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ABSTRACT 
 
 
 

REFINED-SCALE CRASH DATA ANALYSIS USING 
 

MULTI-LEVEL REGRESSION MODELS 
 
 
 

Road traffic safety has long been a major public health problem for the general public and 

government agencies. Nevertheless, road traffic crashes continue to bring immeasurable pain and 

suffering to the society, as well as high financial expenses associated with medical bills and lost 

productivity. After identifying some key research gaps related to the existing crash modeling such as lack 

of insightful modeling of crash rates, time-varying explanatory variables, serial correlation, unobserved 

heterogeneity and multiple dependent variables, the objective of this dissertation is to narrow these gaps 

by systematically developing advanced multilevel models for traffic safety modeling. It is expected that 

series of new crash models developed in this dissertation not only contribute to the state-of-the-art crash 

modeling, but also add to the knowledge toward developing proactive traffic management strategy. The 

dissertation has eight chapters: Chapter one provides some background information and literature review. 

Chapter two presents crash rate analysis with data in refined scales to quantify the relation between crash 

rate and time-varying variables along with other contributing factors. In Chapter three, the unobserved 

heterogeneity issue on mountainous highways crash rates is examined by developing an advanced random 

parameter tobit model with panel data in refined temporal scale. Chapter four proposes a correlated 

random parameter marginalized two-part model as an alternative to study the relationship between crash 

rate and its contributing factors. Chapter five examines the differences of contributing factors towards 

injury severity on mountainous (MN) and non-mountainous (NM) highway crashes using mixed logit 

models. Chapter six studies the effects of weather and traffic characteristics on single-vehicle and multi-

vehicle crashes jointly by proposing a multivariate count data model which addresses unobserved 

heterogeneity across multiple dependent variables. In Chapter seven, a framework of Bayesian 

multivariate space-time model that can address spatial correlation/heterogeneity, temporal 
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correlation/heterogeneity, and the correlation between different injury severities is introduced. Chapter 

eight concludes this dissertation by summarizing major findings and sharing some observations in terms 

of future research. 
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CHAPTER 1 INTRODUCTION 
 
 
 
1.1 Background 

Road traffic safety has long been a major public health problem for the general public and 

government agencies. As one of the infrastructure systems that people have to deal with every day, a safe 

transportation system is critical to the overall welfare of the whole society. Nevertheless, road traffic 

crashes continue to bring immeasurable pain and suffering to the society, as well as billions dollars of cost 

regarding medical expenses and lost productivity. Recently, the World Health Organization estimated that 

road traffic crashes claimed 1.24 million death tolls every year, and seriously injured another 20 to 50 

million people (World Health Organization, 2013). In the U.S., there were 32,719 people died and an 

2,313,000 people injured in the 5,687,000 police-reported traffic crashes in 2013 (NHTSA, 2014). 

According to Centers for Disease Control and Prevention (2015), the leading cause of death for age group 

from 5 to 24 in the U.S. is road traffic crashes. With decades of efforts that researchers and practitioners 

have been putting together to prevent and mitigate motor vehicle crashes, the overall crash-related 

fatalities rates are decreasing in the U.S. in recent years. However, given the sheer high number of crashes 

and enormous life and financial losses resulted from traffic crashes every day, there is still a long way to 

go to mitigate the number of crashes and the resulting injury severity.  

A motor vehicle crash is a complicated process, which is usually determined by four main 

elements: human factors, vehicle factors, infrastructures and environmental conditions. In fact, Treat 

(1980) showed that human factors had contributed to around 95% of all motor vehicle crashes by playing 

a sole role or combined with other factors. However, this does not exonerate the infrastructure and 

environmental conditions from being attributable to crashes. Poch and Mannering (1996) pointed out that 

by identifying geometric conditions that lead to accidents, these conditions can be corrected thus 

accidents likelihood be reduced. Similar inference can be readily extended to other factors that contribute 

to accidents, such as traffic and environmental conditions. In addition, from the standpoint of a traffic 

safety researcher or engineer, it is of paramount importance to provide safer road infrastructure and 
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driving environment that could help reduce the possibility of human error and mitigate the consequences 

should an accident occur. 

Numerous accident studies have been attempted to quantify the impacts of a variety of casual 

factors on crash likelihood and the outcome of motor vehicle accidents. Over the years, highway safety 

researchers and engineers have putting an increasing emphasis on the particular role of road safety in the 

decision-making process from transportation planning, design to maintenance and operation. Such tasks 

are generally achieved by building statistical models that link various contributing factors to highway 

crash outcomes (i.e. crash rates, frequencies and injury severity levels). Statistical models can provide 

quantitative information about the impact of contributing factors on highway safety, and are vital to most 

highway safety studies. Two recent comprehensive reviews (Lord and Mannering, 2010; Savolainen et al., 

2011) summarized the limitations and strengths of these statistical models that are widely used to study 

crash frequencies and injury severity outcomes. These two reviews showed highway safety researchers 

and practitioners rely heavily on statistical tools to draw inference on motor vehicle crashes. In Highway 

Safety Manual (HSM), the whole Part C is devoted to predictive methods on crashes that are based on a 

series of statistical models (AASHTO, 2010), highlighting the importance of statistical models in 

highway safety studies. 

 Given the importance of statistical models, it is critical to develop sound and reliable ones for 

investigating highway crashes. Although methodological approaches have made promising progress in 

recent years to deal with various issues associated with crash dataset and methodologies (Mannering and 

Bhat, 2014), there are still some significant limitations in existing studies that require further investigation. 

One notable issue is about time-varying explanatory variables. In the absence of detailed data, highway 

safety studies generally adopt data that is highly aggregated in time domain, usually over a year or even 

several years. This leads to potential loss of important information associated with time-varying 

explanatory variables that are critical to crashes, and can also introduce errors in model estimation (Lord 

and Mannering, 2010; Washington et al., 2011). Advances in studies using refined-scale crash data are 
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clearly needed to investigate the relationship between highway safety and these time-varying variables, 

which can provide insightful guidance to local traffic agencies at the operational level. 

1.2 Literature Review 

1.2.1 Crash Occurrence Modeling 

Traffic accident modeling has long been an important research area for safety researchers. Two 

measures are commonly adopted in crash occurrence studies: crash frequency and crash rate. Crash 

frequency measures the number of motor vehicle crashes happening on some transportation facility (e.g. 

roadway segment, intersection) over a pre-specified time period, while crash rate is an exposure-based 

measure that represents the number of motor vehicle crashes happening per (100) million vehicle miles 

traveled (VMT). Crash frequency is a direct and easy-to-perceive measure of safety, and crash rate is a 

relative measure of safety which is widely adopted in crash reporting systems. Each measure has its own 

merits and shortcomings. Most of the research efforts have been focused on crash (accident) frequency 

modeling so far.  

1.2.1.1 Crash Frequency Models 

Since crash frequency analyses require handling of the dependent variable that is non-negative 

integer, Poisson regression model serves as a good starting point because it deals with heteroscedasticity 

and preserves the count data nature of crash frequency data. One major constraint of Poisson model is that 

it requires the mean of the crash counts to be equal to the variance, which is dubbed equal-dispersion. If 

the equal dispersion assumption is violated, parameter estimation will be biased which further leads to 

incorrect inferences (Shankar et al., 1995). Moreover, crash frequency data are usually characterized by 

over-dispersion (i.e. the variance exceeds the mean). To overcome the equal dispersion restriction of 

Poisson model, negative binomial models (a.k.a. Poisson-gamma model) were proposed and widely 

adopted to analyze crash frequencies (Abdel-Aty and Radwan, 2000; Carson and Mannering, 2001; 

Malyshkina and Mannering, 2010a; Noland, 2003; Poch and Mannering, 1996; Shankar et al., 1995). 

Many other models were developed as alternatives or extensions of Poisson and negative binomial models. 

The Poisson-lognormal model was developed as an alternative to negative binomial model in dealing with 
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over-dispersion, and showed more flexibility than the negative binomial model (Aguero-Valverde, 2013a; 

Miaou and Lord, 2003). In light of excess zero observations in crash data, Miaou (1994) proposed zero-

inflated Poisson model. Zero-inflated Poisson and negative binomial models assume a dual state (crash-

free and crash-prone state) and show to provide a better fit than their Poisson and negative binomial 

counterparts (Huang and Chin, 2010; Lord et al., 2005; Shankar et al., 1997, 2003). Lord et al. (2005), 

however, argued that zero-inflated models cannot reflect underlying data generating process because the 

safe state has zero long-term mean. Malyshkina and Mannering (2010b) proposed a zero-state Markov 

switching model to overcome the shortcoming of the zero-inflated model. The finite mixture model is a 

more recent development that assumes that observations come from several unknown subgroups. Park 

and Lord (2009) examined the application of finite mixture count data model and argued that it can 

capture group-level unobserved heterogeneity as opposed to observation-level unobserved heterogeneity. 

Although the development of these sophisticated statistical models has contributed greatly to extracting 

more information out of existing crash data sources, improvements in data quality are believed to benefit 

the development of safety models and further policy implications. 

1.2.1.2 Crash Rate Models 

In contrast to a large number of literatures about different count-data models for crash frequency 

analyses (Lord and Mannering, 2010), studies that focused on crash rate are very limited. From the 

methodological perspective, crash rates modeling involves continuous data, which are usually left-

censored at zero. This is because roadway segments without any accident reported over a specified time 

period will simply generate zeros on accident records, setting up a data clumping at zeros. 

Anastasopoulos et al. (2008) dubbed this effect as censoring effect. In light of the censoring effects in 

crash rate data, Anastasopoulos et al. (2008) applied tobit model instead of linear regression to study 5-

year highway accident rates in the state of Indiana. They have not only demonstrated tobit model as a 

proper approach, but also identified some important contributing factors to crash rates, including 

pavement characteristics, geometric features and traffic characteristics. However, their statistical models 

were limited by assuming fixed parameter across observations. To handle unobserved heterogeneity 
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across observations,  Anastasopoulos et al., (2012a) further developed a random-parameters tobit model, 

which showed superiority over its fixed parameter counterpart in terms of goodness of fit. Their results 

indicated that some parameters have mixed effects on accident rates. Xu et al. (2013) investigated 

influencing variables of crash rates on arterial streets in Las Vegas using tobit model. Other studies also 

extended tobit regression to a multivariate setting, and analyzed accident rates on different injury levels 

(Anastasopoulos et al., 2012b). All these studies have contributed to the understanding of highway safety. 

One common limitation of these previous studies, however, is that they all exploited highly aggregated 

data. Weather and traffic-related variables, which have been well established to have significant impact 

on highway safety, were either not adequately addressed or not even considered in the model. In contrast 

to various models to study crash frequencies, only tobit model was used to examine crash rates so far. 

Development of more appropriate models to study crash rates could potentially provide more predictive 

and explanatory power over tobit model. 

1.2.1.3 Multilevel Models 

With refined data in both spatial and temporal domains, serious correlation problems may exist 

among the records, setting up a structure in the data. A Multilevel model is an ideal way to deal with 

different structures in the data. In this dissertation, the terms “multilevel model” and “hierarchical model” 

will be used interchangeably. A term closely associated with multilevel models is panel data (also known 

as cross-sectional time-series data) models. these models have been widely used in econometric, social 

and behavioral analyses, and have gained popularity among safety specialists due to their capacity to 

address both time-series and cross-sectional variations. In crash modeling arena, panel data models can be 

mainly generalized into three categories: fixed effects (FE) models, random effects (RE) models, and 

random parameters (RP) models. A FE model has some appeals in panel data modeling because of not 

requiring the assumption about unobserved heterogeneity (Greene, 2008). Nonetheless, FE models 

usually require estimations of a vast number of parameters (e.g. site-specific or time-specific indicator 

variables), which may dominate the contributing factors. As compared to FE model, RE model is 

generally more popular in modeling crash data with repeated observations (Aguero-Valverde, 2013a; 
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Chin and Quddus, 2003; Qi et al., 2007; Shankar et al., 1998). Recently, random-parameter (RP) model 

was proposed as a general extension of RE model to allow not only the constant term but also the 

coefficients to vary across observations (Anastasopoulos and Mannering, 2009; Lord and Mannering, 

2010). In addition to these three most frequently used types of panel data models, there were also some 

other research attempts to account for temporal and spatial correlations in accident occurrence, such as 

negative multinomial model (Caliendo et al., 2013; Ulfarsson and Shankar, 2003), generalized estimating 

equation (GEE) model (Lord and Persaud, 2000; Wang and Abdel-Aty, 2006), and time-series model 

(Mohammed A Quddus, 2008). However, most of these studies focused on crash frequency prediction by 

applying panel data with repeated yearly observations, rather than data in more refined scales. The policy 

implications inferred from these studies are then limited, in a way that they merely focused on improving 

geometric designs. 

1.2.2 Injury Severity Models 

Apart from crash occurrence, injury severity is another significant aspect of crash risk. Injury 

severity data from police reports are usually measured on KABCO scale: fatal injury or killed (K), 

incapacitating injury (A), non-incapacitating injury (B), possible injury (C), and property damage only 

(O). Being capable of accounting for the ordinal nature, traditional ordered probability models (ordered 

probit and ordered logit) have been widely applied to study injury severity outcomes (Chimba and Sando, 

2009; Christoforou et al., 2010; Xie et al., 2009). However, Savolainen et al. (2011) pointed out that a 

traditional ordered model has two major problems when applied to injury severity data. First, it is very 

vulnerable to underreporting of crashes which is a well-known problem with police-reported crash data. 

The second limitation is associated with the restriction that it imposes on how the variables affect 

outcome probabilities (see Fig. 1.1). Multinomial logit models, on the contrary, do not place the same 

restriction on variables as traditional ordered probability models do. They can produce correct parameter 

estimates even in the presence of underreporting problem. On the downside, multinomial logit models 

ignore the ordinal nature of injury severity data and require independence of irrelevant alternatives (IIA) 

property. Mixed logit models (McFadden and Train, 2000) relax the IIA assumption of multinomial logit 
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models by introducing correlation in unobserved factors. Given the flexibility and methodological 

superiority, mixed logit models have been the state-of-the-art technique since their inception (Chen and 

Chen, 2011; Milton et al., 2008). Besides random parameter models (e.g. mixed logit model), latent class 

models have also gained recognition recently (Cerwick et al., 2014; Eluru et al., 2012). Differing from 

mixed logit models, latent class models can accommodate group specific unobserved heterogeneity and 

relax continuous distributional assumptions for random parameters. However, latent class logit models do 

not deal with individual unobserved heterogeneity as mixed logit models do. No consensus has yet been 

made regarding which approach is superior given the fact that both approaches have their respective 

strengths and limitations (Xiong and Mannering, 2013). 

 

Figure 1.1 The limitations of the standard ordered probability model (Washington et al., 2011) 
 

1.2.3 Multivariate Crash Frequency 

As discussed above, traffic crashes are investigated using univariate models without further 

distinguishing crashes by different types (Chen et al., 2014; Chin and Quddus, 2003; Johansson, 1996; 

Ma et al., 2015a; Malyshkina and Mannering, 2010b; Shankar et al., 1995). Recognizing the need of 

accounting for unobserved factors across different types of crashes, Ma and Kockelman (2006) adopted a 

multivariate Poisson (MVP) model to analyze accidents by injury levels. Their results indicated that a 
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MVP regression is superior to its univariate counterparts. Given that MVP cannot accommodate over-

dispersion, Ladrón de Guevara et al. (2004) applied a multivariate negative binomial (MVNB) model to 

investigate fatal, injury and property-damage crashes simultaneously. However, MVNB assumes a 

gamma distributed error which is motivated merely by mathematical convenience, and it does not allow 

negative correlation structure. In order to overcome the drawbacks of MVP and MVNB, Chib and 

Winkelmann (2001) proposed a multivariate Poisson lognormal (MVPL) model. It is not only capable of 

addressing over-dispersion but also allows a full general correlation structure. Given its strengths, MVPL 

has been widely applied in traffic safety studies (Aguero-Valverde and Jovanis, 2009; El-Basyouny et al., 

2014; El-Basyouny and Sayed, 2009a; Ma et al., 2008; Park and Lord, 2007). It is worth noting that most 

of these past research endeavors have mainly focused on multivariate cross-sectional count data. Panel 

data, which can capture unobserved factors, has become popular in traffic safety studies recently. A 

variety of panel data models, such as random effects and random parameter models, have been widely 

applied in univariate models (Chen et al., 2014; Chin and Quddus, 2003; Ma et al., 2015a; Qi et al., 2007; 

Shankar et al., 1998). However, so far multi-level model has rarely been explored to study crash 

frequencies and injury severity levels simultaneously.  

1.2.4 Factors Affecting Crash Occurrence 

A large number of factors contribute to the likelihood of a motor vehicle accident. These 

contributory factors can be categorized into human factors, traffic flow characteristics (e.g. annual 

average daily traffic (AADT) and traffic speed), roadway characteristics (e.g. geometric designs and 

pavement conditions), and environmental conditions (e.g. weather and surface conditions). Ideally, all 

categories of factors should be incorporated to develop Safety Performance Functions (SPF). 

Nevertheless, not all these types of factors have been given equal attention in the past, possibly due to the 

limitation of crash datasets available to the analysts. A brief review of these contributing factors is 

presented in this section. 

The relationship between crash occurrence and roadway geometry has been extensively 

documented in the literature (Anastasopoulos and Mannering, 2009; Ma and Kockelman, 2006; Milton 
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and Mannering, 1998; Shankar et al., 1998; Venkataraman et al., 2014). For example, Milton and 

Mannering (1998) examined the association between various geometric features and crash frequency 

while controlling for traffic exposure. They found that some geometrics have significant impacts on crash 

frequency. Ma et al. (2008) developed a multivariate Poisson-lognormal model for crash frequencies by 

severity level and found that geometrics such as horizontal curve length, the degree of curvature, and 

vertical curve length contributed to crash likelihood. 

For weather characteristics, most of the past research emphasized the impact of precipitation, 

including rainfall, rainfall intensity and snowfall. A recent review (Theofilatos and Yannis, 2014) pointed 

out that most existing studies show that precipitation tends to increase crash risks. However, the adoption 

of precipitation is clearly inferior to more direct variables, such as road surface condition and visibility. 

These variables can better reflect true effects of precipitation on crash risks. Again, these studies were 

conducted on highly aggregated data, which is an obvious limitation. For traffic characteristics, the 

relationship between speed and crash frequency has always been under debate (Wang et al., 2013a). 

Although some researchers showed that accidents risk increases with the mean traffic speed (Aarts and 

Van Schagen, 2006), some empirical evidence showed otherwise (Pei et al., 2012). Pei et al. (2012) 

argued that it is essential to incorporate disaggregated speed data to study the relationship between speed 

and road safety. These studies showed the significance of time varying weather and traffic variables, 

where their effects were usually not comprehensively addressed.  

1.3 Current Research Gaps 

Based on the above literature review, some research gaps in existing literature are then identified 

including the lack of study in crash rates, time-varying variables, serial correlation and unobserved 

heterogeneity. Detailed discussion on these research gaps is given in the following section. 

1.3.1 Lack of Study in Crash Rates 

For studies on the occurrence of crashes, most of the focus has been placed on crash frequencies, 

which measure the number of accidents on some road transport facilities over some time period. As an 

important alternative to crash frequencies, crash rates (measured as the number of accidents per million 
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vehicle miles traveled (VMT)) modeling can be promising because of its popularity in traffic safety 

performance assessments by different stakeholders. Compared to abundant literature on crash frequencies, 

studies on crashes rates are very limited (Anastasopoulos et al., 2012a, 2012c, 2008; X. Xu et al., 2013). 

More studies on crash rates are clearly desired to fill such a gap and achieve better understanding towards 

motor vehicle crashes. 

1.3.2 Time-varying Explanatory Variables 

Past studies on crash frequencies and crash rates were usually conducted over some extended 

time period, often, a long one ranging from a year to several years. These studies were geared towards 

providing guidance for policies and countermeasures to reduce the number of crashes. However, they are 

unable to capture the impact of explanatory variables (e.g. weather conditions and traffic characteristics) 

that vary significantly over the specified time period. This limitation undermines the models’ explanatory 

power, especially for time-varying variables (weather and traffic variables) as their variations are 

neglected due to aggregation. Omitting these time-varying explanatory variables not only leads to the loss 

of valuable information over the specified time period but also introduces error and bias in model 

estimation as a result of the unobservable (Lord and Mannering, 2010; Washington et al., 2011).  

Traffic safety researchers have long recognized that time-varying variables (e.g. weather and 

traffic related variables) are critical factors in crash analyses (Theofilatos and Yannis, 2014; Wang et al., 

2013a). However, most of these existing studies were still conducted on a high aggregation level possibly 

due to data availability problem. For weather characteristics, these studies adopted variables such as 

annual precipitation (Chang and Chen, 2005), monthly rainfall (Yaacob et al., 2010), weekly averaged 

precipitation (Malyshkina et al., 2009) and some proxy variables (Caliendo et al., 2007) to represent 

weather effects. In fact, without studies conducted at the more disaggregated level, it may result in 

ecological fallacy which indicates that relationship observed in aggregated level may not hold at 

disaggregate level (Davis, 2004; Freedman, 1999). Highway safety studies that adopt refined-scale data 

are still rare, thus are needed to disclose the actual impact of these time-varying variables on motor 

vehicle crashes.  
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Recent advances in Intelligent Transportation System have made detailed monitoring of real-time 

traffic and weather data available on most highways in the U.S. The incorporation of these real-time 

traffic and weather data into crash models could potentially bring more valuable and insightful 

understanding of crash mechanism, and makes it possible for real-time crash risk to be incorporated into 

the intelligent proactive traffic management system.  

1.3.3 Serial Correlations 

Given the limitation and potential benefits associated with time-varying variables, it is necessary 

to overcome these issues resulted from time-varying variables. However, it requires not only accessing 

high-quality data but also addressing some of the methodological challenges that come along with the 

adoption of high-quality data. To begin with, processing crash data into refined-scale generates multiple 

observations for the same roadway segments, and these repeated observations on the same roadway 

segments will be correlated over time. By the same token, if the roadway segments are in close proximity, 

it can set up correlation over space as well. This leads to serial correlation in the disturbances of the 

model, which violates a fundamental assumption in the regression models (identically independent 

distributed assumption). Panel data model was widely applied in the literature to address serial 

correlations in the data, however, its capability to consider spatial and temporal correlation based on 

neighboring structure is limited. More specialized models such as spatial model and spatio-temporal 

model are preferred in this regard.  

1.3.4 Unobserved Heterogeneity 

In general, motor vehicle crash is a highly complex process, which relates to various contributing 

factors. These contributing factors include roadway geometrics, traffic characteristics, environmental 

conditions and human elements. It is nearly impossible to collect all the data that contribute to a highway 

accident and its resulting injury severity, especially those related to human factors. As a result, the 

impacts of these unobserved factors on the likelihood of a highway accident cannot be adequately 

captured by the explanatory variables in the model, leading to unobserved heterogeneity problem 

(Mannering et al., 2016). If the unobserved heterogeneity is not appropriately addressed in the model, 
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inconsistent parameters estimates would be estimated and erroneous inferences would be made 

consequently.  

1.3.5 Multiple Dependent Variables 

Crash frequency of different crash types or injury severity levels may share some unobserved 

factors. However, most literature on highway crash studied the total number of crashes over a specified 

time period for some roadway segments or intersections, without distinguishing subgroups of these 

crashes (crashes of different injury severity, different type, etc.) and capturing correlations between these 

subgroups. To examine the frequency of different crash type or injury severity, separate models were 

traditionally conducted, which suffers the loss of efficiency in parameter estimation. As discussed in 

section 1.2.3, multivariate count data models are applied to address multiple dependent variables in crash 

analysis. A major drawback of the current multivariate count data models is that they are designed only 

for cross-sectional data. Multivariate count data model that addresses panel data and data with spatial-

temporal structure is very limited in crash modeling. 

1.4 Objectives 

Given the current research gaps identified in the section above, the objective of this dissertation is 

to narrow these gaps by systematically developing advanced multilevel models for traffic safety modeling. 

It is expected that series of new crash models developed in this dissertation not only contribute to the 

state-of-the-art crash modeling, but also add to the knowledge toward developing proactive traffic 

management strategy. At the same time, some empirical problems regarding two major highways I-25 and 

I-70 in Colorado are also studied. Specifically, the objectives of the current dissertation are as follows: 

The first objective is to conduct crash rate analysis with data in refined scales to quantify the 

relation between crash rate and time-varying variables along with other contributing factors. The findings 

from this study help researchers gain a better understanding of the effects of the time-varying variable. 

The second objective is to examine the unobserved heterogeneity issue on mountainous highways 

crash rates by developing an advanced random parameter tobit model with panel data in refined temporal 

scales. The results can reveal the random nature of some contributing variables on crash rates. 
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The third objective is to propose a correlated random parameter marginalized two-part model as 

an alternative to study the relationship between crash rates and its contributing factors. The proposed 

model is not only theoretically appealing but also provides a better fit to the data. 

The fourth objective is to examine the differences of contributing factors towards injury severity 

on mountainous (MN) and non-mountainous (NM) highway crashes using mixed logit models. 

Mountainous highways usually exhibit complex geometry features such as steep gradients or sharp curves, 

which can cause considerably different driving behavior and vehicle performance as compared to non-

mountainous ones. The results could provide directions on tailored injury mitigation countermeasures 

regarding MN and NM crashes.  

The fifth objective is to study the effects of weather and traffic characteristics on single-vehicle 

and multi-vehicle crashes jointly by proposing a multivariate count data model that addresses unobserved 

heterogeneity across multiple dependent variables. The proposed model addresses multivariate count data 

model in a panel setting. 

The sixth objective is to introduce a framework of Bayesian multivariate space-time model that 

can address spatial correlation/heterogeneity, temporal correlation/heterogeneity, and the correlation 

between different injury severities. 

1.5 Outline of the Dissertation 

To fulfill these objectives described in preceding section, the rest of the dissertation is divided 

into seven chapters structured as follows: 

Chapter two examines the impacts of time-varying variables on hourly crash rates by combining 

real-time traffic data, real-time weather data, geometric data and crash data from highway I-25 in 

Colorado. This section aims at 1) quantifying the relation between crash rate and its contributing factors, 

and 2) examining the difference between daytime and nighttime crashes. The random effects tobit model 

was proposed to handle the panel data nature. The proposed models address left-censoring effects of the 

crash rates data while accounting for unobserved heterogeneity across roadway segments and serial 

correlations within the roadway segment in the meantime. To capture different characteristics, two 
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separate models for daytime crashes and nighttime crashes are developed using refined-scaled data. 

Marginal effects are also calculated to examine the effects of each variable on daytime and nighttime 

crash rates. 

Chapter three investigates the relationship between contributing factors and hourly crash rates on 

the mountainous highway I-70 by addressing unobserved heterogeneity across roadway segments using 

an advanced random parameter tobit model. Specifically, refined-scale weather and traffic data are 

incorporated with crash data to capture the varying nature of complex driving conditions on I-70. Random 

parameter tobit model, which offers improved capability to handle unobserved heterogeneity, is 

developed along with its fixed parameter counterpart. Model comparison is also conducted by performing 

likelihood ratio test and comparing the goodness of fit measures. 

Chapter four attempts to propose a marginalized two-part model coupled with a correlated 

random parameter structure as an alternative to tobit model to study crash rates. The proposed 

methodology is demonstrated by investigating daily crash rates on I-25 in Colorado. The applicability and 

potential advantages of the marginalized two-part model as an alternative tool to study crash rates are also 

explored by addressing those methodological challenges associated with time-varying variables, temporal 

correlations, and unobserved heterogeneity. The proposed model shows superiority over other alternative 

models in terms of goodness of model fit. 

Chapter five aims at investigating the differences in injury severity characteristics between 

mountainous and non-mountainous interstate highways through a comparative study. One major interstate 

highway with typical mountainous (MT) terrain and another one with non-mountainous (NM) terrain in 

Colorado have been selected for this chapter. A comparative investigation of the impact on injury severity 

from mountainous and non-mountainous highways is conducted. Separate mixed logit models are 

estimated for both highways with four-year detailed police reported crash data. Elasticity measures are 

also computed to identify most critical factors influencing injury severity outcomes for both types of 

highways. The mixed effects of some variables towards injury severity on MT and NM crashes are 

revealed. 
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Chapter six focuses on: (1) examining whether bivariate Poisson-lognormal with correlated 

segment level random effects (CREBPL) is appropriate for analyzing single-vehicle (SV) and multi-

vehicle (MV) crashes under multivariate panel data; and (2) studying the impact of weather and traffic 

conditions in addition to exposure and geometric conditions on SV and MV crashes. In light of serial 

correlations in the data, two alternative models are proposed in addition to CREBPL: (1) bivariate 

Poisson-lognormal model (BPL), and (2) bivariate Poisson-lognormal model with independent segment 

specific random effects (UREBPL). To investigate the superiority of CREBPL, several goodness of fit 

measures are compared between different models. Finally, the effects of weather variables on SV and MV 

crashes are examined. 

Chapter seven investigates the application of multivariate space-time models to jointly analyze 

crash frequency by injury severity levels in fine temporal scale. A framework of Bayesian multivariate 

space-time model is developed to address spatial correlation and/or heterogeneity, temporal correlation 

and/or heterogeneity, and correlations between crash frequencies of different injury severity level. A 

series of multivariate space-time models are proposed under the Full Bayesian framework with different 

assumptions on the spatial and temporal random effects. The proposed methodology is illustrated using 

one-year daily traffic crash data from the mountainous interstate highway I70 in Colorado, which is 

categorized into no injury crash and injury crash. The best model within the framework is identified 

through comparing the goodness of fit measures including DIC and posterior predictive checks. 

Chapter eight concludes the dissertation by summarizing the major findings and sharing 

observations in terms of future research directions.  
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CHAPTER 2 REFINED SCALE PANEL DATA CRASH RATE ANALYSIS USING RANDOM-
EFFECTS TOBIT MODEL1 

 
 
 
2.1 Introduction 

Traffic accident modeling has long been an important research area for safety researchers, and a 

lot of research efforts have focused on crash (accident) frequency. In addition to crash frequency, crash 

rate is another important highway safety indicator with some different appeals. For example, the adoption 

of crash rate offers standardized traffic safety measure which can more conveniently assess the relative 

risks among different road segments (Anastasopoulos et al., 2008). Several significant challenges about 

current crash frequency models have been identified in the comprehensive review study conducted by 

Lord and Mannering (2010). Among all those, some challenges are also shared by crash rate models, such 

as time-varying explanatory variables, temporal and spatial correlations.  

Crash frequency or crash rate analyses were typically conducted in large scales in both temporal 

(e.g. yearly) and spatial (e.g. whole road) domains. It is known that the adoption of aggregated 

explanatory variables in larger scales ignores the within-period variation of explanatory variables, which 

will result in “the loss of potentially relevant explanatory information” (Lord and Mannering, 2010) and 

introduce error in model estimation due to unobserved heterogeneity (Washington et al., 2011). To 

develop crash risk models in refined scales requires not only the availability of the disaggregated data, but 

also overcoming some technical challenges, such as correlations by sharing unobserved effects among 

multiple observations generated from the same road segments and/or time period (Lord and Mannering, 

2010; Lord and Persaud, 2000; Shankar et al., 1998; Sittikariya and Shankar, 2009; Ulfarsson and 

Shankar, 2003). More detailed review of these challenges will be made in Section 2.2. 

As compared to normal driving conditions, refined-scale traffic safety modeling is more critical in 

adverse driving conditions, under which the explanatory variables often change considerably over 

different time instants and locations, such as weather, traffic and road surface conditions. As a result, both 

                                                      

1 This chapter is developed from a research paper published by Chen et al. (2014). 
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time-varying and spatially varying (cross-sectional) data need to be considered in smaller scales, which 

make the temporal and spatial correlations even more complicated. Panel data with random effects has 

been used in recent years to deal with the temporal or spatial correlation issues (Qi et al., 2007; Shankar et 

al., 1998; Ulfarsson and Shankar, 2003). Despite all the progress on advanced statistical models of 

adopting panel data, most studies were primarily on crash frequency predictions. Crash rate modeling 

with refined scales, with or without panel data application, has rarely been reported.  

In contrast to a large number of literature about different count-data models for crash frequency 

prediction (Lord and Mannering, 2010), the studies on crash rate are limited. From the statistical 

perspective, crash rate modeling involves continuous data, which is usually left-censored at zero. This is 

because roadway segments without any accident reported over a specified time period will just yield zero 

on accident rate data record. To handle the censoring problem of crash rate prediction, Anastasopoulos et 

al. (2008) successfully employed tobit model on the highway accident rate data in the state of Indiana. To 

handle unobserved heterogeneity across observations, Anastasopoulos et al. (2012a) further developed a 

random-parameters tobit model, which demonstrated superiority over its fixed parameter counterpart 

regarding the goodness of fit. Xu et al. (2013) used tobit regression to investigate the endogeneity 

problem between crash rate and travel speed. Other studies also include the multivariate tobit analysis on 

crash rate for each injury type ( Anastasopoulos et al., 2012b).  

Most of the existing models on crash frequency or crash rate were developed by combining both 

daytime and nighttime data as a whole, based on the assumption that traffic safety during daytime and 

nighttime share same contributing factors and characteristics. It is known that driving environments at 

daytime and nighttime are very different due to varying light, environmental and traffic conditions 

affecting driver behavior and, eventually traffic safety risks. In recent years, there have emerged a few 

studies modeling crash frequency for daytime and nighttime separately (Bullough et al., 2013; Dinu and 

Veeraragavan, 2011; Donnell et al., 2010), which have shown a considerable difference in contributing 

factors towards crash frequency between daytime and nighttime. So far, however, there is no such study 
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reported on the crash rate, and it remains unclear whether separate modeling of the crash rate for daytime 

or nighttime is needed or not.  

The present chapter aims at conducting crash rate study with refined-scale data in both temporal 

and spatial domains to identify the relation between crash rate and its contributing factors. The section 

integrates the strength from both the random effect tobit model and the panel data formulation of specific 

driving conditions such as geometry characteristics, traffic flow data, weather conditions, and road 

surface conditions. As a result, the outlined challenges associated with the censoring problem of crash 

rate, aggregated explanatory variables, temporal and spatial correlation can be appropriately addressed 

(Lord and Mannering, 2010). To capture different traffic characteristics, two separate models for daytime 

crashes and nighttime crashes are developed using refined-scale data. Some brief reviews of the topics 

related to the present chapter are made in the following section. 

In most existing studies, aggregated accident data and associated contributing factors were often 

considered in large time intervals and spatial domains, partially due to the unavailability of detailed data. 

The contributing factors are generally aggregated into monthly or even yearly intervals and over region-

wide or long roadway segments. In adverse driving conditions, detailed weather and other environment-

related factors (e.g. precipitation, visibility, wind, humidity, pavement characteristics, road surface 

condition, etc.) are often found critical in causing a crash. As a result of adopting aggregating data, some 

potential explanatory information may be lost and some factors’ effects towards crash occurrence can be 

masked during data aggregation (Lord and Mannering, 2010; Usman et al., 2011). Recently, researchers 

have started to incorporate more influencing factors in refined scales. Keay and Simmonds (2005) 

examined the relation between rainfall and daily collision data in Australia. Usman et al. (2010) are 

among the first to build disaggregated hourly model to study crash frequency incorporating weather and 

surface data. It was found hourly traffic volume, hourly road surface condition, and other hourly weather 

factors are important for collisions during winter storms. Abdel-Aty et al. (2004) analyzed the effects of 

traffic characteristics towards freeway crashes using real-time loop detector data. Abdel-Aty and 

Pemmanaboina (2006) combined the real-time ITS traffic data, the archived weather data, and the 
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historical accident data to calibrate the crash prediction model. Other research attempts of building 

disaggregated data model by incorporating traffic flow, weather data, surface condition and other factors 

can be found in the studies by Hossain and Muromachi (2013), Usman et al. (2012) and Yu et al. (2013a, 

2013b). In contrast to the progress on crash frequency modeling as summarized above, crash rate 

modeling in refined scales has rarely been reported.   

