and opaque

flows to IDS, since they may contain protocol related information. However, after the M th

packet, if the flow is classified as clear, we continue to deliver the remaining packets to

the IDS. Other methods always deliver a fixed number of initial packets to the IDS. Our

approach may deliver more packets to the IDS than approaches that always deliver the first

few packets, but in return it does not suppress alerts.

Besides reducing the traffic delivered to IDS, researchers also manipulate memory to

improve the IDS performance. In [68], Papadogiannakis et al. introduce a two-layer memory

management, Selective Packet Paging (SPP) to solve the problems of traffic overloads and

algorithmic attacks. A network monitoring framework for stream-oriented traffic processing,

Stream capture library (Scap), is presented In [69]. Scap reassembles streams by using
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subzero packet copy technique to minimize data movement, and provides flow-level statistics

to user level applications.
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CHAPTER 3

Dataset

3.1. Network Traffic

We use seven groups of network traffic datasets in this dissertation. The first group

includes 140 Butterfly and Kraken botnet traces obtained from Georgia Tech [34], [75],

which we call 140BotTraces. Each trace in 140BotTraces was collected by running captured

bot binaries in an isolated environment. These traces have roughly similar communication

patterns, namely send GET requests to download several executable files, and then GET

requests to C&C servers to download C&C data. Finally, the bots start sending spam.

The second group contains botnet traces obtained from Malware Capture Facility Project

(MCFP) [10]. The purpose of MCFP is to generate and capture botnet traces in long term.

We extracted 41 botnet traces that belong to 17 botnets fromMCFP. Each trace was collected

by running bot binaries in a sandbox. We name this dataset MCFPBotTraces and list the

details in Table 3.1.

The third group includes three traces captured at our university lab, which is connected

to the outside world via a 10Gb/s link. The lab has a dedicated /24 subnet and runs

standard services, such as mail, web, ssh, etc., and also carries traffic for several research

projects including two planetlab nodes and a GENI rack. All traces are in tcpdump format

and include payload. They are named Lab1, Lab2 and Lab3. The first two traces are 24-

hour traces captured on Feb-22th-2011 and Dec-11th-2012, respectively. Lab3 is a 72 hour
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Table 3.1. MCFP Botnet Traces

Botnet
Name

Number of
Traces

Botnet
Name

Number of
Traces

Zeus 10 Pushdo 1

Neris 4 RBot 2

Donbot 1 Caphaw 1

Conficker 1 Matsnu 1

Cridex 1 Dridex 1

Kazy 4 njRAT 3

Geodo 5 uTorrent 1

Avzhan 1 Kelihos 2

ZeroAc-
cess

2

trace captured on Dec-13th to Dec-16th-2012. Some statistics for these datasets are given

in Table 3.2.

Table 3.2. Lab Traces

Lab1 Lab2 Lab3

TCP 93.55% 51.87% 72.25%

UDP 1.03% 2.83% 0.258%

ICMP 5.41% 45.14% 27.27%

Others 0.001% 0.149% 0.215%

Bandwidth 14.08 Mb/s 26.16 Mb/s 18.4Mb/s

Peak BW 29.3 Mb/s 133.9 Mb/s 81.9 Mb/s

Duration 24 hours 24 hours 72 hours

The fourth dataset includes flow and entropy information of all incoming and outgoing

TCP traffic at our university. This includes more than 30,000 users composed of students

and faculty. Due to privacy issues, we do not store payload to disk. Instead we calculate

the entropy of each packet in real-time and store it to disk along with flow information. We

collected a 24 hour trace on November 19th, 2013. This dataset is named CSUTrace.
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The fifth dataset includes encrypted traffic only, which we extracted from Lab1 on

HTTPS port 443. Since a successfully established HTTPS connection includes the nego-

tiation of the encryption algorithm and a key exchange, we excluded connections with less

than 5 packets with payload. This dataset is named Lab1-HTTPS.

The sixth dataset includes DNS traffic captured from our university. For all the users

connected to the university network, their DNS queries are sent to four recursive DNS servers.

We collect all the DNS traffic by mirroring the ports to the four servers for a total of

seven days, starting from April 2nd to 8th in 2015. We call this dataset CSUDNSTrace.

CSUDNSTrace includes 1.15E9 domains queried by 20682 university hosts. 5.5E6 of the

queried domains are unique.

The seventh dataset includes domains generated by a well known DGA botnet - Conficker.

Variant C of Conficker generates 50,000 domains every day [53]. We collected a list of all

the 1,500,000 domains generated in April 2009 from tools provided by Institute of Computer

Science at University of Bonn [52].

3.2. Static Application Content

We use two groups of static application content in our experiments. The first comprises

of 11 types of non-encrypted files, namely txt, MS word, excel, pdf, mp3, jpeg, portable

executable (exe), gzip, bzip, rar and winzip. We use a total of 1000 files per type. The

mp3 and txt files were downloaded from archive.org. Exe files were collected from a website

providing free software, www.skycn.com. Jpeg files were obtained from the official websites

of National Geographic and NASA. We collected MS word and excel files from Google by

performing the file type search (e.g., filetype:docx). Pdf files were picked from academic

conferences and journals. We randomly selected 330 MS word, 330 excel and 340 txt files
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from the above pool, and then applied gzip, bzip, rar and winzip to generate the compressed

files. This group of files is named NonEncryptedFiles.

The second group contains encrypted files. We use the same 1000 files we used to generate

compressed files above, and feed them to a commercial data encryption software, named

Advanced Encryption Package Pro (AEP) [1]. We encrypt these 1000 files using 17 encryption

algorithms provided by AEP. The encryption algorithms are listed in Table 4.2. This group

of files is named EncryptedFiles.

Table 3.3. Encryption Algorithms

Encryption
Algorithm

Key
Length
(bit)

Encryption
Algorithm

Key
Length
(bit)

Encryption
Algorithm

Key
Length
(bit)

DESX 128 Blowfish 448 AES 256

CAST 256 Triple-DES 192 RC2 1024

Diamond 2 2048 Tea 128 Safer 128

3-Way 96 GOST 256 Shark 128

Square 128 Skipjack 80 Twofish 256

MARS 448 Serpent 256
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CHAPTER 4

BotTalker: Generating Encrypted, Customizable

C&C Traces

Encrypted botnet traffic makes detection much harder because many detection systems

rely on DPI techniques. In addition, encryption makes it very hard to get ground truth

necessary to develop detection algorithms. While bot communication can be captured in

sandboxes from binaries harvested around the net, traces collected from sandboxes are fairly

static. Researchers would like to adjust parameters such as encryption type, timing, etc.,

the same way a bot might act to alter its signature and foil detection.

To address these needs we designed and implemented BotTalker: a tool that researchers

can use to generate customized encrypted botnet traffic. BotTalker emulates the actions

a bot would take to encrypt communication and produces traces that look like they come

from real botnets. BotTalker includes a highly configurable encrypted-traffic converter along

with real, non-encrypted bot traces and background traffic. The converter is able to con-

vert non-encrypted botnet traces into encrypted ones. It enables customization along three

dimensions: (a) selection of real encryption algorithm, (b) flow or packet level conversion,

SSL emulation and (c) IP address substitution. Many standard encryption algorithms are

supported, including AES, DES, RC4 and more. The reason for providing packet/flow con-

version and SSL emulation is to support a broad range of encryption methods. In packet

conversion we emulate the case where a bot encrypts packets individually as they are trans-

mitted. Flow conversion emulates the case where a bot transmits encrypted objects. SSL
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conversion emulates the case when the botnet exchange information via SSL connections.

Finally, our converter provides the ability to obfuscate IP addresses. This is needed because

many bot detection tools look for communication with blacklisted IP addresses, which can

easily be subverted. To our best knowledge, BotTalker is the first work that provides user

customized encrypted botnet traffic converted from real botnet traffic, rather than simulated

traffic.

4.1. BotTalker Design

To achieve the goal of emulating the actions a bot takes to encrypt communications, we

first introduce several requirements that BotTalker needs to satisfy. Then we describe the

architecture.

4.1.1. Requirements.

(1) Retain network level characteristics of original traces:

Network level characteristics include timestamps, packet size, flow size, etc.

These can be typically calculated from traffic at the network level. Retaining these

characteristics is important because many IDSs examine them to detect malicious

behaviors.

(2) Use of real encryption algorithms:

Many real botnets use standard encryption algorithms because they are easy to

use. For example, Rustock, Storm and Waledac use RC4, XOR and AES to en-

crypt communications respectively. BotTalker supports many standard encryption

algorithms to encrypt the communication payload.

(3) Emulate various encryption schemes:
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When a bot encrypts traffic it may encrypt one packet at a time, the entire

flow, simply use an existing encrypted channel such as SSL. Packet level encryption

emulates the case where packets are encrypted individually. For example, when the

controller transmits a stream of commands to the bots via the same connection, it

may put each command into a single packet, and each packet is encrypted individu-

ally. Flow level encryption emulates the case where an entire object is transmitted,

such as binaries, spam lists, etc. When a bot wants to transfer these encrypted

objects, it usually encrypts them in memory first, then the entire encrypted data

is chopped into multiple packets and sent out. SSL can be used when exchanging

information via HTTPS, which is typically not blocked at firewalls. In fact, Bayer

found that many malware already use SSL to protect their communications [24].

BotTalker provides the capability to emulate a botnet’s communication via SSL.

(4) Use real background traffic:

The use of real background traffic and real bot traffic is important to assess false

positives and false negatives of detection algorithms. However, blending bot traffic

and background traffic when such traces were collected in different networks has

many challenges. For example, does one pick existing hosts from the background

traffic and assign bot traffic to them? Or do we introduce new hosts along with

those present in the background traffic trace? BotTalker supports both approaches.

4.1.2. BotTalker Architecture. We design BotTalker to satisfy the above require-

ments. The architecture is shown in Figure 4.1. BotTalker includes a highly configurable

encrypted-traffic converter along with background traffic and real, non-encrypted bot traces.

The converter is the core module. There are two inputs to the converter: the bot trace to
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encrypt and a set of parameters (e.g., encryption algorithm, packet or flow level conversion).

After generating the encrypted botnet traces, users may optionally blend it with the pro-

vided background traffic or with background traffic provided by the user. The final result is

now ready to use.

BotTalker comes with a collection of bot traffic and background traffic. At the moment,

it provides 140 Butterfly and Kraken bot traces [34], [75], as well as traffic from the 2009

DARPA dataset. Note that it is trivial to add more traffic to the current collection.

Figure 4.1. BotTalker Architecture

4.2. Encryption Algorithms

Stream and block ciphers are two main approaches in encrypting data. Stream ciphers

encrypt plaintext of variable length. Block ciphers encrypt fixed-length groups of bits called

blocks. In our implementation, we support both stream and block ciphers. In particular,

four modes of block ciphers are supported, including Electronic Codebook (ECB), Cipher

Block Chaining (CBC), Cipher Feedback (CFB) and Output Feedback (OFB). Among these

modes, ECB and CBC require the data size be a multiple of block size, while CFB and OFB

do not. The various standard encryption algorithms provided by BotTalker are shown in

Table 4.1. We implement these encryption algorithms based on OpenSSL[12].
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Table 4.1. BotTalker Encryption Algorithms

Encryption Algorithm Cipher Mode

XOR N/A

RC4 N/A

RC4 40 N/A

DES ECB. CBC, CFB, OFB

2-key Triple-DES ECB CBC, CFB, OFB

3-key Triple-DES ECB, CBC, CFB, OFB

DESX CBC

RC2 ECB, CBC, CFB, OFB

Blowfish ECB, CBC, CFB, OFB

CAST ECB, CBC, CFB, OFB

AES 128 ECB, CBC, CFB1, CFB8, CFB128, OFB

AES 192 ECB, CBC, CFB1, CFB8, CFB128, OFB

AES 256 ECB, CBC, CFB1, CFB8, CFB128, OFB

4.3. Supported Encryption Schemes

In this section, we describe three encryption schemes that BotTalker supports. These

are packet level encryption, flow level encryption and SSL.

