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ABSTRACT 

 

IMPACT OF VARIOUS FACTORS ON PARTIAL LEAST SQUARES MODEL 

ROBUSTNESS FOR NONDESTRUCTIVE PEACH FRUIT QUALITY ASSESSMENT  

 

Given declining fruit consumption due to poor fruit quality and large amounts of waste, 

peach growers have continuously suffered from financial loss and the industry has seen a sharp 

decline in recent decades. Due to the time consuming and destructive nature of conventional fruit 

quality assessment, many peach growers prioritize fruit characteristics conducive to shipping and 

storage over characteristics which correlate with consumer acceptance. This prioritization has 

resulted in the poor-quality fruit which consumers have grown to associate with fresh peaches and 

contributed to large annual waste. A potential solution is the use of near-infrared spectroscopy 

(Vis-NIRS) paired with partial least squares (PLS) modeling, as a field deployable method that 

can be used to measure preharvest internal fruit quality to produce information quickly and non-

destructively. These qualities offer an answer to declining fruit quality and waste. Although 

promising, the technology is only as good as the data used to train the models. Quality data is hard 

to collect as it requires the consideration of many factors including the temperature of the sample 

and the inclusion of biological variability impacted by seasonal changes, cultivar differences, fruit 

maturity, and many management factors such as crop load, rootstocks, irrigation regimes, and 

training systems to capture the relationships needed for good model performance. 

In tree fruit research, handheld Vis-NIRS devices have been used to predict internal quality 

parameters such as sweetness (dry matter content, DMC; soluble solids concentration, SSC) and 

fruit physiological maturity related to chlorophyll content (index of absorbance difference, IAD). 
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Although accurate, the statistical models used to make such predictions often struggle with 

robustness across cultivars and growing seasons and regions due to a lack of biological variability, 

or a lack of representative data from factors like temperature. These challenges have led to slow 

industry adoption. To address this issue, models for 13 distinct peach cultivars were constructed 

by combining data from two seasons (2016 and 2021) followed by external validation with data 

from a third season (2022). The data from 2016 was collected over a range of preharvest factors, 

fruit development stages and temperatures, and the inclusion of 2021 data added additional 

biological variability. External validation produced error rates of 0.36 - 0.42%, 0.59 - 0.63%, and 

0.05 - 0.04 for DMC, SSC and IAD, respectively, across the 13 peach cultivars indicating the models 

trained in 2021 were robust and performing at an acceptable level to impact grower decision 

making. It was observed that the additional inclusion of data from different cultivars and growing 

environments, as well as a third growing season (2017) did not significantly impact model 

performance. The lack of improvement suggests that the data from each year contain enough 

covariate variability to cover a broad range of measurements (i.e. input values) that growers and 

researchers are likely to observe when collecting data to predict peach quality in different orchards 

or seasons. This insensitivity to various environmental and growing conditions, generally referred 

to as external factors, due to the variability captured in the data used to build model is characteristic 

of a robust model. 
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CHAPTER ONE 

BACKGROUND INFORMATION 

1.1.Introduction 

Consumption of peaches is driven largely by the consumers’ sensory experience when 

eating the fruit. Peach consumption rate has seen a decline in recent decades linked with reduced 

fruit quality. Fruit characteristics that are linked to consumer acceptance include soluble sugars, 

organic acid concentration, and flesh texture. These attributes are traditionally quantified with 

methods that are slow and destructive. Due to the time consuming and inherently wasteful nature 

of destructive quality analysis, the use of visible-near-infrared spectroscopy (Vis-NIRS) has been 

explored as a non-destructive alternative. Research has been conducted to determine the efficacy 

of this technology for non-destructive measurements as well as large data acquisition to aid in 

decision making throughout the fresh fruit supply chain offering applications to growers, packers, 

and distributors.  

Since each fruit quality component contains chemical bonds which are uniquely responsive 

to various electromagnetic wavelengths, they can be measured indirectly by way of spectral 

absorbance measurements. Electromagnetic radiation that is administered to a sample from a light 

source, which when paired with a spectrometer to measure the amount of light reflected, 

transmitted, or absorbed, can produce information of the sample composition based on the 

response of the water, lipids, organic acids, and carbohydrates to the various wavelengths applied 

from the light source.  

There are several specific fruit quality indices commonly referenced in the literature due 

to the relationship they have with consumer acceptance which characterize the quantity of 

carbohydrates, acids, pigments, or other constituents. Some of the most important quality indices 
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include dry mater content (DMC), soluble solids concentration or total soluble solids (SSC and 

TSS) or oBrix and titratable acidity (TA). Maturity is directly linked to quality and is a critical 

parameter for decision making throughout the fresh fruit supply chain from harvest and storage to 

shipping and retail marketing decisions. Maturity has been quantified with different indices and 

measurements including fruit flesh firmness (FF), background color and index of absorbance 

difference (IAD). For apple, where the relationship between maturity and quality is similarly 

important to peach, the Streif Index, and a ripening index (RPI), two multiparameter indices 

characterize the relationship between fruit firmness, acidity, and sugar content with a single value. 

These indices are a composite of various physical and chemical properties representative of fruit 

genotypes and the environments they are grown in. Since these indices encapsulate so many 

different attributes that exist at the cellular and environmental levels, it becomes very difficult or 

impossible to measure each contributing factor at once. Vis-NIRS technology has the ability, when 

coupled with advanced statistical modeling techniques, to make indirect measurements of these 

metrics and indices of interest to producers, consumers, or researchers (e.g., DMC or SSC), which 

can act as a proxy for those attributes. In this way the slow and destructive direct method of 

measurement is replaced with the fast indirect Vis-NIRS method. The ability to make these 

measurements and collect large amounts of data has opened the door for the exploration of the 

relationships between factors that constitute fruit quality metrics/parameters, and the relationships 

those factors have with various spectra.  

1.2. Fruit Quality and Maturity Parameters of Interest 

Depending on the fruit crop, the primary parameters of interest used to characterize fruit 

quality and maturity vary. In general, the parameters of interest focus on quantifying carbohydrates 

in the fruit, since these are what consumers primarily detect when they taste the fruit. The 
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carbohydrates of interest vary between fruit crops, but their chemical signatures for detection, both 

destructively and non-destructively, are often similar. For different fruit species, these parameters 

are complexly related to one another, and their relationships to cultural practices in the orchard, 

vineyard, etc., are also convoluted. A desire to understand these complex relationships has led to 

extensive research, probing the impact of different preharvest factors on fruit quality to maximize 

quality and efficiency in the orchard (Minas et al., 2018). These research goals have yielded 

information regarding how quality attributes can vary between species and between cultivars. As 

these studies are conducted, a profile of the fruit comes into focus as values are assigned to fruit 

considered mature or immature, of high quality or low quality. Not only is a quality/maturity 

profile developed, but also a better understanding of the specific conditions which produce fruit 

that fit those categories. DMC is described at length by Palmer et al. (2010) as a metric for fruit 

quality linked with consumer acceptance, due in part to the high correlation DMC has with soluble 

sugars in the fruit. Soluble sugars constituting roughly 80% of the dry matter in many apple 

cultivars (Palmer et al., 2010). Because of this, it is also noted that the general trend is higher DMC 

is met with greater consumer acceptance.  

 There are now many original research studies and review papers that exist exploring fruit 

quality and maturity and their measurement (Anthony et al., 2023; Costa et al., 2002; Crisosto et 

al., 2018; Lin and Ying, 2009; Minas et al., 2018; 2021; Nicolai et al., 2007; Palmer et al., 2010; 

Wang et al., 2015; Saeys et al., 2019). Of these studies, fruit quality is described for mangos 

(Anderson et al., 2020; Rungpichayapichet et al., 2016; Sun et al., 2020), pears (Li et al., 2019; 

Mishra et al., 2021; Wang et al., 2017), cherries (Overbeck et al., 2017), grapes (Zeiter et al., 

2006), plums (Louw and Theron et al., 2010), apples (Kumar et al., 2015; Luo et al., 2018; Palmer 

et al., 2010; Peirs et al., 2003a; 2003b; 2004; Teh et al., 2020; Zhang et al., 2019), and 
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nectarine/peaches (Anthony et al, 2023; Costa et al., 2002; Fu et al., 2008; Minas et al., 2018; 

2021; 2023; Mukarev and Walsh, et al., 2012; Nascimento et al., 2016; Uwadaira et al., 2018; Ziosi 

et al., 2008), where quality is either directly measured or predicted using some combination of 

statistical modeling and spectroscopy. Most of this work is primarily concerned with quantifying 

carbohydrates such as simple sugars and/or starch or DMC (Anderson et al., 2020; Minas et al., 

2021; 2023; Palmer et al., 2010; Sun et al., 2020; Teh et al., 2020; Walsh et al., 2004; Zhang et al., 

2019) and SSC (Li et al., 2019; Luo et al., 2018; Mishra et al., 2021; Mukarev et al., 2012; 

Nascimento et al., 2016; Peirs et al., 2003a; 2003b, Walsh et al., 2004; Wang et al., 2017; Zhang 

et al., 2019). DMC refers to everything in the fruit flesh that is not water and is calculated as the 

percentage of dry matter over total fresh weight (Palmer et al., 2010). SSC, measured as ˚Brix, is 

an estimate of the percent of soluble sugars in a given sample of fresh fruit juice. These studies 

use these parameters both to indicate the impact of various treatments in their studies (e.g., crop 

load studies in apple and peach) (Grossman and DeJong, 1995; Anthony et al., 2020) and to explore 

the use of these parameters as predictors for storage potential and consumer acceptance (Palmer et 

al., 2010; Crisosto and Costa, 2008). Conversely, some studies have focused on moisture content 

in tandem with SSC as a quality parameter (Mishra et al., 2021). Quantifying the moisture content 

of a fruit shares the same fundamental approach as measuring DMC, both destructively and non-

destructively. Where DMC is the percent of dried fruit tissue over the fresh weight of that sample, 

moisture content would be determined as 1 – (dry weight/fresh weight). 

 Another key attribute used to characterize fruit quality and consumer acceptance is organic 

acid content measured and reported as titratable acidity (TA). Although important for 

characterizing the flavor profile of a fruit, the non-destructive measurement of organic acids is less 

common in the literature compared to sugar content. Acid content is often used to help explain the 
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impact of preharvest factors on final fruit quality and is also used to help determine an appropriate 

maturity index for harvesting non-climacteric fruit like citrus and grapes (Laminakra et al., 1995). 

Other important studies that have been conducted on fruit are those concerned with fruit 

maturity, often described as ripeness. Maturity is inherently more difficult to quantify as it is not 

the accumulation of one thing, but generally observed as the development of reproductive 

physiological functions, which in peach, include several distinct stages. Examining peaches as an 

example of fruit development, the stages of development post-bloom follow an early establishment 

of cellular material (stage S1: cell division), seed development and endocarp lignification (stage 

S2: pit hardening), and then the final stages of development where fruit size increases, background 

color develops in the skin (stage S3: cell enlargement), and the fruit firmness begins to decrease 

until commercial harvest (stage S4I: pre-climacteric maturity) or ‘on-tree ripening’ stage (S4I: 

climacteric maturity) (Minas et al., 2023). Throughout these stages, carbohydrates are 

accumulating, and the concentration of organic acids decreases while other flavor compounds and 

secondary metabolites accumulate (Minas et al., 2023). Since the definition of fruit maturity 

includes the shift of many different fruit qualities, studies have delved into defining and measuring 

maturity based on different combinations of these traits. These combinations are then reported as 

indices which provide a more comprehensive summary of fruit development and include RPI, a 

ripening index representing fruit firmness, titratable acidity, and soluble sugars 

(Rungpichayapichet et al., 2016), and the Streif index, a combination of starch, sugars, and 

firmness levels to determine apple maturity (Peirs et al., 2005), or the difference in chlorophyll-A 

and chlorophyll-B absorbance of visual light beneath the fruit skin as the index of absorbance 

difference (IAD) (Ziosi et al., 2008; Costa et al., 2009; Minas et al., 2021). These studies have 

helped elucidate the role of maturity in the development of the quality parameters listed above as 
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they better summarize the interplay of those parameters during development, across the season. It 

is clear that these parameters of interest are tightly linked with one another and the manipulation 

of one of them often has a profound effect on others. Anthony and Minas (2022) explained the 

need to account for the confounding effect of fruit maturation by controlling for equal fruit 

maturity in the studies that aim to determine the direct impact of preharvest factors on quality 

parameters. In addition, understanding fruit development and maturation is critical for growers as 

the parameters which define fruit maturity lend themselves to the prediction of optimal harvest 

time and yield (Li et al., 2017). Fruit firmness is used as a fruit maturity index as well as an 

indicator of quality. Studies which explain the cross-section of maturity and quality include 

Anthony et al. (2020; 2021), Fu et al. (2008), Nascimento et al. (2016), Uwadaira et al. (2017), 

Wang et al. (2017), elucidating the relationship between the two.  

Ultimately, these parameters are important to researchers for the sake of quantifying the 

impact of different treatments in preharvest fruit research studies, but also for growers who depend 

on the quality of their fruit to maintain the commercial viability of their produce and the longevity 

of their industries. Many of the methods for quantifying fruit quality and maturity are time 

consuming. For this reason, research has been conducted to determine alternative means of 

measurement. Applications of visible-near-infrared spectroscopy (Vis-NIRS) has been one of the 

most popular methods, particularly when paired with partial least squares modeling both of which 

will be the focus of the remainder of this chapter.  