With refined data in both spatial and temporal domains, serious correlation problems may exist 

among the records. Panel data (also known as cross-sectional time-series data) models, which have been 

widely used in the econometric, social and behavioral analysis, gained its popularity among safety 

specialists due to its capacity to address both time-series and cross-sectional variations. In crash modeling 

arena, panel data models can be mainly generalized into three categories: fixed effects (FE) models, 

random effects (RE) models, and random parameters (RP) models. An FE model has some appeals in 

panel data modeling because of not requiring the assumption about unobserved heterogeneity (Greene, 

2008). Nonetheless, FE models require estimations of a vast number of parameters (e.g. site-specific or 

time-specific indicator variables), which may dominate the contributing factors. As compared to FE 

model, RE model is usually more prevalent in modeling crash data with repeated observations (Aguero-

Valverde, 2013a; Chin and Quddus, 2003; Qi et al., 2007; Shankar et al., 1998). Recently, the random 

parameter (RP) model was proposed as a general extension of RE model to allow not only the constant 

term but also the coefficients to vary across observations (Anastasopoulos and Mannering, 2009; Lord 

and Mannering, 2010). In addition to these three most frequently used types of panel data models, there 

were also some other research attempts to account for temporal and spatial correlations in accident 

occurrence, such as negative multinomial model (Caliendo et al., 2013; Ulfarsson and Shankar, 2003), 

generalized estimating equation (GEE) model (Lord and Persaud, 2000; Wang and Abdel-Aty, 2006), and 

time-series model (Mohammed A Quddus, 2008). However, most of these studies focus on crash 

frequency prediction by applying panel data with repeated yearly observations, rather than data in more 

refined scales.  
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2.2 Methodology 

In this section, the base tobit model proposed by Tobin (1958) will be adopted as the starting 

point to study the left-censored crash rate data. Under panel data formation, repeated observations are 

given for each group (e.g. roadway segments or intersections). As discussed above, correlations may exist 

among these repeated observations. A tobit model with random effects is therefore proposed as it is 

capable of accounting for both censoring effects and serial correlations (temporal or spatial correlations, 

depending on the panel data setting). The application of random effects tobit model is undertaken to 

account for such correlations across observations in addition to unobserved heterogeneity. In the present 

chapter, random effects tobit model will be developed based on a typical left-censored tobit model (with a 

lower limit of zero). A baseline structure for a left-censored tobit model with panel data can be described 

as follows: 

௜ܻ௧∗ = �௜௧�௜௧ + �௜௧ , ݅ = ͳ,… ,ܰ, ݐ = ͳ,… , �௜ (2.1) 

and 

௜ܻ௧ = { ௜ܻ௧∗   if  ௜ܻ௧∗ > ͲͲ    if  ௜ܻ௧∗ ൑ Ͳ (2.2) 

where N is the number of groups (i.e. the number of roadway segments), �௜ is the number of the repeated 

observations for roadway segment ݅ , ௜ܻ௧  is the dependent variable (accident rate per million miles 

travelled) and ܻ௜௧∗  is the latent variable which is observed only when being positive. �௜௧ is a vector of 

explanatory variables (traffic condition, geometric characteristic, temporal characteristic weather 

condition, surface condition, etc.), �௜௧ is a vector of estimable coefficients, and �௜௧ is the error term.  

The random effects tobit model is formed by decomposing the error term �௜௧ into two parts: �௜௧ = ௜ߤ + ߭௜௧ (2.3) 

where ߤ௜ is the random effects term which follows normal distribution with mean 0 and variance �ఓଶ, and ߭௜௧ is the remaining disturbance term which follows a normal distribution with mean 0 and variance �జଶ. ߤ௜ and ߭ ௜௧ are constructed in a way such that the following equations hold: if ݅ = ݆ and ݐ =  ݏ
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Cov[߭௜௧ , ௝߭௦|�] = Var[߭௜௧|�] = �జଶ (2.4a) 

Otherwise Cov[߭௜௧ , ௝߭௦|�] = Ͳ (2.4b) if ݅ = ݆ Cov[ߤ௜ , [�|௝ߤ = Var[ߤ௜|�] = �ఓଶ (2.5a) �therwise Cov[ߤ௜ , [�|௝ߤ = Ͳ (2.5b) Cov[߭௜௧ , [�|௜ߤ = Ͳ for all ݅, ,ݐ ݆ (2.6) 

Then ݎݎ݋ܥ[�௜௧ , �௜௦|�] = �ఓଶ/ሺ�జଶ + �ఓଶሻ (2.7) 

Possible serial correlation, which arises from the time-series nature of panel data, can be 

adequately accounted for through Eq. (2.7). The essential assumption for the random effects tobit model 

to distinguish itself from its fixed effects counterpart is that the heterogeneity (i.e. random effects) is 

assumed to be uncorrelated with the independent variables �௜௧′ . Thus, the corresponding log-likelihood 

function for the random effects tobit model is derived by obtaining the unconditional density through 

integrating the random effects ߤ௜ out of the conditional density (Greene, 2012): 

ܮܮ =∑݈݊∫݂ሺ ௜ܻ௧| ௜ܺ௧ , ;௜ߤ �ሻ∀௜ ሺͳ/�ఓሻ�ሺߤ௜/�ఓሻ݀ߤ௜   (2.8) 

where 

݂ሺ ௜ܻ௧|�௜௧ , ;௜ߤ �ሻ = ∏ ͳ�జ௒೔�>଴ �ሺ ௜ܻ௧ − ��௜௧′ − ௜�జߤ ሻ ∏ Ȱሺ−��௜௧′ − ௜�జ௒೔�=଴ߤ ሻ (2.9) 

 �ሺ∙ሻ is standard normal density function; Ȱሺ∙ሻ is standard normal distribution function.  

Both Gauss-Hermite quadrature and simulation-based maximum likelihood estimations can be 

adopted to get the maximum of the log-likelihood function of random effect models (Greene, 2012). The 

first approach gives approximated estimation in which the estimation accuracy is partly determined by the 
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integration points used. Random effects tobit model can be viewed as a particular case of random 

parameter tobit model, in which only the constant term is treated as a random parameter (Anastasopoulos 

and Mannering, 2009; Lord and Mannering, 2010) and simulation-based maximum likelihood estimation 

can be exploited to solve the log-likelihood function. Halton draw  (Halton, 1960), a widely used 

simulation technique, is available to provide more efficient distribution of draws than purely random 

draws for simulation-based integration (Bhat, 2003; Train, 1999).  

Due to the censoring effect of the data, it is known that the estimated parameters from the tobit 

model do not reflect the actual change of the dependent variable when the independent variables have a 

unit increase (Calzolari et al., 2001). In order to evaluate the effects of each variable in random effects 

tobit model, Calzolari et al. (2001) defined the marginal effects of a unit change in the ݅௧ℎ variable of X 

on the dependent variable ܻ as: ߲ܧ[ܻ]߲�௜ =  ሻ (2.10)ݖ௜Ȱሺߚ

where 

ݖ = ��/�� = ��/√�జଶ + �ఓଶ (2.11) 

and Ȱሺݖሻ is the cumulative normal distribution function, ߚ௜ is the estimated coefficient corresponding to 

the ݅ -th independent variable �௜, �ఓ is the standard deviation of the random effects and �జ is the standard 

deviation of the disturbance term.  

In addition, to assess how independent variables affect the probability of having crashes (this is 

equivalent to crash rate is greater than zero), marginal effects of a unit change in the ݅௧ℎ independent 

variable on the probability of an observation being above zero can be obtained as (Parisi and Sembenelli, 

2003): 

 
߲Ȱሺݖሻ߲�௜ = ሻ/√�జଶݖ௜φሺߚ + �ఓଶ (2.12) 

where ߮ ሺݖሻ is the standard normal density function, other variables are defined as before. 
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In this chapter, two separate tobit models, one for daytime and one for nighttime, will be 

developed. To test the statistical difference between the two separately estimated models and the all-data 

model (single model with daytime and nighttime data combined), a likelihood ratio test is performed 

using following statistics (Washington et al., 2011): 

 ȱଶ = ௟௟ሻ�ߚሺܮܮ]ʹ− − (஽�௬ߚ)ܮܮ −  (2.13) [(௜௚ℎ௧�ߚ)ܮܮ

where ܮܮሺߚ�௟௟ሻ is the log-likelihood at convergence of model estimated with all data; ܮܮ(ߚ஽�௬)  and ܮܮ(ߚ�௜௚ℎ௧) are the log-likelihood at convergence of model estimated using daytime data and nighttime 

data, respectively; ȱଶ follows ߯ ଶ distribution with the degree of freedom equaling the difference between 

the number of parameters of all-data model and the sum of parameters in daytime and nighttime models. 

A likelihood ratio test can also be conducted to compare the statistical significance of the random 

effects tobit model over its fixed effects counterpart. The test statistic is described as: 

        ߯ଶ = ሻ�ߚሺܮܮ]ʹ− −  ሻ]  (2.14)�ߚሺܮܮ

where ܮܮሺߚ�) is the log likelihood at convergence for Daytime/Nighttime fixed-effects tobit model, and ܮܮሺߚ�ሻ is the log likelihood at convergence for Daytime/Nighttime random effects tobit model. 

2.3 Data Description 

A portion of Interstate I-25 in Colorado (between City of Castle Rock and City of Northglenn) is 

chosen to be the study section with a total length of 55.93 miles. It consists of a 28.55-mile northbound 

road starting from Mile Marker (MM) 188.49 to MM 221.03 and a 27.38-mile southbound road starting 

from MM 188.49 to MM 219.86. I-25 has a relatively flat terrain and bears a lot of similarities with many 

other highways across the United States. Detailed data related to collisions on the selected study section 

of I-25 from four sources are processed in this chapter:  

(1): Traffic accident data over 1-year period (1 January 2010 to 31 December 2010) obtained 

from Colorado State Patrol (CSP); 

(2): Highway geometry data (including pavement conditions) provided by Colorado Department 

of Transportation (CDOT); 
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(3): Real-time weather and road surface condition data recorded by Road Weather Information 

System (RWIS).  

(4): Real-time traffic data recorded by 43 traffic flow monitoring stations along the study section 

on I-25. 

In traditional traffic safety modeling, accident data were usually aggregated over an extended 

time interval and on a relatively long roadway segment span. In the present chapter, to form a refined-

scaled panel data structure, the study section is firstly split into small homogeneous roadway segments 

(approximately 1 mile per segment) according to CDOT traffic station assignment. For example, one of 

the traffic stations is assigned to MM 188.49 - 192.99 by CDOT and there are totally 43 traffic stations in 

the study section. Then road segmentations were scrutinized according to the roadway characteristics 

inventory data from CDOT. If there exists distinct variance of road design within one road segment (e.g. 

variance of lane width, the number of lanes, speed limit, pavement condition, shoulder type, median type), 

the road segment will be re-segmented based on different geometric designs. A total of 57 homogeneous 

roadway segments is generated with 29 and 28 on the northbound and southbound roads, respectively. 

The accident data, real-time traffic data, real-time weather and surface condition data are processed to 

obtain hourly readings through integration. By assigning these data to corresponding roadway segments, 

two data sets with repeated hourly observations for each roadway segment, one for daytime and the other 

one for nighttime, are finally developed to facilitate the following study. Tables 2.1 and 2.2 summarize 

descriptive statistics of selected variables for daytime and nighttime datasets, respectively. More detailed 

information about the dataset is provided in the following.  

2.3.1 Geometry Data 

Roadway geometry data are collected from Roadway Characteristics Inventory (RCI) of CDOT. 

RCI contains detailed information about I-25 highway, including number of lanes, lane width, segment 

length, speed limit, deflect angle of curve, longitudinal grade, curvature, curve radius, shoulder type and 

width, median type and width, number of merging ramps, number of diverging ramps, pavement 



25 
 

condition and remaining service life of rutting, etc. The variables which are significant in daytime and 

nighttime models are shown in Tables 2.1 and 2.2. 

2.3.2 Weather and Road Surface Data 

There are five weather stations installed along the interstate I-25 to provide motorists with real-

time weather data. The real-time weather datasets are monitored in 20-minute intervals including 

visibility, humidity, precipitation, temperature, wind, and real-time road surface condition data such as 

road surface status and water depth. It should be noted that visibility is usually defined as the greatest 

distance that an object can be seen and recognized against the sky. To better account for its effect toward 

crashes, visibility is defined as the shortest distance an object can be perceived. Moreover, precipitation is 

often chosen as an important factor of weather condition in crash modeling. It is known that precipitation 

(rain, snow or hail) primarily contributes to accident occurrence through altering road surface condition 

(Yu et al., 2013b). The time lag may exist on the effects of precipitation towards crashes, especially under 

small time intervals. For example, precipitation on one segment over a certain hour may actually 

contribute to the crashes happening on this segment during the following hour. Such lag may become 

critical for hourly crash models, and therefore, real-time road surface condition will also be considered in 

this chapter along with precipitation status. Weather and road surface condition data are recorded every 

20 minutes and the road surface condition definitions in the CDOT database include Dry, Wet, Trace 

Moisture, Chemically Wet (Moisture mixed with anti-icer), Ice Warning and Ice Watch, etc. In order to 

derive hourly records, the hourly road surface condition indicators are defined as the dominating 

condition within that particular hour. For instance, if wet road surface was recorded twice and the dry 

road surface was recorded once within a given hour, the hourly surface condition will be defined as a wet 

road surface. Based on the Mile Marker, each roadway segment is assigned to the closest weather station. 

The weather and road surface condition variables selected for the models of daytime and nighttime can be 

found in Tables 2.1 and 2.2, respectively.  
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2.3.3 Traffic Data 

With 22 and 21 traffic monitoring stations implemented on the northbound and southbound 

roadways of the study section respectively, traffic information, such as traffic speed and traffic volume, is 

readily available. These data originally recorded every 2 minutes, is processed to obtain hourly records 

through aggregation. Due to possible malfunction and service disruption of the sensors, some real-time 

data records show unusually high values or leave some “empty” windows, which were discarded from the 

database. A total of 328,398 observations is then generated including 186,821 daytime observations and 

141,577 nighttime observations. Unlike previous studies (e.g. Dinu and Veeraragavan, 2011), the daytime 

and nighttime records are strictly defined according to the exact time of sunset and sunrise every day 

based on Colorado Sunrise Sunset Calendar. Instead of adopting traffic speed directly, speed gap, the 

difference between the speed limit and corresponding mean traffic speed, is selected as the variable. 

Speed gap, defined here as the difference between the speed limit and average traffic speed, can be 

considered as a measurement of traffic congestion, and a higher speed gap indicates more congested 

traffic condition. The original real-time speed data from CDOT database will not exceed the local speed 

limit for each road segment, which means that if the actual average speed exceeds the local speed limit, 

the CDOT database will truncate it to the speed limit of the road segment. As a result, the "speed gap" 

only has non-negative values. Such a truncation of raw data from CDOT database will perhaps bring in 

some modeling bias issues because the influence of over-speeding driver behavior in some free flow cases 

cannot be considered in the modeling. Raw speed data without truncation can reveal more insights about 

the impact of real-time speed on traffic safety. 

2.3.4 Crash Rate 

Crash rate (the number of accidents per million VMT) is calculated as 

௜௧݁ݐܽݎ ℎݏܽݎܥ         = ௜௧ݒݐℎ௜௧ℎݏܽݎܥ ×  ℎ௜/ͳ,ͲͲͲ,ͲͲͲ (2.15)ݐ݈݃݊݁

where ݏܽݎܥℎ ݁ݐܽݎ௜௧ is the number of accidents per million VMT on roadway segment ݅ over ݐ௧ℎ hour of 

the year; ݏܽݎܥℎ௜௧ is the number of accidents happening on roadway segment ݅ over ݐ௧ℎ hour of the year;  
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ℎݒݐ௜௧ is the hourly traffic volume on roadway segment ݅ over ݐ௧ℎ hour of the year; ݈݁݊݃ݐℎ௜ is the length 

of roadway segment ݅. If there was no accident happening on one segment over a given hour according to 

the data, a censored data record with crash rates equaling zero is generated. About 99.4% and 99.8% of 

the observations are censored with a cluster of zeroes in the daytime and nighttime datasets, respectively. 

Table 2.1 Descriptive Statistics of Potential Variables (Daytime Dataset) 

Variable Mean 
Standard 
deviation 

Minimum Maximum 

Crash frequency 0.0058  0.0787  0  4  

Accident rate (number of accidents per million 
VMT) 

1.6156  28.8257  0  2451.12  

Low Speed limit indicator (1 if speed limit is less 
or equal 55 miles per hour, 0 otherwise) 

0.3805 0.4855 0 1 

Speed gap(measured as the difference between 
speed limit and corresponding mean traffic 
speed) 

3.5053 6.4581 0 69.18 

Hourly traffic volume (in thousands) 4.1115 1.7734 0.03 14.7455 

Truck percentage 5.9469 1.968 2.8 10.7 

Visibility(in miles) 1.0735 0.1404 0 1.1 

Cross wind speed 4.4687 4.1425 0 31.98 

January (1 if it is in January, 0 otherwise) 0.0599 0.2372 0 1 

February (1 if it is in February, 0 otherwise) 0.0567 0.2312 0 1 

March (1 if it is in March, 0 otherwise) 0.0966 0.2954 0 1 

April (1 if it is in April, 0 otherwise) 0.0821 0.2745 0 1 

May (1 if it is in May, 0 otherwise) 0.1012 0.3016 0 1 

June (1 if it is in June, 0 otherwise) 0.0922 0.2893 0 1 

July (1 if it is in July, 0 otherwise) 0.0533 0.2247 0 1 

August (1 if it is in August, 0 otherwise) 0.1009 0.3012 0 1 

September (1 if it is in September, 0 otherwise) 0.1038 0.3051 0 1 

October (1 if it is in October, 0 otherwise) 0.0787 0.2693 0 1 

November (1 if it is in November, 0 otherwise) 0.0819 0.2742 0 1 

December (1 if it is in December, 0 otherwise) 0.0928 0.2901 0 1 
Weekend indicator (1 if it is weekend, 0 

otherwise) 
0.2719 0.4449 0 1 

Number of enter ramp per lane per mile 
(measured as number of enter 
ramp/lanes/roadway segment length) 

0.2543 0.2153 0 0.9259 

Roadway segment length (in miles) 1.0186 0.7747 0.236 4.5 

Curvature (degree of horizontal curve) 0.9578 0.6837 0 2.26 
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Curve ratio 0.4029 0.2838 0 0.9779 

Inside shoulder width (in feet)  9.0051 2.6243 5 15 
Long remaining service life of rutting (1 if the 

value of rut is higher than 99, 0 otherwise) 
0.2295 0.4205 0 1 

Wet road surface (1 if wet, 0 otherwise) 0.0233 0.1508 0 1 

Snow occurring 0.0268 0.1615 0 1 

 
Table 2.2 Descriptive Statistics of Potential Variables (Nighttime Dataset) 

Variable Mean 
Standard 
deviation 

Minimum Maximum 

Crash frequency 0.0018  0.0448  0 2 

Accident rate (number of accidents per million 
VMT) 

1.8029  75.3118  0  9529.25  

Low Speed limit indicator (1 if speed limit is 
less or equal 55 miles per hour, 0 otherwise) 

0.3539 0.4782 0 1 

Speed gap(measured as the difference between 
speed limit and corresponding mean traffic 
speed) 

1.5029 3.6996 0 51.1913 

Hourly traffic volume (in thousands) 1.3391 1.3093 0.03 14.988 

Truck percentage 6.5686 1.8003 2.8 10.7 

Visibility(in miles) 1.0763 0.1304 0.1 1.1 

Cross wind speed 3.7214 3.5243 0 28.466 

January (1 if it is in January, 0 otherwise) 0.0832 0.2761 0 1 

February (1 if it is in February, 0 otherwise) 0.0722 0.2588 0 1 

March (1 if it is in March, 0 otherwise) 0.0985 0.2980 0 1 

April (1 if it is in April, 0 otherwise) 0.0671 0.2501 0 1 

May (1 if it is in May, 0 otherwise) 0.0638 0.2445 0 1 

June (1 if it is in June, 0 otherwise) 0.0484 0.2146 0 1 

July (1 if it is in July, 0 otherwise) 0.0339 0.1810 0 1 

August (1 if it is in August, 0 otherwise) 0.0743 0.2622 0 1 

September (1 if it is in September, 0 otherwise) 0.0932 0.2907 0 1 

October (1 if it is in October, 0 otherwise) 0.09717 0.2962 0 1 

November (1 if it is in November, 0 otherwise) 0.1129 0.3165 0 1 

December (1 if it is in December, 0 otherwise) 0.1554 0.3623 0 1 
Weekend indicator (1 if it is weekend, 0 

otherwise) 
0.2705 0.4442 0 1 

Number of enter ramp per lane per mile 
(measured as number of enter 
ramp/lanes/roadway segment length) 

0.2494 0.2138 0 0.9259 

Roadway segment length (in miles) 1.0071 0.7603 0.236 4.5 

Curvature (degree of horizontal curve) 0.9335 0.6783 0 2.2604 
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Curve ratio 0.4004 0.2863 0 0.9779 

Inside shoulder width(in feet) 9.0078 2.5265 5 15 
Long remaining service life of rutting (1 if the 

value of rut is higher than 99, 0 otherwise) 
0.2194 0.4139 0 1 

Wet road surface (1 if wet, 0 otherwise) 0.0545 0.2269 0 1 

Snow occurring 0.0319 0.1757 0 1 

 
2.4 Model Estimation Results 

The likelihood ratio test with a p-value less than 0.001 of the two separately estimated models as 

opposed to the all-data model shows that the choice of the modeling crash rate under daytime and 

nighttime subsets is reasonable and necessary. The  ߯ଶ value for Daytime model between the random 

effects tobit model and its fixed effects counterpart is equal to 70 with 4 degrees of freedom and that for 

Nighttime model is equal to 17.9 with 1 degree of freedom. These results indicate that the random effects 

tobit models are statistically better than their fixed counterparts with more than 99.99% confidence. 

The estimation results of random effect daytime and nighttime tobit models for hourly crash rate 

are presented in Table 2.3. All variables significant at 90% level of confidence are reported. Random 

effects are found to be significant in both daytime and nighttime models, indicating that unobserved 

heterogeneity plays a major role in crash rate prediction. Four categories of contributing factors, such as 

traffic characteristics, environmental characteristics, road characteristics and temporal characteristics, are 

found to be significant to crash rate. The development of two separate crash rate prediction models makes 

it possible to reveal more detailed information about the impacts from different contributing factors on the 

crash rate at daytime and nighttime. For example, some contributing factors are found to be significant 

only to daytime crashes (e.g. low speed limit indicator, the number of entering ramps per lane per mile, 

etc.), while some others are only significant in the nighttime crash rate model (e.g. snow occurring, truck 

percentage). In the meantime, there are also some contributing factors that are significant in both models 

with same signs, such as speed gap, hourly traffic volume, curvature, etc. There are also some 

contributing factors which are significant in both models, but with different signs (e.g. visibility). It 
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should be noted that these findings would not otherwise become available with a traditional pooled data 

model by mixing the data from daytime and nighttime.  

Table 2.3 Random Effects Tobit Model Estimation Results 

 Daytime model Nighttime model 

 Parameter estimate t-ratio 
Parameter 
estimate 

t-ratio 

Constant -2835.7 -23.33**  -11379 -10.90**  
Low Speed limit indicator (1 if 

speed limit is less or equal 55 
miles per hour, 0 otherwise) 

108.37 2.08*   

Speed gap(measured as the 
difference between speed limit 
and corresponding mean traffic 
speed) 

28.08 23.32**  124.50 10.27**  

Hourly traffic volume(in thousands) 32.62 4.21**  395.76 6.80**  

Truck percentage   -155.90 -2.12* 

Visibility(in miles) 109.91 1.75 -1633.17 -3.17* 
November (1 if it is on November, 

0 otherwise) 
63.54 1.86   

Weekend indicator (1 if it is 
weekend, 0 otherwise) 

41.86 1.96   

Number of entering ramp per lane 
per mile (measured as number of 
entering ramp/lanes/roadway 
segment length) 

-252.33 -2.12*   

Roadway segment length (in miles) 85.94 2.94 **    

Curvature (degree of horizontal 
curve) 

102.06 2.61* 663.97 3.07**  

Inside shoulder width(in feet)   106.65 1.98 
Long remaining service life of 

rutting (1 if the value of rut is 
higher than 99, 0 otherwise) 

141.25 2.50* 681.67 2.23* 

Wet road surface (1 if wet, 0 
otherwise) 

198.16 3.99**  1233.57 4.26**  

Snow occurring   -1063.98 -2.23* 

Random effects (�) 142.01 7.45**  668.75 4.83**  

Number of observations 186821 141577 

Log-likelihood at convergence -12854.5 -3592.55 

AIC(smaller is better) 25737 7209.1 

BIC(smaller is better) 25765 7233.6 
* 0.95 significance level 
**0.99 significance level 
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The marginal effects for the crash rate (no. of accidents per 1 million VMT) and the probability of 

having a crash rate over zero are computed and the results are presented in Table 2.4. The specific model 

estimation results are discussed in the following by categories of the contributing factors. 

Table 2.4 Marginal Effects of Estimated Random Effects Tobit Models 

 Daytime model Nighttime model 

 
Overall 
sensitivity1 

Zero 
sensitivity2 (%) 

Overall 
sensitivity1 

Zero 
sensitivity2 
(%) 

Low Speed limit indicator (1 if 
speed limit is less or equal 55 
miles per hour, 0 otherwise) 

0.6302 0.1939   

Speed gap (measured as the 
difference between speed limit 
and corresponding mean traffic 
speed) 

0.1633 0.0502 0.2247 0.0171 

Hourly traffic volume(in thousands) 0.1897 0.0584 0.7142 0.0545 

Truck percentage   -0.2813 -0.0215 

Visibility (in miles) 0.6392 0.1966 -2.9418 -0.2244 

November (1 if it is in November, 0 
otherwise) 

0.3695 0.1137   

Weekend indicator (1 if it is 
weekend, 0 otherwise) 

0.2434 0.0749   

Number of entering ramp per lane 
per mile (measured as number of 
entering ramp/lanes/roadway 
segment length) 

-1.4675 -0.451   

Roadway segment length (in miles) 0.4998 0.1537   

Curvature (degree of horizontal 
curve) 

0.5935 0.1826 1.1982 0.0914 

Inside shoulder width (in feet)   0.1925 0.0147 

Long remaining service life of 
rutting (1 if the value of rut is 
higher than 99, 0 otherwise) 

0.8215 0.2527 1.2301 0.0938 

Wet road surface (1 if wet, 0 
otherwise) 

1.1524 0.3545 2.2261 0.1698 

Snow occurring   -1.9200 -0.1464 
1 Marginal effects of the overall expected value (see Eq. (2.10)) 
2 Marginal effects of the probability of being above zero (see Eq. (2.12)) 
 
2.4.1 Traffic Characteristics 

Speed limit is typically an important factor for traffic safety and it ranges from 55 miles-per-hour 

(mph) to 75 mph with an increment of 5 mph for the roadway segments being analyzed. Based on the 
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results of best model fit, 55 mph is determined to be the threshold to define low speed limit indicator. 

Specifically, the indicator equals one when the speed limit is 55 mph and zero when the speed limit is 

higher than 55 mph. Table 2.4 shows that low speed limit indicator is found to be significant in the 

daytime model. The presence of low speed limit increases crash rate by 0.6302 and the probability of 

having a crash rate above zero by 0.1939%. Although it seems counterintuitive, this finding may be 

attributed to the fact that low speed limits are more likely to be assigned to crash-prone segments of 

roadway, as highlighted in several other studies (Donnell et al., 2010; Lao et al., 2014). In the nighttime 

model, however, speed limit indicator is found to be insignificant.  

In the present chapter, it is found that speed gap is a major factor affecting crash rate in both 

daytime and nighttime models with a positive sign. Table 2.4 shows that a unit increase in the speed gap 

(in mph) contributes to an increase of crash rate by 0.1633 and 0.0502% higher probability of having 

crash rate above zero during daytime. During nighttime, a unit increase of the speed gap will increase 

crash rate by 0.2247 and the probability of having a crash rate over zero by 0.0171%. Some previous 

work (for example, Dias and Miska, 2009) also suggested that vehicle accidents are more likely to occur 

where traffic gets congested.  

Hourly traffic volume is found to be statistically significant to crash rate during both daytime and 

nighttime periods. As shown in Table 2.4, a unit increase in hourly traffic volume (in thousands) is 

associated with an increase of 0.1897 and 0.7142 on crash rate during daytime and nighttime, respectively. 

Similarly, a unit increase in hourly traffic volume (in thousands) contributes to 0.0584% and 0.0545% 

higher probability of having a crash rate above zero during daytime and nighttime periods, respectively. 

The finding is different from a previous study (Usman et al., 2011) in which hourly traffic was found to 

be significant only in the aggregate analysis instead of the hourly disaggregate analysis for crash 

frequency data. It’s worth mentioning that this disparity may be the result of difference in modeling crash 

frequency and crash rate, and further study may be needed in this regard to draw insightful conclusion.  

In addition to above mentioned traffic-related factors, the truck percentage is also found to have a 

significant effect on crash rate during nighttime. The negative sign of this factor shows that high truck 
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percentage is associated with lowering crash rate during night period. It should be noted that such a 

phenomenon is not found in the daytime model. Possible reasons behind such difference include more 

alerting driving behavior of surrounding drivers by the presence of more trucks on some highway 

segments during nighttime. Similar phenomena on reducing the crash rate with the presence of trucks 

were also observed in some existing studies with pooled (all-data) models (Anastasopoulos et al., 2008; 

Shankar et al., 1997). But different phenomena between nighttime and daytime models as demonstrated 

above have not been reported in any existing study. 

2.4.2 Environmental Characteristics 

Visibility, defined as the shortest distance that an object can be perceived against sky, is found to 

be statistically significant for both nighttime and daytime models. Nevertheless, the effects of visibility 

towards crash rate during daytime and nighttime are very different. At daytime, a unit increase in 

visibility will increase crash rate by 0.6392 and the probability of having a crash rate above zero by 

0.1966%. At nighttime, it will decrease crash rate by 2.9418 and lower the likelihood of having a crash 

rate above zero by 0.2244%. By developing two separate models for daytime and nighttime with more 

refined temporal and spatial scales, some new findings become possible. It seems obvious that better 

visibility can considerably contribute to lower crash rate at night. However, it shows better visibility 

actually slightly increases the crash rate at daytime. Such a finding in daytime is different from several 

previous works (Usman et al., 2012, 2011, 2010; C. Xu et al., 2013; Yu et al., 2013b), in which visibility 

was found to be negatively related to crash frequency. Possible reason for this is that lower visibility (for 

instance, fog and snow) usually increases driver alertness leading to more cautious driving behavior, 

overweighting the influence stemming from extended reaction time caused by the reduced visibility. On 

the other hand, better visibility at daytime may potentially encourage more aggressive driving behavior. 

While at nighttime, the benefits from better visibility become more significant when people usually drive 

more cautiously at night than at daytime. This is the first time to discover the opposite effects from 

visibility on daytime and nighttime crash rates, thanks to developing two separate models in the present 

chapter. In fact, with opposite effects of visibility towards crash rate on daytime and nighttime models, it 
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is not surprising to find out that visibility becomes insignificant in the estimated pooled random effect 

tobit model with all (mixed) data.  

As an important environmental factor, road surface condition has long been believed to be closely 

related to traffic safety. Road surface conditions originally defined in CDOT database include Dry, Wet, 

Chemically Wet and so on. Among all these road surface indicators, wet road surface is found to be a 

significant factor for increasing crash rate during both daytime and nighttime periods. In fact, it has larger 

influence on crash rate as compared to most of the other contributing factors in the model. As shown in 

Table 2.4, wet road surface results in an increase of crash rate by 1.1524 and higher probability of having 

a crash rate above zero by 0.3345% during daytime. For nighttime, it becomes an increase of crash rate by 

2.2261 and chance of having a crash rate above zero by 0.1698%. These findings are consistent with 

common sense and also similar to some of the existing studies (Bertness, 1980; Eisenberg, 2004; Keay 

and Simmonds, 2005), in which rainfall was found associated with more crashes. It is worth mentioning 

that precipitation status is not found significant in both daytime and nighttime models. As discussed 

earlier, precipitation may have lagged effect on traffic safety when time scale gets smaller. The results of 

the present chapter somehow support the assumption and also suggest that wet road surface may be 

preferred over rainfall as a contributing factor in crash rate prediction models with refined-scale data.  

Snow occurring is found to be significantly associated with lower crash rate during nighttime 

period. According to the results of marginal effects, the occurrence of snow causes crash rate to decrease 

by 1.92 and lowers the probability of having a crash rate above zero by 0.1464% during nighttime. 

Similar to other adverse environmental factors, such as reduced visibility, snow can make a driver harder 

to safely operate the vehicle, but at the same time, also alert people to drive more cautiously. Like some 

others factors discussed above, the final outcome from the opposite effects on both vehicle operation and 

driving behavior is not straightforward, usually requiring specific analysis.  

2.4.3 Temporal Characteristics 

Among the temporal characteristics, both November and weekend are found to affect the daytime 

crash rate. November tends to sustain 0.3695 more on the crash rate and 0.1137% higher probability of 
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having a crash rate above zero than the rest months of the year. This may be associated with unobserved 

effects caused by sudden temperature drop and early storm in Colorado during November of 2010. Other 

month indicators have also been tested and were found not significant. Weekends typically experience 

0.2434 more daytime crash rate and 0.0749% higher probability of having a daytime crash rate above zero, 

as compared to weekdays. No significant change in crash rate is discovered for November and weekend 

during nighttime period. 

2.4.4 Roadway Characteristics 

In terms of roadway characteristics, the number of entering ramp per lane per mile is found to be 

a significant factor (with a negative sign) for vehicle crash rate in the daytime model. Table 2.4 shows 

that one unit increase in the number of entering ramp per lane per mile results in a decrease of crash rate 

by 1.4675 and a 0.451% less probability of having a crash rate greater than zero. This finding is different 

from some studies (e. g. Anastasopoulos and Mannering, 2009; Anastasopoulos et al., 2008), which 

showed positive correlation between the number of ramps per lane per mile and crash rate. Nevertheless, 

the finding from this chapter is consistent with the findings by Pei et al. (2012). It is possible that there 

are some unobserved effects or site-specific characteristics leading to different findings. It is believed that 

more studies in this regard are needed and hopefully more insightful findings can be made with improved 

statistical tools and/or datasets. During nighttime, the present model suggests that the number of entering 

ramp per lane per mile plays an insignificant role in crash rate. 

It is shown in Table 2.3 that roadway segment length is important to traffic crash rate in the 

daytime model. Table 2.4 shows that every mile increment in the roadway segment length increases the 

number of crashes per million VMT by 0.4998 and the probability of having a crash rate above zero by 

0.1537%. This finding is in line with some of the previous ones (Anastasopoulos and Mannering, 2009), 

which have indicated that longer the roadway segment is, a higher crash rate for the roadway segment will 

occur. While in some other studies (e.g. Anastasopoulos et al., 2008), roadway segment length was found 

to have no effect on the crash rate. It is possible that roadway segment length has some unobserved 

complex effects toward crash rate, which require further analysis to uncover fully. 
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The curvature of the road is found to have significant potential for increasing crash rate in both 

models. A unit increase in curvature is associated with 0.5935 more on crash rate during daytime and 

1.1982 more during nighttime. A similar pattern is also found in existing studies (Abdel-Aty and Radwan, 

2000; Hosseinpour et al., 2014) and it may be attributable to limited sight distance and increased vehicle 

maneuver difficulty on horizontal curves (Hosseinpour et al., 2014).  

Inside shoulder width also plays a role in the nighttime crash rate model. The positive signs in 

Table 2.3, and Table 2.4 indicate that wider inside shoulder is associated with higher crash rate during 

night period, while Abdel-Aty and Radwan (2000)  found that the increase in shoulder width reduces 

crash frequency. Shoulder width is known to be another contributing factor, which may cause opposite 

effects on both driving conditions and also driving behavior, leading to the composite outcome. For 

example, Venkataraman et al., (2014, 2013) found that larger shoulder width initially improves traffic 

safety performance, but exhibits opposite effect after exceeding a certain value.  

As for pavement condition, different indicators are tried in the model, including International 

Roughness Index, pavement condition indicator, and ruti index. The remaining service life of rut is 

gauged by the ruti index in CDOT database, with 100 ruti value for .15 inches or less rut depth and the 

value of 50 indicates no more remaining service life (corresponds to .55 inches or higher average rut 

depth). The long remaining service life of rutting indicator is an instrumental variable defined as 1 when 

the value of ruti is greater than 99 or 0 otherwise. The threshold of 99 is determined based on best model 

fit. Amongst these measures of pavement condition, the long remaining service life of rutting indicator is 

found to be statistically significant. Table 2.4 shows that long remaining service life of rutting results in 

an increment of 0.8215 and 1.2301 for crash rate during daytime and nighttime, respectively. This 

phenomenon may be attributabl to driver-environment interaction, which implies that drivers are inclined 

to drive more attentively and slowly on roadway segments with deeper rut (i.e. shorter remaining service 

life) to maintain a certain level of riding quality. 