4.3.1. Packet Level Encryption. The basic mechanism of packet level encryption

is shown in Figure 4.2. There are three steps in packet level encryption.

(1) Extract the payload from each individual packet.

(2) Encrypt the payload with the user specified encryption algorithm.

(3) Place the encrypted payload back in the packet.

This approach essentially leaves the header intact and changes only the payload. One

challenge, however, is that the size of the payload, once encrypted, could be different than

the original payload. For example, with a stream cipher (XOR) or CFB and OFB modes of
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block ciphers the size of the payload remains the same. But with block ciphers using ECB

and CBC the size of encrypted data is larger than the original due to padding. If we simply

put the encrypted payload back into the packet the size of packet will change, which means

that the sequence and acknowledgment numbers for all subsequent packets need to change.

Moreover, if the size of the encrypted packet is greater than the MTU an additional packet

has to be generated, and the timestamps of all subsequent packets have to be adjusted. To

avoid this complicated scenario we compromise by simply trimming the encrypted payload

to the same size as the original packet. We acknowledge that the encrypted stream is now

different than what a bot may have produced, but we believe that it is more important to

preserve the other characteristics of the stream (timing, header information, etc.) than strive

for a completely accurate representation of the encrypted bytes. The results described later

in the paper indicate that this is not a serious problem.

Figure 4.2. Packet Level Encryption

4.3.2. Flow Level Encryption. Figure 4.3 depicts the process of flow level encryp-

tion. With flow encryption we assume that the endpoints exchange symmetric keys and

encrypt each direction with a different key, but the same encryption algorithm. We also
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detect spurts of packets and encrypt them as a group so if the encrypted version is larger we

do not alter packet timing. Flow level encryption is performed as follows:

(1) Extract and concatenate the payload from groups of packets in each direction.

(2) Encrypt each group or spurt using the user’s specified encryption algorithm.

(3) Place the encrypted payload back into the original packets.

With flow encryption we face the same problem as packet encryption scheme, namely

the possibly larger size of encrypted data. We use the same solution: we trim the encrypted

data to the same size as the original before we place it back into packets. In the flow case,

we only trim the last packet in a spurt.

Figure 4.3. Flow Level Encryption

4.3.3. SSL Emulation. The process of SSL emulation is shown in Figure 4.4. The

figure indicates that the first step is similar with flow level encryption, which is to group

packets in spurts on each direction, extract and concatenate the spurt’s payload. Then

we establish a SSL connection, transmit the extracted payloads in their original direction

and capture the resulting packet trace. The IP addresses, port numbers and timestamps of

the captured SSL traffic are different than the original. While it is easy to replace the IP
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addresses and ports, a big challenge is to adjust the timestamps in the SSL trace because

the total number of packets is different. For example, the trace includes packets for setting

up the SSL state.

Figure 4.4. SSL Emulation

We deal with this issue by calculating the Client Reaction Time (T1), Packet Inter-arrival

Time on Server (T2), Round Trip Time (T3) and Packet Inter-arrival Time on Client (T4)

from the original trace, as shown in Figure 4.5. Then we assign the timestamp of the first

packet in the original trace to the first packet in the SSL trace. Finally, we use the above four

values to estimate the timestamps for subsequent packets. For example, if the first packet is

sent from client to server and the second is sent from server to client, then Time(2nd pkt) =
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Time(1st pkt) + T3. We believe that this is a reasonably accurate representation of a SSL

connection.

Figure 4.5. SSL Timestamps Emulation

4.4. Discussion

4.4.1. Do We Need So Many Encryption Schemes? PROVEX [74] is a botnet

detection system that can detect encrypted C&C channels. It relies on the fact that many

encrypted botnets use static keys, or their keys can be extracted from the transmitted data.

With the help of sandboxes and reverse engineering, PROVEX is able to collect some bot-

net binaries and obtain a set of keys or key extraction functions from them. After that,

PROVEX can detect encrypted C&C channels by i) extracting C&C message patterns from

captured botnet binaries, ii) decrypting every packet using the set of keys or key extraction

functions, and iii) matching the decrypted message with the extracted C&C patterns. How-

ever, PROVEX can only decrypt individual packets and does not provide stream reassembly

mechanisms. As mentioned earlier, when bots transfer a binary they encrypt the entire file

first and then chop the encrypted data into packets. In this case, PROVEX may not work

because some encryption algorithms require reassembling entire encrypted data to get full

decrypted messages. However, if the botnet uses simple encryption algorithms (e.g. XOR),

the first decrypted packet still has the correct original message and PROVEX can make use
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of it. This example shows the need to generate encrypted data sets using different encryption

schemes with different encryption algorithms to test the detection systems’ capabilities.

4.4.2. Do We Need So Many Encryption Algorithms? Botzilla [73] can detect

malware when the latter contacts C&C servers. Botzilla assumes that in the communication

with the servers, content may vary if they rely on host and network settings (e.g., OS, current

time), but others do not change and can be used as signatures. Based on this assumption,

Botzilla repeatedly runs the binaries in a controlled environment by changing network and

host settings, and extracts the invariant content patterns from the traffic as signatures.

Botzilla does not have any ability to decrypt encrypted messages and is not designed to

detect encrypted communications. However, when the authors test it on Storm Worm,

Botzilla is able to detect the communication even though it is encrypted. The reason is that

StormWorm uses a simple encryption algorithm (XOR) and does not conceal communication

very well. If a strong encryption algorithm were used by the bots, Botzilla would most likely

not detect it.

BotTalker’s rich set of encryption algorithms allows us to evaluate PROVEX’s perfor-

mance. As PROVEX cannot distinguish which encryption algorithm and key is used in

captured packets, it has to try all encryption algorithms and keys at its disposal. To test

its performance we can generate a set of encrypted botnet traces using various encryption

algorithms and keys, and then feed them to PROVEX.

4.5. Summary

Datasets with ground truth play an important role in developing detection systems. How-

ever, collecting such data sets is very hard. We address this issue by introducing BotTalker,

a tool that can be used to generate customized encrypted botnet communication traffic.
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BotTalker works by emulating the actions a real bot would take to encrypt communication.

BotTalker retains network level characteristics of original botnet traces, uses real encryption

algorithms, and emulate various encryption schemes. The encrypted botnet traces generated

by BotTalker benefits IDS developers, IDS customers and also IDS benchmark.

43



CHAPTER 5

Evaluating the Damage Result from Encryption on

Security Systems

In this chapter, we use BotTalker to generate encrypted botnet traffic and evaluate the

damage result from encrypted botnet traffic on a widely used botnet detection system -

BotHunter [41] and two IDSs, Snort [13] and Suricata [14]. The results show that the

encrypted botnet traffic foils bot detection in these systems.

5.1. Generating Encrypted Botnet Traces

Armed with BotTalker, we generate 6 datasets by applying encryption and/or IP replace-

ment using the non-encrypted botnet datasets 140BotTraces and MCFPBotTraces. Botnets

can easily change C&C servers to evade blacklists, so we replace all IP addresses to addresses

that do not appear on blacklists. We name these two datasets as 140ReplaceIPsBots and

MCFPReplaceIPsBots. Then, we generate two datasets to emulate botnets using encrypted

communication. For each trace in 140BotTraces and MCFPBotTraces, we encrypt all the

traffic except SMTP and DNS by applying RC4 encryption with packet level encryption

scheme. We call these data sets 140EncryptedBots and MCFPEncryptedBots, respectively.

Finally, we apply IP replacement on the above encrypted datasets to obtain new datasets,

namely 140EncRepIPsBots and MCFPEncRepIPsBots.
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5.2. Reverse Engineering BotHunter

BotHunter (BH) is a real-time bot detection system. The fundamental observation in

BH is that bot infection follows a distinct set of events in some loose order. BH includes

eight infection events, such as Inbound Scan, Inbound Infection, Egg Download, C&C com-

munication, Outbound Scan, etc [4]. BH builds a detection system that scores hosts engaging

in such activity and flags them as bots if the score exceeds a threshold (0.8 in the current

implementation).

BH makes use of Snort. It introduces specific Snort rules where appropriate, to detect

events of interest and then uses the resulting Snort output to aid in bot detection. Some of

the Snort rules apply DPI to search for specific patterns, such as magic numbers to detect

executable downloads or signature strings associated with known bots.

As mentioned earlier, each event is associated with a score. Since the source code for

BH is not available to us, it is hard to determine these scores directly. To determine the

individual event scores, we apply reverse engineering techniques as follows: we disable the

Snort rules that correspond to specific events, and then measure the difference in the final

score between host profiles associated with the disabled event. For example, if the original

score without disabling any Snort rules is 3.5 and the score after disabling the rules to detect

Egg Download is 3.0, then we conclude that Egg Download has a score of 0.5. Our bot traces

trigger six out of eight events in BH and the scores are shown in Table 5.1.

5.3. Damage Result from Encryption on BotHunter

We first run BH on the bot traces 140BotTraces, 140ReplaceIPsBots, 140EncryptedBots

and 140EncRepIPsBots. Table 5.2 shows the results. From the table we observe that 138

out of 140 bots are detected on the non-encrypted botnet traces. When BH detects a bot
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Table 5.1. BotHunter Scores

Event Alert Score

Egg Download 0.5

C&C Communication based on DPI 0.5

C&C Communication based on RBN 0.1

Outbound Attack 0.5

Outbound Scan based on Behavior 0.3

Attack Preparation 0.5

Bot Declaration 0.8

it also reports the rules that fired. We categorize these rules into four groups: 1) DPI on

HTTP traffic: these rules triggered 2 events with overall score of 1.0. 2) SMTP traffic: these

rules triggered 1 event whose score is 0.5. 3) DNS traffic: these rules triggered 2 events with

overall score of 1.3. 4) Blacklists: these rules triggered 1 event whose score is 0.1.

When we feed 140ReplaceIPsBots to BH, 138 bots are detected as they trigger the events

in groups 1 and 2 (some also trigger events in group 3). With encryption only, 127 bots

are missed because they only trigger events in group 2 and 4 whose score is less than the

threshold. The other 13 bots are detected because they trigger events in group 2, 3 and 4.

These 13 bots are still detected when both encryption and IP replacement are applied as

they trigger events in group 2 and 3.

Table 5.2. BotHunter Detection Rate on 140 Samples Botnet Traces

Dataset Traffic Encryption IP Replacement Detected Bots

140BotTraces Not Applied Not Applied 138

140ReplaceIPsBots Not Applied Applied 138

140EncryptedBots Applied Not Applied 13

140EncRepIPsBots Applied Applied 13
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We then run BH on MCFP bot traces, including MCFPBotTraces, MCFPReplaceIPs-

Bots, MCFPEncryptedBots and MCFPEncRepIPsBots. The results are listed in Table 5.3.

From the table we can see that BH only detects 5 out of 41 bots even no encryption or IP

replacement is applied. Besides the 5 detected bots, BH also generates alerts for another

13 bots. However, these 13 bots are not labeled because the scores of triggered alerts are

less than the threshold. One explanation for such low bot detection rate is that the bot

traces may not contain enough malicious traffic. For example, the bots may detect they are

running on virtual machines and stop sending C&C messages or performing attacks. Note

that we are not using these botnet traces to evaluate how well BH detects bots. Instead, we

use these traces to evaluate the damage result from encryption on BH. From Table 5.3 we

can also find that when we feed MCFPReplaceIPsBots and MCFPEncryptedBots to BH, 5

bots are still detected. The reason is that many rules are triggered and they relay on DPI,

blacklist and also SMTP. As a result, even encryption or IP replacement evasion technique

makes the DPI or blacklist rules blind, the score of the other triggered rules is still above the

threshold thus BH detects the bots. When both encryption and IP replacement are applied,

BH fails to detect one of the above 5 bots because all the rules used to detect it rely on DPI

and blacklist, which are now foiled.

