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ABSTRACT 
 
 
 

REPRODDUCTIVE SUCCESS, HABITAT SELECTION, AND NEONATAL MULE DEER  
 

MORTALITY IN A NATURAL GAS DEVELOPMENT AREA 
 
 
 

Mule deer (Odocoileus hemionus) populations have periodically declined throughout the western 

United States, with notable declines during the late 1960s, early 1970s, and 1990s (Unsworth et 

al. 1999) to present. Declining population levels can be attributed to low fawn survival and 

subsequently low population recruitment (Unsworth et al. 1999, Pojar and Bowden 2004) caused 

by declining habitat availability and quality (Gill 2001, Lutz et al. 2003, Watkins et al. 2007, 

Bergman et al. 2015). Although, general public perception is that declining deer numbers are 

attributed exclusively to predation (Barsness 1998, Willoughby 2012), predator control research 

suggests otherwise (Hurley et al. 2011, Kilgo et al. 2014) and compelling evidence exists that 

improving habitat quality can enhance deer populations (Bishop et al. 2009, Bergman et al. 

2014). Complicating this story is the large-scale habitat alterations driven by natural gas 

development, which may also influence deer population dynamics. 

Natural gas development and associated disturbances that can affect deer habitat and 

population dynamics include conversion of native plant communities to drill pads, roads, or 

noxious weeds and noise pollution from compressor stations, drilling rigs, increased traffic, and 

year round occurrence of human activities. Natural gas development alters mule deer habitat 

selection through direct and indirect habitat loss (Sawyer et al. 2006, Sawyer et al. 2009, 

Northrup et al. 2015). Direct habitat loss results from construction of well pads, access roads, 

compressor stations, pipelines, and transmission lines. Activity, traffic, and noise associated with 
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increased human presence and development may lead to indirect habitat loss. Indirect habitat loss 

is exacerbated because active wells produce gas for 40 years or longer (Sawyer et al. 2006, 

Sawyer et al. 2009). In addition, indirect habitat loss affects considerably larger areas than direct 

habitat loss (Sawyer et al. 2006, Sawyer et al. 2009). Recent research suggests direct and indirect 

losses can lead to behavioral responses to development (Sawyer et al. 2006, Dzialak et al. 2011b, 

Northrup et al. 2015). However, deer can behaviorally mediate these impacts by altering activity 

patterns or selecting habitat with topographic diversity that provides refuge from development 

(Northrup et al. 2015). 

Obtaining a more complete understanding of the potential impacts of development is 

critical to comprehend population dynamics of deer and to develop viable mitigation options. 

Understanding how natural gas development and other factors influence reproductive success 

metrics (e.g., pregnancy, in utero fetal, and fetal survival rates), fetal sex ratio, habitat 

characteristics of birth and predation sites (i.e., habitat selection), and neonatal (i.e., 0–6 months 

old) mule deer mortality have been identified as knowledge gaps. Thus, my dissertation focused 

on addressing these knowledge gaps through individual reproductive success monitoring using 

vaginal implant transmitters. I conducted this research during 2012–2014 in the Piceance Basin 

of northwestern Colorado in study areas with relatively high (0.04–0.90 well pads/km2) or low 

(0.00–0.10 well pads/km2) levels of natural gas development. 

In chapter 1, I examined the influence of adult female, natural gas development, and 

temporal factors on reproductive success metrics (i.e., pregnancy rate, in utero fetal rate, and 

fetal survival rate) and fetal sex ratio. Pregnancy rates were high, did not vary across years, and 

were essentially equal between study areas. In utero fetal rates were lower for yearling females 

(n = 10) and varied annually compared to adult females (n = 204) possibly from annual weather 
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patterns that influenced forage quality and digestibility. Fetal survival rates increased over time 

and were lower in the high development study areas than the low development areas in 2012 

possibly caused by a compounding influence of development disturbance during extreme 

environmental conditions (i.e., drought). Higher road density in a female’s core area (i.e., 50% 

minimum convex polygon) on summer range possibly contributed to better maternal body 

condition through increased forage quality along roads. Following the Trivers-Willard 

hypothesis which predicts females in good versus poor condition will produce more males, my 

results suggested females had a higher probability of producing more male offspring as road 

density increased. However, under my proposed mechanism, I would expect body condition and 

road density to be strongly correlated, but they were only weakly correlated (r = 0.07). I also 

note that I did not detect a biased sex ratio at the population level. Thus, I am uncertain of the 

exact mechanism influencing the relationship between road density and fetal sex ratio. 

In chapter 2, I used global positioning system collar data in conjunction with VITs and 

linear mixed models to validate the use of maternal deer movement rates (m/day) to determine 

timing of parturition. Daily movement rate of maternal deer decreased by 39% from 1 day before 

parturition (� �  = 1,243.56, SD = 1,043.03) to 1 day after parturition (� �  = 805.30, SD = 652.91). 

Thus, I suggest that a mule deer female whose daily movement rate significantly decreases to ≤ 

800 m/day has likely given birth. In the future, I will analyze an independent data set to validate 

the recommended threshold value and possibly develop a movement rate algorithm. 

In chapter 3, I fit resource selection functions to examine the influence of natural gas 

development and environmental factors on birth site selection and habitat characteristics of 

predation sites. Females selected birth sites farther from producing well pads and with increased 

cover for concealing neonates and appeared to select habitat (e.g., north-facing slopes and further 
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from treed edges) that minimized neonate predation risk. Predation sites were characterized as 

being closer to development and in habitat (e.g., woodlands, aspen-conifer stands, and north-

facing slopes) that possibly provided favorable microclimates for neonates and abundant high 

quality forage for lactating females. However, I note that predation sites were on average 

relatively far (2,057 m) from producing well pads and I have difficulty proposing a mechanism 

to explain how well pads that far away can influence predation site characteristics. My results 

suggest natural gas development and environmental factors (e.g., slope, habitat type, and aspect) 

can influence birth site selection with predation site characteristics possibly related to foraging 

habitat selection. 

In chapter 4, I tested hypotheses about the influence of adult female, natural gas 

development, neonate, and temporal factors on neonatal mortality using a multi-state model. 

Predation and death by malnutrition decreased from 0–14 days old. Predation of neonates was 

positively correlated with rump fat thickness of adult females, but negatively correlated with the 

distance (0–0.4 km) from a female’s core area (i.e., 50% kernel density estimate) to a producing 

well pad on winter or summer range. Death by malnutrition was positively correlated with the 

distance from a female’s core area to a road on winter range and weakly, but negatively 

correlated with temperature. During my study, predation was the leading cause of neonatal 

mortality in both areas and mean daily predation probability was 9% higher in the high versus 

low development areas. However, black bear (Ursus americanus) predation was the leading 

cause of neonatal mortality in the high development areas (22% of all mortalities) compared to 

cougar (Felis concolor) predation in the low development areas (36% of all mortalities). 

Reduced precipitation and patchy habitat further fragmented by development possibly 
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contributed to less hiding cover or edge effects, potentially leading to increased predation in the 

high development areas. 

Overall, my results suggest natural gas development may decrease fetal survival, 

influence birth site selection, and increase neonatal mortality, especially through predation, 

which may have consequences for mule deer recruitment and population dynamics depending on 

development intensity, habitat, and environmental conditions (e.g., drought). Consequently, 

developers and managers should consider strategies to mitigate impacts from development and 

improve forage and habitat quality and availability to minimize fitness consequences of deer. 

Such strategies could include development planning to avoid important habitats during critical 

time periods, implementing habitat treatments to rehabilitate areas, and minimizing habitat 

fragmentation and removal of hiding cover when constructing well pads and roads. 
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CHAPTER 1 
 
 
 

REPRODUCTIVE SUCCESS OF MULE DEER AND A TEST OF THE TRIVERS-WILLARD  
 

HYPOTHESIS IN A NATURAL GAS DEVELOPMENT AREA 
 
 
 

Synopsis. Natural gas development on public lands has caused concern about the potential 

impacts on wildlife populations and their habitat, particularly for ungulate species. 

Understanding how this development affects reproductive success metrics (e.g., pregnancy, in 

utero fetal, and fetal survival rates) and sex ratios that are influential for ungulate population 

dynamics is important to guide management of mule deer (Odocoileus hemionus). I examined 

the influence of natural gas development, temporal, and adult female factors on reproductive 

success metrics and fetal sex ratios of mule deer in the Piceance Basin in northwestern Colorado, 

USA during 2012–2014 and focused on areas with relatively high or low natural gas 

development. Pregnancy rates were high, did not vary across years, and were essentially equal 

between study areas. In utero fetal rates were lower for yearling females and varied annually 

compared to adult females possibly from annual weather patterns that influenced forage quality 

and digestibility. Fetal survival rates increased over time and rate was lower in the high 

development study areas than the low development areas in 2012 possibly caused by a 

compounding influence of development disturbance during extreme environmental conditions 

(i.e., drought). Following the Trivers-Willard hypothesis, my results suggested females in good 

condition had a higher probability of producing more male offspring as road density in a 

female’s core area increased. However, I note that I did not detect a biased sex ratio at the 

population level. Thus, I am uncertain of the exact mechanism influencing road density and fetal 
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sex ratio. Developers and managers should collaborate on management actions to increase fetal 

survival. Such strategies could include implementing habitat treatments to improve forage 

availability and quality to minimize fitness consequences of deer in developed areas. 

INTRODUCTION  

Natural gas development is increasing across the West causing concern about the potential 

impacts on wildlife and their habitat (Walker et al. 2007, Holloran et al. 2010, Webb et al. 2011a, 

Kirol et al. 2014). Impacts on mule deer (Odocoileus hemionus) population dynamics and their 

habitat are of particular interest due to the deer’s recreational, social, and economic importance 

as a game species (Sawyer et al. 2009, Lendrum et al. 2012, Northrup et al. 2015). Accurate 

pregnancy rates (i.e., proportion of adult females carrying ≥ 1 fetus), in utero fetal rates (i.e., the 

number of fetuses per pregnant female), and fetal survival rates (i.e., survival of fetuses to birth) 

are needed to quantify fawn recruitment and population dynamics (Bonenfant et al. 2005). Past 

studies have shown that using fawn:adult female ratios as an index for recruitment can be 

misleading and that pregnancy rates and fetal numbers should be estimated directly from marked 

animals (Bonenfant et al. 2005, DeCesare et al. 2012). However, the influences of natural gas 

development on reproductive success metrics (i.e., pregnancy, in utero fetal, and fetal survival 

rates) have not been studied.  

Natural gas development may influence reproductive success due to direct and indirect 

habitat loss. Direct habitat loss results from construction of well pads, access roads, compressor 

stations, and pipelines, whereas, activity, traffic, and noise associated with increased human 

presence and development may lead to indirect habitat loss. Past studies suggest deer tend to 

avoid roads (Rost and Bailey 1979, Webb et al. 2011c, Lendrum et al. 2012) and well pads 

(Sawyer et al. 2006, Sawyer et al. 2009, Northrup et al. 2015) and development disturbances may 



3 

cause stress, alter behavior and habitat use, and decrease forage and habitat availability (Sawyer 

et al. 2006, Sawyer et al. 2009, Northrup et al. 2015). Thus, body condition of maternal females 

and reproductive success could be negatively impacted by development.  

In addition to development, maternal age may also influence fetal rate. Robinette et al. 

(1977) found yearling females (1.5 years old) carried fewer fetuses and females reached their 

maximum productive potential at 2.5 years old and remained reproductively active throughout 

their lives. However, other studies suggest that maximum fetal productivity occurs in prime-aged 

females (3–7 years old), but then declines as females age (Verme and Ullrey 1984), or was 

similar for prime-aged and older females (DelGiudice et al. 2007). 

Sex ratios can also be influenced by natural gas development and other factors. Fetal sex 

ratios can have varying degrees of skew towards one sex and may be based on factors including 

nutritional condition, habitat quality, and maternal age and mass (Robinette et al. 1957a, Verme 

1965,1969, Burke and Birch 1995, Saltz 2001). Male-biased sex ratios are thought to occur to 

compensate for higher male mortality because males are more active than females (Jackson et al. 

1972) and males in good condition are expected to pass on more genes than a female in good 

condition according to the Trivers-Willard hypothesis (TWH; Trivers and Willard 1973). A 

corollary to this hypothesis is that females in poor condition are still able to breed, but males in 

poor condition cannot successfully compete against healthier, stronger rivals. Results from 

ungulate studies examining fetal sex ratio and the TWH are inconsistent (Festa-Bianchet 1996, 

Hewison and Gaillard 1999, Sheldon and West 2004) and measuring maternal condition near 

conception when fetal sex allocation occurs might provide a better test of the TWH (Cameron 

2004, Sheldon and West 2004).  
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Maternal body condition may influence fetal sex allocation (Burke and Birch 1995, 

Kohlmann 1999, Cunningham et al. 2009) and evolutionary theory (Trivers and Willard 1973) 

suggests larger males possess reproductive advantages over smaller males and males are more 

likely to be produced when females have abundant resources for production and lactation. Thus, 

the TWH also predicts females lacking resources and in poor condition should maximize their 

reproductive fitness by bearing more female offspring (Trivers and Willard 1973) because 

female offspring are less expensive to produce and rear than males that require more resources 

contributing to higher energetic costs for adult females (Myers 1978, Williams 1979, Gomendio 

et al. 1990). My prediction is that development infrastructure reduces habitat availability, but 

potentially increases forage quality contributing to better body condition of adult females and 

subsequently production of more male offspring. 

I examined the influence of natural gas development, temporal, and adult female factors 

on reproductive success metrics and fetal sex ratio of mule deer in the Piceance Basin of 

northwestern Colorado, USA during 2012–2014. I estimated reproductive success metrics and 

sex ratios in areas with relatively high (0.04–0.90 well pads/km2) or low (0.00–0.10 well 

pads/km2) levels of natural gas development. My objectives were to test predictions that 

reproductive success metrics would be lower in the high development areas than the low 

development areas, vary by year with increased precipitation influencing vegetation availability 

and quality, and that fetal rates would be lower for yearling females. I also predicted that adult 

females would produce more male offspring according to the TWH, where adult females are 

exposed to areas with potentially increased forage availability and quality (e.g., areas with 

increased well pad, pipeline, and road density) and higher primary productivity of vegetation 

(i.e., abundant resources) on their summer range. Further, I predicted that younger adult females 
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presumably in poorer condition would produce more female offspring than older females. My 

results provide the first insights into reproductive success metrics and sex ratios in a natural gas 

development area, which is helpful to comprehend mule deer population dynamics and address 

management related decisions. 

METHODS 

Study Area 

I examined reproductive success metrics and fetal sex ratio of mule deer in the Piceance Basin in 

northwestern Colorado, USA, during 2012–2014 (Figure 1.1). The Piceance Basin provides 

crucial winter and transition range habitat for one of the largest migratory mule deer populations 

in North America, yet some of the largest natural gas reserves in North America reside beneath 

the Basin as part of the Green River Formation. My winter range study area included four study 

units in the Piceance Basin (Figure 1.1) and are part of a larger research project (Anderson 

2015). My winter range study units were South Magnolia (83 km2; 39.898°N, −108.343°W), 

Ryan Gulch (141 km2; 39.894°N, −108.343°W), North Ridge (53 km2; 40.045°N, −108.153°W), 

and North Magnolia (79 km2; 39.966°N, −108.206°W). South Magnolia and Ryan Gulch study 

units had relatively high levels of natural gas development (0.6–0.9 well pads/km2; hereafter 

referenced as the high development study area), whereas North Magnolia and North Ridge study 

units had low levels of natural gas development (0.0–0.1 well pads/km2; hereafter referenced as 

the low development study area).  

Winter range habitat was dominated by two-needle pinyon (Pinus edulis Engelm.) and 

Utah juniper (Juniperus osteosperma Torr.) woodlands, big sagebrush (Artemisia tridentate 

Nutt.), Utah serviceberry (Amelanchier utahensis Koehne.), alderleaf mountain mahogany 

(Cercocarpus montanus Raf.), antelope bitterbrush (Purshia tridentate Pursh.), rubber 



6 

rabbitbrush (Ericameria nauseosa Pall ex. Pursh.), and mountain snowberry (Symphoricarpos 

oreophilus A. Gray; Bartmann 1983, Bartmann et al. 1992). Shrubs, forbs, and grasses common 

to the area are listed in Bartmann (1983) and Bartmann et al. (1992). Drainage bottoms bisected 

the study units and contained stands of big sagebrush, saltbush (Atriplex spp.), and greasewood 

(Sarcobatus vermiculatus Hook.), with most of the primary drainage bottoms having been 

converted to irrigated, grass hay fields. Plant nomenclature follows the United States Department 

of Agriculture PLANTS Database (USDA and NRCS 2016). Winter study unit elevations ranged 

from 1,860 m to 2,250 m and the winter climate of the Piceance Basin is typified by cold 

temperatures with most of the moisture resulting from snow.  

Summer range study units included parts of Garfield, Moffat, Rio Blanco, and Routt 

counties in northwestern Colorado (39.580°N, −107.961°W and 40.330°N, −107.028°W; Figure 

1.1). Ryan Gulch and South Magnolia deer generally migrated southeast and south to the Roan 

Plateau (Lendrum et al. 2013) where they potentially encountered natural gas development 

(0.04–0.06 well pads/km2; hereafter referenced as the high development study area). North 

Magnolia and North Ridge deer generally migrated northeast and east across US Highway 13 

towards Lake Avery and the Flat Tops Wilderness Area (Lendrum et al. 2013) where they 

encountered minimal natural gas development (0.00–0.01 well pads/km2; hereafter referenced as 

the low development study area). Not all deer (n = 8) migrated to summer range and instead 

opted to remain residents on winter range. 

Summer range habitat was dominated by Gambel oak (Quercus gambeli Nutt.), mountain 

mahogany, Utah serviceberry, mountain snowberry, chokecherry (Prunus virginiana L.), 

quaking aspen (Populus tremuloides Michx.), big sagebrush, pinyon pine, and Utah juniper. 

Dominant habitat was interspersed with Douglas-fir (Pseudotsuga menziesii Mirb.), Engelmann 
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spruce (Picea engelmannii Parry ex. Engelm.), and subalpine fir (Abies lasiocarpa Hook.) forests 

(Garrott et al. 1987). Summer study unit elevations ranged from 1,900 m to 3,150 m and the 

summer climate of the Piceance Basin is typified by warm temperatures with most of the 

moisture resulting from spring snow melt and brief summer monsoonal rainstorms.  

Adult Female Capture and Handling 

During December 2011–2013, adult female mule deer (≥ 1.5 years old) were captured in each of 

the four winter range study units using helicopter net gunning techniques (Barrett et al. 1982, van 

Reenen 1982). Deer were blindfolded, hobbled, and chemically immobilized with 35 mg of 

Midazolam (a muscle relaxant) and 15 mg of Azapirone (an anti-anxiety drug) given 

intramuscularly. For each captured deer, age was estimated (Severinghaus 1949, Robinette et al. 

1957b) and I performed transabdominal ultrasonography to measure rump fat thickness 

(Stephenson et al. 1998, Stephenson et al. 2002, Cook et al. 2010), determined a body condition 

score (Cook et al. 2007, Cook et al. 2010), and estimated percent ingest-free body fat (Cook et al. 

2010) near conception when fetal sex allocation occurs. I fit each captured deer with a store-on-

board GPS radio collar with a motion-sensitive mortality switch on an 8-hour delay and a timed 

released mechanism set to release 16 months after deployment (Model G2110D, Advanced 

Telemetry Systems, Inc., Isanti, MN, USA). Most GPS radio collars were programmed to 

attempt a fix every 5 hours, but some attempted a fix every 30 minutes between 1 September and 

15 June and hourly between 16 June and 31 August to address different research objectives 

(Northrup 2015). I consolidated data to attain the same temporal scale of 5 hours for all deer.  

During early March 2012–2014, radio-collared adult females were recaptured on winter 

ranges using helicopter net gunning techniques. I recorded morphometric and body condition 

metrics described above and performed transabdominal ultrasonography on each female to 
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determine pregnancy status and number of fetuses present using a SonoVet 2000 portable 

ultrasound unit (Universal Medical Systems, Inc., Bedford Hills, NY; Stephenson et al. 1995, 

Bishop et al. 2007). If an adult female was pregnant, I inserted a vaginal implant transmitter 

(VIT; Model M3930, Advanced Telemetry Systems, Inc., Isanti, MN, USA) and followed VIT 

insertion procedures described in detail by Bishop et al. (2007) and Bishop et al. (2011). In 2012 

and 2013, each VIT was equipped with a temperature-sensitive sensor (Bishop et al. 2011). In 

2014, each VIT was equipped with a temperature- and photo-sensitive sensor, which changed the 

signal when the ambient temperature dropped below 32 °C or when ambient light was ≥ 0.01 lux 

(Cherry et al. 2013). The manufacturer programmed VITs to lock on 80 pulses per minute to 

minimize issues associated with hot ambient temperatures (Newbolt and Ditchkoff 2009). 

Adult Female Monitoring and Neonate Capture 

On winter range, field technicians monitored radio collar and VIT signals daily from the ground 

or a Cessna 182 or 185 (Cessna Aircraft Co., Wichita, KS, USA) fixed-wing aircraft. During the 

parturition period (late May–mid-July), I checked VIT signals daily by aerially locating each 

radio-collared female having a VIT, weather permitting. In 2014, ground crews also located adult 

females with VITs to aid in determining when parturition occurred because VIT photo-sensors 

malfunctioned. When I detected a fast (i.e., postpartum) pulse rate, ground crews used a coded 

telemetry receiver (Model R4520, Advanced Telemetry Systems, Inc., Isanti, MN, USA) and 3-

element Yagi antenna to simultaneously locate the VIT and radio-collared female. Ground crews 

searched for a birth site and neonates near (≤ 400 m) the female and expelled VIT. If a VIT was 

shed prior to parturition or malfunctioned (e.g., battery failure), crews located the female once 

per day, observed female behavior, and searched in the vicinity of the female to locate neonates 

and birth sites (Carstensen et al. 2003). All neonate searches lasted up to one hour. 
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Ground crews attempted to determine the fate of each female’s fetus(es) documented in 

March as live or stillborn neonates. I assumed that no fetuses were resorbed based on past 

research (Robinette et al.1955, Medin 1976, Carpenter et al. 1984). Unless evidence suggested a 

neonate was born alive at a birth site (e.g., milk in the abomasum), crews classified the neonate 

as stillborn. Crews collected and submitted stillborn neonates to the Colorado Parks and 

Wildlife’s Health Laboratory (Fort Collins, CO) for necropsy to confirm that a neonate had died 

before birth (i.e., before breathing).  

During 2012 and 2013, ground crews captured neonates and located birth sites in the high 

and low development study areas. In 2014, crews captured neonates and located birth sites 

predominantly in the high development study areas and sporadically in the low development 

study areas. Each captured neonate was blindfolded and sexed. All individuals who handled 

neonates wore nitrile latex gloves to minimize transfer of human scent. Handling time was ≤ 5 

minutes per neonate and crews replaced neonates where initially found to reduce abandonment 

(Pojar and Bowden 2004, Powell et al. 2005, Bishop et al. 2007). All capture, handling, radio 

collaring, and VIT insertion procedures were approved by the Institutional Animal Care and Use 

Committee at Colorado Parks and Wildlife (protocol #17-2008 and #1-2012) and followed 

guidelines of the American Society of Mammalogists (Sikes et al. 2011). 

Statistical Methods 

I modeled pregnancy rates of females as a function of study area and year using PROC 

LOGISTIC in SAS (SAS Institute, Cary, North Carolina, USA) and fetal rates as a function of 

study area, year, and age class (yearling or adult female) using PROC MIXED in SAS. I 

modeled fetal survival from March to birth as a function of study area and year using PROC 

NLMIXED in SAS and a joint-likelihood described in Bishop et al. (2008). I was unable to 
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determine fate of all fetuses documented in utero because neonates were challenging to detect 

and some VITs malfunctioned, thus I used the joint-likelihood with six nuisance parameters 

(relative to my interests in this paper) to estimate fetal survival probability (S1). The six nuisance 

parameters are neonatal survival probability from birth to 5 days old (S2), the probability of 

detecting a neonatal fawn ≤ 1 day old given that field crews conducted a search ≤ 1 day after 

birth (p1), the probability of detecting a neonatal fawn > 1 day old given that crews conducted a 

search > 1 day after birth (p2), the probability of detecting a stillborn fetus when a vaginal 

implant transmitter was not expelled at a birth site (r), the probability of locating a radio-collared 

adult female and searching for her neonate(s) ≤ 1 day after birth (a), and the probability a VIT 

was expelled at a birth site (b). I modeled S2 as constant or as a function of study area to account 

for survival differences between areas. I modeled p1, p2, a, and b as constant or as a function of 

study area and year to account for temporal differences in detection probabilities. I constrained r 

to be constant because crews did not locate stillborns without the aid of a VIT during some year 

and study area combinations, thus I could not separately estimate r. I assumed fetal survival data 

were not overdispersed based on the recommendation of Bishop et al. (2008). Lastly, I fit the 

same model set for reproductive success metrics as Bishop et al. (2009) and that I hypothesized 

would influence reproductive success (Table 1.1). 

I modeled sex ratio as function of summer range development, temporal, and adult 

female variables that I hypothesized would influence sex ratio (Table 1.1) using generalized 

linear models with the ‘glm’ function in the R package ‘lme4’ (Bates et al. 2015). Summer range 

development variables included study area, producing and drilling well pall density (pads/km2), 

and road density (roads/km2). We acquired the location of natural gas wells from the Colorado 

Oil and Gas Conservation Commission (http://cogcc.state.co.us). We classified each well on 
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summer range as either actively being drilled or actively producing natural gas with no drilling 

activity using a procedure described in Northrup et al. (2015). Using the classified well pad data, 

we calculated drilling and producing well pad density. We also created a road network map by 

digitizing all roads visible on NAIP imagery and calculated road density. Temporal covariates 

included average Normalized Vegetation Difference Index (NDVI) and year. We calculated 

producing and drilling well pad density, road density, and NDVI covariates in each adult 

female’s core area (i.e., 50% minimum convex polygon) from arrival on summer range to 

departure from summer range during conception year using the R statistical software (R Core 

Team 2015). Female-specific variables included age and percent ingesta-free body fat 

determined during capture in December (i.e., conception year). Prior to modeling, I calculated 

separate correlation matrices to test for collinearity among predictor variables (|r| ≥ 0.6). If two 

variables were correlated, I retained the more biologically plausible variable.  

For each analysis, I used Akaike’s Information Criterion adjusted for small sample size 

(AICc), ΔAICc, and AICc weights (Burnham and Anderson 2002) for model selection. For the 

sex ratio analysis, I fit a global model and then fit all possible combinations of additive models 

and calculated the sum of AICc weights for models containing each variable of interest 

(Burnham and Anderson 2002, Doherty et al. 2012) using the R package ‘MuMIn’ (Barton 

2015). Following suggestions of Barbieri and Berger (2004), I constructed a prediction model 

that contained all covariates with a cumulative AICc weight ≥ 0.50. Unless otherwise noted, I 

used the prediction model when presenting estimates. 

RESULTS 

I documented pregnancy status of 358 females, of which 214 produced 397 fetuses [37, 171, or 6 

females with 1, 2, or 3 fetus(es)]. Seventeen females were not pregnant and I was unable to 
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determine accurate fetal counts for 127 females for various reasons, which I excluded from the 

fetal analyses (Appendix 1.2). Ultimately, I documented sex of 195 fetuses (99 males and 96 

females). 

Reproductive Success Metrics 

A model indicating constant pregnancy rates across years ranked highest (AICc weight = 0.569; 

Table 1.2), but a model with differences in pregnancy rate between the high and low 

development areas received some support (ΔAICc = 1.812, AICc weight = 0.230; Table 1.2). 

Pregnancy rate for all adult females during the study was 0.950 (SE = 0.012). Pregnancy rate for 

females in the high and low development areas was 0.955 (SE = 0.016) and 0.944 (SE = 0.017), 

respectively. 

Variation in fetal rates was explained by the female age class only model (AICc weight = 

0.666; Table 1.3) and slightly by the model with an interaction between age class and year 

(ΔAICc = 1.602, AICc weight = 0.299; Table 1.3). I found essentially no support for a study area 

effect (Table 1.3). In utero fetal rates were lower for yearling females and varied annually 

compared to adult females (Table 1.4). Fetal rates for adult females ranged from 1.82 (SE = 

0.037) in 2013 to 1.86 (SE = 0.038) in 2014, whereas fetal rates for yearling females ranged from 

1.36 (SE = 0.157) in 2014 to 1.56 (SE = 0.231) in 2012. However, the sample size was small (n 

= 10) for fetal rates of yearling females compared to adult females (n = 204; Table 1.4). 

The best-fitting model for fetal survival from March until birth included an interaction 

between study areas and year (AICc weight = 0.248; Table 1.5). The same model for fetal 

survival, but without the study area variable had little support (ΔAICc = 8.005, AICc weight = 

0.005). Fetal survival was higher in the low development areas than the high development areas, 

although survival varied annually (Figure 1.2). Fetal survival was higher in the low development 
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areas than the high development areas in 2012 and 2013, whereas I found no difference in 2014 

(Figure 1.2). The probability of detecting a neonatal fawn ≤ 1 day old decreased each year from 

0.567 (SE = 0.051) in 2012 to 0.416 (SE = 0.070) in 2014. Conversely, the probability of 

detecting a neonatal fawn > 1 day and ≤ 5 days old increased each year from 0.384 (SE = 0.081) 

in 2012 to 0.529 (SE = 0.105) in 2014. In the high and low development areas, respectively, 

females produced eight and zero stillborn fetuses in 2012, eight and three stillborns in 2013, and 

zero and zero stillborns in 2014.  

Fetal Sex Ratio 

I assessed relative importance of the 256 models I fit for sex ratios of mule deer. Eight models 

were within two ΔAICc units of the top ranked model (Table 1.6). Road density was in all the 

eight top models (Table 1.6) and had a cumulative AICc weight of 0.781 indicating importance. 

All other variables had a cumulative weight less than 0.5 and were not considered important 

(Barbieri and Berger 2004). The probability of producing a male increased as road density in a 

female’s core area on summer range increased ��̂ = 0.229, 95% CI: 0.010 to 0.457; Figure 1.3�, 
suggesting support for the TWH.  

DISCUSSION 

I found pregnancy rates were high, showed no variation across years, and were similar in the 

high versus low development areas. Disturbed topsoil and removal of overstory associated with 

well pad and pipeline construction and seeding of completed pipelines might increase forage 

quality (Webb et al. 2011c) and pregnancy rates. Likewise, deer have been shown to select open 

habitat (e.g., pipelines) and habitat closer to roads at night (Northrup et al. 2015) possibly 

providing abundant and higher quality forage as they arrive on winter range before the rut 

(Garrott et al. 1987, Monteith et al. 2011). Yet, Bishop et al. (2009) found no difference in 
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pregnancy rates when examining the effects of supplemental nutrition treatments versus a control 

group. Pregnancy rates were high in each area and in the higher range of previous estimates 

(0.86–1.00) across Colorado (Andelt et al. 2004, Bishop et al. 2009). Ultimately, high pregnancy 

rates seem to be the norm for deer despite a wide range of spatial and temporal differences across 

populations (Bishop et al. 2009, Hurley et al. 2011, Monteith et al. 2014) including an area with 

natural gas development.  

In utero fetal rates were lower for yearling females and varied annually compared to adult 

females, but did not differ between study areas. Previous studies have also reported lower fetal 

rates and annual variation for yearling females (Robinette et al. 1977, Gaillard et al. 2000, 

Bishop et al. 2009). Nutrition is one factor that influences fetal rate, which can influence 

population dynamics of mule deer (McCullough 1979, Parker et al. 2009, Monteith et al. 2014). 

Mule deer depend more on forage quality than availability (Wallmo 1978) and annual weather 

patterns influence forage quality and digestibility (Marshal et al. 2005) and likely fetal rates. Yet, 

Bishop et al. (2009) found no difference in fetal rates between a nutritionally supplemented 

group of deer and a control group (Bishop et al. 2009). Bishop et al. (2009) also found fetal rates 

were high for each group, which equaled or exceeded past estimates (1.65–1.94) across Colorado 

(Andelt et al. 2004) similar to my findings. Forrester and Wittmer (2013) suggested that mule 

deer do not exhibit long-term population declines because of high fetal rates coupled with high 

and consistent survival of adult females. Of note, deer abundance is trending upward in the 

Piceance Basin (Anderson 2015) after a decline (White and Bartmann 1998) and could be partly 

explained by high fetal rates coupled with fawn recruitment, which has largely been driven by 

relatively high overwinter survival of fawns (Anderson 2015). Overall, pregnancy and fetal rates 
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did not appear to be impacted by natural gas development in the Piceance Basin during my 

study.  

Fetal survival from March until birth was lower in the high development areas than the 

low development areas in 2012 and slightly lower in 2013, but equal in 2014. Fetal survival rates 

exceeded previous estimates (0.747–0.983) measured on the Uncompahgre Plateau, Colorado 

(Bishop et al. 2009). Forage quality might be higher in the low development areas and associated 

migration routes range due to agricultural fields along the White River and habitat treatments 

initiated by the Habitat Partnership Program by Colorado Parks and Wildlife. Agricultural fields 

and habitat treatments may provide green, succulent forbs as adult females depart winter range 

(Garrott et al. 1987, Stewart et al. 2010, Anderson et al. 2012). Moreover, deer from the low 

development areas have been shown to select habitat with increased forage while tracking 

emerging vegetation along spatial and elevational gradients as they migrated to summer range 

(Lendrum et al. 2012, Lendrum et al. 2013, Lendrum et al. 2014). Tracking emerging vegetation 

likely releases deer from density-dependent effects on winter range and ensures arrival on 

summer range prior to peak green-up (Lendrum et al. 2014) and prolonged access to high quality 

forage (Hebblewhite et al. 2008, Hamel et al. 2009) supporting production of neonates (Stoner et 

al. 2016). Access to high quality forage is necessary to meet the energetic demands of the last 

trimester when most fetal growth occurs (Armstrong 1950, Robbins and Robbins 1979, Pekins et 

al. 1998). However, deer in the high development area departed winter range later, migrated 

faster, and arrived on summer range before deer in the low development area possibly to reduce 

exposure to development disturbance (Lendrum et al. 2012, Lendrum et al. 2013). Differences in 

timing of migration could disrupt the tracking of emerging vegetation (Pettorelli et al. 2007, 

Bischof et al. 2012) and reduce net energetic gains and reproductive success of pregnant deer if 
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they fail to track altered plant phenology (Post and Forchhammer 2008, Post et al. 2008, 

Monteith et al. 2011) in developed areas. Moreover, development may displace deer to 

suboptimal habitat or alter habitat use (Sawyer et al. 2006, Webb et al. 2011a, Northrup et al. 

2015) particularly during the energetically demanding period of late gestation (Parker et al. 

2009) and could ultimately impact reproductive success (Houston et al. 2012). Thus, failure to 

track emerging vegetation during migration possibly exacerbated by development might have 

reduced fetal survival in the high development area during 2012. However, natural gas 

development was minimal during my study because most wells were in production, thus the 

influence of development could be stronger with increased development intensity.  