1.3. Chemometrics 

Chemometrics is a discipline of science that utilizes mathematical and statistical 

approaches to extract information from the complex chemical composition of various samples.  

Chemometrics has recently become more popular in fruit research due to the arrival of accessible 
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equipment, hardware, and software with the computational power needed to process the large 

amounts of data produced in these studies (e.g., spectral data). Chemometrics as a discipline 

includes both the data preprocessing step and statistical modeling portion of experiments.  

The studies listed in this chapter describing the interaction of spectra, fruit tissues, and 

specific parameters connected to both, are all chemometric studies. Relevant to this body of work, 

experiments focused on the use of the visible and near infrared spectrum (380 – 2500 nm) to detect 

and estimate the concentrations of various compounds in fruit tissue, and particularly the extraction 

of meaningful information from the collected spectral data, are examples of chemometrics. An 

example of a chemometric application is in the detection of O-H bonds, common in fruit tissue 

due to the abundance of water and carbohydrates. These dominant and broad peaks produce a low 

signal to noise ratio when detected, making it more difficult to identify chemical structures (Wang 

et al., 2015).  

One of the challenges of modeling spectral data is its high dimensionality. Depending on 

the spectral resolution of the spectrometer being used, over 1,000 measurements can be collected 

for each sample. This creates the need for various statistical modeling techniques, including 

dimension reduction, and requires high computational power for data processing and inference.  In 

regression modeling, high dimensionality typically refers to a dataset in which the number of 

covariates (p) is greater than the number of samples (n) (i.e., n < p) from which observations were 

made for each covariate of interest.  This poses mathematical issues for traditional linear regression 

models.  Other common statistical challenges in chemometric research are high collinearity among 

the covariates, non-linear relationships between the outcome and covariates, and potential 

overfitting. In predictive settings, it is imperative to build generalizable models that avoid 
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overfitting. To address these challenges, chemometrics researchers typically apply PLS for 

developing predictive models (Nicolai et al., 2007). 

1.4. Partial Least Squares (PLS) 

Partial least squares (PLS) regression is a form of multivariate statistical modeling that is 

particularly well suited for modeling large amounts of often highly correlated, high dimensional 

chemometric data (Wold et al., 2001). This modeling technique, which was developed in the 

1970’s, was created to better handle issues of complexity and dimensionality in data from studies 

concerned with chemical composition of various samples.  It is often the case in horticultural 

studies that chemical structure and quantity are of interest, carbohydrates in fruit tissues as an 

example, where spectral data is measured as an indirect measurement of sugar content. Large 

amounts of highly correlated data are characteristic of such spectral data due to broad overlapping 

peaks produced by the absorbance of different compounds present in the fruit tissues, particularly 

the carbohydrates and water (Saeys et al., 2019). Much of the value of this data and the ability to 

model it accurately is in the application of models for prediction, particularly when coupled with 

spectrometry as a non-destructive data generating technique used on intact fruit tissues. In the case 

of horticultural studies this is centered on gathering information from fruit flesh, the portion of 

interest to consumers.  

As a statistical method, PLS is often compared to principal component analysis (PCA) 

based on the way they each decompose the variance in a given matrix of observations. PLS goes 

further than PCA however, since PCA explains the relationship between covariates, represented 

as an n x p matrix, X, where n is the number of observations and p is the number of covariates, 

and PLS explains the relationship between covariates as well as the relationship with the outcomes. 

Outcome values are represented as Y, a n x m matrix where n is the number of observations and 
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m is the number of outcome variables. In PLS, Y can either be a single outcome variable or 

multiple variables. This allows for the detection of relationships in the data which are impactful to 

the outcome variables captured as latent variables (see below) (Saeys et al., 2019). In practice, PLS 

can capture information about how the chemical structures being measured interact with each other 

and combine to yield measurements of the outcome of interest.  

Briefly, the non-linear iterative partial least squares (NIPLS) algorithm is used in PLS for 

estimation of relationships in the data as bivariate regression slopes (Wold et al., 2001).  NIPLS 

iteratively regresses each column of the X matrix onto the column of outcome values. When there 

is a single outcome variable, the X matrix column values are regressed onto values for that variable 

and the process ends. When there are multiple outcome variables, X-scores (initial regression 

coefficients from the first regression) are used to produce Y-weights when columns of the Y matrix 

are regressed onto the X-scores and subsequently Y-scores are calculated. The new Y-scores are 

used to produce new X-weights, and the process is reiterated until changes in the X-scores become 

sufficiently small (a difference of 10-6 or 10-8 (Wold et al., 2001)).  

This iterative process is the first step in “deflating” X. After the scores and weights are 

determined, a new matrix (the same dimensions as the initial X) of predicted values is estimated 

and the estimates are subtracted from the original values. This removal of predicted values is what 

it is meant when X is deflated. After several rounds of deflation, it is assumed that all the 

relationships in the data are captured, and thereafter this process begins to model noise in the data. 

The modeling of noise is monitored and quantified as Q2, the cross-validation statistic estimating 

how predictive the model is. Modeled noise can be observed when Q2 fails to approach 1 and 

instead begins to get smaller. Each time X is deflated after multiple rounds of calculating scores, 

weights, and loadings, a latent variable (LV) is extracted and stored. The number of iterations 
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required to produce the highest Q2 is the number of LVs in that model (Saeys 2019; Wold et al., 

2001). LVs derived from PLS are analogous to principal components in PCA but are not 

considered principal components since they capture covariance in X and Y (Saeys et al., 2019).  

Both X-scores and Y-scores (when multiple outcome variables are present), and weights, 

can be used to interpret which variables are contributing the most information to the model. 

Weights with large values correspond to variables which contribute large amounts of information, 

while weights with low values and similar to other weights indicate variables which are not 

imparting a large impact on the model. Although the values produced by the model offer 

information both on relationships within the data (X-scores) as well as the variables (X-weights), 

in the context of predictive modeling for applications, these interpretations are typically not of 

interest. However, this information may be valuable when attempting to identify key variables for 

future model building. For the purposes of building a predictive model, the chief interpretation of 

interest is that of prediction accuracy, particularly when making predictions on samples outside 

the training data. Ultimately, accuracy is most critical when utilizing these models as they are 

implemented to optimize the data gathering process and increase the amount of information 

growers and researchers are utilizing to make decisions.  

The maximization of covariance and minimization of correlation between variables 

through the construction of LVs helps to make PLS more robust against overparameterization and 

robust against some amount of non-linearity even when assumptions of linearity are held (Wold et 

al., 2001). This is critical for spectral data from fruit flesh where there are many overlapping 

absorption peaks at the same wavelength for different parameters (Naes et al., 2002). The estimated 

orthogonal variables also make the inclusion of large amounts of data per sample feasible and 

informative as opposed to mathematically cumbersome and detrimental to model performance. 
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Through the deflation of the measured X values, the underlying absorbance peaks lost in the 

overlapping absorbance profile can be identified due to the LV approach to handling covariance 

(Mishra et al., 2021). Despite this feature, it is still possible to overfit the model from the addition 

of too many LVs (Deng et al., 2021). Models that are in danger of being overfit are often referred 

to in horticultural literature as “complex” and up to nine LVs has been suggested in several studies 

as a guideline for the limit of complexity (Peirs et al., 2003b). Concerns of overly complex models 

can seemingly be dispelled when Q2 is utilized to avoid the inclusion of noise in the data, and a 

low root mean square error of prediction (RMSEP) are produced, regardless of the number of LVs. 

Complexity jeopardizes model prediction performance on samples that are not present in the 

training data. Internal validation is used in PLS to compare the effect of different LVs on model 

performance (Jung, 2017). Several statistics (R2
 and Q2) exist to characterize and quantify this 

performance and subsequently guide the chosen number of LVs in the model (Deng et al., 2021; 

Wold et al., 2001).  

Another key metric for the final iteration of the model, and a diagnostic to determine the 

appropriate number of LVs is RMSEP. As stated, at the end of each round of regressing scores and 

weights on row and column values of X and Y, a set of predictions for both the X and Y matrices 

are produced for deflation. The predictions of Y can then also be used to generate the RMSEP for 

that round of the model. It is expected that with each set of predictions, from each LV, the RMSEP 

will decrease. These error values can then be plotted with the corresponding LV which will 

produce a distinct graph where there is a dramatic drop in error for the first several LVs, a 

characteristic “knee” in the trend line when the error begins to be reduced less dramatically, and 

then finally a flat line where the error ceases to decrease (Figure 1.1). There is often some amount 

of variation in error where the error can increase again after declining, particularly when the noise 
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in the data is captured in the latter LVs (Deng et al., 2021). Like the tipping point in Q2, where Q2 

begins to fall back toward 0, this flat line, or slight increase in error is an indicator of the successful 

extraction of all explainable variation in the data. Various methods of cross validation are used to 

determine the number of LVs (Teh et al., 2020). Some studies will focus on SEP compared to 

RMSEP to report prediction error although they function similarly (Porep et al., 2015). For making 

predictions on the internal quality of fruit from outside the calibration/training data set, it is often 

the case that models with fewer LVs are more generalizable and generally make better predictions 

on fruit in the future (Anderson et al., 2020; Porep et al., 2015; Saeys et al., 2019; Wang et al., 

2017). Peirs et al. (2003) expressed that models with more than 9 LVs are effectively overfit and 

points to this as the source of high error (>1% oBrix) in the predictions made in their study. This 

is likely an example of spectral noise being modeled with successive LVs (low Q2) more than it is 

a product of the sheer number of LVs. Bureau et al. (2009), showed that 9 LVs was a sufficient 

number of variables to capture the variation present in 8 apricot cultivars across variable maturity 

status and still produce a RMSEP <1% ˚Brix when externally validating. Sun et al. (2020) set the 

number of LVs in their temperature compensated mango DMC models to 8, based on 

recommendations from Anderson et al. (2017) and Acharaya et al. (2014), with the lowest RMSEP 

reported at 1.05%. Kumar et al. (2015) built models all with the optimum number of LVs being 

between 6 and 9. These studies lend credence to the prescription of approximately 9 LVs when 

modeling and predicting fruit quality. Once the number of LVs is selected, the final scores are used 

as beta (β) estimates for each covariate. The model can now be represented as a standard linear 

equation with an intercept (β0) and regression coefficients, 𝛽𝑝, for each covariate in the model. 

Regression coefficients for each covariate in this linear representation allows for estimates of 

dependent variable(s) (Y) given new observations.  
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Another strength of the PLS model is the interpolation of missing data. Peirs et al. (2003) 

showed that their temperature adjusted PLS model was able to interpolate for temperatures not 

represented in the training data producing more accurate results than models trained at one 

temperature and validated with another. In addition, some alternative modeling approaches have 

been explored which yield better prediction accuracy for ˚Brix in peach using least squares – 

support vector machine regression (Mukarev and Walsh, 2012). 

1.5. Effect of Data Preprocessing for Model Training 

A foundational element in spectroscopy is Beer-Lambert’s Law. This principle explains 

the linear relationship between the concentration of compounds absorbing applied spectral energy, 

the amount of spectral energy applied and the length the energy is traveling.  Beer-Lambert’s Law 

operates on the assumption that there is minimal or no light scattering in the material that spectral 

energy is being applied to. Here lies one of the primary obstacles for researchers modeling spectral 

relationships. Fruit tissue violates this assumption as there are many sources of light scattering 

present in the tissue (Anderson and Walsh, 2021). Because of this light scattering, the apparent 

absorption of the applied wavelengths is higher than it would be in the absence of light scattering. 

This introduces non-linearity into the relationship which must be corrected for by preprocessing 

the spectral data.  

Variables with large variance will have a greater impact on the model than those with less 

variance, and so they are often scaled to allow each variable to contribute similar amounts of 

influence (Saeys et al., 2019). However, Saeys et al. (2019) do not recommend scaling when data 

are collected on the same instrument or when variables are measured in the same units as this can 

lead to the loss of information since scaling variables with low signal to noise ratio will now 

contribute equally to the total variance in the model as those with high signal to noise ratio.  
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Beyond manipulation of raw data, different spectral processing techniques are considered 

to increase the amount of relevant information present in the dataset and to decrease the amount 

of noise. What is considered relevant or superfluous is dependent on the physical properties of the 

sample that measurements are taken from and the compounds of interest present in that sample. 

Commonly considered properties of samples are their light scattering properties including 

reflectance, transmittance, and absorbance. The objective of data preprocessing is to improve the 

model fit and thus improve model performance (Rinnan et al., 2009). Changes in model 

performance can be seen as an increase or decrease of the error, calculated as the average 

difference between actual and predicted values. The sum of the square root of the differences 

between actual and predicted values is calculated and reported as the root mean square error 

(RMSE) and can be calculated both during cross validation (RMSECV) when predictions are made 

on the training data, and during external validation when predicted values are made using new 

observations (RMSEP). The comparison of these errors is made between models fit to 

preprocessed data and raw data. Data processing does not always improve model fit and 

performance. An example of data preprocessing failing to improve performance was observed in 

a previous study (Peirs et al., 2005) predicting optimal fruit harvesting constructed models using 

various data preprocessing (smoothing, scatter correction, and first and second derivatives).  The 

impact of these various preprocessing methods on out-of-sample prediction accuracy was 

evaluated by comparing the RMSEP of models trained with different preprocessing methods, and 

no significant improvement in accuracy was seen (Peirs et al., 2005).  