Table 5.3. BotHunter Detection Rate on MCFP Botnet Traces

Dataset Traffic Encryption IP Replacement Detected Bots

MCFPBotTraces Not Applied Not Applied 5

MCFPReplaceIPsBots Not Applied Applied 5

MCFPEncryptedBots Applied Not Applied 5

MCFPEncRepIPsBots Applied Applied 4
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Now we draw two conclusions for our findings. First, DPI technique plays a more impor-

tant role than blacklist in BH. Second, encrypted botnet traffic largely foils bot detection in

BH.

5.4. Damage Result from Encryption on Snort

In this section, we measure the damage result from encrypted bot communication on

a widely used IDS - Snort (version 2.9.6.2) using the Emerging Threats Open Ruleset [6].

The ETOpen Ruleset is an anti-malware IDS/IPS ruleset that helps users to enhance their

network-based malware detection. We use two criteria to measure the damage. One is the

number of triggered alerts, and the other is the number of detected bots.

First we feed non-encrypted 140BotTraces to Snort. 14982 alerts are triggered. The

number of triggered alerts for each bot is shown in Figure 5.1. The x-axis is the bot index

and the y-axis is the number of alerts. Although most of the alerts in Figure 5.1 are related

to SMTP, they are triggered by the same rule. So we consider unique alerts in Figure 5.2.

From Figure 5.2 we see that most of the unique alerts are DPI related.
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Figure 5.1. Snort Alerts per Bot without Encryption (140BotTraces)
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Figure 5.2. Snort Unique Alerts per Bot without Encryption (140BotTraces)

We then feed the encrypted 140EncryptedBots to Snort. We plot the triggered alerts and

unique alerts in Figure 5.3 and Figure 5.4, respectively. From the figures we can see that only

the alerts related to DNS, SMTP and blacklist are triggered, but all the DPI related alerts

disappear. We compare the alerts of using non-encrypted and encrypted botnet datasets in

Table 5.4. From the table we can see that when encryption is applied, Snort misses 33.8%

of total alerts and 78.7% of unique alerts.
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Figure 5.3. Snort Alerts per Bot with Encryption (140EncryptedBots)
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Figure 5.4. Snort Unique Alerts per Bot with Encryption (140EncryptedBots)

Table 5.4. Snort Alerts of 140BotTraces and 140EncryptedBots

Total Alerts Unique Alerts

140BotSamples 14982 2223

140EncryptedBots 9926 478

Encryption Damage 5056 1745

Damage Percentage 33.8% 78.7%

Now we run Snort on MCFP bot traces, including MCFPBotTraces and MCFPEncrypt-

edBots, to repeat the above experiments. 562235 alerts in total and 317 unique alerts are

triggered when we feed MCFPBotTraces to Snort. The total alerts and unique alerts are

plotted in Figure 5.5 and Figure 5.6 (alerts for a specific bot is not included in the figures

because it triggers too many alerts to show in the figures). Then we feed MCFPEncrypted-

Bots to Snort. We plot the triggered alerts and unique alerts in Figure 5.7 and Figure 5.8.

From the figures we can see that most of the DPI-related alerts disappear, and only 318935

alerts and 89 unique alerts are triggered. However, 10 unique DPI-related alerts are occa-

sionally triggered because the encrypted traces match some DPI rules that being used to

detect Edonkey traffic. We compare the alerts of using non-encrypted and encrypted botnet

50



datasets in Table 5.5. From the table we can see that when encryption is applied, Snort

misses 43.3% of total alerts and 71.9% unique alerts.
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Figure 5.5. Snort Alerts per Bot without Encryption (MCFPBotTraces)
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Figure 5.6. Snort Unique Alerts per Bot without Encryption (MCFPBotTraces)

Now we use another criterion - the number of detected bots, to evaluate the damage

result from encrypted botnet traffic on Snort. In the above experiments, we have seen that

Snort generates lots of alerts on the non-encrypted as well as the encrypted botnet traces.

Upon further investigation, we find that some triggered alerts are strongly related to bot
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Figure 5.7. Snort Alerts per Bot with Encryption (MCFPEncryptedBots)
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Figure 5.8. Snort Unique Alerts per Bot with Encryption (MCFPEncryptedBots)

Table 5.5. Snort Alerts of MCFPBotTraces and MCFPEncryptedBots

Total Alerts Unique Alerts

MCFPBotTraces 562235 317

MCFPEncryptedBots 318935 89

Encryption Damage 243300 228

Damage Percentage 43.3% 71.9%

52



infection. Based on these alerts, we use a simple method to label bots. For a given host, if

any of its triggered alerts indicates bot infection, we consider the host as a bot. It is true

that this simple method may introduce false positives because a legitimate host may trigger

such rules occasionally. However, note that our aim is to measure the damage result from

encryption instead of developing a bot detection system.

First we measure the damage using the 140 bot traces. When we use the non-encrypted

140BotTraces as input, all of 140 bots are labeled as bots. However, only 95 out of the 140

bots are detected when 140EncryptedBots are fed into Snort, meaning that 45 (32.1%) bots

are missed due to encryption. Then we use the MCFP bot traces to measure the damage.

When MCFPBotTraces and MCFPEncryptedBots are used as inputs to Snort, 27 and 12

bots are detected, indicating that 15 (55.6%) bots are missed due to encryption.

Now we conclude the damage result from encryption on Snort. In summary, encryption

greatly foils Snort. For our two particular datasets, encrypted botnet communications 1)

suppress more than 33% of total alerts and more than 70% of unique alerts for Snort, 2)

make Snort miss 32% and 55% of bots.

5.5. Damage Result from Encryption on Suricata

In this section, we measure the damage result from encrypted bot communication on

Suricata (version 2.0.4). The experiments are very similar as the last section. First we feed

non-encrypted 140BotTraces to Suricata, 13453 alerts and 2339 unique alerts are triggered.

The number of total alerts and unique alerts are plotted in Figure 5.9 and Figure 5.10. From

the figure we can see that most of the unique alerts are DPI-related. We then feed the

encrypted 140EncryptedBots to Suricata. We plot the number of total alerts and unique

alerts in Figure 5.11 and Figure 5.12. The figures indicate that only the alerts related to
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DNS, SMTP and blacklist are triggered. We compare the alerts of using non-encrypted and

encrypted botnet traces in Table 5.6. From the table we can find that when encryption is

applied, Suricata misses 36.1% of total alerts and 75.2% of unique alerts.
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Figure 5.9. Suricata Alerts per Bot without Encryption (140BotTraces)
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Figure 5.10. Suricata Unique Alerts per Bot without Encryption (140BotTraces)

Then, we use MCFP datasets MCFPBotTraces and MCFPEncryptedBots as inputs to

Suricata. 570155 alerts and 291 unique alerts are triggered when we feed MCFPBotTraces

to Suricata. The number of total alerts and unique alerts are plotted in Figure 5.13 and
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Figure 5.11. Suricata Alerts per Bot with Encryption (140EncryptedBots)
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Figure 5.12. Suricata Unique Alerts per Bot with Encryption (140Encrypt-
edBots)

Figure 5.14. Then we use MCFPEncryptedBots as input to Suricata. We plot the number

of total alerts and unique alerts in Figure 5.15 and Figure 5.16. From the figures we can see

that most of the Suricata DPI-related alerts disappear. We compare the alerts of using non-

encrypted and encrypted botnet traces in Table 5.7. The table tells us that when encryption

is applied, Suricata misses 46.2% of total alerts and 74.2% of unique alerts.
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Table 5.6. Suricata Alerts of 140BotTraces and 140EncryptedBots

Total Alerts Unique Alerts

140BotSamples 13453 2339

140EncryptedBots 8591 580

Encryption Damage 4862 1759

Damage Percentage 36.1% 75.2%
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Figure 5.13. Suricata Alerts per Bot without Encryption (MCFPBotTraces)
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Figure 5.14. Suricata Unique Alerts per Bot without Encryption (MCFP-
BotTraces)
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Figure 5.15. Suricata Alerts per Bot with Encryption (MCFPEncryptedBots)
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Figure 5.16. Suricata Unique Alerts per Bot with Encryption (MCFPEn-
cryptedBots)

Table 5.7. Suricata Alerts of MCFPBotTraces and MCFPEncryptedBots

Total Alerts Unique Alerts

MCFPBotTraces 570155 291

MCFPEncryptedBots 306591 75

Encryption Damage 263564 216

Damage Percentage 46.2% 74.2%
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Similar as the experiments with Snort in Section 5.4, now we use the number of detected

bots as another criterion to evaluate the damage result from encrypted botnet traffic on Suri-

cata. First, we measure the damage using the 140 bot traces. When we feed 140BotTraces

and 140EncryptedBots to Suricata, 140 and 95 (32.1% less) bots are detected. Then we use

the MCFP bot traces to measure the damage. 27 and 12 (55.6% less) bots are detected when

MCFPBotTraces and MCFPEncryptedBots are used as inputs to Suricata, respectively.

In conclusion, encryption largely foils Suricata. For our two particular datasets, en-

crypted botnet communications 1) suppress more than 35% of total alerts and around 75%

of unique alerts for Suricata, 2) make Suricata miss 32% and 55% of bots.

5.6. Summary

In this chapter, we first use BotTalker to generate sets of encrypted botnet traces and

reverse engineer the event scores of BotHunter. After that, we evaluate the damage result

from encrypted botnet traffic on three security systems, including BotHunter, Snort and

Suricate. We have two findings from the experiments. One is that DPI technique plays a

more important role than blacklist in BH. The other finding is that encryption largely foils

these systems. For example, for dataset 140BotTraces, encrypted botnet communications

make BH miss 125 out of 140 bots; suppress more than 70% and 75% of unique alerts for

Snort and Suricata, respectively.
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CHAPTER 6

Detecting Encrypted Botnet Traffic

In the previous chapter, we showed that encrypted payload can evade detection systems

such as BH, Snort, and Suricata. The reason is that encryption makes the DPI rules blind.

However, we notice that encryption does not foil the other detectors of BH that do not rely

on DPI. A simple question then, is can we develop a detector to label encrypted traffic,

and then combine it with the other detectors of BH to detect encrypted botnets? In this

chapter, we attempt to answer this question by introducing two classifiers to detect high

entropy (HE) flows and integrating them into BH to detect encrypted botnet traffic. The

basis of this introduced method is that encryption tends to alter the payload entropy, often

converting low entropy (LE) payload to HE.

6.1. Detecting High Entropy Data

In information theory, entropy was first introduced by C.E.Shannon [77] and it has been

used widely in various domains. Here we present an introduction to entropy, followed by a

brief description on how to select an HE threshold using the approach described in [39]. We

use the latter to classify HE flows.

For a probability distribution p = (pi)i∈Σ, entropy is defined as

(1) H(p) = −

n
∑

i=1

pilogpi

59



Entropy can be applied to measure the uniformity of data. The more uniform the data,

the lower its entropy is. Uniform distribution leads to the maximum entropy value. In our

case, since we calculate the entropy of data composed of characters (bytes), n is 28 = 256

in equation 1 and the maximum entropy value is 8 (bits per byte). If the distribution is

highly skewed, the entropy is low. Consequently, we can use entropy to detect certain types

of content. For example, high entropy may indicate encrypted or compressed data as the

distribution is close to random. However, we face two challenges. The first is thatH(p) in the

above equation is calculated based on an infinite amount or a closed set of input data. But in

our case, the length of packet payload is less than 1500 bytes, which means p is undersampled.

The second challenge is that given a chunk of data, we need to determine a threshold to

classify HE or LE. We use the method introduced by Olivain [39] to solve the above two

challenges. Specifically, we calculate entropy thresholds for N-bytes of data. Given a chunk

of N-bytes of data, we calculate its entropy and compare it with the corresponding threshold.

If the entropy is greater than the threshold, then it is HE data, otherwise it is LE. As it is not

possible to calculate the threshold for infinite length of data, we calculate thresholds up to

N=640K. For the data larger than 640KB, we use the threshold of N=640K. We believe this

is reasonable because (a) the threshold for N=640K is very close to the maximum entropy

value, and (b) the threshold increases very slowly when N is large.