Annual variation in fetal survival could be related to environmental conditions and 

development. Annual variation in precipitation may alter the onset of spring green-up (Pettorelli 

et al. 2005b), which can affect maternal condition (Parker et al. 2009) and possibly reduce fetal 

survival. Increased precipitation in arid environments is linked to forage availability (Derner et 

al. 2008), quality, and growth of forbs (Marshal et al. 2005), thus drought conditions may reduce 

forage availability and/or quality below levels needed for growth of fetuses (Parker et al. 2009). 

Annual precipitation was lower during 2012 (18 cm) and 2013 (31 cm) than 2014 (48 cm), 

suggesting reduced forage availability and growth of forbs may have contributed to lower fetal 

survival particularly in the high development areas during 2012. Further, dry weather likely 

reduced forage availability and was exacerbated by habitat loss and fragmentation associated 

with development possibly contributing to lower fetal survival in the high development areas 

during 2012. Of note, 13 more stillborn neonates were produced in the high development areas 

than the low development areas. Stillborn fetuses were mostly small and lightweight suggesting 

reduced forage availability and quality contributed to increased stillborns (Verme 1962, Verme 
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1969, Robinette et al. 1977) and consequently decreased fetal survival in the high development 

areas. Overall, development coupled with extreme environmental conditions (e.g., drought) may 

have contributed to lower fetal survival during 2012. 

The probability of detecting a neonate ≤ 1 day old was low and decreased each year 

because neonates were challenging to detect and some VITs malfunctioned particularly in 2014. 

The probability of detecting a neonate > 1 day and ≤ 5 days old was also low, but increased each 

year. Most VITs failed in 2014 providing minimal assistance of detecting neonates at birth sites, 

thus contributing to higher detection of older neonates as mothers and presumably neonates 

move farther from VITs and birth sites as they age (Vore and Schmidt 2001, Long et al. 2009).  

Adult females exposed to increased road density possibly exacerbated by development in 

the high development summer range produced more male offspring, although I did not detect a 

biased sex ratio at the population level. Road edges provide habitat with less canopy cover where 

deer forage on higher quality forage (Ager et al. 2003). Availability of high quality forage on 

summer range prior to conception is necessary for females to accumulate fat to combat the cost 

of fat loss during winter (Monteith et al. 2013). Life history theory suggests females account for 

the cost of reproduction when allocating fetal sex by allocating resources to current reproduction 

or reserving resources to enhance their own survival and future reproduction (Stearns 1992, 

Martin and Festa-Bianchet 2011). Females that consume high quality forage on summer range 

prior to parturition should be in good condition (Cook et al. 2004, Tollefson et al. 2010, Cook et 

al. 2013). Thus, females in good condition should maximize their reproductive fitness by 

investing in the production of more males according to the TWH (Trivers and Willard 1973). 

However, past studies suggest deer tend to avoid roads on winter range (Northrup et al. 2015) 

and along migration routes (Lendrum et al. 2012) in the study system. I am not sure whether deer 
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avoid roads during the summer. Further, under my proposed mechanism, I would expect body 

condition and road density to be strongly correlated, but they were only weakly correlated (r = 

0.07). Thus, I am uncertain of the exact mechanism influencing the relationship between road 

density and fetal sex ratio. 

My study provides the first insights into whether natural gas development influences 

pregnancy, in utero fetal, and fetal survival rates and fetal sex ratios of mule deer. Development 

did not appear to influence pregnancy rates and in years with higher precipitation, high and low 

development areas both had relatively high fetal survival rates. Fetal rates were lower for 

yearling females and varied by year compared to adult females, but development did not appear 

to influence fetal rates. Development coupled with environmental conditions (drought) possibly 

reduced forage availability and/or quality, which decreased fetal survival during 2012. Females 

exposed to increased road density in their core area on summer ranges produced more male 

offspring as road edges possibly provided favorable foraging environments for females, although 

the sex ratio was nearly equal during my study. However, I cannot be certain of my interpretation 

because I did not explicitly measure forage availability and used a coarse measure of forage 

quality (i.e., NDVI). I note that NDVI provides a better index of forage availability than quality 

because of annual variation in how precipitation influences vegetation green-up and desiccation. 

I also note that NDVI can perform poorly in predicting variation in productivity of forage 

preferred by mule deer (e.g., forbs and shrubs) when dense coniferous overstory blocks 

understory vegetation (Chen et al. 2004). Ultimately, future studies should quantify vegetative 

characteristics to fully comprehend the influence of natural gas development and environmental 

factors on body condition of adult females and subsequent reproductive success metrics and fetal 

sex ratios. 
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MANAGEMENT  IMPLICATIONS  

Estimating reproductive success metrics from marked adult females is helpful to understand 

fawn recruitment and population dynamics of ungulates. My results suggest managers should not 

be concerned with the impacts of natural gas development on pregnancy and fetal rates 

respective of existing conditions during this study. However, I suggest that future research 

should be conducted in areas with increased development intensity to fully comprehend the 

influence of natural gas development on pregnancy and fetal rates. Contrarily, managers should 

be concerned with the impacts of development on fetal survival as my results suggest fetal 

survival was lower during 2012 from increased stillbirths in the high development areas when 

drought conditions were also present. Although, the absence of development might decrease 

stillbirths during extreme environmental conditions, thus increasing fetal survival if forage 

availability and quality is improved. Thus, I recommend that developers and managers 

collaborate during development planning to avoid important habitats during critical time periods 

and consider habitat treatments (e.g., hydro-ax, roller chopping, and seeding) to improve forage 

availability and quality to enhance fetal survival and fawn recruitment to maintain sustainable 

deer populations in natural gas development areas.   



20 

TABLES 

Table 1.1. List of variables and predictions for reproductive success metrics (i.e., pregnancy, in utero fetal, and fetal survival rates) 
and fetal sex ratio in the Piceance Basin, northwest Colorado, USA, 2012–2014. 
 

Reproductive success metrics Fetal sex ratio 
Variablea Hypothesis Variableb Hypothesis 

Study area 
Reproductive success will be higher in the 
low development areas than in the high 
development areas. 

Study area 
Adult females in the high development areas will 
produce more male offspring than in the low 
development areas. 

Age class 
Adult females will have higher fetal rates 
than yearlings. 

Age 
Younger adult females will produce more female 
offspring than older females. 

Year 

In utero fetal rates and fetal survival will 
vary annually with increased precipitation 
influencing vegetation quality, whereas 
pregnancy rates will not. 

Body fat 
Adult females with higher body fat will produce 
more male offspring than females with lower 
body fat.  

   
Drilling density 

Adult females exposed to higher drilling well 
pad density in their core areas on summer range 
will produce more male offspring.  

   
Producing density 

Adult females exposed to higher producing well 
pad density in their core areas on summer range 
will produce more male offspring.  

  
Pipeline density 

Adult females exposed to higher pipeline density 
in their core areas on summer range will produce 
more male offspring.  

   
Road density 

Adult females exposed to higher road density in 
their core areas on summer range will produce 
more male offspring.  

   

Avg NDVI 

Adult females with higher average primary 
productivity of vegetation (i.e., NDVI) in their 
core areas on summer range will produce more 
male offspring.  
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Year 

Sex ratios will vary annually with increased 
precipitation influencing vegetation quality. 

a Variable definitions: study area signifies the high and low development winter range, age class is yearling or adult females. 

b Variable definitions: study area signifies the high and low development summer range during conception year, age is adult female 
age in conception year, body fat is percent ingesta-free body of each female in December of conception year, drilling and producing 
density are the drilling and producing well pad density (well pads/km2) in each female’s core area on summer range during conception 
year, pipeline density signifies pipeline density (pipelines/km2) in each female’s core area on summer range during conception year, 
road density signifies road density (roads/km2) in each female’s core area on summer range during conception year, avg NDVI is the 
average Normalized Difference Vegetation Index (NDVI) in each female’s core area (50% minimum convex polygon) while on 
summer range during conception year.



22 

Table 1.2. Model selection results for pregnancy rate of mule deer during early March in the 
Piceance Basin, northwest Colorado, USA, 2012–2014.  
 

Modela ΔAICcb AICc weight Model likelihood Kc 

Intercept 0.000 0.569 1.000 1 
Study area 1.812 0.230 0.404 2 
Year 2.895 0.134 0.235 3 
Year + study area 4.732 0.053 0.094 4 

Year * study area 7.467 0.014 0.024 6 
a Variables are defined as in Table 1.1. 

b AICc is Akaike Information Criterion adjusted for small sample size.  

c K is the number of parameters in the model.  
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Table 1.3. Model selection results for in utero fetal rate of mule deer during early March in the 
Piceance Basin, northwest Colorado, USA, 2012–2014.  
 

Modela ΔAICcb AICc weight Model likelihood Kc 

Age class 0.000 0.666 1.000 2 
Age class + year + age class * year 1.602 0.299 0.449 6 
Age class + year 6.877 0.021 0.032 4 
Age class + year + study area 8.908 0.008 0.012 5 
Intercept 10.188 0.004 0.006 1 
Study area 12.447 0.001 0.002 2 
Year 17.219 0.000 0.000 3 
Study area + year 19.417 0.000 0.000 4 

Study area + year + study area * year 21.566 0.000 0.000 6 
a Variables are defined as in Table 1.1. 

b AICc is Akaike Information Criterion adjusted for small sample size.  

c K is the number of parameters in the model.  
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Table 1.4. Model-averaged estimates and associated standard error (SE) for in utero fetal rates of 
adult and yearling female mule deer during early March in the Piceance Basin, northwest 
Colorado, USA, 2012–2014. 
 

Year  Age class  n  Fetal rate  SE 

2012 
 Adult  83  1.84  0.034 
 Yearling  2  1.56  0.231 

2013 
 Adult  75  1.82  0.037 
 Yearling  5  1.37  0.143 

2014 
 Adult  46  1.86  0.038 
 Yearling  3  1.36  0.157 

Average 
 Adult  68  1.84  0.021 

 Yearling  3  1.43  0.105 
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Table 1.5. Model selection results for fetal survival of mule deer from March until birth in the Piceance Basin, northwest Colorado, 
USA, 2012–2014. Only models with an AICc weight ≥ 0.005 are shown.  
 

Modela ΔAICcb 
AICc 

weight 
Model 

likelihood K c 

S1(study area * year) S2(.) p1(year) p2(.) r(.) a(year) b(year) 0.000 0.248 1.000 18 
S1(study area * year) S2(year) p1(year) p2(year) r(.) a(year) b(year) 0.196 0.225 0.906 22 
S1(study area * year) S2(.) p1(year) p2(year) r(.) a(year) b(year) 0.600 0.184 0.741 18 
S1(study area * year) S2(study area) p1(year) p2(year) r(.) a(year) b(year) 0.854 0.162 0.652 21 
S1(study area * year) S2(.) p1(year) p2(year) r(.) a(year) b(year) 2.325 0.078 0.313 20 
S1(study area * year) S2(.) p1(.) p2(year) r(.) a(year) b(year) 3.300 0.048 0.192 18 
S1(study area) S2(.) p1(year) p2(year) r(.) a(year) b(year) 4.622 0.025 0.099 16 
S1(study area * year) S2(.) p1(year) p2(study area * year) r(.) a(study area * year) 
b(study area * year) 

6.032 0.012 0.049 29 

S1(study area * year) S2(.) p1(year) p2(year) r(.) a(study area * year)  
b(study area * year) 

6.485 0.010 0.039 26 

S1(year) S2(.) p1(year) p2(year) r(.) a(year) b(year) 8.005 0.005 0.018 17 
a Parameter S1 is fetal survival probability. All other model parameters are nuisance parameters: S2 is neonatal survival probability 
from birth to 5 days old, p1 is the probability of detecting a neonate ≤ 1 day old given that field crews conducted a search ≤ 1 day after 
birth, p2 is the probability of detecting a neonate > 1 day old given that crews conducted a search > 1 day after birth, r is the 
probability of detecting a stillborn fetus when a vaginal implant transmitter (VIT) was not expelled at a birth site, a is the probability 
of locating a radio-collared adult female and searching for her neonate(s) ≤ 1 day after birth, and b is the probability a VIT was 
expelled at a birth site. 
 
b AICc is Akaike Information Criterion adjusted for small sample size. 

c K is the number of parameters in the model.
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Table 1.6. Model selection results for sex ratio of mule deer neonates in the Piceance Basin, 
northwest Colorado, USA, 2012–2014. Only models within two ΔAICc units of the top ranked 
model are shown. 
 

Modela ΔAICcb AICc weight Kc 

Road density 0.000 0.041 2 
Road density + avg NDVI 0.366 0.034 3 
Road density + avg NDVI + body fat 0.843 0.027 4 
Road density + body fat 0.851 0.027 3 
Road density + producing density 1.604 0.018 3 
Road density + pipeline density 1.632 0.018 3 
Road density + producing density + avg NDVI 1.670 0.018 4 
Road density + age 1.876 0.016 3 

Road density + study area 1.999 0.015 3 
a Variables are defined as in Table 1.1. 

b AICc is Akaike Information Criterion adjusted for small sample size.  

c K is the number of parameters in the model.  
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FIGURES 

 

Figure 1.1. Mule deer winter and summer range study units in the Piceance Basin in 
northwestern Colorado, USA. Winter range study units were Ryan Gulch (RG), South Magnolia 
(SM), North Magnolia (NM), and North Ridge (NR). Summer range study units were Roan 
Plateau and Lake Avery. RG and SM deer generally migrated towards the Roan Plateau summer 
range, while NM and NR deer generally migrated towards the Lake Avery summer range. 
Overall, RG, SM, and Roan Plateau were considered the high development study areas, whereas 
NM, NR, and Lake Avery were considered the low development study areas. Black dots 
represent drilling and producing natural gas well pads.  
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Figure 1.2. Model-averaged estimates of fetal survival (± 95% CI) of mule deer fetuses from 
March until birth in the high and low development study areas in the Piceance Basin, northwest 
Colorado, USA, 2012–2014.  
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Figure 1.3. Predicted probability (± 95% CI) of producing a male offspring as a function of road 
density for adult female mule deer in the Piceance Basin, northwest Colorado, USA, 2012–2014. 
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CHAPTER 2: 
 
 
 

VALIDATION OF USING MATERNAL MULE DEER MOVEMENTS TO DETERMINE  
 

TIMING AND LOCATION OF PARTURITION  
 
 
 

Synopsis. Movement patterns of maternal ungulates have been used to determine parturition 

dates and locations, which are important for understanding reproductive measures, but such 

methods, have not been validated for mule deer (Odocoileus hemionus). I was able to do so using 

a recent technological advancement, namely vaginal implant transmitters (VITs) in conjunction 

with global positioning system collar data. Daily movement rate (m/day) of maternal deer 

decreased by 39% from 1 day before parturition (� �= 1,243.56, SD = 1,043.03) to 1 day after 

parturition (� �= 805.30, SD = 652.91) in the Piceance Basin in northwestern Colorado, USA, 

during 2012–2014. Thus, I suggest that a mule deer female whose daily movement rate decreases 

to ≤ 800 m/day has likely given birth. Ultimately, my results can help determine timing and 

location of parturition and estimate pregnancy and fetal rates as well as aid in capturing neonatal 

deer when the use of VITs is not feasible.  

INTRODUCTION  

Determining parturition dates and locations are important for estimating pregnancy, fetal, and 

neonate survival rates which are needed to quantify fawn recruitment (Bonenfant et al. 2005) and 

comprehend population dynamics of ungulates (Gaillard et al. 1998, Eberhardt 2002, Forrester 

and Wittmer 2013). Maternal deer movement patterns from global position system (GPS) collar 

data (Long et al. 2009), daily triangulation, and daily radiolocations from an aircraft have been 

used to approximate parturition date and aid in locating parturition sites and/or neonates (Huegel 
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et al. 1985, Kunkel and Mech 1994, Carstensen et al. 2003). However, problems potentially exist 

for effective location of parturition sites and/or neonates with these methods. First and most 

importantly, neonates may not always be located in a timely manner (Huegel et al. 1985, Kunkel 

and Mech 1994) and stillbirths and early mortalities may not be detected, which bias survival 

estimates (Gilbert et al. 2014). Second, when twins occur, they are not often together and often 

are missed when relying upon doe behavior (Carstensen et al. 2003). Third, use of triangulation 

and radiolocations requires daily monitoring which requires extensive time commitment, aircraft 

resources, and funds unless real-time monitoring is used (Wall et al. 2014). Finally, unnecessary 

disturbance of maternal-neonate interactions occur if neonates are not located on the first attempt 

and subsequent trips are needed, which may increase abandonment risk.  

To better understand how maternal movement rates reflect parturition dates, knowing 

movement and parturition dates with minimal error is needed. A recent technological 

advancement, namely vaginal implant transmitters (VITs), allow for little error in determining 

parturition dates and locations (Bishop et al. 2009, Carstensen et al. 2009, Bishop et al. 2011), 

but is costly. Relying upon maternal deer movement rates to identify parturition dates is cheaper 

and easier, but has not been validated with VITs. Thus, I used GPS collar data and VITs in a 

similar way (i.e., movement patterns) that have been used for elk (Cervus elaphus) to determine 

exact parturition dates (Vore and Schmidt 2001).  

Using movement patterns of maternal ungulates to determine parturition date is possible 

because movements change substantially after parturition (Huegel et al. 1985, Vore and Schmidt 

2001, Long et al. 2009, Severud et al. 2015). Specifically, deer restricted movement rates by 

approximately 50% to stay within an area 1 to 7 days after parturition (Huegel et al. 1985, Long 

et al. 2009). Based on the relationships found by Huegel et al. (1985) and Long et al. (2009), I 
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predicted that mule deer movement rates would significantly decrease immediately after 

parturition and continue to be reduced for 7 days after parturition. Ultimately, my goal was to use 

VITs to validate the use of movement patterns of telemetered mule deer (Odocoileus hemionus) 

for determining parturition dates and locations.  

METHODS 

Study Area 

During 2012–2014, I examined daily movement rates (m/day) of maternal mule deer relative to 

parturition date in the Piceance Basin in northwestern Colorado, USA. Deer in this area migrate 

from low elevation winter ranges to high elevation summer ranges (Lendrum et al. 2013) where 

they give birth. Summer range included parts of Garfield, Moffat, Rio Blanco, and Routt 

counties in northwestern Colorado (39.580°N, −107.961°W and 40.330°N, −107.028°W) and 

elevations ranged from 1,900 m to 3,150 m. Summer range habitat was dominated by Gambel 

oak (Quercus gambeli Nutt.), alderleaf mountain mahogany (Cercocarpus montanus Raf.), Utah 

serviceberry (Amelanchier utahensis Koehne.), mountain snowberry (Symphoricarpos 

oreophilus A. Gray), chokecherry (Prunus virginiana L.), quaking aspen (Populus tremuloides 

Michx.), big sagebrush (Artemisia tridentate Nutt.), two-needle pinyon (Pinus edulis Engelm.), 

and Utah juniper (Juniperus osteosperma Torr.). Dominant habitat was interspersed with 

Douglas-fir (Pseudotsuga menziesii Mirb.), Engelmann spruce (Picea engelmannii Parry ex. 

Engelm.), and subalpine fir (Abies lasiocarpa hook.) forests (Garrott et al. 1987). Shrubs, forbs, 

and grasses common to the area are listed in Bartmann (1983) and Bartmann et al. (1992). Plant 

nomenclature follows the United States Department of Agriculture PLANTS Database (USDA 

and NRCS 2016). 
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Adult Female Capture and Handling 

During December 2011–2013, adult female mule deer (≥ 1.5 years old) were captured using 

helicopter net gunning techniques (Barrett et al. 1982, van Reenen 1982). Deer were blindfolded, 

hobbled, and chemically immobilized with 35 mg of Midazolam (a muscle relaxant) and 15 mg 

of Azapirone (an anti-anxiety drug) given intramuscularly. I fit each captured deer with store-on-

board GPS radio collars with a motion-sensitive mortality switch on an 8-hour delay and a timed 

released mechanism set to release 16 months after deployment (Model G2110D, Advanced 

Telemetry Systems, Inc., Isanti, MN, USA). Most GPS radio collars were programmed to 

attempt a fix every 5 hours, but some attempted a fix every 30 minutes between 1 September and 

15 June and hourly between 16 June and 31 August to address different research objectives 

(Northrup 2015). I consolidated data to attain the same temporal scale of 5 hours for all deer.  

In early March 2012–2014, radio-collared adult females were recaptured using helicopter 

net gunning techniques. I performed transabdominal ultrasonography on each captured deer to 

determine pregnancy status and number of fetuses present using a SonoVet 2000 portable 

ultrasound unit (Universal Medical Systems, Inc., Bedford Hills, NY) with a 3 MHz linear 

transducer (Stephenson et al. 1995, Bishop et al. 2007). If an adult female was pregnant, I 

inserted a VIT (Model M3930, Advanced Telemetry Systems, Inc., Isanti, MN, USA) and 

followed VIT insertion procedures described in detail by Bishop et al. (2007) and Bishop et al. 

(2011). In 2012 and 2013, each VIT was equipped with a temperature-sensitive sensor, which 

changed the signal from 40 beats to 80 beats per minute (bpm) signifying VIT expulsion (Bishop 

et al. 2011). In 2014, each VIT was equipped with temperature- and photo-sensitive sensors, 

which changed the signal from 40 to 80 bpm when the ambient temperature dropped below 32 

°C or when ambient light was ≥ 0.01 lux (Cherry et al. 2013). The manufacturer programmed 
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VITs to lock on 80 bpm to minimize issues associated with hot ambient temperatures (Newbolt 

and Ditchkoff 2009). All capture, handling, radio collaring, and VIT insertion procedures were 

approved by the Institutional Animal Care and Use Committee at Colorado Parks and Wildlife 

(protocol #17-2008 and #1-2012) and followed guidelines of the American Society of 

Mammalogists (Sikes et al. 2011). 

Adult Female Monitoring and Location of Birth Sites 

During the parturition period (late May–mid-July), I checked VIT signals daily by aerially 

locating each radio-collared female having a VIT from a Cessna 182 or 185 (Cessna Aircraft 

Co., Wichita, KS, USA) fixed-wing aircraft, weather permitting. When I detected a fast (i.e., 

postpartum) pulse rate, ground crews used a coded telemetry receiver (Model R4520, Advanced 

Telemetry Systems, Inc., Isanti, MN, USA) and 3-element Yagi antenna to simultaneously locate 

the VIT and radio-collared adult female. Crews retrieved VITs and recorded coordinates of birth 

sites using a hand-held GPS (Garmin GPSMAP 62S, Oregon 650, or Montana 650, Garmin 

International Inc., Olathe, KS, USA).  

Daily Movements of Maternal Females, Parturition Date, and Statistical Methods 

Radio collars deployed on adult females were programmed to release 16 months post-capture. 

Crews retrieved collars then, or from mortality sites, and downloaded GPS data. I imported data 

into ArcMap 10 (Environmental Systems Research Institute, Redlands, CA, USA) to determine 

locations for each female. I analyzed daily movement rate of maternal females relative to the 

parturition date. Ground crews determined exact parturition dates primarily based on VIT 

expulsion date and secondarily based on hoof characteristics, condition of the umbilical cord, 

pelage, and behavior of neonates (Haugen and Speake 1958, Sams et al. 1996). We fixed the 

parturition date of each female equal to zero and dates before and after were calculated as 
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negative and positive, respectively. We then calculated daily movement rate from 7 days before 

to 7 days after parturition. 

I fit linear mixed models using daily movement rate as the response variable, day relative 

to parturition as a fixed effect, and maternal female identity as a random effect using PROC 

MIXED in SAS (SAS Institute, Cary, North Carolina, USA). I also fit intercept-only models to 

account for no difference in movement rates. To determine a covariance model structure for 

repeated measures, I fit models with autoregressive, heterogeneous autoregressive, compound 

symmetry, heterogeneous compound symmetry, and Toeplitz covariance structures (Littell et al. 

2006). The autoregressive model assumes that the covariance between two time periods 

decreases exponentially, depending on the time between periods and equal variance for each 

period. The heterogeneous autoregressive model is the same as the autoregressive model, except 

each time period has its own variance. The compound symmetry model assumes that the 

covariance between time periods is equal and equal variance for each period. The heterogeneous 

compound symmetry model is the same as the compound symmetry model, except each time 

period has its own variance. The Toeplitz model is similar to the autoregressive model, except 

the covariance between two time periods do not have to decrease exponentially. I used Akaike’s 

Information Criterion adjusted for small sample size (AICc), ΔAICc, and AICc weights to 

determine the best-fitting covariance structure model (Burnham and Anderson 2002). I then used 

the best-fitting model to determine differences in movement rate among days and a Tukey’s 

post-hoc comparison. 



36 

RESULTS 

Daily Movements of Maternal Females 

My sample size was 129 maternal females. A model indicating a heterogeneous autoregressive 

covariance structure ranked highest (AICc weight = 1.000; Table 2.1). Tukey’s post-hoc testing 

indicated females moved significantly (p < 0.001) more 1 day before parturition 

(� �  = 1,243.56, SD = 1,043.03) than the day of parturition (� �  = 805.30, SD = 652.91), a 35% 

reduction in mean daily movement rate (Figure 2.1). Tukey’s post-hoc testing also indicated 

females moved significantly (p < 0.001) more 1 day before than 1 day after parturition 

(� �  = 756.67, SD = 629.24), a 39% reduction in mean daily movement rate (Figure 2.1). Overall, 

maternal deer moved ≤ 820 m/day from 1 to 7 days after parturition (Figure 2.1). 

DISCUSSION 

As predicted, maternal mule deer exhibited distinct daily movement patterns before versus after 

parturition. I suggest that a mule deer female whose daily movement rate significantly decreases 

to ≤ 800 m/day has likely given birth. Restricted movement of females after parturition may be 

attributable to neonates that are entirely dependent on a hiding strategy for survival (Lent 1974, 

Geist 1981) because of vulnerability to predation (Bishop et al. 2009, Monteith et al. 2014). 

My results can be beneficial for other studies that do not have VIT data or few resources 

and need to rely upon deer movements to determine parturition. I suggest that GPS collar data 

surrounding a parturition period be plotted to detect a sudden and sustained reduction in daily 

movement rate, suggesting parturition date. The recent advent of Iridium (i.e., 2-way satellite 

communication) and remotely downloadable collars paired with my method could reduce aerial 

and field monitoring and allow for verification of parturition and capture of neonates without 

VITs. Other studies have successfully used real-time movement patterns of radio-collared 
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ungulates without using VITs to document parturition (DeMars et al. 2013, McGraw 2014) and 

aid in neonate captures (Severud et al. 2015). 

If fetal and neonatal survival rates are desired in addition to parturition date, then a 

combination of my method with real-time GPS data could be used to send field capture crews in 

at the correct time. Specifically, a suspected parturition event could be investigated by locating 

the radio-collared female and observing her behavior to determine if parturition occurred and aid 

in capturing neonates (Huegel et al. 1985, Carstensen et al. 2003). However, a finer temporal 

scale than what I used (5 hours) may be needed to capture neonates before they become too 

mobile.  

Technologically advanced radio collars and VITs are increasingly being used to study 

and understand population dynamics (Hebblewhite and Haydon 2010). Knowledge of parturition 

dates and locations and pregnancy and survival rates are needed to comprehend population 

dynamics of ungulates (Gaillard et al. 1998, Bonenfant et al. 2005, Forrester and Wittmer 2013). 

Ultimately, my proposed method could help validate such estimates when the use of VITs is not 

cost-effective or logistical feasible.   
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TABLE  

Table 2.1. Model selection results for covariance structures of daily movement rates of maternal 
mule deer from 7 days before to 7 days after parturition in the Piceance Basin, Colorado, USA, 
2012–2014. 
 

Covariance structurea ΔAICcb AICc weight K c 

Heterogeneous autoregressive 0.00 1.00 16 

Heterogeneous compound symmetry 41.10 0.00 16 

Toeplitz 228.70 0.00 15 

Autoregressive 257.70 0.00 3 

Heterogeneous autoregressive (.) 264.30 0.00 16 

Compound symmetry 319.30 0.00 2 

Heterogeneous compound symmetry (.) 393.10 0.00 16 

Toeplitz (.) 474.80 0.00 15 

Autoregressive (.) 532.20 0.00 3 

Compound symmetry (.) 657.20 0.00 2 
a (.) represents intercept only model. 

b AICc is Akaike Information Criterion adjusted for small sample size.  

c K is the number of parameters in the model.  
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FIGURE 

 

Figure 2.1. Mean daily movement rate (± 95% CI) of maternal mule deer from 7 days before to 
7 days after parturition in the Piceance Basin, Colorado, USA, 2012–2014.   
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CHAPTER 3: 
 

 

 

BIRTH SITE SELECTION BY MULE DEER AND PREDATION SITE CHARACTE RISTICS  
 

IN A NATURAL GAS DEV ELOPMENT AREA  
 

 

 

Synopsis. Natural gas development potentially impacts wildlife populations and their habitat, 

especially for ungulate species. Of special importance are impacts on reproductive success (e.g., 

birth site selection and neonatal survival) that are influential for ungulate population dynamics. 

Birth site selection by mule deer (Odocoileus hemionus) is the result of deer trading off 

nutritional demands and minimizing predation risk of neonates. To investigate this trade-off, I fit 

resource selection functions (RSFs) to examine the influence of natural gas development and 

environmental factors on birth site selection and habitat characteristics of predation sites in the 

Piceance Basin in northwestern Colorado, USA during 2012–2014. Females selected birth sites 

farther from producing well pads and with increased cover for concealing neonates and appeared 

to select habitat (e.g., north-facing slopes and further from treed edges) that minimized neonate 

predation risk. Predation sites were characterized as being closer to development and in habitat 

(e.g., woodlands, aspen-conifer stands, and north-facing slopes) that possibly provided favorable 

microclimates for neonates and abundant high quality forage for lactating females. However, I 

note that predation sites were on average relatively far (2,057 m) from producing well pads and I 

have difficulty proposing a mechanism to explain how well pads that far away can influence 

predation site characteristics. My results suggest natural gas development and environmental 

factors (e.g., slope, habitat type, and aspect) can influence birth site selection with predation site 

characteristics possibly related to foraging habitat selection. Consequently, developers and 

mangers should consider strategies to mitigate impacts from development to maintain cover for 
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concealing neonates, potentially enhancing survival. Such strategies could include development 

planning to avoid important habitats during critical time periods and minimizing habitat 

fragmentation and removal of hiding cover when constructing well pads and roads. 

INTRODUCTION  

Selection of birth sites by ungulates is a fundamental behavioral process with fitness 

consequences. Parturient ungulates need to select birth sites and surrounding habitat that 

maximizes both their own and their neonate’s survival. Habitat characteristics of birth sites are 

important for neonate (i.e., newborn fawn) survival (i.e., 0–6 months old) because neonates 

depend on cryptic coloration (Lent 1974), hiding (Walther 1965, Lent 1974, Geist 1981), and 

concealment cover (Van Moorter et al. 2009, Barbknecht et al. 2011, Freeman 2014) to minimize 

predation risk. Additionally, females need to account for favorable microclimates (Picton 1984, 

Bowyer et al. 1998, Barbknecht et al. 2011, Freeman 2014) and steepness of slope when 

selecting birth sites to promote neonate survival by minimizing predation risk and energy 

expenditure associated with locomotion after parturition (Parker et al. 1984, Riley and Dood 

1984, Fox and Krausman 1994, Long et al. 2009).  

In addition to selecting birth sites with appropriate cover and slope to avoid predation, 

parturient ungulates also need to select sites near abundant high quality forage to support high 

energetic demands of parturition and lactation (Sadleir 1982, Carl and Robbins 1988, Cook et al. 

2004). Time spent at birth sites likely influences the strength of this energy need on birth site 

selection (Barbknecht et al. 2011). For instance, moose (Alces alces) remain at birth sites for 3–4 

weeks (Bowyer et al. 1999) in contrast to elk (Cervus elaphus) which remain at birth sites from 

several hours to one day (Harper et al. 1967, Rearden 2005) and mule deer (Odocoileus 

hemionus) which can leave birth sites within six hours of birth (Johnstone-Yellin et al. 2006). 
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Thus, birth site selection might be more strongly related to microclimate and predation risk of 

neonates instead of nutritional demands of lactating females for mule deer (Freeman 2014) and 

elk (Barbknecht et al. 2011) than moose (Bowyer et al. 1999).  

Minimizing predation risk by choosing concealed birth sites is inversely related to 

availability of forage because high quality forage occurs in open habitat (Bowyer et al. 1999, 

Poole et al. 2007, Panzacchi et al. 2010). One change occurring across the West that results in 

more open habitat is the rise in natural gas development and associated features (e.g., well pads, 

pipelines, and roads). Increased open habitat could be beneficial for deer in terms of potential 

foraging areas (Bergman et al. 2014), or could be detrimental to deer if increased predation 

results (Pierce et al. 2004). The actual influence of natural gas development on mule deer birth 

site selection is unknown and complex.  

Development can influence birth site selection due to direct and indirect habitat loss. 

Direct habitat loss results from construction of well pads, access roads, compressor stations, and 

pipelines. Whereas, traffic and noise associated with increased human presence and development 

may lead to indirect habitat loss. Past studies suggest deer tend to avoid roads (Rost and Bailey 

1979, Webb et al. 2011c, Lendrum et al. 2012) and well pads (Sawyer et al. 2006, Sawyer et al. 

2009, Northrup et al. 2015). However, mule deer have been shown to use areas closer to well 

pads and during spring migration because disturbed topsoil near well pads possibly provided the 

first nutritious herbaceous vegetation of the growing season (Webb et al. 2011c, Lendrum et al. 

2012). Further, increased human presence associated with development might provide a refuge 

from predators (Berger 2007, Dussault et al. 2012), although gas-developed areas are correlated 

with higher perceived risk of predation and exposure to noise (Frid and Dill 2002, Barber et al. 

2010, Dzialak et al. 2011b, Lynch et al. 2014). Consequently, selection of birth sites could be 
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positively or negatively related to distance from development (Webb et al. 2011b) and could 

affect neonate survival.  

Ungulate juvenile survival (i.e., 0–1 year old) is typically low and variable compared to 

adult survival, and variation in juvenile survival can influence population dynamics (Gaillard et 

al. 1998, Gaillard et al. 2000, Forrester and Wittmer 2013). A birth pulse of neonates provides 

predators with an influx of vulnerable prey (Petroelje et al. 2014), consequently predation is 

often the leading cause of neonate mortality, especially during the first 8 weeks after parturition 

(Bishop et al. 2009, Monteith et al. 2014, Marescot et al. 2015, Shallow et al. 2015). Predatory 

behavior likely influences habitat characteristics of predation sites (Hornocker 1970, Riley and 

Dood 1984, Lingle 2000). Neonates 2–8 weeks old are bold enough to leave cover (Lent 1974), 

but not agile enough to evade predators (Nelson and Woolf 1987, Lingle and Pellis 2002). As 

neonates age, female ungulates likely need to select habitat with abundant high quality forage, 

but that also provides neonates with cover to minimize predation risk and a favorable 

microclimate for thermoregulation (Gustine et al. 2006, Van Moorter et al. 2009, Grovenburg et 

al. 2010, Pitman et al. 2014). Therefore, not only testing hypotheses concerning birth site 

selection, but also examining habitat characteristics of predation sites in high or low 

development areas will provide useful information on the influences of natural gas development.  