The first or second derivative of raw absorbance data is often taken as a common form of 

preprocessing for data smoothing and is often used in conjunction with scaled and centered values 

(Anderson et al., 2020; Bobelyn et al., 2010; Fu et al., 2008; Nascimento et al., 2016; Mishra et 
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al., 2021; Mukarev and Walsh, 2021; Sun et al., 2020; Walsh et al., 2004; Wang et al., 2017). 

These preprocessing techniques are a response to the scattering effect that fruit tissue has on 

different wavelengths, violating Beer-Lambert’s Law which introduces non-linearity into the data, 

and increasing the apparent absorption of wavelengths. This violation is largely due to the 

increased pathlength the radiation travels due to scattering before absorption resulting in additive 

and multiplicative effects in the reported absorbance data (Fearn and Davies, 2003). To correct 

this, different derivatives are calculated, or other scattering correction techniques such as 

multiplicative scatter correction and standard normal variate (MSV and SNV, respectively) are 

applied (Nascimento et al., 2016; Rinnan et al., 2009; Rungpichayapichet et al., 2016). Smoothing 

acts to help with the signal to noise ratio and thereby increases spectral resolution (Lin and Ying, 

2009). As an example of additive and multiplicative effects, one can see clearly how these effects 

are caused by changes in temperature and can be visualized as shifts in the plotted spectra of a 

single sample where two different temperatures produce two distinct spectra absorbances despite 

being the same sample, which should theoretically have the same absorbance. Scatter correction 

can then be seen when the two spectra from the same sample are treated, and the shifts in the plot 

are then compressed. After this compression, the two spectra more closely overlap (Peirs et al., 

2003a). This principle is applied beyond the effect of temperature on a single fruit sample and is 

used to correct for the effect of other physical or chemical influences which cause distinct 

scattering (e.g., skin thickness, cell density, degree of cell wall degradation, cultivar differences) 

in different fruit making it difficult to compare the spectra of a sample population. Minimal skin 

thickness and homogenous fruit flesh have been credited for some of the higher accuracy predictive 

models particularly for apples, with peaches being similarly accurate due to the thin skin. A lack 

of flesh texture homogeneity in peaches compared to apples is described as a reason peach models 
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have been less accurate in predicting various quality and maturity attributes (Walsh et al., 2004). 

Changing sample temperatures adds non-linearity to data, but given the accuracy that the mango 

models produced, the use of MSV indicates the potential for the correction of non-linearity in 

spectral data when predicting the temperature of a sample. Bobelyn et al. (2010) selected SNV 

over the second derivative due to better observed performance when comparing the two 

approaches for SSC prediction in apples.  

Beyond preprocessing techniques, dimension reduction methods are commonly applied to 

help reduce the amount of redundant and superfluous information and ultimately improve 

prediction. Variable selection, one example of dimension reduction techniques, is referred to as 

the (manual or automatic) determination of active or influential covariates in model.  Limiting the 

amount of information gathered and processed in practical applications via variable selection also 

improves the rate at which predictions can be made and the number of sample predictions can be 

made on (Li et al., 2019). Li et al. (2019), showed that there are benefits to variable selection and 

was able to make accurate SSC predictions as low as 0.23-0.30˚ Brix in pear. It has been 

demonstrated across disciplines implementing Vis-NIRS that not all wavelengths have an equal 

role to play in elucidating the composition of a sample and the inclusion of all the variables can 

hurt performance when the signal to noise ratio is low (Saeys et al., 2019). It is rather the case that 

only a few narrow spectral ranges carry most of the pertinent information regarding sample 

composition indicating that many spectral regions can be excluded without reducing model 

performance. Although spectral regions can be reasonably excluded, the inclusion of large swaths 

of the Vis-NIR regions similarly does not reduce model performance. For this reason, many studies 

utilizing PLS, a dimension reduction technique which does not explicitly perform variable 

selection, focus on a broad range of spectra spanning the entirety of the NIR spectrum and much 
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of the visible spectrum since PLS performance is not as dramatically penalized by the inclusion of 

broad covariates and is instead capable of extracting more nuanced information of a sample (Wold 

et al., 2001) contributing to the variability in the model as well as overall accuracy and robustness.  

Despite both preprocessing and dimension reduction techniques being important statistical 

considerations for researchers with large amounts of spectral data, the application of these 

techniques, namely preprocessing, is not always necessary. It has been suggested that the use of 

raw data free of any preprocessing can be the most informative since it allows certain spectral 

areas to contribute more information in the model (Peirs et al., 2003a). Walsh et al. (2004) saw 

little improvement between the use of second derivative and raw absorbance, but also noted that 

this may be due to the use of a single population of fruit for each model, removing some of the 

need for spectral correction as a solution to the variability of light scattering in different fruit 

populations where reduced homogeneity might be expected. Similarly, when modeling firmness, 

a textural trait known for its diverse light scatter properties, Bobelyn et al. (2010) opted to use raw 

data instead of preprocessing to retain scattering information in their data. Fu et al. (2007) also 

modeled firmness and applied MSV and was able to predict firmness in peaches more accurately 

with the pretreatment than Bobelyn et al. (2010) was in apples (RMSEP 5.42 N vs. 5.9 – 8.8 N). 

Wang et al. (2017) also applied preprocessing to their spectral data when predicting pear firmness 

and produced an error or 8.18 N. Peirs et al. (2003) followed this approach in a later study on the 

impact of biological variability on model performance and reported high RMSEP (1.91%) when 

predicting ̊ Brix in apples with external validation. This approach means forgoing some of the help 

preprocessing provides for correcting for non-linearities and relying on a very homogenous set of 

calibration samples producing smooth spectral data. Peirs’s no preprocessing suggestion also acts 

as a counternarrative to the signal/noise relationship. High RMSEP of sugar concentration in 
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apples may be indicative of issues presented when preprocessing is forgone. Instances of 

comparable RMSEPs when predicting firmness between models containing preprocessed data and 

models containing raw data indicate that relevant information is not lost when preprocessing is 

applied. It also indicates to some extent that less accuracy than expected is gained through 

preprocessing and speaks to the ability of PLS to deconvolute spectra through dimensional 

reduction. Between examples of preprocessing both improving and reducing model performance, 

and the ability of PLS to handle many covariates, the application of these techniques cannot be 

generally applied in all instances but should be explored in studies to produce the best results. 

1.6. Spectral Ranges Related to Fruit Quality Parameters 

It has been established that PLS is appropriate when modeling spectral data, but it is also 

critical that the appropriate spectrum be utilized. The near infrared spectrum is the neighboring 

portion of the electromagnetic spectrum to visible light and ranges from 780 to 2500 nm. Because 

it is so close to the visible spectrum, it is not uncommon that the range of wavelengths administered 

to a sample in research studies will also include some amount of the visible spectrum. The best 

example of this in horticulture is the use of visible light to help quantify the concentration of 

chlorophyll, a compound highly reactive to specific wavelengths of the visible light for 

photosynthesis, specifically 670 and 720 nm (Ziosi et al., 2008; Costa et al., 2009). The visible 

spectrum was intentionally excluded by Peirs et al. (2005) in their study on apples due to the 

relationship between the changing color of the fruit skin and visible light reflectance, to explore 

the maturity information present in the near infrared spectrum. Their total spectrum spanned from 

800 – 2000 nm, and they concluded that the near infrared spectrum was able to capture internal 

changes occurring during maturation based on the amount of variation (42%) that was explained 

by the first principal component in a PCA analysis conducted on the spectral data from their apples. 
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Similarly, Zhang et al. (2019) excluded all portions of the visible spectrum to exclude information 

deemed “irrelevant” for SSC and DMC prediction. Interestingly, Anderson et al. (2020) saw a 

decrease in RMSEP for DMC prediction when extending the range into the visible spectrum. The 

authors indicated that it is likely the inverse relationship of chlorophyll degradation and DMC 

accumulation that might be contributing to the model, however they do not believe that the 

relationship observed in their data between chlorophyll and DMC to be reliable enough in future 

populations to contribute this same amount of accuracy in future predictions and so it will not add 

to the robustness of the model. It is the case that the spectral profiles of fruit tissue samples are 

dominated by water absorption bands, and so it is often the case that much of the information that 

is gathered regarding the internal state of a given sample is reflective of the amount and state of 

water in the sample (Nicolai et al., 2007).  

 Another component that has been investigated is how well different ranges penetrate 

biological tissues. Walsh et al. (2004) mentioned that the use of reflectance optics is capable of 

penetrating between 4 and 20 mm into the fruit tissue. It has been shown that lower ranges of NIR 

wavelengths are more able to penetrate deeper into fruit tissue than higher ranges and a more 

accurate picture of that tissue is produced. While higher ranges may yield strong absorbance peaks, 

these wavelengths do not penetrate deeply into the tissue and result in values that indicate the 

presence of compounds only near the surface, leaving the interior unknown (Lin and Ying, 2009). 

It has been demonstrated that there are significant differences between values nearest the exocarp 

and those closer to the endocarp, making the lower ranges of the near-infrared spectrum, roughly 

700 – 900 nm, of greater interest for analyzing fruit tissues (Lammertyn et al., 2000). There are 

also instances where the quality of the skin is of primary interest, generally for the sake of 

monitoring chlorophyll content (Ziosi et al., 2008; Costa et al., 2009) and in these instances it 
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reasons one would focus on the wavelengths reactive in that area without introducing additional 

noise to the data from deeper in the sample. 

Beyond tissue penetration depth, the near-infrared spectrum is utilized due to the 

documented absorbances of those wavelengths by O-H and C-H bonds in water and carbohydrates. 

Peirs et al. (2005) recognized the important role of the typical overtone absorbance bands due to 

O-H bonds near 970, 1450, and 1940 nm, when using spectral profiles from fruit of variable 

maturity. It has been consistently recorded that the range of 729 – 975 nm is effective range for 

DMC as it contains O-H absorbance information as well as sugar and other carbohydrate 

absorbances (Anderson et al., 2020; Mishra et al., 2021; Nicolai et al., 2007; Sun et al., 2020; Teh 

et al., 2020; Zhang et al., 2019; Minas et al., 2021; 2023). This is in keeping with the goal of 

capturing typical overtone bands of O-H bonds from deeper in the fruit tissue by using a lower 

range of the NIR spectrum, acting as a “manual” form of variable selection as described by Mishra 

et al. (2021). Other prominent peaks were observed at 1170, 1400, and 1800 nm by Peirs et al. 

(2003) when inspecting the impact of temperature on apparent absorbance. Sun et al. (2020) 

showed peak shifts in mango caused by temperature increases in the second derivative of 

absorbance to peaks at 740, 840, and 963 nm where the peaks decreased and at 920 nm where the 

peak increased. 

 By selecting narrower ranges of spectra, researchers are effectively performing model 

selection since more precise information is gathered with less noise when the spectra are 

thoughtfully selected (Mishra et al., 2020). Mishra et al. (2020) presented yet another instance 

where the balance of two attainable elements is of interest, these being the gathering of enough 

information that each sample contributes unique information to the model and not adding too much 

information that the model is bogged down by noise and overfit with too many LVs (Deng et al., 
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2015; Mishra et al., 2021). Mishra et al. (2021) utilized two variable selection approaches in a 

study on pears, using interval partial least squares regression (iPLS2R) and CovSel, a covariate 

selection package. Using the iPLS2R approach, they were able to identify the range of wavelengths 

for SSC as 709 – 759 nm and 789 – 999 nm and the two ranges for moisture content as 743 – 779 

nm, and 879 – 939 nm. It seems appropriate to revisit the typical range of 729 – 975 nm for these 

parameters as it is similar to those ranges. CovSel was able to more precisely pick out 736, 709, 

961, 1109, 1125, 816, 912, and 879 nm as the informative wavelengths for both SSC and moisture 

content. Several of these are in the neighborhood of well-known NIR absorbance peaks for both 

O-H and C-H bonds. Using these selected ranges as an alternative to the entire spectrum, prediction 

error was reduced from 1.31% to 0.19% for moisture and from 1.44 to 0.58 for SSC. Selecting the 

range of 729 – 975 nm out of the total NIR spectrum can be considered as a form of variable 

selection given that it focuses on an informative range of wavelengths within the total Vis-NIR 

spectrum. Golic and Walsh (2004) focused on the wavelength region of 734 – 931 nm for SSC and 

DMC, noting the weighting of 910 nm as a primary contributor of information when measuring 

sugar. Other key absorbance peaks observed in fruit are at 840 and 960 nm, also connected with 

O-H bonds, and C-H bonds near 910 nm (Anderson et al., 2020; Subedi et al., 2007; Walsh and 

Golic, 2004). Rungpichayapichet et al. (2016) noted the O-H bonds seen as a broad band peak 

around 960 – 990 nm, both from water as well as from carbohydrates like sugars and starch.  