6.2. High Entropy Flow Classifiers

Earlier we described a method to classify a chunk of data as HE or LE. Now we extend

the methodology to classify a flow as HE or LE. We use the classic definition of a flow,

namely a set of packets with the same source IP address and port, destination IP address

and port and protocol.
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Our first challenge is defining what a HE flow is. While many protocols encrypt user

data, they exchange packets at the beginning of a flow that are not encrypted (and thus low

entropy). After the initial exchange, subsequent packets are encrypted. Figure 6.1 illustrates

this scenario.

Figure 6.1. Protocols Composed of Both Non-Encrypted and Encrypted
Communications

The beginning part (gray) contains non-encrypted low entropy packets. To prevent such

LE packets from skewing entropy calculation our algorithms wait until N Sequential High

Entropy Packets have been detected before calculating entropy. We present two classifiers, a

flow-based and a packet-based classifier. Both classifiers aim at labeling a flow as HE or LE,

with the former examines the entire flow, while the latter examines each packet separately.

(1) Flow-based HE Classifier: The flow-based classifier begins by calculating the entropy

of each packet. After detecting N sequential HE packets the classifier examines the

payload of all subsequent packets and then calculates the cumulative entropy of

all the data (including the initial HE packets). The classifier then compares the

cumulative entropy with the appropriate threshold, as described earlier to make the

final decision.

(2) Packet-based HE Classifier: After detecting N sequential HE packets this classifier

calculates the entropy of each packet and classifies it as HE or LE. At the end of the

flow we count the number of HE and LE packets, denoted as N(HE) and N(LE).

If N(HE)/(N(HE)+N(LE)) is greater than the High Entropy Packet Percentage

Threshold, then the flow is classified as HE.
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If classifiers do not detect N sequential HE packets the flow is classified as LE. We

determined N experimentally and found that N = 3 works best.

6.3. Comparing Flow and Packet-based HE Classifiers

Now we compare the flow and packet-based HE classifiers with three tests. In the first

test, we run both HE classifiers on encrypted files to validate our assumption that encrypted

data is typically HE. In the second test, we run our classifiers on encrypted network flows,

specifically HTTPS flows, and expect most of them to be classified as HE. Finally, in the

third test we run the classifiers on known non-encrypted (but not necessarily LE) traffic to

ensure we do not see any anomalous results.

(1) Test 1: Encrypted Files

We use 17,000 encrypted files in data set EncryptedFiles in this experiment.

We use N = 3 as sequential HE packets and 90% as the HE packet percentage

threshold. The results show that both flow and packet-based classifiers identify all

the encrypted files as HE. This is an encouraging result, indicating that encrypting

a file does result in HE.

(2) Test 2: Encrypted Traffic

In this test we repeat the above methodology, but this time using real encrypted

network traffic, specifically the trace Lab1-HTTPS. The results are shown in Ta-

ble 6.1. As we can see from the table the two classifiers identify 96% and 99% of

the flows in the trace as HE, a very good result.

(3) Test 3: Non-encrypted Files

We carry out the experiment using the data set NonEncyrptedFiles, which in-

cludes 11 types of non-encrypted files, and 1000 files per type. Table 6.2 shows the
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Table 6.1. Online Encrypted Traffic

Traffic HTTPS

Total Flows 1675

HE (flow-based) 1612

Rate (flow-based) 96.24%

HE (packet-based) 1665

Rate (packet-based) 99.40%

results. We see that none of the Txt files is classified as HE by either classifier. For

the compressed files, as expected, many are classified as HE by both classifiers.

Our conclusion is that the packet-based classifier seems more eager to consider

data as HE than the flow-based classifier. One explanation is that many files (e.g.,

compressed files) may have structures and contain duplicate or similar contents in

each “block”. Consequently, considering the entire file, there is increased duplication

and a decrease in entropy. On the contrary, a single packet may not contain such

duplicate.

Table 6.2. Offline Non-Encrypted Files

File
Type

HE Files
(flow-based)

HE Files
(packet-based)

File
Type

HE Files
(flow-based)

HE Files
(packet-based)

DOC 0 31 MP3 0 0

EX-
CEL

0 20 bz 107 515

TXT 0 0 gz 14 709

PDF 0 1 Rar 70 752

JPG 0 232 zip 17 705

Exe-
cutable

422 534
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6.4. Enhancing BotHunter with a High Entropy Detector

Armed with two HE classifiers, we move toward enhancing BotHunter with an additional

event that enables the detection of the HE flows. The hope is that the presence of HE flows in

conjunction with existing bot events that BH already detects, will flag bots using encrypted

traffic. In this section we first outline our modifications to BH, and then use encrypted

botnet traces to determine true positives and our lab traces to determine false positives.

We enhance BH as follows. First, we implement a HE flow detector separate from BH

since we do not have access to BH’s source code to integrate our code. For the HE flow

detector, we choose the packet-based classifier. While this classifier tends to flag more flows

as HE than its flow-based counterpart, we feel that BH will suppress many of the false

positives. Moreover, the flow-based HE classifier requires more memory than the packet-

based one for each flow to accumulate packet payloads. Our detector adds an entry to the

Snort log when it detects at least one HE flow between two hosts. We then resort to a hack,

where our detector triggers an existing event in BH by adding the appropriate entry in the

Snort log, namely the C&C communications or egg download event. Recall from Section 5.2

that both these events have a score of 0.5, which we deem as the upper bound for our HE

detector. The reason is that the C&C communication and egg download event are triggered

using DPI, which carries a much higher confidence than our detector. In our experiments

we try score values from 0.1 to 0.4.

We carry out two experiments to select the proper score for the entropy detector. We use

the encrypted botnet data set 140EncryptedBots to evaluate true positives. The network

traces Lab1, Lab2 and Lab3 are used to evaluate false positives. The results are shown in
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Figure 6.3 and Figure 6.2. The x-axis in both figures is the score assigned to the HE detector

and the y-axes are a count of true and false positives respectively.

In Figure 6.2, when the score of the HE detector is 0.2 we notice one potential false

positive in Lab1. The reason is that events C&C communication based on DPI and C&C

communication based on blacklist are triggered, whose total score is 0.6. At the same time,

this host also has HE connections, so the HE detector is triggered and the final score is

greater than threshold. As a result, this host is flagged as a bot. Figure 6.3 shows that the

enhanced BotHunter is able to detect 134 out of the 140 known bots when the weight of the

detector is 0.2. We thus conclude that a weight value of 0.2 works best.
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Figure 6.2. False Positives for Lab Traces

6.5. Discussion

Botnet can use any encryption scenarios they choose to evade detection system. As

rolling key encryption is used by many legitimate applications, it is worth to discuss whether

our method will be foiled if the botnets use rolling key encryption. Our method detects

encrypted botnets by looking for HE traffic and also other malicious events that can be
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Figure 6.3. True Positives for bot traces

detected by BotHunter. Even the botnets use rolling key encryption, the encrypted traffic

will still be labeled as HE flow by our HE classifiers. Then, if enough other suspicious

activities are detected by BotHunter, the bots can still be detected.

In Section 6.4, we use 140EncryptedBots to decide the score of HE classifier. An impor-

tant question to ask is that whether the score decided by these 140 botnet traces applies

to many other botnets? Before answering this question, we want to emphasize that instead

of setting specific score, the main contribution of our work in this section is to show that

entropy helps detect encrypted botnet traffic and we have built two HE classifiers to do this.

We admit that the score decided by these 140 traces may not apply to some other botnets.

But we also notice that there is no single system can detect all the botnets. We plan to

obtain more encrypted botnet traces to decide the score. Another way to validate the score

with small number of botnet traces is to use k-fold cross-validation.

In the experiments, we use separate legitimate lab traces and botnet traces to evaluate

the false positive and true positive. However, in the real world network traffic, the botnet

and legitimate traffic is mixed, which may make botnet detection much harder. One question
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we need to answer is that what the false positive and true positive of our method will be if

we use such mixed traffic as input, for example, if we blend 140EncryptedBots with Lab1,

Lab2 and Lab3. Our answer is that we will get the same results as we run the method on the

legitimate the botnet traces separately. The reason is that the enhanced BotHunter detects

bots by analyzing the traffic from a single host, instead of the traffic collected from multiple

hosts.

6.6. Summary

In this chapter we investigate detection of bots that use encrypted communication. We

first show that encryption in botnet communication increases entropy. Then, we introduce

flow-based and packet-based classifiers to detect HE flows. Both classifiers are able to skip

the unencrypted part and detect the following encrypted communications. Finally, we add

packet-based HE classifier to BotHunter and make it be able to detect encrypted bots.
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CHAPTER 7

Early Detection of High Entropy Traffic

In the previous chapter we introduced two classifiers to label a flow as HE or LE. However,

entropy calculation is expensive, especially for long flows. A simple question then, is whether

it is actually required to examine the entire flow, or can we reach the same classification if

we look at part of the flow and how much. In this chapter, we first improve our previous

classifiers by turning them into early high entropy classifiers. In particular, we show we can

classify a flow as HE or LE by looking at the first M packets, rather than the entire flow.

This saves both CPU and memory resources, enables faster detection and higher throughput.

Then, we demonstrate how our early HE classifiers can improve the performance of IDS when

used as filters.

7.1. Early HE Classifiers

The early HE classifiers are similar as the HE classifiers proposed in Section 6.2. Instead

of looking at the entire flow, we look at the first M packets to label a flow as HE or LE, as

shown in Figure 7.1. The early flow-based and packet-based HE classifiers are as described

as follows.

(1) Flow-based Early HE Classifier: After detecting N sequential HE packets we cap-

ture the payload of all subsequent packets until the M th packet, and calculate the

cumulative entropy of the resulting data. We then compare the cumulative entropy

with the threshold and if the cumulative entropy is greater than the threshold, then

the flow is labeled as HE.
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(2) Packet-based Early HE Classifier: After detecting N sequential HE packets, we

calculate the entropy for each packet until the M th packet, and classify each of them

as HE or LE. We count the number of HE and LE packets, denoted as N(HE) and

N(LE). If N(HE)/(N(HE)+N(LE)) is greater than HE packet percentage threshold,

then we consider the flow as HE.

In both classifiers, if N sequential HE packets are not detected in the first M packets,

the flow is labeled as LE.

Figure 7.1. Early Classification of High Entropy Flows

7.2. Evaluation

To carry out our evaluation we first classify our datasets into HE and LE using the full

flow-based classifier described earlier in Section 6.2. We consider this as our ground truth.

Then we run the early HE classifiers on HE flows and LE flows, and calculate the recall of

HE and LE flows. Recall of HE flows is calculated as the percentage of HE flows classified

correctly when using the early classifiers. Recall of LE flows is defined similarly. We evaluate

the early HE classifiers using network traffic first followed by application content. Finally

we drill down to encrypted vs. non-encrypted content separately.

7.2.1. Evaluation with Network Traffic. First we evaluate the early HE detec-

tion classifiers using the Lab1-HTTPS dataset. Using the full flow-based classifier 1612 out

of 1675 (96.24%) flows are labeled as HE.
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For the packet-based early HE classifier, we use 9 different values for the HE packet

percentage threshold, ranging from 10% to 90%. The recall of HE flows for flow-based and

packet-based early HE classifiers is shown in Figure 7.2. The x-axis is the number of packets

used to make decision and the y-axis is the recall. From the results we can see that both flow-

based and packet-based early HE classifiers perform well in detecting HE flows. Specifically,

the recall increases very quickly, over 90% at the seventh packet and almost 100% after the

tenth packet. The reason why we need 10 packets to achieve 100% recall of HE flows is that

the first several packets in the flows are protocol related negotiation in the clear, preventing

us from detecting 3 sequential HE packets. We also find that there is no significant difference

in recall by varying the HE packet percentage threshold. The reason is that most of HTTPS

packets are encrypted and thus classified as HE, so even with a high threshold (e.g., 90%)

the flow is still classified as HE.
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Figure 7.2. Recall of HE HTTPS Flows using Flow and Packet-based Early
HE Classifiers

7.2.2. Evaluation with Application Content. In this section we use application

content that includes 11,000 non-encrypted files and 17,000 encrypted files, to evaluate the
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early HE classifiers. Then in Section 7.2.3 and Section 7.2.4, we evaluate the classifiers on

encrypted and non-encrypted content respectively. After applying the full-flow ground truth

classifier, 10370 files are labeled as LE and the other 17630 files are labeled as HE.