Some other geometric variables have also been tested in the models and were found not 

significant including international roughness index, pavement condition, median type, surface type, 
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outside shoulder width, the number of lanes, the number of leaving ramp per lane per mile, grade, curve 

and so on. One possible reason why these variables were not significant is that this segment of I-25 on the 

flat plateau has a small variance of road design and has no sharp curve or steep grade. 

2.6 Summary 

This chapter reports so far the first research attempt on developing random effects tobit models 

for both daytime and nighttime crash rates based on disaggregate modeling approach with panel data in 

refined temporal and spatial scales. 1-year accident data from I-25 in Colorado and detailed data of traffic 

condition, environmental condition, road geometry and road surface conditions were processed into 

hourly basis on 1-mile roadway segments on average to demonstrate the proposed approach. Some 

interesting observations were made, and the significance of the present chapter is summarized as follows: 

(1) By adopting tobit model with random effects, not only the censoring effects of crash rates data 

can be accounted for, but the unobserved heterogeneity across observations can also be 

potentially captured;  

(2) Comprehensive road geometry, real-time traffic, weather and road surface data in refined 

temporal and spatial scales (hourly record and 1-mile roadway segments on average) was 

integrated into the crash rate model development with panel data structure.  

(3) The utilization of panel data in both refined temporal and spatial scales has great potential for 

capturing both spatially varying and time-varying nature of variables (e.g. hourly traffic volume, 

visibility, wet road surface, etc.), which was usually ignored in traditional traffic crash modeling 

through data aggregation.  

(4) In addition to the refined scales, for the first time, crash rate was studied with two separate 

models developed for nighttime and daytime, which led to some new findings and more refined 

information than traditional pooled data model. The results showed that there was a major 

difference in contributing factors towards crash rate between daytime and nighttime, implying the 

considerable needs to consider daytime and nighttime crashes separately when refined-scale data 

(e.g. hourly) is studied. 
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(5) Although it was only demonstrated on one portion of the I-25 highway, the proposed approach 

can be easily applied to other highways in the United States and the rest of the world. After 

further studies on many similar highways with refined scales are conducted, improved 

understanding of contributing factors for traffic crashes can be reached. As a result, more efficient 

and adaptive mitigation efforts may become possible to save more people’s lives from crashes. 

These efforts include improvements in vehicle design, highway design, traffic management or 

law enforcement based on these new findings. Along with this line, some future studies can be 

carried out such as risk-based optimal route selection for adverse driving conditions, active law 

enforcement/traffic control intervention and advanced resource allocation and planning for the 

trucking industry, etc.  
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CHAPTER 3 MODELING CRASH RATES FOR A MOUNTAINOUS HIGHWAY USING REFINED 
SCALE PANEL DATA2 

 
 
 
3.1 Introduction 

The modeling of crash frequency and crash rate has been the research focus of traffic safety 

analysis over past several decades. Various models have been developed to predict the crash frequency 

and identify hazardous factors that affect auto-vehicle safety (see (Lord and Mannering, 2010; Mannering 

and Bhat, 2014) for complete reviews on these methodological approaches). However, most of these 

existing li terature focus on studying traffic accident counts that are usually highly aggregated over a long 

time period (for example a year, a month). As pointed out by Lord and Mannering (2010), the adoption of 

aggregated data ignores time-varying nature of some critical factors thus lead to important information 

loss and introduce error in model estimation. Researchers have long recognized that weather and traffic 

conditions are critical factors in crash occurrence analyses which can vary considerably over time and 

space. For example, surrogate binary variables were developed to study the safety effect of pavement 

surface conditions in several studies (Caliendo et al., 2007; Miaou and Lord, 2003). Abdel-Aty and 

Pemmanaboina (2006) developed a crash prediction model with real-time traffic flow data and archived 

weather data. Yu et al. (2013b) studied crash occurrence using real-time data and concluded that weather 

condition variables play a vital role in causing an accident. Usman et al. (2012, 2011, 2010) created a road 

surface index to measure road surface condition and incorporated a variety of other weather and traffic-

related variables to investigate accident frequency. For mountainous highways, weather and other 

environment-related variables (e.g. visibility, road surface condition, etc.) become even more critical due 

to complex temporal- and spatial-varying nature and interaction with mountainous terrain (long and steep 

slopes, sharp curves). Therefore, to appropriately model crash safety risks on mountainous highways and 

disclose the inherent crash mechanism, refined-scale models are often desired. Although large bodies of 

                                                      

2 This chapter is developed based on a published research paper by Ma et al. (2015a) with the permission 
from the publisher Transportation Research Board. 
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literature were contributed to study relative crash risk using real-time data (Abdel-Aty et al., 2004; Abdel-

Aty and Pemmanaboina, 2006; Yu et al., 2013b), existing studies on traditional traffic safety predictions 

with refined scales, however, remain very limited. 

Refined-scale modeling on crash counts often encounters some technical challenges, such as 

strong correlation and excessive zeroes. As repeated observations are generated from the same roadway 

section across time, temporal serial correlations are presumably to occur, which can get even stronger 

with more refined time scales. If left unaccounted for, the presence of temporal serial-correlations can 

lead to a violation of independence assumption on error terms, causing biased model estimations and 

erroneous inferences. To deal with the correlation challenge, some existing research efforts on handling 

serial correlations of panel data (time series cross-sectional data) offer some helpful experiences. For 

example, Ulfarsson and Shankar (2003) adopted the negative multinomial model to study median 

crossover accidents in a panel format. Lord and Persaud (2000) applied general estimating equation 

model to handle temporal correlation that present over year-to-year accident data. Chin and Quddus (2003) 

developed a random effect negative binomial model for yearly panel accident data at signalized 

intersections. However, these studies were still highly aggregated in time domain (data are aggregated 

over a year). Recently, Qi et al. (2007) developed random effects ordered probit model using panel 

accident data by dividing data into the different time period (weekday peak hour period, weekday off-

peak hour period and weekend period). 

As an important alternative to crash frequency, crash rate (measured as the number of accidents 

per million vehicle miles traveled) modeling with refined scales can be promising due to its popularity on 

traffic safety performance assessment by different stakeholders. By considering crash rate modeling, the 

excessive-zero problem of crash count modeling converts to left-censoring effects of dependent variables. 

Anastasopoulos et al. ( 2008) showed that tobit model is a good choice to model accident rates because of 

its capability of handling left-censoring data.  Anastasopoulos et al. (2012a) further developed random 

parameter tobit model on aggregated crash data, and demonstrated the strength of random parameter tobit 

model to account for unobserved heterogeneity. Chen et al. ( 2014) adopted a random effects tobit model 
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approach to study daytime and nighttime crash rate using panel data. Other studies using tobit model 

include those investigating endogeneity problem (X. Xu et al., 2013) or multivariate crash data 

(Anastasopoulos et al., 2012b). Similar to crash frequency studies, crash rate modeling in refined 

temporal or spatial domains has rarely been reported. 

Interstate highway I-70 in Colorado is well known for its typical mountains terrain, critical role to 

local and national traffic, and inclement weather. The objective of this chapter is to examine crash rates 

for a portion of I-70 by developing an advanced random parameter tobit model with panel data in refined 

temporal scale. Specifically, refined-scale weather and traffic data in a panel formation are incorporated 

to accommodate varying nature of complex driving conditions on I-70. Demonstrated with crash data 

from a typical mountainous highway, this chapter considers comprehensive weather, road surface, and 

traffic data along with complex geometric features. Unlike traditional traffic safety modeling, this chapter 

forms a longitudinal panel data format by dividing data into repeated hourly records for each roadway 

segment. In the meantime, the study takes advantage of the strength offered by random parameter tobit 

model to handle serial-correlations (roadway segment-specific correlations) across time, unobserved 

heterogeneity and censoring effects of the crash rate data. There are two major contributions of this 

chapter. First, this is so far the first reported effort on integrating random parameter tobit model and 

refined-scale panel data to develop crash rate data models. In addition to the strength of handling 

unobserved heterogeneity explicitly like some recent studies ( Anastasopoulos et al., 2012a; Chen et al., 

2011; Dinu and Veeraragavan, 2011; El-Basyouny and Sayed, 2009b), random parameter model is 

adopted in the present chapter to account for serial correlations across observations within panel data for 

the first time. The other contribution of this chapter is the adoption of refined scale hourly-based weather 

and traffic data in the crash rate modeling on mountainous highways. With these time-varying factors 

(visibility, road surface condition, hourly traffic volume, etc.) being incorporated in refined scales, more 

reliable and insightful observations can be made than existing aggregated-scale studies. As a result, time-

varying characteristics of some factors can be retained in the model, and their complex effects on crash 

rate can be further disclosed. 
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3.2 Data Description 

In this chapter, we focus on a selected portion of a mountainous highway I-70 in Colorado. The 

selected portion has a total length of 56.06 miles, starting from Mile Marker 195.26 to Mile Marker 

251.32. Homogeneous roadway segments are defined based on the principle that no distinct road design 

variance (e.g. change of lane width, shoulder type, median type, speed limit, pavement condition) exists 

within any single segment. The study section was divided into 100 homogeneous roadway segments with 

an average length around 1.08 miles, including 52 eastbound and also 48 westbound segments. The 

56.06-mile study section features typical mountainous terrain with steep slopes and sharp curves. 

Moreover, this part of I-70 is well known for its susceptibility to inclement and fast changing weather 

conditions, such as snow, rain, and wind etc. The typical mountainous terrain makes detailed weather 

information even more critical factors in influencing road safety than many other time-invariant ones. 

Four types of accident-related data from this 56.06-mile section are included in this chapter: (1) traffic 

accident data; (2) highway geometry data (including pavement conditions); (3) real-time weather and road 

surface condition data; (4) real-time traffic data. By combining data from different sources in refined 

scale, we can perform a more insightful and comprehensive study on hazardous factors.  

The traffic accident data, which was provided by Colorado State Patrol (CSP), ranges from 

January 2010 to December 2010. To get panel data in refined temporal scale, the authors processed 

accident data into hourly records for each segment according to the occurrence time of each accident. The 

roadway geometry data were collected from Roadway Characteristics Inventory (RCI) of Colorado 

Department of Transportation (CDOT). Detailed roadway design features and pavement characteristics 

are available in this dataset, including speed limit, segment length, number of lanes, lane width, deflection 

of horizontal curve, horizontal curvature, vertical grade, shoulder width, shoulder types, median types, 

median width, international roughness index, rutting depth, etc. 

In addition to these traditional data which are often used to predict accident occurrence, real-time 

traffic and environmental related data provided by Road Weather Information System (RWIS) are also 

incorporated into this chapter. There are 24 traffic stations along the I-70 corridor being studied, 
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providing real-time monitoring data of traffic speed and volume. The real-time traffic data were initially 

recorded every 2 minutes and were further processed into the hourly record to facilitate the following 

study. A total of 7 weather stations is installed along the study area, providing motorists with real-time 

weather condition such as visibility, precipitation and road surface status. The real-time weather/surface 

condition data were recorded in 20-minute intervals. To generate hourly record for road surface condition, 

road surface condition variables are determined by the governing surface status within each hour. For 

example, an hourly surface condition is defined as wet road surface if two or more wet road surface 

conditions were recorded within that hour. Roadway segments are assigned with real-time data from the 

closest weather and traffic stations.  

The hourly crash rate (also referred to as accident rate) was determined as: ݏܽݎܥℎ ݁ݐܽݎ௜௧ = ஼௥�௦ℎ೔�ℎ௧௩೔�×௟௘௡௚௧ℎ೔/ଵ,଴଴଴,଴଴଴       (3.1) 

where ݏܽݎܥℎ ݁ݐܽݎ௜௧ is the number of accidents per million vehicle miles travelled (VMT) on segment ݅ 
during ݐ௧ℎ hour of the year, ݏܽݎܥℎ௜௧ is the number of accidents happening on segment ݅ during ݐ௧ℎ hour 

of the year,  ℎݒݐ௜௧ is the hourly traffic volume of roadway segment ݅ during ݐ௧ℎ hour of the year, and ݈݁݊݃ݐℎ௜ is the length of segment ݅. 
A censored accident rate data (crash rate equals to zero) is generated when there is no accident on 

a given roadway segment during a given time period (in this case an hour). As a result of possible sensor 

malfunctions, sometimes real-time data records leave “empty” windows (i.e. no data for one or several 

sensors at some time). After discarding those missing values, a total of 643,322 records were generated 

with 480 uncensored ones (non-zero) and 642,842 censored ones (zero). A descriptive statistics are shown 

in Table 3.1. 

Table 3.1 Descriptive Statistics of Explanatory Variables 

Variable Mean 
Standard 
deviation 

Minimum Maximum 

Crash frequency 0.0008 0.0321 0 10 

Accident rate (number of accidents per million VMT) 2.0477 150.24 0 47954 

Roadway characteristics     
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High speed limit indicator (1 if speed limit is 
greater than or equal to 60 miles per hour, 0 
otherwise) 

0.8619 0.3450 0 1 

Vertical grade -0.0632 3.5193 -6.24 6.24 

Deflection angle of curve 26.87 18.830 0 84.488 
Inside shoulder width indicator (1 if inside shoulder 

width is larger than 5 feet, 0 otherwise) 
0.1535 0.3604 0 1 

Pavement characteristics     
The indexed value of the international roughness 

index(lower values equal rougher roads) 
93.892 5.2736 80 100 

Traffic characteristics     

Speed gap (measured as the difference between 
speed limit and corresponding average traffic 
speed) 

3.5865 6.3055 0a 57.751 

Temporal characteristics     
nighttime indicator (1 if it is during nighttime, 0 

otherwise) 
0.4293 0.4950 0 1 

Weather/surface characteristics     

Visibility (in miles) 1.0154 0.2279 0 1.1 

Wet road surface (1 if road surface is wet, 0 
otherwise) 

0.1128 0.3164 0 1 

Chemical wet road surface (1 if road surface is 
chemically wet, 0 otherwise) 

0.0573 0.2325 0 1 

Icy warning road surface (1 if road surface is in 
freeze condition, 0 otherwise) 

0.0954 0.2938 0 1 
a If the actual average speed exceeds the local speed limit, the CDOT database will truncate it to the speed limit of 
the road segment. So the minimum value of “speed gap” is 0 here instead of negative values.  
 

3.3 Methodology 

Repeated hourly observations are generated by each unit (roadway segment or intersection, in this 

case, roadway segment) to form panel data. This type of data differs substantially from traditional cross-

sectional data due to the presence of serial correlations, thus requiring different model settings. In order to 

develop a random parameter tobit model for panel data that can account for serial correlations, the study 

firstly starts with a base tobit model. The tobit model (also referred to as censored regression model) was 

first proposed by Tobin (1958) to handle data with a left censored or right censored dependent variable. 

We treat the panel accident rate data simply as pooled ones first. Thus, a typical left-censored (with a 

lower threshold at zero) tobit model is developed as a baseline model in the present chapter by adding the 

time dimension: 
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௜ܻ௧∗ = ���௜௧ + �௜௧ , ݅ = ͳ,… ,ܰ, ݐ = ͳ,… , �௜                  (3.2) 

and 

௜ܻ௧ = ௜ܻ௧∗   if  ௜ܻ௧∗ > Ͳ                                      (3.3a) 

௜ܻ௧ = Ͳ   if  ௜ܻ௧∗ ൑ Ͳ                                                         (3.3b) 

where N is the number of units (in this case, the number of roadway segments), and �௜ is the number of 

the repeated observations for roadway segment ݅. ܻ ௜௧∗ is the underlying latent variable which is observed 

only when being positive, and ௜ܻ௧  is the dependent variable (number of accidents per million miles 

travelled per hour). �௜௧ is a vector of explanatory variables (e.g. traffic condition, geometric characteristic, 

temporal characteristic weather condition, surface condition, etc.), �� is a vector of estimable parameters, 

and �௜௧ is the error term which is normally and independently distributed with mean zero and variance �ଶ. 
The resulting likelihood function for the tobit model is given as (Anastasopoulos et al., 2008): ܮ = ∏ [ͳ − Ȱቀఉ௑� ቁ]∏ ଵ�ଵ଴ Ȱ[ሺ ௜ܻ௧ −  ሻ/�]    (3.4)ܺߚ

We account for unit-specific effects (roadway segment-specific effects) by allowing parameter 

sets associated with a given roadway segment to vary randomly. Such a practice renders a proper 

assumption that explanatory variables have different effects on different roadway segments, which offers 

ample room to capture heterogeneity across roadway segments and address serial-correlations within a 

certain roadway segment. For a given roadway segment ݅, the random parameter tobit specification is 

defined by allowing ߚ௜ to vary across units:  ߚ௜ = ߚ + ߮௜  , ݅ = ͳ,ʹ, … , ܰ     (3.5) 

where ߮ ௜ is randomly distributed (such as normally distributed with mean zero and variance �ఝଶ).  One 

key assumption at this point is that the �௜ observations for a given segment ݅ are independent conditioned 

on ߮ ௜. Therefore, under above construction, these �௜ observations in segment ݅  are actually correlated and 

jointly distributed through ߮ ௜ , which is capable of accounting for the temporal correlations across 

observations within segment ݅. The joint conditional density function for roadway segment ݅ is shown as 

follows: 
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,௜ଵݕ)݂ ,௜ଶݕ … , (௜�೔|߮௜ݕ = ∏ ݂ሺݕ௜௧|߮௜ሻ�೔௧=ଵ             (3.6) 

where ݂ ሺݕ௜௧|߮௜ሻ = ݂ሺݕ௜௧|߮௜ , ௜ܻ௧∗ > Ͳሻ × ݂ሺݕ௜௧|߮௜ , ௜ܻ௧∗ ൑ Ͳሻ. The corresponding log likelihood function is 

then formed by integrating ߮௜ out of the conditional density function (Greene, 2012): ܮܮ = ∑ ݈݊ ∫ ,௜ଵݕ)݂ ,௜ଶݕ … , ௜�೔|߮௜)݃ ఝ೔∀௜ݕ ሺ߮௜ሻ݀߮௜     (3.7) 

where ݃ ሺ߮௜ሻ is the probability density function of ߮௜. Both approximation by Hermite quadrature and 

simulation-based maximum likelihood approach can be adopted to handle computational difficulties that 

brought by random parameter tobit model. In the present chapter, we adopt adaptive Gaussian-Hermite 

quadrature method to estimate random parameter tobit model.  

3.4 Model Results 

To compare random parameter tobit model with its fixed parameter counterpart, a likelihood ratio 

test is conducted to test the null hypothesis that the random parameter tobit model is statistically 

equivalent to the corresponding fixed parameter tobit model. The test statistic is given as (Washington et 

al., 2011): ߯ଶ = (௙ߚ)௙ܮܮ]ʹ− −  ௥௣ሻ]    (3.8)ߚ௥௣ሺܮܮ

where ܮܮ௙(ߚ௙) is the log-likelihood when the fixed parameter tobit model is converged, and ܮܮ௥௣ሺߚ௥௣ሻ 
is the log-likelihood when the random parameter tobit is converged. The test statistic follows a ߯ଶ 
distribution, with degrees of freedom equal to the difference in the numbers of parameters between the 

two tested models. As shown in table 3.2, the resulting ߯ଶ value of the likelihood ratio test is 47 with 1 

degrees of freedom. This means that we are more than 99.9% confident that the random parameter tobit 

model statistically outperforms its fixed counterpart.  

Table 3.2 Likelihood Ratio Test 
 Random parameter model Fixed parameter model 
-2Log likelihood at convergence 15911 15958 
Number of parameters 13 12 
Degrees of freedom 1 ߯ଶ = (௙ߚ)௙ܮܮ]ʹ− −  ௥௣ሻ] 47ߚ௥௣ሺܮܮ

Critical ߯ ଶ (0.999 level of confidence) 10.83 
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Table 3.3 shows the model estimation results for random parameter tobit model. Only variables 

that are significant at a 90% level of confidence are reported. A total of 11 explanatory variables is found 

to significantly affect accident rate, among which the traffic related and weather/surface related variables 

play significant roles. As for random parameters, one parameter is determined to be randomly distributed 

when both the mean and the variance of the parameter density are found to yield significant estimations. 

In the present study, only one variable, that is speed gap, is found to be statistically significant random 

parameter. More details about the findings listed in Table 3.3 will be discussed in the following by 

categories of variables.  

Table 3.3 Random Parameter Tobit Model Estimation Results 

Variable coefficient estimation t-statistic 

Roadway characteristics     

High speed limit indicator (1 if speed limit is greater than 
or equal to 60 miles per hour, 0 otherwise) 

2304.41 4.22** 

Vertical grade -89.8549 -1.78* 

Deflection angle of curve 24.2409 2.46** 
Inside shoulder width indicator (1 if inside shoulder 

width is larger than 5 feet, 0 otherwise) 
1100.99 2.39** 

Pavement characteristics     

The indexed value of the international roughness 
index(lower values equal rougher roads) 

-403.5 -21.26** 

Traffic characteristics     
Speed gap (measured as the difference between speed 

limit and corresponding average traffic speed) a 
184.61 7.43** 

standard deviation of parameter distribution-normal 132.79 6.45** 

Temporal characteristics   

nighttime indicator (1 if it is in nighttime, 0 otherwise) -3461.74 -9.08** 

Weather/surface characteristics     

Visibility (in miles) -1789.52 -3.31** 

Wet road surface (1 if road surface is wet, 0 otherwise) 2743.81 6.10** 
Chemical wet road surface (1 if road surface is 

chemically wet, 0 otherwise) 
3872.48 7.15** 

Icy warning road surface (1 if road surface is in freeze 
condition, 0 otherwise) 

3350.97 6.74** 

Model statistics     

Number of observations 643322 ܮܮሺͲሻ (log-likelihood with nothing) -450399.5 
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 ሻ (log-likelihood at convergence) -7955.5ߚሺܮܮ ሻ (log-likelihood with constant) -8267.5ܥሺܮܮ

AIC (smaller is better) 15937 

BIC (smaller is better) 15971 
*: significant at 90% level of confidence 
**: significant at 95% level of confidence 
a The original real-time speed data from CDOT database will do not exceed the local speed limit for each road 
segment, So the "speed gap" in this chapter only has non-negative values, and it didn’t reflect over-speeding 
behaviors. 
 
3.4.1 Roadway Characteristics 

The speed limit is a major policy-related variable to regulate driving speeds. As shown in Table 

3.3, high speed limit indicator is positively related to the accident rate. It indicates that if the speed limit 

for a roadway segment is equal to or greater than 60 miles per hour, the accident rate is higher than those 

with lower speed limits. Similar to the present finding, Lee and Mannering (2002) found that higher speed 

limit (above 85km/h) increases crash frequency. Nonetheless, some other studies (Donnell et al., 2010; 

Lao et al., 2014) found the opposite, i.e. higher speed limit is associated with fewer accidents. Lee and 

Mannering (2002) argued that the speed limit is endogenous related to accident frequency. The disparities 

in findings of safety effects of speed limit underscore the need for conducting more research on this 

complex variable in the future.  

Vertical grade, which ranges from -6.24 to 6.24 (negative grade means downgrade, and positive 

grade means upgrade), is found to be negatively associated with accident rate. This result indicates that 

for downgrade slope, steeper vertical grade causes higher accident rate. While for upgrade slopes, steeper 

vertical grade causes lower accident rate. These findings are consistent with the common knowledge 

about braking distances on different slopes. 

In order to assess the effect that horizontal curve has towards crash occurrence, different 

measurements were used in previous literatures, such as the presence of curve ( Anastasopoulos et al., 

2012a), degree of curvature (Ahmed et al., 2011; Ma and Kockelman, 2006), curve length (Carson and 

Mannering, 2001; Ma and Kockelman, 2006) , or deflection of curve (Noland and Oh, 2004) etc. In the 

present chapter, all of these measurements were tried separately and also in different combinations. 
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However, only the deflection of curve angle is found to be significant. Specifically, deflection of curve 

angle is positively associated with accident rate, indicating the larger deflection of curve angle the higher 

accident rate will be. This finding is somewhat different from earlier studies (Noland and Oh, 2004), 

where larger deflection of curve angle was found to be associated with fewer accidents. It is known that 

road curvature is likely to have mixed overall safety influence (Wang et al., 2013a), and future analyses 

are clearly needed to study the safety effect of road curvature further. 

In addition to abovementioned roadway characteristics, the inside shoulder width indicator (1 if 

inside shoulder is larger than 5 feet, 0 otherwise) also plays a significant role in the accident rate model. 

The positive sign of estimated coefficient for inside shoulder width indicator implies that roadway 

segments with wider inside shoulder result in higher accident rates. Note that Anastasopoulos and 

Mannering (2009) used the same inside shoulder width indicator. However, they found that this indicator 

has a mostly negative effect on crash frequency (in fact, they found it to be a random parameter). It is 

typically believed that modeling accident counts and modeling accident rates are inherently different 

(accident rate is exposure based measure while accident count is not). So such a difference in 

observations is plausible, and it necessities more specific investigations on accident rate studies.  

3.4.2 Pavement Characteristics 

As for pavement characteristics, considerations are given to important measures such as the 

international roughness index (IRI) and rutting depth. Nevertheless, only the IRI-related variable is found 

to produce a statistically significant result. A surrogate measure of IRI, the indexed value of the 

international roughness index (IRII) (lower values equal rougher roads), is used. The result is seemingly 

counterintuitive that higher IRII results in lower accident rate. However, it can be partly explained by risk 

compensation (Anastasopoulos et al., 2012a; Assum et al., 1999; Winston et al., 2006), which implies 

drivers may become more careful when they perceive hazardous conditions such as rough road surface.  

3.4.3 Traffic Characteristics 

Speed is known to be a major factor that affects accident rates. In the present chapter, we use 

speed gap instead of absolute speed value. Speed gap herein is calculated as the difference between 
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posted speed limit and mean traffic speed. The original real-time speed data from CDOT database do not 

exceed the local speed limit for each road segment, which means that if the actual average speed exceeds 

the local speed limit, the CDOT database will truncate it to the speed limit of the road segment. As a 

result, the "speed gap" in this chapter only has non-negative values, and it can reflect traffic congestions 

but not over-speeding behaviors. As presented in Table 3.3, speed gap was found to generate a random 

parameter which is normally distributed with a mean 184.61 and standard deviation 132.79 as shown in 

Fig. 3.1. This result indicates that an increase in speed gap leads to an accident rate increase on 92.3% of 

the roadway segments, and an accident rate decreases on the other 7.7% of the roadway segments. It is 

known that larger speed gap often occurs when traffic gets congested. Therefore, this observation may 

partly reflect that more accidents are likely to happen on more congested roadway segments, which is 

overall consistent with several previous studies (Dias and Miska, 2009; Kononov et al., 2008).  

 
Figure 3.1 Distribution of Parameter Estimation for Speed Gap 

 
3.4.4 Temporal Characteristics 

When it comes to temporal characteristics, a variety of variables are tried during the model 

estimation process, including a weekend indicator, Monday indicator, Friday indicator and different 

month indicators. Only the nighttime indicator (1 if it is in the nighttime, 0 otherwise) is found to produce 

a significant result. Note that nighttime indicator is defined exactly by the 2010 Colorado Sunrise Sunset 

Calendar instead of using the same time period (e.g. 6 pm to 6 am) every day. Thus it can better capture 
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nighttime driving condition. Table 3.3 shows that the estimated parameter of nighttime indicator has a 

negative sign, indicating that nighttime period is associated with less accident rate in contrast to daytime 

period.  

3.4.5 Weather/Surface Characteristics 

Visibility is found to be significant in the accident rate model with a negative sign, which means 

better visibility decreases accident rate.  This observation is in line with some previous findings (Usman 

et al., 2012; C. Xu et al., 2013; Yu et al., 2013b), which also showed that poor visibility condition has the 

potential to cause more accidents. 

In the CDOT database, road surface conditions were defined as dry, wet, chemically wet 

(moisture mixed with anti-icer), slush or ice warning (1 if the road surface is in freeze condition, 0 

otherwise), etc. A variety of these indicators were tried in the model. However, only three of them are 

found to be significant in the estimated accident rate model. Specifically, wet road surface, chemically 

wet road surface and ice warning road surface are all positively associated with accident rates. The wet 

road surface is found to be associated with higher accident rate, which is in line with previous results. For 

example, Caliendo et al. (Caliendo et al., 2007) also found that wet pavement increases accidents in 

general. Also, chemically wet road surface and ice warning road surface both increase accident rates in 

contrast to the normal dry condition as expected. These phenomena, for one more time, highlight the 

increased risk of driving on these adverse road conditions on mountainous highways and the importance 

of providing timely maintenance to improve road surface conditions. 

3.5 Summary 

This chapter presented analyzed accident rates on mountainous highways using random 

parameter tobit model. By facilitating data in refined temporal scale (hourly basis), this chapter differs 

from previous accident rates studies in adopting disaggregated data. In addition to handling left-censoring 

effects and explicitly capturing unobserved heterogeneity, the random parameter tobit model can also 

properly deal with serial correlations that usually present in panel data. Moreover, by incorporating 

weather and traffic data in refined temporal scale (hourly basis) in our study, detailed phenomena were 
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observed including those related to time-varying factors often being masked in traditional studies with 

aggregated data. The proposed model was developed based on real-time weather and traffic data from 

RWIS, a common data source around the country. Therefore, the technique developed in this chapter is 

easily transferrable to other highway safety studies with refined scales, exhibiting great engineering 

application potentials.  

A typical mountainous interstate highway I-70 was selected to demonstrate the proposed 

methodology. A random parameter tobit model was estimated by combining different data into one 

comprehensive data set. The likelihood ratio test result showed the superiority of random parameter tobit 

model over its fixed parameter counterpart. Model results demonstrated that various factors related to 

traffic and weather/surface conditions, roadway geometry and pavement play significant roles in crash 

rates. Poor visibility is found to increase accident rate. Similarly, adverse road surface conditions, 

including wet road surface, chemically wet road surface and ice warning, were all found to increase 

accident rate. Traffic-related factor, speed gap, was also found to affect accident rate significantly. Some 

factors were also found to possibly have a mixed influence on accident rate, such as speed limit, and 

inside shoulder width indicator. In addition, speed gap was found to produce a random impact on accident 

rates in the model. 
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CHAPTER 4 CORRELATED RANDOM PARAMETER MARGINALIZED TWO-PART MODEL: AN 
APPLICATION TO REFINED-SCALE LONGITUDINAL CRASH RATES3 

 
 
 
4.1 Introduction 

With enormous economic costs and human casualties that motor-vehicle crashes continue to 

claim, researchers have been putting together a lot of efforts to investigate the relationships between 

crashes and its contributing factors using various statistical models (Mannering and Bhat, 2014). Crash 

frequency and rate are two primary safety measures associated with traffic crashes. As the major 

alternative to crash frequency, crash rate is an appealing standardized relative safety measure widely used 

in traffic safety studies. For both crash frequency and rate studies, most of the current literature adopt 

highly aggregated or averaged data over a particular time period, usually a year or even several years. By 

doing so, explanatory variables that vary significantly over time, such as traffic characteristic and weather 

information, have to be aggregated or averaged over a long time duration, leading to loss of valuable 

information during the predefined time period (Lord and Mannering, 2010; Washington et al., 2011). In 

an attempt to overcome this issue, some studies with more refined temporal and/or spatial scales have 

emerged to provide more insightful inferences about crash frequencies and rates (Chen et al., 2014; Ma et 

al., 2015; Usman et al., 2012, 2011, 2010; Qi et al., 2007). By incorporating real-time weather and traffic 

data obtained from Road Weather Information System (RWIS), the present chapter conducts a crash rates 

analysis in refined temporal scale, which can reveal the impacts of time-varying variables and provides 

more valuable practical guidance. As a result of adopting refined-scale data, however, multiple 

observations for the same roadway segment over different time periods may be generated which are 

correlated due to unobserved effects (Mannering and Bhat, 2014). In other words, longitudinal data will 

be generated instead of traditional cross-sectional one, which poses extra challenges in the modeling 

process. 

                                                      

3 This chapter is developed based on a research paper by Xiaoxiang Ma, Suren Chen and Feng Chen, which 
was presented (TRB 16-3707) at the 95th Annual Meeting of Transportation Research Board in Washington, D.C., 
in January 2016. 
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To account for temporal and/or spatial correlations that are present within longitudinal data, 

researchers have developed various models such as negative multinomial models (Ulfarsson and Shankar, 

2003), generalized estimating equation (GEE) models (Lord and Persaud, 2000; Mohammadi et al., 2014; 

Wang and Abdel-Aty, 2006), random effects models and random parameter models (Chen et al., 2014; 

Ma et al., 2015a; Qi et al., 2007). Among these models, random parameter models are attractive because 

they could not only address serial correlations, but also allow the parameters to vary across observations, 

avoiding potential erroneous inferences if parameters are not actually fixed (Lord and Mannering, 2010). 

However, most existing studies that utilized random parameter models were based on an independent 

assumption for random parameters. Recognizing the limitation of such an assumption, some recent 

studies allowed random parameters to be correlated by assuming a multivariate distribution with 

unrestricted variance-covariance matrix (Xiong and Mannering, 2013; Yu et al., 2015). Another challenge 

is that crash rates are non-negative continuous values with a point mass at zero, and modeling such data 

with standard linear regression leads to inconsistent and biased estimates (Washington et al., 2011). To 

tackle such a problem, tobit models with fixed parameters were proposed to deal with crash rates data 

from interstate highways in Indiana (Anastasopoulos et al., 2008). To avoid biased estimates and 

erroneous inferences in the presence of unobserved heterogeneity (Washington et al., 2011) for fixed 

parameter tobit model, Anastasopoulos et al. (2012) further proposed a random parameter tobit model. 

Random parameter tobit model allows parameters to vary across observations, exhibiting improved 

performance than its fixed parameter counterpart. Recently, Chen et al. (2014) and Ma et al. (2015) 

applied random effects/random parameter tobit models to address longitudinal crash rates data in refined 

temporal scales. Yu et al. (2015) demonstrated that correlated random parameter tobit model outperforms 

its uncorrelated random parameter counterpart.  

Despite successful applications of tobit models on traffic safety research, some potential issues 

may arise when tobit model is applied to investigate crash rates. The first problem pertains to whether any 

censoring has actually occurred in the data. By definition crash rates apparently cannot take negative 

values. Therefore, the zeros in crash rate data are de facto self-representing data values (either due to no 
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crashes occurring or underreporting), originated from underlying data generating process instead of data 

censoring. The tobit model was designed to address biases introduced by data censoring, thus it is 

theoretically applicable only to the situation when the dependent variable can be negative but is somehow 

censored at zero (Maddala and Lahiri, 1992; Sigelman and Zeng, 1999). Existing studies suggested that 

when tobit is applied to data with zeros originated from data generating process rather than censoring, it 

may result in biased parameter estimates (Belasco and Ghosh, 2012; Sigelman and Zeng, 1999). Another 

issue is the normality assumption of the latent response in the tobit model (Anastasopoulos et al., 2008). 

In practice, such a normality assumption barely holds, especially when data is highly disaggregated. It not 

only makes tobit model inflexible, but also may leads to possible model biases when normality 

assumption is violated for the data with a high proportion of zeros (Arabmazar and Schmidt, 1982; 

Belasco and Ghosh, 2012; Bera et al., 1984).  