 The conclusion from this collection of studies is highlighting the value and relevance of 

the near-infrared spectrum particularly between 700 – 1000 nm. These studies also highlight the 

use and application of neighboring spectra in both the visible and infrared regions and the methods 

to process and handle the data for maximal model performance. These studies have validated that 

there is a large amount of relevant information in much of the NIR spectrum, and that while the 



 

22 

inclusion of large portions of the spectrum may yield good results, the selection of specific 

wavelength regions can yield improved performance. 

1.7. Biological Variation and Spectral Data 

Large amounts of variability in chemical and physical composition of samples introduce 

more light scattering due to a lack of homogeneity in the material. This makes accounting for 

scattering and non-linearity in the system more difficult to account for (Rinnan et al., 2009; Wang 

et al., 2015). With that, different parameters of interest may relate more to absorbance or to 

scattering. Depending on if absorbance or scattering is more relevant, the sample variability 

corresponding with those characteristics should be considered based on biological variation. This 

has serious implications for the selection of appropriate spectral data preprocessing (Bobelyn et 

al., 2010). 

As mentioned earlier, different materials have different interactions with the visible and 

near infrared spectrum. This includes both physical properties and the chemical compositional 

properties of that object. Physical properties impact the way in which light passes through an object 

(scattering) while chemical properties impact wavelength absorbance based on the presence and 

abundance of chemical structures which are responsive to the wavelengths applied to the sample 

(Nicolai et al., 2007). It has been established in horticultural literature that different fruit cultivars 

are genotypically and thus phenotypically distinct. These phenotypic distinctions can be observed 

both in the physical traits (skin color, flesh color, flesh type, fruit shape, fruit size, and fruit 

firmness) as well as in the organoleptic traits (DMC, SSC or ˚Brix, TA, and fruit texture) (Minas 

et al., 2018). Ultimately all these traits, and variations of them between fruit specimens, impact the 

way in which certain spectral regions utilized in Vis-NIRS interact with the fruit (Nascimento et 

al., 2016; Ziosi et al., 2008). In short both physical and chemical properties of the fruit flesh, as 
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the material of interest, are determined by biological and environmental factors. Variation in these 

factors is captured as variations in spectral absorbance in Vis-NIRS studies and made present in 

the experimental design. For this reason, from a statistical modeling perspective, it becomes of 

value to capture physical and biological variation for the purpose of spectral variations that, when 

modeled, make a more robust model (Nicolai et al., 2007).  

 Factors that determine physical variation at the species level include rootstock, cultivar, 

maturity, and growing environment including canopy position/architecture, crop load, irrigation, 

mineral nutrition, and climate (Minas et al., 2018; Peirs et al., 2005). Fruit flesh density, also 

related to fruit firmness, and skin thickness are two attributes that have been linked with these 

factors (Bobelyn et al., 2010). Not only is it the case that there is a wide range of variation between 

samples, but Fu et al. (2008) reported significant differences in the spectral properties of different 

latitudinal scans of a single fruit. They also reported improved prediction accuracy for predicting 

fruit firmness when the multiple scans of a single fruit were averaged and modeled as opposed to 

the use of a single scan (average of scans RMSEP: 5.96 vs. individual scans RMSEP: 7.04 – 7.82 

N).  

Although many of these fruit characteristics are genetically predetermined, the greater 

cause of phenotypic variability in fruit comes from cultural practices followed during cultivation, 

and the environmental and orchard factors that they will be exposed to during development 

(Anthony and Minas, 2022; Minas et al., 2018). It is of additional interest to distributors and sellers 

what the environmental impacts of postharvest handling and conditions might be on the physical 

and chemical properties of each fruit.  

At every stage of development and handling, fruits are exposed to factors which will have 

some effect on them (crop load, harvest date, bruising, chilling injury, continued respiration during 
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storage). These effects can be miniscule or profound, as in the case of different crop loads 

(Grossman and DeJong, 1995; Minas et al., 2021). Minas et al. (2021) observed statistically 

significant (p < 0.05) differences in DMC between a “commercial” (15 cm spacing between fruit) 

and “heavy” (5 cm spacing between fruit) crop load, being 14% and 11.9% respectively and found 

shifts in the rate of fruit maturation within the same cultivar. With the inclusion of crop load 

variability in the training data for a PLS model, fit using the 729 nm – 975 nm range with DMC 

and SSC as two separate outcomes, they were able to generate prediction models with low error 

rates of 0.41% for DMC and 0.58% for SSC when externally validated. A PCA bi-plot from the 

study indicates spectral variation attributed to canopy position and crop load. 

Since different cultivars can produce statistically significant differences in sugar and water 

content, the same way of thinking about environmental variability can and should also be applied 

to the way in which cultivars are modeled. Anderson et al. (2020), and Anthony et al. (2023), both 

reported that locally calibrated, cultivar specific models, for mangoes and peaches, respectively, 

are superior to global cultivar models based on the homogeneity of the samples by limiting the 

presence of variability based on phenotypic differences. Zhang et al. (2019) reported individual 

apple cultivar models outperform multi-cultivar models, however, they report lower RMSEP when 

externally validating both SSC and DMC using the multi-cultivar models compared to the 

individual cultivar models (0.47 – 0.78% vs. 0.49 – 1.32% SSC and 4.83 – 7.03 g kg-1 vs. 5.31 – 

12.81 g kg-1 DMC). This indicates some disparity in how model performance is being 

characterized between studies. Emphasis is occasionally placed on R2 values over prediction error 

(RMSEP), but error is more important in these kinds of studies. Better performance in single 

cultivar models is reinforced by the findings of Peirs et al. (2003), Louw and Theron (2010), and 

Wang et al. (2017), which indicated that much of the variability in samples stemmed from cultivar 
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and prescribed the use of cultivar specific models over global cultivar models. Wang et al. (2017) 

acknowledged this variability and applied additional processing (orthogonal signal correction with 

second derivation and smoothing) to the data to reduce spectral differences between cultivars while 

retaining pertinent information for making predictions on SSC. Bureau et al. (2009) saw sufficient 

accuracy and robustness in their apricot models when predicting SSC (RMSEP: 0.99% ˚Brix) 

when 8 cultivars were included in the model. The removal of an “atypical” cultivar did result in a 

reduction of error to 0.91% indicating there may have been a lack of homogeneity introduced by 

that atypical cultivar. Anthony et al. (2023) indicated that cultivars of similar phenotypic 

characteristics and harvest times could potentially be lumped together to produce models 

performing with adequate accuracy across cultivars when predicting DMC and IAD. Bureau et al. 

(2009) supports the notion of aggregating similar cultivars when producing models for groups of 

cultivars based on phenotypic attributes with reports of improved model performance after a 

particularly distinct cultivar was removed from a global cultivar model. However, Bureau et al. 

(2009) expressed concern that this reduction in error may come at the cost of some robustness. Li 

et al. (2019) saw comparable performance between a multi-cultivar model and an individual 

cultivar models when predicting SSC in pears, with prediction errors being 0.2 and 0.35 ˚Brix for 

both model types, respectively. Wang et al. (2017) determined that with additional processing, a 

multi-cultivar mode for SSC in pears performed just as well as many reported single cultivar 

models with RMSEP of 0.46 ˚Brix. 

Given the unique microstructures present in each cultivar and the impact microstructures 

are known to have on spectral absorbance, it is intuitive to assume maximal model accuracy would 

be achieved with cultivar specific models. This then becomes at its core a discussion of global vs. 

local models which is determined by the inclusion or exclusion of certain samples in the model 
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training data, much like the number of samples of a given temperature for a temperature 

compensated DMC model (Sun et al., 2020).   

Cell wall deterioration is another consideration when attempting to capture maturity 

variability. The more mature a fruit becomes; the more water molecules are redistributed in 

intercellular spaces while pectin and cellulose change (Louw and Theron, 2010). With this shift in 

the location of water, and the change in light scattering due to changing cell wall conditions, greater 

differences in apparent absorbance occur (Peirs et al., 2005; Nicolai et al., 2007). Changes in 

cellular spacing, intercellular water, and cell wall composition which can be linked with firmness 

is also responsible for differences in light scattering, and these differences can be seen in hard 

green mangoes when compared to more mature and soft fruit (Anderson et al., 2020) as well as in 

Japanese plums (Louw and Theron, 2010). 

The impact of other environmental factors has also been widely explored and is considered 

heavily when inspecting “robustness” particularly when making predictions on samples from 

different seasons or orchards (Bobelyn et al., 2010; Minas et al., 2021; 2023; Rungpichayapichet 

et al., 2016; Teh et al., 2020). Both orchards and seasons represent two distinct environments, 

distinct due to microclimates and to seasonal variability between years, that with intrinsic species 

or cultivar variation, produce unique compound variations in the fruit that needs to be accounted 

for and represented in the data to construct a model robust against as many of these conditions as 

possible. Rungpichayapichet et al. (2016) showed better model performance with the inclusion of 

multiple seasons of data, attributing the improvement to the inclusion of greater variability. 

Although important to consider, Peirs et al. (2003) showed that in their models, variation between 

cultivar and season had a larger effect than orchard location. Teh et al. (2020), also expound on 

the impact that location and season have on DMC predictions as another source of variability and 



 

27 

found that prediction was better within year performed than between year (0.48% vs. 0.79%), and 

better prediction within orchard compared to between orchard with error ranges of 0.55 – 0.63% 

and 0.49 – 0.85% between orchards for the years 2015 and 2016, respectively. Teh et al. (2020) 

also determined that a model calibrated at an orchard that shared regional/environmental 

characteristics (representative of other orchards in the area) was consistently more accurate than 

models trained with samples from an environmentally distinct orchard. This supports the notion 

that locally trained models perform with better accuracy, but at the cost of robustness and 

reinforces the need to be mindful of where training data originated from. It also indicates that 

representative samples can produce functional models robust against location. Perhaps the most 

significant conclusion from this study was that models were able to be constructed simultaneously 

robust against orchard and seasonal variation.  

Interestingly, tree age has also been seen to have an impact on model accuracy (Teh et al., 

2020). It was discovered that models calibrated with samples from more mature trees made more 

accurate cultivar specific models which may be related to a mature trees less uniform canopy 

contributing to variability captured in the model, as well as a mature tree’s ability to carry a heavier 

crop load.  

In the search of accurate and robust models, it has been thoroughly explored and 

determined that there is a need for variability in the training data to produce generalized models 

which predict accurately and are insensitive to external variability when encountering new data 

(Sun et al., 2020; Teh et al., 2020; Wang et al., 2017; Zhang et al., 2019). Accuracy and robustness 

are achieved simultaneously when there is a balance of variation in the data and variables in the 

final model, as there are instances when large amounts of variation are well modeled, but the model 

becomes overly complex, and robustness is lost resulting in larger errors. This is particularly true 
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when atypical data are included in the model training population (Peirs et al., 2003b). This can be 

summarized as the balance between underfit and overfit models where an underfit model is plagued 

by bias in the model and overfit models are plagued with an increasing amount of variance which 

becomes an issue when the data are noisy. This is the bias/variance tradeoff described by Deng et 

al. (2015) and emphasizes the value and need of applying various model diagnostics to ensure the 

proper tradeoff is reached.  

The final consideration when balancing variability and homogeneity is the number of 

samples used to train the models. The larger the number of distinct populations used to train models 

risks the introduction of heterogenous characteristics in the training data resulting in reduced 

linearity and reduced model performance. Connected to the issue of combining different sample 

populations is the number of samples present in those populations. Luo et al. (2018) demonstrated 

the reduction of RMSEP in their apple models, characteristic of increased variability in the training 

data with the inclusion of a broad range of samples, but also showed that at times, as the number 

of samples increases, RMSEP will either plateau, or increase due to a lack of homogeneity. They 

discussed some of the issues related to the discrepancies was the starch hydrolysis process taking 

place during apple maturation as a source of heterogeneity.  

1.8. Temperature Variability and Influence in Model Training 

Temperature influence on spectral absorbance is noted throughout the literature assessment 

related to Vis-NIRS fruit modeling efforts due to the strong effect temperature has on hydrogen 

bonds. Objects with approximately 85% water content, like fruit, are considered to have a high 

moisture content while other reports indicate that any water level greater than 80% are subject to 

the strong influence of temperature on H bonds and apparent spectral absorption (Anderson and 

Walsh, 2021; Hansen et al., 2000).  This phenomenon is the result of reduced water molecule 
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cluster size in the sample due to increased temperatures causing an increase in absorbance and a 

reduction in reflectance (Peirs et al., 2003a). This raised absorbance is due to the breakage of 

hydrogen bonds between water molecules caused by the increase in vibrational energy due to the 

elevated temperature. This is the cause of the reduced clusters described earlier.  

 Peirs et al. (2003a) showed that models trained at a single temperature point (local 

temperature) were sensitive to samples at a different temperature, with an increasing prediction 

error as the temperature difference increased. When models were temperature compensated (global 

temperature model), a lower RMSEP was produced due to the increased variability in these models 

that were less sensitive to small changes in new samples. Overall, the global model outperformed 

the local model even when the local model made predictions on an external sample at the same 

temperature as the calibration data. With the conclusion that the broader the temperature range 

used to train the model, the more accurate the predictions were.  

 Kumar et al. (2015) collected spectral data from the orchard to account for environmental 

variability. This included temperature as their measurements were collected while orchard 

temperatures fluctuated between 15 and 23 ˚C and saw in their model validations that their models 

were insensitive to temperature (consistent RMSEP < 1% between internal and external validation) 

when predicting SSC. These models indicate the ability for model compensation by capturing 

variability during data collection.   