I examined the influence of environmental and natural gas development factors on birth 

site selection and habitat characteristics of predation sites in the Piceance Basin of northwestern 

Colorado, USA from 2012–2014. I fit resource selection functions (RSFs) using a matched-case 

design (Manly et al. 2002, Boyce 2006) to determine selection of birth sites and habitat 

characteristics of predation sites within an adult female’s home range (3rd order selection; 

Johnson 1980) in two areas, with relatively high (0.04–0.90 well pads/km2) or low (0.00–0.10 
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well pads/km2) natural gas development. My objective was to test predictions that birth sites 

would be on moderately steep and rugged (e.g., with fewer predators), north-facing slopes (e.g., 

more cover), primarily in woodlands (e.g., more cover) and secondarily in aspen-conifer stands 

(e.g., more cover and forage), farther from producing and drilling well pads, roads, and treed 

edges (e.g., more cover), and in areas with higher primary productivity of vegetation (e.g., more 

cover). I predicted predation sites would be on gentle or flat, south-facing slopes at lower 

elevations (e.g., with more predators and less cover), primarily in aspen-conifer stands and 

secondarily in woodlands (e.g., more cover and forage), and closer to producing and drilling well 

pads, roads, and treed edges (e.g., less cover). My results provide the first insights into mule deer 

birth site selection and habitat characteristics of predation sites in a natural gas development 

area, which is helpful to address conservation and management related decisions.  

METHODS 

Study Area 

I examined parturient mule deer birth site selection and habitat characteristics of predation sites 

in the Piceance Basin in northwestern Colorado, USA, during 2012–2014 (Figure 3.1). The 

Piceance Basin provides crucial winter and transition range habitat for one of the largest 

migratory mule deer populations in North America (White and Lubow 2002), yet some of the 

largest natural gas reserves in North America reside beneath the Basin as part of the Green River 

Formation. My winter range study area included four study units in the Piceance Basin (Figure 

3.1) and are part of a larger research project (Anderson 2015). My winter range study units were 

South Magnolia (83 km2; 39.898°N, −108.343°W), Ryan Gulch (141 km2; 39.894°N, 

−108.343°W), North Ridge (53 km2; 40.045°N, −108.153°W), and North Magnolia (79 km2; 

39.966°N, −108.206°W). South Magnolia and Ryan Gulch study units had relatively high levels 
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of natural gas development (0.6–0.9 well pads/km2; hereafter referenced as the high development 

study area), whereas North Magnolia and North Ridge study units had low levels of natural gas 

development (0.0–0.1 well pads/km2; hereafter referenced as the low development study area).  

Winter range habitat was dominated by two-needle pinyon (Pinus edulis Engelm.) and 

Utah juniper (Juniperus osteosperma Torr.) woodlands, big sagebrush (Artemisia tridentate 

Nutt.), Utah serviceberry (Amelanchier utahensis Koehne.), alderleaf mountain mahogany 

(Cercocarpus montanus Raf.), antelope bitterbrush (Purshia tridentate Pursh.), rubber 

rabbitbrush (Ericameria nauseosa Pall ex. Pursh.), and mountain snowberry (Symphoricarpos 

oreophilus A. Gray; Bartmann 1983, Bartmann et al. 1992). Shrubs, forbs, and grasses common 

to the area are listed in Bartmann (1983) and Bartmann et al. (1992). Drainage bottoms bisected 

the study units and contained stands of big sagebrush, saltbush (Atriplex spp.), and greasewood 

(Sarcobatus vermiculatus Hook.), with most of the primary drainage bottoms having been 

converted to irrigated, grass hay fields. Plant nomenclature follows the United States Department 

of Agriculture PLANTS Database (USDA and NRCS 2016). Winter study unit elevations ranged 

from 1,860 m to 2,250 m and the winter climate of the Piceance Basin is typified by cold 

temperatures with most of the moisture resulting from snow. During my study, winter (October–

April) precipitation averaged 22.4 cm and mean winter temperatures ranged from −14 °C to 14 

°C at the Rifle 23 NW weather station located at 2,301 m elevation (National Climatic Data 

Center 2015).  

Summer range study units included parts of Garfield, Moffat, Rio Blanco, and Routt 

counties in northwestern Colorado (39.580°N, −107.961°W and 40.330°N, −107.028°W; Figure 

3.1). Ryan Gulch and South Magnolia deer generally migrated southeast and south to the Roan 

Plateau (Lendrum et al. 2013) where they potentially encountered natural gas development 
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(0.04–0.06 well pads/km2; hereafter referenced as the high development study area). North 

Magnolia and North Ridge deer generally migrated northeast and east across US Highway 13 

towards Lake Avery and the Flat Tops Wilderness Area (Lendrum et al. 2013) where they 

encountered minimal natural gas development (0.00–0.01 well pads/km2; hereafter referenced as 

the low development study area). Not all deer (n = 8) migrated to summer range and instead 

opted to remain residents on winter range.  

Summer range habitat was dominated by Gambel oak (Quercus gambeli Nutt.), alderleaf 

mountain mahogany, Utah serviceberry, mountain snowberry, chokecherry (Prunus virginiana 

L.), quaking aspen (Populus tremuloides Michx.), big sagebrush, pinyon pine, and Utah juniper. 

Dominant habitat was interspersed with Douglas-fir (Pseudotsuga menziesii Mirb.), Engelmann 

spruce (Picea engelmannii Parry ex. Engelm.), and subalpine fir (Abies lasiocarpa Hook.) forests 

(Garrott et al. 1987). Summer range elevations ranged from 1,900 m to 3,150 m and the summer 

climate of the Piceance Basin is typified by warm temperatures with most of the moisture 

resulting from spring snow melt and brief summer monsoonal rainstorms. During my study, 

summer (May–September) precipitation averaged 20.3 cm and mean summer temperatures 

ranged from 2 °C to 31 °C (Rifle 23 NW weather station; National Climatic Data Center 2015).  

Adult Female Capture and Handling 

During December 2011–2013, adult female mule deer (≥ 1.5 years old) were captured in each of 

the four winter range study units using helicopter net gunning techniques (Barrett et al. 1982, van 

Reenen 1982). Deer were blindfolded, hobbled, and chemically immobilized with 35 mg of 

Midazolam (a muscle relaxant) and 15 mg of Azapirone (an anti-anxiety drug) given 

intramuscularly. For each captured deer, age was estimated (Severinghaus 1949, Robinette et al. 

1957b) and I fit each captured deer with store-on-board GPS radio collars with a motion-
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sensitive mortality switch on an 8-hour delay and a timed released mechanism set to release 16 

months after deployment (Model G2110D, Advanced Telemetry Systems, Inc., Isanti, MN, 

USA). Most GPS radio collars were programmed to attempt a fix every 5 hours, but some 

attempted a fix every 30 minutes between 1 September and 15 June and hourly between 16 June 

and 31 August to address different research objectives (Northrup 2015). I consolidated data to 

attain the same temporal scale of 5 hours for all deer.  

During early March 2012–2014, radio-collared adult females were recaptured on winter 

ranges using helicopter net gunning techniques. I performed transabdominal ultrasonography on 

each captured deer to determine pregnancy status and number of fetuses present using a SonoVet 

2000 portable ultrasound unit (Universal Medical Systems, Inc., Bedford Hills, NY) with a 3 

MHz linear transducer (Stephenson et al. 1995, Bishop et al. 2007). If an adult female was 

pregnant, I inserted a vaginal implant transmitter (VIT; Model M3930, Advanced Telemetry 

Systems, Inc., Isanti, MN, USA) and followed VIT insertion procedures described in detail by 

Bishop et al. (2007) and Bishop et al. (2011). In 2012 and 2013, each VIT was equipped with a 

temperature-sensitive sensor, which changed the signal from 40 beats to 80 beats per minute 

(bpm) signifying VIT expulsion (Bishop et al. 2011). In 2014, each VIT was equipped with 

temperature- and photo-sensitive sensors, which changed the signal from 40 to 80 bpm when the 

ambient temperature dropped below 32 °C or when ambient light was ≥ 0.01 lux (Cherry et al. 

2013). The manufacturer programmed VITs to lock on 80 bpm to minimize issues associated 

with hot ambient temperatures (Newbolt and Ditchkoff 2009).  

Adult Female Monitoring, Neonate Capture, and Location of Birth Sites 

On winter range, field technicians monitored radio collar and VIT signals daily from the ground 

or a Cessna 182 or 185 (Cessna Aircraft Co., Wichita, KS, USA) fixed-wing aircraft. During the 
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parturition period (late May–mid-July), I checked VIT signals daily by aerially locating each 

radio-collared female having a VIT, weather permitting. In 2014, ground crews also located adult 

females with VITs to aid in determining when parturition occurred because VIT photo-sensors 

malfunctioned. When I detected a fast (i.e., postpartum) pulse rate, ground crews used a coded 

telemetry receiver (Model R4520, Advanced Telemetry Systems, Inc., Isanti, MN, USA) and 3-

element Yagi antenna to simultaneously locate the VIT and radio-collared adult female. Ground 

crews searched for neonates and a birth site near (≤ 400 m) the female and expelled VIT. All 

neonate searches lasted up to 1 hour. Crews retrieved VITs and recorded coordinates of birth 

sites using a hand-held GPS (Garmin GPSMAP 62S, Oregon 650, or Montana 650, Garmin 

International Inc., Olathe, KS, USA). Crews identified birth sites based on detection of neonates 

and VIT or by birth site characteristics, including placental remnants, a large deer bed with 

flattened vegetation radiating outward, browsed or grazed vegetation, moist soil, fresh fecal 

pellets, tracks, hair, and characteristic odor (Barbknecht et al. 2011, Bishop et al. 2011, Rearden 

et al. 2011).  

During 2012 and 2013, ground crews captured neonates and located birth sites on the 

high and low development study areas. In 2014, crews captured neonates and located birth sites 

predominantly in the high development study areas and sporadically in the low development 

study areas because VIT photo sensors malfunctioned. Crews blindfolded and handled each 

captured neonate with nitrile latex gloves to minimize transfer of human scent. Crews fit each 

neonate with a radio collar (Model M4210, Advanced Telemetry Systems, Inc., Isanti MN, USA) 

equipped with an 8-hour mortality sensor. Crews modified radio collars for temporary 

attachment by cutting the collar in half and splicing the ends with two lengths of rubber surgical 

tubing (5.7 cm each). Handling time was ≤ 5 minutes per neonate and crews replaced neonates 
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where initially found to reduce marking-induced abandonment. Past neonatal deer studies have 

reported minimal or no marking-induced abandonment (Pojar and Bowden 2004, Powell et al. 

2005, Bishop et al. 2007). All capture, handling, radio collaring, and VIT insertion procedures 

were approved by the Institutional Animal Care and Use Committee at Colorado Parks and 

Wildlife (protocol #17-2008 and #1-2012) and followed guidelines of the American Society of 

Mammalogists (Sikes et al. 2011). 

Neonate Monitoring, Cause-specific Mortality, and Location of Mortality Sites 

From the air, field technicians or I monitored radio-collared neonates daily during the parturition 

period, weekly until deer migrated from summer range, and daily from the ground when deer 

arrived on winter range. Technicians or I monitored radio-collared neonates from birth until 

death, collars were shed, or the end of the neonate survival period (i.e., 0–28 weeks) on 15 

December 2012, 2013, or 2014. Daily monitoring during the parturition period when a majority 

of mortalities occurred, allowed crews or I to investigate mortalities typically within 24 hours, 

thus I am confident in our determination of cause-specific mortality. When I detected a mortality 

signal, ground crews located the neonate and/or radio collar and conducted a mortality site 

investigation and field necropsy, if possible, to determine cause-specific mortality. During the 

mortality site investigation, crews documented GPS coordinates of the site, predator tracks, 

predator scat, drag trails, blood at the site or on the radio collar, hair, and any other signs (e.g., 

matted vegetation or broken shrub branches) that could help determine cause-specific mortality 

or scavenging. Crews used predation site characteristics and predatory feeding behavior reported 

in the literature to help differentiate between predation and other causes of mortality or 

scavenging (White 1973, Wade and Bowns 1982, Acorn and Dorrance 1990, Stonehouse et al. In 

prep).  



50 

Habitat Use and Availability 

Crews retrieved adult female radio collars after they released 16 months post-capture, or from 

mortality sites, and downloaded GPS data. I imported data into ArcMap 10 (Environmental 

Systems Research Institute, Redlands, CA, USA) to determine summer and winter range 

locations for each adult female. Using helicopter net gunning techniques to capture deer can 

potential impact mule deer behavior (Northrup et al. 2014), thus I censored location data for 4 

days following capture. Deer in this area are migratory, thus I classified winter range locations as 

being from capture to departure from winter range and summer range locations as being from 

arrival to departure or date of death for neonates that died. I determined migration patterns for 

each deer by examining GPS locations in ArcMap 10.2. I created 100% minimum convex 

polygons (MCPs) around summer or winter range locations for each deer using the Geospatial 

Modeling Environment (Beyer 2012). I considered MCPs as representing habitat available to 

each deer for birth sites and to predators for predation sites, whereas actual birth and predation 

site locations represented used sites. We conducted a sensitivity analysis to determine an optimal 

random availability sample size (Northrup et al. 2013) using the R statistical software (R Core 

Team 2015). Results of the sensitivity analysis indicated that a sample size of 10,000 random 

available locations for each deer would provide accurate �̂ coefficients for my RSF analysis 

(below).  

Environmental and Anthropogenic Predictor Variables 

I included environmental and anthropogenic predictor variables in RSF models that I 

hypothesized would influence birth site selection and predation sites based on previous deer 

(Bowyer et al. 1998, Long et al. 2009, Freeman 2014) and elk (Barbknecht et al. 2011, Rearden 

et al. 2011) studies. I calculated or measured distance from the variables for each available and 
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used birth or predation site using the R statistical software (R Core Team 2015). I hypothesized 

the following environmental variables would influence birth site selection and habitat 

characteristics of predation sites (Table 3.1): elevation, slope, aspect, terrain ruggedness, 

Normalized Difference Vegetation Index (NDVI), habitat type, and distance from treed edge. I 

calculated elevation (m) using a 30-m resolution digital-elevation model (DEM; 

http://nationalmap.gov/viewer.html). From the DEM, I calculated slope (%) and aspect using 

ArcMap 10 Spatial Analyst Tools. I transformed aspect into four categories representing north 

(315°–45°), east (45°–135°), south (135°–225°), and west (225°–315°) directions (Barbknecht et 

al. 2011, Lendrum et al. 2012, Smith et al. 2015). I calculated terrain ruggedness with the vector 

ruggedness measure (VRM) using a 3 ×  3 m pixel window and the DEM (Sappington et al. 

2007). I acquired 7-day composites of NDVI from NASA’s Moderate Resolution Imaging 

Spectroradiometer (MODIS) satellites at a 250-m2 resolution (http://earthexplorer.usgs.gov/). I 

calculated NDVI on the parturition date to reflect primary productivity of vegetation (Pettorelli 

et al. 2005a, Pettorelli et al. 2007). I acquired a 25-m resolution map of vegetation from the 

Colorado Vegetation Classification Project (http://gis.colostate.edu/data.aspx) containing 87 

vegetation classes, which I reclassified into four categorical habitat types: woodlands, shrubland-

steppe, aspen-conifer stands, and forbs-grasslands (Appendix 3.1). Using the reclassified habitat 

types, I determined a habitat type for each available and used birth and predation site. Lastly, I 

calculated distance from nearest treed edge (i.e., into cover) to each available and used birth and 

predation site.  

I hypothesized the following anthropogenic variables would influence birth site selection 

and habitat characteristics of predation sites (Table 3.1): distance from nearest drilling well pad, 

producing well pad, pipeline, and road. Well pads and pipelines were absent or at very low 
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densities in the low development study areas, thus I did not include distance from these variables 

for these study areas. We acquired the location of natural gas wells and facilities (e.g., 

compressor stations) from the Colorado Oil and Gas Conservation Commission 

(http://cogcc.state.co.us). We classified each well on the high development summer range as 

either actively being drilled or actively producing natural gas with no drilling activity using a 

procedure described in Northrup et al. (2015). Using the classified well pad data, we calculated 

distance (m) from nearest drilling and producing well pad on the parturition date for each 

available and birth site. We also calculated the distance (m) from nearest drilling and producing 

well pad on the estimated date of a predation event for each available and predation site. We 

acquired a pipeline map from the Bureau of Land Management and updated the map by 

digitizing pipelines visually present on NAIP imagery and calculated distance (m) from nearest 

pipeline to each available, birth, and predation site. We created a road network map by digitizing 

all roads visible on NAIP imagery and calculated distance (m) from nearest road to each 

available, birth, and predation site.  

Statistical Methods 

After consideration of scale (Bowyer and Kie 2006, Boyce 2006), I examined birth site selection 

(Table 3.2) and habitat characteristics of predation sites (Table 3.2) within an adult female’s 

home range (3rd order selection; Johnson 1980) by fitting RSFs. I estimated RSFs using a 

matched-case design separately for each deer by comparing each of 10,000 random available 

locations to each birth or predation site using conditional logistic regression (Hosmer and 

Lemeshow 2000, Manly et al. 2002, Boyce 2006) with the ‘survival’ package in the R statistical 

software (Therneau 2015). Using this method was advantageous because it controlled for 

differing availability by using available sites only within each deer’s home range (Manly et al. 
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2002). Prior to modeling, I calculated separate correlation matrices to test for collinearity among 

predictor variables (|r| ≥ 0.6). If two variables were correlated, I retained the more biologically 

plausible variable. Also prior to modeling, I standardized all continuous predictor variables ��− x�σ � to allow direct comparisons of �̂ coefficients.  

I conducted four separate analyses: on the high development or the low development 

study areas, I focused on comparing habitat characteristics of birth or predation sites with 

random available sites. For each analysis, I used Akaike’s Information Criterion adjusted for 

small sample size (AICc), ΔAICc, and AICc weights (Burnham and Anderson 2002) for model 

selection. I fit a global model for each analysis and then fit all possible combinations of additive 

models and used model averaging to obtain model-averaged parameter estimates (Burnham and 

Anderson 2002, Doherty et al. 2012) using the R package ‘MuMIn’ (Barton 2015). I calculated 

the sum of AICc weights for models containing each variable of interest (Burnham and Anderson 

2002). I considered variables with a cumulative AICc weight ≥ 0.5 as important (Barbieri and 

Berger 2004) and examined overlap of 95% confidence intervals around their �̂ coefficients. For 

each continuous variable, a positive �̂ coefficient indicated selection for a variable, whereas a 

negative �̂ coefficient indicated avoidance.  

RESULTS 

Respectively in the high and low development study areas, I radio-collared 128 and 56 neonates 

and detected 5 and 4 neonates killed before collaring and located 90 and 41 birth and 56 and 24 

predation sites. Of the 193 radio-collared and detected neonates, 171 (87%) were ≤ 2 days old 

and 188 (97%) were ≤ 3 days old when captured. Of the 89 neonates killed by predators, 56 

(63%) were ≤ 2 weeks old and 26 (33%) were 2–8 weeks old. Respectively in the high and low 

development study areas, predation was attributed to black bears (Ursus americanus; n = 18 and 
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6), coyotes (Canis latrans; n = 9 and 1), cougars (Puma concolor; n = 8 and 5), felids (n = 3 and 

1), bobcats (Felis rufus; n = 2 and 2), domestic dogs (Canis familiaris; n = 0 and 2), raptor (n = 1 

and 0), and unknown predation (n = 15 and 6).  

Birth Site Selection 

I assessed relative importance of the 512 birth site selection models I fit to the data from the high 

development study areas. Ten models were within two ΔAICc units of the top ranked model 

(Table 3.3). Distance to producing well pad was in all the top 10 models and had a cumulative 

AICc weight of 0.854 (Table 3.4) indicating importance in birth site selection by mule deer. 

Slope was in six of the top 10 models including the top model and had a cumulative AICc weight 

of 0.559 (Table 3.4) indicating some importance. Deer selected births sites farther from 

producing well pads relative to available sites (Figure 3.2A). Birth sites were on average 132 m 

farther from producing well pads compared to available sites, but were on average 2,429 m from 

a producing well pad (Table 3.2). Deer selected birth sites on moderately steep slopes, although 

the 95% confidence interval (CI) slightly overlapped zero (Figures 3.2A).  

Fourteen of the 128 birth site selection models I fit to the data from the low development 

study areas were within two ΔAICc units of the top ranked model (Table 3.3). Slope (cumulative 

AICc weight = 0.572; Table 3.4) was in 10 of the top 14 models and was the top model and 

distance to nearest treed edge (cumulative AICc weight = 0.535; Table 3.4) was in eight of the 

top 14 models, signifying their importance in birth site selection by mule deer (Table 3.3). 

Aspect (cumulative AICc weight = 0.360; Table 3.4) was in four of the top 14 models suggesting 

marginal importance (Table 3.3). Mule deer selected birth sites on moderately steep slopes, 

farther from treed edges, and on north-facing slopes relative to south-facing slopes and available 

sites (Table 3.2), although the 95% CIs slightly overlapped zero (Figure 3.2B). 
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Habitat Characteristics of Predation Sites 

Of the 512 models I fit for habitat characteristics of predation sites on the high development 

study areas, 21 models were within two ΔAICc units of the top ranked model (Table 3.5). 

Habitat type (cumulative AICc weight of 0.970; Table 3.4) was in all the top 21 models and 

aspect (cumulative AICc weight 0.532; Table 3.4) was in 15 of the top 21 models including the 

top model, indicating they were important in differentiating between predation and available 

sites (Table 3.5). Slope (cumulative AICc weight of 0.500; Table 3.4) was in eight of the top 21 

models and distance to producing well pad (cumulative AICc weight of 0.486; Table 3.4) was in 

nine of the top 21 models suggesting marginal importance (Table 3.5). Compared to available 

sites, predation sites were in woodlands and on north-facing slopes with more cover compared to 

shrubland-steppe and south-facing slopes, respectively (Figure 3.3A). Compared to available 

sites, predation sites were in woodlands with more cover than forbs-grasslands, closer to 

producing well pads, and on steeper slopes (� �  = 33.84%, SD = 15.46), although 95% CIs 

overlapped zero (Figure 3.3A). Predation sites were on average 99 m closer to producing well 

pads compared to available sites, but were on average 2,057 m from a producing well pad (Table 

3.2).  

Fifteen of the 128 models I fit for habitat characteristics of predation sites on the low 

development study areas were within two ΔAICc units of the top ranked model (Table 3.5). 

Elevation (cumulative AICc weight of 0.429; Table 3.4) and distance to nearest road (cumulative 

AICc weight = 0.417; Table 3.4) were each in six of the top 15 models, indicating slight support 

(Table 3.5). Habitat type (cumulative AICc weight of 0.317; Table 3.4) was in three of the top 15 

models suggesting little support (Table 3.5). Compared to available sites, predation sites were at 
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lower elevations and farther from roads (Table 3.2), although 95% CIs overlapped zero, and in 

aspen-conifer stands with more forage and cover than woodlands (Figure 3.3B).  

DISCUSSION 

As predicted, parturient mule deer selected birth sites farther from producing well pads possibly 

to avoid disturbances. Producing well pads elicit behavioral responses to development (Sawyer 

et al. 2006, Sawyer et al. 2009), particularly up to 600 m away during the day (Northrup et al. 

2015) and possibly impacts habitat selection, rearing of young, and foraging (Frid and Dill 

2002). Selection of birth sites farther from development may result in sites with lower forage 

availability and/or quality in exchange for lessened predation risk (Festa-Bianchet 1988, 

Kauffman et al. 2007, Hebblewhite and Merrill 2009). Additionally, wildlife may perceive 

development areas similarly to the risk of predation and respond by avoiding these areas if 

suitable habitat devoid of development is available nearby (Gill et al. 1996, Frid and Dill 2002). 

Moreover, Sawyer et al. (2006) reported large-scale displacement of deer on a relatively flat, 

sagebrush dominated winter range with natural gas development in the Pinedale area of 

Wyoming, whereas Northrup et al. (2015) found smaller-scale displacement of deer on 

developed winter range with increased topographic and vegetation diversity in the Piceance 

Basin. Deer are constricted to smaller winter range areas compared to expansive summer range 

areas in the Piceance Basin. Expansive summer range might permit selection of birth sites farther 

from development in suitable habitat. Although, if deer select birth sites closer to development, 

topographic and vegetation diversity in the Piceance Basin might provide refuge from noise and 

human presence associated with development unlike the open, flat, sagebrush-dominated habitat 

in the Pinedale area. Moreover, the most disruptive phase of development, drilling of wells, was 

minimal during my study. Thus, the influence of drilling well pads on birth site selection could 
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be stronger with increased drilling and in areas with open, flat habitat. Ultimately, true before-

after-control-impact studies (Manly 2001) are needed in areas with moderate to intense drilling 

activity to better understand the impacts of natural gas development on birth site selection. 

Weakly, but in line with my predictions, parturient mule deer selected birth sites on 

moderately steep slopes in the high development study areas and on north-facing slopes relative 

to available sites in the low development study areas. Selection for these locations is likely the 

result of a trade-off between the decreased energetic cost of locomotion on these slopes (Parker 

et al. 1984) and increased protection from predators that tend to travel along routes with gentler 

slopes and less cover (Riley and Dood 1984, Bowyer 1987, Lingle 2000, Farmer et al. 2006) on 

south-facing slopes. Moreover, variable canopy cover and light penetration on moderately steep 

slopes can create patches of contrasting sun and shade, further minimizing detection by predators 

and provide a favorable microclimate for thermoregulation (Fox and Krausman 1994, Bowyer et 

al. 1999, Van Moorter et al. 2009, Pitman et al. 2014). Finally, avoidance of well pads restricted 

to flat ridge tops and canyons may have influenced selection of birth sites on moderately steep 

slopes to minimize detection by predators. 

Parturient mule deer weakly selected birth sites farther from treed edges on the low 

development study areas. Habitat further into trees is dense and provides concealment cover and 

is not preferred habitat for cougars that stalk and ambush prey near edge habitat (Hornocker 

1970, Beier et al. 1995) and open areas (Pierce et al. 2004) or coursing predators, such as coyotes 

and black bear (Riley and Dood 1984, Bowyer 1987, Turner et al. 2011). Alternatively, 

ungulates might make a trade-off between increased canopy cover and reduced forage 

availability (Mysterud and Ostbye 1999, Barten et al. 2001, Hebblewhite and Merrill 2009). 

Because birth sites are only used for several hours, important components of birth sites are likely 
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related to thermal microclimate and predation risk of neonates instead of nutritional demands of 

lactating females (Barten et al. 2001, Barbknecht et al. 2011, Freeman 2014). My results are 

similar to results found by others examining birth site selection by caribou (Rangifer tarandus; 

Barten et al. 2001, Gustine et al. 2006, Leclerc et al. 2012), elk (Barbknecht et al. 2011), and 

mule deer (Tull et al. 2001, Butler et al. 2009, Long et al. 2009, Freeman 2014). 

Most predation in my study areas were of neonates ≤ 2 weeks old that are entirely 

dependent on a hiding strategy for survival (Walther 1965, Lent 1974, Geist 1981). Hence, I 

assumed neonates selected bed sites with certain habitat characteristics where predators then 

killed them. As predicted, predation sites were characterized as being in woodlands compared to 

shrubland-steppe and forbs-grasslands relative to available sites on the high development study 

areas. Neonates possibly avoided beds in shrubland-steppe and forb-grassland habitat providing 

little canopy or concealment cover and greater light penetration that increases predation risk and 

thermoregulation (Gerlach and Vaughan 1991, Van Moorter et al. 2009, Grovenburg et al. 2010, 

Pitman et al. 2014). In addition, shrubland-steppe and forb-grassland habitat is typified by easily 

traversable terrain that offers minimal hindrance to coursing predators (Riley and Dood 1984, 

Bowyer 1987, Lingle 2000, Farmer et al. 2006) and is relatively open and close to edge habitat 

favored by stalking predators (Hornocker 1970, Pierce et al. 2004, Rearden et al. 2011). 

Conversely, less concealment cover can increase visibility to reduce predation risk (Bowyer et al. 

1999, Poole et al. 2007, Rearden et al. 2011, Pinard et al. 2012). 

As predicted, predation sites were characterized as being in aspen-conifer stands relative 

to woodlands and available sites on the low development study areas. Aspen-conifer stands with 

variable canopy cover and a dense understory are important fawning areas (Anderson et al. 1992, 

Lutz et al. 2003), provide diverse and productive forage for lactating females (Pyke and Zamora 
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1982, Long et al. 2008, Kuhn et al. 2011), and provide favorable microclimates for neonates 

(Fox and Krausman 1994, Bowyer et al. 1998). Consequently, predators likely locate fawning 

areas in aspen-conifer stands by developing a search image to prey on vulnerable neonates 

during a birth pulse (Whittaker and Lindzey 1999, Testa 2002, Petroelje et al. 2014). 

Contrary to my predictions, predation sites were characterized as being on north-facing 

slopes relative to south-facing slopes and available sites on the high development study areas. 

South-facing slopes are typified by increased solar radiation and primary production of 

vegetation in the spring (Bowyer et al. 1998, D'Eon and Serrouya 2005). However, vegetation 

senesces earlier on south-facing slopes possibly reducing concealment cover and availability of 

high quality forage (Long et al. 2009), particularly in the relatively dry climate of the Piceance 

Basin. Whereas, north-facing slopes are characterized by trees providing increased and variable 

canopy cover (Long et al. 2009) that hold winter moisture longer (Nicholson et al. 1997) and 

reduce solar radiation (Barbknecht et al. 2011) likely delaying spring green-up of understory 

vegetation. Further, young neonates avoid habitat with decreased canopy cover providing 

increased solar radiation (Van Moorter et al. 2009) and high visibility (Linnell et al. 1999, 

Pitman et al. 2014). Consequently, delayed green-up of vegetation on north-facing slopes could 

provide adult females with abundant and higher quality forage during lactation and neonates with 

cover and favorable microclimates. Thus, neonates dependent on hiding in cover providing 

favorable microclimates are likely to be killed by a predator if detected in preferred habitat 

(Roberts and Rubenstein 2014).  

Weakly, but in line with my prediction, predation sites were characterized as being closer 

to producing well pads compared to available sites on the high development study areas. 

However, I note that predation sites were on average relatively far (2,057 m) from producing 
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well pads (Table 3.2) and I have difficulty proposing a mechanism to explain how well pads that 

far away can influence predation site characteristics. Constant noise and human activity is not 

associated with producing well pads unlike drilling well pads. Deer and elk have been shown to 

select habitat closer to producing well pads, especially at night (Dzialak et al. 2011a, Northrup et 

al. 2015) when predators are generally active (Rogers 1970, Anderson and Lindzey 2003). 

Perhaps, deer forage in openings closer to producing well pads and associated pipelines and that 

might provide abundant and higher quality forage (Webb et al. 2011c, Lendrum et al. 2012), but 

that might increase predation risk of hiding neonates (Rearden et al. 2011). Thus, habitat closer 

to producing well pads could be beneficial to adult females, but possibly detrimental to neonates, 

especially at night.  

My study provides novel insights into whether natural gas development influences birth 

site selection by parturient mule deer and predation site characteristics of neonatal mule deer. 

Natural gas development appears to influence birth site selection with predation site 

characteristics possibly related to foraging habitat selection in my study system, thus 

development planning should focus on mitigation or avoidance of birth site habitats. Parturient 

mule deer selected birth sites in habitat farther from development that likely provided neonates 

with increased concealment cover and favorable microclimates and minimized predation risk of 

neonates. Most predation sites were characterized by habitat that possibly provided cover and 

favorable microclimates for neonates and abundant high quality forage to meet the nutritional 

demands of lactating females. However, I cannot be certain of my interpretation because I did 

not explicitly measure forage availability and used a coarse measure of forage quality (i.e., 

NDVI). I note that NDVI provides a better index of forage availability than quality because of 

annual variation in how precipitation influences vegetation green-up and desiccation. Birth site 
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selection and subsequent neonate survival can depend on macrohabitat and microhabitat scale 

characteristics (Van Moorter et al. 2009, Rearden et al. 2011, Pitman et al. 2014) and future 

studies should examine habitat selection at multiple scales (Bowyer and Kie 2006, Boyce 2006) 

to avoid using NDVI as an index for forage availability and quality. Ultimately, future studies 

should consider regional differences in topography, vegetation, predator assemblages and 

associated predation risk, and development intensity to fully comprehend the influence of natural 

gas development and environmental variables on birth site selection and habitat characteristics of 

predation sites.  

MANAGEMENT IMPLICATIONS  

My results suggest natural gas development and environmental variables can influence birth site 

selection by mule deer. Consequently, developers should consider strategies to minimize direct 

habitat loss and disturbances when planning projects, such as concentrating road and well pad 

development and minimizing removal of hiding cover when constructing well pads. Moreover, 

industry should consider strategies to minimize indirect habitat loss, such as reducing vehicle 

traffic to well pads particularly during June and July when most birth and predation events occur 

to minimize fitness consequences of mule deer. Further, managers should maintain habitat to 

provide cover for concealing neonates, potentially reducing mortality. Thus, I recommend that 

developers and mangers apply my RSF model to develop maps that predict high and low use 

areas for birth sites when planning development or landscape manipulations (e.g., habitat 

treatments). Avoiding or mitigating impacts from development or other disturbances in high use 

areas could reduce direct and indirect habitat loss and help managers maintain critical habitat to 

enhance neonatal deer survival that is influential for ungulate population dynamics. However, I 

caution that my RSF models should only be used in areas with topographic and vegetation 
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composition similar to the Piceance Basin (see study area description) and may not be applicable 

to more open, less topographically diverse mule deer habitats. I also caution that my RSF model 

was developed using individual home ranges of deer (i.e., home range scale) and should not be 

applied at a landscape scale (Boyce 2006). Consequently, I suggest using a moving window 

analysis to maintain the correct scale when applying my RSF model.  
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TABLES 

Table 3.1. List of variables and hypothesized results for birth site selection and habitat characteristics of predation sites in the 
Piceance Basin, Colorado, USA, 2012–2014.  
 

Variablea Hypothesis  Variable definition  

Elevation (m) 
Deer will select birth sites at higher elevations and 
predation sites will occur at lower elevations. 

Elevation (m) of birth and predation sites. 

Slope (%) 
Deer will select birth sites on moderately steep slopes 
and predation sites will be on gentler slopes. 

Slope (%) of birth and predation sites. 

Aspect 
Birth sites will be on north-facing slopes and predation 
sites will be on south-facing slopes. 

A categorical variable referenced to north for 
predation and birth sites. 

VRM 
Birth sites will be in rugged terrain and predation sites 
in flatter terrain. 