In the present chapter, thanks to the Road Weather Information System (RWIS), real-time traffic 

and weather data can be adopted, which will be further processed into refined time intervals (daily 

observations). Refined-scale data adopted in the present chapter is highly disaggregated in temporal scale 

as opposed to traditional safety studies, exhibiting two distinct features: (1) substantial proportion of zero 

observations (over 91%); and (2) right skewed positive outcomes. These two features of the present data 

make the tobit model, if developed, even more susceptible to the issues as discussed above. Therefore, 

more appropriate modeling methodology is desired to address the data with unique characteristics in the 

present chapter. As an alternative to address the clumping of zero values, two-part model has been widely 

applied in the field of econometrics, medical studies, ecological studies, etc. (Cragg, 1971; Duan et al., 

1983; Liu et al., 2012; Sigelman and Zeng, 1999; Smith et al., 2014; Su et al., 2009). Basically, two-part 

model uses one equation to determine whether the outcome is positive, and a second one to determine the 

level of the outcome when it’s positive. One key feature that distinguishes two-part model from tobit 

model is that two-part model treats zero values as self-representing observations, instead of proximity of 

zeros, missing or negative values caused by left censoring. With possible potentials to tackle the 

aforementioned challenges associated with existing modeling of refined data, random parameters and 
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crash rates, two-part approach seems to be a very promising and natural choice. As compared to the 

popular crash rates modeling methodologies, two-part model exhibits its theoretical appeal in a way that it 

has the potential to  avoid possible biased estimates resulting from inappropriate use of tobit model under 

some situations, as discussed previously. However, one limitation that prevent traditional two-part model 

from being directly applied to study crash rates is that it is usually difficult to get a straightforward 

interpretation of covariates’ impact on crash rates. In order to facilitate crash rates study by providing 

more interpretable covariate effects, marginalized two-part model proposed by Smith et al. (2014), rather 

than traditional two-part model, is adopted as the baseline model. To the best of authors’ knowledge, 

study on crash rates using any type of two-part model has not been reported so far.  

This chapter attempts to demonstrate applicability of marginalized two-part model as an 

alternative to tobit model to study crash rates, while investigating the impact of time-varying variables on 

crash occurrence at the same time. Random parameter model is developed to address longitudinal nature 

of the data due to adopting refined temporal scale (daily). Moreover, to handle the inappropriate 

independent assumption of random parameters, a correlated random parameter model is developed to 

capture possible correlations between random parameters. As a summary, a correlated random parameter 

marginalized two-part model (CRPMTP) is designed to study crash rates with a refined-scale panel 

structure. The proposed methodology is demonstrated by investigating crash rates on an urban freeway in 

Colorado. The applicability and potential advantages of marginalized two-part model as an alternative 

tool to study crash rates by addressing those outlined methodological challenges associated with time-

varying variables, temporal correlations and fixed parameters are also explored.  

4.2 Data Preparation 

In order to more comprehensively investigate the relationships between crash rates and its 

contributing factors, a representative portion of one major freeway I-25 in Colorado with detailed traffic 

and weather data is selected for this chapter. The selected portion of I-25 is located between City of 

Northglenn and City of Castle Rock. Both the southbound and the northbound are included in the current 

study: the 28.55-mile northbound ranges from Mile Marker (MM) 188.49 to MM 221.03, and the 27.38-
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mile southbound ranges from MM 188.49 to MM 219.86. To capture the time-varying nature of some 

explanatory variables, real-time weather and traffic data are acquired through Road Weather Information 

System (RWIS) and traffic flow monitoring stations respectively. 

Four types of datasets are utilized in the present chapter, (1) one year crash data (Jan. 2010- Dec. 

2010) provided by Colorado State Patrol (CSP), (2) roadway geometry (including pavement conditions) 

from the Roadway Characteristics Inventory (RCI), (3) real-time weather and road surface condition data 

provided by RWIS, (4) real-time traffic data recorded by traffic flow monitoring stations along the 

selected highways. The latter two datasets are the key components that make this disaggregate analysis 

possible. The real-time weather and road surface condition data were recorded at a twenty-minute interval 

by the weather stations installed along the highway. Road surface condition types originally defined in the 

CDOT database include dry, wet, chemically wet (moisture mixed with anti-icer), ice warning, ice watch, 

etc. Precipitation status initially defined in the CDOT database include no precipitation, rain occurring, 

snow occurring and others. Because road surface condition and precipitation status often vary within a 

day especially under the adverse weather, percentages of road surface condition and precipitation status 

are defined instead of indicator variables. The real-time traffic data were recorded at a two-minute 

interval, which is aggregated into daily records for the present chapter. By combining data from different 

sources and processing into refined-scale, a more insightful and thorough study of potential contributing 

factors that may lead to crashes can be conducted.  

The chosen highway section is split into homogeneous roadway segments through two-stage data 

segmentation regime. First, the roadway segments are defined according to CDOT traffic station 

assignment. Then the segments are further divided into homogeneous roadway segments based on the 

variation of geometric features, such as longitudinal grade, deflect angle of curve, curve radius, the 

number of lanes, median type, shoulder type, pavement condition, speed limit, etc. A total of 57 

homogeneous roadway segments is obtained with 29 segments from the northbound and 28 ones from the 

southbound. The segments have an average length of 1 mile. Since traffic and weather stations do not 

always work as expected, there may be “empty” windows in the original data due to sensor malfunction 
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or service disruption. After removing these incomplete data records, a total of 17,776 observations is 

acquired in the final dataset, with 91.44% of which has zero accidents. 

Table 4.1 Summary of Descriptive Statistics 

Variable Mean 
Std 
Dev. 

Minimum Maximum 

Dependent variable     

Crash rate 1.741 8.347 0 231.216 

Crash frequency 0.099 0.348 0 6 

Independent variable     

Speed gap (measured as the difference between speed limit 
and corresponding mean traffic speed)a 

2.585 2.652 0 31.796 

Maximum crosswind speed (largest cross wind speed of the 
day) b 

7.341 5.739 0 34.502 

Weekend indicator (1 if during weekend, 0 otherwise) 0.275 0.447 0 1 

Curvature (degree of horizontal curve) 0.971 0.690 0 2.260 

November indicator (1 if during November, 0 otherwise) 0.090 0.286 0 1 

Percentage of snow occurring (ratio of snow occurring 
regarding precipitation status) 

0.0276 0.103 0 0.775 

Number of enter ramp per lane per mile (measured as 
number of enter ramp/lanes/roadway segment length) 

0.259 0.216 0 0.926 

Outside shoulder length (in feet) 10.340 2.190 6 15 

Poor pavement indicator (1 if the pavement condition for 
the primary direction is good, 0 otherwise) 

0.356 0.479 0 1 

a:If the actual average speed exceeds the local speed limit, the CDOT database will truncate it to the speed limit. So 
the minimum value of “speed gap” is 0 here instead of negative values. 
b Crosswind is the perpendicular component of wind to the direction of travel. 

 
The daily crash rates are calculated with the following equation: 

௜௧݁ݐܽݎ ℎݏܽݎܥ  = �ܦℎ௜௧ݏܽݎܥ ௜ܸ௧ × ݈݁݊௜/ͳ,ͲͲͲ,ͲͲͲ (4.1) 

where Crash rateit  is the number of crashes per million vehicle miles traveled (VMT); Crashit is the 

number of crashes happened on segment ݅ during day ݐ;  DTVit is the daily traffic volume; and leni is the 

length of roadway segment. The subscript ݅ denotes i-th roadway segment, and subscript t denotes t-th 
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day of the year. During the study period, a total of 1,761 crashes are recorded on the selected portion of 

Interstate I25. 

Multi-collinearity issue is investigated to circumvent the inclusion of highly correlated 

explanatory variables. Groups of variables that are possibly correlated are identified at first. For example, 

poor pavement indicator, the indexed value of international roughness index and the life for rutting are all 

variables that measure pavement conditions. Special attentions are given to these variables with possible 

collinearity regarding variable selections. Different variables within these groups are tested separately in 

the model, and the inclusion of one variable is based on the log-likelihood value. The largest variance 

inflation factor (VIF) value for the variables included in the final model is 1.75, indicating no inclusion of 

highly correlated variables. Table 4.1 presents the summary statistics for the variables used in the dataset. 

 
Figure 4.1 Histogram of Positive Crash Rates and Logarithmic Positive Crash Rates 

 
Figure 4.1 provides histograms of positive crash rates and logarithmic of positive crash rates 

respectively. The left sub-graph shows that the distribution of positive crash rates is right-skewed with a 

heavy tail. Such phenomenon is echoed by the right sub-graph in Figure 4.1 where a log transformed 

positive crash rates data shows normality, which indicates that the normal assumption of positive crash 

rates may be inappropriate. 
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4.3 Methodology 

Based on the work by Tooze et al. (2002) on correlated random effects model and the work by 

Smith et al. (2014) on the cross-sectional data model, the authors extend the marginalized two-part model 

to accommodate longitudinal data with correlated random parameters in this section. The proposed model 

relates the two components of the model by assuming a multivariate normal distribution for the random 

parameters. Firstly, the binary part of the model is introduced. For a random variable ௜ܻ௧, which represents 

crash rates with observed value ݕ௜௧ for a roadway segment ݅ at time ݐ, �௜௧ is defined as: 

 �௜௧ = {Ͳ,   ݂݅ ௜ܻ௧ = Ͳͳ,   ݂݅ ௜ܻ௧ > Ͳ (4.2) 

with the probabilities: 

 �rሺ�௜௧ = ௜௧ሻݎ = {ͳ − ௜௧݌ , ௜௧ݎ ݂݅ = Ͳ݌௜௧ ௜௧ݎ ݂݅                 , > Ͳ (4.3) 

Same as conventional two-part models, the binary part of the proposed model is usually modeled 

using a logistic regression: 

௜௧ሻ݌ሺݐ݅݃݋݈  = ଵߙ ଵܺ௜௧ +  ଵܼଵ௜௧ (4.4)ߚ

where ܺ ଵ௜௧ is the vector of explanatory variables with fixed parameter vector ߙଵ, and ܼ ଵ௜௧ is the vector of 

explanatory variables with random parameter vector ߚଵ. 
Secondly, for the continuous part of the model, a conventional two-part model links the 

explanatory variables as: 

ሺ݈݊ ௜ܻ௧| ௜ܻ௧ܧ  > Ͳሻ =  (4.5) ߚܺ

In this case, the estimated coefficient ߚ can be interpreted as the effect of a unit increase in the 

corresponding covariate on the conditional mean of ݈݊ ௜ܻ௧ given that  ௜ܻ௧ is greater than zero. With regard 

to crash rates study, such an interpretation from Eq. (4.5) refers to the impact of the variable on crash 

rates for those segments with crashes. However, traffic safety practitioners would be more interested in 

the impact of the variable on crash rates for all segments (both with and without crashes).  In order to 

obtain a better understanding of the overall population-level effects (segments with and without crashes) 
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of variables, the following link proposed by Smith et al. (2014) for marginalized two part model is 

employed: 

ሺܧ  ௜ܻ௧ሻ = expሺܺߚሻ (4.6) 

In the case where the log-normal distribution is the density function of ௜ܻ௧ with a mean of ߤ௜௧ and 

a variance of �ଶ on the log scale:  

ሺܧ  ௜ܻ௧ሻ = expሺߙଶܺଶ௜௧ + ଶܼଶ௜௧ሻߚ = ௜௧ߤ௜௧exp ሺ݌ + �ଶ/ʹሻ (4.7) 

where ܺ ଶ௜௧ is the vector of explanatory variables with fixed parameter vector ߙଶ, and ܼ ଶ௜௧ is the vector of 

explanatory variables with random parameter vector ߚଶ . The random parameters are allowed to be 

correlated by assuming multivariate normal distribution for vector � with a mean of � and a variance-

covariance matrix �: 

 � = [�૚�૛]~ܸܰܯሺ�, �ሻ (4.8a) 

with 

 � =
[  
   
  [௠ߤڭଶߤଵߤ 

   
 
, and � =

[  
   
   

�ଵଶ �૚૛�૛૚ �ଶଶ ڮڮ �૚,�−૚ �૚,��૛,�−૚  �૛,�ڭ      ڭ ⋱ ૚,૚−��ڭ          ڭ ��−૚,૛��,૚ ��,૛ ڮڮ �௠−ଵଶ ��−૚,���,�−૚ �௠ଶ ]  
   
   
 (4.8b) 

For correlated random parameter model, the variance-covariance matrix �  is not structured, 

which means the off-diagonal elements of � are not restricted to zero. Under this formulation, both the 

within part (within the binary part or the continuous part) and cross part (between the binary part and the 

continuous part) correlations can be accounted for. When all the off-diagonal elements of � are restricted 

to zeros, the model will be reduced to uncorrelated random parameter model. 

Based on the above model parameterization, the resulting likelihood function is shown in the 

following: 
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,ଵߙሺܮ ,ଵߚ ,ଶߙ ,ଶߚ �, �, ,ݕ|� ܺ, ܼሻ 
=∏∬∏ሺͳ− ௜௧�೔݌

௧=ଵ ሻଵ(೤೔�=బ)�
௜=ଵ { �ߨʹ√௜௧ݕ௜௧݌ ݌ݔ݁ [− ͳʹ�ଶ ሺ݈݊ݕ௜௧ − ௜௧ሻଶ]}ଵሺ೤೔�>బሻߤ ݂ሺߚଵ, ,�|ଶߚ �ሻ݀� 

(4.9) 

where 

௜௧݌  = exp ሺߙଵ ଵܺ௜௧ + ଵܼଵ௜௧ሻͳߚ + exp ሺߙଵ ଵܺ௜௧ +  ଵܼଵ௜௧ሻ (4.10)ߚ

and  

௜௧ߤ  = ଶܺଶ௜௧ߙ + ଶܼଶ௜௧ߚ − ௜௧݌݈݊ − �ଶ/ʹ (4.11) ܰ is the number of roadway segments, and �௜ is the number of hourly observations on roadway segment ݅. ݂ሺߚଵ, ,�|ଶߚ �ሻ  is the probability density function of vector � , which follows a multivariate normal 

distribution. Such a likelihood function is analytically intractable. However, maximization of such a 

likelihood function can be achieved by using quasi-Newton optimization which approximates a likelihood 

function by adaptive Gaussian quadrature (Pinheiro and Bates, 1995). The lognormal distribution is 

adopted because it is an appropriate choice for the data in the present chapter. Note that other distributions, 

such as gamma, Weibull and log-skewed-normal distributions, can also be used to model skewed, 

nonnegative, and continuous data when appropriate. This feature makes two-part model much more 

flexible than tobit model. 

4.4 Model Comparisons 

4.4.1 Comparing Nested Models 

Three marginalized two-part models are estimated for the present chapter, including fixed 

parameter marginalized two-part model (FPMTP), uncorrelated random parameter marginalized two-part 

model (UCRPMTP) where all the off-diagonal elements in the variance-covariance matrix of random 

parameters are zeros, and correlated random parameter marginalized two-part model CRPMTP model 

where all the off-diagonal elements in the variance-covariance matrix of random parameters are not 

restricted to zeros. Given that these models are nested with each other, we conduct likelihood ratio tests to 
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determine if there are any statistical differences between FPMTP, UCRPMTP and CRPMTP models 

using the test statistic (Washington et al., 2011): 

 ȱଶ = ௨௟௟ሻ�ߚሺܮܮ]ʹ− −  ௘ௗ௨௖௘ௗሻ] (4.12)�ߚሺܮܮ

where ܮܮሺߚ�௨௟௟ሻ is the log-likelihood at convergence of the full model (it is UCRPMTP between FPMTP 

and UCRPMTP, and CRPMTP between UCRPMTP and CRPMTP), ܮܮሺߚ�௘ௗ௨௖௘ௗሻ is the log-likelihood 

at convergence of the reduced model (it is FPMTP between FPMTP and UCRPMTP, and UCRPMTP 

between UCRPMTP and CRPMTP). The test statistic is again χଶ distributed with the degree of freedom 

equivalent to the difference of the numbers of parameters between the full model and reduced model.  

In comparing UCRPMTP and FPMTP models, the χଶ  value is 1095 with four degrees (four 

important random parameters) of freedom, and the corresponding P-value is less than 0.001. When 

comparing between CRPMTP and UCRPMTP models, the χଶ  value is 76 with three degrees (three 

significant covariance terms) of freedom, and the corresponding P-value is less than 0.001. Consequently, 

it can be concluded that UCRPMTP model is statistically superior to FPMTP, and CRPMTP model is 

statistically superior to UCRPMTP. Therefore, CRPMTP is concluded to be the best amongst the three 

candidate models concerning the goodness of model fit, which reveals that CRPMTP can not only 

account for unobserved heterogeneity among observations but also address possible correlations between 

those unobserved heterogeneities. 

4.4.2 Comparing Non-nested Models 

A corresponding tobit model is also developed, and the estimation result is not reported for the 

sake of space. To compare the performance between tobit model and FPMTP model, log-likelihood value, 

Akaike information criterion (AIC) and mean absolute deviance (MAD) are studied with the results 

shown in Table 4.2. 

Table 4.2 Measures of Model Goodness of Fit 
 Log-likelihood AIC MAD 

FPMTP -10287.5 20598 3.00 

tobit -11040 22101 3.07 
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Although a direct comparison of log-likelihood value and AIC suggests FPMTP is to be favored 

according to Kullback-Leibler divergence, MAD does not show substantial evidence that FPMTP should 

be preferred. To further test whether FPMTP is better than tobit model, a hypothesis test proposed by 

Vuong (1989) for non-nested models is conducted. To test equivalence of two parametric classes of 

models ܨ�∗and ܩఊ∗, a null hypothesis is constructed as: 

଴logܧ :଴ܪ  ∗ఊܩ∗�ܨ = Ͳ (4.13) 

where ܧ଴ is the expectation taken at the true data generating process, �∗ and ߛ∗ are the corresponding 

pseudo true values. According to Vuong (1989), under ܪ଴: 
 ݊−ଵ/ଶ ,̂�௡ሺ�ܮ ሻ߱̂௡ߛ̂ ⟶ܰሺͲ,ͳሻ (4.14) 

where ܮ�௡ሺ�̂,  ,ሻ is the difference in maximum log-likelihood values, ݊ is the number of observationsߛ̂

and 

 ߱̂௡ = ͳ݊∑ሺlog ఊ̂ሻଶܩ̂�ܨ − ሺͳ݊∑log  ఊ̂ሻଶ (4.15)ܩ̂�ܨ

When testing against the hypothesis that FPMTP is superior to tobit model, the test statistic is 

calculated to be 80.65 (critical value at 0.999 level of confidence is 3.09). Therefore, it can be concluded 

that FPMTP performs better than its corresponding tobit model. 

4.5 Model Estimation Results 

The CRPMTP models developed in the present chapter can be termed as a logistic-lognormal-

normal model, where ‘logistic’ refers to binary part (part I) of the model, ‘lognormal’ to the continuous 

part (part II) of the model, and ‘normal’ to the multivariate normal distribution of random parameters. 

Other types of CRPMTP models can also be developed. For instance, logistic-‘log-skew-normal’-normal 

models are also estimated for the same dataset. However, the estimate of the skewness parameter in the 

logistic-‘log-skew-normal’-normal FPMTP model is found insignificant, and the likelihood ratio test 

indicates there is no difference between logistic-lognormal-normal FPMTP and logistic-‘log-skew-
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normal’-normal FPMTP. The estimation results for logistic-lognormal-normal FPMTP, UCRPMTP, and 

CRPMTP models are presented in Table 4.3, Table 4.4 and Table 4.5 respectively. 

4.5.1 Fixed-Parameter Model Results 

Thanks to the real-time data acquired from RWIS and the adoption of refined temporal scale in 

this chapter, time-varying variables are obtained and tested in addition to geometric features and temporal 

characteristics. Amongst all these traffic/weather/road surface related variables, speed gap, maximum 

crosswind speed and percentage of snow occurring are found to have a significant impact on crash 

occurrence. 

Table 4.3 Fixed-Parameter Estimation Results 

Parameter Estimate Standard Error P-value 

Part I: Pr(Y>0)  
Intercept -3.6430 0.0820 <0.0001 
Speed gap (measured as the difference 

between speed limit and 
corresponding mean traffic speed) 

0.1637 0.0081 <0.0001 

Maximum cross wind speed (largest 
cross wind speed of the day)  

-0.0193 0.0048 <0.0001 

Weekend indicator (1 if during 
weekend, 0 otherwise) 

-0.1361 0.0369   0.0002 

November indicator (1 if during 
November, 0 otherwise) 

0.1095 0.0473   0.0206 

Curvature  0.7837 0.0431 <0.0001 
Poor pavement indicator (1 if the 

pavement condition for the primary 
direction is good, 0 otherwise) 

0.1510 0.0394 <0.0001 

Part II: E(Y)  
Intercept 1.0360 0.1031 <0.0001 
Speed gap (measured as the difference 

between speed limit and 
corresponding mean traffic speed) 

0.1111 0.0072 <0.0001 

Maximum crosswind speed (largest 
cross wind speed of the day) 

-0.0119 0.0049   0.0147 

Percentage of snow occurring (ratio of 
snow occurring regarding 
precipitation status) 

0.7097 0.1161 <0.0001 

Number of enter ramp per lane per 
mile (measured as number of enter 
ramp/lane/roadway segment length) 

-0.3745 0.0818 <0.0001 

Curvature 0.3809 0.0427 <0.0001 
Outside shoulder width (in feet) -0.1117 0.0066 <0.0001 
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Sigma (�) 0.5538 0.0101 <0.0001 
Model statistics   

Number of observations 17776 
-2Log-likelihood 20575 
AIC 20605 
BIC 20722 

 
Moving to the specific estimation results for FPMTP model, there are six variables found 

significant in the binary part of the model. Speed gap is significant with a positive sign, indicating higher 

speed gap leads to higher probability of crashes. Maximum crosswind speed is found to be significant 

with a negative sign, which means a larger maximum cross wind speed of the day will decrease the 

occurrence of crashes. This result seems counter-intuitive. However, per risk compensation hypothesis, 

drivers tend to alter their driving behavior when experiencing perceived changes in riskiness (Dulisse, 

1997). Given that wind within the study area is relatively moderate, it is possible that the presence of 

moderate cross wind triggers drivers’ alertness and leads to overall fewer crashes. As for temporal 

characteristics, it is found that weekends are less likely to have accidents as opposed to weekdays. This 

result is consistent with crash statistics from National Highway Traffic Safety Administration’s crash 

report (NHTSA, 2010), where weekends show fewer accidents than weekdays. Another temporal 

characteristic, November, is found to be associated with higher likelihood of crashes. This is likely 

because of a sudden temperature drop and early winter storms in Colorado during November 2010, which 

coincides with the hypothesis that the onset of a major snow event (especially the first of the season) has a 

significant impact on the occurrence of crashes (El-Basyouny et al., 2014). For segments with curvature, 

it is found that those segments are more likely to incur crashes. Some previous studies also indicated 

(Chen et al., 2014; Ma et al., 2008; Ma and Kockelman, 2006) that degree of curvature was inclined to 

increase crash frequency for crashes with different severity levels. Concerning pavement condition, poor 

pavement indicator is found to increase the crash probability. 

As for the continuous part of FPMTP model, speed gap, maximum crosswind speed, the 

percentage of snow occurring, the number of entering ramp per lane per mile, curvature, and outside 

shoulder width are found to be significant. The results in Table 4.3 indicates that larger speed gap is 
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associated with higher crash rates, which is consistent with our previous studies (Chen et al., 2014; Ma et 

al., 2015a). On the contrary, higher maximum cross wind speed is associated with lower crash rates. As 

discuss above, such a counter-intuitive result can also be attributed to risk compensation theory. With 

regard to other weather-related variables, serious multicollinearity is detected between visibility, the 

percentage of wet road surface, the percentage of chemically wet road surface, the percentage of rain 

occurring and percentage of snow occurring. Among these variables, the percentage of snow occurring is 

included in the final model as it produces best model fit. It is found that an increase in the percentage of 

snow occurring leads to an increase in crash rates as expected. Regarding roadway characteristics, the 

number of entering ramp per lane per mile is found to decrease crash rates. Similar trends were also found 

in several studies (Chen et al., 2014; Pei et al., 2012). In addition, it is estimated that higher curvature 

leads to higher crash rates. Moreover, Table 4.3 also shows that outside shoulder width plays an important 

role in traffic crash rates. It is found that increase outside shoulder width leads to decrease in crash rates. 

Previous studies (Anastasopoulos et al., 2008) also indicated that outside shoulder width is negatively 

related to crash rates. 

4.5.2 Uncorrelated Random Parameter Model Results 

Given the longitudinal nature (repeated observations on the same roadway segment) of the dataset, 

it is reasonable to adopt random parameter model that accommodates panel setting to capture possible 

temporal correlations and unobserved heterogeneities. For that matter, UCRPMTP model is estimated 

where random parameters are assumed to be independently and normally distributed, and the results are 

shown in Table 4.4. Regarding random parameter formulation, a random parameter is determined only 

when both the mean and the standard deviation of the parameter density are statistically significant 

( Anastasopoulos et al., 2012a). When a parameter is determined to be a random parameter, its effect 

varies across roadway segments. Four parameters are found to be random parameters: Speed gap and 

curvature in the binary part, speed gap, and percentage of snow occurring in the continuous part. 

Interpretation of these random parameters will be given in the next section. Besides likelihood ratio test, 
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log-likelihood at convergence, AIC, and BIC values also show that UCRPMTP outperforms FPMTP 

model. 

Table 4.4 Uncorrelated Random Parameter Estimation Results 

Parameter Estimate Standard Error P-value 

Part I : Pr(Y>0)  
Intercept -3.6018 0.1071 <0.0001 
Speed gap (measured as the difference 

between speed limit and 
corresponding mean traffic speed) 

0.1874 0.0153 <0.0001 

Standard deviation 0.0701 0.0124 <0.0001 
Maximum cross wind speed (largest 

cross wind speed of the day)  
-0.0112 0.0052 <0.0355 

Weekend indicator (1 if during 
weekend, 0 otherwise) 

-0.1736 0.0295 <0.0001 

November indicator (1 if during 
November, 0 otherwise) 

0.0615 0.0359   0.0923 

Curvature  0.4505 0.1365   0.0017 
Standard deviation 0.7403 0.0961 <0.0001 

Poor pavement indicator (1 if the 
pavement condition for the primary 
direction is good, 0 otherwise) 

0.2577 0.0941   0.0084 

Part II: E(Y)  
Intercept 0.8730 0.1913 <0.0001 
Speed gap (measured as the difference 

between speed limit and 
corresponding mean traffic speed) 

0.1607 0.0148 <0.0001 

Standard deviation 0.0730 0.0123 <0.0001 
Maximum cross wind speed (largest 

cross wind speed of the day) 
-0.0132 0.0048   0.0082 

Percentage of snow occurring (ratio of 
snow occurring in terms of 
precipitation status) 

0.6825 0.1146 <0.0001 

Standard deviation 0.4160 0.1312   0.0025 
Number of enter ramp per lane per 

mile (measured as number of enter 
ramp/lane/roadway segment length) 

-0.4563 0.1727   0.0109 

Curvature 0.3688 0.0561 <0.0001 
Outside shoulder width (in feet) -0.1074 0.0149 <0.0001 
Sigma (�) 0.3719 0.0072 <0.0001 

Model statistics   
Number of observations 17776 
-2Log-likelihood 19480 
AIC 19518 
BIC 19556 

 



69 
 

4.5.3 Correlated Random Parameter Model Results 

Although UCRPMTP has the potential to capture temporal correlation and unobserved 

heterogeneities in the data, it imposes an independence assumption on random parameters’ distributions. 

Such an assumption may be dubious as there may be correlations between random parameters, and it may 

result in biased estimations if possible correlations between random parameters are not properly 

accounted for (Conway and Kniesner, 1991). The author relaxes the independence assumption on random 

parameters by employing a multivariate normal distribution for the random parameters, leading to a 

CRPMTP model. A covariance term in the variance-covariance matrix is determined only when it 

produces a statistically significant estimate. Otherwise, it is set to zero. Table 4.5 provides the estimation 

results for CRPMTP model. 

Table 4.5 Correlated Random Parameter Estimation Results 

Parameter Estimate Standard Error P-value 

Part I : Pr(Y>0)  
Intercept -3.6640 0.1089 <0.0001 
Speed gap (measured as the difference 

between speed limit and corresponding 
mean traffic speed) 

0.2026 0.0221 <0.0001 

Standard deviation 0.1310 0.0184 <0.0001 
Maximum cross wind speed (largest cross 

wind speed of the day)  
-0.0109 0.0053 <0.0440 

Weekend indicator (1 if during weekend, 0 
otherwise) 

-0.1852 0.0293 <0.0001 

November indicator (1 if during 
November, 0 otherwise) 

0.0603 0.0356   0.0958 

Curvature  0.5078 0.1359   0.0005 
Standard deviation 0.7578 0.0971 <0.0001 

Poor pavement indicator (1 if the 
pavement condition for the primary 
direction is good, 0 otherwise) 

0.2967 0.0833   0.0008 

Part II: E(Y)  
Intercept 0.9485 0.2072 <0.0001 
Speed gap (measured as the difference 

between speed limit and corresponding 
mean traffic speed) 

0.1670 0.0207 <0.0001 

Standard deviation 0.1253 0.0170 <0.0001 
Maximum crosswind speed (largest cross 

wind speed of the day) 
-0.0128 0.0049   0.0116 

Percentage of snow occurring (ratio of 0.6891 0.1169 <0.0001 
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snow occurring regarding precipitation 
status) 
Standard deviation 0.4400 0.1338   0.0018 

Number of entering ramp per lane per mile 
(measured as number of entering 
ramp/lane/roadway segment length) 

-0.4714 0.1823   0.0126 

Curvature 0.3567 0.0634 <0.0001 
Outside shoulder width (in feet) -0.1147 0.0165 <0.0001 
Sigma (�) 0.3708 0.0072 <0.0001 

Model statistics   
Number of observations 17776 
-2Log-likelihood 19404 
AIC 19448 
BIC 19492 

Variance covariance matrix of the random parameters 

 
Speed gap 
(part I) 

Curvature 
(Part I) 

Speed 
gap (Part 
II)  

Percentage of 
snow occurring 
(Part II) 

Speed gap (part I) 0.0172    
Curvature (part I) -0.0405 0.5743   
Speed gap (part II) 0.0160 -0.0397 0.0157  
Percentage of snow occurring (part II) 0 0 0 0.1936 
 

Model estimation results from CRPMTP are quite consistent with those from UCRPMTP. One 

notable difference is that the estimated standard deviations of the random parameters are noticeably larger 

in CRPMTP, indicating CRPMTP captures more unobserved heterogeneities as compared to UCRPMTP. 

With regard to random parameters in the model, speed gap in the binary part is normally distributed with 

a mean of 0.2026 and a standard deviation of 0.131. This indicates that an increase in speed gap increases 

crash probability on 94% roadway segments while decreases crash probability on 6% roadway segments. 

Curvature in the binary part is normally distributed with a mean of 0.5078 and a standard deviation of 

0.7578, which means large curvature increase crash probability on 75% roadway segments while decrease 

crash probability on 25% roadway segments. Speed gap in the continuous part is also normally distributed 

with a mean of 0.167 and a standard deviation of 0.1253, indicating an increase in speed gap increase 

crash rates on 91% roadway segments and decrease crash rates on 9% roadway segments. Percentage of 

snow occurring in the continuous part is normally distributed with a mean of 0.6891 and a standard 
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deviation of 0.44, suggesting increasing snow precipitation increases crash rates on 94% roadway 

segments while decreases crash rates on 6% roadway segments. 

Table 4.6 Correlation Matrix of Random Parameters 

 
Speed gap 
(part I) 

Curvature 
(Part I) 

Speed gap 
(Part II) 

Percentage of snow  
occurring (Part II) 

Speed gap (part I) 1    
Curvature (part I) -0.407 1   
Speed gap (part II) 0.974 -0.418 1  
Percentage of snow 
occurring (part II) 

0 0 0 1 

 
Apart from random parameters, correlations between those random parameters are also revealed 

by developing CRPMTP model. The correlation matrix for the random parameters is shown in Table 4.6. 

Speed gap parameter in the binary part is positively correlated with speed gap parameter in the continuous 

part. Curvature parameter in the binary part is negatively correlated with speed gap parameters in both the 

binary part and the continuous part. As a result of adopting CRPMTP model, these findings can be finally 

revealed and improve the understanding of crash occurrence. In addition to the likelihood ratio test 

discussed in section 4.4.1, AIC and BIC values also provide evidence that CRPMTP should be favored 

over the other two competing models. 

It is worth mentioning that the real-time traffic and real-time weather-related variables are found 

to play important roles in crash occurrence. If it were not for the adoptions of refined scale analysis with 

real-time data, some important findings as summarized above would not otherwise be made possible.  

4.6 Summary 

Traffic crashes are greatly affected by time-varying variables, such as weather and traffic 

conditions. It is, therefore, desirable to develop crash occurrence model with those time-varying variables. 

This chapter studied crash rates using refined-scale longitudinal data with excess zeros by developing the 

correlated random parameter two-part (CRPMTP) model. One-year crash data with detailed real-time 

traffic and weather related data on one major highway in Colorado were investigated in this chapter. The 

novelty of the proposed methodology is reflected from following aspects: 
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1) The marginalized two-part model was adopted for the first time to study crash rates. By 

comparing model performance between marginalized two-part model and tobit model, it shows that 

marginalized two-part model outperforms tobit model; 

2) A correlated random parameter model, as opposed to the uncorrelated one employed in most 

existing literature, was developed to avoid the inappropriate independence assumption on random 

parameters. Likelihood ratio test along with AIC and BIC measures indicated correlated random 

parameter model is superior to corresponding uncorrelated one. This finding supports our hypothesis 

that correlated random parameter model could account for both the unobserved heterogeneities across 

roadway segments and the correlations between those unobserved heterogeneities; 

3) Through employing real-time data from RWIS, a refined temporal scale analysis with daily data 

was conducted. By doing do, the impacts of time-varying variables were revealed, which would 

otherwise be unavailable if yearly crash data were used like most existing studies. 

In order to adequately address the associated challenges, FPMTP model was first developed as a 

baseline model. Then, UCRPMTP model and CRPMTP model were developed to account for temporal 

correlations and unobserved heterogeneities. Likelihood ratio tests showed that the CRPMTP model was 

the best among the three models regarding goodness of fit. It was also found that tobit model was not the 

preferred model choice in this chapter. By facilitating a multivariate normal distribution of the random 

parameters, the CRPMTP model not only accounts for unobserved heterogeneity but also captures the 

correlations between random parameters. This chapter demonstrates that two-part model may be a better 

alternative to tobit model in analyzing crash rates when the data is right-skewed with a large proportion of 

zero values. 

Moreover, speed gap in the binary part, curvature in the binary part, speed gap in the continuous 

part and percentage of snow occurring in the continuous part were found to have mixed effects on crash 

occurrence. Correlations between those random parameters were also revealed by adopting CRPMTP 

model. These finding can improve the understanding of the relationship between crash occurrence and 

contributing factors. Developing crash models that incorporate time-varying variables on a daily basis not 
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only contributes to the improved understanding of the crash occurrence but also bears the potential to 

provide road users and policy makers with more detailed and relevant crash risk information. The present 

chapter also has some limitations: the data used only covers one highway over one year period, to provide 

more general insights of crash risks with refined temporal scale on the main highways, studies with data 

in longer time durations and also on different highways are desired in the future.  
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CHAPTER 5 EMPIRICAL ANALYSIS OF CRASH INJURY SEVERITY ON MOUNTAINOUS AND 
NON-MOUNTAINOUS INTERSTATE HIGHWAYS4 

 
 
 
5.1 Introduction 

Traffic safety on highways is a major concern to both transportation agencies and researchers 

(Christoforou et al., 2010; Yasmin and Eluru, 2013). In order to implement more effective and 

customized injury mitigation strategy, it is crucial to investigate injury severity and associated risk factors 

of crashes on a specific highway. Mountainous highways, where steep gradients and sharp curves are 

usually present, can cause considerably different driver behavior and vehicle performance as compared to 

non-mountainous counterparts. In addition to geometric complexness, mountainous highways are usually 

more susceptible to harsh weather conditions. Despite sharing a lot of similarities, such as traffic volume, 

driver population, vehicle composition, different highways in the same area may exhibit varying traffic 

injury risks with different contributing factors. This is especially so for those regions with both 

mountainous and non-mountainous highways where a uniformed traffic safety performance function 

across the region may not be sufficient.  

Considerable research efforts have been made to analyze injury severity on typical highways 

during the past decades in terms of different categories of crashes, such as different vehicle types and 

crash types (Chang and Mannering, 1999; Mouyid Islam and Hernandez, 2013), different numbers of 

vehicles involved in crashes (Chen and Chen, 2011; Savolainen and Mannering, 2007; Xie et al., 2012), 

and different driver demographic and road surface conditions (Morgan and Mannering, 2011; Ulfarsson 

and Mannering, 2004). Based on these studies, transportation practitioners and researchers have gained 

good knowledge about crash severity on common non-mountainous highways. There are limited studies 

focusing on crash severity on mountainous highways. Yu and Abdel-Aty (2014a) examined crash injury 

severity for two roads, a mountainous freeway, and an urban expressway, using real-time traffic and 

weather data. In their subsequent study, Yu and Abdel-Aty (2014b) examined crash severity using three 

                                                      

4 This chapter is modified from a published paper by Ma et al. (2015b). 
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different models for a mountainous freeway. These studies offered some good insights about severity 

based on separate investigations on non-mountainous and mountainous highways in different regions. 