 Like biological variation, temperature is another source of variation impacting model 

accuracy and robustness. Unlike biological variation which is represented across the training 

population as individual samples each with a unique spectral profile and a quality parameter of 

interest, temperature is represented as multiple spectral profiles for the same parameter. This is 

another example of the strength and ability of PLS modeling to handle highly correlated data. 
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1.9. Conclusion 

 The information collected and presented here offers a brief overview of the history and 

applications of PLS and Vis-NIRS for the modeling and prediction of a variety of parameters and 

indices used across different fruit crops. It has been thoroughly documented that different research 

projects for different fruit crops have seen different levels of success which generally can be 

attributed to the methods of data collection and preprocessing while PLS has generally been 

validated as a statistically capable framework for approaching and capturing the nuanced variance 

in complex data. Key takeaways include the influence of biological variation and temperature on 

model prediction. 
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1.10. Figures 

 

Figure 1.1. RMSEP of DMC decline and plateau with an increasing number of latent variables 
(LVs) from PLS model. 
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CHAPTER TWO 

TRAINING ROBUST NON-DESTRUCTIVE MODELS ACROSS 13 CULTIVARS FOR 

ACCURATE PEACH FRUIT QUALITY AND MATURITY ASSESSMENT 

 

2.1. Introduction 

 Peach production in the U.S. faces many barriers to success. Poor peach quality has 

contributed to a decline peach consumption nationally, and poor management has led to 

considerable waste at all levels of the fresh fruit supply chain. The last two decades have seen 

peach consumption in steady decline, and the peach industry generates annual waste equating to 

roughly $428 million per year (Minas et al., 2018; Manganaris et al., 2022). Despite trends in 

peach consumption, there is strong evidence of consumers’ willingness to pay for high quality fruit 

(Anthony and Minas, 2022). Declining consumption, increased operation costs, and lost profits 

due to waste have resulted in a diminished and an ever-shrinking industry. Due to the willingness 

of consumers to pay for high quality fruit and the need to reduce waste, an emphasis has been 

placed on methods for establishing high fruit quality in the orchard, maintaining high quality after 

harvest, and developing methods and technology to determine fruit quality and inform 

management decisions at all stages of the fresh fruit supply chain to improve peach consumption 

and restore a sustainable industry. Despite the importance of fruit quality, growers are stuck facing 

the limitations of the slow and destructive methods common in the industry resulting in the lack 

of knowledge for optimal fruit quality that satisfies both the consumers expectations and 

shipping/storage needs. A proposed solution to these issues is the use of handheld visible near 

infrared spectroscopy (Vis-NIRS) sensors to non-destructively predict both maturity and quality 

https://www.sciencedirect.com/science/article/pii/S0925521422003167?casa_token=TqH4nNUm-xYAAAAA:yeF0lBlzktvudSj8npVtgfLDL5Z7Oztnwqe8JK6UB3YrI2ueYBVnTS0A332KdeOgaPYiCyTK#bib25
https://www.sciencedirect.com/science/article/pii/S0925521422003167?casa_token=TqH4nNUm-xYAAAAA:yeF0lBlzktvudSj8npVtgfLDL5Z7Oztnwqe8JK6UB3YrI2ueYBVnTS0A332KdeOgaPYiCyTK#bib21
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in the orchard and after harvest. If this technology proves to be accurate and available, it presents 

an opportunity to remedy many of these concerns.  

 Peach quality and storage potential are determined by myriad factors in the orchard which 

include management of irrigation, fertilization, tree architecture, and crop load, as well as 

differences in physiological factors such as cultivar and maturity (Minas et al., 2018). Good 

performance and appropriate utilization of Vis-NIRS technology is dependent upon the 

consideration of these factors when attempting to train statistical models used in the sensors to 

generate valuable information for growers. 

We hypothesize that given the distinct genetic and phenotypic characteristics of peach 

cultivars which impact fruit microstructure and other fruit quality characteristics of interest, and 

the impact of management and environmental factors on maturity/quality that data collected from 

individual peach cultivars, containing broad variability, will contribute to the robustness of 

predictive models when combined with data from previous seasons. By training cultivar specific 

models with variable fruit sample data, accuracy, and robustness of these models will be improved 

and Vis-NIRS technology will be further validated as a solution to issues that plague growers 

worldwide. 

2.2. Materials and methods 

2.2.1. Experimental approach for Vis-NIRs model training, calibration, and validation 

Thirteen peach [Prunus persica (L.) Batsch.) cultivars were assessed for physiological 

maturity and internal quality at three maturity stages using destructive methods for reference data 

collection and non-destructive Vis-NIRS model calibration. The Vis-NIRS model predictions were 

then validated with destructive fruit quality reference measurements. Internal fruit quality was 

measured both destructively and non-destructively as dry matter content (DMC) and soluble solids 
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concentration (SSC). DMC was measured as a percentage of the total fresh fruit weight. An initial 

fresh weight of peach mesocarp was measured before entering a 65 ˚C oven for ~72 hours (Minas 

et al., 2021). Peach fruit maturity was assessed and measured as the index of absorbance difference 

(IAD, A670-A720) using a DA-meter® (T.R. Turoni srl, Forlì, Italy) (Ziosi et al., 2008). All Vis-NIRS 

spectral data scans for model construction and prediction were collected using a Felix F-750 

produce quality meter (Felix Instruments, Inc., Camas, WA, USA). With this instrument, scans for 

non-destructive prediction and future model training were collected simultaneously.  

The 13 peach cultivars used for model building and validation in order of harvest date were 

‘Redhaven’, ‘Galaxy Donut’, ‘Newhaven’, ‘Starfire’, ‘Glowhaven’, ‘PF-19’, ‘Suncrest’, 

‘Glowingstar’, ‘Blushingstar’, ‘PF-23’, ‘PF-24C’, ‘Angelus’, and ‘O’Henry’. From each cultivar, 

the population used for reference data acquisition and spectra collection for model construction 

and validation was broken into three maturity classes classified by fruit firmness (FF) and 

measured in Newtons (N): immature fruit (FF > 50 N), commercial harvest (FF = 30-50 N), and 

tree-ripe (FF < 30 N). Although the non-destructive maturity metric of interest is based on IAD, 

fruit firmness (FF) is still a relevant metric for fruit maturity in the industry. Minas et al. (2021), 

observed that IAD is not strongly related to FF. Although IAD and FF are not strongly correlated, 

IAD can be used to indicate physiological development and can be predicted. FF itself is yet to be 

well modeled and predicted non-destructively. For this reason, FF was used to sort the fruit initially 

and IAD was used moving forward.  

 Fruit populations were sampled from five trees of each cultivar grown in the Colorado State 

University’s (CSU) Experimental Orchard at the Western Colorado Research Center in Orchard 

Mesa, CO, USA in 2021. Trees grafted onto either ‘Lovell’ rootstock or ‘Krymsk®86’ rootstock 

were planted in 2016 and 2017 at approximately 908 trees per acre, trained to a Perpendicular-V 
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system, and managed in accordance with local commercial standards. From the five selected trees, 

100 fruit were randomly sampled in one or two picks and segregated into maturity classes based 

upon the measurement of FF. Upon segregation, each maturity class consisted of roughly 25 

immature fruit, 50 commercial fruit, and 25 tree-ripe fruit.  

Shortly after harvest, and prior to destructive quality assessment, two scans per fruit were taken 

from each side (cheek) of the fruit near the equatorial region. Flesh samples for DMC and FF/SSC 

were taken at the marked location of each scan. The side of the fruit selected for each sample 

alternated between the sun exposed side and the shaded side, determined by coloration on either 

side of the peach suture, for each parameter. By alternating sides, varying internal quality and 

maturity caused by different amounts of sun exposure (Gullo et al., 2014) was captured. Pre-

existing models trained in 2016 were then used to make predictions with the collected scans from 

each cultivar. These 2016 models consisted of a DMC, SSC, and IAD model for each cultivar used 

to train the models to produce nine total models (Minas et al., 2021; 2023). The cultivars used in 

2016 included the early season cultivar ‘Redhaven’ (RH), a late-season bi-color cultivar 

‘Cresthaven’ (CH), and an early-season full red-overcolor cultivar ‘Sierra Rich’ (SR). All 2016 

models for each parameter will hereto be referred to as the base models as the training data from 

those models were incorporated in the training data for models trained for the 13 cultivars in 2021. 

Following the methodology outlined by Anthony et al. (2023), the 200 scans from each of the 13 

cultivars were preprocessed using Savitzky-Golay smoothing and exported as the second 

derivative of absorbance for the whole spectra (400-1100 nm) at spectral intervals of 3 nm (3 nm 

spectrometer resolution). All absorbance processing was done using the Vis-NIRS Data Viewer 

software (Felix Instruments, Inc., Camas, WA, USA). Using the regression coefficients from the 

base models (RH, CH, SR), the collected spectra were post-processed to produce predicted values 
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for internal quality: DMC and SSC, and maturity: IAD. Model performance and accuracy was then 

determined via comparison of predicted values to actual values and assessed for goodness of fit, 

reported as R2, and root mean square error of prediction (RMSEP). Of the RH, CH, and SR models, 

the model predicting with the lowest RMSEP was then combined with the destructive and non-

destructive data collected from each of the 13 cultivars to create 39 accurate and robust predictive 

models in total, three models (one for each parameter) per cultivar.  

2.2.2. Development of robust multivariate Vis-NIRS prediction models for internal quality and 

physiological maturity across 13 cultivars of distinct phenotype and harvest time 

 It was well established that DMC, SSC, and IAD could be accurately predicted with a single 

scan using the RH, CH, and SR base models from 2016 (Anthony et al., 2023; Minas et al., 2021; 

2023). The aim of this study is to determine how PLS models trained with data from 2016 

combined with data gathered in 2021 can improve model performance by capturing distinct genetic 

and phenotypic characteristics as well as distinct environmental factors such as canopy 

microclimates and seasonal weather. Models trained in 2021 consist of data from one of the 2016 

base models and 2021 data from each cultivar. These models are termed cultivar specific models. 

This definition differs slightly from previous uses of “cultivar specific” in the literature as the 

models do include data from two cultivars, they are however trained to make predictions on 

specific cultivars. Fruit utilized for model training of the base models in 2016, were selected from 

a diverse population to represent a range of internal quality, physiological maturity, and growing 

conditions. This diverse variation in the training data was selected to add robustness to the models 

in the prediction of internal quality and maturity of fruit from the same cultivar at various times in 

the season and across seasons (Minas et al., 2021; 2023). Training data from each of the base 

models included temperature compensation to address the impact of variable temperatures on 
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wavelength absorbance for different spectra. Temperature compensation was achieved by scanning 

each fruit twice at three different temperatures (0, 20, 30 ̊ C) for a total of six scans per fruit (Minas 

et al., 2021; 2023). The use of this temperature adjusted data set was used to make models robust 

against changes in temperature while allowing for focus on quality data from individual cultivars 

which was not temperature adjusted. In addition, a separate set of internal quality and maturity 

reference values, and spectral data were collected in 2017 from ‘Redhaven’, ‘Glohaven’, 

‘Suncrest’, and ‘Angelus’, and these data were used for training a three-season model. 

 For all models, regression coefficients were estimated for each 3 nm spectra intervals 

between 729 nm to 975 nm for both DMC and SSC (83 total covariates and corresponding 

coefficients excluding the intercept), while physiological maturity utilized 3 nm spectra intervals 

range spanning 600 nm to 750 nm (51 covariates). These spectral ranges were selected based on 

previous studies seeking to determine which spectral ranges best captured absorbance peaks and 

adequately penetrated fruit flesh. Selecting wavelength ranges from the total near infrared 

spectrum follows an internal wavelength selection process described by Mishra et al., 2020. The 

coefficients were estimated using the partial least squares (PLS) model using k-fold cross 

validation and the NIPLS algorithm. PLS was selected for this study following previous 

applications of PLS in other non-destructive studies (Minas et al., 2021; 2023; Mishra et al., 2020; 

Nascimento et al., 2016). PLS has been historically selected for this application for the ability to 

accommodate highly correlated variables and maximizes covariance in the predictors, particularly 

when there are a large number of predictors. This approach allows for incorporating large amounts 

of information in the model without overfitting (Nicolai et al., 2007).  

The cultivar specific PLS models were trained with 12 – 15 LVs determined via k-fold 

cross validation and constructed using the NIPLS algorithm. The optimized number of latent 



 

46 

variables was determined based on the number of LV that yielded the highest Q2, the model 

statistic used in part to determine the number of LVs, and R2
cv. 

2.2.3. Assessing quality and maturity of 13 cultivars 

 Upon completion of harvesting 100 fruit per given cultivar, the F-750 produce quality 

meter (Felix Instruments, Inc., Camas, WA, USA), a handheld spectrometer with a 3 nm 

resolution, was used to scan and record absorbance values for each group of 3 nm from 400 nm to 

1100 nm. Narrower ranges of 600 – 750 nm and 729 – 975 nm, would later be used as effective 

ranges for maturity (IAD) and quality (SSC and DMC) respectively in the model construction and 

the absorbance values within these ranges would then be used to generate predictions. 