Vector ruggedness measure (VRM), a 
measure of terrain ruggedness. 

NDVI 
Birth sites will be in areas with higher primary 
productivity of vegetation. 

The normalized difference vegetation index 
(NDVI), a measure of primary productivity. 

Habitat 

Deer will select birth sites primarily in woodlands and 
secondarily in aspen-conifer stands, whereas predation 
sites will occur primarily in aspen-conifer stands and 
secondarily in woodlands. 

A categorical variable including woodlands 
(reference group), shrubland-steppe, aspen-
conifer stands, and forbs-grasslands habitat 
types. 

Dist.edge (m) 
Birth sites will be farther from treed edges and predation 
sites will be closer to treed edges. 

Distance (m) to nearest treed edge (i.e., into 
trees). 

Dist.drill (m) 
Birth sites will be farther from drilling well pads and 
predation sites will be closer to drilling well pads. 

Distance (m) to nearest drilling well pad. 

Dist.prod (m) 
Birth sites will be farther from producing well pads and 
predation sites will be closer to producing well pads. 

Distance (m) to nearest producing well pad. 

Dist.pipe (m) 
Birth sites will be farther from pipelines and predation 
sites will be closer to pipelines. 

Distance (m) to nearest pipeline. 

Dist.road (m) 
Birth sites will be farther from roads and predation sites 
will be closer to roads. 

Distance (m) to nearest road. 
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Table 3.2. Mean and standard deviation (SD) of unstandardized continuous variables included in conditional logistic regression 
models of birth site selection by mule deer and habitat characteristics of predation sites on the high development (n = 90 birth and 
900,000 available sites and n = 56 predation and 560,000 available sites) or low development (n = 41 birth and 410,000 available sites 
and n = 24 predation and 240,000 available sites) study areas. “—“ indicates variables that were not included in models. Data 
collected in the Piceance Basin in northwestern Colorado, USA, 2012–2014.  
 

    Birth site   Available site   Predation site   Available site 
Variablea and study 

areas 
  

Mean SD   Mean SD 
  

Mean SD   Mean SD 

Dist.edge (m)             

High development  62.33 50.03  63.74 45.92  61.02 49.10  63.22 45.55 
Low development  108.42 146.7  88.48 91.83  72.62 41.67  78.06 71.14 

Dist.road (m)             

High development  182.16 141.96  182.32 163.28  176.82 130.11  167.93 155.89 
Low development  574.33 1030.34  595.01 1074.87  540.77 689.00  484.13 603.00 

Dist.drill (m)             

High development  7,420.36 5,652.49  7,477.67 5,908.53  7,170.46 5,104.32  7,240.82 4,995.41 
Low development  — —  — —  — —  — — 

Dist.prod (m)             

High development  2,429.29 1,936.58  2,297.03 1,872.53  2,056.85 1,919.28  2,156.00 1,927.76 
Low development  — —  — —  — —  — — 

NDVI             

High development  0.55 0.13  0.54 0.12  — —  — — 
Low development  0.64 0.12  0.65 0.13  — —  — — 

Elevation (m)             

High development  — —  — —  2,413.19 166.84  2,412.88 164.31 
Low development  — —  — —  2,222.55 249.46  2,236.23 252.11 

Slope (%)             

High development  27.70 14.60  30.11 16.26  33.84 15.46  30.36 15.25 
Low development  21.67 12.68  24.97 16.16  22.76 15.71  24.71 17.00 
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VRM             

High development  0.006 0.007  0.006 0.008  0.008 0.009  0.007 0.009 

Low development   0.006 0.007   0.005 0.008   0.006 0.006   0.006 0.010 
a Variables are defined as in Table 3.1.
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Table 3.3. Model selection results for birth site selection by adult female deer on the high or low 
development study areas. Only models within two ΔAICc units of the top-ranked model are 
shown. Data collected in the Piceance Basin in northwestern Colorado, USA, 2012–2014. 
 

Study areas and modela AICc ΔAICc AICc weight Kb 
High development     

Dist.prod + slope 1654.174 0.000 0.057 2 
Dist.prod 1654.595 0.422 0.046 1 
Dist.prod + slope + NDVI 1655.096 0.923 0.036 3 
Dist.prod + NDVI 1655.337 1.163 0.032 2 
Dist.prod + slope + VRM 1655.484 1.311 0.029 3 
Dist.prod + slope + dist.drill 1655.537 1.364 0.029 3 
Dist.prod + dist.drill 1655.889 1.715 0.024 2 
Dist.prod + slope + dist.edge 1655.975 1.802 0.023 3 
Dist.prod + slope + dist.road 1656.093 1.919 0.022 3 
Dist.prod + VRM 1656.150 1.977 0.021 2 

     
Low development     

Slope 754.852 0.000 0.059 1 
Slope + dist.edge 754.861 0.008 0.058 2 
Dist.edge 755.033 0.181 0.054 1 
Slope + aspect 755.996 1.144 0.033 4 
Slope + dist.edge + aspect 756.267 1.414 0.029 5 
Slope + dist.edge + dist.road 756.318 1.466 0.028 3 
Dist.edge + dist.road 756.340 1.488 0.028 2 
Aspect 756.441 1.589 0.026 3 
Dist.edge + aspect 756.617 1.764 0.024 4 
Slope + dist.road 756.667 1.815 0.024 2 
Slope + NDVI 756.717 1.865 0.023 2 
Slope + NDVI + dist.edge 756.733 1.881 0.023 3 
Slope + dist.edge + VRM 756.782 1.930 0.022 3 

Slope + VRM 756.795 1.943 0.022 2 
a Variables are defined as in Table 3.1. 

b K is the number of parameters in the model.  
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Table 3.4. Cumulative AICc (Akaike Information Criterion adjusted for small sample size) 
weights for variables included in conditional logistic regression models of birth site selection by 
mule deer and habitat characteristics of predation sites on the high or low development study 
areas. “— “ indicates variables that were not included in models. Data collected in the Piceance 
Basin in northwestern Colorado, USA, 2012–2014.  
 

Birth site  Predation site 
Study areas and 

variablea 
Cumulative 
AICc weight  

Study area and 
variablea 

Cumulative 
AICc weight 

High development   High development  
Dist.prod (m) 0.854  Habitat 0.970 
Slope (%) 0.559  Aspect 0.532 
NDVI 0.402  Slope (%) 0.500 
VRM 0.332  Dist.prod (m) 0.486 
Dist.drill (m) 0.343  VRM 0.320 
Dist.edge (m) 0.288  Elevation (m) 0.298 
Dist.road (m) 0.280  Dist.edge (m) 0.287 
Aspect 0.066  Dist.road (m) 0.282 
Habitat 0.062  Dist.drill (m) 0.277 

     

Low development   Low development  
Slope (%) 0.572  Elevation (m) 0.429 
Dist.edge (m) 0.535  Dist.road (m) 0.417 
Aspect 0.360  Slope (%) 0.336 
Dist.road (m) 0.333  Dist.edge (m) 0.325 
NDVI 0.300  Habitat 0.317 
VRM 0.288  VRM 0.292 
Habitat 0.110  Aspect 0.280 
Dist.drill (m) —  Dist.drill (m) — 

Dist.prod (m) —  Dist.prod (m) — 
a Variables are defined as in Table 3.1.  
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Table 3.5. Model selection results for habitat characteristics of predation sites on the high or low 
development study areas. Only models within two ΔAICc units of the top-ranked model are 
shown. Data collected in the Piceance Basin in northwestern Colorado, USA, 2012–2014. 
 

Study areas and modela  AICc ΔAICc AICc weight Kb 

High development     
Habitat + aspect 1021.484 0.000 0.026 6 
Habitat + aspect + dist.prod 1021.628 0.143 0.024 7 
Habitat + slope 1021.810 0.326 0.022 4 
Habitat 1021.822 0.338 0.022 3 
Habitat + dist.prod + slope 1021.931 0.447 0.021 5 
Habitat + aspect + dist.prod + slope 1022.014 0.530 0.020 8 
Habitat + aspect + slope 1022.025 0.541 0.020 7 
Habitat + dist.prod 1022.067 0.583 0.019 4 
Habitat + aspect + VRM 1023.133 1.649 0.011 7 
Habitat + slope + elevation 1023.218 1.734 0.011 5 
Habitat + aspect + dist.prod + slope + VRM 1023.224 1.740 0.011 9 
Habitat + aspect + dist.prod + VRM 1023.230 1.746 0.011 8 
Habitat + aspect + dist.edge 1023.319 1.835 0.010 7 
Habitat + aspect + slope + VRM 1023.319 1.835 0.010 8 
Habitat + aspect + dist.road 1023.338 1.853 0.010 7 
Habitat + aspect + dist.prod + dist.road 1023.390 1.906 0.010 8 
Habitat + aspect + dist.prod + dist.edge 1023.424 1.940 0.010 8 
Habitat + aspect + elevation 1023.454 1.970 0.010 7 
Habitat + slope + VRM 1023.458 1.974 0.010 5 
Habitat + aspect + dist.prod + dist.drill 1023.472 1.988 0.010 8 
Habitat + aspect + dist.drill 1023.481 1.997 0.010 7 

     
Low development     

Dist.road 443.278 0.000 0.044 1 
Elevation 443.408 0.130 0.041 1 
Slope 443.559 0.281 0.038 1 
Dist.road + elevation 443.737 0.459 0.035 2 
Dist.edge 443.837 0.559 0.033 1 
VRM 444.022 0.744 0.030 1 
Habitat  444.054 0.776 0.030 3 
Aspect 444.128 0.850 0.029 3 
Dist.road + slope 444.757 1.479 0.021 2 
Elevation + slope 445.012 1.734 0.019 2 
Elevation + habitat  445.025 1.747 0.018 4 
Elevation + dist.edge 445.106 1.828 0.018 2 
Dist.road + elevation + habitat 445.155 1.877 0.017 5 
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Dist.road + dist.edge 445.214 1.936 0.017 2 

Dist.road + VRM 445.277 1.999 0.016 2 
a Variables are defined as in Tables 3.1. 

b K is the number of parameters in the model.  
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FIGURES 

 

Figure 3.1. Mule deer winter and summer range study units in the Piceance Basin in 
northwestern Colorado, USA. Winter range study units were referenced as Ryan Gulch (RG), 
South Magnolia (SM), North Magnolia (NM), and North Ridge (NR). Summer range study units 
were referenced as Roan Plateau and Lake Avery. RG and SM deer generally migrated towards 
the Roan Plateau summer range, while NM and NR deer generally migrated towards the Lake 
Avery summer range. Overall, RG, SM, and Roan Plateau were considered the high development 
study areas, whereas NM, NR, and Lake Avery were considered the low development study 
areas. Drilling and producing natural gas well pads (●) and National Climatic Data Center 
weather station (▲).  
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Figure 3.2. Model-averaged parameter estimates (± 95% CI) from resource selection functions 
for birth site selection by adult female mule deer on the high development (A) or the low 
development (B) study areas. Positive estimates signify selection of variable, whereas negative 
estimates signify avoidance. Continuous parameter estimates were calculated with standardized 
variables so they are directly comparable. Data obtained from the Piceance Basin in northwestern 
Colorado, USA, 2012–2014.  
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Figure 3.3. Model-averaged parameter estimates (± 95% CI) from resource selection functions 
for habitat characteristics of predation sites on the high development (A) or the low development 
(B) study areas. Positive estimates signify favorable characteristic, whereas negative estimate 
signify unfavorable characteristic. Continuous parameter estimates were calculated with 
standardized variables so they are directly comparable. Data obtained from the Piceance Basin in 
northwestern Colorado, USA, 2012–2014.   
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CHAPTER 4: 
 
 
 

FACTORS INFLUENCING NEONATAL MULE DEER MORTALITY IN A NATURAL  
 

GAS DEVELOPMENT AREA  
 
 
 

Synopsis. Potential impacts of natural gas development on wildlife and their habitat has caused 

concern among wildlife managers, researchers, and stakeholders. Specifically, understanding 

how this development and other factors influence neonatal (i.e., 0–6 months old) mule deer 

(Odocoileus hemionus) mortality rates, recruitment, and population dynamics have been 

identified as knowledge gaps. Thus, I tested hypotheses about the influence of natural gas 

development, adult female, neonate, and temporal factors on neonatal mortality in the Piceance 

Basin in northwestern Colorado, USA from 2012–2014. I estimated apparent cause-specific 

mortality in areas with relatively high or low levels of natural gas development using a multi-

state model. Predation and death by malnutrition decreased from 0–14 days old. Predation of 

neonates was positively correlated with rump fat thickness of adult females, but negatively 

correlated with the distance (0–0.4 km) from a female’s core area to a producing well pad on 

winter or summer range. Death by malnutrition was positively correlated with the distance from 

a female’s core area to a road on winter range and weakly, but negatively correlated with 

temperature. During my study, predation was the leading cause of neonatal mortality in both 

areas and mean daily predation probability was 9% higher in the high versus low development 

areas. However, black bear (Ursus americanus) predation was the leading cause of neonatal 

mortality in the high development areas (22% of all mortalities) compared to cougar (Felis 

concolor) predation in the low development areas (36% of all mortalities). Reduced precipitation 
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and patchy habitat further fragmented by development possibly contributed to less hiding cover 

or edge effects, potentially leading to increased predation in the high development areas. 

Consequently, developers and managers should consider strategies to mitigate impacts from 

development and improve habitat to reduce mortality. Such strategies could include 

implementing habitat treatments to rehabilitate areas, as well as minimizing habitat 

fragmentation and minimizing removal of hiding cover when constructing well pads and roads. 

INTRODUCTION  

Wildlife managers, researchers, and public stakeholders have heightened concern about the 

potential impacts of natural gas development on wildlife and their habitat (Walker et al. 2007, 

Doherty et al. 2008, Webb et al. 2011a, Christie et al. 2015). Impacts on mule deer (Odocoileus 

hemionus) populations and their habitat are of particular interest due to their recreational, social, 

and economic importance as a game species (Sawyer et al. 2006, Lendrum et al. 2012, Northrup 

et al. 2015). Understanding neonatal (i.e., 0–6 months old) mule deer mortality rates and cause-

specific mortality is helpful to comprehend mule deer population dynamics, especially where 

natural gas development disturbances are occurring. Ungulate juvenile (i.e., 0–1 year old) 

survival is typically low and variable, consequently annual variation in survival and recruitment 

can influence population dynamics (Gaillard et al. 1998, Gaillard et al. 2000, Forrester and 

Wittmer 2013). However, neonatal mule deer survival has been little studied, even though this 

time period may be when most mortality occurs (Bishop et al. 2009, Hurley et al. 2011, Monteith 

et al. 2014, Shallow et al. 2015).  

Neonatal mortality can be influenced by distance an adult female’s core area is from 

natural gas development and roads due to increased noise, human presence, and perceived 

predation risk. Past studies suggest deer tend to avoid roads (Rost and Bailey 1979, Webb et al. 
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2011c, Lendrum et al. 2012) and well pads (Sawyer et al. 2006, Sawyer et al. 2009, Northrup et 

al. 2015). However, deer have been shown to use habitat closer to well pads and during spring 

migration because disturbed topsoil near well pads possibly provided the first nutritious 

herbaceous vegetation of the growing season (Webb et al. 2011c, Lendrum et al. 2012). 

Increased human presence associated with development might provide a refuge from predators 

(Berger 2007, Dussault et al. 2012), although gas-developed areas have also been shown to cause 

higher perceived risk of predation and exposure to noise (Frid and Dill 2002, Barber et al. 2010, 

Dzialak et al. 2011b, Lynch et al. 2014). Consequently, neonatal mortality could be positively or 

negatively influenced by distance from development. 

Adult female characteristics (e.g., body condition, fetal production, and age) may be 

affected by development and have the potential to influence neonatal mortality (Bishop et al. 

2007, Lomas and Bender 2007, Bishop et al. 2011). Nutrition seems to be the driving force 

behind reproductive success of deer (Johnstone-Yellin et al. 2009, Parker et al. 2009, Tollefson 

et al. 2011) and can influence adult female body condition (Robinette et al. 1973). Availability of 

high quality forage is necessary to support fetal and neonatal growth (Keech et al. 2000, 

Tollefson et al. 2011), particularly during the critical periods of the last trimester and lactation 

(Robbins and Robbins 1979, Pekins et al. 1998). However, development may alter or enhance 

availability of nutritious forage on both winter and summer range and subsequently influence 

body condition of females, which has implications for neonate mortality (Keech et al. 2000, 

Cook et al. 2004, Monteith et al. 2014, Shallow et al. 2015). Litter size also has implications for 

neonate mortality as twins or triplets weigh less than singletons (Robinette et al. 1973, Robinette 

et al. 1977), thus increasing the risk of starvation for larger litters. In addition, twins and triplets 

tend to be more pretentious than singletons, thus increasing their risk of predation (Riley and 
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Dood 1984). Female age can also influence neonate mortality as white-tailed deer offspring 

produced by prime-aged and older females (3-10 years old) versus younger females had lower 

mortality due to improved rearing skills, anti-predator behavior, and selection of prime habitat 

(Ozoga and Verme 1986, Grovenburg et al. 2009, Grovenburg et al. 2012). Overall, maternal 

body condition, litter size, and maternal age can influence neonatal mortality. 

Neonatal mortality can be influenced by neonate characteristics including mass, age, and 

date of birth. Neonate mass can also interact with age (Lomas and Bender 2007, Bishop et al. 

2009) and date of birth (Testa 2002) in influencing survival. Neonates are most vulnerable to 

mortality events from birth to 8 weeks old (Lomas and Bender 2007, Monteith et al. 2014, 

Shallow et al. 2015). Earlier date of birth may allow adult females access to nutritious high 

quality forage during the early growing season (Parker et al. 2009, Lendrum et al. 2014), which 

increases neonate growth and strength to elude predators (Testa 2002). Thus, neonate 

characteristics and subsequent mortality are influenced by habitat and adult female body 

condition (Monteith et al. 2014, Simard et al. 2014, Shallow et al. 2015).  

Temporal characteristics, namely winter precipitation (i.e., season before parturition), 

summer precipitation, and temperature can influence neonatal mortality. Neonatal mortality from 

4–6 weeks after birth depends on maternal body condition, cryptic coloration, and hiding cover 

to minimize detection by predators (Walther 1965, Lent 1974, Geist 1981). Precipitation can 

indirectly affect maternal condition and subsequent neonate birth mass and mortality through 

forage growth and quality (Lomas and Bender 2007, Monteith et al. 2014, Shallow et al. 2015). 

Additionally, summer ambient temperatures can increase neonate mortality if exposure to cold, 

wet weather occurs shortly after birth (Gilbert and Raedeke 2004, Hurley et al. 2011).  
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The use of vaginal implant transmitters (VITs) allowed me to capture mule deer neonates 

from radio-collared females to test hypotheses about how natural gas development, adult female, 

neonate, and temporal characteristics influence neonatal mortality. The use of VITs aided capture 

of neonates at or close to birth and minimized unknown fates of very young neonates, which can 

cause biased mortality rates when using age-dependent models (Gilbert et al. 2014). I estimated 

cause-specific mortality in areas with relatively high (0.04–0.90 well pads/km2) or low (0.00–

0.10 well pads/km2) levels of natural gas development using a multi-state model (White et al. 

2006, Lebreton et al. 2009). My objective was to test predictions that neonatal mortality would 

be higher farther from producing well pads (e.g., less forage), closer to roads (e.g., less cover), 

for younger and lighter neonates (e.g., increased mortality risk and less strength), for late-born 

(e.g., decreased growth rate), male (e.g., more active), and twin neonates (e.g., lower mass and 

more active). I also predicted neonatal mortality would be higher for neonates produced by 

females with decreased rump fat thickness (i.e., body condition) and younger (≤ 3.5 years old) 

females (e.g., poor rearing skills), and with increased previous winter precipitation (e.g., poor 

body condition), and with decreased summer precipitation (e.g., less forage and cover) and 

temperature (e.g., increased thermoregulation). Additionally, I predicted that predation would be 

the primary cause of neonatal mortality and higher in the high versus low natural gas 

development study areas (e.g., less cover and fragmented habitat). My novel results can be used 

to comprehend mule deer population dynamics and address management decisions and 

mitigation strategies. 
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METHODS 

Study Area 

I examined neonatal mortality in the Piceance Basin in northwestern Colorado, USA, from 

2012–2014 (Figure 4.1). The Piceance Basin provides crucial winter and transition range habitat 

for one of the largest migratory mule deer populations in North America (White and Lubow 

2002), yet some of the largest natural gas reserves in North America reside beneath the Basin as 

part of the Green River Formation. My winter range study area included four study units in the 

Piceance Basin (Figure 4.1) and are part of a larger research project (Anderson 2015). My winter 

range study units were South Magnolia (83 km2; 39.898°N, −108.343°W), Ryan Gulch (141 

km2; 39.894°N, −108.343°W), North Ridge (53 km2; 40.045°N, −108.153°W), and North 

Magnolia (79 km2; 39.966°N, −108.206°W). South Magnolia and Ryan Gulch study units had 

relatively high levels of natural gas development (0.6–0.9 well pads/km2; hereafter referenced as 

the high development study area), whereas North Magnolia and North Ridge study units had low 

levels of development (0.0–0.1 well pads/km2; hereafter referenced as the low development 

study area). 

Winter range habitat was dominated by two-needle pinyon (Pinus edulis Engelm.) and 

Utah juniper (Juniperus osteosperma Torr.) woodlands, big sagebrush (Artemisia tridentate 

Nutt.), Utah serviceberry (Amelanchier utahensis Koehne.), alderleaf mountain mahogany 

(Cercocarpus montanus Raf.), antelope bitterbrush (Purshia tridentate Pursh.), rubber 

rabbitbrush (Ericameria nauseosa Pall ex. Pursh.), and mountain snowberry (Symphoricarpos 

oreophilus A. Gray; Bartmann 1983, Bartmann et al. 1992). Shrubs, forbs, and grasses common 

to the area are listed in Bartmann (1983) and Bartmann et al. (1992). Drainage bottoms bisected 

the study units and contained stands of big sagebrush, saltbush (Atriplex spp.), and greasewood 
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(Sarcobatus vermiculatus Hook.), with most of the primary drainage bottoms having been 

converted to irrigated, grass hay fields. Plant nomenclature follows the United States Department 

of Agriculture PLANTS Database (USDA and NRCS 2016). Winter study unit elevations ranged 

from 1,860 m to 2,250 m and the winter climate of the Piceance Basin is typified by cold 

temperatures with most of the moisture resulting from snow. During my study, winter (October–

April) precipitation averaged 22.4 cm and mean winter temperatures ranged from −14 °C to 14 

°C at the Rifle 23 NW weather station located at 2,301 m elevation (National Climatic Data 

Center 2015).  

Summer range study units included parts of Garfield, Moffat, Rio Blanco, and Routt 

counties in northwestern Colorado (39.580°N, −107.961°W and 40.330°N, −107.028°W; Figure 

4.1). Ryan Gulch and South Magnolia deer generally migrated southeast and south to the Roan 

Plateau (Lendrum et al. 2013) where deer potentially encountered natural gas development 

(0.04–0.06 well pads/km2; hereafter referenced as the high development study area). North 

Magnolia and North Ridge deer generally migrated northeast and east across US Highway 13 

towards Lake Avery and the Flat Tops Wilderness Area (Lendrum et al. 2013) where deer 

encountered minimal natural gas development (0.00–0.01 well pads/km2; hereafter referenced as 

the low development study area). Not all deer (n = 8) migrated to summer range and instead 

opted to remain residents on winter range.  

Summer range habitat was dominated by Gambel oak (Quercus gambeli Nutt.), mountain 

mahogany, Utah serviceberry, mountain snowberry, chokecherry (Prunus virginiana L.), 

quaking aspen (Populus tremuloides Michx.), big sagebrush, pinyon pine, and Utah juniper. 

Dominant habitat was interspersed with Douglas-fir (Pseudotsuga menziesii Mirb.), Engelmann 

spruce (Picea engelmannii Parry ex. Engelm.), and subalpine fir (Abies lasiocarpa Hook.) forests 
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(Garrott et al. 1987). Summer study unit elevations ranged from 1,900 m to 3,150 m and the 

summer climate of the Piceance Basin is typified by warm temperatures with most of the 

moisture resulting from spring snow melt and brief summer monsoonal rainstorms. During my 

study, summer (May–September) precipitation averaged 20.3 cm and mean summer 

temperatures ranged from 2 °C to 31 °C at the Rifle 23 NW or Hunter Creek weather station 

(National Climatic Data Center 2015) depending on available weather data.  

Adult Female Capture and Handling 

During December 2011–2013, adult female mule deer (≥ 1.5 years old) were captured in each of 

the four winter range study units using helicopter net gunning techniques (Barrett et al. 1982, van 

Reenen 1982). Deer were blindfolded, hobbled, and chemically immobilized with 35 mg of 

Midazolam (a muscle relaxant) and 15 mg of Azapirone (an anti-anxiety drug) given 

intramuscularly. For each captured deer, age was estimated (Severinghaus 1949, Robinette et al. 

1957b) and I fit each captured deer with a store-on-board GPS radio collar with a motion-

sensitive mortality switch on an 8-hour delay and a timed released mechanism set to release 16 

months after deployment (Model G2110D, Advanced Telemetry Systems, Inc., Isanti, MN, 

USA). Most GPS radio collars were programmed to attempt a fix every 5 hours, but some 

attempted a fix every 30 minutes between 1 September and 15 June and hourly between 16 June 

and 31 August to address different research objectives (Northrup 2015). I consolidated data to 

attain the same temporal scale of 5 hours for all deer. 

During early March 2012–2014, radio-collared adult females were recaptured on winter 

ranges using helicopter net gunning techniques. I performed transabdominal ultrasonography to 

measure maximum subcutaneous fat thickness on the rump and thickness of the longissimus 

dorsi muscle of each adult female using a SonoVet 2000 portable ultrasound unit (Universal 
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Medical Systems, Inc., Bedford Hills, NY) with a 5 MHz linear transducer (Stephenson et al. 

1998, Stephenson et al. 2002, Cook et al. 2010). I determined a body condition score for each 

deer by palpating the rump (Cook et al. 2007, Cook et al. 2010). I estimated percent ingesta-free 

body fat of each female by combing the ultrasonography measurements with the body condition 

score (Cook et al. 2010). I also performed transabdominal ultrasonography to determine 

pregnancy status and number of fetuses present with a 3 MHz linear transducer (Stephenson et 

al. 1995, Bishop et al. 2007). If an adult female was pregnant, I inserted a vaginal implant 

transmitter (VIT; Model M3930, Advanced Telemetry Systems, Inc., Isanti, MN, USA) and 

followed VIT insertion procedures described in detail by Bishop et al. (2007) and Bishop et al. 

(2011). In 2012 and 2013, each VIT was equipped with a temperature-sensitive sensor (Bishop et 

al. 2011). In 2014, each VIT was equipped with a temperature- and photo-sensitive sensor, which 

changed the signal when the ambient temperature dropped below 32 °C or when ambient light 

was ≥ 0.01 lux (Cherry et al. 2013). The manufacturer programmed VITs to lock on 80 pulses 

per minute to minimize issues associated with hot ambient temperatures (Newbolt and Ditchkoff 

2009).  

Adult Female Monitoring and Neonate Capture 

On winter range, field technicians monitored radio collar and VIT signals daily from the ground 

or a Cessna 182 or 185 (Cessna Aircraft Co., Wichita, KS, USA) fixed-wing aircraft. During the 

parturition period (late May–mid-July), I checked VIT signals daily by aerially locating each 

radio-collared female having a VIT, weather permitting. In 2014, ground crews also located adult 

females with VITs to aid in determining when parturition occurred because VIT photo-sensors 

malfunctioned. When I detected a fast (i.e., postpartum) pulse rate, ground crews used a coded 

telemetry receiver (Model R4520, Advanced Telemetry Systems, Inc., Isanti, MN, USA) and 3-
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element Yagi antenna to simultaneously locate the VIT and radio-collared female. Ground crews 

searched for neonates and a birth site near (≤ 400 m) the female and expelled VIT. If a VIT was 

shed prior to parturition or malfunctioned (e.g., battery failure), crews located the female once 

per day, observed female behavior, and searched in the vicinity of the female to locate neonates 

and birth sites (Carstensen et al. 2003). All neonate searches lasted up to 1 hour. Crews retrieved 

VITs and recorded coordinates of birth sites using a hand-held GPS (Garmin GPSMAP 62S, 

Oregon 650, or Montana 650, Garmin International Inc., Olathe, KS, USA). Crews identified 

birth sites based on detection of neonates and VIT or by birth site characteristics, including 

placental remnants, a large deer bed with flattened vegetation radiating outward, browsed or 

grazed vegetation, moist soil, fresh fecal pellets, tracks, hair, and characteristic odor (Barbknecht 

et al. 2011, Bishop et al. 2011, Rearden et al. 2011).  

Crews attempted to determine the fate of each female’s fetus(es) documented in 

February/March as live or stillborn neonates. I assumed that no fetuses were resorbed based on 

past research (Robinette et al.1955, Medin 1976, Carpenter et al. 1984). Unless evidence 

suggested a neonate was born alive at a birth site (e.g., milk in the abomasum), crews classified 

the neonate as stillborn. Crews collected and submitted stillborn neonates to the Colorado Parks 

and Wildlife’s Health Laboratory (Fort Collins, CO) for necropsy to confirm that a neonate had 

died before breathing.  

During 2012 and 2013, ground crews captured neonates and located birth sites in the high 

and low development study areas. In 2014, crews captured neonates and located birth sites 

predominantly in the high development study areas and sporadically in the low development 

study areas because VIT photo sensors malfunctioned. Each captured neonate was handled with 

nitrile latex gloves to minimize transfer of human scent, blindfolded, and placed in a cloth bag to 
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measure body mass (± 0.1 kg). Crews measured hind foot length (± 0.5 cm), sexed each neonate, 

and estimated neonate age (days) primarily based on VIT expulsion date and secondarily based 

on hoof characteristics, condition of the umbilical cord, pelage, and behavior (Haugen and 

Speake 1958, Sams et al. 1996). Crews fit each neonate with a radio collar (Model M4210, 

Advanced Telemetry Systems, Inc., Isanti MN, USA) equipped with an 8-hour mortality sensor. 

Crews modified radio collars for temporary attachment by cutting the collar in half and splicing 

the ends with two lengths of rubber surgical tubing (5.7 cm each). Handling time was ≤ 5 

minutes per neonate and crews replaced neonates where initially found to reduce abandonment. 

Past neonatal deer studies have reported minimal or no marking-induced abandonment (Pojar 

and Bowden 2004, Powell et al. 2005, Bishop et al. 2007). All capture, handling, radio collaring, 

and VIT insertion procedures were approved by the Institutional Animal Care and Use 

Committee at Colorado Parks and Wildlife (protocol #17-2008 and #1-2012) and followed 

guidelines of the American Society of Mammalogists (Sikes et al. 2011). 

Neonate Monitoring and Cause-specific Mortality 

From the air, field technicians or I monitored radio-collared neonates daily during the parturition 

period, weekly until deer migrated from summer range, and daily from the ground when deer 

arrived on winter range. Technicians or I monitored radio-collared neonates from birth until 

death, collars were shed, or the end of the neonate survival period (i.e., 0–6 months old) on 15 

December 2012, 2013, or 2014. Daily monitoring during the parturition period, when a majority 

of mortalities occurred, allowed us to investigate mortalities typically within 24 hours, thus I am 

confident in our determination of cause-specific mortality. When I detected a mortality signal, 

ground crews located the neonate and/or radio collar and conducted a mortality site investigation 

and field necropsy, if possible, to determine cause-specific mortality. During the mortality site 
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investigation, crews documented GPS coordinates of the site, predator tracks, predator scat, drag 

trails, blood, hair, and any other signs (e.g., matted vegetation or broken shrub branches) that 

could help determine cause-specific mortality or scavenging. If no carcass was present, but site 

investigation suggested probable predation (i.e., blood at the site or on the radio collar), crews 

used predation site characteristics and predatory feeding behavior reported in the literature to 

help assign a specific predator (Wade and Bowns 1982, Acorn and Dorrance 1990, Stonehouse et 

al. In prep).  

Crews classified cause-specific mortality into the following categories: predation by 

black bear (Ursus americanus), bobcat (Lynx rufus), cougar (Puma concolor), coyote (Canis 

latrans), domestic dog (Canis familiaris), raptor, unknown predation, malnutrition, accident, 

disease, or unknown mortality. Crews identified cause-specific predation based on characteristics 

detailed in Stonehouse et al. (In prep) and malnutrition as cause of death if the femur contained 

minimal or no marrow fat on an intact carcass (Riney 1955) and no sign indicated hemorrhaging, 

predation, disease, or scavenging. Accident mortalities included blunt force trauma and vehicle 

collisions. Lastly, disease mortalities included deaths caused by congenital deformities. 

Mule Deer Core Area Estimation 

Radio collars deployed on adult females were programmed to release 16 months post-capture. 

Technicians retrieved collars then, or from mortality sites, and downloaded GPS data. I imported 

data into ArcMap 10.2 (Environmental Systems Research Institute, Redlands, CA, USA) to 

determine winter and summer range locations for each adult female. Using helicopter net 

gunning techniques to capture deer can potential impact mule deer behavior (Northrup et al. 

2014), thus I censored location data for 4 days following capture. Deer in this area are migratory, 

thus I classified winter range locations as being from post-capture to departure from winter range 
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and summer range locations as being from arrival to departure or date of neonatal death. I 

determined migration patterns for each deer by examining GPS locations in ArcMap 10.2. I 

derived 50% kernel density estimates of core areas and centroids for each adult female on winter 

and summer ranges using the Geospatial Modeling Environment (Beyer 2012).  

Multi-state Mark-recapture Mortality Analyses and Model Set 

Because of the logistics of aerial telemetry flights and ground telemetry, migration patterns of 

mule deer, and transmitter failures, my data violated the fundamental assumptions of a known-

fate study (White and Garrott 1990) that detection probability (p) equals 1.0 and all fates (alive 

or dead) are known (White and Garrott 1990). To overcome these violations, I used a multi-state 

model (Brownie et al. 1993, Lebreton and Pradel 2002, Lebreton et al. 2009) as implemented in 

Program MARK (White and Burnham 1999, White et al. 2006).  

I analyzed apparent mortality daily from parturition until 15 December 2012–2014 by 

setting time intervals in MARK to one day during the parturition period and seven days (i.e., 

weekly) after the parturition period until 15 December to align with my monitoring protocols. I 

considered my encounter data to be in one of five states represented by alive in the high 

development study areas (H), alive in the low development study areas (L), death by predation 

(K), death by malnutrition (M), or death by unknown mortality (U; Figure 4.2). In addition, each 

encounter history was assigned to one of three groups represented by 2012, 2013, or 2014. 

Lastly, prior to modeling, I calculated a correlation matrix to test for collinearity among 

covariates (|r| ≥ 0.6). If two covariates were correlated, I retained the more biologically plausible 

covariate. 