First we evaluate the packet-based early HE classifier with 9 different HE packet per-

centage thresholds on the set of HE and LE files. The results of recall of HE files are shown

in Figure 7.3. The figure shows that i) the recall of HE files is 97% even we only consider the

first 5 packets, and ii) the HE packet percentage threshold has little effect. Figure 7.4 depicts

the recall of LE files. We can see that as the HE packet percentage threshold increases, the

recall also increases. The reason is that the packet-based classifier requires more HE packets

to classify a file as HE, which means requiring fewer LE packets to classify a file as LE.

In summary, with the packet-based early HE classifier using 90% as HE packet percentage

threshold and 10 as M, the recall of HE files and LE files is 97% and 65% respectively.
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Figure 7.3. Recall of All HE Files using Packet-based Early HE Classifier

Next we apply the flow-based early HE classifier on the ground truth files. Figure 7.5

depicts the results. There are two observations we make. The first is the recall of HE files is

very high, above 97% if we consider more than 5 packets. The second is that as the number
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Figure 7.4. Recall of All LE Files using Packet-based Early HE Classifier

of considered packets increases, the recall for LE files increases. If we use 10 packets as M,

the recall of HE files and LE files is 97% and 75%, respectively. Consequently, the flow-based

early HE classifier performs better than its packet-based counterpart.
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Figure 7.5. Recall of All HE and LE Files using Flow-based Early HE Classifier

7.2.3. Evaluation with Encrypted Application Content. In this section, we

use dataset EncryptedFiles to evaluate the early HE classifiers. All the 17,000 files are

labeled as HE by our full-flow classifier. The recall of HE encrypted files using flow-based
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and packet-based early HE classifiers with 9 different HE packet percentage threshold values

is over 99.9% of the time, even with only 5 initial packets. The reason for the high success

rate is that all 17 encryption algorithms we used are strong. In summary, the early HE

classifiers perform very well on encrypted files.

7.2.4. Evaluation with Non-Encrypted Application Content. Now we use

dataset NonEncryptedFiles to evaluate the early HE classifiers. Figure 7.6 depicts the recall

of HE and LE content by using the flow-based early HE classifier. The figure shows that as

we consider more packets, the recall of LE and HE files increase. However, the recall for HE

content is only around 30%. Upon further investigation, we find the reason is that for many

executable files the 3 sequential HE packets start late, sometimes after dozens or hundreds

of packets.
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Figure 7.6. Recall of HE Non-Encrypted Files (include executable files) us-
ing Flow-based Early HE Classifier

We quantify where the 3 sequential HE packets start in a CDF in Figure 7.7. The x-axis

is the packet offset from the beginning of the file where the 3 sequential HE packets start

and the y-axis is the cumulative percentage. Note that at x = 0, y is the percentage of files
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that do not contain 3 sequential HE packets. For example, none of the txt files (green line)

contains 3 sequential HE packets. The bottom orange line stands for exe files and shows

that around 55% of the exe files do not contain 3 sequential HE packets, or they start before

the 40th packet. However, for the other 45% of exe files the 3 sequential HE packets start

after the 40th packet, and for 22% of exe files after the 100th packet. Consequently, we miss

these late 3 sequential HE packets in exe files when we only consider the first 40 packets or

less, and the files are classified as LE. Upon further investigation we discover that these exe

files contain packed or compressed code, so the 3 sequential HE packets start late. We use

software Exeinfo PE [7] to view the internal structure of the exe files and find that at least

520 exe files contain self-extracting archive (SFX) or a compressed archive. If we exclude

the exe files and plot the recall for the other 10 file types as shown in Figure 7.8, the recall

of HE files is much higher, around 80% for both HE and LE files if we consider the first 15

packets.
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The above results show that for the data whose N sequential HE packets start late, our

early HE classifiers may be suffered. To deal with this issue, instead of the first M packets
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Figure 7.8. Recall of HE Non-Encrypted Files (exclude executable files) us-
ing Flow-based Early HE Classifier

from the beginning of a flow, we can use the first M packets after the N sequential HE

packets to classify a flow. In this case, however, we need to examine more packets.

Finally, we evaluate the recall for the packet-based early HE classifier on the non-

encrypted files. Figure 7.9 shows the recall for HE files. We see similar results with exe

files as the flow-based classifier, the recall for HE content is only around 30%.
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The recall for the other 10 types of files after excluding exe files is shown in Figure 7.10.

The recall is close to 100% after the 15th packet and insensitive to the HE packet percentage

threshold.
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Figure 7.10. Recall of HE Non-Encrypted Files (exclude executable files)
using Packet-based Early HE Classifier

The recall with LE files including exe is depicted in Figure 7.11. We can see that as the

HE packet percentage threshold increases, the recall also increases. The recall of LE files

after excluding exe files is almost the same as with exe files, so we omit the figure. LE exe

files pose no problem, they are always classified as LE in flow-based or packet-based early

classifiers when we consider the first few packets.

7.3. Reducing Load on IDS

Previously, we introduced two early HE classifiers for labeling HE and LE data. Now,

we apply them to reduce the amount of traffic delivered to an IDS. Many IDSs rely on

DPI techniques, such as searching for suspicious strings in packet payload. However, certain

content, such as video, audio, encrypted or compressed data, cannot be understood by the
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Figure 7.11. Recall of LE Non-Encrypted Files (include executable files)
using Packet-based Early HE Classifier

IDS and results in a waste of computation resources. To address this issue, we investigate

the use of our early HE classifiers to label traffic as clear or opaque. Then, we only deliver

the clear traffic and the first several packets of opaque traffic to the IDS and discard the

rest.

7.3.1. Early Classification of Clear Data and Opaque Data. We evaluate the

ability of early HE classifiers to distinguish clear from opaque data. Specifically, we designate

flows labeled as HE by the early classifier as opaque and LE flows as clear. Note that this

is different from classifying data as HE or LE. We are evaluating the ability of early

HE and LE classifications to imply opaque and clear data, respectively. First, we

analyze the NonEncryptedFiles dataset. We consider txt files to be clear, and bzip, gzip,

rar, winzip, jpeg, mp3, pdf and exe files to be opaque. We do not include doc and excel files

as either clear or opaque because they could consist entirely of text or images. The former is

clear while the latter is opaque. As a result, it is hard to classify doc and excel files without

manual analysis.

77



From an implementation point of view, the flow-based early HE classifier requires more

memory than the packet-based one for each flow to accumulate packet payloads. Con-

sequently, we use the packet-based early HE classifier and a 90% HE packet percentage

threshold for the traffic reduction method. The percentages of files classified as opaque are

shown in Figure 7.12. All the txt files are classified as clear. If we limit classification to

the first 15 packets, 65.5% to 81.4% of compressed files are labeled as opaque, and 6.5% to

27% of jpeg, mp3, pdf and exe files are labeled as opaque. Surprisingly, many files that are

labeled as LE by the full classifiers are instead labeled as HE when the early classifiers are

applied. However, because we define clear and opaque data based on our early classifiers,

thus these files are considered to be opaque. One explanation is that these files have struc-

tures and contain duplicate or similar contents in each “block”. Consequently, considering

more packets, there is increased duplication and a decrease in entropy. Next, we repeat the

experiment on the EncryptedFiles dataset, and all files are classified as opaque. In summary,

20,667 out of 25,000 (82.67%) opaque files are correctly labeled by the packet-based early

HE classifier.

7.3.2. Network Traffic Reduction. We have shown that the early HE classifiers

can be used to distinguish clear and opaque data. In this section we describe how to use

them to reduce the amount of traffic delivered to IDS.

Our traffic reduction methodology is as follows. For a given flow, we use the first M

packets to classify the flow as HE or LE. If it is classified as HE, then we consider this

flow to be opaque and do not deliver any of the following packets to the IDS. If the flow is

classified as LE, then we consider this flow to be clear and deliver all packets to the IDS.

Note that the first M packets of both clear and opaque flows are delivered to the IDS. In this
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Figure 7.12. Opaque File Percentages for Non-Encrypted Files using Packet-
based Early HE Classifier

implementation we use the packet-based early HE classifier, we set the HE packet percentage

threshold to 90%, and M to be 15.

We now investigate how much traffic is reduced by using our traffic reduction method.

In particular, we look at the byte reduction rate and packet reduction rate to quantify the

amount of reduced traffic. The byte reduction rate is calculated as the number of bytes

discarded after the M th packet in opaque flows divided by the total bytes for all the opaque

and clear flows. The packet reduction rate is defined similarly. We use TCP and UDP

traffic in trace Lab1, Lab2, and Lab3, and all the packets in CSUTrace for measurement.

The results are shown in Table 7.1 and Table 7.2. From the tables we can see that our

methodology prevents a great deal of packets and bytes from being delivered to IDS. For

example, in Lab2 and Lab3, the traffic is reduced for more than 50%.

While our methodology greatly reduces traffic to the IDS, the central question is, have

we also thrown away traffic that would trigger alerts?
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Table 7.1. Byte Reduction Rate

Dataset Total Bytes Reduced Bytes Reduced Rate

Lab1 134230334179 18428005888 13.73%

Lab2 143939409963 83873010412 58.27%

Lab3 403369729161 213819208748 53.01%

CSUTrace 8140578402030 2772424035389 34.06%

Table 7.2. Packet Reduction Rate

Dataset Total Packets Reduced Packets Reduced Rate

Lab1 102651430 13613902 13.26%

Lab2 122491839 62150940 50.74%

Lab3 303501833 156448899 51.55%

CSUTrace 8942932452 2999274638 33.54%

To answer this question, we use Snort and the Emerging Threats Open Ruleset in our

evaluation. Snort provides a module named preprocessor, which can be used to extend

functionality by allowing users to add modular plugins into Snort. We implement our traffic

reduction algorithm as a preprocessor and integrate it into Snort.

To investigate how many alerts are missed by applying the traffic reduction preprocessor,

we compare alerts from the original version of Snort and with the preprocessor on the same

trace. As the trace CSUTrace does not contain packet payload, we only use the three lab

traces in this experiment. Table 7.3 shows the results of the two versions of Snort. The table

shows that the version of Snort with traffic reduction preprocessor is able to detect more

than 99.9% of the alerts detected by the original Snort. Thus we conclude that our traffic

reduction has virtually no effect on the IDS, we have essentially thrown away traffic would

not have triggered alerts.

In a second experiment we use BotHunter to evaluate the performance of the traffic

reduction algorithm on its ability to detect bots. We first feed the botnet traces 140BotTraces
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Table 7.3. Triggered Alerts with/without Traffic Reduction (TR) Preprocessor

Data
set

Alerts without
TR

Alerts with
TR

Missed
Alerts

Detection
Rate

Lab1 8184 8180 4 99.95%

Lab2 42570 42552 18 99.96%

Lab3 63004 63003 1 99.99%

to BH and get a detection rate of 138/140 bots. Then we integrate the traffic reduction

preprocessor into BH and feed the bot traffic again. The results remain unchanged at

138/140, meaning that our traffic reduction has no effect on BH.

7.3.3. Comparison with Previous Work. Comparison with Classification of

Clear and Opaque Packets: The work most related to ours is White et al. [94], where the

authors use Sequential Probability Ratio Test (SPRT) to label a packet as opaque or clear.