 With the initial scans taken, reference values for IAD were collected before destructive fruit 

quality analysis was conducted for all other reference values. Taken as close to the center of the 

portion of the fruit where the Vis-NIRS scan was taken, IAD reference values were taken with the 

DA-meter® (T.R. Turoni srl, Forlì, Italy). This area where both scans had been taken would 

become the location where destructive reference internal quality analysis occurred. 

 Alternating between the sun exposed portion of the fruit and the shaded half of the fruit a 

section of fresh mesocarp that was previously scanned was taken using a cork borer of 25 mm in 

diameter and the exocarp was removed. After drying the samples for three days at 65˚ C, dry matter 

content (DMC) was calculated as the percentage of dry weight over fresh weight. From the other 

side of the fruit, fruit firmness (FF) was first measured using the fruit texture analyzer (FTA; 

Guss Manufacturing (Pty) Ltd., Strand, South Africa) after the removal of 1 mm thick exocarp at 

the location where FF was measured. With the exocarp removed, the FTA inserted an 8mm 

diameter plunger to a depth of 10 mm. Once FF was measured, the portion of the fruit where 

firmness was recorded was removed and pressed to extract the fruit juice using a garlic press. This 
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juice was extracted onto a digital refractometer to measure the soluble solids concentration of 

(SSC) and produce the reference values. This process was used for all reference values to which 

predictions from each model would be compared. 

2.2.4. Statistical analysis of cultivar maturity and quality 

 To determine the cultivar effect on differences in harvest time, internal quality, and 

maturity, each parameter was compared between each cultivar. Mean values for each parameter 

were tested using an ANOVA with the Tukey adjustment at P = 0.05. The JMP Pro 15 (SAS Inc., 

Cary, NC, USA) statistical software was used for all mean comparisons. JMP output for each PLS 

model yielded the R2
CV, Q2, and number of LVs.  

 The Prism v8.2.1 software (Graph Pad Inc., San Diego, CA, USA) was used to regress the 

actual and predicted values for DMC, SSC, and IAD. Using this same software, graphs were plotted 

to visualize the relationship between actual and predicted values. These regressions generated the 

reported R2 and RMSEP values used to determine model performance. 

2.2.5. Further data set additions to cultivar specific model training sets for three season model 

 Additional Vis-NIRS scans and reference values for DMC, SSC, and IAD, for the four 

cultivars, ‘Redhaven’, ‘Glohaven’, ‘Suncrest’, and ‘Angelus’ from the 2017 season were added to 

the training data sets of the cultivar specific models for those four cultivars to train new, three 

season models. These new training data sets for the three season models include representative 

data from the 2016, 2017, and 2021 seasons. These data were then modeled with PLS in the same 

manner as the cultivar specific models using the NIPALS algorithm and k-fold cross-validation 

The estimated regression coefficients were exported from the linear model equation and used to 

make predictions on fruit scans from the 2022 season.  

2.2.6. External model validation from 2022 season 
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 After comparing the predictive accuracy of all three base models and the accuracy of the 

cultivar specific models, data from the 2022 season were used to externally validate model 

robustness. 30 fruit for validation was harvested from all 13 cultivars and processed identically to 

the fruit in 2021. This 2022 fruit was used to validate all models and to assess model robustness 

by emulating a field application of these predictive models by simulating a grower’s or 

researcher’s use of the models to make predictions on fruit from seasons or orchards not 

represented in the training data. The validation performance of the base, cultivar-specific, and 

three-season models, was compared and used to assess the impact of multiple seasons, various 

maturity, and temperatures. 

2.3. Results and Discussion 

2.3.1. Fruit physiology  

 The 13 cultivars used in this study span the season from early ripening cultivars beginning 

with ‘Redhaven’ to late ripening varieties ending with ‘O’Henry’. Eleven other cultivars reached 

commercial and tree ripe maturity between these two to represent most of the harvest season in 

western Colorado. It was observed after the classification of fruit, based on maturity defined in 

this study as the “commercial harvest” stage (FF = 30 – 50 N), that, even when fruit are determined 

to be of the same maturity class, there are significant differences (at the 0.05 alpha-level) in other 

quality parameters such as DMC and SSC across cultivars (Table 2.1). Given the comparable tree 

age, training system, crop load, and overall horticultural management of the trees of each cultivar, 

it is believed that the variability in these quality parameters between cultivars is linked to 

phenotype and ripening time.  

The statistical differences observed between cultivars support the hypothesis that cultivar-

specific models may be most appropriate for maximizing the accuracy of a model, by tailoring that 
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model to the physiological variability of the cultivars while keeping growing conditions constant 

as to not introduce confounding variables from external orchard factors (training system, canopy 

position, and tree age). 

2.3.2. Model complexity 

The number of LVs determined using k-fold cross validation for all models regardless of 

the number of data sets combined as the training data sets ranged from 11 – 15, 10 – 13, and 12 – 

15 for DMC, SSC, and IAD respectively for all cultivars (Table 2.2). Ten to fifteen LVs are often 

expected to overfit the data (Peirs et al., 2003; Deng et al., 2021). Concerns of non-linearity are 

also legitimate with so many LVs needed to model the data. Non-linearity is a possibility with the 

combination of each distinct dataset from different seasons or cultivars resulting from a lack of 

homogeneity in the data used to train the model. Concerns of overfitting and non-linearity have 

implications regarding how generalizable the training data are and determines how well it will 

perform when used to make predictions for new data (Peirs et al., 2003). Although a legitimate 

concern based on previous reports, the issue of overfit models and non-linearity appears to be a 

non-issue in this data based on model accuracy when externally validated. 

2.3.3. Base model performance on the 13 new cultivars 

 With the balance of model accuracy and robustness in mind, the 2016 base model, trained 

as a global temperature model with three temperature classes (Minas et al., 2021), was selected for 

each cultivar based on model accuracy (low RMSEP). For each model outcome, DMC, SSC, and 

IAD, one of the base models was selected and then the data used to fit the model was later included 

in the cultivar specific model training data set. Of the base global temperature models, the base 

model trained with ‘Redhaven’ (Minas et al., 2023) fruit had the lowest error on average for DMC 

(RMSEP = 0.33 – 1.08%), ‘Sierra Rich’ (Minas et al., 2021) was the lowest for SSC (RMSEP = 
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0.44 – 0.98 ˚Brix), and the ‘Cresthaven’ model had the lowest error when predicting IAD (RMSEP 

= 0.04 – 0.08) (Figure 2.1). An emphasis has been placed on the base models containing the impact 

of various temperatures on the absorbance of the selected wavelengths, but this data also contains 

the impact of different crop loads, different rootstocks as a known source of chemical variation in 

fruit, as well as the impact of different canopy positions on fruit quality (Minas et al., 2021; Peirs 

et al., 2005). Ultimately the base model offers firstly, global temperature data, and secondly crop 

load, rootstock and canopy position data, four critical sources of variability for maturity and quality 

that when accounted for offer robustness to the models when predicting in different orchards and 

future seasons (Minas et al., 2021). These factors are presumed to contribute to the variation 

captured with additional LVs after it was seen that the first two LVs capture the majority of the 

variability from the reference values and the temperatures. Determining good performing models 

and adding data to update those models, generally yields improvement (Anthony et al., 2023) and 

follows the methodology outlined by Peirs et al. (2003) and Bobelyn et al. (2010). This breadth of 

information from the base models was then improved upon with the addition of the 2021 cultivar 

data adding “depth” in the training data set.  

 The inclusion of base models was essential for the addition of temperature adjustments as 

well as rootstock, canopy position and crop load information captured in the fruit samples. The 

predictions from these base models on 2021 data are external validations. These validations 

demonstrate that the base models are in themselves robust except in the case of two cultivars ‘PF-

24’ and ‘Angelus’. The average prediction errors of these predictions were 0.51% DMC, 0.64 

˚Brix, and 0.06 IAD for all 13 cultivars. This robustness is a likely a product of the inclusion of 

temperature adjustments (Anderson et al., 2017; Minas et al., 2021), canopy position (Minas et al., 

2021), rootstock (Minas et al., 2023) and crop load (Grossman and DeJong, 1995; Anthony et al., 
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2020; Minas et al., 2021). Without added cultivar-specific information these models will be robust; 

however, the concern is that they are limited in their robustness against other additional cultivars 

and seasons of data. Cultivar-specific models were shown to outperform global cultivar models in 

studies on peach, apple, and mango (Anthony et al., 2023; Zhang et al., 2019; Anderson et al., 

2020). Anthony et al. (2023) described the addition of cultivar-specific data to existing models as 

a viable means of model improvement. This approach was followed for these cultivars in hopes of 

improving both accuracy and robustness.  

2.3.4. Training new cultivar-specific models 

 Following the approach of Anthony et al. (2023) the best performing base models were 

combined with ~100 samples of each cultivar to train the new models. After the addition of the 

100 samples per cultivar to either of the selected base models and the new models were trained, 

the R2 of cross-validation (R2
cv) and RMSE of cross validation (RMSECV) increased and 

decreased, respectively, compared to the initial R2 and RMSEP of the initial base model 

predictions. This is unsurprising given that models will generally perform better when making 

predictions on data that is contained in the training data compared to data from outside the initial 

training set. These model performance metrics do not verify that the cultivar-specific models are 

more accurate or robust, but it does indicate that the new models fit the data well and predict below 

an error of 1%, a threshold determined by what has been reported as difference in sugar 

concentration detectable to consumers (Harker et al., 2002).  

 Cross validation of DMC, SSC, and IAD produced a R2
cv ranging from 0.90 – 0.97, 0.85 – 

0.94, and 0.98 – 0.99 respectively. The Q2 for DMC, SSC, and IAD ranged from 0.88 – 0.96 %, 

0.83 – 0.93 ˚Brix, and 0.98 – 0.99 respectively (Figure 2.2). Given the absorbed energy by the 

insoluble carbohydrates ignored when measuring SSC, the PLS models struggle to find the 

https://www.sciencedirect.com/science/article/pii/S0304423822000450?casa_token=usqMOJHukpQAAAAA:ikP1btCd-D0sk86IHF8R07oVy76_3cCY3rdgOoAB0iuvw0P1rgGvdDaljQ0NPNYw2wtOohf9#bib0020
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strongest relationship between absorbance and SSC (Kumar et al., 2015).  It is also worth noting 

that the refractometer used to measure the SSC reference value is less accurate than the scale used 

to measure DMC. With less precision in the initial reference value for SSC, overall accuracy of 

models predicting SSC may suffer. Since IAD relies on the amount of chlorophyll-A and 

chlorophyll-B, which have specific absorbance peaks (Ziosi et al., 2008), and therefore less 

overlapping information in the spectral data, it reasons that this parameter outperforms the others 

due to less noise and fewer overlapping peaks in the data for IAD. IAD data are unique compared to 

DMC and SSC in the way that absorbances values will follow a linear trend (R2=0.98) as 

chlorophyll degrades during peach fruit maturation (Chalmers and Van den Ende, 1975; Ziosi et 

al., 2008). Thorough representation of fruit maturity in the 2021 data neatly captures a decline in 

chlorophyll and for this reason, IAD stands apart from DMC and SSC in the way it, as a 

physiological phenomenon, has a higher signal to noise ratio and is modeled so well. As observed 

in other studies, DMC has outperformed SSC in prediction accuracy. As described by Kumar et 

al. (2015) this is likely due to the inability to distinguish between absorbance values for soluble 

carbohydrates and insoluble carbohydrates. Making prediction on both soluble and insoluble 

sugars simultaneously as constituents of dry matter content, the improved model performance of 

DMC vs. SSC can be seen and understood. Mishra et al. (2021) use NIR to predict moisture content 

and use the same range of wavelengths. Due to the O-H absorbance bands at these wavelengths 

from water in the fruit flesh, and that water is most of peach fresh weight, (DMC being the ratio 

of dry weight to fresh weight), the strong signal from water when scanning fruit for DMC 

prediction also aids in improved DMC accuracy. From this, it has been concluded that DMC is the 

stronger parameter for NIRS- based prediction and an appropriate metric for describing fruit 

quality. Given the strong positive relationship between DMC and SSC described by Palmer et al.  
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(2010), it is also concluded that information regarding sweetness and consumer acceptance is not 

being sacrificed by prioritizing DMC over SSC.  

 Despite some cultivar-specific models sharing training data from the base models, it was 

observed that some cultivar-specific models performed better than others (Figure 2.1). It is likely 

that the models which performed best were more generalized, which is to say, the training set 

contained variability in fruit composition which is consistent across cultivars. Looking at the 

model output, there does not appear to be an obvious trend indicating why certain cultivar specific 

models outperformed others based on the number of LVs.  