However, little study has been reported about comparative research focusing on the unique contribution 

from mountainous nature on crash injury risk.  

This chapter aims at investigating the injury severity characteristics on mountainous interstate 

highways through a comparative investigation. Two major interstate highways in Colorado, one being 

non-mountainous and the other one being mountainous are selected. Studying both mountainous and non-

mountainous highways in the same region can offer some unique advantages on investigating the impacts 

specifically contributed by mountainous nature through excluding influences from many other factors 

including driver population and so on. In addition, different from some existing studies on mountainous 

highways (e.g. Yu and Abdel-Aty 2014a,  2014b), detailed police reported data is used in this chapter to 

consider as many critical factors as possible (Christoforou et al., 2010). Although being criticized of 

possibly suffering from underreporting (Savolainen et al., 2011), the police reported crash data is believed 

to provide more insights than non-crash-specific data, avoid small sample problems, and maintain 

statistical inferences from detailed crash data (Anastasopoulos and Mannering, 2011). With some new 

findings for the first time, the present chapter can provide better insights about contributing factors and 

associated mechanisms related to mountainous nature, which can add to the state-of-the-art of 

understanding injury severity risks and potential mitigation efforts. The findings of this chapter will 

provide scientific guidance to improve the current highway design and traffic management policy, and 

propose next-generation safety initiatives for mountainous highways in order to reduce the injury severity, 

life and financial losses caused by crashes. 

5.2 Data and Empirical Setting 

Colorado State Patrol (CSP) has detailed traffic crash data of Colorado highways, which contains 

crash, driver, vehicle, roadway design and environmental information. To study different characteristics 

of crash injury severity on mountainous and non-mountainous interstate highways, two major interstate 

highways which both cross Colorado are selected: I70 and I25. The Interstate I70 Mountain Corridor, 
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ranging from Denver to Grand Junction through the Rocky Mountains, is a typical mountainous highway 

segment. Along the corridor, steep grades and sharp curves, accompanied by fast changing weather 

conditions, pose considerable safety threats on passing vehicles. I25 in Colorado goes through the Great 

Plains and shares a lot of similarities with other non-mountainous highways in the United States. 

Therefore, in the following comparative study, mountainous-highway (MT) crashes refer to those 

happening on I70 Mountain Corridor, and non-mountainous-highway (NM) crashes refer to those 

happening on I25 with plain terrain.  

Four-year detailed crash data (2007-2010) on I70 Mountain Corridor and I25 are utilized in this 

chapter. After removing the crash records without crash location information, there are totally 16,057 

crash data records during the 4-year time period in the CSP database, with 7,467 records on MT highway 

(I70 Mountain Corridor), and 8,590 records on NM highway (I25). The selected mountainous highway 

has a total length of 259.94 miles with an average 27859 AADT, while the selected non-mountainous 

highway has a total length of 298.879 miles with an average 69664 AADT. In the CSP database, the 

variable “Highest Inj Level” means the highest level of injury in a crash on a scale from 0 to 4, 

representing no injury, possible injury, non-incapacitating injury, incapacitating injury and fatal, 

respectively. To ensure that each category has a decent number of observations, they are regrouped into 

three categories (1) no injury (NI), (2) possible injury/non-incapacitating injury (PI/NII), and (3) 

incapacitating injury/fatal (II/F). To simplify the following presentation, incapacitating injury/fatal is 

referred to as severe injury, and possible injury/non-incapacitating injury is referred to as moderate injury. 

Among 7,467 crashes happening on MT highway, 5,739 (76.9%) crashes had no injury, 1,465 (19.6%) 

crashes had a moderate injury, and 263 (3.5%) crashes had a severe injury. Among 8,590 crashes 

happening on NM highway, 6,089 (70.9%) crashes had no injury, 2,194 (25.5%) crashes had a moderate 

injury, and 307 (3.6%) crashes had a severe injury.  

Detailed crash characteristics in the CSP data are categorized into five groups: (1) roadway 

characteristics, (2) temporal and environmental characteristics, (3) driver characteristics, (4) crash 

characteristics, and (5) vehicle characteristics. In the remainder of this chapter the driver characteristics, 

http://en.wikipedia.org/wiki/Rocky_Mountains
http://en.wikipedia.org/wiki/Great_Plains
http://en.wikipedia.org/wiki/Great_Plains
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vehicle characteristics and accident characteristics refer to the characteristics of at-fault driver or at fault 

vehicle. In order to limit potential estimation biases, all explanatory variables are carefully screened, and 

some are redefined. For example, snowy and icy road surface indicators are combined together, as it is 

possible that an crash reported to occur on snowy surface was actually caused by icy road surface 

(Morgan and Mannering, 2011). Additionally, the driver had no insurance indicator, and the driver had no 

proof of insurance indicator are combined.  Tables 5.1 and 5.2 give the number of observations and the 

percentage distribution across the injury severity for MT and NM data sets, respectively. 

Table 5.1 Descriptive Statistics for MT model 
Variable No injury Moderate injury Severe injury Total 

Roadway characteristics 
       

Wide median (median width>=50ft) 2005 74.23% 557 21.36% 119 4.41% 2701 

No rut indicator (rut index=100) 967 72.22% 303 22.63% 69 5.15% 1339 

Heavy traffic (AADT/number of lanes>=7.5k) 1579 78.79% 362 18.06% 63 3.14% 2004 

Highway interchange 149 73.04% 42 20.59% 13 6.37% 204 

Low truck percentage (<=4%) 122 68.93% 49 27.68% 6 3.39% 177 

Temporal and Environmental characteristics 
       

Monday 856 74.69% 234 20.42% 56 4.89% 1146 

Snowy/icy road surface 2364 79.95% 546 18.46% 47 1.59% 2957 

Snow/sleet/hail 1896 80.72% 420 17.88% 33 1.40% 2349 

Darkness-road lighted 274 77.62% 74 20.96% 5 1.42% 353 

Driver characteristics 
       

Young driver (age<=25) 1898 78.11% 453 18.64% 79 3.25% 2430 

Old driver (age>=60) 470 72.87% 140 21.71% 35 5.43% 645 

Female driver 1580 72.88% 516 23.80% 72 3.32% 2168 

DUI alcohol/drug use 145 51.06% 93 32.75% 46 16.20% 284 

Driver was asleep 122 52.14% 82 35.04% 30 12.82% 234 

Careless/reckless driving 463 59.06% 233 29.85% 87 11.10% 784 

Driver was fatigued 49 58.33% 24 28.57% 11 13.10% 84 

Driver had no insurance/no proof of insurance 586 63.01% 264 28.39% 80 8.60% 930 

Crash characteristics 
       

Only one vehicle involved 3828 78.31% 880 18.00% 180 3.68% 4888 

More than two vehicles involved 189 55.92% 128 37.87% 21 6.21% 338 

Animal caused 766 91.19% 69 8.21% 5 0.60% 840 

Exceeded legal speed 51 58.62% 25 28.74% 11 12.64% 87 

Overturn 555 59.55% 286 30.69% 91 9.76% 932 

Followed too closely 459 74.76% 149 24.27% 6 0.98% 614 

Front to rear collision 806 69.90% 318 27.58% 29 2.52% 1153 

Side to side collision with vehicles in same direction 540 87.10% 75 12.10% 5 0.81% 620 
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Collision with parked motor vehicle 45 76.27% 6 10.17% 8 13.56% 59 

Collision with guard rail 611 76.86% 161 20.25% 23 2.89% 795 

Collision with cable rail 107 91.45% 9 7.69% 1 0.85% 117 

Collision with concrete highway barrier 650 79.46% 153 18.70% 15 1.83% 818 

Collision with bridge structure 59 76.62% 18 23.38% 0 0.00% 77 

Collision with vehicle debris or cargo 138 93.88% 8 5.44% 1 0.68% 147 

Collision with embankment 337 78.19% 71 16.47% 23 5.34% 431 

Collision with delineator post 172 67.19% 65 25.39% 19 7.42% 256 

Vehicle characteristics        
Truck (10001 lbs or over) 460 81.27% 83 14.66% 23 4.06% 566 

Passenger car/van 2398 77.28% 623 20.08% 82 2.64% 3103 

Pickup truck/utility 1237 77.65% 304 19.08% 52 3.26% 1593 

Pickup truck/utility with trailer 146 84.39% 24 13.87% 3 1.73% 173 

SUV 1362 74.79% 381 20.92% 78 4.28% 1821 

SUV with trailer 28 87.50% 2 6.25% 2 6.25% 32 

 
Table 5.2 Descriptive Statistics for NM model 

Variable No injury Moderate injury Severe injury Total 

Roadway characteristics 
       

Wide median (median width>=50ft) 3010 71.91% 1005 24.01% 171 4.09% 4186 

Deep rut indicator (rut index<=88) 2140 72.30% 714 24.12% 106 3.58% 2960 

High speed limit (speed limit=75mph) 4762 70.42% 1736 25.67% 264 3.90% 6762 

Depressed median 2828 69.42% 1066 26.17% 180 4.42% 4074 

Heavy traffic (AADT/number of lanes>=7.5k) 4880 71.22% 1771 25.85% 201 2.93% 6852 

Temporal and Environmental characteristics 
       

Monday 850 66.98% 347 27.34% 72 5.67% 1269 

Snowy/icy road surface 1349 73.24% 436 23.67% 57 3.09% 1842 

Wet road surface 546 69.20% 228 28.90% 15 1.90% 789 

Driver characteristics 
       

Young driver (age<=25) 2269 72.38% 770 24.56% 96 3.06% 3135 

Old driver (age>=60) 532 69.27% 201 26.17% 35 4.56% 768 

Female driver 1956 67.99% 828 28.78% 93 3.23% 2877 

DUI alcohol/drug use 209 50.61% 151 36.56% 53 12.83% 413 

Driver was asleep 139 53.88% 98 37.98% 21 8.14% 258 

Careless/reckless driving 867 60.88% 470 33.01% 87 6.11% 1424 

Driver was fatigued 58 57.43% 34 33.66% 9 2.93% 101 

Illness/medical 47 54.65% 33 38.37% 6 6.98% 86 

Distracted by passenger 50 61.73% 24 29.63% 7 8.64% 81 

Driver had no insurance/no proof of insurance 734 63.22% 348 29.97% 79 6.80% 1161 

Driver's license had been denied 43 56.58% 25 32.89% 8 10.53% 76 

Crash characteristics 
       

Only one vehicle involved 3056 71.99% 1003 23.63% 186 4.38% 4245 

More than two vehicles involved 329 48.53% 320 47.20% 29 4.28% 678 
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Animal caused 479 88.54% 57 10.54% 5 0.92% 541 

Exceeded legal speed 24 54.55% 10 22.73% 10 22.73% 44 

Stopped in traffic 20 44.44% 22 48.89% 3 6.67% 45 

Backing 40 95.24% 1 0.33% 1 0.33% 42 

Overturn 427 47.13% 371 40.95% 108 11.92% 906 

Followed too closely 1047 70.13% 431 28.87% 15 1.00% 1493 

Improper passing 42 68.85% 13 21.31% 6 9.84% 61 

Front to front collision 34 48.57% 25 35.71% 11 15.71% 70 

Front to rear collision 1700 66.69% 805 31.58% 44 1.73% 2549 

Front to side collision 189 58.33% 118 36.42% 17 5.25% 324 

Side to side collision with vehicles in same direction 724 84.58% 118 13.79% 14 1.64% 856 

Collision with guard rail 501 70.86% 180 25.46% 26 3.68% 707 

Collision with cable rail 351 86.67% 49 12.10% 5 1.23% 405 

Collision with concrete highway barrier 328 65.60% 163 32.60% 9 1.80% 500 

Collision with vehicle debris or cargo 247 93.92% 15 5.70% 1 0.38% 263 

Collision with embankment 99 70.21% 38 26.95% 4 2.84% 141 

Vehicle characteristics        
Passenger car/van 3247 71.98% 1131 25.07% 133 2.95% 4511 

Pickup truck/utility 1068 70.82% 388 25.73% 52 3.45% 1508 

Pickup truck/utility with trailer 216 83.08% 39 15.00% 5 1.92% 260 

SUV 886 65.63% 411 30.44% 53 3.93% 1350 

Defective tires 57 62.64% 33 36.26% 1 1.10% 91 

 
5.3 Methodology 

In the present chapter, we focus on the differences of crash injury severities between crashes on 

mountainous and non-mountainous highways. Three crash injury severity outcomes are considered: 

severe injury (incapacitating injury/fatal); moderate injury (possible injury/non-incapacitating injury); and 

no injury. Over the years, researchers have adopted a variety of discrete outcome models to analyze crash- 

severity data, such as ordered logit or probit models, multinomial logit models, Markov switching 

multinomial logit models, nested logit models, random parameter logit (mixed logit) models, and latent 

class models (see Mannering and Bhat (2014), and Savolainen et al. (2011) for complete reviews on those 

methodological approaches). Among most frequently used methodological approaches, a mixed logit 

model is a well-developed approach which relaxes IIA assumption and IID errors assumption and allows 

for unobserved heterogeneity as compared to multinomial logit model (Jones and Hensher, 2007). Besides 

random parameter models (e.g. mixed logit model), latent class logit models have also gained popularity 
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recently (Cerwick et al., 2014; Eluru et al., 2012). Differing from mixed logit models, latent class models 

can accommodate group specific unobserved heterogeneity and relax continuous distributional 

assumptions for random parameters. However, latent class logit models do not deal with individual 

unobserved heterogeneity as mixed logit models can. No consensus has yet been made regarding which 

approach is superior given the fact that both approaches have both strengths and limitations (Xiong and 

Mannering, 2013). Given that latent class model and random parameter models may not adequately 

accommodate the unobserved heterogeneity in some cases, Xiong and Mannering (2013) proposed a finite 

mixture (latent class) random parameter model to accommodate both the group specific heterogeneity and 

individual heterogeneity within each group, which results in a complex model structure. Following recent 

work (Chen and Chen, 2011; McFadden and Train, 2000; Milton et al., 2008), the current chapter adopts a 

mixed logit model approach. 

Let �௡ሺ݅ሻ  be the probability of crash n causing injury severity category I (Ulfarsson and 

Mannering, 2004): �௡ሺ݅ሻ = ௜ܺ௡௜ߚ)� + �௡௜ ൒ ௝ܺ௡௝ߚ + �௡௝) ∀݆ ∈ ,ܫ ݆ ≠ ݅                                   (5.1) 

where I is a set of all possible discrete injury outcomes, i.e. severe injury, moderate injury, and no injury 

in the present chapter. ߚ௜ and  ߚ௝ are the vectors of estimable coefficients corresponding to different injury 

severity alternatives ݅ and ݆  respectively, while ܺ௡௜ and ܺ ௡௝  are the vectors of explanatory variables for 

crash n which determine the injury severity alternatives ݅ and ݆  respectively.  �௡௜ and �௡௝ are error terms 

which are assumed to be generalized extreme value distributed (Mansky and McFadden, 1981). The 

mixed logit model formation is derived when parameter  ߚ௜  is allowed to vary across observations as 

follows (Train, 2003):  

�௡ሺ݅|߮ሻ = ∫ ௘�೔�೙೔∑ ௘�ೕ�೙ೕ∀ � ݂ሺߚ௜|߮ሻ݀ߚ௜                                                     (5.2) 

where �௡ሺ݅|߮ሻ is the probability of injury severity alternative i conditioned on ݂ሺߚ௜|߮ሻ, and ݂ ሺߚ௜|߮ሻ is 

the density function of ߚ௜ with a vector of parameters ߮ of the density function (mean and variance).  
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Simulation-based likelihood method is adopted to estimate mixed logit models using Halton 

sequence, which has been found to be a more efficient way of drawing values than purely random draws 

(Bhat, 2003; Train, 2003). Methods with 200 Halton draws are used in the forthcoming model estimations 

(Bhat, 2003; Gkritza and Mannering, 2008; Milton et al., 2008). With a sample size of 7,467 for 

mountainous highway crashes and a sample size of 8,590 for non-mountainous highway crashes, both 

datasets are much larger than the sample size requirements suggested by Ye and Lord (2014).  

Elasticity is calculated to measure the effect of explanatory variables on injury severity 

probability. Since all the explanatory variables in this chapter are indicator variables, direct pseudo-

elasticity is calculated to assess percent effect on severity probability �௡ሺ݅|߮ሻ when a particular indicator 

changes from 0 to 1 or reverse as follows (Ulfarsson and Mannering, 2004): 

௑೙ೖ�೙ሺ௜ሻܧ = [݁ఉ೔ೖ ∑ [௘�೔′ೣ೙]ೣ೙ೖ=బ∀ ೔′∈�∑ [௘�೔′ೣ೙]ೣ೙ೖ=భ∀ ೔′∈� − ͳ] × ͳͲͲ                                           (5.3) 

where ܧ௑೙ೖ�೙ሺ௜ሻ is the direct pseudo-elasticity of the kth variable from the vector ܺ௡ for observation n.  ܺ ௡௞ is 

the value of the variable k for the outcome n. ߚ௜௞ is the kth  component of the vector ߚ௜ of injury-severity 

outcome i.  [݁ఉ೔′௫೙]௫೙ೖ=బ  is the value of ݁ఉ೔′௫೙  with ܺ௡௞ = Ͳ , and [݁ఉ೔′௫೙]௫೙ೖ=భ  is the value of ݁ఉ೔′௫೙ 

with ܺ௡௞ = ͳ . Average pseudo-elasticity is reported by taking average of the elasticity across all 

observations. 

5.4 Model Comparison 

To determine that separate developments of MT and NM models are statistically justified, a 

likelihood ratio test is performed. All data model is estimated using combined MT and NM datasets. The 

test statistic adopted in the likelihood ratio test is (Ulfarsson and Mannering, 2004): ȱଶ = ሻߚሺ�ܮܮ]ʹ− − ௠௧ሻߚ೘�ሺ�ܮܮ −  ௡௠ሻ]                                   (5.4)ߚ೙೘ሺ�ܮܮ

where ܮܮ�ሺఉሻ  is the log-likelihood at convergence of the all data model, with a parameter vector ߚ  ௡௠ሻ are the log-likelihood at convergence of the model estimated on the MTߚ೙೘ሺ�ܮܮ ௠௧ሻ  andߚ೘�ሺ�ܮܮ .

data subset, and the NM data subset, respectively. The ȱଶ test statistic follows ߯ଶdistribution with the 
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degrees of freedom equal to the sum of the number of the parameters estimated in the MT and NM 

models minus the number of the parameters estimated in all dataset models. Based on the test result with 

P<0.001, we can conclude that the choice of modeling MT and NM crashes separately in the present 

chapter is warranted.  

We also conduct a likelihood ratio test to compare the differences between the random parameter 

models (i.e. mixed logit models) and their fixed parameter counterparts (i.e. base multinomial models), 

using the test statistic (Washington et al., 2011): ȱଶ = ௥�௡ௗ௢௠ሻߚሺܮܮ]ʹ− −  ௙௜௫௘ௗሻ]                                            (5.5)ߚሺܮܮ

where ܮܮሺߚ௥�௡ௗ௢௠ሻ and ܮܮሺߚ௙௜௫௘ௗሻ are the log-likelihood at convergence of mixed logit model and fixed 

parameter model estimated using the same dataset (e.g. MT or NM dataset), respectively. The test statistic 

is ߯ଶ  distributed with the degrees of freedom equal to the difference of the numbers of estimated 

parameters between the two models. The ߯ଶ value of the test is 16.08 with three degrees of freedom for 

MT model. The ߯ ଶ value is 10.82 with two degrees of freedom for NM model. Thus, the corresponding 

P-value is 0.0045 for MT model and 0.001 for NM model respectively. Therefore, we are more than 99.5% 

confident that the mixed logit models are statistically superior.   

5.5 Empirical Results 

The estimated model results for MT and NM crashes are given in Tables 5.3 and 5.4 respectively. 

The results reveal substantial differences in contributing factors towards crash injury severity between 

MN and NM crashes. No injury outcome is chosen to be the base alternative among the three pre-defined 

injury outcomes. All estimated coefficients included in the MT and NM models are statistically 

significant at a 95% confidence level. Tables 5.3 and 5.4 show that both severity models have an overall 

good fit with McFadden pseudo-ߩଶ equal to 0.4886 for the MT model and 0.4253 for the NM model, 

respectively.  

Table 5.3 MT Crash Injury Severity Model Estimation Results 
Variable Injury outcome Estimates t-Statistics 

Constant PI/NII -0.683 -3.00 

Constant II/F -1.615 -4.89 
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Roadway characteristics    
Wide median (median width>=50ft) PI/NII 0.179 2.25 

No rut indicator (rut index=100) PI/NII 0.199 2.18 

Heavy traffic (AADT/number of lanes>=7.5k) PI/NII -0.334 -3.91 

Highway interchange II/F 0.882 2.64 

Low truck percentage (<=4%) PI/NII 0.721 3.21 

Temporal and Environmental characteristics   
Monday II/F 0.378 2.14 

Snowy/icy road surface PI/NII -0.943 -3.26 

(Std. dev. of parameter distribution-normal) 
 

1.775 3.98 

Snowy/icy road surface II/F -1.062 -4.70 

Snow/sleet/hail II/F -0.827 -3.47 

Darkness-road lighted II/F -1.076 -2.21 

Driver characteristics    
Young driver (age<=25) PI/NII -0.796 -2.95 

          (Std. dev. of parameter distribution-uniform) 
 

1.398 3.26 

Young driver (age<=25) II/F -0.389 -2.31 

Old driver (age>=60) II/F 0.541 2.40 

Female driver PI/NII 0.442 5.36 

DUI alcohol/drug use PI/NII 0.620 3.61 

DUI alcohol/drug use II/F 1.316 5.47 

Driver was asleep PI/NII 0.837 4.44 

Driver was asleep II/F 0.852 3.12 

Careless/reckless driving PI/NII 0.382 3.33 

Careless/reckless driving II/F 0.824 4.51 

Driver was fatigued II/F 0.830 2.09 

Driver had no insurance/no proof of insurance PI/NII 0.596 5.42 

Driver had no insurance/no proof of insurance II/F 1.060 6.11 

Crash characteristics    
Only one vehicle involved PI/NII -0.746 -6.45 

Only one vehicle involved II/F -1.000 -4.24 

More than two vehicles involved PI/NII 1.156 7.01 

More than two vehicles involved II/F 1.747 5.59 

Animal caused PI/NII -0.727 -4.49 

Animal caused II/F -1.528 -3.14 

Exceeded legal speed PI/NII 0.934 2.98 

Exceeded legal speed II/F 1.563 3.86 

Followed too closely II/F -1.763 -3.61 

Overturn PI/NII 1.329 8.79 

Overturn II/F 1.957 9.74 

Front to rear collision II/F -0.676 -2.29 

Side to side collision with vehicles in same direction PI/NII -0.912 -5.75 

Side to side collision with vehicles in same direction II/F -2.257 -4.52 
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Collision with parked motor vehicle II/F 1.026 2.14 

Collision with guard rail PI/NII 0.423 3.04 

Collision with cable rail PI/NII -0.969 -2.29 

Collision with concrete highway barrier PI/NII 0.391 2.67 

Collision with bridge structure PI/NII 0.846 2.24 

Collision with vehicle debris or cargo PI/NII -1.550 -3.99 

Collision with vehicle debris or cargo II/F -2.408 -2.31 

Collision with embankment II/F 1.078 3.74 

Collision with delineator post PI/NII 0.748 3.69 

Collision with delineator post II/F 1.206 3.82 

Vehicle characteristics    
Truck (10001 lbs or over) PI/NII -0.740 -2.91 

Truck (10001 lbs or over) II/F -0.779 -2.23 

Passenger car /van PI/NII -0.608 -2.73 

Passenger car /van II/F -1.474 -5.07 

Pickup truck/utility PI/NII -0.646 -2.84 

Pickup truck/utility II/F -2.825 -2.57 

        (Std. dev. of parameter distribution-triangular) 
 

2.229 2.58 

Pickup truck/utility with trailer PI/NII -1.208 -3.69 

Pickup truck/utility with trailer II/F -2.400 -3.63 

SUV PI/NII -0.513 -2.26 

SUV II/F -0.849 -2.88 

SUV with trailer PI/NII -2.033 -2.55 

Model statistics    

Number of observations 
 

7467 
 

Log likelihood at zero 
 

-4194.95 
 

Log likelihood at convergence 
 

-8203.34 
 

McFadden Pseudo R-squared 
 

0.4886 
 

 
Table 5.4 NM Crash Injury Severity Model Estimation Results 

Variable Injury outcome Coefficient t-Statistic 

Constant PI/NII -0.940 -11.95 

Constant II/F -1.849 -6.56 

Roadway characteristics 
   

Wide median (median width>=50ft) PI/NII -0.372 -2.98 

(Std. dev. of parameter distribution-normal) 
 

0.976 3.08 

Deep rut indicator (rut index<=88) PI/NII -0.176 -2.8 

High speed limit (speed limit=75mph) II/F 0.514 2.89 

Depressed median PI/NII 0.232 3.47 

Heavy traffic (AADT/number of lanes>=7.5k) II/F -0.441 -3.07 

Environmental and temporal characteristics 
  

Monday II/F 0.483 3.22 

Snowy/icy road surface PI/NII -0.806 -2.98 
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(Std. dev. of parameter distribution-uniform) 
 

1.570 3.6 

Snowy/icy road surface II/F -0.806 -4.56 

Wet road surface II/F -0.871 -3.1 

Driver characteristics    
Young driver (age<=25) PI/NII -0.162 -2.59 

Old driver (age>=60) II/F 0.436 2.18 

Female driver PI/NII 0.334 5.17 

DUI alcohol/drug use PI/NII 0.750 5.6 

DUI alcohol/drug use II/F 1.621 8.13 

Driver was asleep PI/NII 0.749 4.6 

Driver was asleep II/F 0.819 3.02 

Careless/reckless driving PI/NII 0.200 2.61 

Driver was fatigued II/F 0.762 1.99 

Illness/medical PI/NII 0.758 2.95 

Distracted by passenger II/F 1.322 3.03 

Driver had no insurance/no proof of insurance PI/NII 0.184 2.14 

Driver had no insurance/no proof of insurance II/F 0.529 3.43 

Driver's license had been denied II/F 0.939 2.17 

Crash characteristics    
Only one vehicle involved PI/NII -0.599 -6.24 

Only one vehicle involved II/F -1.109 -5.57 

More than two vehicles involved PI/NII 1.206 11.01 

More than two vehicles involved II/F 1.356 5.7 

Animal caused PI/NII -0.750 -4.38 

Animal caused II/F -1.497 -3.17 

Exceeded legal speed II/F 2.004 4.88 

Stopped in traffic PI/NII 0.911 2.53 

Stopped in traffic II/F 1.634 2.43 

Backing PI/NII -2.641 -2.54 

Overturn PI/NII 1.572 11.54 

Overturn II/F 1.724 10.16 

Followed too closely II/F -1.021 -3.37 

Improper passing II/F 1.468 3.11 

Front to front collision II/F 0.934 2.4 

Front to rear collision II/F -1.392 -5.84 

Front to side collision PI/NII 0.539 3.61 

Side to side collision with vehicles in same direction PI/NII -1.016 -8.26 

Side to side collision with vehicles in same direction II/F -2.066 -6.46 

Collision with guard rail PI/NII 0.434 3.44 

Collision with cable rail PI/NII -0.532 -2.72 

Collision with cable rail II/F -0.930 -1.97 

Collision with concrete highway barrier PI/NII 0.854 6.1 

Collision with vehicle debris or cargo PI/NII -1.753 -5.98 
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Collision with vehicle debris or cargo II/F -3.226 -3.17 

Collision with embankment PI/NII 0.614 2.57 

Vehicle characteristics    
Passenger car/van PI/NII -0.230 -3.63 

Passenger car/van II/F -0.836 -4.76 

Pickup truck/utility II/F -0.645 -3.05 

Pickup truck/utility with trailer PI/NII -0.902 -4.26 

Pickup truck/utility with trailer II/F -1.693 -3.48 

SUV II/F -0.444 -2.12 

Defective tires PI/NII 0.715 2.71 

Model Statistics    

Number of observations 
 

8590 
 

Log likelihood at zero 
 

-9437.08 
 

Log likelihood at convergence 
 

-5423.15 
 

McFadden Pseudo R-squared 
 

0.4253 
 

 
With regard to the random parameter density function, four types of distributions are considered: 

normal, lognormal, triangular, and uniform distributions. Three variables are found to produce statistically 

significant random parameters in the MT model, and two random parameters are significant in the NM 

model. In the MT model, it is found that the snowy/icy road surface indicator variable is normally 

distributed for moderate injury with the mean and standard deviation being 0.943 and 1.775, respectively. 

This indicates that 70.2% of the MT crashes that happened on snowy/icy road surface increase the 

probability of moderate injury, while 29.8% of the MT crashes that occurred on snowy/icy road surface 

decrease the likelihood of moderate injury. Such phenomena reflect the complex tradeoff between more 

cautious driving behavior and the increased difficulties of operating the vehicles on snowy/icy roads. 

Young driver indicator is uniformly distributed for moderate injury which has the mean and the standard 

deviation -0.796 and 1.398, respectively. It suggests that the probability of moderate injury increases for 

30.6% of MT crashes involving young driver, but decreases for the rest (the other 69.4%). This 

phenomenon is perhaps because of the mixed effects from relatively imprudent driving behavior and less 

driving experience, and yet shorter reaction time of young drivers. Pickup truck/utility indicator of having 

severe injury crashes is triangularly distributed with the mean and standard deviation being -2.825 and 

2.229, respectively. This indicates that the effect of pickup truck/utility is not the same across 
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observations. One possible explanation is that it captures unobserved heterogeneity such as safety features, 

dynamic characteristics of pickup truck/utility and different pickup truck/utility driver behavior. 

In the NM model, the snowy/icy road surface indicator in moderate injury outcome is also found 

uniformly distributed with the mean being –0.806 and standard deviation being 1.570. This implies that 

30.3% of the NM crashes happened on snowy/icy road surface result in an increase in the probability of 

moderate injury and 69.7% of the NM crashes that happened on snowy/icy road surface lead to a decrease 

in the likelihood of moderate injury. Additionally, wide median indicator, which is defined for moderate 

injury outcome, is also found normally distributed and the mean and standard deviation are respectively -

0.372 and 0.976. For 64.8% of the crashes, wide median decreases the probability of moderate injury; 

while for 35.2% of the crashes, wide median increases the likelihood of moderate injury. This is probably 

the outcome from the tradeoff between the improved physical protection and the affected driving behavior 

due to either “safer” or “more dangerous” interpretations by different drivers. 

Average direct pseudo-elasticity results for MT and NM models are presented in Table 5.5. In the 

following section, detailed observations from Table 5.5 will be discussed.   

Table 5.5 Average Direct Pseudo-elasticity for MT and NM models 

Variable 
MT Elasticity (%) NM Elasticity (%) 

NI PI/NII II/F NI PI/NII II/F 

Roadway characteristics 
      

Wide median (median width>=50ft) -2.7 16.3 -2.7 8.9 -24.9 8.9 

No rut indicator (rut index=100) -3.1 18.3 -3.1 na na na 

Deep rut indicator (rut index<=88) na na na 4.0 -12.7 4.0 

High speed limit (speed limit=75mph) na na na -1.6 -1.6 64.4 

Depressed median na na na -5.1 19.6 -5.1 

Heavy traffic (AADT/number of lanes>=7.5k) 5.0 -24.8 5.0 1.8 1.8 -34.5 

Highway interchange -3.6 -3.6 132.9* na na na 

Low truck percentage (<=4%) -12.8 79.4 -12.8 na na na 

Temporal and Environmental characteristics 
     

Monday -1.3 -1.3 44.1 -2.0 -2.0 58.9 

Snowy/icy road surface 18.7 -53.8 -59.0 21.2 -45.9 -45.9 

Snow/sleet/hail 2.2 2.2 -55.3 na na na 

Wet road surface na na na 2.5 2.5 -57.1 

Darkness-road lighted 2.4 2.4 -65.1 na na na 

Driver characteristics       



88 
 

Young driver (age<=25) 13.5 -48.8 -23.1 3.7 -11.8 3.7 

Old driver (age>=60) -1.9 -1.9 68.4 -1.8 -1.8 51.9 

Female driver -6.8 44.9 -6.8 -7.5 29.2 -7.5 

DUI alcohol/drug use -15.0 57.9 216.9* -25.1 58.6 278.8* 

Driver was asleep -17.2 91.1 94.0 -21.3 66.5 78.6 

Careless/reckless driving -8.7 33.9 108.2* -4.6 16.5 -4.6 

Driver was fatigued -3.3 -3.3 121.6* -3.7 -3.7 106.4* 

Illness/medical na na na -19.2 72.4 -19.2 

Distracted by passenger na na na -7.8 -7.8 245.8* 

Driver had no insurance/no proof of insurance -13.0 57.9 151.2* -6.2 12.7 59.1 

Driver's license had been denied na na na -4.9 -4.9 143.4* 

Crash characteristics       
Only one vehicle involved 18.5 -43.8 -56.4 21.1 -33.5 -60.0 

More than two vehicles involved -26.6 133.2* 321.1* -34.0 120.5* 156.1* 

Animal caused 13.8 -45.0 -75.3 19.9 -43.4 -73.1 

Exceeded legal speed -22.1 98.1 271.9* -15.0 -15.0 531.0* 

Stopped in traffic na na na -29.6 75.2 260.8* 

Backing na na na 31.6 -90.6 31.6 

Overturn -29.0 168.4* 402.9* -43.3 173.3* 217.9* 

Followed too closely 3.3 3.3 -82.3 2.8 2.8 -63.0 

Improper passing na na na -9.2 -9.2 294.1* 

Front to front collision na na na -4.8 -4.8 142.1* 

Front to rear collision 1.8 1.8 -48.2 4.3 4.3 -74.1 

Front to side collision na na na -13.2 48.8 -13.2 

Side to side collision with vehicles in same direction 17.3 -52.9 -87.7 27.0 -54.0 -83.9 

Collision with parked motor vehicle -4.4 -4.4 166.8* na na na 

Collision with guard rail -6.9 42.0 -6.9 -10.4 38.3 -10.4 

Collision with cable rail 11.4 -57.7 11.4 14.3 -32.8 -54.9 

Collision with concrete highway barrier -6.4 38.5 -6.4 -21.4 84.8 -21.4 

Collision with vehicle debris or cargo 22.4 -74.0 -89.0 36.3 -76.4 -94.6 

Collision with embankment -4.6 -4.6 180.5* -15.3 56.5 -15.3 

Collision with delineator post -16.9 75.7 177.5* na na na 

Vehicle characteristics       
Truck (10001 lbs or over) 12.5 -46.3 -48.4 na na na 

Passenger car/van 16.3 -36.7 -73.4 9.1 -13.3 -52.7 

Pickup truck/utility 17.1 -38.6 -93.1 2.1 2.1 -46.4 

Pickup truck/utility with trailer 20.0 -64.1 -89.1 22.9 -50.1 -77.4 

SUV 10.8 -33.7 -52.6 1.5 1.5 -34.9 

SUV with trailer 17.6 -84.6 17.6 na na na 

Defective tires na na na -18.0 67.5 -18.0 
Note: 1.* indicate significant increase in injury severity probability (elasticity≥100%); 2. na indicates not applicable 
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5.5.1 Roadway Characteristics 

With regard to roadway characteristics, large disparities are found between MT and NM models. 

Although wide median indicator and heavy traffic indicator are found to be significant in both models, 

their effects towards crash injury severity are opposite. For MT model, wide median decreases the 

probability of severe injury by 2.7% while increases the probability of moderate injury by 16.3%. For NM 

model, however, wide median increases severe injury probability by 8.9% and decreases moderate injury 

probability by 24.9%. Such findings suggest that complex interactions between crash injury severity and 

wide median may exist. On non-mountainous highways, the wide median may provoke more aggressive 

driving behavior while in the meantime, provide more physical protection (Chen and Chen, 2011). The 

heavy traffic indicator increases severe injury (5%) and decreases moderate injury (24.8%) in the MT 

model. On the contrary, it reduces the probability of severe injury (34.5%) and increases the likelihood of 

moderate injury (1.8%) in the NM model. This result may reflect some effects caused by different traffic 

patterns between mountainous corridor I70 and non-mountainous interstate highway I25 on crash injury 

severity. Some specific mitigation strategies of severe injury on heavy traffic road sections of 

mountainous highways may be needed in the future by considering the unique characteristics of MT 

crashes. 