Multi -state models estimate three parameters including survival (S), detection, and 

transition probabilities (Lebreton et al. 2009). In my case, I modeled alive and dead states and 
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estimated apparent mortality rates as the transition probability ���� from an alive to a dead state 

(Lebreton and Pradel 2002, Devineau et al. 2010). Because survival is the complement of 

mortality and I estimated mortality with the transition probabilities, I fixed survival rates in the 

high (�H) and low (�L) development area states to one and survival rates in the death by 

predation (�K), malnutrition (�M), and unknown mortality (�U) states to zero (Devineau et al. 

2010, Devineau et al. 2014). I modeled transitions from alive in the high or low development 

study areas to death by predation, malnutrition, or unknown mortality ���HK,��HM,��HU,��LK,  ��LM,��LU�. I assumed transitions from a dead to an alive state or a dead to 

a dead state could not happen and fixed those to zero. In addition, transitions from an alive state 

in the high development areas to an alive state in the low development areas did not occur and I 

fixed those to zero. 

I modeled mortality as function of winter range development, summer range 

development, adult female, neonate, and temporal covariates that I hypothesized would influence 

neonatal mule deer mortality (Table 4.1) based on previous deer studies (Pojar and Bowden 

2004, Bishop et al. 2009, Johnstone-Yellin et al. 2009, Hurley et al. 2011, Monteith et al. 2014, 

Shallow et al. 2015). Winter and summer range development covariates included the distance 

(km) from a female’s core area to the nearest drilling well pad, producing well pad, and road 

(Table 4.1). We acquired the location of natural gas wells from the Colorado Oil and Gas 

Conservation Commission (http://cogcc.state.co.us). We classified each well in the high 

development summer range as either actively being drilled or actively producing natural gas with 

no drilling activity using a procedure described in Northrup et al. (2015). Using the classified 

well pad data, we calculated mean distance (m) from the centroid of each adult female’s core 

area to the nearest drilling and producing well pad on their specific winter and summer range 
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study areas. I fit models using a distance threshold model structure that accounted for distances 

that can illicit behavioral responses by deer (Northrup et al. 2015), specifically 0–0.8 km from a 

drilling well pad and 0–0.4 km from a producing well pad. We also created a road network map 

by digitizing all roads visible on NAIP imagery and calculated mean distance (m) from the 

centroid of each adult female’s core area to the nearest road on their specific winter and summer 

range study areas. We calculated mean distances from a female’s capture date to departure from 

winter range for winter range development covariates and calculated distance from summer 

range development covariates on a neonate’s date of birth using the R statistical software (R 

Core Team 2015). 

Adult female-specific covariates included rump fat thickness (mm) of females in March, 

in utero fetal count in March, female age in December, and deer density (deer/km2; Table 4.1). 

Deer density in each study area was estimated using annual mark-resight helicopter surveys 

conducted in late March–early April  (Anderson 2015).  

Neonate-specific covariates included age (days old), estimated mass at birth (kg), date of 

birth (DOB), and sex (Table 4.1). I incorporated neonate age into models by fitting a model that 

allowed transition probabilities to vary by an age trend from 0–14 days old and constant 

thereafter. I estimated neonate mass at birth by regressing neonate capture mass as a function of 

age for each year separately (Bishop et al. 2008, Bishop et al. 2009) using a linear model in the R 

statistical software (R Core Team 2015). I defined date of birth (DOB) as the number of days 

following the first detected birth in a given year (Bishop et al. 2009).  

Temporal covariates included total precipitation (cm) during the previous winter season 

before parturition (1 October–30 April), daily precipitation (cm) and daily temperature (°C) 
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during the parturition period, and the 7-day average of precipitation and temperature after the 

parturition period until 15 December (Table 4.1).  

I used a two-stage modeling approach to assess covariate importance and used stage one 

to identify and exclude unsupported covariates from stage two. For stage one, I conducted 

separate mortality analyses for winter range development, summer range development, adult 

female, neonate, or temporal covariates while holding detection probabilities constant. I also ran 

a separate analysis where I modeled detection probability as a function of year and migration 

(i.e., different probability before and after autumn migration) while holding transition 

probabilities constant. Due to memory limitations in Program MARK, I fit all possible 

combinations of additive models (Doherty et al. 2012) with a maximum of 6 winter range 

development (Appendix 4.1), 3 summer range development (Appendix 4.2), 4 adult female 

(Appendix 4.3), 3 neonate (Appendix 4.4), and 4 temporal (Appendix 4.5) covariates. For the 

detection probability analysis, I fit all possible combinations of additive and interactive models 

(Appendix 4.6; Doherty et al. 2012). For each analysis, I calculated the sum of Akaike’s 

Information Criterion adjusted for small sample size (AICc) weights for models containing each 

covariate of interest (Burnham and Anderson 2002). I considered covariates with a cumulative 

AICc weight ≥ 0.50 as important (Barbieri and Berger 2004) and retained these variable for stage 

two of model selection (Table 4.2).  

For stage two of model selection (Table 4.3), I fit all possible combinations of additive 

models (Appendix 4.7; Doherty et al. 2012) and calculated cumulative quasi-likelihood using 

Akaike Information Criterion adjusted for small sample size (QAICc) weights to help identify 

important variables (Burnham and Anderson 2002). Following suggestions of Barbieri and 

Berger (2004), I constructed a prediction model that contained all covariates with a cumulative 
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QAICc weight ≥ 0.50. Unless otherwise noted, I used the prediction model when presenting 

estimates. 

Bootstrap Analyses 

I attempted to capture and radio collar all neonates documented in utero for each radiocollared 

adult female. This potentially caused overdispersion because of sibling dependence (Bishop et al. 

2008). I followed methods described by Bishop et al. (2008) to test for overdispersion (�̂) and 

conducted a bootstrap analysis in Program MARK. I resampled litters of radio-collared adult 

females instead of individual radio-collared neonates and each analysis consisted of 1,000 

replicates. I used the most parametrized model from stage two of model selection described 

above for the bootstrap and calculated the mean and standard deviation for each of the 1,000 

mortality estimates using mean covariate values. The dependence among litters is reflected in the 

standard deviation of the mortality estimates and yielded an empirical sampling variance 

estimate. I estimated overdispersion by dividing the empirical (i.e., bootstrap) estimate of 

standard deviation ��SD�S���2� by the theoretical (i.e., observed) standard error ��SE�S���2� from 

the mortality estimate of the top model. If the mean estimate of �̂ was above 1.00, I adjusted �̂ in 

Program MARK and calculated QAICc weights (Burnham and Anderson 2002). 

RESULTS 

During 29 May–30 June 2012–2014, I captured and radio-collared 128 (2012, n = 61; 2013, n = 

33; 2014, n = 34) and 56 neonates (2012, n = 20; 2013, n = 31; 2014, n = 5) in the high and low 

development study areas, respectively. Neonates were captured from 85 [43 or 42 with one or 

two collared neonate(s)] and 33 [21, 11, or 1 with one, two, or three collared neonate(s)] females 

in the high and low development study areas, respectively. In the high and low development 

study areas, mortality was attributed to black bear predation (n = 17 and 5), cougar predation (n 
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= 9 and 6), coyote predation (n = 10 and 1), bobcat predation (n = 1 and 4), felid predation (n = 3 

and 1), raptor predation (n = 1 and 0), unknown predation (n = 18 and 5), malnutrition (n = 4 and 

3), vehicle (n = 1 and 0), and unknown mortality (n = 13 and 5). I censored two neonates from 

the mortality analyses because their deaths were related to capture. I right-censored 13 additional 

neonates during the study, 12 because of slipped radio collars and one because of a capture-

related (i.e., leg caught in collar) mortality attributed to predation at eight weeks old.  

Cause-specific Mortality of Neonates 

I estimated �̂ as 1.035 (SE = 0.153) and assessed relative importance of each covariate for 

predicting probability of predation using cumulative QAICc weights (Table 4.3). Rump fat 

thickness of adult females, distance (0–0.4 km) an adult female’s core area was from a producing 

well pad on winter or summer range, and a 14-day neonate age trend and constant thereafter all 

had a cumulative QAICc weight > 0.5 (Table 4.3), suggesting support for influencing predation 

of neonates. The daily predation probability of neonates increased as female rump fat thickness 

increased (β� = 0.196, 95% CI: 0.072 to 0.321; Figure 4.3). In addition, predation of neonates 

decreased as the distance from a female’s core area to a producing well pad on winter (�̂ = 

−2.135, 95% CI: −4.207 to −0.064; Figure 4.4) or summer (�̂ = −6.215, 95% CI: −10.587 to 

−1.844; Figure 4.5) range increased from 0–0.4 km, and decreased as neonate age increased 

from 0–14 days old (�̂ = −0.054, 95% CI: −0.102 to −0.007; Figure 4.6). Overall, predation was 

the leading cause of neonatal mortality in both areas and mean daily predation probability of 

neonates was 9% higher in the high development areas (0.012, SE = 0.002) than the low 

development areas (0.011, SE = 0.001; Figure 4.7). 

I also assessed relative importance of each covariate for predicting probability of death 

by malnutrition using cumulative QAICc weights (Table 4.3). A 14-day neonate age trend and 
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constant thereafter, distance an adult female’s core area was from a road on winter range, and 

temperature all had a cumulative QAICc weight > 0.5 (Table 4.3), suggesting support for 

influencing death by malnutrition. The daily probability of death by malnutrition decreased as 

neonate age increased from 0–14 days old (�̂ = −0.78, 95% CI: −0.364 to 0.008; Figure 4.8), 

increased as the distance from a female’s core area to a road on winter range increased (�̂ = 

2.171, 95% CI: 0.347 to 3.995; Figure 4.9), and decreased as temperature increased (�̂ = −0.116, 

95% CI: −0.246 to 0.014). Overall, mean daily probability of death by malnutrition ranged from 

0.001 (SE =8.163 x 10−5) to 0.003 (SE = 0.002) in the high development areas and from 0.001 

(SE = 9.171 x 10−5) to 0.003 (SE = 0.002) in the low development areas (Figure 4.7).  

Lastly, variation in detection probability was best explained by an interaction between 

year and an autumn migration effect (cumulative QAICc weight = 1.000; Table 4.3). Detection 

probability ranged from 0.931 (SE = 0.009) to 0.986 (SE = 0.003) before migration and from 

0.517 (SE = 0.043) to 0.810 (SE = 0.042) after migration (Table 4.4).  

DISCUSSION 

Predation was the primary cause of neonatal mule deer mortality in both the high and low 

development areas, but decreased as neonate age increased from 0–14 days old. However, black 

bear predation was the leading cause of neonatal mortality in the high development areas (22% 

of all mortalities) compared to cougar predation in the low development areas (36% of all 

mortalities). Neonates ≤ 14 days old rely on a hiding strategy with cryptic coloration and 

sedentary behavior to minimize predation risk (Walther 1965, Lent 1974, Geist 1981). 

Consequently, an annual birth pulse of neonates provides predators with an irruption of 

vulnerable prey after predators develop a search image (Whittaker and Lindzey 1999, Testa 

2002, Petroelje et al. 2014). Bears and cougars are known to prey on mule deer neonates during 
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the first few weeks after birth when neonates are most vulnerable (Monteith et al. 2014, 

Marescot et al. 2015, Shallow et al. 2015), but hiding cover can reduce predation (Panzacchi et 

al. 2010, Shallow et al. 2015). Decreased precipitation, particularly in 2012, possibly reduced 

hiding cover leading to increased predation (Lomas and Bender 2007). Moreover, patchy habitat 

further fragmented by development contributing to increased edge effects in the high 

development areas might increase predators’ capture success, especially for bears during dry 

years when vulnerable neonates were likely more visible as compared to the low development 

areas where neonates could have quickly found dense cover (Rohm et al. 2007). My result of 

age-specific vulnerability to predation is similar to other studies examining mortality of neonatal 

mule deer (Bishop et al. 2009, Hurley et al. 2011, Monteith et al. 2014, Shallow et al. 2015). In 

contrast to my predation findings, coyote predation (Whittaker and Lindzey 1999, Bishop et al. 

2009, Hurley et al. 2011) or malnutrition (Pojar and Bowden 2004, Lomas and Bender 2007) has 

been found to be the primary cause of neonatal mortality in other studies. Of note, I monitored 

neonates weekly instead of daily after mid-July. Weekly surveys increased the time between 

checks and increased the likelihood of unknown mortality. Consequently, I suspect many 

unknown mortalities of neonates were from predation, particularly by bears, due to neonate’s 

reduced mobility (Ozoga and Verme 1982, Mathews and Porter 1988, Kunkel and Mech 1994).  

Contrary to my prediction, predation of neonates was negatively correlated with the 

distance from a female’s core area to a producing well pad on winter or summer range. Deer can 

temporarily alter their behavior to select for areas closer to producing well pads during the night 

(Northrup et al. 2015) possibly for foraging benefits (Webb et al. 2011c, Lendrum et al. 2012). 

Deer foraging in openings closer to producing well pads and associated pipelines could 

positively influence maternal nutrition and condition and subsequently birth mass and growth 
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rate of neonates (Lomas and Bender 2007, Monteith et al. 2014, Shallow et al. 2015). However, 

deer foraging in openings can increase predation risk of hiding neonates (Rearden et al. 2011), 

especially at night when predators are generally active (Rogers 1970, Anderson and Lindzey 

2003). Thus, habitat closer to producing well pads could be beneficial to adult females, but 

detrimental to neonates, especially at night. However, deer have been shown to reduce habitat 

use within 200 m of producing well pads at night on winter range (Northrup et al. 2015), 

potentially limiting access to high quality forage. Whether similar behavioral processes or other 

unknown processes influence neonatal mortality around producing well pads on summer range is 

unknown.  

As predicted, death by malnutrition decreased as neonate age increased from 0–14 days 

old. Contrary to my prediction, rump fat thickness of adult females was positively correlated 

with predation of neonates. Poor nutritional condition of maternal females contributes to lower 

birth mass (Robinette et al. 1973), which inhibits neonate growth (Tollefson et al. 2011, Shallow 

et al. 2015) and increases neonatal mortality (Bishop et al. 2009, Hurley et al. 2011, Monteith et 

al. 2014). However, a nutrition treatment has been shown to only marginally decrease neonate 

mortality (Bishop et al. 2009). Further, my rump fat thickness findings may be spurious as some 

predation of vulnerable neonates (< 28 days old) is expected regardless of maternal condition 

(Hamlin et al. 1984, Ballard et al. 2001) and others suggest the influence of maternal condition 

on neonatal mortality primarily occurs when lactation demands increase (≥ 28 days old; 

Monteith et al. 2014). 

Contrary to my prediction, death by malnutrition was positively correlated with the 

distance from a female’s core area to a road on winter range. Road edges provide habitat where 

deer forage on abundant and high quality forage (Ager et al. 2003). Thus, foraging in habitat 
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farther from roads could negatively impact maternal nutrition and condition contributing to lower 

birth mass and increased malnutrition of neonates (Lomas and Bender 2007, Monteith et al. 

2014, Shallow et al. 2015). However, death by malnutrition was minimal during my study 

(Figure 4.7) and my findings suggest body condition of females did not influence malnutrition of 

neonates, thus I am uncertain of how roads influence malnutrition. 

Weakly, but in line with my prediction, death by malnutrition was negatively correlated 

with temperature. Death by malnutrition was 2% higher in 2013 when mean temperature was 3 

°C cooler than 2012 and 2014 particularly during the peak birthing period. Consequently, cooler 

temperatures might have predisposed vulnerable neonates to malnutrition by increasing 

thermoregulatory energetic needs (Gilbert and Raedeke 2004, Hurley et al. 2011).  

My study provides novel insights into what factors influence cause-specific mortality of 

neonates in a natural gas developed area. Natural gas development, adult female, and neonate 

characteristics appear to influence predation of neonates, whereas, development, neonate, and 

temporal characteristics appear to influence death by malnutrition. However, I cannot be certain 

of my interpretations because I did not explicitly measure forage availability and quality or 

hiding cover and habitat in these study areas might be different. Ultimately, future studies should 

quantify vegetative characteristics and their influence on maternal body condition and 

subsequently neonate mass to fully comprehend the influence of development and others factors 

on neonatal mortality.  

MANAGEMENT IMPLICATIONS  

My results suggest natural gas development may increase neonatal mortality, especially through 

predation, although inherent habitat and climate differences between the study areas may have 

also influenced neonatal mortality. Increased neonatal mortality can have implications for mule 
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deer recruitment and population dynamics. Consequently, developers should consider strategies 

to minimize habitat loss and fragmentation when planning projects, such as concentrating road 

and well pad development and minimizing removal of hiding cover when constructing well pads 

and roads. Developers and managers should also consider strategies to mitigate habitat loss, such 

as implementing habitat treatments to provide abundant and high quality forage for deer and 

cover for concealing neonates. Mitigating impacts from development could enhance neonatal 

deer survival that is influential for ungulate population dynamics and minimize fitness 

consequences of deer.  
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TABLES 

Table 4.1. List of covariates (mean ± SD) and hypothesized effects on cause-specific mortality of neonatal mule deer and detection 
probability in the Piceance Basin, Colorado, USA, 2012–2014. “—“ indicates categorical variables. 
 

Covariate Mean (± SD) Covariate definition Hypothesis 

Winter range (WR) development characteristics   

WR dist.drill 0–0.8 km 8.36 ± 5.89 
Distance (km) from nearest 
drilling well pad on winter range. 

Neonates from adult females with a 
core area 0–0.8 km from a drilling 
well pad will have lower mortality in 
the summer as distance increases from  
0–0.8 km. 

WR dist.prod 0–0.4 km 1.57 ± 1.56 
Distance (km) from nearest 
producing well pad on winter 
range. 

Neonates from adult females with a 
core area 0–0.4 km from a producing 
well pad will have higher mortality in 
the summer as distance increases from 
0–0.4 km. 

WR dist.rd 0.24 ± 0.22 
Distance (km) from nearest road 
on winter range. 

Neonates from adult females with a 
core area closer to a road will have 
higher mortality in the summer than 
neonates from females with a core 
area farther from a road. 

   

Summer range (SR) development characteristics   

SR dist.drill 0–0.8 km 18.49 ± 18.33 
Distance (km) from nearest 
drilling well pad on summer range. 

Neonates from adult females with a 
core area 0–0.8 km from a drilling 
well pad will have lower mortality as 
distance increases from 0–0.8 km. 

SR dist.prod 0–0.4 km 7.34 ± 11.92 
Distance (km) from nearest 
producing well pad on summer 
range. 

Neonates from adult females with a 
core area 0–0.4 km from a producing 
well pad will have higher mortality as 
distance increases from 0–0.4 km. 
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SR dist.rd 0.24 ± 0.33 
Distance (km) from nearest road 
on summer range. 

Neonates from adult females with a 
core area closer to a road will have 
higher mortality than neonates from 
females with a core area farther from a 
road. 

   
Adult female characteristics   

Rump fat 2.17 ± 1.45 
Rump fat thickness (mm) of adult 
females measured in March. 

Rump fat thickness will be negatively 
correlated with mortality. 

Fetal count — 
In utero fetal count documented in 
March during adult female 
capture. 

Twin and triplet neonates will have 
higher mortality compared to a 
singleton neonate. 

Female age 4.95 ± 2.17 
Age of adult females documented 
in December during capture. 

Neonates from adult females (≥ 3.5 
years) will have lower mortality than 
neonates from younger females. 

Deer density 10.51 ± 3.40 

Estimated deer density in each 
winter range study area derived 
from annual mark-resight 
helicopter surveys conducted in 
late March–early. 

Deer density on winter range will be 
positively correlated with mortality. 

   
Neonate characteristics   

Neonate age 0–14 days old — 
Age trend from 0–14 days old and 
constant thereafter.  

Predation and malnutrition will 
decrease as neonate age increases 
from 0–14 days old, whereas unknown 
mortality will increase as neonate age 
increases from 0–14 days old. 

Mass 3.32 ± 0.70 
Estimated birth mass (kg) of 
neonates. 

Neonate mass will be negatively 
correlated with mortality. 

DOB 11.68 ± 6.60 
Date of birth was the number of 
days from the first detected birth 
in a given year. 

Date of birth will be positively 
correlated with mortality. 
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Sex — Sex of captured neonates. 
Females will have lower mortality 
than males. 

   
Temporal characteristics   

Prev.precip 20.73 ± 6.31 
Total precipitation (cm) during the 
previous winter season before 
parturition (1 October–30 April). 

Higher precipitation in the winter 
before parturition will be positively 
correlated with mortality. 

Precip 0.39 ± 0.86 

Daily precipitation (cm) during the 
parturition period and 7–day 
average of precipitation after the 
parturition period until 15 
December. 

Higher precipitation will be negatively 
correlated with mortality. 

Temp 23.54 ± 8.18 

Daily temperature (°C) during the 
parturition period and 7–day 
average of temperature after the 
parturition period until 15 
December. 

Higher temperature will be negatively 
correlated with mortality. 

   

Transition probability    

Study area (alive states) — 
High and low development study 
areas. 

Mortality will be higher in the high 
versus the low development study 
areas. 

Dead states — 
Predation, malnutrition, and 
unknown mortality. 

Predation will be the primary cause of 
mortality followed by malnutrition. 

   

Detection probability   

Year — Each year of the study. 
Detection probability of neonates will 
vary annually. 

Migration — 
Before and after autumn 
migration. 

Detection probability of neonates will 
be lower after autumn migration. 
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Year * migration — 
An interaction between year and 
migration. 

Yearly variation will occur before and 
after autumn migration. 
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Table 4.2. Cumulative weights for Akaike Information Criterion adjusted for small sample size (AICc), for all variables included in 
the first stage analysis of neonatal mule deer mortality. Parameters were probability of transitioning from an alive state in the high or 
low development study areas to a death by predation (�.K), malnutrition(�.M), or unknown mortality (�.U) state. Bold numbers 
indicate cumulative AICc weights above 0.500. Data obtained from the Piceance Basin in northwestern Colorado, USA, 2012–2014.  
 

Parameters Covariatea Cumulative AICc weight 
 Winter range (WR) development characteristics  

Predation (�.K) WR dist.prod 0–0.4 km 0.923 

 WR dist.rd 0.498 

Malnutrition (�.M) WR dist.rd 0.734 

 WR dist.prod 0–0.4 km 0.483 

Unknown mortality (�.U) WR dist.prod 0–0.4 km 0.326 

 WR dist.rd 0.272 
   
 Summer range (SR) development characteristics  

Predation (�.K) SR dist.prod 0–0.4 km 0.946 

Malnutrition (�.M) SR dist.prod 0–0.4 km 0.298 

Unknown mortality (�.U) SR dist.prod 0–0.4 km 0.346 
   
 Adult female characteristics  

Predation (�.K) Rump fat 0.979 

 Female age 0.217 

 Fetal count 0.205 

Malnutrition (�.M) Fetal count 0.350 

 Rump fat 0.248 

 Female age 0.205 

Unknown mortality (�.U) Female age 0.371 
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 Rump fat 0.214 

 Fetal 0.213 
   

 Neonate characteristics  

Predation (�.K) Neonate age 0–14 days old 0.610 

 Mass 0.127 

 DOB 0.050 

 Sex 0.036 

Malnutrition (�.M) Neonate age 0–14 days old 0.979 

 Mass 0.261 

 Sex 0.089 

 DOB 0.034 

Unknown mortality (�.U) Neonate age 0–14 days old 0.306 

 DOB 0.208 

 Mass 0.104 

 Sex 0.097 
   
 Temporal characteristics  

Predation (�.K) Temp 0.616 

 Prev.precip 0.493 

 Precip 0.309 

Malnutrition (�.M) Temp 0.986 

 Prev.precip 0.207 

 Precip 0.183 

Unknown mortality (�.U) Temp 0.263 

 Precip 0.165 
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 Prev.precip 0.153 
a Covariates are defined as in Table 4.1.
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Table 4.3. Cumulative weights for quasi-likelihood Akaike Information Criterion adjusted for 
small sample size (QAICc), for all variables included in the second stage analysis of neonatal 
mule deer mortality. Parameters were probability of transitioning from an alive state in the high 
or low development study areas to a death by predation (�.K) or malnutrition (�.M) state and 
detection probability (p). Bold numbers indicate cumulative AICc weights above 0.500. Data 
obtained from the Piceance Basin in northwestern Colorado, USA, 2012–2014. 
 

Parameters Covariatea Cumulative QAICc weight 

Predation (�.K) Rump fat 0.956 

 SR dist.prod 0–0.4 km 0.890 

 Neonate age 0–14 days old 0.707 

 WR dist.prod 0–0.4 km 0.679 

 Temp 0.409 

Malnutrition (�.M) Neonate age 0–14 days old 0.880 

 WR dist.rd 0.677 

 Temp 0.613 

Detection probability (p) Year 1.000 

 Migration 1.000 

 Year * migration 1.000 
a Covariates are defined as in Table 4.1.  
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Table 4.4. Estimated detection probability before (p) and after autumn migration (pmigration), 
associated standard error (SE), and upper and lower 95% confidence limits (CL) of mule deer 
neonates, Piceance Basin in northwestern Colorado, USA, 2012–2014. 
 

Year Parameter Estimate SE Lower 95% CL Upper 95% CL 
2012 p 0.953 0.005 0.943 0.962 
2012 pmigration 0.561 0.042 0.478 0.641 
2013 p 0.986 0.003 0.977 0.991 
2013 pmigration 0.517 0.043 0.433 0.599 
2014 p 0.931 0.009 0.910 0.947 

2014 pmigration 0.810 0.042 0.715 0.879 
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FIGURES 

 

Figure 4.1. Mule deer winter and summer range study units in the Piceance Basin in 
northwestern Colorado, USA. Winter range study units were Ryan Gulch (RG), South Magnolia 
(SM), North Magnolia (NM), and North Ridge (NR). Summer range study units were Roan 
Plateau and Lake Avery. RG and SM deer generally migrated towards the Roan Plateau summer 
range, while NM and NR deer generally migrated towards the Lake Avery summer range. 
Overall, RG, SM, and Roan Plateau were considered high development study areas, whereas 
NM, NR, and Lake Avery were considered low development study areas. Drilling and producing 
natural gas well pads (●) and National Climatic Data Center weather stations (▲).  
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Figure 4.2. Multi -state model schematic representing alive and dead states for neonatal mule 
deer. Neonates transitioned to a cause-specific death by predation (K), malnutrition (M), or 
unknown mortality (U) state in the high (H) or low (L) development study areas 
(�HK,�HM,�HU,�LK,�LM, �� �LU). Neonates remained in an alive (�HH,�LL) state or in a 
cause-specific death by predation, malnutrition, or unknown mortality (�KK,�MM, �� �UU) state 
in the high or low development study areas with parameter estimates obtained by subtraction. 
Neonates were captured at ≤ 3 days old and recaptured in an alive state or cause-specific death 
state (�H,�L,�K,�M, �� �U).  
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Figure 4.3. Estimated daily predation probability (± 95% CI) of mule deer neonates as a function 
of rump fat thickness of adult females in the high and low development study areas. Data 
obtained from the Piceance Basin in northwestern Colorado, USA, 2012–2014. 
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Figure 4.4. Estimated daily predation probability (± 95% CI) of mule deer neonates as a function of distance an adult female’s core 
area was from a producing well pad on winter range in the high and low development study areas. Data obtained from the Piceance 
Basin in northwestern Colorado, USA, 2012–2014. 
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Figure 4.5. Estimated daily predation probability (± 95% CI) of mule deer neonates as a function of distance an adult female’s core 
area was from a producing well pad on summer range in the high and low development study areas. Data obtained from the Piceance 
Basin in northwestern Colorado, USA, 2012–2014. 
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Figure 4.6. Estimated daily predation probability (± 95% CI) of mule deer neonates from 0–14 days old in the high and low 
development study areas. Data obtained from the Piceance Basin in northwestern Colorado, USA, 2012–2014.
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Figure 4.7. Mean daily probability of death by predation, malnutrition, or unknown mortality (± 95% CI) of mule deer neonates from 
0–6 months old in the high and low development study areas. Data obtained from the Piceance Basin in northwestern Colorado, USA, 
2012–2014. 
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Figure 4.8. Estimated daily probability of death by malnutrition (± 95% CI) of mule deer neonates from 0–14 days old in the high (A) 
and low (B) development study areas. Data obtained from the Piceance Basin in northwestern Colorado, USA, 2012–2014. 
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Figure 4.9. Estimated daily probability of death by malnutrition (± 95% CI) of neonatal mule 
deer as a function of distance an adult female’s core area was from a road on winter range in the 
high and low development study areas. Data obtained from the Piceance Basin in northwestern 
Colorado, USA, 2012–2014.  

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

D
ai

ly
 p

ro
ba

bi
lit

y 
of

 m
al

nu
tr

iti
on

Distance to road (km)

High development Low development



115 

CUMULATIVE LITERAT URE CITED 
 
 
 

Acorn, R. C., and M. J. Dorrance. 1990. Methods of investigating predation of livestock. Alberta 

Agriculture and Forestry, Agdex 684-14:1-36. 

Ager, A. A., B. K. Johnson, J. W. Kern, and J. G. Kie. 2003. Daily and seasonal movements and 

habitat use by female Rocky Mountain elk and mule deer. Journal of Mammalogy 

84:1076-1088. 

Andelt, W. F., T. M. Pojar, and L. W. Johnson. 2004. Long-term trends in mule deer pregnancy 

and fetal rates in Colorado. Journal of Wildlife Management 68:542-549. 

Anderson, A. E. 1981. Morphological and physiological characteristics. Pages 27-97 in O. C. 

Wallmo, editor. Mule and black-tailed deer of North America. University of Nebraska 

Press, Lincoln, Nebraska, USA. 

Anderson, A. E., D. C. Bowden, and D. M. Kattner. 1992. The puma on Uncompahgre Plateau, 

Colorado. Colorado Division of Wildlife, Technical Publication 40:1-116. 

Anderson, C. R., Jr. 2015. Population performance of Piceance mule deer in response to natural 

gas resource extraction and mitigation efforts to address human activity and habitat 

degradation. Federal Aid in Wildlife Restoration Job Progress Report, Colorado Parks 

and Wildlife, Fort Collins, Colorado. 

http://cpw.state.co.us/Documents/Research/Mammals/Publications/AndersonPiceanceDe

er_W185-R14_ProgressReport_2014-15.pdf. 

Anderson, C. R., Jr, and F. G. Lindzey. 2003. Estimating cougar predation rates from GPS 

location clusters. Journal of Wildlife Management 67:307-316. 



116 

Anderson, E. D., R. A. Long, M. P. Atwood, J. G. Kie, T. R. Thomas, P. Zager, and R. T. 

Bowyer. 2012. Winter resource selection by female mule deer Odocoileus hemionus: 

Functional response to spatio-temporal changes in habitat. Wildlife Biology 18:153-163. 

Armstrong, R. A. 1950. Fetal development of the northern white-tailed deer (Odocoileus 

virginianus borealis Miller). American Midland Naturalist 43:650-666. 

Ballard, W. B., D. Lutz, T. W. Keegan, L. H. Carpenter, and J. C. deVos. 2001. Deer-predator 

relationships: A review of recent North American studies with emphasis on mule and 

black-tailed deer. Wildlife Society Bulletin 29:99-115. 

Barber, J. R., K. R. Crooks, and K. M. Fristrup. 2010. The costs of chronic noise exposure for 

terrestrial organisms. Trends in Ecology & Evolution 25:180-189. 

Barbieri, M. M., and J. O. Berger. 2004. Optimal predictive model selection. Annals of Statistics 

32:870-897. 

Barbknecht, A. E., W. S. Fairbanks, J. D. Rogerson, E. J. Maichak, B. M. Scurlock, and L. L. 

Meadows. 2011. Elk parturition site selection at local and landscape scales. Journal of 

Wildlife Management 75:646-654. 

Barrett, M. W., J. W. Nolan, and L. D. Roy. 1982. Evaluation of a hand-held net-gun to capture 

large mammals. Wildlife Society Bulletin 10:108-114. 

Barsness, J. 1998. The new killers!: Wolves, cougars, and coyotes take a bite out of your 

hunting. Pages 58-65 in Field and Stream. 

Barten, N. L., R. T. Bowyer, and K. J. Jenkins. 2001. Habitat use by female caribou: Tradeoffs 

associated with parturition. Journal of Wildlife Management 65:77-92. 

Bartmann, R. M. 1983. Composition and quality of mule deer diets on pinyon-juniper winter 

range, Colorado. Journal of Range Management 36:534-541. 



117 

Bartmann, R. M., G. C. White, and L. H. Carpenter. 1992. Compensatory mortality in a Colorado 

mule deer population. Wildlife Monographs 121:1-39. 

Barton, K. 2015. MuMIn: Multi-model inference. R package Ver. 1.13.4. R Foundation for 

Statistical Computing. Vienna, Austria. http://CRAN.R-project.org/package=MuMIn. 

Bates, D., M. Mäechler, B. M. Bolker, and S. C. Walker. 2015. Fitting linear mixed-effects 

models using lme4. Journal of Statistical Software 67:1-48. 

Beier, P., D. Choate, and R. H. Barrett. 1995. Movement patterns of mountain lions during 

different behaviors. Journal of Mammalogy 76:1056-1070. 

Berger, J. 2007. Fear, human shields and the redistribution of prey and predators in protected 

areas. Biology Letters 3:620-623. 

Bergman, E. J., C. J. Bishop, D. J. Freddy, G. C. White, and P. F. Doherty. 2014. Habitat 

management influences overwinter survival of mule deer fawns in Colorado. Journal of 

Wildlife Management 78:448-455. 

Bergman, E. J., P. F. Doherty, G. C. White, and A. A. Holland. 2015. Density dependence in 

mule deer: A review of evidence. Wildlife Biology 21:18-29. 

Beyer, H. L. 2012. Geospatial modelling environment. Ver. 0.7.3.0. 

http://www.spatialecology.com/gme. 

Bischof, R., L. E. Loe, E. L. Meisingset, B. Zimmermann, B. V. Moorter, and A. Mysterud. 

2012. A migratory northern ungulate in the pursuit of spring: Jumping or surfing the 

green wave? The American Naturalist 180:407-424. 

Bishop, C. J., C. R. Anderson, Jr, D. P. Walsh, E. J. Bergman, P. Kuechle, and J. Roth. 2011. 

Effectiveness of a redesigned vaginal implant transmitter in mule deer. Journal of 

Wildlife Management 75:1797-1806. 



118 

Bishop, C. J., D. J. Freddy, G. C. White, B. E. Watkins, T. R. Stephenson, and L. L. Wolfe. 

2007. Using vaginal implant transmitters to aid in capture of mule deer neonates. Journal 

of Wildlife Management 71:945-954. 

Bishop, C. J., G. C. White, D. J. Freddy, B. E. Watkins, and T. R. Stephenson. 2009. Effect of 

enhanced nutrition on mule deer population rate of change. Wildlife Monographs 172:1-

28. 

Bishop, C. J., G. C. White, and P. M. Lukacs. 2008. Evaluating dependence among mule deer 

siblings in fetal and neonatal survival analyses. Journal of Wildlife Management 

72:1085-1093. 