Then, only clear packet is delivered to IDS and the opaque is discarded. The main difference

with our work is that they focus on individual packets, thus they have to examine every

packet. On the contrary, our aim is to classify opaque flows. We only use up to the first 15

packets to classify a flow as opaque or clear, and then only clear flows are delivered to IDS.

We now investigate how many packets are used to classify flows as clear or opaque. We use

TCP and UDP traffic in trace Lab1, Lab2, and Lab3, and all the traffic in CSUTrace in the

experiment. The results are shown in Table 7.4. From the table we can see that only less

than 8% of total packets are used to classify all the flows, meaning that the method in [94]

inspects at least 13 times more packets than ours.

Comparison with Byte-based Per-flow Cutoff Algorithms: Some past work filters

traffic to an IDS by only delivering the first n bytes of each flow to IDS [62], [55]. For example,

Maier et al. [62] use the first 10−20 KB as per-flow cutoff. We call these methods byte-based
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Table 7.4. Packets for Classifying Clear/Opaque Flows

Data set Total Packets Packets to Classify Percent

Lab1 102651430 4808830 4.68%

Lab2 122491839 8316488 6.79%

Lab3 303501833 7211991 2.38%

CSUTrace 8942932452 695423897 7.78%

per-flow cutoff algorithms. Their assumption is that the early stage of each flow triggers

most alerts. However, the later part of a flow may still contain important information. First

we investigate how many alerts are triggered by byte-based per-flow cutoff algorithms. We

use 20KB as per-flow cutoff. The results are shown in Table 7.5. From the table we can

see that around 95% alerts are triggered, while our traffic reduction algorithm triggers more

than 99.9% alerts (Section 7.3.2). To compare byte-based per-flow cutoff algorithms with

ours more straightforward, we list the number of missed alerts in Table 7.6. From the table

we can see that the byte-based per-flow cutoff algorithms miss at least 71 times of alerts

more than ours. In the worst case, they miss 3112 alerts while we only miss 1.

Table 7.5. Triggered Alerts of Byte-based Per-flow Cutoff Algorithms

Data set Alerts (without cutoff) Alerts (with cutoff) Rate

Lab1 8184 7695 94.02%

Lab2 42570 41278 96.96%

Lab3 63004 59892 95.06%

Table 7.6. Comparison of Missed Alerts of Byte-based Per-flow Cutoff Al-
gorithms and Traffic Reduction (TR)

Data set Missed Alerts (TR) Missed Alerts (cutoff) Rate

Lab1 4 489 122.25

Lab2 18 1292 71.78

Lab3 1 3112 3112
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Comparison with Packet-based Per-flow Cutoff Algorithms: Similar as byte-

based per-flow cutoff algorithms, some work only delivers the first m packets of each flow

to IDS [28], [67]. We call them packet-based per-flow cutoff algorithms. Similar as above,

we first investigate the number of alerts triggered by packet-based per-flow cutoff algorithms

with 20 packets as the limit. The results are listed in Table 7.7, which tells that around 95%

alerts are triggered. Then we compare the number of missed alerts of packets-based per-flow

cutoff algorithms with ours. The results are shown in Table 7.8. From the table we can see

that the packet-based per-flow cutoff algorithms miss at least 79 times of alerts more than

ours. In the worst case, they miss 3326 alerts while we only miss 1.

Table 7.7. Triggered Alerts of Packet-based Per-flow Cutoff Algorithms

Data set Alerts (without cutoff) Alerts (with cutoff) Rate

Lab1 8184 7610 92.99%

Lab2 42570 41132 96.62%

Lab3 63004 59678 94.72%

Table 7.8. Comparison of Missed Alerts of Packet-based Per-flow Cutoff
Algorithms and Traffic Reduction (TR)

Data set Missed Alerts (TR) Missed Alerts (cutoff) Rate

Lab1 4 574 143.5

Lab2 18 1438 79.89

Lab3 1 3326 3326

7.4. Discussion

An attacker can bypass the IDS by prepending opaque traffic to the communication

stream. This, however, is a general limitation of all techniques, not just ours, that attempt

to arrive at early conclusions without looking at all the data. One way to counteract such
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evasion is to pick packets within an HE-classified flow at random and test for LE. Flows

flagged this way can be placed on an observation list. Similarly, an attacker can bypass the

IDS by encrypting or compressing all the communications. Note that in the case of bot

detection using a tool such as enhanced version of BotHunter these evasive actions will fail

- an HE stream will trigger a BotHunter alert.

Our methods only improve efficiency from the perspective of software. Besides that,

hardware might also be used to accelerate entropy calculation and DPI rules match. However,

even if the IDS can keep up with traffic speed with hardware help, delivering data that cannot

be understood by IDS is still a waste of resources because more than 99.9% alerts can be

detected by our traffic reduction algorithm. Moreover, by using only the first 15 packets we

can label HE flows and detect bots at the early stage, where hardware does not help too

much.

7.5. Summary

In this chapter we introduce two early HE classifiers to classify flows as HE or LE by

looking at only a portion of a flow, which improves classification performance. Using the early

HE classifiers, we show benefits in bot detection and develop a traffic reduction algorithm

to reduce the load on an IDS and implement it as a Snort preprocessor. Our results show

that we can reduce the traffic delivered to an IDS by more than 50% while maintaining

more than 99.9% of the original alerts. We also compare our traffic reduction scheme with

previous related work. We find that they need to examine at least 13 times more packets

than ours or they miss at least 70 times of the alerts.
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CHAPTER 8

BotDigger: Detecting DGA Bots in a Single

Network

In this chapter, we introduce BotDigger, a system that detects an individual DGA-

based bot by only using DNS traffic collected from a single network . Note that “detecting

individual bot in a network” does not mean BotDigger cannot detect all the bots in a

network. If there are multiple bots in the same network, BotDigger can still detect them,

but individually.

8.1. Methodology

8.1.1. Notations. Domain names are organized in a tree-like hierarchical name space.

A domain name is a string composed of a set of labels separated by the dot symbol. The

rightmost label is called top-level domain (TLD). Two commonly used TLDs are generic

TLD (gTLD, e.g., .com) and country code TLD (ccTLD, e.g., .cn). A domain can contain

both gTLD and ccTLD, for example, www.foo.example.com.cn. In this paper, we consider

the consecutive gTLD and ccTLD as a single TLD for simplicity. We define the domain that

is directly to the left of the TLDs as Second Level Domain (2LD), and define the domain to

the left of the 2LD as Third Level Domain (3LD). The 2LD and 3LD in the above example

domain is “example” and “foo”, respectively. Note that in this work we denote a 2LD of a

NXDomain as 2LDNX.
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8.1.2. System Overview. An overview of the methodology is shown in Figure 8.1.

First, several filters (Section 8.1.4) are applied to remove unsuspicious NXDomains (e.g., the

domains with invalid TLDs). The remaining suspicious NXDomains are then grouped by host

who sends the queries. Note that in the following steps, we focus on the queried domains

from each individual host, and that is the reason why our method can detect individual

bot. Now the quantity evidence (Section 8.1.5) is applied to extract outliers in terms of

the number of queried suspicious 2LDNXs. For each outlier, we use the temporal evidence

(Section 8.1.6) to extract the period of time when a bot begins to query DGA domains until it

hits the registered C&C domain, denoted as (tbegin, tend). If such period cannot be extracted,

then the host is considered as legitimate, otherwise the host is considered suspicious and the

following analysis is performed. The next step focuses on the suspicious NXDomains being

queried between tbegin and tend. The linguistic attributes of these NXDomains are extracted

and then the linguistic evidence (Section 8.1.7) is applied on the extracted attributes. The

assumption of linguistic evidence is that a bot queries many suspicious NXDomains that

have similar linguistic attributes thus they will likely be clustered together. In particular,

a hierarchical clustering algorithm is applied on the attributes. The output is one or more

clusters of linguistic attributes and the corresponding suspicious NXDomains. We consider

the clusters whose sizes are greater than a threshold (named BotClusterThreshold as defined

in Section 8.1.7.3) as bot NXDomain cluster candidates. If all the clusters of a host are

smaller than the threshold, then the host is considered legitimate. Finally, to identify the

C&C domains, the DGA domain signatures are extracted from the bot NXDomain cluster

candidates and matched against all the successfully resolved domains queried between tbegin

and tend. The domains that match the signatures are considered as C&C domain candidates,
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and the host is labeled as a bot. The host is not labeled if no C&C domain candidate can

be extracted. Note that we do not precisely label C&C domain. Instead, we label multiple

C&C domain candidates. It is possible, however, unlikely, that a successful request is done

by the infected host right after a series of failed requests, and the legitimate domain in the

request is close in lexicographic distance. For this reason we can not be absolutely certain

that a successful DNS request is a C&C server. Precisely labeling single C&C domain is

future work.

Figure 8.1. System Overview

8.1.3. Ethical Considerations. BotDigger does not require the IP address of the

host making DNS requests, but only the domain request itself. This decouples the address

of the host from the actual request; if there are many hosts in the network then it is hard to
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associate the request with the host. BotDigger still needs to report bots when detected, but

this can be done using an opaque identifier for the host IP address, not the IP address itself.

The identifier may be a mapping known only to the network operator and never revealed to

BotDigger.

We acknowledge that in networks with a few hosts or in cases where the domain request

itself contains host-specific information, privacy may still be compromised. However, we

envision that BotDigger will be used the same way network operators use IDSs such as

Snort and Suricata. Such IDSs require full access to packet headers and payload, and their

use is justified as long as operators use them for network operations and security.

8.1.4. Filters. Previous work shows that many of the failed domains are non-malicious

[47], [49]. Jiang et al. categorize failed DNS queries into seven groups in [47]. In [49], the

authors classify NXDomains into nine groups. Based on their classifications, we build five

filters to remove non-suspicious NXDomains.

(1) Overloaded DNS: Besides fetching the IP address of a domain, DNS queries are

also “overloaded” to enable anti-spam and anti-virus techniques [70]. We collect 64

websites that provide blacklist services to filter overloaded DNS.

(2) Invalid TLD: We obtain the list of all the registered TLD from IANA [9]. A domain

is considered as unsuspicious if its TLD is not registered.

(3) Typo of popular domains: We consider the top 1,000 domains in Alexa [2] and

websites of world’s biggest 500 companies from Forbes [8] as popular legitimate

domains. If the Levenshtein distance between a given domain and any of these

popular domains is less than a threshold, then the domain is considered as a typo.
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(4) Excluded words: These domains contain the words that should not be included in

queried domains, including “.local”, “wpad.”, “http://”, and so forth.

(5) Repeated TLD: These domains could be introduced by misconfiguration of a web

browser or other applications. An example is “www.example.com.example.com”.

We use dataset CSUDNSTrace to study the effectiveness of each filter. Before applying

the filters, we remove all the queried NXDomains (e.g., test.colostate.edu) under our uni-

versity domain “colostate.edu”. We list the number of filtered domains and their ratio to

the total number of NXDomains in Table 8.1. From the table we can see that the filters

can remove 87.3% of NXDomains, saving lots of computation resources and improving the

performance.

Table 8.1. Filters Statistics

Filters Filtered Domains Percentage

Overloaded DNS 1232214 7.1%

Unregistered TLD 2488055 14.4%

Typo Domains 174515 1.01%

Misconfiguration words 7172856 41.4%

Repeated TLD 4046912 23.4%

All Filters 15114552 87.3%

8.1.5. Quantity Evidence. Quantity evidence is based on the assumption that most

hosts in a network are legitimate, and they do not query many suspicious 2LDNXs. On the

other hand, a bot queries a lot of suspicious 2LDNXs. As a result, a bot can be considered

as outlier in terms of the number of queried suspicious 2LDNXs. To define an outlier, we

first calculate the average and standard deviation of the numbers of suspicious 2LDNXs

for all the hosts, denoted as avg and stddev, respectively. Then we set the threshold as
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avg + 3 ∗ stddev. If the number of suspicious 2LDNXs queried by a host is greater than the

threshold, then the host is labeled as an outlier.