Some variables are found to be only significant in the MT crash model. For instance, no rut 

indicator and low truck percentage increase the probability of moderate injury by 18.3% and 79.4% 

respectively, while they both slightly decrease the probability of severe injury on MT crashes. If a crash 

happens on a mountainous highway interchange, the likelihood of having severe injury is significantly 

increased by 132.9%. Traffic agencies and research community therefore need to put more efforts on 

mountainous highway safety by focusing on these unique contributing variables. Some variables are 

found only significant in the NM crash model. For example, deep rut indicator and high speed limit 

indicator increase the probability of severe injury (4.0% vs 64.4%), but decrease the likelihood of 

moderate injury (12.7% vs 1.6%). Depressed median, however, decreases severe injury by 5.1% and 

increases moderate injury by 19.6%.  
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5.5.2 Temporal and Environmental Characteristics 

Although a variety of temporal indicators are considered, including different hours of a day and 

different days of a week, only Monday indicator is found significant. If a crash happens on Monday, it is 

44.1% and 58.9% more likely to sustain severe injury for the MT and NM models respectively.  

As discussed above, snowy/icy road surface condition has been found randomly distributed in 

both the MT and NM models.  According to the elasticity results from Table 5.5, snowy/icy road surface 

reduces the probability of severe injury by 59.0% and 45.9% and reduces the chance of moderate injury 

by 53.8% and 45.9% for MT and NM crashes respectively. Wet road surface condition is also found to 

reduce the probability of severe injury by 57.1% for NM model. These findings are consistent with 

several previous studies (Chen and Chen, 2011; Christoforou et al., 2010; Malyshkina and Mannering, 

2010a; Xie et al., 2009; Yamamoto and Shankar, 2004). Such effect can be partly explained by the fact 

that drivers tend to drive more cautiously on snowy/icy road surface or wet road surface than on normal 

surface condition. Besides road surface conditions, the inclement weather indicator (snow/sleet/hail) is 

found to be only significant for mountainous highway crashes. To be specific, it alleviates the probability 

of severe injury by 55.3% while slightly aggravates that of moderate injury. Xie et al. (2009) and Paleti et 

al. (2010) also reported similar findings. The darkness-road lighted indicator also significantly affects the 

injury severity for mountainous highway crashes (decreases the severe injury likelihood by 65.1%). This 

finding highlights the importance of lighting on mountainous highways, which may be considered in the 

future mitigation efforts on some crash hot spots. 

5.5.3 Driver Characteristics 

Different effects towards injury severity are observed for crashes caused by young drivers. For 

mountainous highway crashes, it is found that young drivers are less likely to result in severe injury (by 

23.1%) and moderate injury (48.8%). For non-mountainous highway crashes, however, Table 5.5 shows 

that there are 3.7% increase and 11.8% decrease respectively in the probabilities of causing severe injury 

and moderate injury by young drivers. Careless/reckless driving is usually believed to considerably 

increase the chance of causing traffic crashes. Nevertheless, its effect toward injury severity has not been 
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fully studied. Based on Table 5.5, on one hand, it is found that careless/reckless driving increases the 

chance of moderate injury for crashes on both mountainous and non-mountainous highways with varying 

magnitudes (33.9% vs 16.5%). On the other hand, careless/reckless driving has a 108.2% increase and 4.6% 

decrease in causing severe injury on mountainous and non-mountainous highways respectively. To the 

knowledge of the authors, such differences were not observed before, especially for the tremendous 

influence of careless/reckless driving behavior on severe injury on mountainous highways.  

Although differences of driver characteristics’ effects between MT and NM models are observed, 

some variables related to driver characteristics have similar influence towards crash injury severity in 

both MT and NM crashes. For example, old drivers are more prone to experiencing severe injury (68.4% 

and 51.9% in MT and NM models). Such a finding echoes with previous studies (Xie et al., 2009; Yasmin 

and Eluru, 2013), and is perhaps due to longer reaction time compared to other drivers. For female drivers, 

on the one hand, moderate injury increases for mountainous and non-mountainous highways crashes (44.9% 

vs 29.2%); on the other hand, severe injury decreases on both types of highways. This finding is in 

accordance with several studies (for example, Weiss et al. (2014) for young drivers, Malyshkina and 

Mannering (2010) on design exceptions, Islam and Hernandez (2013b) on heavy vehicles), while different 

from others (Xie et al., 2009). Besides driver age and gender, if a driver was asleep, it is 94.0% and 78.5% 

more likely to induce severe injury for MT crashes and NM crashes, respectively. Fatigued driving has 

long been recognized as hazardous factor in causing crashes. In the present chapter, it is discovered that 

fatigued driving substantially increases the chance of causing severe injury. Anastasopoulos and 

Mannering (2011) gave similar findings in their individual crash data models. This observation may be 

partly attributable to slow reaction time, decreased awareness and impaired judgment from driver fatigue. 

Aside from above mentioned results, if a driver was influenced by alcohol or drug use or driver was 

asleep, the MT and NM models lead to increases in both severe injury and moderate injury. Note that 

under the influence of alcohol and drug, the probability of severe injury increases considerably in both 

models. This result is supported by several studies (Chimba and Sando, 2009; Chiou et al., 2013; Xie et 

al., 2009; Yasmin and Eluru, 2013), and confirms the common belief about the higher risk of DUI. In 
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addition, those drivers with no insurance or no proof of insurance are more likely to trigger severe injury 

and moderate injury in both highways. It implies the need for state patrol to pay more attention to those 

more vulnerable drivers.  

Moreover, two variables are found to only significantly affect NM crashes injury severity. For ill 

drivers, severe injury is decreased by 19.2%. For the driver being distracted by passenger, it is 245.8% 

more likely to cause severe injury. 

The abovementioned observations have significant implications in driving education, training and 

police enforcement. These observations highlight similarities and disparities of hazardous factors in MT 

and NM crashes and thus can be potentially useful in training professional/commercial drivers, and 

helping police department allocate enforcement resources more efficiently. 

5.5.4 Crash Characteristics 

Many variables of crash characteristics show similar influences on MT and NM crashes. For 

single-vehicle crashes, reduction in the probability of both the severe injury and moderate injury are 

observed. Other variables, which are significant in both MT and NM models, also show plausible trends 

of influence on the probability of severe injury and moderate injury. For example, animal-caused crashes 

are less inclined to sustain a severe injury and moderate injury, the probability of severe injury decreases 

while the probability of moderate injury increases if vehicles collide with the guard rail in both models.  

Two variables are noteworthy: more than two vehicles involved indicator (multi-vehicle crash 

with three or more than three vehicles involved) and overturn indicator. The effects from both indicators 

on crash injury severity differ greatly in magnitudes for MT and NM crashes. For multi-vehicle crashes, it 

is found that the probability of severe injury increases by 321.1% on MT crashes and 156.1% on NM 

crashes. When a vehicle overturns, it is 402.9% more likely to sustain severe injury on MT crashes and 

217.9% more likely to sustain severe injury on NM crashes. These results are consistent with previous 

studies (e.g. Shankar et al. 1996). Both multi-vehicle crash and overturn crash exhibit more critical 

influence towards crash injury severity on MT crashes. This result may be related to the interactions 
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between complex terrain and driver maneuver difficulties on mountainous highways, and further analysis 

is needed to fully uncover the mechanism behind this phenomenon.  

Except for those indicators that have similar effects on MT and NM crashes, other indicators 

show substantial differences. One major difference between MT and NM crashes is that the impacts of 

exceeding legal speed indicator on moderate injury are opposite (98.1% vs. -15.0%). One thing worth 

mentioning is that exceeding legal speed indicator significantly increases the likelihood of severe injury 

(271.9% and 531% for the MT and NM crashes respectively) as expected on both types of highways. 

Christoforou et al. (2010) also found that higher speed is more susceptible to severe injury. This 

phenomenon emphasizes the importance of speed law enforcement on both mountainous and non-

mountainous highways. When a vehicle collides with cable rail, it results in an 11.4% increase and a 54.9% 

decrease in severe injury for MT and NM crashes, respectively. Collision with embankment increases the 

severe injury by 180.5% and slightly decreases the moderate injury on MT crashes, while it decreases the 

severe injury by 15.3% and increases the moderate injury by 56.5% on NM crashes. This probably 

reflects different effects of roadside design features toward crash injury severity on MN crashes as 

opposed to NM crashes, leading to some potential improvements over the design of roadside 

infrastructure of mountainous highways.  

Two indicators are found to be exclusively significant in the MT model. Collision with parked 

motor vehicle increases the severe injury probability substantially (166.8%) on MT crashes. In the 

meantime, collision with delineator post is inclined to increase both the probability of severe injury and 

moderate injury (177.5% vs 75.7%). Similar to those two variables that are only significant in the MT 

model, five indicators are found to be only significant in NM model. For example, improper passing and 

front-to-front collision are found to substantially increase severe injury probability by 294.1% and 142.1% 

on NM models, respectively. In addition, if a vehicle stops in traffic, the likelihood of severe injury 

increases considerably by 260.8% and the likelihood of moderate injury increases by 75.2% in the NM 

model.  
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5.5.5 Vehicle Characteristics 

If the at-fault vehicle is pickup truck/utility or SUV, there is substantial difference of moderate 

injury probability between MT and NM models (-38.6% vs 2.1% for pickup truck/utility, -33.7% vs 1.5% 

for SUV). Passenger car/van and pickup truck/utility with trailer are found to decrease severe injury and 

moderate injury in both models. Moreover, trucks are found to reduce severe injury and moderate injury 

on MT crashes. These findings indicate that heavy vehicle occupants are far less likely to sustain severe 

injury in contrast to light vehicles (for example, motorcycles). Similar conclusions were also drawn by 

other studies (e.g. Christoforou et al. 2010). One explanation may be that lighter vehicles absorb much 

more kinetic energy from a collision than heavy vehicles (Christoforou et al., 2010). Note that Abdel-Aty 

(2003) found that van and pickup occupants suffer less severe injury than passenger car occupants, and 

Yamamoto and Shankar (2004) found that motorcycle and truck are less likely to suffer from severe 

injury in urban area. These different findings may reflect the different driver behavior on different regions 

and terrains. For SUV with trailer, there is a 17.6% increase in severe injury probability and an 84.6% 

decrease in moderate injury in the MT model. Comparatively, defective tires indicator is found to be only 

significant in the NM model. It decreases severe injury probability by 18.0% and increases moderate 

injury probability by 67.5%.  

5.5.6 Results Summary 

Based on above discussions, critical contributing factors with different directions of the influence 

in both models and those only significant in one model are summarized in Table 5.6. 

Table 5.6 Summary of Variables with Different Effects in MT and NM model 

Variable MT  NM  

PI/NII II/F PI/NII II/F 

Wide median (median width>=50ft) 
 

 

  

Heavy traffic (AADT/number of lanes>=7.5k) 
    

Young driver (age<=25)  

   

Careless/reckless driving 
    

Exceeded legal speed 
  

 

 

Collision with cable rail 
 

 

 
 



95 
 

Collision with embankment 
 

  

 

Pickup truck/utility 
 

  

 

SUV 
 

 
  

No rut indicator (rut index=100)   na na 

Highway interchange 
 

 

na na 

Low truck percentage (<=4%) 
 

 

na na 

Snow/sleet/hail 
  

na na 

Darkness-road lighted 
  

na na 

Collision with parked motor vehicle 
  

na na 

Collision with delineator post 
  

na na 

Truck (10001 lbs or over) 
 

 

na na 

SUV with trailer  

 

na na 

Deep rut indicator (rut index<=88) na na 
 

 

High speed limit (speed limit=75mph) na na   

Depressed median na na 
 

 

Wet road surface na na 
  

Illness/medical na na 
 

 

Distracted by passenger na na 
  

Driver's license had been denied na na 
 

 

Stopped in traffic na na 
  

Backing na na 
 

 

Improper passing na na 
  

Front to front collision na na 
 

 

Front to side collision na na 
 

 

Defective tires na na 
 

 

Note: 1. arrows show an increase (up) or decrease (down) in elasticity. 2. na indicates not applicable 

As shown in Table 5.6, there are contributing factors that significantly affect injury severity in 

both types of highways but with different directions of influence: wide median (width>=50ft), heavy 

traffic (AADT/number of lanes>=7.5k), young driver, careless/reckless driving, exceeded legal speed, 

collision with cable rail, collision with embankment, pickup truck/utility and SUV.  

Moreover, there are nine important contributing factors that are only significant in MT model: no 

rut indicator (rut index=100), highway interchange, low truck percentage (<=4%), snow/sleet/hail, 

darkness-road lighted, collision with parked motor vehicle, collision with delineator post, truck, SUV 



96 
 

with trailer. Comparatively, there are thirteen important contributing factors that are only significant in 

NM model: deep rut indicator (rut index<=88), high speed limit (speed limit>=75mph), depressed median, 

wet road surface, illness/medical, distracted by passenger, driver’s license had been denied, stopped in 

traffic, backing, improper passing, front to front collision, front to side collision, defective tires.  

5.6 Summary 

With four-year detailed crash injury severity data, separate mixed logit models were estimated for 

one mountainous and one non-mountainous interstate highway in Colorado. To provide scientific insights 

about potential mitigation efforts, this study comprehensively investigated critical contributing factors on 

injury severity. Substantial differences in the magnitude and direction of the influence of contributing 

factors were observed. Out of the factors that significantly affect injury severity, nine are exclusive to MT 

crashes and thirteen to NM crashes. Additionally, there are nine contributing factors that have opposite 

effects on injury severity between MT and NM models. Those factors that lead to more severe injury are 

(elasticity greater than 100%): highway interchange (MT crashes), DUI alcohol/drug use (both MT and 

NM crashes), careless/reckless driving (MT crashes), driver was fatigued (both MT and NM crashes), 

driver had no insurance/no proof of insurance (MT crashes), driver’s license had been denied (NM 

crashes), more than two vehicles involved (both MT and NM crashes), exceeded legal speed (both MT 

and NM crashes), stopped in traffic (NM crashes), overturn (both MT and NM crashes), improper passing 

(NM crashes), front to front collision (NM crashes), collision with parked motor vehicle (MT crashes), 

collision with embankment (MT crashes), collision with delineator post (MT crashes).  

Those factors that lead to less severe injury are (elasticity greater than 50%): snowy/icy road 

surface (both MT and NM crashes), snow/sleet/hail (MT crashes), wet road surface (NM crashes), 

darkness-road lighted (MT crashes), only one vehicle involved (both MT and NM crashes), animal caused 

(both MT and NM crashes), followed too closely (both MT and NM crashes), front to rear collision (NM 

crashes), side to side collision with vehicles in the same direction (both MT and NM crashes), collision 

with cable rail (NM crashes), collision with vehicle debris or cargo (both MT and NM crashes), passenger 
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car/van (both MT and NM crashes), pickup truck/utility (MT crashes), pickup truck/utility with trailer 

(both MT and NM crashes), SUV (MT crashes).  

This chapter is explorative in nature regarding investigating both mountainous and non-

mountainous highways from the same region side by side. Rather than offering general findings with the 

mixed model in most existing studies, it is very helpful in identifying and understanding specific critical 

factors affecting injury severity on MT and NM crashes respectively. There are, however, some 

limitations of this chapter, which offer room for future improvements. For example, real-time traffic and 

weather data were not included in the model due to the incompleteness of the data. Although the adoption 

of mixed logit model is helpful in capturing heterogeneity in this regard, future work should incorporate 

the real-time data when it becomes widely available to form decent sample size. Findings based on the 

comparative study of two typical interstate highways in Colorado can offer valuable information about 

mountainous highways in general. However, future comparative studies on more highways from various 

states are still desired to provide more comprehensive insights. 
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CHAPTER 6 CORRELATED RANDOM EFFECTS BIVARIATE POISSON LOGNORMAL MODEL 
TO STUDY SINGLE- AND MULTI-VEHICLE CRASHES5 

 
 
 
6.1 Introduction 

Developing crash prediction models remains one of the primary approaches for studying traffic 

safety. Although these statistical models play a vital role in investigating crash mechanisms, most of them 

focused on univariate ones (Anastasopoulos and Mannering, 2009; Caliendo et al., 2007; Chen et al., 

2014; Ma et al., 2015a; Malyshkina and Mannering, 2010b; Mohammed A Quddus, 2008; Shankar et al., 

1998; Usman et al., 2012). In other words, these models studied the total number of crashes over a 

specified time period for some roadway segments or intersections, without distinguishing possible 

subgroups of these crashes and capturing correlations between these subgroups. Recently, some 

researchers have tried to estimate safety performance functions of different crashes simultaneously by 

dividing total crashes into different categories, such as different levels of injury severity (El-Basyouny 

and Sayed, 2009a; Ma et al., 2008; Ma and Kockelman, 2006; Park and Lord, 2007), and different 

collision types (Dong et al., 2014a; El-Basyouny et al., 2014). In addition to these categorizations, crashes 

can also be categorized by the number of vehicles involved, for example, single-vehicle (SV) and multi-

vehicle (MV) crashes (Geedipally and Lord, 2010a; Yu and Abdel-Aty, 2013).  Some recent studies have 

demonstrated that there is a significant difference in the characteristics associated with SV and MV 

crashes (Geedipally and Lord, 2010a, 2010b; Jonsson et al., 2007; Martensen and Dupont, 2013), 

highlighting the need to investigate SV and MV crashes separately.  

Most of the current studies on SV and MV crashes have only focused on the effects of exposure 

and geometric features of roadways. Nevertheless, in addition to these two features, weather and traffic 

conditions have also been found to play a crucial role in crash occurrence (Aguero-valverde and Jovanis, 

2007; Caliendo et al., 2007; Chen et al., 2014; Ma et al., 2015a; Usman et al., 2012, 2011, 2010).  The 

present chapter attempts to investigate crash risks by categorizing crashes based on the number of 

                                                      

5 This chapter is developed based on a research paper by Ma et al. (2016). 
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vehicles involved, namely SV and MV crashes, and also incorporating the effects of weather and traffic 

conditions in addition to exposure and geometrics. Moreover, thanks to the advanced monitoring system 

installed along the highways, detailed weather and traffic data can be adopted in this chapter in order to 

provide more insightful observations. As a result of adopting detailed data, however, multiple daily 

observations are generated for SV and MV crashes on each roadway segment, forming a multivariate 

panel dataset which poses some methodological challenges. Multivariate count data models have been 

advocated in view of their capability to capture correlations among different categories of crashes (Dong 

et al., 2015, 2014b; El-Basyouny et al., 2014; El-Basyouny and Sayed, 2009a; Ma et al., 2008; Ma and 

Kockelman, 2006; Park and Lord, 2007). However, these existing researches mainly focused on exploring 

cross-sectional multivariate data. The present chapter utilizes a multivariate panel data structure which 

has rarely been investigated. In contrast to cross-sectional multivariate data, there are three possible 

sources of correlations within multivariate panel data. First, the unobserved factors across different 

categories of crashes (in this case, SV and MV) set up a correlation between them. For instance, an 

increase in the number of SV crashes is also related to some changes in the number of MV crashes. 

Traditional multivariate data models can readily address this type of correlation. Second, there are 

correlations across time intervals between observations of each roadway segments for SV and MV 

crashes respectively. This type of correlation is due to unobserved heterogeneity at segment level. Third, 

correlations across time intervals between observations of roadway segments for SV and MV crashes may 

as well be correlated, as the unobserved heterogeneity are shared by both SV and MV crashes. Thus, 

analyzing multivariate panel data presents great statistical and computational challenges, thus requires 

more advanced models. To avoid biased parameter estimates and erroneous inferences that ensue, all 

these types of possible correlation in the data have to be properly accounted for. As explorative efforts, 

the authors propose a bivariate Poisson-lognormal model with correlated segment level random effects to 

properly capture those sources of correlation as summarized above. 

After the methodology is proposed, it is applied to a mountainous highway in Colorado which is 

known to be adversely affected by weather conditions. Three models are developed and compared: 
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traditional bivariate Poisson lognormal (BPL), bivariate Poisson lognormal with uncorrelated segment 

level random effects (UREBPL), and bivariate Poisson lognormal with correlated segment level random 

effects (CREBPL). The primary objective of this chapter is to examine whether CREBPL is appropriate 

for analyzing SV and MV crashes using multivariate panel data. The secondary objective is to study the 

impact of weather and traffic conditions in addition to exposure and geometric conditions on SV and MV 

crashes. For a better illustration, this chapter is divided into five sections. The first section provides a 

literature review of related works on SV and MV crashes and multivariate data models, followed by a 

description of the data utilized in this chapter.  The third section presents the model formulations of the 

proposed methodology. The fourth section discusses the model results, and the last section provides 

conclusion remarks as well as future research directions. 

6.2 Background 

6.2.1 Multivariate and Panel Data Model 

Traditionally, traffic crashes are investigated using univariate models without further 

distinguishing crashes by different types (Chen et al., 2014; Chin and Quddus, 2003; Johansson, 1996; 

Ma et al., 2015a; Malyshkina and Mannering, 2010b; Shankar et al., 1995). Recognizing the need of 

accounting for unobserved factors across different types of crashes, Ma and Kockelman (2006) adopted a 

multivariate Poisson (MVP) model to analyze crashes by injury levels. Their results indicated that a MVP 

regression is superior to its univariate counterparts. Given that MVP cannot tolerate over-dispersion, 

Ladrón de Guevara et al. (2004) applied a multivariate negative binomial (MVNB) model to investigate 

fatal, injury and property-damage crashes simultaneously. However, MVNB assumes a gamma 

distributed error which is motivated merely by mathematical convenience, and it does not allow negative 

correlation structure. In order to overcome the drawbacks of MVP and MVNB, Chib and Winkelmann 

(2001) proposed a multivariate Poisson lognormal (MVPL) model. It is not only capable of addressing 

over-dispersion, but also allows a full general correlation structure. Given its strengths, MVPL has been 

widely applied in traffic safety studies (Aguero-Valverde and Jovanis, 2009; El-Basyouny et al., 2014; El-

Basyouny and Sayed, 2009a; Ma et al., 2008; Park and Lord, 2007). It is worth noting that most of these 
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past research endeavors have focused on multivariate cross-sectional count data. Panel data, which can 

capture unobserved factors, has become available in traffic safety studies recently. A variety of panel data 

models, such as random effects and random parameter models, have been widely applied in univariate 

models (Chen et al., 2014; Chin and Quddus, 2003; Ma et al., 2015a; Qi et al., 2007; Shankar et al., 1998). 

However, so far panel data model has been rarely explored in a multivariate setting. 

6.2.2 Studies on SV and MV Crashes 

Several researchers have investigated different characteristics related to SV and MV crashes. For 

example, Öström and Eriksson (1993) were among the first to develop different models for SV and MV 

crashes involving intoxicated drivers in northern Sweden. Their results revealed driver’s blood alcohol 

content has different effects towards SV and MV crash fatality. Ivan et al. (1999) examined causality 

factors for SV and MV crashes respectively on two-lane rural roads in Connecticut. They found out that 

explanatory variables are different for SV and MV crashes. Geedipally and Lord  (2010b) compared 

separate SV and MV models with the combined SV and MV model regarding identifying hot spots. They 

found separate SV and MV models yield fewer false positives and negatives than the combined model, 

and thus recommended developing separate SV and MV models to predict crashes as well as identify hot 

spots. Geedipally and Lord (2010a) also discovered that it is beneficial to model SV and MV separately 

regarding the prediction of confidence levels, and suggested using a joint model to account for correlation. 

Yu and Abdel-Aty (2013) investigated SV and MV crashes on a mountainous freeway. They developed a 

bivariate Poisson-lognormal model and hierarchical Poisson model and concluded bivariate Poisson-

lognormal model performs better regarding DIC and number of significant variables. These past studies 

from different aspects have all demonstrated that it is preferred to model SV and MV crashes separately 

while still accounting for correlations between them using multivariate models. Nevertheless, these 

previous studies focused mainly on exposure variables and road design geometrics. Although numerous 

studies have demonstrated that weather and traffic data have significant effects on crash occurrence 

(Caliendo et al., 2007; Chen et al., 2014; Ma et al., 2015a; Usman et al., 2012, 2011, 2010), few studies 

have been reported on the effects of weather and traffic data in the context of SV and MV crashes.  Two 
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notable studies in this regard were conducted by Yu et al. (2013), and Yu and Abdel-Aty (2013), in which 

the effects of weather and traffic conditions on SV and MV crashes were investigated using Bayesian 

hierarchical models. Both studies identified average speed to be one of the most critical factors for SV 

and MV crashes. However, real-time road surface conditions, which are closely related to the crash 

occurrence, were not examined.  

6.3 Data Description 

A mountainous highway I-70 in Colorado, where advanced monitoring system has been installed, 

was selected for the present chapter. The chosen section of I-70 starts at mile marker (MM) 195.26 and 

ends at MM 251.32. Because this part of I-70 goes through the Rocky Mountains, it features high 

elevations and is susceptible to fast-changing weather conditions. This feature makes detailed weather 

data even more crucial in determining traffic safety than geometrics.  

Four sources of accident-related data are incorporated in this chapter, (1) one-year accident data 

(Jan. 2010- Dec. 2010) provided by Colorado State Patrol (CSP), (2) roadway geometrics from the 

Roadway Characteristics Inventory (RCI), (3) real-time weather and road surface condition data recorded 

by the weather stations, and (4) real-time traffic data documented by traffic flow monitoring stations. By 

combining these data containing rich information, we can perform a thorough analysis of causality factors 

determining road safety performance on a daily basis. Data provided by RCI contains detailed geometric 

design features including longitudinal grade, curvature, curve radius, shoulder type and width, lane width, 

the number of lanes, median type and width, pavement conditions, etc. The ruti index in the RCI database 

is used to calculate remaining service life for rutting. Its value ranges from 50 to 100, where a value of 50 

indicates 0.55-inch average rutting depth or higher and a value of 100 indicates 0.15-inch average rutting 

depth or less.  

There are seven weather stations installed along the selected I-70 section, providing drivers with 

information about adverse weather conditions. The weather stations record the weather data and surface 

condition every 20 minutes. Because climate may change dramatically within a short time period (even 

within a day), indicator variables for surface conditions cannot represent actual surface conditions and 
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thus are not appropriate in this regard. Instead, the percentage of certain surface condition is defined to 

account for variations within each day. There are 12 traffic stations placed on the west and east bounds 

respectively which provide real-time traffic data. For the purpose of finding best covariates, a variety of 

traffic-related variables are defined, among which speed gap is defined as the difference between the 

speed limit and average traffic speed. Note that if the average traffic speed exceeds the speed limit, it will 

be truncated to the speed limit in the database. In order to control heterogeneity associated with sudden 

temperature drop and winter storm onset in the study area during November 2010, special attention is 

given to November indicator. 

The 56-mile freeway section selected for this chapter is divided into 100 homogeneous roadway 

segments (52 from eastbound and 48 from westbound). First, the roadway segments are defined according 

to the CDOT traffic station assignment. Then the segments are further divided into homogeneous ones 

based on changes of geometric features, including lane width, the number of lanes, median type, shoulder 

type, pavement condition, and speed limit, etc. 

During the study period, a total of 29,462 observations were obtained, and there is a total of 340 

and 202 accidents recorded for SV and MV crashes respectively. The data is processed into daily records 

on average 1-mile long segments, which lead to a preponderance of zero observations. About 98.9% and 

99.4% of the observations are zeros for SV and MV crashes respectively. It is important, therefore, to 

check whether the fitted model can properly account for excess zeros. The descriptive statistics results for 

the data used in this chapter are presented in Table 6.1. 

Table 6.1 Descriptive Statistics of Explanatory Variables and Crash Data 

Variable Description Mean Std Dev Minimum Maximum 

Dependent variables      

SV single-vehicle crash 0.012 0.117 0 3 

MV multi-vehicle crash 0.007 0.107 0 10 

Exposure factors      

Length Roadway segment length (mile) 1.072 0.712 0.368 3.684 

Log daily traffic Logarithm of daily traffic 9.539 0.491 6.579 10.967 

Explanatory 
variables 
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Temperature Average air temperature (°F) 39.625 15.854 -11.232 71.701 
Inside shoulder 

length 
Inside shoulder length (feet) 3.932 1.412 0 7 

Poor pavement 
indicator 

1 if the condition of the road 
pavement for the primary direction 
is poor, 0 otherwise 

0.551 0.497 0 1 

Wet surface percent Percentage of wet road surface 0.095 0.192 0 1 
Chemically wet 

surface percent 
Percentage of chemically wet road 
surface 

0.059 0.177 0 1 

Daily average speed 
gap 

measured as the difference between 
speed limit and corresponding 
average traffic speed (mile/hour) 

3.431 3.870 0 32.276 

November indicator 1 if it is in November, 0 otherwise 0.0938 0.292 0 1 

Good rutting 
indicator 

Long remaining service life of 
rutting (1 if the value of ruti is 100, 
0 otherwise) 

0.204 0.403 0 1 

Two lane indicator 
1 if the number of lanes is two, 0 
otherwise 

0.797 0.403 0 1 

 

6.4 Methodology 

To perform multivariate panel data analysis, the Bayesian bivariate Poisson lognormal (BPL) 

model is developed first to address over-dispersion and account for correlation between SV and MV crash 

frequencies. Given the hierarchical nature of the data, BPL with uncorrelated random effects and BPL 

with correlated random effects are then proposed to capture extra unobserved heterogeneity. 

6.4.1 Bivariate Poisson Lognormal model 

Let ܻ ௜௧௞ represent the crash frequency on roadway segment i (i=1,2,…,n) during day t (t=1,2,…,T) 

which belongs to crash types k (k=1,2. 1= SV and 2=MV).  In BPL, it is assumed that 

 ௜ܻ௧௞|ߣ௜௧௞ ௜௧௞ߣሺ݊݋ݏݏ݅݋�~ ሻ (6.1) 

where ߣ௜௧௞  is the Poisson rate.  

The probability of ܻ௜௧௞ is given by 

)ݎ�  ௜ܻ௧௞ = ௜௧௞ݕ ௜௧௞ߣ| ) = ݁−ఒ೔�ೖ ௜௧௞ݕ௜௧௞௬೔�ೖߣ !  (6.2) 

The Poisson rate is modeled using a log-normal distribution: 
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 log ሺߣ௜௧௞ ሻ = �௜௧௞ �௞ + �௜௧௞  (6.3) 

where �௜௧௞  is a set of explanatory variables for crash type k; �௞ is the corresponding vector of estimable 

coefficients. The error term �௜௧௞  , which captures Poisson-heterogeneity among observations (regardless of 

which roadway segment it belongs to), is assumed to be multivariate normal distributed with a mean of 0 

and a variance-covariance matrix of Σ, where 

 �௜௧௞ = ቆ�௜௧ଵ�௜௧ଶቇ , ∑ = ቆ�ଵଵ �ଶଵ�ଵଶ �ଶଶቇ (6.4) 

The diagonal elements �ଵଵ and �ଶଶ of the variance-covariance matrix ∑ denote the variance of �௜௧ଵ  

and �௜௧ଶ  respectively, while the off-diagonal elements denote the covariance between �௜௧ଵ  and �௜௧ଶ . 

Uninformative proper prior distributions are utilized in the current study due to the lack of prior 

knowledge. The most common prior, namely diffuse normal distribution with mean 0 and large variance, 

is specified for the regression coefficients as (El-Basyouny et al., 2014): 

ሺͲ,ͳͲͲͲͲሻሺ݆݈ܽ݉ݎ݋݊~௝ߚ  = ͳ,ʹ, … ,  ሻ (6.5)ܬ

where ߚ௞ is the k-th regression coefficient, and ܬ is the total number of regression coefficients. A Wishart 

prior is specified for the inverse of variance covariance matrix ∑−ଵ (Congdon, 2005; El-Basyouny et al., 

2014): 

 ∑−ଵ~ܹ݅ݏℎܽݐݎሺܫ, ʹሻ (6.6) 

where ܫ is the 2×2 identity matrix. 

6.4.2 Bivariate Poisson Lognormal with Independent Segment-level Random Effects 

When dealing with cross-sectional multivariate count data, a traditional multivariate Poisson-

lognormal model is usually sufficient. In case of panel multivariate count data where temporal correlation 

within each segment is present, however, the error term �௜௧௞  in Eq. (6.3) is not enough to capture 

unobserved heterogeneity. Thus, a bivariate Poisson lognormal model with independent segment-level 

random effects is proposed to capture segment-level unobserved factors. In this case, the Eq. (6.3) is 

reformulated into a dual error structure as (Riphahn et al., 2003): 
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 log ሺߣ௜௧௞ ሻ = �௜௧௞�௞ + ௜௞ߤ + �௜௧௞  (6.7) 

where ߤ௜௞ represents the segment-level random effects for outcome (i.e. crash type) k; and ߤ௜ଵ and ߤ௜ଶ are 

assumed to be mutually independent. A normal prior is specified for ߤ௜௞ 

݈ܽ݉ݎ݋݊~௜௞ߤ  ቆͲ, ͳ߬ఓೖቇ ሺ݇ = ͳ,ʹሻ (6.8) 

߬ఓೖ is the precision of ߤ௜௞, and a gamma hyper-prior is specified for ߬ఓೖ. 

 ߬ఓೖ~݃ܽ݉݉ܽሺͲ.Ͳͳ,Ͳ.Ͳͳሻ ሺ݇ = ͳ,ʹሻ (6.9) 

6.4.3 Bivariate Poisson Lognormal with Correlated Segment-level Random Effects 

The preceding model specification imposes an independent assumption between segment-level 

random effects of different outcomes (crash types). Such a formulation ignores possible correlation of the 

outcomes at segment level. To overcome such a limitation, a bivariate Poisson lognormal with correlated 

segment-level random effects is defined as shown in Eq. (6.7), while ߤ௜௞ are assumed to be correlated 

which follow a multivariate normal distribution as: 

ܸܯ~௜௞ߤ  ଶܰሺ૙, Ωሻ  ሺ݇ = ͳ,ʹሻ (6.10) 

where Ω is the variance-covariance matrix of ߤ௜௞. A Wishart prior is specified for the inverse of variance 

covariance matrix Ω−ଵ (Congdon, 2005): 

 Ω−ଵ~ܹ݅ݏℎܽݐݎሺܫ, ʹሻ (6.11) 

where ܫ is the 2×2 identity matrix. 

6.4.4 Full Bayesian Estimation 

The posterior distributions for the aforementioned Bayesian Poisson-lognormal models can be 

obtained using MCMC sampling algorithms via WinBUGS software (Spiegelhalter et al., 2005). For each 

model, the posterior estimates were obtained via two chains run of 200,000 iterations, 50,000 of which 

were discarded as burn-in period. Convergence of MCMC chains was monitored first by visually 

inspecting trace plots for the parameters. Then, the Brooks-Gelman-Rubin (BGR) statistic (Brooks and 

Gelman, 1998) was used to assess the convergence of multiple chains formally. As a rule of thumb, a 

BGR value less than 1.2 is believed sufficient to claim convergence. 
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6.4.5 Model Comparison 

The Deviance Information Criteria (DIC), a Bayesian generalization of Akaike’s Information 

Criteria (AIC), is used for model comparisons (Spiegelhalter et al., 2002). DIC combines the measure of 

fit ܦ and the measure of model complexity ݌஽: 

ܥܫܦ  = ܦ + ஽݌ = (�)ܦ +  ஽ (6.12)݌ʹ

where ܦ(�) is the deviance evaluated at the posterior means of the parameters of interest �, ݌஽ is the 

effective number of parameters in the mode, and ܦ is the posterior mean of the deviance ܦሺ�ሻ.  
Same as AIC, models with smaller DIC are usually favored. It should be noted that the 

differences in DIC between models are more important than the absolute values of DIC. According to 

Spiegelhalter et al. (2005), differences in DIC of more than 10 might definitely exclude the model with 

higher DIC, and differences between 5 and 10 are considered substantial. If the difference in DIC is less 

than 5 and the models yield considerably different inferences, there is uncertainty about the choice of 

model, and as a result, it could be misleading to report only the model with the smallest DIC. 