Bonenfant, C., J. M. Gaillard, F. Klein, and J. L. Hamann. 2005. Can we use the young:female 

ratio to infer ungulate population dynamics? An empirical test using red deer Cervus 

elaphus as a model. Journal of Applied Ecology 42:361-370. 

Bowyer, R. T. 1987. Coyote group-size relative to predation on mule deer. Mammalia 51:515-

526. 

_____. 1991. Timing of parturition and lactation in southern mule deer. Journal of Mammalogy 

72:138-145. 

Bowyer, R. T., and J. G. Kie. 2006. Effects of scale on interpreting life-history characteristics of 

ungulates and carnivores. Diversity and Distributions 12:244-257. 

Bowyer, R. T., J. G. Kie, and V. Van Ballenberghe. 1998. Habitat selection by neonatal black-

tailed deer: Climate, forage, or risk of predation? Journal of Mammalogy 79:415-425. 

Bowyer, R. T., V. Van Ballenberghe, J. G. Kie, and J. A. K. Maier. 1999. Birth-site selection by 

Alaskan moose: Maternal strategies for coping with a risky environment. Journal of 

Mammalogy 80:1070-1083. 



119 

Boyce, M. S. 2006. Scale for resource selection functions. Diversity and Distributions 12:269-

276. 

Brownie, C., J. E. Hines, J. D. Nichols, K. H. Pollock, and J. B. Hestbeck. 1993. Capture-

recapture studies for multiple strata including non-markovian transitions. Biometrics 

49:1173-1187. 

Burke, R. L., and J. M. Birch. 1995. White-tailed deer vary offspring sex-ratio according to 

maternal condition and age. Ecological Research 10:351-357. 

Burnham, K. P., and D. R. Anderson. 2002. Model selection and multimodel inference a 

practical information-theoretic approach. Springer, New York, New York, USA. 

Butler, D. A., S. P. Haskell, W. B. Ballard, M. C. Wallace, C. M. Britton, and M. H. Humphrey. 

2009. Differences in timing of parturition, birthing sites, and bedding sites of fawns in 

sympatric populations of deer. The Southwestern Naturalist 54:261-271. 

Cameron, E. Z. 2004. Facultative adjustment of mammalian sex ratios in support of the Trivers-

Willard hypothesis: Evidence for a mechanism. Proceedings of the Royal Society of 

London Series B-Biological Sciences 271:1723-1728. 

Carl, G. R., and C. T. Robbins. 1988. The energetic cost of predator avoidance in neonatal 

ungulates - hiding versus following. Canadian Journal of Zoology 66:239-246. 

Carstensen, M., G. D. DelGiudice, and B. A. Sampson. 2003. Using doe behavior and vaginal-

implant transmitters to capture neonate white-tailed deer in north-central Minnesota. 

Wildlife Society Bulletin 31:634-641. 

Carstensen, M., G. D. Delgiudice, B. A. Sampson, and D. W. Kuehn. 2009. Survival, birth 

characteristics, and cause-specific mortality of white-tailed deer neonates. Journal of 

Wildlife Management 73:175-183. 



120 

Chen, X., L. Vierling, E. Rowell, and T. DeFelice. 2004. Using lidar and effective LAI data to 

evaluate IKONOS and Landsat 7 ETM+ vegetation cover estimates in a ponderosa pine 

forest. Remote Sensing of Environment 91:14-26. 

Cherry, M. J., M. A. Nelson, R. J. Warren, and L. M. Conner. 2013. Photo sensors increase 

likelihood of detection of expelled vaginal implant transmitters. Wildlife Society Bulletin 

37:846-850. 

Christie, K. S., W. F. Jensen, J. H. Schmidt, and M. S. Boyce. 2015. Long-term changes in 

pronghorn abundance index linked to climate and oil development in North Dakota. 

Biological Conservation 192:445-453. 

Cook, J. G., B. K. Johnson, R. C. Cook, R. A. Riggs, T. Delcurto, L. D. Bryant, and L. L. Irwin. 

2004. Effects of summer-autumn nutrition and parturition date on reproduction and 

survival of elk. Wildlife Monographs 155:1-61. 

Cook, R. C., J. G. Cook, T. R. Stephenson, W. L. Myers, S. M. McCorquodale, D. J. Vales, L. L. 

Irwin, P. B. Hall, R. D. Spencer, S. L. Murphie, K. A. Schoenecker, and P. J. Miller. 

2010. Revisions of rump fat and body scoring indices for deer, elk, and moose. Journal of 

Wildlife Management 74:880-896. 

Cook, R. C., J. G. Cook, D. J. Vales, B. K. Johnson, S. M. McCorquodale, L. A. Shipley, R. A. 

Riggs, L. L. Irwin, S. L. Murphie, B. L. Murphie, K. A. Schoenecker, F. Geyer, P. B. 

Hall, R. D. Spencer, D. A. Immell, D. H. Jackson, B. L. Tiller, P. J. Miller, and L. 

Schmitz. 2013. Regional and seasonal patterns of nutritional condition and reproduction 

in elk. Wildlife Monographs 184. 



121 

Cook, R. C., T. R. Stephenson, W. L. Myers, J. G. Cook, and L. A. Shipley. 2007. Validating 

predictive models of nutritional condition for mule deer. Journal of Wildlife Management 

71:1934-1943. 

Cowan, I. M. 1956. What and where are the mule and black-tailed deer? Pages 334-359 in W. P. 

Taylor, editor. The deer of North America. The Wildlife Management Institute, 

Washington, D.C., USA. 

Cunningham, J. A., K. L. Hamlin, and T. O. Lemke. 2009. Fetal sex ratios in southwestern 

Montana elk. Journal of Wildlife Management 73:639-646. 

D'Eon, R. G., and R. Serrouya. 2005. Mule deer seasonal movements and multiscale resource 

selection using global positioning system radiotelemetry. Journal of Mammalogy 86:736-

744. 

DeCesare, N. J., M. Hebblewhite, M. Bradley, K. G. Smith, D. Hervieux, and L. Neufeld. 2012. 

Estimating ungulate recruitment and growth rates using age ratios. Journal of Wildlife 

Management 76:144-153. 

DelGiudice, G. D., M. S. Lenarz, and M. C. Powell. 2007. Age-specific fertility and fecundity in 

northern free-ranging white-tailed deer: Evidence for reproductive senescence? Journal of 

Mammalogy 88:427-435. 

DeMars, C. A., M. Auger-Methe, U. E. Schlagel, and S. Boutin. 2013. Inferring parturition and 

neonate survival from movement patterns of female ungulates: A case study using 

woodland caribou. Ecology and Evolution 3:4149-4160. 

Derner, J. D., B. W. Hess, R. A. Olson, and G. E. Schuman. 2008. Functional group and species 

responses to precipitation in three semi-arid rangeland ecosystems. Arid Land Research 

and Management 22:81-92. 



122 

Devineau, O., W. L. Kendall, P. F. Doherty, T. M. Shenk, G. C. White, P. M. Lukacs, and K. P. 

Burnham. 2014. Increased flexibility for modeling telemetry and nest-survival data using 

the multistate framework. Journal of Wildlife Management 78:224-230. 

Devineau, O., T. M. Shenk, G. C. White, P. F. Doherty Jr, P. M. Lukacs, and R. H. Kahn. 2010. 

Evaluating the Canada lynx reintroduction programme in Colorado: Patterns in mortality. 

Journal of Applied Ecology 47:524-531. 

Doherty, K. E., D. E. Naugle, B. L. Walker, and J. M. Graham. 2008. Greater sage-grouse winter 

habitat selection and energy development. Journal of Wildlife Management 72:187-195. 

Doherty, P. F., G. C. White, and K. P. Burnham. 2012. Comparison of model building and 

selection strategies. Journal of Ornithology 152 (Supplement 2):S317-S323. 

Dussault, C., V. Pinard, J. P. Ouellet, R. Courtois, and D. Fortin. 2012. Avoidance of roads and 

selection for recent cutovers by threatened caribou: Fitness-rewarding or maladaptive 

behaviour? Proceedings of the Royal Society B-Biological Sciences 279:4481-4488. 

Dzialak, M. R., S. M. Harju, R. G. Osborn, J. J. Wondzell, L. D. Hayden-Wing, J. B. Winstead, 

and S. L. Webb. 2011a. Prioritizing conservation of ungulate calving resources in 

multiple-use landscapes. Plos One 6:e14597. 

Dzialak, M. R., S. L. Webb, S. M. Harju, J. B. Winstead, J. J. Wondzell, J. P. Mudd, and L. D. 

Hayden-Wing. 2011b. The spatial pattern of demographic performance as a component 

of sustainable landscape management and planning. Landscape Ecology 26:775-790. 

Eberhardt, L. L. 2002. A paradigm for population analysis of long-lived vertebrates. Ecology 

83:2841-2854. 

Farmer, C. J., D. K. Person, and R. T. Bowyer. 2006. Risk factors and mortality of black-tailed 

deer in a managed forest landscape. Journal of Wildlife Management 70:1403-1415. 



123 

Festa-Bianchet, M. 1988. Seasonal range selection in bighorn sheep - conflicts between forage 

quality, forage quantity, and predator avoidance. Oecologia 75:580-586. 

_____. 1996. Offspring sex ratio in studies of mammals: Does publication depend upon the 

quality of the research or the direction of the results? Ecoscience 3:42-44. 

Forrester, T. D., and H. U. Wittmer. 2013. A review of the population dynamics of mule deer 

and black-tailed deer Odocoileus hemionus in North America. Mammal Review 43:292-

308. 

Fox, K. B., and P. R. Krausman. 1994. Fawning habitat of desert mule deer. Southwestern 

Naturalist 39:269-275. 

Freeman, E. D. 2014. Parturition of mule deer in southern Utah: Management implications and 

habitat selection. Thesis, Brigham Young University, Provo, Utah. 

Frid, A., and L. Dill. 2002. Human-caused disturbance stimuli as a form of predation risk. 

Conservation Ecology 6:art11. 

Gaillard, J. M., M. Festa-Bianchet, and N. G. Yoccoz. 1998. Population dynamics of large 

herbivores: Variable recruitment with constant adult survival. Trends in Ecology & 

Evolution 13:58-63. 

Gaillard, J. M., M. Festa-Bianchet, N. G. Yoccoz, A. Loison, and C. Toigo. 2000. Temporal 

variation in fitness components and population dynamics of large herbivores. Annual 

Review of Ecology and Systematics 31:367-393. 

Garrott, R. A., G. C. White, R. M. Bartmann, L. H. Carpenter, and A. W. Alldredge. 1987. 

Movements of female mule deer in northwest Colorado. Journal of Wildlife Management 

51:634-643. 



124 

Geist, V. 1981. Behavior: Adaptive strategies in mule deer. Pages 157-224 in O. C. Wallmo, 

editor. Mule and black-tailed deer of North America. University of Nebraska Press, 

Lincoln, Nebraska, USA. 

Gerlach, T. P., and M. R. Vaughan. 1991. Mule deer fawn bed site selection on the Pinon 

Canyon Maneuver Site, Colorado. The Southwestern Naturalist 36:255-258. 

Gilbert, B. A., and K. J. Raedeke. 2004. Recruitment dynamics of black-tailed deer in the 

western Cascades. Journal of Wildlife Management 68:120-128. 

Gilbert, S. L., M. S. Lindberg, K. J. Hundertmark, and D. K. Person. 2014. Dead before 

detection: Addressing the effects of left truncation on survival estimation and ecological 

inference for neonates. Methods in Ecology and Evolution 5:992-1001. 

Gill, J. A., W. J. Sutherland, and A. R. Watkinson. 1996. A method to quantify the effects of 

human disturbance on animal populations. Journal of Applied Ecology 33:786-792. 

Gill, R. B. 2001. Declining mule deer populations in Colorado: Reasons and responses. Colorado 

Division of Wildlife, Special Report No. 77, Fort Collins, Colorado, USA. 

Gomendio, M., T. H. Cluttonbrock, S. D. Albon, F. E. Guinness, and M. J. Simpson. 1990. 

Mammalian sex-ratios and variation in costs of rearing sons and daughters. Nature 

343:261-263. 

Grovenburg, T. W., C. N. Jacques, R. W. Klaver, and J. A. Jenks. 2010. Bed site selection by 

neonate deer in grassland habitats on the Northern Great Plains. Journal of Wildlife 

Management 74:1250-1256. 

Grovenburg, T. W., J. A. Jenks, C. N. Jacques, R. W. Klaver, and C. C. Swanson. 2009. 

Aggressive defensive behavior by free-ranging white-tailed deer. Journal of Mammalogy 

90:1218-1223. 



125 

Grovenburg, T. W., K. L. Monteith, R. W. Klaver, and J. A. Jenks. 2012. Predator evasion by 

white-tailed deer fawns. Animal Behaviour 84:59-65. 

Gustine, D. D., K. L. Parker, R. J. Lay, M. P. Gillingham, and D. C. Heard. 2006. Calf survival 

of woodland caribou in a multi-predator ecosystem. Wildlife Monographs 165:1-32. 

Hamel, S., M. Garel, M. Festa-Bianchet, J.-M. Gaillard, and S. D. Côté. 2009. Spring normalized 

difference vegetation index (NDVI) predicts annual variation in timing of peak faecal 

crude protein in mountain ungulates. Journal of Applied Ecology 46:582-589. 

Hamlin, K. L., S. J. Riley, D. Pyrah, A. R. Dood, and R. J. Mackie. 1984. Relationships among 

mule deer fawn mortality, coyotes, and alternate prey species during summer. Journal of 

Wildlife Management 48:489-499. 

Harper, J. A., J. H. Harn, W. W. Bentley, and C. F. Yocom. 1967. The status and ecology of the 

Roosevelt elk in California. Wildlife Monographs 16:3-49. 

Haugen, A. O., and D. W. Speake. 1958. Determining age of young fawn white-tailed deer. 

Journal of Wildlife Management 22:319-321. 

Hebblewhite, M., and D. T. Haydon. 2010. Distinguishing technology from biology: A critical 

review of the use of GPS telemetry data in ecology. Philosophical Transactions of the 

Royal Society B: Biological Sciences 365:2303-2312. 

Hebblewhite, M., E. Merrill, and G. McDermid. 2008. A multi-scale test of the forage maturation 

hypothesis in a partially migratory ungulate population. Ecological Monographs 78:141-

166. 

Hebblewhite, M., and E. H. Merrill. 2009. Trade-offs between predation risk and forage differ 

between migrant strategies in a migratory ungulate. Ecology 90:3445-3454. 



126 

Heffelfinger, J. 2006. Deer of the southwest a complete guide to the natural history, biology, and 

management of southwestern mule deer and white-tailed deer. Texas A & M University 

Press, College Station, Texas, USA. 

Hewison, A. J. M., and J.-M. Gaillard. 1999. Successful sons or advantaged daughters? The 

Trivers-Willard model and sex-biased maternal investment in ungulates. Trends in 

Ecology and Evolution 14:229-234. 

Hofmann, R. R. 1985. Digestive physiology of deer- their morphophysiological specialization 

and adaptations. Pages 393-407 in K. R. Drews, and P. F. Fennessy, editors. Biology of 

deer production. Royal Society of New Zealand Bulletin 22, Wellington, New Zealand. 

Holloran, M. J., R. C. Kaiser, and W. A. Hubert. 2010. Yearling greater sage-grouse response to 

energy development in wyoming. Journal of Wildlife Management 74:65-72. 

Hornocker, M. G. 1970. An analysis of mountain lion predation upon mule deer and elk in the 

Idaho primitive area. Wildlife Monographs 21:3-39. 

Hosmer, D. W., and S. Lemeshow. 2000. Applied logistic regression. Wiley, New York, New 

York, USA. 

Houston, A. I., E. Prosser, and E. Sans. 2012. The cost of disturbance: A waste of time and 

energy? Oikos 121:597-604. 

Huegel, C. N., R. B. Dahlgren, and H. L. Gladfelter. 1985. Use of doe behavior to capture white-

tailed deer fawns. Wildlife Society Bulletin 13:287-289. 

Hurley, M. A., J. W. Unsworth, P. Zager, M. Hebblewhite, E. O. Garton, D. M. Montgomery, J. 

R. Skalski, and C. L. Maycock. 2011. Demographic response of mule deer to 

experimental reduction of coyotes and mountain lions in southeastern Idaho. Wildlife 

Monographs 178:1-33. 



127 

Jackson, R. M., M. White, and F. F. Knowlton. 1972. Activity patterns of young white-tailed 

deer fawns in south Texas. Ecology 53:262-270. 

Johnson, D. H. 1980. The comparison of usage and availability measurements for evaluating 

resource preference. Ecology 61:65-71. 

Johnstone-Yellin, T. L., L. A. Shipley, and W. L. Myers. 2006. Effectiveness of vaginal implant 

transmitters for locating neonatal mule deer fawns. Wildlife Society Bulletin 34:338-344. 

Johnstone-Yellin, T. L., L. A. Shipley, W. L. Myers, and H. S. Robinson. 2009. To twin or not to 

twin? Trade-offs in litter size and fawn survival in mule deer. Journal of Mammalogy 

90:453-460. 

Kauffman, M. J., N. Varley, D. W. Smith, D. R. Stahler, D. R. MacNulty, and M. S. Boyce. 

2007. Landscape heterogeneity shapes predation in a newly restored predator-prey 

system. Ecology Letters 10:690-700. 

Keech, M. A., R. T. Bowyer, J. M. Ver Hoef, R. D. Boertje, B. W. Dale, and T. R. Stephenson. 

2000. Life-history consequences of maternal condition in Alaskan moose. Journal of 

Wildlife Management 64:450-462. 

Kilgo, J. C., M. Vukovich, H. Scott Ray, C. E. Shaw, and C. Ruth. 2014. Coyote removal, 

understory cover, and survival of white-tailed deer neonates. Journal of Wildlife 

Management 78:1261-1271. 

Kirol, C. P., J. L. Beck, S. V. Huzurbazar, M. J. Holloran, and S. N. Miller. 2014. Identifying 

greater sage-grouse source and sink habitats for conservation planning in an energy 

development landscape. Ecological Applications 25:968-990. 

Kohlmann, S. G. 1999. Adaptive fetal sex allocation in elk: Evidence and implications. Journal 

of Wildlife Management 63:1109-1117. 



128 

Kuhn, T. J., H. D. Safford, B. E. Jones, and K. W. Tate. 2011. Aspen (Populus tremuloides) 

stands and their contribution to plant diversity in a semiarid coniferous landscape. Plant 

Ecology 212:1451-1463. 

Kunkel, K. E., and L. D. Mech. 1994. Wolf and bear predation on white-tailed deer fawns in 

northeastern Minnesota. Canadian Journal of Zoology 72:1557-1565. 

Lebreton, J. D., J. D. Nichols, R. J. Barker, R. Pradel, and J. A. Spendelow. 2009. Modeling 

individual animal histories with multistate capture-recapture models. Pages 87-173 in H. 

Caswell, editor. Advances in ecological research, vol 41. 

Lebreton, J. D., and R. Pradel. 2002. Multistate recapture models: Modelling incomplete 

individual histories. Journal of Applied Statistics 29:353-369. 

Leclerc, M., C. Dussault, and M.-H. St-Laurent. 2012. Multiscale assessment of the impacts of 

roads and cutovers on calving site selection in woodland caribou. Forest Ecology and 

Management 286:59-65. 

Lendrum, P. E., C. R. Anderson, Jr, R. A. Long, J. G. Kie, and R. T. Bowyer. 2012. Habitat 

selection by mule deer during migration: Effects of landscape structure and natural-gas 

development. Ecosphere 3:art82. 

Lendrum, P. E., C. R. Anderson, Jr, K. L. Monteith, J. A. Jenks, and R. T. Bowyer. 2014. 

Relating the movement of a rapidly migrating ungulate to spatiotemporal patterns of 

forage quality. Mammalian Biology 79:369-375. 

Lendrum, P. E., C. R. Anderson, Jr., K. L. Monteith, J. A. Jenks, and R. T. Bowyer. 2013. 

Migrating mule deer: Effects of anthropogenically altered landscapes. Plos One 

8:e64548. 



129 

Lent, P. C. 1974. Mother-infant relationship in ungulates. Pages 14-55 in V. Geist, and F. R. 

Walther, editors. The behaviour of ungulates and its relation to management. 

International Union for Conservation of Nature and Natural Resources, Morges, 

Switzerland. 

Lingle, S. 2000. Seasonal variation in coyote feeding behaviour and mortality of white-tailed 

deer and mule deer. Canadian Journal of Zoology 78:85-99. 

Lingle, S., and S. M. Pellis. 2002. Fight or flight? Antipredator behavior and the escalation of 

coyote encounters with deer. Oecologia 131:154-164. 

Linnell, J. D. C., P. Nijhuis, I. Teurlings, and R. Andersen. 1999. Selection of bed-sites by roe 

deer Capreolus capreolus fawns in a boreal landscape. Wildlife Biology 5:225-231. 

Littell, R. C., G. A. Milliken, W. W. Stroup, R. D. Wolfinger, and O. Schabenberger. 2006. 

SAS® for mixed models, Second Edition. SAS Institute, Cary, North Carolina, USA. 

Lomas, L. A., and L. C. Bender. 2007. Survival and cause-specific mortality of neonatal mule 

deer fawns, north-central New Mexico. Journal of Wildlife Management 71:884-894. 

Long, R. A., J. G. Kie, R. T. Bowyer, and M. A. Hurley. 2009. Resource selection and 

movements by female mule deer Odocoileus hemionus: Effects of reproductive stage. 

Wildlife Biology 15:288-298. 

Long, R. A., J. L. Rachlow, J. G. Kie, and M. Vavra. 2008. Fuels reduction in a western 

coniferous forest: Effects on quantity and quality of forage for elk. Rangeland Ecology 

and Management 61:302-313. 

Lutz, D. W., M. Cox, B. F. Wakeling, D. McWhirter, L. H. Carpenter, S. Rosenstock, D. Stroud, 

L. C. Bender, and A. F. Reeve. 2003. Impacts and changes to mule deer habitat. Pages 

13-61 in J. C. de Vos., Jr., M. R. Conover, and N. E. Headrick, editors. Mule deer 



130 

conservation: Issues and management strategies. Berryman Institute Press, Utah State 

University, Logan, Utah, USA. 

Lynch, E., J. M. Northrup, M. F. McKenna, C. R. Anderson, Jr, L. Angeloni, and G. Wittemyer. 

2014. Landscape and anthropogenic features influence the use of auditory vigilance by 

mule deer. Behavioral Ecology. 

Mackie, R. J., J. G. Kie, and K. L. Hamlin. 2003. Mule deer (Odocoileus hemionus). Pages 889-

905 in G. A. Feldhamer, B. C. Thompson, and J. A. Chapman, editors. Wild mammals of 

North America: Biology, management, and conservation. Johns Hopkins University 

Press, Baltimore, Maryland, USA. 

Manly, B. F. J. 2001. Statistics for environmental science and management. Chapman & 

Hall/CRC, Boca Raton, Florida, USA. 

Manly, B. F. J., L. L. McDonald, D. L. Thomas, T. L. McDonald, and W. P. Erickson. 2002. 

Resource selection by animals statistical design and analysis for field studies. Kluwer 

Academic Publishers, Dordrecht, The Netherlands. 

Marescot, L., T. D. Forrester, D. S. Casady, and H. U. Wittmer. 2015. Using multistate capture-

mark-recapture models to quantify effects of predation on age-specific survival and 

population growth in black-tailed deer. Population Ecology 57:185-197. 

Marshal, J. P., P. R. Krausman, and V. C. Bleich. 2005. Rainfall, temperature, and forage 

dynamics affect nutritional quality of desert mule deer forage. Rangeland Ecology & 

Management 58:360-365. 

Martin, J. G. A., and M. Festa-Bianchet. 2011. Sex ratio bias and reproductive strategies: What 

sex to produce when? Ecology 92:441-449. 



131 

Mathews, N. E., and W. F. Porter. 1988. Black bear predation of white-tailed deer neonates in 

the central Adirondacks. Canadian Journal of Zoology 66:1241-1242. 

McCullough, D. R. 1979. The George Reserve deer herd population ecology of a k-selected 

species. University of Michigan Press, Ann Arbor. 

McGraw, A. M., J. Terry, and R. Moean. 2014. Pre-parturition movement patterns and birth site 

characteristics of moose. Alces 50:93-103. 

Monteith, K. L., V. C. Bleich, T. R. Stephenson, B. M. Pierce, M. M. Conner, J. G. Kie, and R. 

T. Bowyer. 2014. Life-history characteristics of mule deer: Effects of nutrition in a 

variable environment. Wildlife Monographs 186:1-62. 

Monteith, K. L., V. C. Bleich, T. R. Stephenson, B. M. Pierce, M. M. Conner, R. W. Klaver, and 

R. T. Bowyer. 2011. Timing of seasonal migration in mule deer: Effects of climate, plant 

phenology, and life-history characteristics. Ecosphere 2:art47. 

Monteith, K. L., T. R. Stephenson, V. C. Bleich, M. M. Conner, B. M. Pierce, R. T. Bowyer, and 

I. Montgomery. 2013. Risk-sensitive allocation in seasonal dynamics of fat and protein 

reserves in a long-lived mammal. Journal of Animal Ecology 82:377-388. 

Myers, J. H. 1978. Sex-ratio adjustment under food stress - maximization of quality or numbers 

of offspring. American Naturalist 112:381-388. 

Mysterud, A., and E. Ostbye. 1999. Cover as a habitat element for temperate ungulates: Effects 

on habitat selection and demography. Wildlife Society Bulletin 27:385-394. 

National Climatic Data Center. 2015. NOAA's National Centers for Environmental Information. 

http://www.ncdc.noaa.gov/. Accessed 23 January 2015. 

Nelson, T. A., and A. Woolf. 1987. Mortality of white-tailed deer fawns in southern Illinois. 

Journal of Wildlife Management 51:326-329. 



132 

Nicholson, M. C., R. T. Bowyer, and J. G. Kie. 1997. Habitat selection and survival of mule 

deer: Tradeoffs associated with migration. Journal of Mammalogy 78:483-504. 

Northrup, J. M. 2015. Behavioral response of mule deer to natural gas development in the 

Piceance Basin. Dissertation, Colorado State University, Fort Collins, Colorado, USA. 

Northrup, J. M., C. R. Anderson, Jr, and G. Wittemyer. 2014. Effects of helicopter capture and 

handling on movement behavior of mule deer. Journal of Wildlife Management 78:731-

738. 

Northrup, J. M., C. R. Anderson, Jr., and G. Wittemyer. 2015. Quantifying spatial habitat loss 

from hydrocarbon development through assessing habitat selection patterns of mule deer. 

Global Change Biology 21:3961-3970. 

Northrup, J. M., M. B. Hooten, C. R. Anderson, Jr, and G. Wittemyer. 2013. Practical guidance 

on characterizing availability in resource selection functions under a use–availability 

design. Ecology 94:1456-1463. 

Ozoga, J. J., and L. J. Verme. 1982. Predation by black bears on newborn white-tailed deer. 

Journal of Mammalogy 63:695-695. 

Ozoga, J. J., and L. J. Verme. 1986. Relation of maternal age to fawn-rearing success in white-

tailed deer. Journal of Wildlife Management 50:480-486. 

Panzacchi, M., I. Herfindal, J. D. C. Linnell, M. Odden, J. Odden, and R. Andersen. 2010. Trade-

offs between maternal foraging and fawn predation risk in an income breeder. Behavioral 

Ecology and Sociobiology 64:1267-1278. 

Parker, K. L., P. S. Barboza, and M. P. Gillingham. 2009. Nutrition integrates environmental 

responses of ungulates. Functional Ecology 23:57-69. 



133 

Parker, K. L., M. P. Gillingham, T. A. Hanley, and C. T. Robbins. 1999. Energy and protein 

balance of free-ranging black-tailed deer in a natural forest environment. Wildlife 

Monographs 143:3-48. 

Parker, K. L., C. T. Robbins, and T. A. Hanley. 1984. Energy expenditures for locomotion by 

mule deer and elk. Journal of Wildlife Management 48:474-488. 

Pekins, P. J., K. S. Smith, and W. W. Mautz. 1998. The energy cost of gestation in white-tailed 

deer. Canadian Journal of Zoology 76:1091-1097. 

Petroelje, T. R., J. L. Belant, D. E. Beyer, G. M. Wang, and B. D. Leopold. 2014. Population-

level response of coyotes to a pulsed resource event. Population Ecology 56:349-358. 

Pettorelli, N., F. Pelletier, A. von Hardenberg, M. Festa-Bianchet, and S. D. Cote. 2007. Early 

onset of vegetation growth vs. rapid green-up: Impacts on juvenile mountain ungulates. 

Ecology 88:381-390. 

Pettorelli, N., J. O. Vik, A. Mysterud, J.-M. Gaillard, C. J. Tucker, and N. C. Stenseth. 2005a. 

Using the satellite-derived NDVI to assess ecological responses to environmental change. 

Trends in Ecology & Evolution 20:503-510. 

Pettorelli, N., R. B. Weladji, O. Holand, A. Mysterud, H. Breie, and N. C. Stenseth. 2005b. The 

relative role of winter and spring conditions: Linking climate and landscape-scale plant 

phenology to alpine reindeer body mass. Biology Letters 1:24-26. 

Picton, H. D. 1984. Climate and the prediction of reproduction of three ungulate species. Journal 

of Applied Ecology 21:869-879. 

Pierce, B. M., R. T. Bowyer, and V. C. Bleich. 2004. Habitat selection by mule deer: Forage 

benefits or risk of predation? Journal of Wildlife Management 68:533-541. 



134 

Pinard, V., C. Dussault, J.-P. Ouellet, D. Fortin, and R. Courtois. 2012. Calving rate, calf 

survival rate, and habitat selection of forest-dwelling caribou in a highly managed 

landscape. Journal of Wildlife Management 76:189-199. 

Pitman, J. W., J. W. Cain III, S. G. Liley, W. R. Gould, N. T. Quintana, and W. B. Ballard. 2014. 

Post-parturition habitat selection by elk calves and adult female elk in New Mexico. 

Journal of Wildlife Management 78:1216-1227. 

Pojar, T. M., and D. C. Bowden. 2004. Neonatal mule deer fawn survival in west-central 

Colorado. Journal of Wildlife Management 68:550-560. 

Poole, K. G., R. Serrouya, and K. Stuart-Smith. 2007. Moose calving strategies in interior 

montane ecosystems. Journal of Mammalogy 88:139-150. 

Post, E., and M. C. Forchhammer. 2008. Climate change reduces reproductive success of an 

arctic herbivore through trophic mismatch. Philosophical Transactions of the Royal 

Society B-Biological Sciences 363:2369-2375. 

Post, E., C. Pedersen, C. C. Wilmers, and M. C. Forchhammer. 2008. Warming, plant phenology 

and the spatial dimension of trophic mismatch for large herbivores. Proceedings of the 

Royal Society of London B: Biological Sciences 275:2005-2013. 

Powell, M. C., G. D. DelGiudice, and B. A. Sampson. 2005. Low risk of marking-induced 

abandonment in free-ranging white-tailed deer neonates. Wildlife Society Bulletin 

33:643-655. 

Pyke, D. A., and B. A. Zamora. 1982. Relationships between overstory structure and understory 

production in the grand fir myrtle boxwood habitat type of northcentral Idaho. Journal of 

Range Management 35:769-773. 



135 

R Core Team. 2015. R: A language and environment for statistical computing. R Foundation for 

Statistical Computing, Vienna, Austria. http://www.r-project.org/. 

Rearden, S. N. 2005. Juvenile survival and birth-site selection of Rocky Mountain elk in 

northeastern Oregon. Thesis, Oregon State University, Corvallis, Oegon. 

Rearden, S. N., R. G. Anthony, and B. K. Johnson. 2011. Birth-site selection and predation risk 

of Rocky Mountain elk. Journal of Mammalogy 92:1118-1126. 

Riley, S. J., and A. R. Dood. 1984. Summer movements, home range, habitat use, and behavior 

of mule deer fawns. Journal of Wildlife Management 48:1302-1310. 

Riney, T. 1955. Evaluating condition of free-ranging red deer (Cervus elaphus), with special 

reference to New Zealand. The New Zealand Journal of Science and technology 

36B:429-463. 

Rittenhouse, C. D., T. W. Mong, and T. Hart. 2015. Weather conditions associated with autumn 

migration by mule deer in wyoming. PeerJ 3:e1045. 

Robbins, C. T., and B. L. Robbins. 1979. Fetal and neonatal growth patterns and maternal 

reproductive effort in ungulates and subungulates. The American Naturalist 114:101-116. 

Roberts, B. A., and D. I. Rubenstein. 2014. Maternal tactics for mitigating neonate predation risk 

during the postpartum period in Thomson's gazelle. Behaviour 151:1229-1248. 

Robinette, W. L., C. H. Baer, R. E. Pillmore, and C. E. Knittle. 1973. Effects of nutritional 

change on captive mule deer. Journal of Wildlife Management 37:312-326. 

Robinette, W. L., J. S. Gashwiler, J. B. Low, and D. A. Jones. 1957a. Differential mortality by 

sex and age among mule deer. Journal of Wildlife Management 21:1-16. 

Robinette, W. L., N. V. Hancock, and D. A. Jones. 1977. The Oak Creek mule deer herd in Utah. 

Resource Publication, 77-15, Utah Division of Wildlife, Salt Lake City, Utah, USA. 



136 

Robinette, W. L., D. A. Jones, G. Rogers, and J. S. Gashwiler. 1957b. Notes on tooth 

development and wear for Rocky Mountain mule deer. Journal of Wildlife Management 

21:134-153. 

Robinette, W. L., and O. A. Olsen. 1944. Studies of the productivity of mule deer in central 

Utah. Transitions of the North American Wildlife Conference 9:156-161. 

Rogers, L. L. 1970. Black bear of Minnesota. Naturalist 21:42-47. 

Rohm, J. H., C. K. Nielsen, and A. Woolf. 2007. Survival of white-tailed deer fawns in southern 

Illinois. Journal of Wildlife Management 71:851-860. 

Rost, G. R., and J. A. Bailey. 1979. Distribution of mule deer and elk in relation to roads. Journal 

of Wildlife Management 43:634-641. 

Sadleir, R. M. F. S. 1982. Energy-consumption and subsequent partitioning in lactating black-

tailed deer. Canadian Journal of Zoology 60:382-386. 

Saltz, D. 2001. Progeny sex ratio variation in ungulates: Maternal age meets environmental 

perturbation of demography. Oikos 94:377-384. 

Sams, M. G., R. L. Lochmiller, E. C. Hellgren, W. D. Warde, and L. W. Varner. 1996. 

Morphometric predictors of neonatal age for white tailed deer. Wildlife Society Bulletin 

24:53-57. 

Sappington, J. M., K. M. Longshore, and D. B. Thompson. 2007. Quantifying landscape 

ruggedness for animal habitat analysis: A case study using bighorn sheep in the Mojave 

Desert. Journal of Wildlife Management 71:1419-1426. 

Sawyer, H., M. J. Kauffman, and R. M. Nielson. 2009. Influence of well pad activity on winter 

habitat selection patterns of mule deer. Journal of Wildlife Management 73:1052-1061. 