We demonstrate quantity evidence using a real bot. First we pick one hour DNS trace

from CSUDNSTrace and one bot trace from 140BotTraces. Then, we blend them together

by adding the bot’s DNS traffic on a randomly selected host in the background trace. Finally

we have a one hour mixed DNS trace including 11,720 background hosts and a known bot.

The CDF for the number of suspicious 2LDNXs queried by a host is shown in Figure 8.2.

From the figure we can see that more than 95% hosts do not query any suspicious 2LDNX.

On the contrary, the bot queries more than 20 suspicious 2LDNXs thus it is labeled as an

outlier.
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8.1.6. Temporal Evidence. Most of the time, a bot behaves like legitimate host and it

does not query many suspicious 2LDNXs. However, when the bot wants to look for the C&C

domain, it will query many suspicious 2LDNXs. Consequently, the number of suspicious

2LDNXs suddenly increases. Then, once a bot hits the registered C&C domain, it will stop
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querying more DGA domains, thus the number of suspicious 2LDNXs will decrease. In other

words, we are detecting a period of time when the number of suspicious 2LDNXs suddenly

increases and decrease. This can be considered as a Change Point Detection (CPD) problem.

We use Cumulative Sum (CUSUM) as the CPD algorithm because it has been proved to be

effective and has been used in many other works, e.g., [92].

Let Xn, n = 0, 1, 2, ... be the number of suspicious 2LDNXs queried by a given host every

minute during a time window.

Let

(2)



















yn = yn−1 + (Xn − α)+,

y0 = 0,

where x+ equals to x if x > 0 and 0 otherwise. α is the upper bound of suspicious

2LDNXs queried by legitimate host every minute. The basic idea of this algorithm is that

Xn − α is negative when a host behaves normally, but it will suddenly increase to a relatively

large positive number when a bot begins to query C&C domain.

Let bN be the decision of whether a host has suddenly increased suspicious 2LDNXs at

time n. A host is considered to have a sudden increase in suspicious 2LDNXs when bN equals

to 1. N is a threshold that indicates the number of suspicious 2LDNXs a host must reach

before considered as bot candidate. N is specified by the user, as discussed in Section 8.2.1.

(3) bN(yn) =



















0, if yn ≤ N

1, if yn > N
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The method to detect a decrease in the number of suspicious 2LDs is similar to equation 2,

and is defined in equation 4. The function to detect sudden decrease of suspicious 2LDNXs

is the same as equation 3.

(4)



















yn = yn−1 + (Xn−1 −Xn)
+,

y0 = 0,

Now we investigate the temporal evidences using the same one hour DNS traffic blended

in the last section. As it is hard to plot all the 11,720 hosts and due to the fact that most

of them do not query many suspicious 2LDNXs, we only plot the suspicious 2LDNXs for 15

hosts including the bot in Figure 8.3. From the figure we can clearly see there is a spike

appearing between minute 29 and 32, standing for the bot. However, we also notice that

besides the bot, some legitimate hosts (e.g., host 10) also have spikes, thus they might also

be labeled as suspicious. Spikes by legitimate hosts can result from user typos. Another

explanation may be that each time Google Chrome starts it generates a number of failed

DNS requests to determine if NXDomain rewriting is enabled [100]. We manually checked

the NXDomains queried by the hosts that generated the spikes. While we found some of

them not suspicious, we could not precisely pinpoint the reason for the spikes.

It is true that a single evidence is not strong enough to label a host as a bot. This is the

reason why we use a chain of multiple evidences that helps to reduce false positives.

8.1.7. Linguistic Evidence. Linguistic evidence is built on two assumptions. The first

is that the NXDomains queried by a bot are generated by the same algorithm, thus they

share similar linguistic attributes (e.g., entropy, length of domains, etc.). On the contrary,
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legitimate domains are not generated algorithmically but they are selected such that people

can remember them easily. Consequently, the linguistic attributes of the NXDomains queried

by a legitimate host are not similar to each other. The second assumption is that both

DGA registered C&C domains and NXDomains are generated by the same algorithm. The

only difference between them is whether the domain is registered or not. Consequently,

C&C domains have similar linguistic attributes with DGA NXDomains. Based on these two

assumptions, we first extract linguistic attributes from suspicious NXDomains and cluster the

domains that have similar attributes together. After that, bot NXDomain cluster candidates

are decided. Next, signatures are extracted from the cluster candidates and applied on

successfully resolved domains looking for registered C&C domains.

8.1.7.1. Linguistic Attributes. We extend the attributes used in prior work [20], [76], [25],

[18], [99] to 23 and list them in Table 8.2. From the table we can see that some attributes

are dependent (e.g., length of dictionary words and percent of dictionary words). Currently

we use all of these attributes, and we leave the study of attributes selection as a future work.
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Table 8.2. Domain Linguistic Attributes

Index Linguistic Attributes

1, 2 length of dictionary words in 2LD and 3LD

3, 4 percent of dictionary words in 2LD and 3LD

5, 6 length of the longest meaningful substring (LMS) in 2LD and 3LD

7, 8 percent of the length of the LMS in 2LD and 3LD

9, 10 entropy in 2LD and 3LD

11, 12 normalized entropy in 2LD and 3LD

13, 14 number of distinct digital characters in 2LD and 3LD

15, 16 percent of distinct digital characters in 2LD and 3LD

17, 18 number of distinct characters in 2LD and 3LD

19, 20 percent of distinct characters in 2LD and 3LD

21, 22 length of 2LD and 3LD

23 number of domain levels

8.1.7.2. Dissimilarity Calculation. Now we describe how to calculate dissimilarity of a

single linguistic attribute between two domains. We denote two domains as D1 and D2, and

denote their attributes as aij, i = 1, 2 and 1 ≤ j ≤ 23. Dissimilarity of attribute j between

D1 and D2 is denoted as Sj(D1, D2) and calculated as follows.

(5) Sj(D1, D2) =



















0 if a1j = 0 and a2j = 0

|a1j−a2j |

max(a1j , a2j)
else

We use a modified version of Euclidean distance to calculate the overall dissimilarity

of all the 23 attributes between two domains. Euclidean distance [32] has been used by

others [18], [25]. The overall dissimilarity between D1 and D2 is denoted as SAll(D1, D2) and

calculated as equation 6. The smaller the dissimilarity, the more similar D1 and D2 are.
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(6) SAll(D1, D2) =

√

∑23
j=1 Sj(D1, D2)2

23

8.1.7.3. Clustering NXDomains. After extracting attributes from NXDomains and cal-

culating dissimilarities, we run the single linkage hierarchical clustering algorithm to group

the NXDomains that have similar attributes together. Process of the clustering algorithm is

shown in Figure 8.4. Initially, each NXDomain denoted as orange dot is in a cluster of its

own. Then, the clusters are combined into larger ones, until all NXDomains belong to the

same cluster. At each step, the two clusters having the smallest dissimilarity are combined.

The result of the clustering process can be depicted as a dendrogram, where a cut is used to

separate the clusters, giving us a set of NXDomain clusters. For example, the dendrogram

cut in Figure 8.4 gives two clusters. As we normalize the dissimilarities between domains, the

dendrogram height is between 0 and 1. Currently the dendrogram cut height is determined

experimentally, as shown in Section 8.2.1. As a future work, we plan to use statistical meth-

ods to cut the dendrogram dynamically. Finally, we compare the size of every cluster with a

BotClusterThreshold. If a cluster has more NXDomains than the threshold, it is considered

as a bot NXDomain cluster candidate, and the host is considered as a bot candidate.

8.1.7.4. C&C Domain Detection. After detecting bot NXDomain cluster candidates, we

extract signatures from them, and then apply the signatures on successfully resolved domains

to detect C&C domain.

For a given bot candidate c, all its bot NXDomain cluster candidates are denoted as

C1, C2, ...Cn. We first combine these clusters as a C =
⋃n

i=1 Ci. The NXDomains included

in C are denoted as dj. Each domain dj contains 23 linguistic attributes ajk, 1 ≤ k ≤ 23.
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Figure 8.4. Hierarchical Clustering Dendrogram

Signatures are composed of an upper signature and a lower signature, each of them includes

23 values. The upper signature is denoted as Sigupper = (s1, s2, ...s23). Each value in the

upper signature is defined as the maximum value of the corresponding linguistic attribute

of all the domains in C, sk = max(ajk), 1 ≤ k ≤ 23, dj ∈ C. Similarly, the lower signature,

Siglower is defined as the minimum values.

Once we obtain the signatures, we apply them on the successfully resolved domains that

are queried during (tbegin, tend) to extract C&C domains. Recall that (tbegin, tend) is decided

by temporal evidence in Section 8.1.6. For a given successfully resolved domain, we first

extract its 23 attributes. Then, for each attribute we check whether it falls within the

corresponding attribute upper and lower bounds in the signature. Finally we compare the

total number of matched attributes with a SignatureThreshold. If the former is greater, then

we label the domain as C&C domain, and label the host as a bot.

8.2. Evaluation
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8.2.1. True Positives. First, we evaluate the performance of BotDigger on detecting

DGA-based bots. We use two botnets, Kraken and Conficker in our experiments. Recall

that the dataset 140BotTraces includes 140 real Kraken traces that contain DNS queries/re-

sponses, C&C communication and other traffic. On the other hand, for the evaluation with

the Conficker dataset we only have Conficker’s DGA domains. We use these DGA domains

to simulate 1000 bots. Each simulated bot randomly queries 20 domains from the Conficker

domain pool every 10 seconds during the time window. We use 5 minutes as the time window

in all of our experiments. At the end of every time window BotDigger analyzes the collected

information and looks for bots. Users can decrease the time window if they want to detect

bots more quickly, but decreasing the time window risks missing bots with slow activity.

Before running BotDigger on the two evaluation datasets we experimentally determine

the parameters and thresholds introduced in Section 8.1. First, we use a one-day DNS trace

from the CSUDNSTrace to decide α in equation 2. We find that more than 98% of the hosts

query less than two suspicious 2LDNXs per minute, so we pick 2 as the α. N in equation 3

is set to the value of BotClusterThreshold. We then set SignatureThreshold experimentally

by trying different values of the threshold and run BotDigger on the 1000 Conficker bots

simulated above. In this specific experiment, we use 0.05 as the dendrogram cut. We will

discuss how to pick the proper dendrogram cut in the next paragraph. The results are

plotted in Figure 8.5. The x-axis and y-axis are bot detection rate and SignatureThreshold

respectively and the different lines stand for different BotClusterThreshold. From the figure

we can see that the bot detection rate is stable when the SignatureThreshold is less than 16,

after that the rate drops quickly. As a result we set 16 as the SignatureThreshold.
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Now we run BotDigger on Kraken and Conficker bots using combinations of two parame-

ters, BotClusterThreshold and dendrogram cut in the hierarchical clustering algorithm. The

results are shown in Figure 8.6 and Figure 8.7. The x-axis is the dendrogram cut, y-axis is

the percentage of detected bots, and different lines stand for different BotClusterThreshold.

From the figures we can see that by using 0.10 as the dendrogram cut, we are able to detect

all the Kraken bots and 99.8% of Conficker bots.
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Figure 8.6. Kraken Bots Detection
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Figure 8.7. Conficker Bots Detection

8.2.2. False Positives. Besides DGA-based bots, some legitimate hosts could also

query similar NXDomains that are clustered together and the host could falsely be labeled

as a bot. We now evaluate such false positives by using the dataset CSUDNSTrace. As most

of the users connected to CSU network are required to install anti-virus software, we assume

CSUDNSTrace does not contain many bots. We use 0.10 as the dendrogram cut and 4 as

BotClusterThreshold.