6.4.6 Model Checking 

Although an optimal model may be determined simply based on DIC, it is prudent to assess its fit 

to the data further, because it is possible that the optimal model among the alternatives may still fit the 

data poorly concerning certain important aspects. In order to evaluate the fit of a model to the observed 

data, Gelman et al. (1996) proposed a posterior predictive checking diagnostic, in which the observed data 

is compared with the replicated one from the posterior predictive distribution. If the model fits the data 

well, the replicated data ݕ௥௘௣ should resemble satisfactorily certain important aspects of the observed data ݕ. A discrepancy measure ܦሺݕ; �ሻ can be employed to quantify the similarity between the observed data 

and the replicated one. Various forms of ܦሺݕ; �ሻ can be calculated, including skewness measure and 

residual-based measure. For a chosen ܦሺݕ; �ሻ , its reference distribution is obtained from the joint 

posterior distribution of ݕ௥௘௣ and �: 

 ��ሺݕ௥௘௣, �ሻ = �ሺݕ௥௘௣|�ሻ�ሺ�|ݕሻ (6.13) 
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The Bayesian p-value (�஻ ) represents the probability that the observed discrepancy measure ܦሺݕ; �ሻ is more extreme than the replicated discrepancy measure ܦሺݕ௥௘௣; �ሻ, and is defined as: 

 �஻ = ௥௘௣ሻݕሺܦ]� ൒  (6.14) [ݕ|ሻݕሺܦ

A Monte Carlo estimate of �஻  can be readily calculated through evaluating the proportion of 

draws in which ܦሺݕ௥௘௣ሻ ൒  ሻ. With regard to the chosen criteria, a p-value close to 0.5 indicatesݕሺܦ

adequate model fit, while a p-value near 0 or 1 (above 0.8 or below 0.2) indicates discrepancy between 

the observations and the fitted model (Neelon et al., 2010). 

Since the data utilized in this chapter contains a preponderance of zeros, it is of paramount 

importance to evaluate how well the model accounts for excess zeros. A corresponding discrepancy 

measure, i.e. the proportion of observations equaling to zero, is therefore adopted in this chapter. 

6.5 Results 

This section discusses the estimation results of BPL, UREBPL, and CREBPL models for SV and 

MV crashes. The BGR statistics of the model parameters presented herein are less than 1.2, and the 

corresponding trace plots show no sign of periodicity and tendency. 

6.5.1 BPL Model Results 

Table 6.2 presents the parameter estimates, 95% credible intervals and goodness of fit measure 

for BPL model. As shown in Table 6.2, different sets of explanatory variables are identified for SV and 

MV crashes. The correlation coefficient between SV and MV crashes is 0.62, implying that these two 

crash types are highly correlated. The Bayesian p-value for the proportion of zeros is 0.55, which 

indicates that about 55% of the replicated datasets produce higher or same amounts of zeros as compared 

to the observed data, while the rest 45% of the replicated datasets produce fewer amounts of zeros. Thus, 

it can be concluded that the model can properly account for excess zeros in the observed data.  

Table 6.2 Parameter Estimates for BPL 
Variable Mean Std 2.5% 97.5% 

Single-vehicle     

Intercept -9.2880 0.6751 -10.630 -7.9880 

Length 0.4840 0.0705 0.3452 0.6221 
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Log daily traffic 0.3163 0.1316 0.0661 0.5722 
 Inside shoulder length 0.3725 0.0546 0.2660 0.4796 

Poor pavement indicator -0.4421 0.1242 -0.6873 -0.1997 

Temperature -0.0177 0.0045 -0.0266 -0.0089 

Wet surface percent 0.9659 0.2466 0.4738 1.4430 

Chemically wet surface percent 1.0730 0.2227 0.6341 1.5070 

Daily average speed gap 0.0852 0.0110 0.0634 0.1066 

 �ଵଵ 2.2120 0.3546 1.5630 2.9510 

Multi-vehicle     

Intercept -38.490 4.3220 -46.990 -30.200 

Length 0.6146 0.1000 0.4174 0.8102 

Log daily traffic 1.4820 0.2152 1.0690 1.9070 
 November indicator 0.8377 0.2298 0.3796 1.2810 

Good rutting indicator 0.5992 0.2190 0.1629 1.0230 

Two lane indicator 0.4540 0.2181 0.0361 0.8924 

Poor pavement indicator -0.5854 0.1854 -0.9498 -0.2243 

Wet surface percent 1.0500 0.3513 0.3440 1.7190 

Daily average speed gap 0.1446 0.0128 0.1195 0.1698 

 �ଶଶ 3.8360 0.5755 2.8020 5.0700 

 �ଵଶ 1.8180 0.3851 1.0450 2.5290 

Correlation ߩଵଶ 0.62 

 �஻ 0.55 

DIC 4860.87 

MAD 0.01580 

MSPE 0.018530 
 
6.5.1.1 Single-vehicle crashes 

Both the exposure factors, i.e. segment length and logarithmic daily traffic, are found significant 

with positive signs. This implies that longer segments and larger daily traffic increase the likelihood of 

SV crashes. This finding is somewhat different from some existing observations, in which for example, 

single-vehicle crashes were found to be more likely to occur when traffic volume is low (Ivan et al., 1999). 

A further discussion on this finding is given in the following section. Inside shoulder length is also 

significant with a positive sign, which implies that segments with wider inside shoulder length are more 

likely to incur crashes. Poor pavement indicator, on the other hand, is found to be negatively associated 

with SV crashes. In addition to exposure factors and geometrics discussed above, the variables related to 
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weather and traffic conditions are found to play a vital role in crash occurrence. In terms of temperature, 

different measures were tried, including minimum temperature and average temperature. Average 

temperature is included in the model as it yielded significant results in the model. Average temperature is 

found to be significant with a negative sign, meaning SV crashes decrease with an increase in average 

temperature. This result is consistent with a previous study in which an increase of temperature was found 

to decrease crash occurrence (El-Basyouny et al., 2014). Two surface characteristics variables are found 

significant in the model: wet surface percent and chemically wet surface percent, representing 

respectively the percentage of wet road surface and chemically wet road surface for some segment within 

a day. Both surface characteristics are positively related to crash occurrence, suggesting the higher the 

wet surface percent and chemically wet surface percent, the more SV crashes likely to occur. As for 

traffic conditions, comparisons among average speed gap, maximum speed gap, average speed, standard 

deviation of speed, maximum speed and minimum speed suggest the inclusion of daily average speed gap 

in the model is preferred according to goodness of fit. Daily average speed gap is significant with a 

positive sign, which suggests that an increase in speed gap could result in an increase in crash occurrence, 

which corroborates some existing studies (Chen et al., 2014; Ma et al., 2015a). 

6.5.1.2 Multi-vehicle crashes 

Similar to single-vehicle crashes, both segment length and logarithmic daily traffic are positively 

associated with MV crashes. This result is consistent with a previous study (Yu and Abdel-Aty, 2013) 

which found that more MV crashes are likely to occur on longer segments and segments with higher 

traffic volume. November indicator is found to be positively correlated with MV crashes, implying 

November tends to sustain more MV crashes than other months of the year. This is possibly due to 

unobserved effects associated with early winter storms in Colorado during November 2010. Good rutting 

indicator, which represents whether the rutting depth is 0.15 inches or less, is found significant with a 

positive sign. This indicates that MV crashes are more likely to happen on segments with rutting of 0.15 

inches or less than those with higher rutting depth. Although one might expect that higher rutting poses 

threats on driving safety such as lane changing maneuver, this seemingly counterintuitive finding may be 
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attributed to risk compensation theory (Anastasopoulos and Mannering, 2009). Two lane indicator is 

significant with positive sign, which indicates that two-lane segments are likely to have higher crash 

counts for MV crashes. This finding is consistent with previous study that was conducted on the same 

highway (Yu and Abdel-Aty, 2013). Poor pavement indicator is again found significant with negative 

sign, meaning fewer MV crashes are likely to occur on segments with poor pavement. This result is 

similar to several previous studies (Anastasopoulos et al., 2008; Anastasopoulos and Mannering, 2009). It 

is possible that poor pavement indicator is picking up some unobserved characteristics associated with 

driver behavior, like a previous study (Mannering, 2007) which showed that drivers tend to drive faster 

when they believe pavement quality is good. Furthermore, wet surface percent is found to be significant 

with a positive sign, suggesting the higher the wet surface percent, the more MV crashes likely to occur. 

Same as in SV crashes, daily average speed gap is positively associated with MV crashes, which indicates 

an increase in speed gap leads to an increase in MV crash frequency. 

6.5.2 UREBPL Model Results 

In order to account for unobserved heterogeneity across time within segments, a bivariate 

Poisson-lognormal model with independent segment-specific random effects (UREBPL) is developed. 

The segment-specific random effects (ߤ௜௞ , ݇ = ͳ,ʹ) in UREBPL for SV and MV crashes are assumed to 

be independent. The parameter estimates, 95% credible intervals and goodness of fit measure for 

UREBPL model are presented in Table 6.3. 

Table 6.3 Parameter Estimates for UREBPL 
Variable Mean Std 2.5% 97.5% 

Single-vehicle     

Intercept -8.8680 0.9270 -10.720 -7.0900 

Length 0.5441 0.1355 0.2819 0.8167 

Log daily traffic 0.1291 0.1469 -0.1510 0.4262 

Inside shoulder length 0.3010 0.0864 0.1335 0.4736 

Poor pavement indicator -0.2573 0.2070 -0.6612 0.1532 

Temperature -0.0189 0.0045 -0.0278 -0.0099 

Wet surface percent 0.8436 0.2493 0.3475 1.3260 

Chemically wet surface percent 0.9087 0.2380 0.4400 1.3730 
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Daily average speed gap 0.0941 0.0117 0.0711 0.1169 

 �ଵଵ 1.7130 0.3389 1.0730 2.4460 

 �ఓభ 0.7276 0.1071 0.5353 0.9553 

Multi-vehicle     

Intercept -39.140 4.5090 -47.880 -30.000 

Length 0.6452 0.1428 0.3689 0.9316 

Log daily traffic 1.5120 0.2263 1.0550 1.9500 

November indicator 0.8243 0.2293 0.3653 1.2640 

Good rutting indicator 0.6480 0.2855 0.0867 1.2130 
 Two lane indicator 0.5351 0.2757 0.0081 0.9989 

Poor pavement indicator -0.7176 0.2409 -1.2050 -0.2558 

Wet surface percent 1.0270 0.3541 0.3146 1.7030 

Daily average speed gap 0.1440 0.0133 0.1182 0.1703 

 �ଶଶ 3.4770 0.5641 2.5140 4.7560 

 �ଵଶ 1.7660 0.3914 0.9536 2.5020 

 �ఓమ 0.6039 0.1520 0.2924 0.8512 

Correlation ߩଵଶ 0.72 

 �஻ 0.54 

DIC 4830.77 
MAD 0.01579 

MSPE 0.018525 

 

It can be seen that after accounting for segment specific random effects, two explanatory 

variables become insignificant, namely log daily traffic and poor pavement indicator for SV crashes. One 

possible explanation is that both explanatory variables may capture some unobserved heterogeneity in the 

BPL model. It is noteworthy that some previous studies have demonstrated that SV crashes are not 

associated with high traffic volume (Ivan et al., 1999; Yu and Abdel-Aty, 2013). When traffic volume 

gets large, there will be more interactions between vehicles, increasing the risk of MV crashes while 

decreasing SV crashes. That said, it is expected that log daily traffic becomes insignificant for SV crashes. 

The fact that log daily traffic became insignificant in the UREBPL model for SV crashes somewhat 

serves as an indicator that UREBPL performs better than BPL by accounting for segment-level 

heterogeneity. As for poor pavement indicator, it is possible that it was picking up some unobserved 

characteristics in BPL (where segment-level unobserved heterogeneity was not accounted for). These 
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unobserved characteristics may include geographic locations of segments, traffic characteristics, and 

driver behavior. Some or all of these may happen to turn out to vary in a systematic way without properly 

accounting for the hierarchical structure of the data. It can be concluded that without properly accounting 

for segment-specific unobserved heterogeneity, the model (BPL) estimates could produce misleading 

results. Hence, when dealing with panel multivariate count data, it is crucial to address unobserved 

heterogeneity appropriately. 

Concerning model comparison, UREBPL model has a considerably smaller DIC value than BPL 

model (4860.87 vs. 4830.77). Moreover, the Bayesian p-value for the proportion of zeros is 0.54, 

indicating UREBPL can also properly address excess zeros. We can, therefore, conclude that UREBPL 

model is superior to BPL model. 

6.5.3 CREBPL Model Results 

Although the preceding UREBPL model can properly account for segment-specific unobserved 

heterogeneity, it overlooks possible correlations between segment-specific unobserved heterogeneity for 

SV and MV crashes. To overcome such a limitation, a bivariate Poisson lognormal with correlated 

segment-specific random effects is estimated. The parameter estimates, 95% credible intervals and 

goodness of fit measure for CREBPL model, are listed in Table 6.4. It can be seen that CREBPL model 

yields consistent parameter estimates as compared to UREBPL model. Note that although two lane 

indicator becomes insignificant at 95% interval for MV crashes in CREBPL model, it is still significant at 

90% interval.  

Table 6.4 Parameter Estimates for CREBPL 
Variable Mean Std 2.5% 97.5% 

Single-vehicle     

Intercept -8.9530 1.4260 -11.810 -6.2110 

Length 0.5500 0.1365 0.2853 0.8235 

Log daily traffic 0.1566 0.1434 -0.1192 0.4436 

Inside shoulder length 0.3050 0.0850 0.1402 0.4742 

Poor pavement indicator -0.2654 0.2096 -0.6765 0.1486 

Temperature -0.0189 0.0046 -0.0279 -0.0099 

Wet surface percent 0.8498 0.2512 0.3490 1.3340 
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Chemically wet surface percent 0.9114 0.2395 0.4391 1.3770 

Daily average speed gap 0.0949 0.0117 0.0717 0.1177 

 �ଵଵ 1.7910 0.3286 1.1750 2.4680 

 �ఓభ 0.5508 0.1577 0.3012 0.9145 

Multi-vehicle     

Intercept -23.380 2.3230 -28.030 -18.930 

Length 0.6525 0.1470 0.3672 0.9460 

Log daily traffic 1.5030 0.2255 1.0670 1.9510 

November indicator 0.8197 0.2296 0.3611 1.2610 

Good rutting indicator 0.6602 0.2887 0.0937 1.2270 

Two lane indicator 0.5216 0.2789 -0.0119 1.0830 

Poor pavement indicator -0.7065 0.2459 -1.1980 -0.2342 

Wet surface percent 1.0210 0.3559 0.3043 1.7000 

Daily average speed gap 0.1454 0.0134 0.1194 0.1718 

 �ଶଶ 3.5220 0.5468 2.5660 4.7000 

 �ଵଶ 1.8190 0.3792 1.0670 2.5510 

 �ఓమ 0.4322 0.1698 0.1754 0.8305 
  �ఓభఓమ 0.0823 0.1115 -0.1262 0.3169 

 ఓభఓమ 0.17ߩ 

Correlation ߩଵଶ 0.72 

 �஻ 0.55 

DIC 4815.59 
MAD 0.01578 

MSPE 0.018505 

 

In addition to the correlation between SV and MV crashes, the correlation between segment-

specific random effects for SV and MV crashes is 0.17, which indicates both segment-specific random 

effects are moderately correlated and thus should be appropriately addressed. In terms of goodness of fit, 

Bayesian predictive p-value is 0.55 for the proportion of zeros, suggesting adequate fit of CREBPL model. 

Moreover, after allowing for correlation between segment-specific random effects, DIC value drops 

significantly from 4830.77 to 4815.59. According to above discussion, it is concluded that CREBPL 

model is superior to UREBPL model, and provides the best fit among all the three candidate models. 
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6.6 Summary 

This chapter presented a novel approach to analyze and identify different hazardous factors for 

SV and MV crashes. A bivariate Poisson-lognormal model with correlated segment-specific random 

effects was proposed to characterize both the multivariate and panel nature of the data. The proposed 

model structure readily addresses three types of serial correlations within the multivariate panel data used 

in this chapter: (1) correlation between SV and MV, (2) temporal correlations across time within each 

segment for SV and MV respectively, (3) possible connection between temporal correlations for SV and 

MV crashes.  Moreover, by incorporating real-time weather and traffic data, the different effects of 

weather and traffic conditions, as well as geometrics towards SV and MV crashes, were able to be 

comprehensively examined. In order to provide more insightful and rigorous comparative results with the 

proposed model, two other candidate models were also developed including the proposed one: (1) 

bivariate Poisson-lognormal model, and (2) bivariate Poisson-lognormal model with independent segment 

specific random effects. The estimated results show that the proposed bivariate Poisson-lognormal model 

with correlated segment-specific random effects outperforms the other two candidate models by 

addressing as much unobserved heterogeneity as possible, dealing with excessive zeros in the observed 

data, and bearing the smallest DIC value. 

After the proposed methodology had been developed, it was further applied to a mountainous 

freeway section on I-70 in Colorado, where the climate is subjected to rapid change due to high elevation, 

requiring the inclusion of weather conditions in traffic safety analysis. With the help of advanced 

monitoring system, real-time weather and traffic data were incorporated in the present chapter in addition 

to exposure and geometrics, which can provide a more comprehensive understanding of the factors 

affecting SV and MV crashes than most existing studies. Results showed that weather and traffic related 

explanatory variables, especially surface conditions, play a significant role in affecting the occurrence of 

SV and MV crashes. Moreover, differences between hazardous factors for SV and MV crashes are also 

investigated. All these findings may benefit future engineering practices on traffic designs and active 

traffic management. For instance, the results can be used to quantify potential safety benefits of road 
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maintenance, help design more appropriate traffic control measures and improve road infrastructure 

during adverse weather conditions. 

It should be noted that there are still some limitations of the present chapter: (1) it mainly focused 

on basic linear effects of the factors and possible non-linear relations between those factors and crash 

frequencies may be investigated in the future; (2) only one freeway was investigated in the present 

chapter. In order to evaluate the transferability of the proposed model and provide more general insights, 

more studies using the proposed methodology on various sites with different traffic, environmental 

characteristics and jurisdictions should be carried out; (3) only one year of data was studied, and such data 

is limited in capturing long-term temporal trends (yearly variation). More years of data are desired to 

overcome this limitation in the future.  
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CHAPTER 7 MULTIVARIATE SPACE-TIME MODELING OF CRASH FREQUENCIES BY INJURY 
SEVERITY LEVELS6 

 
 
7.1 Introduction 

Road traffic crashes impose enormous emotional and economic burdens on human society due to 

the associated physical suffering, losses in life and financial burden. To reduce the number and mitigate 

the impacts of traffic crashes, numerous studies have been conducted to improve the understanding and 

prediction of traffic crashes. As relatively rare events, highway traffic crashes are usually assessed by 

aggregating the crash counts over a certain time period (week, month, etc.) and within a specific 

geographical range (e.g. roadway segment, intersection). Since traffic crash data is always associated with 

certain spatial and temporal dimensions, both spatial and temporal correlations/heterogeneities are often 

present within the data. In addition, when crash frequencies of different injury severity levels are to be 

modeled, dependence among the counts for a specific injury severity should also be accounted for. 

Despite the methodological advances during the past years, following methodological challenges remain 

in terms of predicting crash frequencies of different injury severity levels: 1) spatial correlation and/or 

heterogeneity; 2) temporal correlation and/or heterogeneity; and 3) correlations between crash frequencies 

of different injury severity levels. Although the last decade has witnessed substantial methodological 

improvements in crash prediction modeling, methods that can appropriately address all the challenges 

mentioned above are still not available. The model estimation results and the following inferences rely 

heavily on the underlying assumptions about crash prediction model and data structure. It, therefore, 

becomes critical to develop more advanced crash prediction models that can address these challenges 

appropriately.  

Despite that crash data is in nature spatially and temporally distributed, most existing studies 

aggregated data over an extended time period (e.g. one or several years). These studies usually addressed 

the over-dispersion problem but assumed independence of observations from different roadway entities 

                                                      

6 This chapter is developed based on a research paper by Xiaoxiang Ma, Suren Chen and Feng Chen, which 
was submitted to a refered journal Analytic Methods in Accident Research. 
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(Ma et al., 2008; Malyshkina and Mannering, 2010a; Shankar et al., 1995). Neither spatial nor temporal 

correlations were considered in these literature. Some studies attempted to use data with multiple 

temporal observations generated for each roadway entity and treated the data as panel data. In that case, it 

results in a temporal correlation because unobserved heterogeneity associated with a specific roadway 

entity may be similar from time to time. Different panel data models were proposed to address temporal 

correlation, such as random effects models (Chen et al., 2014; Shankar et al., 1998), negative multinomial 

models (Shankar et al., 2003) and generalized estimating equations (Lord and Persaud, 2000). By the 

same token, these models were also applied to address spatial correlation (e.g. Wang and Abdel-Aty, 

2006). However, a major drawback of these methods is the lack of correlation structure which can 

explicitly define the spatial and/or temporal correlations. As a result, these models do not easily lend 

themselves to explicitly analyzing temporal trend and spatial pattern of crash risks.  

Recently, spatial modeling has gained wide recognition in evaluating traffic safety risks on 

various types of roadway entities. Spatial modeling deals with spatial correlation which may reflect 

unmeasured confounders. Different approaches were proposed for spatial modeling, including intrinsic 

conditional autoregressive (CAR) model (Aguero-Valverde and Jovanis, 2008; Lee et al., 2015; MacNab, 

2004; Wang and Kockelman, 2013; Xie et al., 2014), spatial autoregressive model  (Mohammed A. 

Quddus, 2008), spatial error model (Mohammed A. Quddus, 2008), and geographic weighted Poisson 

regression (Hadayeghi et al., 2010). Most of these studies adopted CAR model, which enables “spatial 

smoothing” by borrowing strength from neighboring sites. This was possibly because CAR model takes 

advantage of the flexibility of Bayesian hierarchical framework to incorporate spatial correlation and can 

be readily extended to address more complicated models. The ‘Besag–York–Mollie’ (BYM) model, an 

extension of CAR model, was proposed to address spatial correlation from neighboring effects as well as 

spatial heterogeneity (Besag et al., 1991). Many studies demonstrated that the BYM model is a proper 

tool for spatial modeling of traffic crashes, where study units span a large geographical area or comprise 

highways of varying functional classes (Aguero-Valverde and Jovanis, 2010, 2008; Barua et al., 2014; 

Mohammed A. Quddus, 2008). Aguero-Valverde (2013) explored the multivariate CAR (MCAR) model 
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and the result indicated MCAR is superior over its univariate counterparts. Barua et al. (2014) developed 

three MCAR models and showed that the multivariate model with both spatial correlation and 

heterogeneity provides a better fit than other ones. Similar MCAR models were also applied for crash 

modeling at varying spatial units (segment, intersection, zones, etc.) in some other literature (Aguero-

Valverde et al., 2016; Lee et al., 2015; Wang and Kockelman, 2013). Although abovementioned studies 

contributed to state-of-the-art methodologies for spatial modeling and offered valuable insights with 

regard to crash risk, none of them has accounted for temporal variation at the same time. 

In contrast to the abundance of literature in spatial models, space-time studies in the traffic safety 

analysis are very limited. The first reported attempt to explore space-time model in traffic crash analysis 

was conducted by Miaou et al. (2003). In their study, Miaou et al. (2003) developed various county-level 

space-time crash risk models for Texas, and they argued that temporal component was better modeled 

with fixed effects than with first-order autoregressive (AR(1)). Wang et al. (2013) developed a spatio-

temporal model to study the impact of congestion on traffic safety. Their results showed that models with 

fixed time effects and first order random walk (RW1) time effects produced similar results for fatal and 

serious injury accidents. Aguero-Valverde and Jovanis (2006) adopted a space-time model proposed by 

Bernardinelli et al. (1995) to study county-level injury crashes in Pennsylvania. This model defines a 

spatio-temporal interaction that allows for different temporal trends for different locations. However, it 

restricts the temporal trends to be linear, which is clearly unrealistic for traffic safety studies especially 

those with fine temporal resolutions. Dong et al. (2016) also used the same space-time model for hotspot 

identification at the scale of traffic analysis zone (TAZ) to account for possible space-time interaction. 

There are, however, two major limitations of the space-time studies discussed above. First, they were all 

conducted over an extended time period (i.e. a year) with limited time points and thus suffer from loss of 

important time-varying information. Space-time study in fine temporal scales is yet to be conducted to 

bring new insights into the crash analysis. Secondly, only separate univariate analyses were carried out 

even when crashes of different injury levels were studied. It has been well established in the literature that 

the correlation among injury severities is important and thus needs to be considered to avoid the potential 
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statistical problem (Mannering and Bhat, 2014). This problem is likely to be carried over to space-time 

setting, creating a need for joint models of different injury severity levels with great complexity. 

Multivariate space-time analyses in traffic safety, which bear the potential to offer better insights into 

crash risks, are clearly desired to fill the gap remaining in the current literature. 

The objective of this chapter is to propose a framework of Bayesian multivariate space-time 

model that can address spatial correlation/heterogeneity, temporal correlation/heterogeneity, and the 

correlation between different injury severities. To this end, a series of alternative models are also 

presented to compare different structures of spatial and temporal random effects, and these alternative 

models extend the space-time approach by Knorr-Held and Besag (1998) and Abellan et al. (2008). The 

proposed methodology is demonstrated using daily crash frequency data (as opposed to annual crash data) 

from the interstate highway I70 in Colorado. As the first attempt to explore multivariate space-time 

modeling in crash analysis with fine temporal scale, the current study has the potential to bring new 

insights into the crash analysis. 

7.2 Data Description 

In this chapter, datasets were collected from a mountainous portion of the interstate highway I70 

in the state of Colorado. This portion of I70 under study starts at mile marker (MM) 195.26 and ends at 

MM251.32. Crash data were collected by Colorado State Patrol (CSP) over a one-year period (Jan. 2010 

– Dec. 2010), and were originally coded as property damage only, possible injury, non-incapacitating 

injury, incapacitating injury and fatal injury. Due to the sparseness of severe injury crashes, two severity 

levels are considered herein: (1) injury crash, which consists of possible injury, non-incapacitating injury, 

incapacitating injury and fatal injury; and (2) no injury crash (property damage only). Roadway geometry 

and pavement condition data were provided by Roadway Characteristics Inventory (RCI), which contains 

detailed information such as curve radius, vertical grade, pavement condition, etc. To facilitate space time 

modeling in fine temporal scale, real-time data were also collected and processed into daily records. Real-

time traffic data and real-time weather/ road surface data were monitored by traffic stations and weather 

stations respectively. A variety of traffic and weather related variables were defined to represent covariate 
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effects. Then the preliminary multicollinearity tests and backward elimination procedures were conducted 

to find the most promising set of covariates.  

The chosen portion of I70 was divided into 100 homogeneous roadway segments, including 52 

from the eastbound and 48 from the westbound. After combining above mentioned data sources together 

and processing into daily records, a total of 29,462 observations were obtained. The descriptive statistics 

of the dependent variables and the explanatory variables are shown in Table 7.1. 

Table 7.1 Summary Statistics. 

Variable Description Mean Standard 
deviation 

Min Max 

Dependent Variables 

No injury crash property damage only crash 0.022 0.164 0 6 

Injury crash 
Injury crash (all crash except property 
damage only) 

0.005 0.075 0 4 

Explanatory Variables 

Log of vehicle miles 
traveled 

Natural logarithm of vehicle miles 
traveled 

9.432 0.730 5.580 11.911 

Daily average speed 
gap 

Measured as the difference between 
posted speed limit and corresponding 
average traffic speed (miles/hour) 

3.431 3.870 0 32.276 

November indicator 1 if it is in November, 0 otherwise 0.094 0.292 0 1 

Inside shoulder 
width 

Inside shoulder width (feet) 3.932 1.412 0 7 

Number of entering 
ramp per mile per 
lane 

Number of entering ramp per mile per 
lane 

0.201 0.312 0 1.225 

Poor pavement 
indicator 

1 if the overall road pavement 
condition for the primary direction is 
poor, 0 otherwise 

0.551 0.497 0 1 

Two lane indicator 
1 if the number of lanes is two, 0 
otherwise 

0.797 0.403 0 1 

Wet surface percent 
Percentage of wet road surface of the 
day 

0.095 0.192 0 1 

Steep downgrade 
slope indicator 

1 if the slope is downgrade and grade 
is greater than 5% 

0.115 0.319 0 1 

 
7.3 Methodology 

In this section, specifications of alternative Bayesian hierarchical models are presented including 

multivariate Poisson-lognormal model, multivariate spatial Poisson-lognormal model, and multivariate 

spatiotemporal Poisson-lognormal model. 
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Poisson distribution is usually used to model crash frequency data due to their count data nature. 

Specifically, let ܻ ௜௧௞  denote the crash frequency of injury severity ݇  (=1, 2) on roadway segment ݅ 
(=1,2,…,100) during ݐ-th (t=1,2,…,358) day of the year. In the first level of the model hierarchy, it is 

assumed that 

 ௜ܻ௧௞ ௜௧௞ߣ|  ௜௧௞ߣሺ݊݋ݏݏ݅݋� ~ ሻ (7.1) 

where ߣ௜௧௞  is the Poisson rate. Then the probability of observing ݕ௜௧௞  crashes can be given by 

)ܾ݋ݎ�  ௜ܻ௧௞ = (௜௧௞ݕ = ݁−ఒ೔�ೖ ሺߣ௜௧௞ ሻ௬೔�ೖݕ௜௧௞ !  (7.2) 

However, Poisson distribution requires that the variance equals to the mean, an assumption which 

is often violated in crash frequency data. Moreover, such specification does not allow dependence 

between crash frequencies of different injury severity levels. To overcome such limitations, multivariate 

Poisson-lognormal model (MVPLN) is formulated by specifying Poisson rate at the second level of the 

hierarchy models as following: 

 log ሺߣ௜௧௞ ሻ = �௜௧௞ �௞ + �௜௧௞  (7.3) 

where �௜௧௞  is a set of observed risk factors (vehicle miles traveled, geometric features, traffic conditions, 

etc.) for crash severity level k; �௞ is the corresponding vector of coefficients to be estimated. At the third 

level, appropriate priors are assigned. Owing to the lack of prior information, a highly non-informative 

normal prior is assigned to �௞’s with a mean of 0 and variance of 10000. The error term �௜௧௞  , which 

captures  unstructured over-dispersion, is assumed to be multivariate normally distributed with a mean 

vector 0 and a variance-covariance matrix of �, where 

 �௜௧௞ = ቆ�௜௧ଵ�௜௧ଶቇ , � = ቆ�ଵଵ �ଶଵ�ଵଶ �ଶଶቇ (7.4) 

The diagonal elements �ଵଵ and �ଶଶ of the variance covariance matrix � denote the variance of �௜௧ଵ  

and �௜௧ଶ  respectively, while the off-diagonal elements denote the covariance between �௜௧ଵ  and �௜௧ଶ . A non-

informative Wishart distribution is specified for the precision matrix �−ଵ (Congdon, 2005): 
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 ∑−ଵ~ܹ݅ݏℎܽݐݎሺܫ, ʹሻ (7.5) 

where ܫ is the 2×2 identity matrix. 

7.3.1 Heterogeneity Random Effects 

Although the above-presented MVPLN model addresses over-dispersion as well as correlations 

between crashes of different injury severity levels (Ma et al., 2008), it largely ignores the hierarchy of 

data structure. To address possible unobserved heterogeneity resulted from the data hierarchy; segment-

specific random effects are incorporated to form a multivariate random effects Poisson-lognormal model 

(REMVPLN): 

 log ሺߣ௜௧௞ ሻ = �௜௧௞ �௞ + ߭௜௞ + �௜௧௞  (7.6) 

where ߭ ௜௞ is assumed to be an exchangeable normal prior with mean 0 and precision ߬௩௞ (reciprocal of 

variance). 

 ߭௜௞~ܰ(Ͳ,ͳ/߬௩௞), ݇ = ͳ,ʹ (7.7) ߬௩௞ is assigned a gamma prior ߬௩௞~ܽ݉݉ܽܩሺͲ.5,Ͳ.ͲͲͲ5ሻ.  
7.3.2 Spatial Component 

Above model specification is capable of capturing unstructured heterogeneity; however, it does not 

capture spatial correlations due to ‘spillover’ effects between these neighboring roadway segments. 

Numerous previous traffic safety studies have applied the convolution prior for modeling spatial random 

effects (Aguero-Valverde et al., 2016; Aguero-Valverde and Jovanis, 2010, 2009; Barua et al., 2014; 

Dong et al., 2016; Wang et al., 2013b). Initially introduced by Besag et al. (1991), this approach is also 

known as a BYM model. In a BYM model, spatial component is decomposed into two parts: structured 

spatial effects and unstructured spatial effects, as shown below: 

 log ሺߣ௜௧௞ ሻ = �௜௧௞�௞ + ௜௞ߤ + ߭௜௞ + �௜௧௞  (7.8) 

The unstructured spatial effects (spatial heterogeneity effects) ߭௜௞   that control for spatial 

(segment) heterogeneity are again assigned exchangeable normal priors across different severity level ݇ 

as shown in Eq. (7.7). The structured spatial effects (spatial correlation effects) ߤ௜௞  which capture the 
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spatial correlation between neighboring segments are assigned an intrinsic conditional autoregressive 

(CAR) prior for each severity level k: 

௜௞−ߤ|௜௞ߤ  ~ܰሺ∑ ∑௝௞௝~௜ߤ௜௝ݓ ௜௝௝~௜ݓ , ͳ/߬ఓ௞∑ ௜௝௝~௜ݓ ሻ (7.9) 

where ߤ−௜ refer to the neighbors of segment ݅; ݆~݅ denote all the neighbors of segment ݅; ݓ௜௝ denotes the 

weight that segment ݆ has on segment ݅, and ߬ఓ௞ is the precision for each severity level k. Both adjacency-

based and distance-based measures can be used for neighboring structures. As shown by Aguero-

Valverde and Jovanis (2008), first order adjacency-based proximity structure is preferable for modeling 

crash frequency on roadway segment level. Thus, first order adjacency-based neighboring structure is 

adopted for the present chapter. ݓ௜௝ = ͳ if segment ݆ is adjacent to segment ݅ (share vertex) and ݓ௜௝ = Ͳ 

otherwise. 

Despite the fact that BYM models were extensively applied in previous studies, the BYM 

specification suffers from several potential limitations. First, the BYM construct is only identifiable up to 

an additive constant of ߤ௜௞  and ߭ ௜௞ . Additional constraint ∑ ௜௞ߤ = Ͳ௜  must be specified to overcome the 

identifiability problem. Second, with the structured spatial effects incorporated in the model, adding an 

unstructured heterogeneity term may be redundant (Banerjee et al., 2014). The latter issue was largely 

overlooked by previous studies in which BYM specification was usually presumed to be the “go to” 

specification for spatial effects. There is a lack of exploration of whether the data at hand adequately 

support both spatial correlation and spatial heterogeneity. It is possible that one type of spatial effect may 

dominate the other, and such a possibility is worth investigating. Moreover, for the multivariate model, 

correlations may arise between spatial structured effects as well as spatial unstructured effects across 

injury severity levels. To accommodate such multivariate setting, multivariate conditional autoregressive 

(MCAR) prior (Mardia, 1988) and multivariate normal (MVN) prior can be assigned to ߤ௜௞  and ߭ ௜௞ 

respectively: 
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,૚ሺ−�ሻࢁ௜|ሺࢁ  ̅̅��ሺ��ܥܯ~૛ሺ−�ሻሻࢁ ̅̅ , �݊௜ሻ (7.10) 

,ሺ૙ܸܰܯ~�ࢂ  ��ሻ (7.11) 

where ሺࢁ૚ሺ−�ሻ, ʹ  ૛ሺ−�ሻሻ denote the elements ofࢁ × ݊ roadway segments matrix  ࢁ excluding the ݅-th 

segment. ��̅̅ ̅̅ = ሺߤ௜ଵ, ݊ ,�௜ଶሻߤ ௜ is the number of neighboring segments, and � is a 2×2 variance covariance 

matrix with diagonal elements representing conditional variances of ߤ௜ଵ and ߤ௜ଶ, and off-diagonal elements 

representing the spatial conditional covariance between different severity levels. ��  is the variance 

covariance matrix for correlated spatial heterogeneity effects, the inverse of which is assigned a Wishart 

prior as defined in Eq. (7.5). 