137 

Sawyer, H., R. M. Nielson, F. Lindzey, and L. L. McDonald. 2006. Winter habitat selection of 

mule deer before and during development of a natural gas field. Journal of Wildlife 

Management 70:396-403. 

Severinghaus, C. W. 1949. Tooth development and wear as criteria of age in white-tailed deer. 

Journal of Wildlife Management 13:195-216. 

Severud, W. J., G. D. Giudice, T. R. Obermoller, T. A. Enright, R. G. Wright, and J. D. Forester. 

2015. Using GPS collars to determine parturition and cause-specific mortality of moose 

calves. Wildlife Society Bulletin 39:616-625. 

Shallow, J. R. T., M. A. Hurley, K. L. Monteith, and R. T. Bowyer. 2015. Cascading effects of 

habitat on maternal condition and life-history characteristics of neonatal mule deer. 

Journal of Mammalogy 96:194-205. 

Sheldon, B. C., and S. A. West. 2004. Maternal dominance, maternal condition, and offspring 

sex ratio in ungulate mammals. American Naturalist 163:40-54. 

Short, H. L. 1981. Nutrition and metabolism. Pages 99-127 in O. C. Wallmo, editor. Mule and 

black-tailed deer of North America. University of Nebraska Press, Lincoln, Nebraska, 

USA. 

Short, H. L., D. E. Medin, and A. E. Anderson. 1965. Ruminoreticular characteristics of mule 

deer. Journal of Mammalogy 46:196-199. 

Sikes, R. S., W. L. Gannon, and The Animal Care and Use Committee of the American Society 

of Mammalogists. 2011. Guidelines of the American Society of Mammalogists for the 

use of wild mammals in research. Journal of Mammalogy 92:235-253. 



138 

Simard, M. A., J. Huot, S. de Bellefeuille, and S. D. Cote. 2014. Linking conception and 

weaning success with environmental variation and female body condition in a northern 

ungulate. Journal of Mammalogy 95:311-327. 

Smith, J. B., T. W. Grovenburg, and J. A. Jenks. 2015. Parturition and bed site selection of 

bighorn sheep at local and landscape scales. Journal of Wildlife Management 79:393-

401. 

Stearns, S. C. 1992. The evolution of life histories. Oxford University Press, Oxford, United 

Kingdom.  

Stephenson, T. R., V. C. Bleich, B. M. Pierce, and G. P. Mulcahy. 2002. Validation of mule deer 

body composition using in vivo and post-mortem indices of nutritional condition. 

Wildlife Society Bulletin 30:557-564. 

Stephenson, T. R., K. J. Hundertmark, C. C. Schwartz, and V. V. Ballenberghe. 1998. Predicting 

body fat and body mass in moose with ultrasonography. Canadian Journal of Zoology 

76:717-722. 

Stephenson, T. R., J. W. Testa, G. P. Adams, R. G. Sasser, C. G. Schwartz, and K. J. 

Hundermark. 1995. Diagnosis of pregnancy and twinning in moose by by 

ultrasonography and serum assay. Alces 31:167-172. 

Stewart, K. M., R. T. Bowyer, J. G. Kie, and M. A. Hurley. 2010. Spatial distributions of mule 

deer and North American elk: Resource partitioning in a sage-steppe environment. 

American Midland Naturalist 163:400-412. 

Stonehouse, K. F., C. R. Anderson Jr, M. E. Peterson, and D. R. Collins. In prep. Approaches to 

field investigations of cause-specific mortality in mule deer (Odocoileus hemionus). 

Colorado Parks and Wildlife Technical Report No. ??, Fort Collins, Colorado. 



139 

Stoner, D. C., J. O. Sexton, J. Nagol, H. H. Bernales, and T. C. Edwards. 2016. Ungulate 

reproductive parameters track satellite observations of plant phenology across latitude 

and climatological regimes. Plos One 11:e0148780. 

Telfer, T. C. 1988. Status of black-tailed deer on Kauai. Transactions of the Western Section of 

The Wildlife Society 24:53-60. 

Testa, J. W. 2002. Does predation on neonates inherently select for earlier births? Journal of 

Mammalogy 83:699-706. 

Therneau, T. M. 2015. A package for survival analysis in R. R package version 2.38. 

http://CRAN.R-project.org/package=survival. 

Tollefson, T. N., L. A. Shipley, W. L. Myers, and N. Dasgupta. 2011. Forage quality's influence 

on mule deer fawns. Journal of Wildlife Management 75:919-928. 

Tollefson, T. N., L. A. Shipley, W. L. Myers, D. H. Keisler, and N. Dasgupta. 2010. Influence of 

summer and autumn nutrition on body condition and reproduction in lactating mule deer. 

Journal of Wildlife Management 74:974-986. 

Torbit, S. C., L. H. Carpenter, D. M. Swift, and A. W. Alldredge. 1985. Differential loss of fat 

and protein by mule deer during winter. Journal of Wildlife Management 49:80-85. 

Trivers, R. L., and D. E. Willard. 1973. Natural selection of parental ability to vary the sex ratio 

of offspring. Science 179:90-92. 

Tull, J. C., P. R. Krausman, and R. J. Steidl. 2001. Bed-site selection by desert mule deer in 

southern Arizona. Southwestern Naturalist 46:354-357. 

Turner, M. M., A. P. Rockhill, C. S. Deperno, J. A. Jenks, R. W. Klaver, A. R. Jarding, T. W. 

Grovenburg, and K. H. Pollock. 2011. Evaluating the effect of predators on white-tailed 

deer: Movement and diet of coyotes. Journal of Wildlife Management 75:905-912. 



140 

Unsworth, J. W., D. F. Pac, G. C. White, and R. M. Bartmann. 1999. Mule deer survival in 

Colorado, Idaho, and Montana. Journal of Wildlife Management 63:315-326. 

USDA, and NRCS. 2016. The PLANTS database. http://plants.usda.gov. Accessed 24 June 

2016. 

Van Moorter, B., J. M. Gaillard, P. D. McLoughlin, D. Delorme, F. Klein, and M. S. Boyce. 

2009. Maternal and individual effects in selection of bed sites and their consequences for 

fawn survival at different spatial scales. Oecologia 159:669-678. 

van Reenen, G. 1982. Field experience in the capture of red deer by helicopter in New Zealand 

with reference to post-capture sequela and management. Pages 408-421 in L. Nielsen, J. 

C. Haigh, and M. E. Fowler, editors. Chemical immobilization of North American 

wildlife. Wisconsin Humane Society, Milwaukee, Wisconsin, USA. 

Verme, L. J. 1962. Mortality of white-tailed deer fawns in relation to nutrition Pages 15-38 in M. 

F. Baker, editor. Proceedings of the First National White-tailed Deer Disease 

Symposium. University of Georgia, Center for Continuing Eductation, Athens, Georgia, 

USA. 

Verme, L. J. 1965. Reproduction studies on penned white-tailed deer. Journal of Wildlife 

Management 29:74-79. 

_____. 1969. Reproductive patterns of white-tailed deer related to nutritional plane. Journal of 

Wildlife Management 33:881-887. 

Verme, L. J., and D. E. Ullrey. 1984. Physiology and nutrition. Pages 91-118 in K. L. Halls, 

editor. White-tailed deer ecology and management. Stackpole Books, Harrisburg, 

Pennsylvania, USA. 



141 

Vore, J. M., and E. M. Schmidt. 2001. Movements of female elk during calving season in 

northwest Montana. Wildlife Society Bulletin 29:720-725. 

Wade, D. A., and J. E. Bowns. 1982. Procedures for evaluating predation on livestock and 

wildlife. Texas Agricultural Extension Service, Texas A&M University, San Angelo, 

Texas, USA. 

Walker, B. L., D. E. Naugle, and K. E. Doherty. 2007. Greater sage-grouse population response 

to energy development and habitat loss. Journal of Wildlife Management 71:2644-2654. 

Wall, J., G. Wittemyer, B. Klinkenberg, and I. Douglas-Hamilton. 2014. Novel opportunities for 

wildlife conservation and research with real-time monitoring. Ecological Applications 

24:593-601. 

Wallmo, O. C. 1978. Mule and black-tailed deer. Pages 31-41 in J. L. Schmidt, and D. L. Gilbert, 

editors. Big game of North America: Ecology and management. Stackpole Books, 

Harrisburg, Pennsylvania, USA. 

_____. 1981. Mule and black-tailed deer distribution and habitats. Pages 1-25 in O. C. Wallmo, 

editor. Mule and black-tailed deer of North America. University of Nebraska Press, 

Lincoln, Nebraska, USA. 

Wallmo, O. C., L. H. Carpenter, W. L. Regelin, R. B. Gill, and D. L. Baker. 1977. Evaluation of 

deer habitat on a nutritional basis. Journal of Range Management 30:122-127. 

Walther, F. R. 1965. Verhaltensstudien an der grantsgazelle (Gazella granti Brooke, 1872) im 

Ngorongoro-Krater. Zeitschrift fu ̈r Tierpsychologie:167-208. 

Watkins, B. E., C. J. Bishop, E. J. Bergman, A. Bronson, B. Hale, B. F. Wakeling, L. H. 

Carpenter, and D. W. Lutz. 2007. Habitat guidelines for mule deer: Colorado plateau 

shrubland and forest ecoregion. 



142 

Webb, S. L., M. R. Dzialak, S. M. Harju, L. D. Hayden-Wing, and J. B. Winstead. 2011a. Effects 

of human activity on space use and movement patterns of female elk. Wildlife Society 

Bulletin 35:261-269. 

Webb, S. L., M. R. Dzialak, S. M. Harju, L. D. Hayden-Wing, and J. B. Winstead. 2011b. 

Influence of land development on home range use dynamics of female elk. Wildlife 

Research 38:163-167. 

Webb, S. L., M. R. Dzialak, R. G. Osborn, S. M. Harju, J. Wondzell, L. Hayden-Wing, and J. B. 

Winstead. 2011c. Using pellet groups to assess response of elk and deer to roads and 

energy development. Wildlife Biology in Practice. 

White, G. C., and R. M. Bartmann. 1998. Effect of density reduction on overwinter survival of 

free-ranging mule deer fawns. Journal of Wildlife Management 62:214-225. 

White, G. C., and K. P. Burnham. 1999. Program MARK: Survival estimation from populations 

of marked animals. Bird Study 46:120-139. 

White, G. C., and R. A. Garrott. 1990. The analysis of wildlife radiotracking data. Academic 

Press, San Diego, California, USA. 

White, G. C., W. L. Kendall, and R. J. Barker. 2006. Multistate survival models and their 

extensions in Program MARK. Journal of Wildlife Management 70:1521-1529. 

White, G. C., and B. C. Lubow. 2002. Fitting population models to multiple sources of observed 

data. Journal of Wildlife Management 66:300-309. 

White, M. 1973. Description of remains of deer fawns killed by coyotes. Journal of Mammalogy 

54:291-293. 

Whittaker, D. G., and F. G. Lindzey. 1999. Effect of coyote predation on early fawn survival in 

sympatric deer species. Wildlife Society Bulletin 27:256-262. 



143 

Williams, G. C. 1979. Question of adaptive sex-ratio in outcrossed vertebrates. Proceedings of 

the Royal Society of London Series B-Biological Sciences 205:567-580. 

Willoughby, S. 2012. Colorado among states struggling to stop decline of mule deer herds. 

Denver Post. Published 16 May 2012, 

www.denverpost.com/outdoors/ci_20630849/colorado-among-states-struggling-

stopdecline-mule-deer. 

 



144 

APPENDIX 1.1: 
 
 
 

MULE DEER LIFE HISTO RY 
 
 
 

RANGE 

Mule deer are ungulates belonging to the family Cervidae and are distributed across much of 

western North America ranging from the coastal islands of southern Alaska, down the Pacific 

Coast of California to southern Baja Mexico and from the extreme northern portion of the 

Mexican state of San Luis Potosí (Cowan 1956), northward through the Great Plains to the 

Canadian provinces of Saskatchewan, Alberta, British Columbia, the southern Yukon Territory 

(Wallmo 1981) and the island of Kauai, Hawaii (Telfer 1988). Due to the species’ range, mule 

deer occupy a diversity of biomes and associated vegetation regimes including boreal forest, 

chaparral, desert, grassland, and temperate deciduous forest. Mule deer can be considered habitat 

generalists due to the variety of adaptations they have to persist in many diverse ecosystems.  

DIGESTIVE SYSTEM  

Mule deer are ruminants possessing a digestive system including four major chambers. The 

rumen is the first and largest followed by the reticulum, omasum, and abomasum. As compared 

to elk (Short et al. 1965), mule deer require highly digestible forage due to low rumen to body 

size ratio, small intestinal length, low small intestine to large intestine ratio, and higher metabolic 

rate. In addition, food is often retained in the rumen of mule deer for less than 1 day (Short 

1981). Deer are classified as opportunistic concentrate selectors meaning they can precisely 

select forage high in energy and containing low levels of cellulose (Hofmann 1985). During late 
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spring, summer, and autumn, rapid rates of food consumption and passage of easily digestible 

foods through the gastrointestinal tract produce abundant assimilable nutrients in contrast with 

diminished levels in late autumn and winter (Short 1981). 

FORAGE AND HABITAT R EQUIREMENTS  

Nutritious vegetation is an important component of a deer’s daily quest for survival to meet 

dietary requirements. Mule deer mainly forage on new woody growth of various shrubs (e.g., 

antelope bitterbrush (Purshia tridentata Pursh.), alderleaf mountain mahogany (Cercocarpus 

montanus Raf.), rubber rabbitbrush (Ericameria nauseosa Pall ex. Pursh.), forbs, berries, and a 

few grasses (Wallmo et al. 1977, Wallmo 1981). Quaking aspen (Populus tremuloides Michx.) 

stands provide highly preferred nutritious forage during the summer (Lutz et al. 2003). Food 

preferences vary with season, forage quality, and availability.  

In addition to food, vegetation plays other important roles for deer including cover and 

habitat. Brushy areas, edge habitat, and tree thickets are important for escape cover. Vegetation 

cover is critical for thermal regulation in winter and summer such that deer use south-facing 

slopes more in cold weather and north-facing slopes more in hot weather. Aspen stands provide 

important thermoregulatory hiding cover and critical parturition habitat (Lutz et al. 2003). 

Overall, vegetation provides deer forage, cover, and habitat to promote survival.  

REPRODUCTION 

Mule deer breeding season (i.e., the rut) occurs in late autumn, and peaks from mid to late 

November, when males compete to establish dominance for the right to breed with females. 

Mule deer are polygynous with a tending-bond system characterized by males generally mating 

with several females (Geist 1981). Males search for a female near estrous and once he is 
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accepted by a female he tends her while fending off other males or until he is displaced by a 

rival. When a female enters estrous, breeding usually occurs by the dominant male, but he needs 

to be accepted by the female. Females seek out dominant males possibly to avoid constant 

harassment from subordinate males (Heffelfinger 2006). Timing and synchrony of the rut may be 

an adaptation to long-term climatic patterns that help ensure females have adequate nutrition 

during late gestation and parturition and that neonates are born at an optimal time of year 

(Bowyer 1991). Birth during the optimal time of year should be favored due to investment of 

time and energy during and following gestation. 

Neonates are generally born in June after a mean gestation period of 200–208 days 

(Anderson 1981) and males are not involved in raising or caring for offspring. Yearling females 

usually produce a single neonate, whereas adult females generally produce twins and rarely 

triplets (Robinette et al. 1973). Neonates are altricial, requiring nourishment within the first hour 

of birth. Mean birth mass for wild deer is 3.27–3.70 kg (Robinette and Olsen 1944, Robinette et 

al. 1977). Fawning occurs in moderately dense shrublands and forests, dense herbaceous stands, 

and high-elevation riparian and mountain shrub habitats, with available water and abundant 

forage (Wallmo 1981). After birth, females groom the neonate(s) and rid the birth site of scent by 

consuming the placenta, feces, and urine (Geist 1981). Neonates are born nearly odorless and 

with white spots that act as camouflage, which will disappear after ~3 months. 

Neonate survival depends on their ability to stay hidden from predators in protective 

cover for their first 4–6 weeks of life (Geist 1981, Ozoga et al. 1982). Predation is highest during 

the first 4–6 weeks because neonate mobility and strength is limited. Predators seem to locate 

newborn deer birth areas and develop a search image to locate neonates when available 

(Whittaker and Lindzey 1999, Testa 2002). Females generally forage or rest in the vicinity of 
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neonates (≤ 500 m) and only visit the neonate for nursing 3 or 4 times a day to minimize the 

chance of predation (Geist 1981). Dams with marginal quality forage may produce milk high in 

fats, but low in protein, which negatively affects growth of neonates (Wallmo 1981). The 

stomach of fawns less than 5 weeks old contains an esophageal groove, which causes the 

stomach to function as monogastric, consisting of the abomasum, an efficient organ for utilizing 

milk (Short 1981). Over the next 11 weeks, the digestive system develops into a highly 

specialized, four-compartment ruminant stomach with the same relative volume, functions, and 

appearance of adult deer (Short 1981). Weaning begins at about 5 weeks of age and usually is 

completed by 16 weeks (Short 1981).  

MIGRATION  

Mule deer can be year-round residents of an area if resources are abundant. However, deer 

usually migrate to high elevation summer ranges, consisting of montane forests, wet meadows, 

riparian areas, or aspen stands, to take advantage of seasonally abundant woody stems and forbs 

and return to low elevation ranges in winter when snow starts to accumulate and temperatures 

decrease (Nicholson et al. 1997, Rittenhouse et al. 2015). Migration may also be influenced by 

increasing photoperiod in the spring and decreasing photoperiod in autumn or winter (Nicholson 

et al. 1997) and vegetation changes (Garrott et al. 1987, Lendrum et al. 2014). Predation may be 

elevated during migration, but the benefits (e.g., better access to forage and avoidance of 

starvation) of migration are thought to outweigh predation risk (Nicholson et al. 1997).  

Females contend with varying body condition depending on the time of the year and 

forage availability by migrating. Adult females are usually in their poorest condition when 

migrating from winter range to summer range. Winter range consists of shrub-dominated habitats 

with lower quality forage when compared to summer range. Females generally benefit from 
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spring green up and high forage quality during the time of their poorest condition while on 

summer range compared to winter range. Therefore, females are in their best condition when 

migrating from summer range to winter range. However, females must contend with the 

nutritional demands associated with producing and nursing neonates during their third trimester 

of gestation and especially during lactation while on summer range (Robbins and Robbins 1979, 

Pekins et al. 1998). Furthermore, in preparation for facing the rigors of winter conditions (Parker 

et al. 1984, Parker et al. 1999), females need to build fat reserves to enhance survival (Torbit et 

al. 1985). 
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Figure A1.1. Range map of mule deer (from Mackie et al. 2003). 
  

  Sitka black-tailed deer (O. 
h. sitkensis) 

   Columbian black-tailed 
deer (O. h. columbianus) 

   California mule deer (O. 
h. californicus) 

   Southern mule deer (O. h. 
fuliginatus) 

   Peninsula mule deer (O. 
h. peninsulae) 

   Desert mule deer (O. h. 
eremicus) 

   Rocky Mountain mule 
deer (O. h. hemionus) 
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APPENDIX 1.2: 
 
 
 

NUMBER OF ADULT FEMA LES EXCLUDED FROM IN UTERO FETAL RATE AND  
 

FETAL SURVIVAL RATE ANALYSES 
 
 
 

Appendix 1.2. Number of adult females excluded from in utero fetal rate and fetal survival rate 
analyses in the Piceance Basin, northwest Colorado, USA, 2012–2014. 
 

Reason Number of females excluded 
Not pregnant  17 
Inaccurate fetal count 3 
Denied permission to access private property 50 
Myopathy 15 
Mortality before birth 20 
VIT malfunctioned 35 
Inaccessible land 2 
Could not locate following spring migration 2 
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APPENDIX 3.1: 
 
 
 

LAND COVER CLASSIFICATION AND RECLASSIFIED LAND COVER CATEGO RIES 
 
 
 

Appendix 3.1. Colorado Vegetation Classification Project (CVCP) land cover classification and reclassified land cover categories. 
 

CVCP code 
Reclassified 

code Class name Description 

0 0 Null No value 
1 4 Urban/Built Up High density commercial or high density residential areas. 
11 4 Residential High density residential areas, lawns, planted trees. 
12 4 Commercial High density urban areas, parking lots, buildings, etc. 
2 4 Agriculture Land Row crops, irrigated pasture, dry farm crops. 
21 4 Dryland Ag Dryland crops and fields. 
22 4 Irrigated Ag Irrigated crops and fields. 
23 4 Orchard Cropland consisting of orchards. 
31 4 Grass/Forb Rangeland Perennial and annual grasslands and/or mixed forbs. 

3101 2 Snakeweed/Shrub Mix Shrubland codominated by snakeweed and mixed shrubs. 
3102 4 Grass Dominated Rangeland dominated by annual and perennial grasses. 
3103 4 Forb Dominated Rangeland dominated by forbs. 
3104 4 Grass/Forb Mix Rangeland codominated by grasses and forbs. 

3109 4 Foothill and Mountain Grasses 

Species include Parry's oatgrass, Arizona fescue, Idaho 
fescue, Thurber's fescue, slimstem muhly, mountain 

muhly, bluebunch wheatgrass, heartleaf twistflower, and 
prairie Junegrass. 

3110 4 Disturbed Rangeland Disturbed or overgrazed rangeland. 
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3111 4 Sparse Grass (Blowouts) Sparsely vegetated grasslands, 10–40% vegetation, 
indicative of blowouts. 

32 2 Shrub/Brush Rangeland 
Consists of sagebrush, saltbrush, greasewood, snakeweed, 

etc. 
3201 2 Sagebrush Community Sagebrush with rabbitbrush and bitterbrush. 

3202 2 Saltbush Community 
Saltbrush on alkaline soils associated with snakeweed, 

sagebrush. 
3203 2 Greasewood Low elevation shrubland dominated by greasewood. 
3204 1 Sagebrush/Gambel Oak Mix Shrubland codominated by big sagebrush and Gambel oak. 
3206 1 Snowberry Deciduous shrubland dominated by mountain snowberry. 

3207 1 Snowberry/Shrub Mix 
Deciduous shrubland codominated by mountain snowberry 

and mixed shrubs. 
3208 2 Bitterbrush Community Shrubland dominated by bitterbrush. 

3209 2 Salt Desert Shrub Community 
Low-elevation shrublands found on alluvial salt fans or 

flats. 

3210 2 Sagebrush/Greasewood 
Shrubland codominated by sagebrush and greasewood, 

with some rabbitbrush. 
33 4 Shrub/Grass/Forb Mix Mixed grass/forb and shrub/grass rangeland. 

3301 2 Sagebrush/Grass Mix Codominate sagebrush shrubland and perennial grassland. 
3302 2 Rabbitbrush/Grass Mix Codominate rabbitbrush and perennial grassland. 

3303 2 Sagebrush/Mesic Mtn Shrub Mix 
Codominate sagebrush/mesic mountain shrub mixed with 

grass/forb. 
3306 2 Bitterbrush/Grass Mix Codominate bitterbrush shrubland and perennial grassland. 
3308 2 Sagebrush/Rabbitbrush Mix Codominate shrubland of sagbrush and rabbitbrush. 
4101 1 Pinon-Juniper Pinon-Juniper woodland with mixed understory. 

4102 1 Juniper 
Woodland principally dominated by Utah juniper and/or 

Rocky Mountain juniper. 
4201 1 Gambel Oak Deciduous woodland dominated by Gambel oak. 
4202 1 Xeric Mountain Shrub Mix Deciduous woodland dominated by mountain mahogany. 
4203 1 Mesic Mountain Shrub Mix Oak dominant with sagebrush, snowberry, grass. 
4204 1 Serviceberry/Shrub Mix Deciduous woodland dominated by servicberry. 
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4205 1 Upland Willow/Shrub Mix  
High elevation shrubland dominated by willow and mixed 

shrubs. 
4206 1 Manzanita Deciduous shrubland dominated by Manzanita 
4301 1 PJ-Oak Mix Codominate Gambel oak and pinyon/juniper woodland. 
4302 1 PJ-Sagebrush Mix Codominate pinyon-juniper and sagebrush. 

4303 1 PJ-Mtn Shrub Mix 
Codominate pinyon-juniper and oak, mountain mahogany 

or other deciduous shrubs. 
4304 4 Sparse PJ/Shrub/Rock Mix < 25% pinyon-juniper with sagebrush and rock. 
4305 4 Sparse Juniper/Shrub/Rock Mix < 25% juniper with sagebrush and rock. 
4306 1 Juniper/Sagebrush Mix Codominate juniper and sagebrush. 

4307 1 Juniper/Mtn Shrub Mix 
Codominate juniper and oak, mountain mahogany or other 

deciduous shrubs. 
5101 3 Aspen Deciduous forest dominated by aspen. 
5102 3 Aspen/Mesic Mountain Shrub Mix Codominate aspen and Gambel oak deciduous woodland. 
5201 3 Ponderosa Pine Coniferous forest dominated by ponderosa pine. 

5202 3 Englemann Spruce/Fir Mix 
Coniferous forest codominated by Engelmann spruce and 

subalpine fir. 
5203 3 Douglas Fir Coniferous forest dominated by Douglas fir. 
5204 3 Lodgepole Pine Coniferous forest dominated by lodgepole pine. 
5205 3 Sub-Alpine Fir Coniferous forest dominated by sub-alpine fir. 
5206 3 Spruce/Fir Regeneration Harvested PIEN/ABLA sites, in regeneration. 

5207 3 Spruce/Lodgepole Pine Mix 
Coniferous forest codominated by lodgepole pine and 

spruce. 
5211 3 Limber Pine Coniferous forest dominated by limber pine. 

5213 3 Lodgepole/Spruce/Fir Mix 
Coniferous forest co-dominated by lodgepole pine, 

Engelmann spruce, and white fir. 

5214 3 Fir/Lodgepole Pine Mix 
Coniferous forest codominated by sub-alpine fir and 

lodgepole pine. 

5215 3 Douglas Fir/Englemann Spruce Mix 
Coniferous forest co-dominated by Douglas fir and 

Engelmann spruce. 
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53 3 Mixed Forest Land 
Forests of spruce/fir, pine/oak, fir/aspen or pine/aspen 

mix. 

5301 3 Spruce/Fir/Aspen Mix 
Mixed forest codominated by Engelmann spruce, sub-

alpine fir, and aspen. 
5304 3 Douglas Fir/Aspen Mix Mixed forest codominated by Douglas fir and aspen. 
5306 3 Lodgepole Pine/Aspen Mix Mixed forest codominated by aspen and lodgepole pine. 

5307 3 Spruce/Fir/Lodgepole/Aspen Mix 
Mixed coniferous/deciduous forest codominated with 

Engelmann spruce, white fir, lodgepole pine, and aspen. 
6 4 Barren Land < 10% vegetation. 
61 4 Rock < 10% vegetation, rock outcrops, red sandstones, etc. 

6101 4 Talus Slopes & Rock Outcrops Talus and scree slopes, nearly 100% rock. 
62 4 Soil Bare soil and fallow agriculture fields. 

6201 4 Disturbed Soil 
Areas where human activities have created bare ground, 

i.e. mine tailings. 

71 2 Alpine Meadow 
> 11,500' tundra vegetation including grasses, forbs, 

sedges. 
7101 2 Alpine Forb Dominated > 11,500' meadow dominated by alpine forbs. 
7102 2 Alpine Grass Dominated > 11,500' meadow dominated by alpine grasses. 

7103 2 Alpine Grass/Forb Mix 
> 11,500' mixed meadow codominated by alpine grasses 

and forbs. 
72 2 SubAlpine Shrub Community 7,000' to 11,500' tundra shrubs. 
74 4 Subalpine Meadow Herbaceous vegetation below timberline (9,000–11,500). 

7401 4 Subalpine Grass/Forb Mix 
High elevation meadows co-dominated by grass and forbs 

(9,000–11,500). 
8 4 Riparian Cottonwood, willow, sedges along waterways. 
81 4 Forested Riparian Wooded riparian areas consisting primarily of poplars. 

8101 4 Cottonwood Wooded riparian areas dominated by cottonwood. 

8103 4 Conifer Riparian 
Wooded riparian areas in mid-upper elevations with mixed 

coniferous species. 
82 4 Shrub Riparian Shrub riparian areas consisting primarily of shrub willows. 

8201 4 Willow Shrub riparian areas dominated by shrub willow species. 
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8202 4 Exotic Riparian Shrubs 
Shrub Riparian area dominated by salt cedar and Russian 

olive. 
83 4 Herbaceous Riparian Non-woody riparian areas consisting primarily of sedges. 

8301 4 Sedge Herbaceous riparian areas dominated by sedges. 

9 5 Water Lakes, reservoirs, rivers, streams. 
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APPENDIX 4.1: 
 
 
 

MODEL SELECTION RESU LTS FOR STAGE ONE ANALYSIS EVALUATING TH E INFLUENCE OF WINTER RANGE  
 

DEVELOPMENT CHARACTERISTICS ON DAILY NEONATAL MULE D EER MORTALITY  
 
 
 

Appendix 4.1. Multi -state mark-recapture model selection results for stage one analysis evaluating the influence of winter range 
development characteristics on daily neonatal mule deer mortality, Piceance Basin in northwestern Colorado, USA, 2012–2014. Each 
model provided a parameter estimate for probability of transitioning from an alive state in the high or low development study areas to 
a death by predation (�.K), malnutrition (�.M), or unknown mortality (�.U) state. Detection probabilities were held constant for all 
these models (not shown). Only models with an AICc weight ≥ 0.010 are shown. 
 

Modela  AICcb ΔAICc AICc 
weight 

K c �.K (study area+WR dist.prod 0–0.4 km+WR dist.rd) �.M (study area+WR dist.rd) �.U 
(study area) 

 3501.472 0.000 0.095 10 �.K (study area+WR dist.prod 0–0.4 km) �.M (study area+WR dist.rd) �.U (study area)  3501.714 0.242 0.084 9 �.K (study area+WR dist.prod 0–0.4 km+WR dist.rd) �.M (study area+WR dist.prod 0–0.4 
km+WR dist.rd) �.U (study area) 

 3501.810 0.338 0.080 11 �.K (study area+WR dist.prod 0–0.4 km) �.M (study area+WR dist.prod 0–0.4 km+WR 
dist.rd) �.U (study area) 

 3502.009 0.537 0.072 10 �.K (study area+WR dist.prod 0–0.4 km+WR dist.rd) �.M (study area+WR dist.rd) �.U 
(study area+WR dist.prod 0–0.4 km) 

 3502.898 1.426 0.046 11 �.K (study area+WR dist.prod 0–0.4 km) �.M (study area+WR dist.rd) �.U (study 
area+WR dist.prod 0–0.4 km) 

 3503.148 1.676 0.041 10 
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�.K (study area+WR dist.prod 0–0.4 km+WR dist.rd) �.M (study area+WR dist.prod 0–0.4 
km+WR dist.rd) �.U (study area+WR dist.prod 0–0.4 km) 

 3503.190 1.718 0.040 12 �.K (study area+WR dist.prod 0–0.4 km+WR dist.rd) �.M (study area+WR dist.prod 0–0.4 
km) �.U (study area) 

 3503.439 1.967 0.035 10 �.K (study area+WR dist.prod 0–0.4 km+WR dist.rd) �.M (study area+WR dist.rd) �.U 
(study area+WR dist.rd) 

 3503.443 1.971 0.035 11 �.K (study area+WR dist.prod 0–0.4 km) �.M (study area+WR dist.prod 0–0.4 km+WR 
dist.rd) �.U (study area+WR dist.prod 0–0.4 km) 

 3503.449 1.977 0.035 11 �.K (study area+WR dist.prod 0–0.4 km) �.M (study area+WR dist.rd) �.U (study 
area+WR dist.rd) 

 3503.676 2.204 0.031 10 �.K (study area+WR dist.prod 0–0.4 km+WR dist.rd) �.M (study area+WR dist.prod 0–0.4 
km+WR dist.rd) �.U (study area+WR dist.rd) 

 3503.729 2.257 0.031 12 �.K (study area+WR dist.prod 0–0.4 km) �.M (study area+WR dist.prod 0–0.4 km) �.U 
(study area) 

 3503.783 2.311 0.030 9 �.K (study area+WR dist.prod 0–0.4 km+WR dist.rd) �.M (study area) �.U (study area)  3503.802 2.330 0.029 9 �.K (study area+WR dist.prod 0–0.4 km) �.M (study area+WR dist.prod 0–0.4 km+WR 
dist.rd) �.U (study area+WR dist.rd) 

 3503.971 2.499 0.027 11 �.K (study area+WR dist.prod 0–0.4 km) �.M (study area) �.U (study area)  3504.113 2.641 0.025 8 �.K (study area+WR dist.prod 0–0.4 km+WR dist.rd) �.M (study area+WR dist.prod 0–0.4 
km) �.U (study area+WR dist.prod 0–0.4 km) 

 3504.868 3.396 0.017 11 �.K (study area+WR dist.prod 0–0.4 km+WR dist.rd) �.M (study area+WR dist.rd) �.U 
(study area+WR dist.prod 0–0.4 km+WR dist.rd) 

 3504.906 3.434 0.017 12 �.K (study area+WR dist.prod 0–0.4 km) �.M (study area+WR dist.rd) �.U (study 
area+WR dist.prod 0–0.4 km+WR dist.rd) 

 3505.152 3.680 0.015 11 
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�.K (study area+WR dist.prod 0–0.4 km) v (study area+WR dist.prod 0–0.4 km) �.U 
(study area+WR dist.prod 0–0.4 km) 

 3505.194 3.722 0.015 10 �.K (study area+WR dist.prod 0–0.4 km+WR dist.rd) �.M (study area+WR dist.prod 0–0.4 
km+WR dist.rd) �.U (study area+WR dist.prod 0–0.4 km+WR dist.rd) 

 3505.211 3.739 0.015 13 �.K (study area+WR dist.prod 0–0.4 km+WR dist.rd) �.M (study area) �.U (study 
area+WR dist.prod 0–0.4 km) 

 3505.228 3.756 0.014 10 �.K (study area+WR dist.prod 0–0.4 km+WR dist.rd) �.M (study area+WR dist.prod 0–0.4 
km) �.U (study area+WR dist.rd) 

 3505.400 3.928 0.013 11 �.K (study area+WR dist.prod 0–0.4 km) �.M (study area+WR dist.prod 0–0.4 km+WR 
dist.rd) �.U (study area+WR dist.prod 0–0.4 km+WR dist.rd) 

 3505.454 3.982 0.013 12 �.K (study area+WR dist.prod 0–0.4 km) �.M (study area) �.U (study area+WR dist.prod 
0–0.4 km) 

 3505.545 4.073 0.012 9 �.K (study area+WR dist.prod 0–0.4 km) �.M (study area+WR dist.prod 0–0.4 km) �.U 
(study area+WR dist.rd) 

 3505.710 4.238 0.011 10 �.K (study area+WR dist.prod 0–0.4 km+WR dist.rd) �.M (study area) �.U (study 
area+WR dist.rd) 

 3505.769 4.297 0.011 10 �.K (study area) �.M (study area+WR dist.rd) �.U (study area)  3505.884 4.412 0.010 8 �.K (study area+WR dist.prod 0–0.4 km) �.M (study area) �.U (study area+WR dist.rd)  3506.069 4.597 0.009 9 
a Covariates are defined as in Table 4.1. 
b
 Akaike’s Information Criterion adjusted for small sample size. 

c K is the number of parameters in the model.  
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APPENDIX 4.2: 
 
 
 

MODEL SELECTION RESU LTS FOR STAGE ONE ANALYSIS EVALUATING TH E INFLUENCE OF SUMMER RANGE  
 

DEVELOPMENT CHARACTERISTICS ON DAILY NEONATAL MULE DEER MORT ALITY  
 
 
 

Appendix 4.2. Multi -state mark-recapture model selection results for stage one analysis evaluating the influence of summer range 
development characteristics on daily neonatal mule deer mortality, Piceance Basin in northwestern Colorado, USA, 2012–2014. Each 
model provided a parameter estimate for probability of transitioning from an alive state in the high or low development study areas to 
a death by predation (�.K), malnutrition (�.M), or unknown mortality (�.U) state. Detection probabilities were held constant for all 
these models (not shown).  
 