33 hosts (0.16% of all the hosts) are labeled as bots during the entire period of one

week. We use two resources to check whether these domains and corresponding IPs are

malicious. The first resource is VirusTotal [15], a website that provides virus, malware and

a URL online scanning service based on 66 URL scanners, including ZeusTracker, Google

Safebrowsing and Kaspersky among others. Another resource is TrustedSource by McAfee

labs [11], a real-time reputation system that computes trustworthy scores for different In-

ternet entities including IP addresses, domains and URLs. The scores are computed based

on analyzing real-time global threat intelligence collected from McAfee’s research centers’
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centralized scanning systems and honeypots and from customers and end point software so-

lutions around the world. We checked the labeled C&C domains and the corresponding IPs

for each host using the above resources. If any of them is labeled as malicious or high risk,

we consider the host as malicious. The results show that 22 hosts are labeled as malicious.

In summary, we falsely label 11 hosts as bots, resulting in the false positive rate as 0.05%.

Within the 22 malicious hosts, we find that 5 hosts are highly suspicious. Most of the

NXDomains queried by these hosts are random looking. In Figure 8.8, we list the NXDomains

queried by such a host. After extracting signature and applying it on the successfully resolved

domains, “sfaljyxfspbjftnv5.com” is labeled as C&C domain. The IP address of this C&C

domain is 85.25.213.80. Upon further investigation on VirusTotal, we find that this IP is

related to malicious activity and mapped to various random looking domains. Consequently,

we believe this host is a bot.

obhgiunuht7f.com, hlxgrygdmcpu8.com
ompxskwvcii3.com, nnnwyujozrtnulqc5p.com
nwpofpjgzm6c.com, dgpvsgsyeamuzfg2.com
kgapzmzekiowylxc5k.com, nellwjfbdcfjl3g.com
rfsbkszgogjqlbm.com, rcfwptxhgoiq27.com
unzxnzupscqxu.com, okihwecmaftfxwz.com

Figure 8.8. NXDomains Queried by Suspicious Host A

Within the 11 false positives, we manually checked their queried NXDomains and found

some interesting results. We include one example in Figure 8.9. From the figure we can

find that some words appear frequently in the domains, such as “coach”, “louis”, “outlet”,

etc. In addition, we can also see that the domains contain typos. For example, “coach”

and “louis” are misspelled as “coachh” and “llouis”. One explanation of these typos is that

the host tries to avoid conflicts with registered domains. In addition, we extract signature
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from NXDomains and apply it on the successfully resolved domains. By doing this, domain

“www.golvlouisvuittonbags.com” is extracted. This domain is still in use, trying to sell

replica Louis Vuitton. The above example shows that BotDigger is not only able to detect

bots and suspicious hosts that query random looking domains, but is also capable of detecting

hosts whose queried domains are generated from a set of dictionary words.

www.llouisvuittonoutlet.org, www.iulouisvuittonoutlet.org
www.coachoutletsstoree.com, www.illouisvuittonoutlet.com
www.coachfactorysoutlets.net, www.louisvuittonof.com
www.coachfactoryonlines.net, www.colvlouisvuittonoutlet.net
www.coachfactorystoreoutlete.org, www.coachhoutlet.com

Figure 8.9. Domains Queried by Suspicious Host B

In addition to the CSUDNSTrace we also ran BotDigger on the traces captured in our

research lab, Lab1, Lab2, and Lab3. Note that we do not regard these traces as ground truth.

Although our network is well protected we cannot be certain it is bot-free. BotDigger detects

four hosts as potential bots, denoted as Hi, 1 ≤ i ≤ 4. Then we try to confirm by running

a bot detection system - BotHunter, on the three lab traces for independent verification.

BotHunter labels H1 as bot. Upon further investigation, we find that H1 queries many

domains and these domains are very similar as the ones queried by H2. Moreover, some

of the labeled C&C domains of H1 are resolved to 80.69.67.46, which is the same IP as

the labeled C&C domains for H2. As a result, H2 is very likely to be a bot. Besides,

H3 is highly suspicious because it queries many NXDomains, all of them beginning with

“zzzzzzzzzzzgarbageisgreathere” (e.g., zzzzzzzzzzzgarbageisgreathere.funatic.cz, .penguin.se,

inspirit.cz, etc). In summary, BotDigger introduces 1 false positive in three traces.
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8.3. Discussion

A bot can bypass BotDigger by querying C&C domains very slowly, for example, querying

a domain every 5 minutes. In this case, BotDigger may not detect it if a small time window

is used. However, at least we make the bots less effective, meaning that it may take hours

to contact to the C&C domains if the bots have to query tens of domains slowly. We can

increase the time window to detect the bots that query domains slowly, but we expect more

false positives will be introduced.

The quantity evidence in the evidence chain of BotDigger requires that the number

of NXDomains queried by a bot is comparable more than legitimate hosts. As a results,

BotDigger will fail to work if the bot is “lucky”, meaning that it only queries a very small

number of domains and hits the C&C domain. However, when the current C&C domain

expires, the bot needs to look for the new C&C domain. It is very unlikely that the bot

is “lucky” every time it looks for the C&C domain. Consequently, once the number of

NXDomains queried by this bot matches the quantity evidence, BotDigger will analyze its

DNS traffic for detection. In summary, a bot may evade the system for one time, but not

all the time.

8.4. Summary

In this chapter, we introduce BotDigger, a system that detects DGA-based bots without

a priori knowledge of the domain generation algorithm. A big advantage of BotDigger is that

it can detect an individual bot by only analyzing DNS traffic collected from a single network.

Any network administrator can run BotDigger without requiring additional information from

other networks. A novel method - a chain of evidences, including quantity evidence, temporal

evidence and linguistic evidence, is used in BotDigger for detection. We first use synthetic
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traffic to investigate each individual evidence and find many false positives. A chain of

evidences helps reduce false positives because most of the legitimate hosts match one or two

evidences but not all three. Two DGA-based botnets and two groups of background traces

are used to evaluate BotDigger. The results show that BotDigger detects more than 99.8%

of the bots with very low false positives.
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CHAPTER 9

Conclusion and Future Work

9.1. Conclusion

In recent years, botnets began to use various evasion techniques to foil detection systems,

including encrypted communications, dynamically generated C&C domains, and more. In

this dissertation, we focus on detecting such advanced botnets in enterprise-like network

environment.

The first challenge in detecting encrypted botnet traffic is that the lack of encrypted

botnet traffic. Traces that are available are static, which prevents testing under various

controlled scenarios. To address this problem we introduce BotTalker, a tool that can be

used to generate customized encrypted botnet communication traffic. BotTalker includes a

highly configurable encrypted-traffic converter along with real, non-encrypted bot traces and

background traffic. BotTalker contributes to various communities, such as IDS developers,

IDS customers, and IDS benchmark.

Armed with BotTalker, we generate two sets of encrypted botnet traffic and use them to

evaluate the damage result from encrypted botnet traffic on three security systems. We find

that encryption foils these systems greatly. In particular, encrypted botnet communications

1) make BotHunter(BH) miss 125 out of 140 bots in our botnet dataset; 2) suppress more

than 33% of total alerts and more than 70% of unique alerts for Snort, and also make Snort

miss 32% and 55% of bots in our two datasets; and 3) suppress more than 35% of total alerts
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and around 75% of unique alerts for Suricata, and also make Suricata miss 32% and 55% of

bots in our two datasets.

After proving that encryption foils security systems, we introduce a method to detect

encrypted botnet traffic based on the fact that encryption increases data’s entropy. We

introduce two high-entropy (HE) classifiers and add one of them to enhance BH by utilizing

the other detectors it provides. Our HE classifier restores BH’s ability to detect bots, even

when they use encryption.

After that, we improve the HE classifiers by only looking at the first M packets of a flow

to 1) improve the speed of bot detection tools, such as the enhanced version of BH, and 2)

reduce the load on an IDS. The results show that by looking at the first 15 packets of each

flow the traffic delivered to IDS is reduced by more than 50% while maintaining more than

99.9% of the original alerts. Comparing our traffic reduction scheme with other work we

find that they need to inspect at least 13 times more packets than ours or they miss about

70 times of the alerts.

Finally, we introduce BotDigger, a system to detect DGA-based botnets. Previously,

many systems have been introduced to detect DGA-based botnets. However, they suffer

from several limitations, such as requiring DNS traffic collected across many networks, the

presence of multiple bots from the same botnet, and so forth. These limitations make it very

hard to detect individual bots when using traffic collected from a single network. The biggest

advantage of BotDigger over the previous work is that it can detect single DGA-based bot

by only using DNS traffic collected from a single network without a priori knowledge of the

domain generation algorithm. We evaluate BotDigger’s performance using traces from two

DGA-based botnets: Kraken and Conflicker, and two groups of background traffic. Our
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results show that BotDigger detects all the Kraken bots and 99.8% of Conficker bots with

very low false positives. Our results also show that BotDigger is not only able to detect bots

and suspicious hosts that query random looking domains, but is also capable of detecting

hosts whose queried domains are generated from a set of dictionary words.

9.2. Future Work

9.2.1. BotTalker. BotTalker provides three encryption schemes, including packet level

encryption, flow level encryption and SSL emulation. The timestamps for the former two

remain the same, and we use four parameters to estimate the timestamps of emulated SSL

connections in section 4.3.3. We plan to devise a more accurate method to estimate times-

tamps. For example, the key exchange and encryption algorithm negotiation phase and data

transfer phase should use different timestamp estimation methods. Besides, currently the

users have to use command line to configure the parameters and run BotTalker, we plan to

provide a graphic user interface in the later implementation. Moreover, we will continue to

add more bot traces and background traffic traces as they become available.

9.2.2. Traffic Reduction. Our traffic reduction methodology sometimes marks opaque

data as clear (e.g., 35% bzip files are misclassified as clear). This results in a slight reduction

in efficiency, where we deliver opaque traffic to IDS. We could benefit from methods such as

[94] that performs better in labeling opaque packets since they only focus on the characters

whose ASCII values are less than 128. To improve our classifiers, we plan to use their method

to label single packet as clear or opaque, and then use our early classifiers to label opaque

flows.
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9.2.3. BotDigger Sharing. BotDigger is able to detect bots within single network.

We plan to build a platform where various organizations who run BotDigger can share bot

information, for example, the DGA domain signatures. Assuming two organizations run

BotDigger in their own networks. When a bot is detected at either side, a signature is

published; when the other side detects a bot it also produces a signature, which can be

compared with the other signature to determine if they came from the same bot family. In

this case both sides detect bots, the new knowledge is if they are similar. This is useful to

track the spread of bot infection.

Beyond signatures, there is more sharing that can be done, such as the domain names

and IP addresses of the C&C servers, and all the other domain names that resolve to the

same C&C IP address. This way other networks can pre-emptively block names and IP

addresses detected elsewhere.

9.2.4. Put All Together. In this dissertation, we introduce several individual sys-

tems to detect botnet traffic and improve IDS performance. We plan to combine them

together as a system to monitor all the traffic sent from Internet to the protected enterprise

network, detects malicious traffic and infected clients in the enterprise network, and finally

delivers the clean traffic. The overview of the system is shown in Figure 9.1. The system is

composed of test module and detection module. In particular, we use BotTalker as the test

module to evaluate any new encrypted botnet detection methods.

In the detection module, the traffic reduction first classifies all the incoming traffic into

clear and opaque traffic. Then, the clear traffic and HE flow information go to encrypted

botnet detection system (enhanced BotHunter) and DGA-based botnet detection system

(BotDigger). BotDigger uses the DNS traffic to detect DGA-based botnets. The enhanced

107



BotHunter uses clear traffic and HE flow information to detect encrypted botnet traffic.

The detected botnet traffic is dropped. The other traffic is delivered to IDS, where more

malicious activities can be detected. Finally, the clean traffic is delivered to the enterprise

network.

Note that the enhanced BotHunter uses HE flow information (whether a certain host has

HE flows) for detection, so the encrypted botnet C&C traffic is not dropped here. Instead,

the encrypted traffic is labeled as opaque and delivered to the enterprise network. To solve

this problem, we can add another module to simply check whether the opaque traffic belongs

to the detected bots. If so, the opaque will be dropped, otherwise, the traffic can be delivered

to the network.

Figure 9.1. Advanced Botnet Detection System
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