7.3.3 Temporal Component 

When multiple observations are made for each location over time, it introduces possible temporal 

correlation and/or heterogeneity because unobserved factors may change from time to time. Thus, it is 

reasonable to incorporate a temporal component to capture temporal variation. In the similar vein as BYM 

specification for the spatial component, the temporal component is added to Eq. (7.8) and decomposed 

into temporal correlation and temporal heterogeneity terms: 

 log ሺߣ௜௧௞ ሻ = �௜௧௞ �௞ + ௜௞ߤ + ߭௜௞ + �௧௞ + ߮௧௞ + �௜௧௞  (7.12) 

where �௧௞ is the temporal correlation term and a random walk prior of first order (RW1) is used (Li et al., 

2012), the underlying assumption is that temporal effects for neighboring time points tend to be similar. It 

is defined as: 

 �௧௞|�ሺ−௧ሻ௞ ~
{  
  ܰ ቀ�௧+ଵ௞ , ��ଶሺ௞ሻቁ           for ݐ = ͳ,          ܰ (�௧−ଵ௞ + �௧+ଵ௞ʹ , ��ଶሺ௞ሻʹ ) ,    for ݐ = ʹ,͵, … , � − ͳܰ ቀ�௧−ଵ௞ , ��ଶሺ௞ሻቁ           for ݐ = �,     

 ሺ݇ = ͳ,ʹሻ (7.13) 

where �ሺ−௧ሻ௞  denote all elements of �௧௞ except for time point ݐ, and �=358.  ��ଶሺ௞ሻ is the variance of the 

temporal effects for severity level ݇, the inverse of which is assigned a gamma hyper-prior distribution ܽ݉݉ܽܩሺͲ.5,Ͳ.ͲͲͲ5ሻ. Again, a sum to zero constraint is placed on vector �௞ to ensure identifiability. To 
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implement RW1 temporal prior, an analogous spatial CAR prior is used where neighboring time points of ݐ is defined as ݐ − ͳ and ݐ + ͳ. ߮ ௧௞ is the temporal heterogeneity term, and an exchangeable normal prior 

with mean 0 and precision ߬ఝ௞  is assigned: 

 ߮௜௞~ܰቆͲ, ͳ߬ఝ௞ቇ , ݇ = ͳ,ʹ (7.14) 

Again, a gamma hyperprior distribution ܽ݉݉ܽܩሺͲ.5,Ͳ.ͲͲͲ5ሻ is adopted for precision ߬ఝ௞ . Above 

specification assumes independent temporal correlation and temporal heterogeneity across different injury 

severity levels. A natural extension to multivariate setting is to allow both temporal correlation and 

temporal heterogeneity effects to be dependent across injury severity levels, as shown below.  

 �௜|ሺ�૚ሺ−�ሻ, �૛ሺ−�ሻሻ~ܥܯ��ሺ��̅̅ ̅, �݊௜ሻ (7.15) 

,ሺ૙ܸܰܯ~��  �Φሻ (7.16) 

The parameters defined in Eq. (7.15) and Eq. (7.16) are similar to those defined in Eq. (7.10) and 

Eq. (7.11). Similar to the BYM specification for spatial effects, the temporal analogy of BYM as 

discussed above may be redundant for some datasets. 

7.3.4 Model Specifications 

The multivariate spatiotemporal specification outlined in Eq. (7.12) is decomposed into four 

components: (1) the covariate effect �௜௧௞�௞  that captures systematic trend caused by spatially and/or 

temporally varying risk factors; (2) a common spatial effect component ߤ௜௞ + ߭௜௞ for all time points that 

captures spatial correlation and/or heterogeneity; (3) a common temporal effect component �௧௞ + ߮௧௞ for 

every segment that captures temporal trend and/or heterogeneity; and (4) an extra spatio-temporal 

component �௜௧௞   that captures additional variability that is not explained by other model components. Such 

a  specification is a multivariate extension to some previous separable space-time model studies (Abellan 

et al., 2008; Knorr-Held and Besag, 1998). As much as it is tempting to fit one model specified by Eq. 

(7.12) and make inferences based on the model results, it may lead to confirmation bias without a proper 

comparison between different model specifications. Focusing on the presence of spatial structured and 



127 
 

unstructured effects, temporal structured and unstructured effects, as well as the correlations of those 

effects among different severity levels, the authors proposed a two-step modeling framework to find the 

most suitable model for the data at hand. At the first step, with the temporal component excluded, the 

most plausible specification for spatial component is identified by comparing different spatial prior 

specifications. At the second step, different temporal specifications for multivariate space-time models are 

compared based on the best spatial specification identified from the first step. The proposed model 

specifications are shown in Table 7.2.  

Table 7.2 Proposed Model Specifications 

Model 
Spatial Component Temporal Component Extra ST 

)(k
i  )(k

i  )(k
i  )(k

i  )(k
it  

Spatial models 
S1 - normal - - MN 
S2 CAR - - - MN 

S3 CAR normal - - MN 

S4 MCAR - - - MN 

S5 MCAR normal - - MN 

S6 MCAR MN - - MN 

Spatio-temporal models 
ST1 MCAR - - normal MN 

ST2 MCAR - - MN MN 

ST3 MCAR - CRW1 - MN 

ST4 MCAR - RW1 - MN 

ST5 MCAR - CRW1 normal MN 

ST6 MCAR - RW1 normal MN 

Competing spatio-temporal models    
CST1 CAR - - normal MN 

CST2 MCAR normal - normal MN 

CST3 MCAR MN - MN MN 

CST4 MCAR - - normal - 
Note: “-” indicates not specified, “CRW1” denotes correlated RW1 temporal priors as defined in Eq. (7.15), “normal” 
refers to independent normal prior and “MN” refers to multivariate normal prior. 
 
7.3.5 Model Comparison and Checking 

The Deviance Information Criteria (DIC) is used for model comparisons (Spiegelhalter et al., 

2002). The DIC is a generalization of Akaike Information Criteria (AIC), which trades off the model fit 

against a measure of model complexity. It is defined as follows: 
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ܥܫܦ  = (�)ܦ + ஽݌ʹ = ܦ +  ஽ (7.17)݌

where ܦ(�) is the deviance evaluated at the posterior means of the parameters of interest �; ݌஽ is the 

effective number of parameters in the mode, and ܦ is the posterior mean of the deviance ܦሺ�ሻ. Similar to 

AIC, a model with smaller DIC value is preferred.  

Although DIC has been used extensively for comparisons between Bayesian hierarchical models, 

it is never intended as an absolute measure of model fit. In order to further evaluate the adequacy of a 

model fit to the observed data, Gelman et al. (1996) proposed a posterior predictive checking diagnostic, 

in which the observed data is compared with the replicated ones from the posterior predictive distribution. 

If the model fits the data adequately, the replicated data ݕ௥௘௣ should be similar to the observed data ݕ. A 

discrepancy measure ܦሺݕ; �ሻ can be employed to quantify the similarity between the observed data and 

the replicated ones. For a chosen ܦሺݕ; �ሻ, its reference distribution is obtained from the joint posterior 

distribution of ݕ௥௘௣ and �: 

 ��ሺݕ௥௘௣, �ሻ = �ሺݕ௥௘௣|�ሻ�ሺ�|ݕሻ (7.18) 

The Bayesian p-value (�஻ ) represents the probability that the observed discrepancy measure ܦሺݕ; �ሻ is more extreme than the replicated discrepancy measure ܦሺݕ௥௘௣; �ሻ, and is calculated as: 

 �஻ = ௥௘௣ሻݕሺܦ]� ൒  (7.19) [ݕ|ሻݕሺܦ

A Monte Carlo estimate of �஻  can be readily calculated through evaluating the proportion of 

draws in which ܦሺݕ௥௘௣ሻ ൒  ሻ. With regard to the chosen criteria, a p-value close to 0.5 impliesݕሺܦ

adequate model fit, while a p-value near 0 or 1 (above 0.8 or below 0.2) indicates discrepancy between 

the observations and the fitted model (Neelon et al., 2010). Since the data adopted in the present chapter 

contains excessive zeros, it is therefore reasonable to evaluate how well the model can account for such 

characteristic. The proportion of zero observations is therefore employed as a discrepancy measure in the 

present chapter.  
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7.4 Results 

7.4.1 Model Comparisons 

The proposed Full Bayesian models were estimated with the freeware WinBUGS package 

(Spiegelhalter et al., 2005), which implements Markov Chain Monte Carlo (MCMC) method using the 

Metropolis-Hastings algorithm to sample from the full unnormalized posterior distribution. These 

samples were then used to summarize quantities of interest for the parameters such as means and 95% 

credible intervals. For each model, two MCMC chain runs of 80,000 iterations were initialized at 

dispersed starting values with the first 10,000 iterations discarded as burn-in period. Convergences were 

first monitored by visual inspection of trace plots and autocorrelation plots for the model parameters. 

Then, the Brooks-Gelman-Rubin (BGR) statistics (Brooks and Gelman, 1998) were calculated to assess 

the convergence of multiple chains formally.  

Table 7.3 Goodness of Fit Measures of Proposed Models 
Models ܦ PD DIC ݌௡௢1 ݌௜௡௝2 

Spatial models     
S1 5672.0 855.8 6527.8 0.6 0.6 
S2 5633.7 880.0 6513.7 0.71 0.51 
S3 5660.4 868.6 6529.1 0.63 0.63 
S4 5619.6 873.5 6493.1 0.71 0.60 
S5 5686.5 895.2 6581.7 0.63 0.55 
S6 5679.6 952.3 6631.9 0.66 0.59 

Spatio-temporal models     
ST1 5546.6 770.1 6316.6 0.65 0.68 
ST2 5587.5 785.3 6372.8 0.62 0.63 
ST3 5693.4 828.1 6521.5 0.61 0.59 
ST4 5686.0 827.3 6513.3 0.62 0.61 
ST5 5596.3 860.8 6457.2 0.64 0.69 
ST6 5590.3 790.6 6380.9 0.62 0.63 

Competing spatio-temporal models     
CST1 5585.1 770.0 6355.2 0.66 0.57 
CST2 5554.8 773.3 6328.1 0.71 0.67 
CST3 5619.2 839.3 6458.5 0.63 0.64 
CST4 6389.0 328.4 6717.4 0.31 0.39 

1: Bayesian Posterior predictive check P-value for no injury crash 
2: Bayesian Posterior predictive check P-value for injury crash 
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The goodness of fit measures for the proposed models are presented in Table 7.3. Focusing first 

on the structure of spatial random effects, six spatial models were estimated. Model S1 includes only a 

spatial heterogeneity term, which is equivalent to the random effects multivariate model proposed in Ma 

et al. (2016). Random parameter multivariate model was also estimated. However, it did not provide any 

improvement as compared to model S1 and thus is not presented. Model S2 to S6 are different variations 

of the spatial CAR and BYM models. A comparison between model S1 and S2 highlights the importance 

of including spatial correlations (DIC value decreases from 6527.9 to 6513.7). It is shown in Table 7.3 

that model S4 provides the best model fit among all proposed spatial models, as implied by the smallest 

DIC value (6493.1). Since model S4 includes only structured spatial effects in the spatial component and 

allows multivariate structure in the spatial effects, this result suggests not only the significance of spatial 

correlations but also a non-negligible dependence in structured spatial effects between no injury and 

injury crashes.  

Comparing between S4 and S5 or S6 implies that adding spatial heterogeneity effects, be they 

independent or correlated, actually lead to worse model fit (DIC values increase drastically by 88.3 and 

138.8 respectively). Such a finding is seemingly contradictory to those indicated in previous studies 

(Aguero-Valverde, 2013b; Aguero-Valverde et al., 2016; Barua et al., 2014). For example, Barua et al. 

(2014) developed three models and concluded that the multivariate model with both spatial correlation 

and heterogeneity effects provides better model fit than the multivariate model with only spatial 

correlation effects. A close investigation into the differences between those previous studies and the 

current study offers a reasonable explanation. Data used in those previous studies were either based on 

TAZ or road segments from highways of various functional classes. Therefore, the unobserved spatial 

heterogeneities were presumed to be large and could not be properly captured by observed covariates and 

spatial smoothing. As compared to those data, the data adopted in the present chapter are much more 

homogenous in space. All the roadway segments are obtained from a mountainous part of I70, which are 

highly consistent in terms of geometric design standards, terrains, transportation operational features, and 

most importantly driver population characteristics. As a result, it can be concluded that spatial correlation 
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dominates spatial heterogeneity for the present data given that the pure MCAR specification (without 

spatial heterogeneity term) is the favored spatial structure. 

Based on the most plausible specification for spatial component (i.e. pure MCAR) identified 

above, six spatio-temporal models (i.e. ST1, ST2, ST3, ST4, ST5, and ST6) were proposed with varying 

structures for the temporal component. Model ST1 and ST2 incorporate only temporal heterogeneity term, 

and model ST3 and ST4 incorporate only temporal correlation term. Model ST5 and ST6 incorporate both 

temporal heterogeneity and correlation terms (BYM equivalent of the spatial component). Turning to the 

performance of those spatio-temporal models as shown in Table 7.3, several inferences can be made. The 

benefit of introducing unstructured temporal effects is revealed by the significant lower DIC values of 

model ST1 (6316.6) and model ST2 (6372.8) as compared to that of model S4 (6493.1). This finding 

indicates that there are significant temporal heterogeneities in the data which need to be incorporated into 

the model. On the other hand, including structured temporal effects in the model leads to poorer model 

fits, which suggests there is no significant temporal correlation to be addressed in the data. Such a finding 

is not surprising, given that the present chapter adopts fine temporal scale (daily) as opposed to extended 

ones (annual). It is presumed that even after controlling for the observable explanatory variables 

(including some time-varying variables), the unobserved temporal factors are still significant and vary 

abruptly from one day to the next for the present data. This finding points out the importance of time-

varying information in the crash analysis. Only first order random walk prior is considered in the present 

study. Although the higher order of random walk priors could be considered, they tend to impose stronger 

smoothing in time, which contradicts the nature of the present data. Moreover, the fact that model ST1 is 

preferred over ST2 indicates that the unobserved temporal trends are quite different between no injury 

and injury crashes. Fig. 7.1 presents the mean temporal effects along with corresponding 95% intervals 

under models ST1 and ST3, and no clear patterns can be observed. The temporal trends tend to be 

smoothed under model ST3 as compared to those under ST1. Under model ST1, the temporal trend of no 

injury crash differs from that of injury crash, and they both tend to fluctuate significantly from one day to 

the next over the studied period.  
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Figure 7.1 Mean temporal trends and 95% intervals under model ST1 and ST3 (top: no injury crash. 

bottom: injury crash) 
 

Overall, the multivariate spatio-temporal model ST1 is clearly preferred over other models 

regarding DIC values. The Bayesian P-values produced from posterior predictive check indicate that 

model ST1 is consistent with the data in terms of zero proportions. To ensure that the pure MCAR spatial 

structure can still be warranted after introducing temporal dimension, several variations of ST1 are 

estimated, including model CST1, CST2, and CST3. As shown in Table 7.3, these models provide poorer 

fits than ST1, suggesting the superiority of ST1 over the rest models again. Another issue of interest for 

the current study relates to the extra space-time term (�௜௧௞ ). We propose model CST4, which has the same 

model specification as ST1 except for the extra space-time term. As compared to model ST1, the effective 

number of parameters in model CST4 drops significantly by 441.7 signifying that CST4 is much more 

parsimonious. However, the sharp increase in DIC value implies that CST4 provides the worst model fit 

throughout. This finding suggests that there is significant space-time variability in the data which needs to 

be accounted for.  

According to the above results about the model comparison, it is justifiable to draw conclusions 

regarding the source of variability based on model ST1. DIC’s strong preference for ST1 suggests that the 

current data have a complex structure and also the variability in the data comes mainly from several 
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sources. Correspondingly, covariates, spatially structured effects, temporal unstructured effects, extra 

space-time effects, and the correlation between injury levels need to be considered in order to explain the 

variability properly. 

Table 7.4 Parameter Estimates for Model S4 

Variables 
No injury crash  Injury crash 

Mean SD (2.5% 97.5%)  Mean SD (2.5% 97.5%) 

Constant -6.078 0.319 -6.733 -5.477  -8.302 0.543 -9.439 -7.312 

Log of vehicle miles 
travelled 

0.581 0.088 0.409 0.755  0.585 0.150 0.294 0.880 

Daily average speed gap 0.146 0.008 0.130 0.161  0.125 0.017 0.092 0.158 

November indicator 0.492 0.129 0.235 0.742  0.662 0.257 0.147 1.150 

Inside shoulder width 0.105 0.069 -0.030 0.241  0.312 0.111 0.095 0.534 
Number of entering ramp 

per mile per lane 
0.061 0.236 -0.403 0.523  -1.273 0.485 -2.256 -0.358 

Poor pavement indicator 0.118 0.228 -0.326 0.570  -0.044 0.328 -0.685 0.601 

Two lane indicator 0.646 0.322 0.044 1.317  0.791 0.424 -0.028 1.640 

Wet surface percent 0.724 0.200 0.328 1.110  1.458 0.363 0.730 2.153 
Steep downgrade slope 

indicator 
0.518 0.268 -0.004 1.051  0.474 0.393 -0.302 1.239 

Variance (��ଶ) 1.793 0.229 1.391 2.275  2.884 0.662 1.837 4.367 

Spatial variance (�ఓଶ) 0.414 0.145 0.195 0.754  0.351 0.169 0.126 0.773 

 
Table 7.5 Parameter Estimates for Model ST1 

Variables 
No injury crash  Injury crash 

Mean SD (2.5% 97.5%)  Mean SD (2.5% 97.5%) 

Constant -6.094 0.310 -6.714 -5.505  -8.788 0.619 -10.08 -7.650 

Log of vehicle miles 
travelled 

0.636 0.095 0.453 0.824  0.596 0.158 0.290 0.910 

Daily average speed gap 0.138 0.010 0.119 0.158  0.135 0.021 0.095 0.176 

November indicator 0.631 0.235 0.169 1.094  0.729 0.384 -0.024 1.488 

Inside shoulder width 0.094 0.068 -0.041 0.228  0.321 0.113 0.101 0.546 
Number of entering ramp 

per mile per lane 
0.112 0.234 -0.349 0.571  -1.265 0.493 -2.264 -0.334 

Poor pavement indicator 0.107 0.225 -0.332 0.555  -0.022 0.337 -0.685 0.643 

Two lane indicator 0.617 0.313 0.014 1.241  0.796 0.422 -0.019 1.635 

Wet surface percent 0.261 0.238 -0.214 0.721  1.596 0.443 0.719 2.456 

Steep downgrade slope 
indicator 

0.515 0.267 -0.003 1.049  0.513 0.400 -0.272 1.301 

Variance (��ଶ) 0.970 0.186 0.648 1.379  2.420 0.728 1.229 4.051 
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Spatial variance (�ఓଶ) 0.417 0.143 0.197 0.751  0.361 0.177 0.128 0.806 

Temporal variance(�ఝଶ) 0.932 0.083 0.777 1.104  1.171 0.202 0.794 1.589 

 
Table 7.6 Parameter Estimates for Model ST6 

Variables 
No injury crash  Injury crash 

Mean SD (2.5% 97.5%)  Mean SD (2.5% 97.5%) 

Constant -5.891 0.294 -6.484 -5.333  -8.469 0.564 -9.675 -7.431 
Log of vehicle miles 

travelled 
0.627 0.099 0.437 0.827  0.583 0.159 0.278 0.904 

Daily average speed gap 0.140 0.010 0.119 0.160  0.133 0.020 0.093 0.173 

November indicator 0.625 0.235 0.167 1.083  0.702 0.374 -0.032 1.435 

Inside shoulder width 0.091 0.069 -0.043 0.226  0.319 0.113 0.100 0.544 
Number of entering ramp 

per mile per lane 
0.119 0.236 -0.351 0.578  -1.262 0.485 -2.240 -0.346 

Poor pavement indicator 0.027 0.237 -0.435 0.504  -0.100 0.347 -0.789 0.583 

Two lane indicator 0.434 0.315 -0.163 1.061  0.616 0.424 -0.203 1.459 

Wet surface percent 0.253 0.239 -0.229 0.719  1.577 0.426 0.723 2.399 

Steep downgrade slope 
indicator 

0.492 0.271 -0.037 1.016  0.470 0.400 -0.318 1.247 

Variance (��ଶ) 0.946 0.160 0.655 1.292  2.294 0.657 1.256 3.819 

Spatial variance (�ఓଶ) 0.413 0.142 0.196 0.745  0.354 0.172 0.124 0.784 

Temporal variance(�ఝଶ) 0.933 0.084 0.778 1.108  1.114 0.214 0.712 1.530 

Temporal variance(��ଶ) 0.027 0.009 0.015 0.048  0.033 0.013 0.016 0.067 

 
7.4.2 Parameter Interpretation 

For brevity, only relevant model results are presented. Table 7.4, Table 7.5, and Table 7.6 

summarize the model estimation results for model S4, ST1, and ST6 respectively. The results of 

estimated covariate coefficients appear to be very robust across these models. This finding indicates when 

being used to identify risk contributing factors, these models would produce consistent results. 

Turning to the specific results of parameter estimates, the following parameter inferences are 

mainly based on model ST1 as presented in Table 7.5. The model results reveal that logarithm of vehicle 

miles traveled (VMT) is statistically significant at 95% confidence interval and positively associated with 

both no injury and injury crashes. This is intuitive as VMT is regarded as the main risk exposure to 

crashes and is in line with previous studies (Ma and Kockelman, 2006; Wang et al., 2013b). Daily 
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average speed gap is found to be significant (at a 95% confidence interval) and is positively related to no 

injury and injury crashes. This result indicates that higher speed gap is associated with more crashes and 

is consistent with existing studies (Chen et al., 2014; Ma et al., 2016). As for November indicator, it is 

found to be significant with a positive sign at both injury levels. This variable may be capturing 

unobserved effects associated with early winter storms in Colorado during November 2010. Inside 

shoulder width is statistically significant and positively associated with injury crash, suggesting more 

injury crashes would occur on roadway segments with wider inside shoulder. Two lane indicator is found 

to be statistically significant at 90% confidence interval with a positive sign for both injury levels. This 

implies that crashes are more likely to occur on roadways with two lanes as opposed to those with three 

lanes. Wet road surface percent is found to be significant at 95% confidence interval and is positively 

associated with injury crash in all three models. This finding implies that injury crashes are more likely to 

occur on roads with a higher wet surface percent. For no injury crash, however, wet surface percent is 

found to be significant only in model S4. Steep downgrade slope indicator is found to be significant at 90% 

confidence interval with a positive sign for no injury crash. Adding temporal effects in the model leads to 

the result that wet surface percent becomes insignificant with no injury crashes. This is possibly due to 

that wet surface percent variable captures some of the unobserved temporal heterogeneity in model S4. 

By comparing the relative magnitudes of spatial variance (�ఓଶ) and temporal variance (�ఝଶሻ (0.417 and 

0.932 for no injury crash, and 0.361 and 1.171 for injury crash), it appears that more variation comes from 

temporal component as opposed to spatial component. Therefore, it is important to incorporate the 

temporal component in the model. 

Table 7.7 Variance-covariance Matrix for Model ST1 �௜௧௞  
 No injury crash Injury crash 
No injury crash 0.970 (0.186) 1.263 (0.249) 
Injury crash 1.263 (0.249) 2.420 (0.728) ߤ௜௞ 
No injury crash 0.417 (0.143) 0.258 (0.129) 
Injury crash 0.258 (0.129) 0.361 (0.177) 
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Concerning the estimation of random effects, the variance ��ଶ is noticeably smaller in model ST1 

and ST6 than those in model S4 for both no injury and injury crashes. This result is expected since model 

ST1 and ST6 add temporal random effects and they capture some of the variability that is captured by ��ଶ 

in S4. Focusing on temporal effects presented in Table 7.6, a comparison between variance of temporal 

effects indicates that temporal heterogeneity is much stronger than temporal correlations, since �ఝଶ  is 

much larger (0.933 and 1.114 for no injury crash and injury crash respectively) and ��ଶ (0.027 and 0.033 

for no injury crash and injury crash respectively). This finding again indicates that the structured temporal 

effects are negligible because that the unstructured temporal effects capture most of the temporal 

variability. The variance-covariance matrix for model ST1 is presented in Table 7.7. The correlation 

between injury levels (�௜௧௞ ) is estimated to be 0.82, and the correlation between spatial correlation effects 

 is estimated to be 0.66. This implies there is non-negligible dependence between injury levels and (௜௞ߤ)

the spatial correlation effects. 

7.5 Summary 

This chapter investigates the application of multivariate space-time models to jointly analyze 

crash frequency by injury severity levels in fine temporal scale. A multivariate space-time modeling 

framework is proposed within a Full Bayesian paradigm which focuses on finding best specifications for 

spatial and temporal random effects. In addition to the ability to consider both temporal and spatial trends, 

the proposed model framework is also capable of addressing complex correlations between crash types. It 

allows the underlying unobserved heterogeneity to be captured more comprehensively and enables 

borrowing strength across spatial units and over crash types, thus offering new insights into crash data 

analysis. 

The proposed methodology is illustrated using one-year daily traffic crash data from the 

mountainous interstate highway I70 in Colorado. Apart from exposure factor (VMT), some variables are 

identified as important predictors, including geometric characteristics such as inside shoulder width, two-

lane indicator, and steep downgrade slope indicator, and time-varying variables such as daily average 
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speed gap and wet road surface. These results are intuitive and in line with existing findings. The model 

estimation results also highlight the importance of including a temporal component in the model. 

In addition to offering some insights concerning the effects of predictors, some important 

conclusions in terms of the source of variation are also made. The empirical evidence provided herein 

suggests that the ST1 specification is the most appropriate one among all the models being compared. 

Since this model consists of multivariate spatial structured effects and independent unstructured temporal 

effects, it can disclose the complex structure and sources of variation in the present data. Hence, it is 

important to include temporal heterogeneity, spatial correlations, as well as dependence between spatial 

correlations on different injury levels in the model to explain such variation. It is also interesting to note 

that both spatial heterogeneity and temporal correlation appear to be insignificant in the model. Through 

identifying the source of variation in the data, the proposed framework helps researchers to understand the 

characteristics of crash data better. 

Lastly, this study is not without limitations. The proposed multivariate space-time model 

framework was illustrated with only one specific dataset. Therefore, some specific observations and 

conclusions associated with the dataset are suited to galvanize future research rather than provide general 

unequivocal evidence with regard to the characteristics of crash data. Before more extensive studies with 

different datasets are made, discretion should be exercised when it comes to generalization regarding 

common characteristics of crash data. The next step following this line of research would be to carry out 

multivariate space-time modeling on other road entities, such as intersection, TAZ and between different 

crash types (heads on, rear end, etc.). Another limitation of the present study is that the proposed models 

do not take dynamic space-time interaction into consideration. Incorporating space-time interaction may 

entail much more complex model structure and bring further insights of the data, although it can also be 

computationally expensive or even cost-prohibitive, along with other technical challenges.  
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CHAPTER 8 CONCLUSIONS AND FUTURE RESEARCH 
 
 
 
8.1 Summary and Conclusions 

The objective of the current dissertation is to develop advanced multilevel regression models to 

address existing knowledge gaps and further utilize these models to investigate important methodological 

and empirical problems in crash data. This dissertation intends to advance state of the art in modeling 

crash data, which in return extend our understanding towards underlying crash mechanisms. 

The contributions and findings of this dissertation are summarized in the following, which 

correspond to chapter two to chapter seven: 

(1) This dissertation reports so far the first research attempt on developing random effects tobit 

models for both daytime and nighttime crash rates based on disaggregate modeling approach with panel 

data in refined temporal and spatial scales. By adopting tobit model with random effects, not only the 

censoring effects of crash rates data can be accounted for, but the unobserved heterogeneity across 

observations can also be potentially captured. Comprehensive road geometry, real-time traffic, weather 

and road surface data in refined temporal and spatial scales (hourly record and 1-mile roadway segments 

on average) was integrated into the crash rate model with panel data structure. The utilization of panel 

data in refined temporal scales enables capturing time-varying nature of variables (e.g. hourly traffic 

volume, visibility, wet road surface, etc.), which was usually ignored in traditional traffic crash modeling 

through data aggregation. In addition to the refined scales, for the first time, crash rate was studied with 

two separate models developed for nighttime and daytime, which led to some new findings and more 

refined information than traditional pooled data model. The results showed that there was major 

difference in contributing factors towards crash rate between daytime and nighttime, implying the 

considerable needs to consider daytime and nighttime crashes separately when refined-scale data (e.g. 

hourly) is studied. Based on these findings, more effective and adaptive mitigation efforts may become 

possible to save more people’s lives from crashes. These efforts include improvements in vehicle design, 

highway design, traffic management or law enforcement based on these new findings. Along this line, 
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some future studies can be carried out such as risk-based optimal route selection for adverse driving 

conditions, active law enforcement/traffic control intervention and advanced resource allocation and 

planning for trucking industry, etc. 

(2) A random parameter tobit model was developed to analyze accident rates on mountainous 

highways. By facilitating the data in refined temporal scale (hourly basis), this study differs from previous 

accident rates studies in adopting disaggregated data. In addition to handling left-censoring effects and 

explicitly capturing unobserved heterogeneity, the random parameter tobit model can also properly deal 

with serial-correlations that are usually present in panel data. Moreover, by incorporating weather and 

traffic data in refined temporal scale (hourly basis) in our study, detailed phenomena were observed 

including those related to time-varying factors often being masked in traditional studies with aggregated 

data. A typical mountainous interstate highway I-70 was selected to demonstrate the proposed 

methodology. A random parameter tobit model was estimated by combining different data into one 

comprehensive data set. The likelihood ratio test result showed the superiority of random parameter tobit 

model over its fixed parameter counterpart. Model results demonstrated that various factors related to 

traffic and weather/surface conditions, roadway geometry and pavement play significant roles in crash 

rates. Poor visibility was found to increase accident rate. Similarly, adverse road surface conditions, 

including wet road surface, chemically wet road surface and ice warning, were all found to increase 

accident rate. Traffic-related factor, speed gap, was also found to significantly affect accident rate. Some 

factors were also found to possibly have a mixed influence on accident rate, such as speed limit, and 

inside shoulder width indicator. In addition, speed gap was found to produce random influence on 

accident rates in the model. The proposed model was developed based on real-time weather and traffic 

data from RWIS, a common data source around the country. Therefore, the technique developed in this 

chapter is easily transferrable to other highway safety studies with refined scales, exhibiting great 

engineering application potentials.  

(3) A correlated random parameter two-part (CRPMTP) model is developed to study crash rates 

using refined-scale longitudinal data with excess zeros. Marginalized two-part model was adopted for the 
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first time to study crash rates. By comparing the model performance between marginalized two-part 

model and Tobit model, it shows that marginalized two-part model outperforms Tobit model. In addition, 

a correlated random parameter model as opposed to the uncorrelated one employed in most existing 

literature was developed to avoid the inappropriate independence assumption on random parameters. 

Likelihood ratio test along with AIC and BIC measures indicated correlated random parameter model is 

superior to corresponding uncorrelated one. This finding supports our hypothesis that correlated random 

parameter model could account for both the unobserved heterogeneities across roadway segments and the 

correlations between those unobserved heterogeneities. Likelihood ratio tests showed that the CRPMTP 

model was the best among the competing models in terms of goodness of fit. It was also found that Tobit 

model was not the preferred model choice. By facilitating a multivariate normal distribution of the 

random parameters, the CRPMTP model not only accounts for unobserved heterogeneity but also 

captures the correlations between random parameters. This study demonstrated that two-part model may 

be a better alternative to tobit model in analyzing crash rates when the data is right-skewed with large 

proportion of zero values. Moreover, speed gap in the binary part, curvature in the binary part, speed gap 

in the continuous part and percentage of snow occurring in the continuous part were found to have mixed 

effects on crash occurrence. Correlations between those random parameters were also revealed by 

adopting CRPMTP model. These finding can improve the understanding of the relationship between 

crash occurrence and contributing factors. Developing crash models that incorporate time-varying 

variables on a daily basis not only contributes to the improved understanding of crash occurrence, but also 

bears the potential to provide road users and policy makers with more detailed and relevant crash risk 

information. 

(4) With four-year detailed crash injury severity data, separate mixed logit models were estimated 

for one mountainous and one non-mountainous interstate highway in Colorado. To provide scientific 

insights about potential mitigation efforts, critical contributing factors were comprehensively investigated. 

Substantial differences in the magnitude and direction of the influence of contributing factors were 

observed. Out of the factors that significantly affect injury severity, nine are exclusive to MT crashes and 
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thirteen to NM crashes. Additionally, nine contributing factors that have opposite effects on injury 

severity between MT and NM models are identified. Factors that contribute to increase injury severity and 

factors that contribute to mitigate injury severity are also identified. This study is explorative in nature in 

terms of investigating both mountainous and non-mountainous highways from the same region side by 

side. Rather than offering general findings with the mixed model in most existing studies, it is very 

helpful in identifying and understanding specific critical factors affecting injury severity on MT and NM 

crashes respectively. There are, however, some limitations of this chapter, which offer room for future 

improvements. For example, real-time traffic and weather data were not included in the model due to the 

incompleteness of the data. Although the adoption of mixed logit model is helpful in capturing 

heterogeneity in this regard, future work should incorporate the real-time data when it becomes widely 

available to form decent sample size. Findings based on the comparative study of two typical interstate 

highways in Colorado can offer valuable information about mountainous highways in general.  

(5) A novel approach to analyze and identify different hazardous factors for SV and MV crashes 

was presented. A bivariate Poisson-lognormal model with correlated segment-specific random effects was 

proposed to characterize both the multivariate and panel nature of the data. In order to provide more 

insightful and rigorous comparative results with the proposed model, two other candidate models were 

also developed including the proposed one. The estimated results show that the proposed bivariate 

Poisson-lognormal model with correlated segment-specific random effects outperforms the other two 

candidate models by addressing as much unobserved heterogeneity as possible, dealing with excessive 

zeros in the observed data, as evidenced by the smallest DIC value. With the help of advanced monitoring 

system, real-time weather and traffic data were incorporated in the present chapter in addition to exposure 

and geometrics, which can provide more comprehensive understanding of the factors affecting SV and 

MV crashes than most existing studies. Results showed that weather and traffic related explanatory 

variables, especially surface conditions, play a significant role in affecting the occurrence of SV and MV 

crashes. Moreover, differences between hazardous factors for SV and MV crashes are also investigated. 

All these findings may benefit future engineering practices on traffic designs and active traffic 
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management. For instance, the results can be used to quantify potential safety benefits of road 

maintenance, help design more appropriate traffic control measures and improve road infrastructure 

designs during adverse weather conditions. 

(6) A multivariate space-time modeling framework was proposed within Full Bayesian paradigm 

which focuses on finding best specifications for spatial and temporal random effects. In addition to the 

ability to consider both temporal and spatial trends, the proposed model framework is also capable of 

addressing complex correlations between crash types. It allows the underlying unobserved heterogeneity 

to be captured more comprehensively and enables borrowing strength across spatial units and over crash 

types, thus offering new insights into crash data analysis. The proposed methodology was illustrated 

using one-year daily traffic crash data from the mountainous interstate highway I70 in Colorado. Apart 

from exposure factor (VMT), some variables are identified as important predictors, including geometric 

characteristics such as inside shoulder width, two lane indicator, and steep downgrade slope indicator, and 

time-varying variables such as daily average speed gap and wet road surface. These results are intuitive 

and in line with existing findings. The model estimation results also highlight the importance of including 

temporal component in the model. In addition to offering some insights with regard to the effects of 

predictors, some important conclusions in terms of the source of variation are also made. The empirical 

evidence provided herein suggests that the ST1 specification is the most appropriate one among all the 

models being compared. Since this model consists of multivariate spatial structured effects and 

independent unstructured temporal effects, it can disclose the complex structure and sources of variation 

in the present data. Hence, it is important to include temporal heterogeneity, spatial correlations, as well 

as dependence between spatial correlations on different injury levels in the model to explain such 

variation. Through identifying the source of variation in the data, the proposed framework helps 

researchers to better understand the characteristics of crash data, which in turn can potentially improve 

prediction accuracy. 
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8.2 Directions for Future Research 

This dissertation is not free of limitations, which leaves some room for future improvement. 

Below are some of the directions future researches can focus on: 

(1) The data are limited to several interstate highways from Colorado. It is well known that crash 

data from different jurisdictions may exhibit varying characteristics. To generalize the findings from this 

dissertation, data from other states or countries with varying functional classes are desired.  

(2) Researches conducted in this dissertation mainly focused on data in fine temporal scale (i.e. 

hourly or daily crash) by addressing methodological issues associated with time-varying variables. Often 

times significant research interests also lie on modeling annual crash frequency (for site-ranking or 

network screening purposes). To appropriately aggregate the findings in refined scales to annual results 

deserves further explorations.   
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