2.3.5. Additional data inclusion for model training  

 To further inspect the influence of season on model robustness and performance, cultivar 

data from ‘Redhaven’, ‘Glohaven’, ‘Suncrest’, and ‘Angelus’, collected during the 2017 was 

added to the 2016 and 2021 data to fit a three season DMC and IAD model for each of the four 

cultivars to produce 8 models representing three growing seasons. These models did not yield 

notable differences in RMSECV and performed nearly identically to the cultivar-specific models 

that included only two season of data. For the four cultivars which were refit with the addition of 

2017 data, the RMSECV’s from predictions made on 2021 data for DMC with the cultivar specific 

models were 0.36%, 0.33%, 0.37% and 0.34%. After refitting the models, the three-season model 

RMSECV predicting on 2021 data for DMC was 0.35%, 0.33%, 0.43%, and 0.54%. The small 

increase in error is potentially linked to the phenomenon of increasing error as sample size 

increases (Luo et al., 2018; Teh et al., 2020), but for intents and purposes these error rates when 

making internal prediction are practically the same. A lack of model improvement with the 

addition of new seasons of data was observed in a previous study (Peirs et al., 2003) and likely 

indicates that all relevant variability in the data necessary to capture a large amount of variability 
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in future seasons was present in the initial data set. This indicates that the initial data was already 

robust against change in season and the addition of the third season may not be necessary.  

2.3.6. 2022 External validation 

Following the training of the 13 models (for each parameter) in 2021 and additional data 

collection from 30 fruit from each of the 13 cultivars in 2022, each model was validated with the 

external 2022 fruit data. These 30 fruit were determined to be at a commercial maturity via IAD 

values based on the IAD values from the fruit with a 30 – 50 N firmness in 2021. Commercial 

harvest maturity was selected to assess how applicable these models could be for growers in a 

commercial environment. Using the regression coefficients from the 2021 cultivar specific models, 

predictions were made for these 30 fruit (Figure 2.3). Prediction accuracy indicated that the 

cultivar-specific models are robust with average RMSE changing from 0.36% to 0.42 % DMC, 

0.59 to 0.63 ˚Brix, and 0.05 to 0.04 of IAD values across the 13 cultivars. The initial error values 

are the RMSECV from the internal cross validation (2021), and later errors are the RMSEP values 

they are being compared to are from the external validation of the 2022 season.  

During the base model selection phase of model building, it was determined that the base 

temperature compensated models, were generally robust when making predictions on the 2021 

cultivar data (RMSEP on 2021 fruit: 0.41%, 0.64%, and 0.06, for DMC, SSC and IAD, respectively). 

The 0.41% DMC reported here excludes ‘PF-24’ and ‘Angelus’ from the average given the 

relatively high error observed in 2021 to help show the conserved RMSE between internal and 

external validation. The exclusion of ‘PF-24’ and ‘Angelus’ from this average was justified based 

on the unprecedented drop in error in 2022 from internal to external validation in the same models. 

The improved performance of ‘PF-24’ and ‘Angelus’ indicates scans taken incorrectly may have 

been processed causing an initial high error during cross validation but when 2022 scans were used 
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to make predictions and the error dropped. The drop in error suggests that an issue with the scans 

arose either during collection or processing and highlights the importance of handling scans 

carefully. An indication that cultivar-specific models were trained well, but a bad scan, or scans, 

was used to make predictions was again demonstrated when making the final comparison of all 

models using the data gathered from the 13 cultivars in 2022 as purely external validation (RMSEP 

on 2022 fruit: 0.42%, 0.68%, and 0.06, for DMC, SSC and IAD, respectively). These error rates 

show that the model itself is performing well, but some issues existed in some of the 2021 scans. 

This model accuracy over two seasons demonstrates insensitivity to season and leads to the 

conclusion that the models that include different arrangements of data which represent a broad 

range of external factors like temperature and maturity, will be similarly insensitive and thus robust 

(Figure 2.4).  

Given the large amount of variability in the data, the number of LVs needed to capture that 

variability is considered large when compared to the nine LVs prescribed in the literature to avoid 

overfitting (Deng, 2021; Peirs et al., 2003). The result of this round of external validation, however, 

indicates that even the DMC and IAD models fit with 15 LVs were not overfit and predicted well 

(Table 2.2). Of the DMC models with 15 LVs, ‘Galaxy’ was the worst performing with an error 

of 0.54%. The best performing DMC model with 15 LVs was ‘Newhaven’ with an error of 0.32%, 

an error rate which outperformed all cultivars except ‘PF-23’ (RMSEP: 0.30%) in the external 

validation of DMC. SSC was modeled with fewer LVs than DMC and IAD (10 – 13 LVs). SSC 

never performed as strongly as DMC or IAD for reasons discussed previously. All the IAD models 

were fit with 15 LVs, and all IAD models performed exceptionally well compared to the initial cross 

validation with the average error decreasing from 0.05 to 0.04 across the cultivars. This decrease 
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in error is assumed to be related to the external validation consisting of the single commercial 

harvest maturity classification allowing the 2022 data to fall within the spread of the training data.  

It is concluded from the performance of these models when predicting quality and maturity 

parameters in a new season that models trained with a “large” number of LVs are not necessarily 

overfit simply because of the number of LVs and that models with more than 9 LVs are viable 

models for making prediction. This does not mean that there is not the potential for models to be 

overfit with the inclusion of more LVs, but it does underscore the importance of tuning the model 

to the proper number of LVs with elements such as maximum Q2. Since Q2 aids in the 

determination of the explained variability and indicates when noise in the data is modeled, it offers 

more clear insight into the internal workings of the PLS model more than the number of LVs does.    

Although the models, excluding the base temperature models, lack a second season of 

external validation to lend additional confidence to the robustness of the models, it is seen that the 

RMSEP is similar between all of them. Although the considerable improvement of model 

prediction performance was not observed in the way that was anticipated, it is believed that the 

models are still robust, and a ceiling of model performance was reached with the amount of 

variability and the number of samples provided to train the models. Given the range of samples 

used to train the models and the consistent RMSEP, it is not assumed that the addition of any more 

samples would necessarily increase model performance, although it is reassuring that a strong 

decrease in accuracy was not observed with added fruit samples as previously described (Luo et 

al., 2018). Luo et al. (2018) described this phenomenon in apples, so it is believed that the 

consistent RMSEP after large increases in sample size is possibly due to the absence of starch in 

the peaches. This absence of starch in peach produces a more homogenous fruit tissue across the 

different physiological and environmental factors. Expanding on this line of thinking leads to the 
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thought that homogeneity in the fruit flesh might equate to less non-linearity and better model 

performance. This is an area that needs to be further investigated in the future for peach and other 

fruit crops.  

2.3.7. Comparison of cultivar-specific model robustness against other cultivars 

 After it was determined that the cultivar-specific models were shown to be robust against 

changes in season, the models were used to make predictions on scans from the other cultivars. 

This was done to explore how robust the models were when considering a situation where growers 

might use these models in the field to assess cultivars other than the 13 cultivars studied. For this 

assessment, the four three-season cultivar models were used to make predictions on DMC for the 

three other cultivars which were not included in the training data for those models. Table 2.4 

shows how the models performed and demonstrates that the models predicted consistently across 

cultivar. ‘Redhaven’ had the lowest performance (RMSEP 0.60% - 0.69% DMC) while 

‘Glohaven’, ‘Suncrest’, and ‘Angelus’ all predicted with errors below 0.5% DMC. The fact that 

the models perform consistently irrespective of the cultivar that scans were collected from, 

suggests that the variability contained in the data set for each model has an impact on how the 

model performs, and if cultivars are similar enough predictions will be similar (Teh et al., 2020). 

Ultimately the prediction performance is still accurate enough across both season and cultivar to 

indicate that the three season models are thoroughly robust and insensitive to a wide range of 

external factors which might impact predictions including season and cultivar. 

2.3.8. Explained variance from PLS based on temperature, maturity, cultivar, and season  

It is understood that inclusion of variability in the training data is essential for producing 

accurate models (Wang et al., 2017; Zhang et al., 2019). It for this reason imperative that 

researchers designing experiments and collecting data strive to understand what variability in the 
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data is the most informative and influential to reduce needless labor and maximize model 

performance. For this reason, relationships within each distinct data set were inspected to help 

determine what the model was able to discern as important variance captured in each LV. These 

distinct data sets were those that were later used to compose the models for each of the 13 cultivars. 

To assess variance and attempt to determine how much each factor (temperature, maturity, 

cultivar, and season) could be contributing to the model, score plots were made from PLS models 

that were fit to the specific data sets designed to represent each factor (Figure 2.5). These plots 

show the percentage of explained variance for each LV and a visualization of the position of each 

data point relative to the others. These score plots are similar to PCA bi-plots although unlike PCA 

they feature the impact of the output data (DMC, SSC, IAD). This spread helps to indicate what or 

if factors cause any segregation of data points and to what degree or if some parameters contribute 

to the distribution of data. Attaching the percent variation to the spread of the data points allows 

for interpretation of which factors have a meaningful impact on the variation in the data relevant 

to model robustness.  

Previous studies have ordered external factors of significant influence as orchard, season, 

and temperature, from most to least impactful (Peirs et al., 2003; Teh et al., 2020). From the data 

included in this study, clear separation can be observed in the effect of temperature in the spectral 

data from 2016 and some discernable separation when observing maturity, cultivar, and season. 

The least obvious separation based on PLS score values comes from maturity. Taking a closer look 

at the explained variation from individual PLS models for each factor shows typical trends in the 

way in which most of the relationships between the measured variables X and the outcomes Y are 

captured within the first few LVs before a smaller percentage of variation is explained by 

subsequent LVs, and the model begins to incorporate noise in the model. Looking at ‘Redhaven’ 
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data from 2016, 2017, and 2021 (‘Glohaven’, ‘Suncrest’, and ‘Angelus’ analyzed, data not shown), 

it can be observed that temperature causes distinct separation contributing to 55%, 61%, and 56% 

of the variation explained by the second latent variable for DMC, SSC, and IAD respectively. It is 

worth noting that large amounts of variation in the data is captured by the second LV while the 

first captures variation in the range of DMC values (Figure 2.6). This extends to SSC and IAD 

where PLS is initially identifying the relationship between the values of X and the values of Y. It 

is noteworthy that DMC itself contributes less direct information on the relationship between 

spectral data and DMC concentration than temperature (22% vs. 55%). In the case of DMC, this 

expresses the clear relationship between the spectral absorbance and the abundance of 

carbohydrates and water contributing to the primary absorbance peaks between 729 and 975 nm. 

Clearly key information does not come exclusively from the parameter of interest, but instead is 

largely influenced by other external factors.  

Analyzing the data used to compose the cultivar models in this way offers a snapshot of 

the kind of variation PLS can find in the data, and which factors are driving the spread of the data. 

This is critical as it offers a better understanding of how the models are capturing relationships in 

the training data. With this understanding, it can be better understood how to apply the models in 

situations where physiological and environmental factors cannot be known but can be confidently 

assumed. Examples of these assumptions are instances of field applications of models used when 

the maturity of the new sample is generally understood to be within the range of maturities 

represented in the training data or the temperature of the orchard is known to be between the 

temperatures of the samples used to calibrate the temperature model. With broad representative 

ranges of the parameter of interest are captured, and possibly more importantly the ranges of 

physiological and environmental factors are represented, the likelihood that new samples from 
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various temperatures, maturities, cultivars, and seasons fall within the ranges of the samples in the 

training data. When new samples fall within these ranges, or just outside these ranges, it is most 

likely that the predicted value of the parameter of interest will have a comparable RMSEP to that 

of the training data, and the models will then be sufficiently robust.  

It is worth noting the likelihood of confounders within this data. Although few Vis-NIR 

studies mention the potential effects of confounding, it is safe to assume that a number of the 

selected environmental factors chosen for the variability they add to the data including fruit 

maturity, training system, canopy position, rootstock, and tree age will impact the carbohydrate 

content in the fruit and play a role in the way sugars are accumulating in the fruit and how the fruit 

is maturing (Minas et al., 2018; 2021; 2023). All these factors may cause confounding given the 

similar roles they play in fruit development are training system, canopy position, and tree age as 

well as the relationship they have with other physiological, namely vegetative growth processes 

e.g., canopy development/shading, tree size, ect., all relating to how the tree develops and impacts 

fruit development (Chalmers et al., 1978; Gullo et al., 2014).  Despite the presence of confounders 

in the data, it is evident that they are not inhibiting the model from making accurate predictions 

and therefore are not of considerable concern where model performance for field application is 

concerned. These confounders do, however, make it impossible to know with certainty which of 

the data sets are primarily responsible for model performance. The low error rates have led to the 

conclusion that PLS is sufficiently identifying relationships in the data which act as good 

predictors of quality and maturity.  

2.5. Conclusion 

 From the external validation of the 13 cultivars in 2022 and 2021 and the additional data 

from 2016 and 2017, it is determined that robust models for DMC, SSC, and IAD can be trained 
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with the inclusion of highly variable temperature, maturity, and cultivar data. Inspecting score 

plots made from the subsets of the training data revealed that variation in spectral data was 

determined firstly by factors such as temperature, maturity, cultivar, and season, and secondly by 

the abundance of DMC, SSC, or IAD. It was then observed that PLS models trained with as many 

as 15 LVs to capture the spectral variability were robust across seasons despite concerns of 

overfitting and were in fact not overfit. Models were also tested to assess their ability to make 

predictions not only on data from new seasons, but also data from new cultivars. The result of this 

exploration indicated that the models were able to make accurate predictions on new seasons while 

also showing improvements when making predictions on specific cultivars.  

 From this exploration of variance within the spectral data from various factors there is room 

for future applications of artificial neural networks, and other multivariate statistics which may 

produce more accurate quality and maturity predictions. It may be that these alternative methods 

are more adept at capturing relationships between the DMC, SSC, and IAD and the impact of 

environmental and physiological on NIR absorbance resulting in more accurate predictions. Before 

new models are fit, these PLS models should be further validated with data and reference values 

from other orchards near Grand Junction, CO, and other fruit growing regions to determine if the 

models are robust against location.  
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2.6. Tables 

 

Table 2.1. Effect of cultivar and harvest date on internal peach fruit quality (dry matter content, DMC and soluble solids 

concentration, SSC) and physiological maturity (index of absorbance difference, IAD) at commercial harvest maturity (fruit 

firmness, FF =30 – 50 N). ns, *, **, *** indicate no significance or significance at p-values of <0.05, 0.01, 0.0001;  
DMC, SSC, and FF were measured on opposite fruit sides (DMC measured on one side, SSC and FF on the other side). Measurements 
alternated between sun exposed and shaded sides of the fruit; statistical significance was assessed with the Tukey test for mean 
comparisons; Means in columns with the same letter indicate non-significance at P = 0.05. 
 

Cultivar Harvest Date DMC (%) SSC (%) IAD FF (N) 
‘Red Haven’ 7/27/2021 12.58 ef 11.23 ef 0.32 cd 40.29 a 
‘Galaxy’ 7/29 – 7/30/2021 15.81 b 15.12 a 0.54 a 40.61 a 
‘Newhaven’ 7/30 – 8/2/2021 11.85 fg 11.12 ef 0.41 bc 42.41 a 
‘Starfire’ 7/30 – 8/2/2021 11.49 g 10.03 g 0.26 de 42.71 a 
‘Glohaven’ 8/10/2021 12.10 fg 10.81 f 0.45 b 41.81 a 
‘PF-19’ 8/11/2021 13.07 de 11.58 def 0.23 de 41.01 a 
‘Suncrest’ 8/12 – 8/13/2021 13.82 cd 12.27 cd 0.50 ab 40.84 a 
‘Glowingstar’ 8/17/2021 12.96 de 12.65 bc 0.21 e 42.23 a 
‘Blushingstar’ 8/17 – 8/18/2021 12.58 ef 11.61 de 0.19 e 40.25 a 
‘PF-23’ 8/18/2021 13.56 d 12.44 c 0.26 de 40.99 a 
‘PF-24C’ 8/19/2021 13.41 d 12.46 c 0.23 de 42.46 a 
‘Angelus’ 8/25 - 8/30/2021 17.39 a 15.64 a 0.21 de  39.72 a 
‘O’Henry’ 9/8 - 9/13/2021 14.47 c 13.21 b 0.46 ab 41.11 a 
Significance   *** *** *** ns 
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Table 2.2. 2021 Cultivar specific model parameters for internal peach fruit quality (dry matter content, DMC and soluble solids 

concentration, SSC) and physiological maturity (index of absorbance difference, IAD). Each cultivar specific model’s number of 
latent variables and the corresponding Q2

, the indicator for model predictive power. Q2 presented in the table is maximum value (0 – 1) 
before noise in the data is included in the model as subsequent latent variables. Both the number of latent variables and the Q2 indicate 
the amount of variability in the training data explained with each iteration of the NIPLS algorithm. R2

cv indicates summarizes the model 
fit and k-fold is the number of folds set for the cross validation in order to produce the model value. 
 
 DMC SSC  IAD  
Cultivar # LV's Q

2

 R
2

CV k-fold # LV's Q
2

 R
2

CV k-fold # LV's Q
2

 R
2

CV k-fold 
‘Redhaven' 11 0.88 0.90 10 12 0.90 0.92 10 15 0.99 0.99 10 
‘Galaxy' 15 0.92 0.94 10 13 0.91 0.93 10 12 0.99 0.99 10 
‘Newhaven' 15 0.90 0.92 10 10 0.85 0.87 10 15 0.99 0.99 10 
‘Starfire' 13 0.94 0.95 10 12 0.91 0.92 10 15 0.99 0.99 10 
‘Glohaven' 14 0.93 0.94 10 11 0.91 0.92 10 15 0.99 0.99 10 
‘Pf-19' 14 0.88 0.91 10 12 0.91 0.92 10 15 0.99 0.99 10 
‘Suncrest' 13 0.91 0.93 10 11 0.89 0.90 10 15 0.98 0.99 10 
‘Glowingstar' 15 0.92 0.94 10 13 0.91 0.93 10 15 0.99 0.99 10 
‘Blushingstar' 14 0.89 0.91 10 10 0.83 0.85 10 15 0.99 0.99 10 
‘Pf-23' 15 0.88 0.90 10 13 0.88 0.89 10 15 0.99 0.99 10 
‘Pf-24' 12 0.92 0.93 10 13 0.86 0.88 10 15 0.98 0.98 10 
‘Angelus' 14 0.96 0.97 10 11 0.93 0.94 10 15 0.99 0.99 10 
‘O'Henry' 15 0.91 0.93 10 13 0.92 0.93 10 15 0.99 0.99 10 
Average 14 0.91 0.93 10 12 0.89 0.91 10 15 0.99 0.99 10 
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Table 2.3. Model fit and accuracy when making predictions on 100 fruit samples across 13 peach cultivars from 2021 growing 

season. R2 and RMSEP for each cultivar and parameter indicate how accurate the predictions were from each model when making 
predictions on the 2021 cultivar data used to train the model with k-fold cross validation. These values are internal predictions and do 
not indicate model robustness but do offer insight into how well each model is fit to the data. Given the internal predictions all error 
rates are lower than would be expected when making predictions on data gathered in a different season. All predictions for DMC and 
SSC are well below the detectable by consumers 1% difference in internal quality metrics (DMC and SSC), and IAD predictions 
characterize the physiological maturity of the fruit with precision to classify the fruit according to conventionally maturity classification. 
 
 DMC SSC  IAD  
Cultivar R

2
 RMSEP R

2
 RMSEP R

2
 RMSEP 

‘Redhaven' 0.90 0.36 0.69 0.47 0.97 0.04 
‘Galaxy' 0.87 0.42 0.70 0.55 0.97 0.04 
‘Newhaven' 0.84 0.34 0.67 0.44 0.99 0.04 
‘Starfire' 0.84 0.35 0.58 0.49 0.97 0.03 
‘Glohaven' 0.87 0.33 0.69 0.38 0.96 0.05 
‘Pf-19' 0.90 0.28 0.77 0.47 0.97 0.03 
‘Suncrest' 0.95 0.37 0.90 0.49 0.97 0.06 
‘Glowingstar' 0.93 0.32 0.65 0.61 0.89 0.05 
‘Blushingstar' 0.92 0.30 0.70 0.61 0.94 0.05 
‘Pf-23' 0.89 0.32 0.54 0.52 0.95 0.05 
‘Pf-24' 0.85 0.36 0.40 1.12 0.84 0.07 
‘Angelus' 0.87 0.54 0.65 0.93 0.96 0.05 
‘O'Henry' 0.91 0.40 0.67 0.65 0.98 0.06 
Average 0.89 0.36 0.66 0.59 0.95 0.05 
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Table 2.4. Comparison of ‘three-season’ models when making predictions on all four cultivar samples from the 2022 growing 

season. Each of the ‘three-season’ models was used to make predictions on the cultivar it was trained to measure as well as the other 
three cultivars used to train the other models. Performance of each model is very consistent across the four cultivars regardless of the 
model chosen to make predictions. This is interpreted as models being robust against change in cultivar, and that variation in the cultivar 
prediction data, not the model train data, causes differences in performance. 
 

Model: Three-Season ‘Redhaven’ 
‘Redhaven’ 2022 ‘Glohaven’ 2022 ‘Suncrest’ 2022 ‘Angelus’ 2022 

R
2 RMSEP R

2 RMSEP R
2 RMSEP R

2 RMSEP 
0.67 0.60 0.84 0.29 0.98 0.35 0.95 0.47 

        
Model: Three Season ‘Glohaven’ 

‘Redhaven’ 2022 ‘Glohaven’ 2022 ‘Suncrest’ 2022 ‘Angelus’ 2022 
R

2 RMSEP R
2 RMSEP R

2 RMSEP R
2 RMSEP 

0.64 0.69 0.79 0.37 0.98 0.36 0.97 0.40 
        

Model: Three Season ‘Suncrest’ 
‘Redhaven’ 2022 ‘Glohaven’ 2022 ‘Suncrest’ 2022 ‘Angelus’ 2022 

R
2 RMSEP R

2 RMSEP R
2 RMSEP R

2 RMSEP 
0.66 0.60 0.81 0.34 0.97 0.38 0.97 0.40 

        
Model: Three Season ‘Angelus’ 

‘Redhaven’ 2022 ‘Glohaven’ 2022 ‘Suncrest’ 2022 ‘Angelus’ 2022 
R

2 RMSEP R
2 RMSEP R

2 RMSEP R
2 RMSEP 

0.61 0.61 0.75 0.33 0.97 0.35 0.98 0.29 
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2.7. Figures 

 

 
Figure 2.1. Base model (2016) external validation performance for non-destructive internal 

peach fruit quality (dry matter content, DMC (A) and soluble solids concentration, SSC (B)) 

and physiological maturity (index of absorbance difference, IAD (C)) assessment across 13 

peach cultivars in a different growing season (2021).  

Each plot for each parameter and each cultivar shows the performance of each of the three base 
models built in 2016. The model with the best accuracy was selected as the foundation for cultivar 
specific models. The 2016 data and cultivar data from 2021 were combined as the training data for 
the initial cultivar specific models. 
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Figure 2.2. Cultivar specific model internal validation performance for non-destructive 

internal peach fruit quality (dry matter content, DMC (A) and soluble solids concentration, 

SSC (B)) and physiological maturity (index of absorbance difference, IAD (C)) assessment 

across 13 peach cultivars during the 2021 growing season.  

These plots indicate model accuracy and the relationships between actual and predicted values 
made with each cultivar model on the 2021 cultivar spectral data. The error from these predictions 
compared to the errors from the initial base model selection phase indicate improvement however 
these predictions are not external predictions and should not be compared directly. These 
predictions do indicate good model fit on the data based on cross validation. 
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Figure 2.3. Cultivar specific model external validation performance for non-destructive 

internal peach fruit quality (dry matter content, DMC (A) and soluble solids concentration, 

SSC (B)) and physiological maturity (index of absorbance difference, IAD (C)) assessment 

across 13 peach cultivars during the 2022 growing season that was not included in the 

training set.  
Model robustness is shown with the low RMSEP of these actual vs. predicted value plots when 
models trained with 2016 and 2021 data are validated on new data from 2022. For DMC, SSC, 
and IAD, error rates have slightly increased compared to internal predictions with 2021 data (see 

Figure 2.2), however, the margins are still within a range that indicate models are performing at a 
level that could be useful for grower management decision making.
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Figure 2.4. Comparison of multi-season (using one: base (2016); two: cultivar specific (2016 and 2021); or three seasons (2016, 

2017 and 2021) of data) and cultivar specific model external validation performance for non-destructive internal peach fruit 

quality (dry matter content, DMC (A) and soluble solids concentration, SSC (B)) and physiological maturity (index of 

absorbance difference, IAD (C)) assessment across four peach cultivars during the 2022 growing season that was not included in 

the training set. 

Plots showing the similarities in model robustness for the base, cultivar specific, and three season models. The similarity in RMSEP 
indicates that all models are robust, and that there was not significant improvement from subsequent additions of new data. 
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Figure 2.5. Visualization of the spread of data due to the effect of external factors such as 

temperature, maturity, cultivar and season in the data sets used to train robust models.  

Each of the base 2016 models was constructed with scans with spectral data at 0, 20, and 30 ˚C for 
each fruit sample to compensate for the effect of temperature on spectral absorbance. Each 
temperature plot is a visualization of the variance in the first two latent variables (LVs) of the 2016 
‘Redhaven’ data for each parameter while the maturity and cultivar plots are from the 2021 season. 
‘Redhaven’ was chosen as the representative cultivar. Each cultivar had a similar distributions of 
data points. The x and y axis indicates the percent of total variance explained by each LV. Points 
are color coded to indicate how the data is organized within the model between subsets of each 
factor (temperature, maturity, cultivar and season) based on the relationship between each model 
variable (600 – 750 nm and 729 – 975 nm) and the model outcome (DMC, SSC, IAD) determined 
using the NIPLS algorithm. The wide range of variance in the data contributes to how well the 
model will perform when external data falls within the spread of data reducing or eliminating 
extrapolation. By inspecting the variance explained by each LV and by visualizing the spread, it 
can be seen how temperature contributes to the spread of data points along the y axis explaining 
the majority of data variance from 2016. From the 2021 data, maturity and cultivar variance 
contributes to the spread although the tight grouping indicates that other factors are likely 
contributing to the spread of the data. The final column of graphs indicates the variance caused by 
growing season. The tight grouping shows both that each season is well represented in the data 
and offers insight into why models are so robust against change in season.  
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Figure 2.6. Visualization of impact range of DMC has variance and spread of data in the first 

latent variable (LV).  

As seen in Figure 2.5, temperature causes a broad spread along the y axis. Here is the same data 
but now the color coding reflects DMC split into three categories from low to high DMC. 
Compared to the temperature separation in Figure 2.5, DMC is largely responsible for the 
variation along the x axis. 
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