Modela  AICcb ΔAICc AICc 
weight K c �.K (study area+SR dist.prod 0–0.4 km) �.M (study area) �.U (study area)  3502.506 0.000 0.432 8 �.K (study area+SR dist.prod 0–0.4 km) �.M (study area) �.U (study area+SR dist.prod 

0–0.4 km) 
 3503.737 1.231 0.233 9 �.K (study area+SR dist.prod 0–0.4 km) �.M (study area+SR dist.prod 0–0.4 km) �.U 

(study area) 
 3504.176 1.670 0.187 9 �.K (study area+SR dist.prod 0–0.4 km) �.M (study area+SR dist.prod 0–0.4 km) �.U 

(study area+SR dist.prod 0–0.4 km) 
 3505.549 3.043 0.094 10 �.K (study area) �.M (study area) �.U (study area)  3508.257 5.751 0.024 7 �.K (study area) �.M (study area) �.U (study area+SR dist.prod 0–0.4 km)  3509.527 7.021 0.013 8 �.K (study area) �.M (study area+SR dist.prod 0–0.4 km) �.U (study area)  3509.935 7.429 0.011 8 
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�.K (study area) �.M (study area+SR dist.prod 0–0.4 km) �.U (study area+SR dist.prod 
0–0.4 km) 

 3511.139 8.633 0.006 9 

a Covariates are defined as in Table 4.1. 
b
 Akaike’s Information Criterion adjusted for small sample size. 

c K is the number of parameters in the model.  
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APPENDIX 4.3: 
 
 
 

MODEL SELECTION RESU LTS FOR STAGE ONE ANALYSIS EVALUATING TH E INFLUENCE OF ADULT  FEMALE  
 

CHARACTERISTICS ON D AILY NEONATAL MULE D EER MORTALITY  
 
 
 

Appendix 4.3. Multi -state mark-recapture model selection results for stage one analysis evaluating the influence of adult female 
characteristics on daily neonatal mule deer mortality, Piceance Basin in northwestern Colorado, USA, 2012–2014. Each model 
provided a parameter estimate for probability of transitioning from an alive state in the high or low development study area to a death 
by predation (�.K), malnutrition (�.M), or unknown mortality (�.U) state. Detection probabilities were held constant for all these 
models (not shown). Only models with an AICc weight ≥ 0.010 are shown. 
 

Modela  AICcb ΔAICc AICc 
weight K c �.K (study area+rump fat) �.M (study area) �.U (study area)  3500.231 0.000 0.056 8 �.K (study area+rump fat) �.M (study area) �.U (study area+female age)  3500.684 0.453 0.045 9 �.K (study area+rump fat) �.M (study area+fetal count) �.U (study area)  3500.871 0.640 0.041 9 �.K (study area+rump fat) �.M (study area+fetal count) �.U (study area+female age)  3501.331 1.099 0.032 10 �.K (study area+rump fat) �.M (study area+rump fat) �.U (study area)  3501.794 1.562 0.026 9 �.K (study area+rump fat+female age) �.M (study area) �.U (study area)  3502.088 1.856 0.022 9 �.K (study area+rump fat) �.M (study area) �.U (study area+fetal count)  3502.130 1.899 0.022 9 �.K (study area+rump fat) �.M (study area) �.U (study area+rump fat)  3502.148 1.916 0.021 9 �.K (study area+rump fat) �.M (study area+female age) �.U (study area)  3502.227 1.996 0.021 9 �.K (study area+rump fat+fetal count) �.M (study area) �.U (study area)  3502.232 2.000 0.021 9 
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�.K (study area+rump fat) �.M (study area+rump fat) �.U (study area+female age)  3502.249 2.017 0.020 10 �.K (study area+rump fat) �.M (study area+rump fat+fetal count) �.U (study area)  3502.345 2.114 0.019 10 �.K (study area+rump fat) �.M (study area) �.U (study area+rump fat+female age)  3502.525 2.294 0.018 10 �.K (study area+rump fat+female age) �.M (study area) �.U (study area+female age)  3502.557 2.325 0.017 10 �.K (study area+rump fat) �.M (study area) �.U (study area+fetal count+female age)  3502.622 2.390 0.017 10 �.K (study area+rump fat) �.M (study area+female age) �.U (study area+female age)  3502.679 2.448 0.016 10 �.K (study area+rump fat+fetal count) �.M (study area) �.U (study area+female age)  3502.687 2.456 0.016 10 �.K (study area+rump fat+female age) �.M (study area+fetal count) �.U (study area)  3502.732 2.501 0.016 10 �.K (study area+rump fat) �.M (study area+fetal count) �.U (study area+fetal count)  3502.762 2.531 0.016 10 �.K (study area+rump fat) �.M (study area+fetal count) �.U (study area+rump fat)  3502.789 2.558 0.016 10 �.K (study area+rump fat) �.M (study area+rump fat+fetal count) �.U (study area+female 
age) 

 3502.808 2.576 0.015 11 �.K (study area+rump fat+fetal count) �.M (study area+fetal count) �.U (study area)  3502.876 2.645 0.015 10 �.K (study area+rump fat) �.M (study area+fetal count+female age) �.U (study area)  3502.880 2.648 0.015 10 �.K (study area+rump fat) �.M (study area+fetal count) �.U (study area+rump fat+female 
age) 

 3503.174 2.942 0.013 11 �.K (study area+rump fat+female age) �.M (study area+fetal count) �.U (study area+female 
age) 

 3503.208 2.977 0.013 11 �.K (study area+rump fat) �.M (study area+fetal count) �.U (study area+fetal count+female 
age) 

 3503.262 3.030 0.012 11 �.K (study area+rump fat+fetal count) �.M (study area+fetal count) �.U (study area+female 
age) 

 3503.338 3.107 0.012 11 
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�.K (study area+rump fat) �.M (study area+fetal count+female age) �.U (study area+female 
age) 

 3503.341 3.109 0.012 11 �.K (study area+rump fat+female age) �.M (study area+rump fat) �.U (study area)  3503.652 3.421 0.010 10 
a Covariates are defined as in Table 4.1. 
b
 Akaike’s Information Criterion adjusted for small sample size. 

c K is the number of parameters in the model.  
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APPENDIX 4.4: 
 
 
 

MODEL SELECTION RESU LTS FOR STAGE ONE ANALYSIS EVALUATING TH E INFLUENCE OF NEONA TE  
 

CHARACTERISTICS ON D AILY NEONATAL MULE D EER MORTALITY  
 
 
 

Appendix 4.4. Multi -state mark-recapture model selection results for stage one analysis evaluating the influence of neonate 
characteristics on daily neonatal mule deer mortality, Piceance Basin in northwestern Colorado, USA, 2012–2014. Each model 
provided a parameter estimate for probability of transitioning from an alive state in the high or low development study areas to a death 
by predation (�.K), malnutrition (�.M), or unknown mortality (�.U) state. Detection probabilities were held constant for all these 
models (not shown). Only models with an AICc weight ≥ 0.010 are shown. 
 

Modela  AICcb ΔAICc AICc 
weight K c �.K (study area+neonate age 0–14 days old) �.M (study area+neonate age 0–14 days old) �.U (study area+neonate age 0–14 days old) 

 3488.684 0.000 0.137 10 �.K (study area+neonate age 0–14 days old) �.M (study area+neonate age 0–14 days 
old+mass) �.U (study area) 

 3489.012 0.327 0.116 10 �.K (study area+neonate age 0–14 days old) �.M (study area+neonate age 0–14 days old) �.U (study area+DOB) 
 3489.587 0.903 0.087 10 �.K (study area+neonate age 0–14 days old+mass) �.M (study area+neonate age 0–14 days 

old) �.U (study area) 
 3490.763 2.079 0.048 10 �.K (study area+neonate age 0–14 days old) �.M (study area+neonate age 0–14 days old) �.U (study area+mass) 
 3490.903 2.219 0.045 10 
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�.K (study area) �.M (study area+neonate age 0–14 days old) �.U (study area+neonate age 
0–14 days old+DOB) 

 3490.928 2.244 0.044 10 �.K (study area+neonate age 0–14 days old) �.M (study area+neonate age 0–14 days old) �.U (study area+sex) 
 3491.028 2.343 0.042 10 �.K (study area+neonate age 0–14 days old) �.M (study area+neonate age 0–14 days old) �.U (study area) 
 3491.257 2.573 0.038 9 �.K (study area+neonate age 0–14 days old) �.M (study area+neonate age 0–14 days 

old+sex) �.U (study area) 
 3491.420 2.735 0.035 10 �.K (study area) �.M (study area+neonate age 0–14 days old+mass) �.U (study 

area+neonate age 0–14 days old) 
 3491.496 2.811 0.033 10 �.K (study area) �.M (study area+neonate age 0–14 days old+mass) �.U (study area+DOB)  3492.323 3.639 0.022 10 �.K (study area+neonate age 0–14 days old+DOB) �.M (study area+neonate age 0–14 days 

old) �.U (study area) 
 3492.684 4.000 0.018 10 �.K (study area+mass) �.M (study area+neonate age 0–14 days old) �.U (study 

area+neonate age 0–14 days old) 
 3492.752 4.068 0.018 10 �.K (study area) �.M (study area+neonate age 0–14 days old) �.U (study area+neonate age 

0–14 days old+mass) 
 3492.971 4.287 0.016 10 �.K (study area+mass) �.M (study area+neonate age 0–14 days old+mass) �.U (study area)  3492.986 4.302 0.016 10 �.K (study area+neonate age 0–14 days old+sex) �.M (study area+neonate age 0–14 days 

old) �.U (study area) 
 3493.134 4.450 0.015 10 �.K (study area) �.M (study area+neonate age 0–14 days old+mass+sex) �.U (study area)  3493.209 4.525 0.014 10 �.K (study area+neonate age 0–14 days old) �.M (study area+neonate age 0–14 days 

old+DOB) �.U (study area) 
 3493.247 4.563 0.014 10 �.K (study area) �.M (study area+neonate age 0–14 days old) �.U (study area+neonate age 

0–14 days old+sex) 
 3493.521 4.837 0.012 10 
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�.K (study area+mass) �.M (study area+neonate age 0–14 days old) �.U (study area+DOB)  3493.606 4.922 0.012 10 �.K (study area) �.M (study area+neonate age 0–14 days old+mass) �.U (study area+sex)  3493.607 4.923 0.012 10 �.K (study area) �.M (study area+neonate age 0–14 days old+mass) �.U (study area+mass)  3493.647 4.963 0.011 10 �.K (study area) �.M (study area+neonate age 0–14 days old) �.U (study area+neonate age 
0–14 days old) 

 3493.706 5.022 0.011 9 �.K (study area) �.M (study area+neonate age 0–14 days old+mass) �.U (study area)  3493.866 5.182 0.010 9 �.K (study area) �.M (study area+neonate age 0–14 days old+sex) �.U (study area+neonate 
age 0–14 days old) 

 3493.869 5.185 0.010 10 

a Covariates are defined as in Table 4.1. 
b
 Akaike’s Information Criterion adjusted for small sample size. 

c K is the number of parameters in the model.  
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APPENDIX 4.5: 
 
 
 

MODEL SELECTION RESU LTS FOR STAGE ONE ANALYSIS EVALUATING TH E INFLUENCE OF TEMPO RAL  
 

CHARACTERISTICS ON D AILY NEONATAL MULE D EER MORTALITY  
 
 
 

Appendix 4.5. Multi -state mark-recapture model selection results for stage one analysis evaluating the influence of temporal 
characteristics on daily neonatal mule deer mortality, Piceance Basin in northwestern Colorado, USA, 2012–2014. Each model 
provided a parameter estimate for probability of transitioning from an alive state in the high or low development study areas to a death 
by predation (�.K), malnutrition (�.M), or unknown mortality (�.U) state. Detection probabilities were held constant for all these 
models (not shown). Only models with an AICc weight ≥ 0.010 are shown. 
 

Modela  AICcb ΔAICc AICc 
weight K c �.K (study area+prev.precip+temp) �.M (study area+temp) �.U (study area)  3495.797 0.000 0.073 10 �.K (study area+prev.precip+precip+temp) �.M (study area+temp) �.U (study area)  3496.163 0.366 0.061 11 �.K (study area+prev.precip+temp) �.M (study area+temp) �.U (study area+temp)  3496.467 0.670 0.052 11 �.K (study area+temp) �.M (study area+temp) �.U (study area)  3497.135 1.339 0.037 9 �.K (study area+prev.precip+temp) �.M (study area+prev.precip+temp) �.U (study area)  3497.137 1.341 0.037 11 �.K (study area+prev.precip+temp) �.M (study area+precip+temp) �.U (study area)  3497.374 1.578 0.033 11 �.K (study area+prev.precip+temp) �.M (study area+temp) �.U (study area+precip)  3497.593 1.796 0.030 11 �.K (study area+prev.precip+temp) �.M (study area+temp) �.U (study area+prev.precip)  3497.802 2.005 0.027 11 �.K (study area+temp) �.M (study area+temp) v (study area+temp)  3497.807 2.011 0.027 10 
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�.K (study area+prev.precip+precip) �.M (study area+temp) �.U (study area)  3497.904 2.107 0.025 10 �.K (study area+precip+temp) �.M (study area+temp) �.U (study area)  3498.276 2.479 0.021 10 �.K (study area+temp) �.M (study area+prev.precip+temp) �.U (study area)  3498.386 2.590 0.020 10 �.K (study area+prev.precip) �.M (study area+temp) �.U (study area)  3498.596 2.799 0.018 9 �.K (study area+prev.precip+precip) �.M (study area+temp) �.U (study area+temp)  3498.665 2.868 0.017 11 �.K (study area+temp) �.M (study area+precip+temp) �.U (study area)  3498.723 2.926 0.017 10 �.K (study area) �.M (study area+temp) �.U (study area)  3498.877 3.081 0.016 8 �.K (study area+precip+temp) �.M (study area+temp) �.U (study area+temp)  3498.947 3.150 0.015 11 �.K (study area+temp) �.M (study area+temp) �.U (study area+precip)  3498.950 3.153 0.015 10 �.K (study area+temp) �.M (study area+prev.precip+temp) �.U (study area+temp)  3499.055 3.258 0.014 11 �.K (study area+precip) �.M (study area+temp) �.U (study area)  3499.103 3.306 0.014 9 �.K (study area+temp) �.M (study area+temp) �.U (study area+prev.precip)  3499.130 3.333 0.014 10 �.K (study area+prev.precip+precip) �.M (study area+prev.precip+temp) �.U (study area)  3499.218 3.421 0.013 11 �.K (study area+prev.precip) �.M (study area+temp) �.U (study area+temp)  3499.374 3.577 0.012 10 �.K (study area+temp) �.M (study area+precip+temp) �.U (study area+temp)  3499.394 3.598 0.012 11 �.K (study area+prev.precip+precip) �.M (study area+precip+temp) �.U (study area)  3499.433 3.636 0.012 11 �.K (study area+precip+temp) �.M (study area+prev.precip+temp) �.U (study area)  3499.531 3.734 0.011 11 �.K (study area) �.M (study area+temp) �.U (study area+temp)  3499.647 3.850 0.011 9 �.K (study area+prev.precip+precip) �.M (study area+temp) �.U (study area+precip)  3499.665 3.869 0.011 11 �.K (study area+temp) �.M (study area+temp) �.U (study area+precip+temp)  3499.774 3.977 0.010 11 
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a Covariates are defined as in Table 4.1. 
b
 Akaike’s Information Criterion adjusted for small sample size. 

c K is the number of parameters in the model. 
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APPENDIX 4.6: 
 
 
 

MODEL SELECTION RESU LTS FOR STAGE ONE ANALYSIS EVALUATING TH E  
 

DETECTION OF NEONATA L MULE DEER  
 
 
 

Appendix 4.6. Multi -state mark-recapture model selection results for stage one analysis 
evaluating detection of neonatal mule deer, Piceance Basin in northwestern Colorado, USA, 
2012–2014. Transition probabilities were held constant for all these models (not shown).  
 

Modela  AICcb ΔAICc AICc weight K c 

p (year*migration)  3078.005 0.000 1.000 12 

p (year+migration)  3134.276 56.271 0.000 10 

p (migration)  3138.408 60.403 0.000 8 

p (.)  3508.257 430.252 0.000 7 

p (year)  3509.102 431.098 0.000 9 
a Covariates are defined as in Table 4.1. 
b
 Akaike’s Information Criterion adjusted for small sample size. 

c K is the number of parameters in the model. 



171 

APPENDIX 4.7: 
 
 
 

MODEL SELECTION RESU LTS FOR STAGE TWO ANALYSIS OF DAILY NEON ATAL MULE DEER MORTA LITY  
 
 
 

Appendix 4.7. Multi -state mark-recapture model selection results for stage two analysis of daily neonatal mule deer mortality, 
Piceance Basin in northwestern Colorado, USA, 2012–2014. Each model provided a parameter estimate for probability of 
transitioning from an alive state in the high or low development study areas to a death by predation (�.K), malnutrition (�.M), or 
unknown mortality (�.U) state. All these models included detection probability as an interaction between year and an autumn 
migration effect (not shown). Only models with a QAICc weight ≥ 0.010 are shown. 
 

Modela  QAICcb ΔQAICc QAICc 
weight 

K c �.K (study area+neonate age 0–14 days old+rump fat+WR dist.prod 0–0.4 km+SR 
dist.prod 0–0.4 km) �.M (study area+neonate age 0–14 days old+WR dist.rd+temp) �.U 
(study area) 

 2942.363 0.000 0.092 19 

�.K (study area+neonate age 0–14 days old+rump fat+WR dist.prod 0–0.4 km+SR 
dist.prod 0–0.4 km) �.M (study area+neonate age 0–14 days old) �.U (study area) 

 2943.094 0.731 0.064 18 �.K (study area+neonate age 0–14 days old+rump fat+SR dist.prod 0–0.4 km) �.M 
(study area+neonate age 0–14 days old+WR dist.rd+temp) �.U (study area) 

 2943.841 1.477 0.044 18 �.K (study area+neonate age 0–14 days old+rump fat+WR dist.prod 0–0.4 km+SR 
dist.prod 0–0.4 km+temp) �.M (study area+neonate age 0–14 days old+WR 
dist.rd+temp) �.U (study area) 

 2943.940 1.577 0.042 20 

�.K (study area+neonate age 0–14 days old+rump fat+WR dist.prod 0–0.4 km+SR 
dist.prod 0–0.4 km) �.M (study area+neonate age 0–14 days old+temp) �.U (study 
area) 

 2943.975 1.612 0.041 18 
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�.K (study area+neonate age 0–14 days old+rump fat+WR dist.prod 0–0.4 km+SR 
dist.prod 0–0.4 km) �.M (study area) �.U (study area) 

 2944.068 1.704 0.039 17 �.K (study area+rump fat+WR dist.prod 0–0.4 km+SR dist.prod 0–0.4 km+temp) �.M 
(study area+neonate age 0–14 days old+WR dist.rd+temp) �.U (study area) 

 2944.251 1.888 0.036 19 �.K (study area+neonate age 0–14 days old+rump fat+SR dist.prod 0–0.4 km) �.M 
(study area+neonate age 0–14 days old) �.U (study area) 

 2944.578 2.214 0.030 17 �.K (study area+neonate age 0–14 days old+rump fat+WR dist.prod 0–0.4 km+SR 
dist.prod 0–0.4 km+temp) �.M (study area+neonate age 0–14 days old) �.U (study 
area) 

 2944.647 2.284 0.029 19 

�.K (study area+neonate age 0–14 days old+rump fat+WR dist.prod 0–0.4 km+SR 
dist.prod 0–0.4 km) �.M (study area+WR dist.rd+temp) �.U (study area) 

 2944.866 2.503 0.026 18 �.K (study area+rump fat+WR dist.prod 0–0.4 km+SR dist.prod 0–0.4 km+temp) �.M 
(study area+neonate age 0–14 days old) �.U (study area) 

 2944.937 2.574 0.025 18 �.K (study area+rump fat+WR dist.prod 0–0.4 km+SR dist.prod 0–0.4 km) �.M (study 
area+neonate age 0–14 days old+WR dist.rd+temp) �.U (study area) 

 2945.094 2.731 0.024 18 �.K (study area+neonate age 0–14 days old+rump fat+SR dist.prod 0–0.4 km+temp) �.M (study area+neonate age 0–14 days old+WR dist.rd+temp) �.U (study area) 
 2945.150 2.787 0.023 19 �.K (study area+rump fat+SR dist.prod 0–0.4 km+temp) �.M (study area+neonate age 

0–14 days old+WR dist.rd+temp) �.U (study area) 
 2945.400 3.037 0.020 18 �.K (study area+neonate age 0–14 days old+rump fat+SR dist.prod 0–0.4 km) �.M 

(study area+neonate age 0–14 days old+temp) �.U (study area) 
 2945.443 3.080 0.020 17 �.K (study area+neonate age 0–14 days old+rump fat+SR dist.prod 0–0.4 km) �.M 

(study area) �.U (study area) 
 2945.544 3.180 0.019 16 �.K (study area+neonate age 0–14 days old+rump fat+WR dist.prod 0–0.4 km+SR 

dist.prod 0–0.4 km+temp) �.M (study area+neonate age 0–14 days old+temp) �.U 
(study area) 

 2945.550 3.187 0.019 19 
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�.K (study area+neonate age 0–14 days old+rump fat+WR dist.prod 0–0.4 km+SR 
dist.prod 0–0.4 km+temp) �.M (study area) �.U (study area) 

 2945.621 3.258 0.018 18 �.K (study area+rump fat+WR dist.prod 0–0.4 km+SR dist.prod 0–0.4 km) �.M (study 
area+neonate age 0–14 days old) �.U (study area) 

 2945.824 3.461 0.016 17 �.K (study area+neonate age 0–14 days old+rump fat+SR dist.prod 0–0.4 km+temp) �.M (study area+neonate age 0–14 days old) �.U (study area) 
 2945.858 3.494 0.016 18 �.K (study area+rump fat+WR dist.prod 0–0.4 km+SR dist.prod 0–0.4 km+temp) �.M 

(study area+neonate age 0–14 days old+temp) �.U (study area) 
 2945.859 3.496 0.016 18 �.K (study area+rump fat+WR dist.prod 0–0.4 km+SR dist.prod 0–0.4 km+temp) �.M 

(study area) �.U (study area) 
 2945.912 3.549 0.016 17 �.K (study area+neonate age 0–14 days old+rump fat+WR dist.prod 0–0.4 km) �.M 

(study area+neonate age 0–14 days old+WR dist.rd+temp) �.U (study area) 
 2945.971 3.608 0.015 18 �.K (study area+rump fat+SR dist.prod 0–0.4 km+temp) �.M (study area+neonate age 

0–14 days old) �.U (study area) 
 2946.087 3.723 0.014 17 �.K (study area+neonate age 0–14 days old+rump fat+SR dist.prod 0–0.4 km) �.M 

(study area+WR dist.rd+temp) �.U (study area) 
 2946.354 3.991 0.013 17 �.K (study area+neonate age 0–14 days old+rump fat+WR dist.prod 0–0.4 km+SR 

dist.prod 0–0.4 km+temp) �.M (study area+WR dist.rd+temp) �.U (study area) 
 2946.469 4.106 0.012 19 �.K (study area+neonate age 0–14 days old+rump fat+WR dist.prod 0–0.4 km) �.M 

(study area+neonate age 0–14 days old) �.U (study area) 
 2946.694 4.331 0.011 17 �.K (study area+rump fat+WR dist.prod 0–0.4 km+SR dist.prod 0–0.4 km) �.M (study 

area+neonate age 0–14 days old+temp) �.U (study area) 
 2946.703 4.340 0.011 17 �.K (study area+rump fat+SR dist.prod 0–0.4 km) �.M (study area+neonate age 0–14 

days old+WR dist.rd+temp) �.U (study area) 
 2946.731 4.368 0.010 17 �.K (study area+neonate age 0–14 days old+rump fat+SR dist.prod 0–0.4 km+temp) �.M (study area+neonate age 0–14 days old+temp) �.U (study area) 
 2946.751 4.387 0.010 18 
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�.K (study area+rump fat+WR dist.prod 0–0.4 km+SR dist.prod 0–0.4 km) �.M (study 
area) �.U (study area) 

 2946.795 4.432 0.010 16 

a Covariates are defined as in Table 4.1. 

b Quasi-likelihood using Akaike’s Information Criterion adjusted for small sample size and model selection results were based on an 
estimated �̂ of 1.035. 
c K is the number of parameters in the model 


	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	CHAPTER 1
	REPRODUCTIVE SUCCESS OF MULE DEER AND A TEST OF THE TRIVERS-WILLARD
	HYPOTHESIS IN A NATURAL GAS DEVELOPMENT AREA
	INTRODUCTION
	METHODS
	Study Area
	Adult Female Capture and Handling
	Adult Female Monitoring and Neonate Capture
	Statistical Methods

	RESULTS
	Reproductive Success Metrics
	Fetal Sex Ratio

	DISCUSSION
	MANAGEMENT IMPLICATIONS
	TABLES
	Table 1.1. List of variables and predictions for reproductive success metrics (i.e., pregnancy, in utero fetal, and fetal survival rates) and fetal sex ratio in the Piceance Basin, northwest Colorado, USA, 2012–2014.
	Table 1.2. Model selection results for pregnancy rate of mule deer during early March in the Piceance Basin, northwest Colorado, USA, 2012–2014.
	Table 1.3. Model selection results for in utero fetal rate of mule deer during early March in the Piceance Basin, northwest Colorado, USA, 2012–2014.
	Table 1.4. Model-averaged estimates and associated standard error (SE) for in utero fetal rates of adult and yearling female mule deer during early March in the Piceance Basin, northwest Colorado, USA, 2012–2014.
	Table 1.5. Model selection results for fetal survival of mule deer from March until birth in the Piceance Basin, northwest Colorado, USA, 2012–2014. Only models with an AICc weight ≥ 0.005 are shown.
	Table 1.6. Model selection results for sex ratio of mule deer neonates in the Piceance Basin, northwest Colorado, USA, 2012–2014. Only models within two ΔAICc units of the top ranked model are shown.
	FIGURES
	Figure 1.1. Mule deer winter and summer range study units in the Piceance Basin in northwestern Colorado, USA. Winter range study units were Ryan Gulch (RG), South Magnolia (SM), North Magnolia (NM), and North Ridge (NR). Summer range study units were...
	Figure 1.2. Model-averaged estimates of fetal survival (± 95% CI) of mule deer fetuses from March until birth in the high and low development study areas in the Piceance Basin, northwest Colorado, USA, 2012–2014.
	Figure 1.3. Predicted probability (± 95% CI) of producing a male offspring as a function of road density for adult female mule deer in the Piceance Basin, northwest Colorado, USA, 2012–2014.
	CHAPTER 2:
	VALIDATION OF USING MATERNAL MULE DEER MOVEMENTS TO DETERMINE
	TIMING AND LOCATION OF PARTURITION
	INTRODUCTION
	METHODS
	Study Area
	Adult Female Capture and Handling
	Adult Female Monitoring and Location of Birth Sites
	Daily Movements of Maternal Females, Parturition Date, and Statistical Methods

	RESULTS
	Daily Movements of Maternal Females

	DISCUSSION
	TABLE
	Table 2.1. Model selection results for covariance structures of daily movement rates of maternal mule deer from 7 days before to 7 days after parturition in the Piceance Basin, Colorado, USA, 2012–2014.
	FIGURE
	Figure 2.1. Mean daily movement rate (± 95% CI) of maternal mule deer from 7 days before to 7 days after parturition in the Piceance Basin, Colorado, USA, 2012–2014.
	CHAPTER 3:
	BIRTH SITE SELECTION BY MULE DEER AND PREDATION SITE CHARACTERISTICS
	IN A NATURAL GAS DEVELOPMENT AREA
	INTRODUCTION
	METHODS
	Study Area
	Adult Female Capture and Handling
	Adult Female Monitoring, Neonate Capture, and Location of Birth Sites
	Neonate Monitoring, Cause-specific Mortality, and Location of Mortality Sites
	Habitat Use and Availability
	Environmental and Anthropogenic Predictor Variables
	Statistical Methods

	RESULTS
	Birth Site Selection
	Habitat Characteristics of Predation Sites

	DISCUSSION
	MANAGEMENT IMPLICATIONS
	TABLES
	Table 3.1. List of variables and hypothesized results for birth site selection and habitat characteristics of predation sites in the Piceance Basin, Colorado, USA, 2012–2014.
	Table 3.2. Mean and standard deviation (SD) of unstandardized continuous variables included in conditional logistic regression models of birth site selection by mule deer and habitat characteristics of predation sites on the high development (n = 90 b...
	Table 3.3. Model selection results for birth site selection by adult female deer on the high or low development study areas. Only models within two ΔAICc units of the top-ranked model are shown. Data collected in the Piceance Basin in northwestern Col...
	Table 3.4. Cumulative AICc (Akaike Information Criterion adjusted for small sample size) weights for variables included in conditional logistic regression models of birth site selection by mule deer and habitat characteristics of predation sites on th...
	Table 3.5. Model selection results for habitat characteristics of predation sites on the high or low development study areas. Only models within two ΔAICc units of the top-ranked model are shown. Data collected in the Piceance Basin in northwestern Co...
	FIGURES
	Figure 3.1. Mule deer winter and summer range study units in the Piceance Basin in northwestern Colorado, USA. Winter range study units were referenced as Ryan Gulch (RG), South Magnolia (SM), North Magnolia (NM), and North Ridge (NR). Summer range st...
	Figure 3.2. Model-averaged parameter estimates (± 95% CI) from resource selection functions for birth site selection by adult female mule deer on the high development (A) or the low development (B) study areas. Positive estimates signify selection of ...
	Figure 3.3. Model-averaged parameter estimates (± 95% CI) from resource selection functions for habitat characteristics of predation sites on the high development (A) or the low development (B) study areas. Positive estimates signify favorable charact...
	CHAPTER 4:
	FACTORS INFLUENCING NEONATAL MULE DEER MORTALITY IN A NATURAL
	GAS DEVELOPMENT AREA
	INTRODUCTION
	METHODS
	Study Area
	Adult Female Capture and Handling
	Adult Female Monitoring and Neonate Capture
	Neonate Monitoring and Cause-specific Mortality
	Mule Deer Core Area Estimation
	Multi-state Mark-recapture Mortality Analyses and Model Set
	Bootstrap Analyses

	RESULTS
	Cause-specific Mortality of Neonates

	DISCUSSION
	MANAGEMENT IMPLICATIONS
	TABLES
	Table 4.1. List of covariates (mean ± SD) and hypothesized effects on cause-specific mortality of neonatal mule deer and detection probability in the Piceance Basin, Colorado, USA, 2012–2014. “—“ indicates categorical variables.
	Table 4.2. Cumulative weights for Akaike Information Criterion adjusted for small sample size (AICc), for all variables included in the first stage analysis of neonatal mule deer mortality. Parameters were probability of transitioning from an alive st...
	Table 4.3. Cumulative weights for quasi-likelihood Akaike Information Criterion adjusted for small sample size (QAICc), for all variables included in the second stage analysis of neonatal mule deer mortality. Parameters were probability of transitioni...
	Table 4.4. Estimated detection probability before (p) and after autumn migration (pmigration), associated standard error (SE), and upper and lower 95% confidence limits (CL) of mule deer neonates, Piceance Basin in northwestern Colorado, USA, 2012–2014.
	FIGURES
	Figure 4.1. Mule deer winter and summer range study units in the Piceance Basin in northwestern Colorado, USA. Winter range study units were Ryan Gulch (RG), South Magnolia (SM), North Magnolia (NM), and North Ridge (NR). Summer range study units were...
	Figure 4.2. Multi-state model schematic representing alive and dead states for neonatal mule deer. Neonates transitioned to a cause-specific death by predation (K), malnutrition (M), or unknown mortality (U) state in the high (H) or low (L) developmen...
	Figure 4.3. Estimated daily predation probability (± 95% CI) of mule deer neonates as a function of rump fat thickness of adult females in the high and low development study areas. Data obtained from the Piceance Basin in northwestern Colorado, USA, 2...
	Figure 4.4. Estimated daily predation probability (± 95% CI) of mule deer neonates as a function of distance an adult female’s core area was from a producing well pad on winter range in the high and low development study areas. Data obtained from the ...
	Figure 4.5. Estimated daily predation probability (± 95% CI) of mule deer neonates as a function of distance an adult female’s core area was from a producing well pad on summer range in the high and low development study areas. Data obtained from the ...
	Figure 4.6. Estimated daily predation probability (± 95% CI) of mule deer neonates from 0–14 days old in the high and low development study areas. Data obtained from the Piceance Basin in northwestern Colorado, USA, 2012–2014.
	Figure 4.7. Mean daily probability of death by predation, malnutrition, or unknown mortality (± 95% CI) of mule deer neonates from 0–6 months old in the high and low development study areas. Data obtained from the Piceance Basin in northwestern Colora...
	Figure 4.8. Estimated daily probability of death by malnutrition (± 95% CI) of mule deer neonates from 0–14 days old in the high (A) and low (B) development study areas. Data obtained from the Piceance Basin in northwestern Colorado, USA, 2012–2014.
	Figure 4.9. Estimated daily probability of death by malnutrition (± 95% CI) of neonatal mule deer as a function of distance an adult female’s core area was from a road on winter range in the high and low development study areas. Data obtained from the...
	CUMULATIVE LITERATURE CITED
	APPENDIX 1.1:
	MULE DEER LIFE HISTORY
	Figure A1.1. Range map of mule deer (from Mackie et al. 2003).
	APPENDIX 1.2:
	NUMBER OF ADULT FEMALES EXCLUDED FROM IN UTERO FETAL RATE AND
	FETAL SURVIVAL RATE ANALYSES
	Appendix 1.2. Number of adult females excluded from in utero fetal rate and fetal survival rate analyses in the Piceance Basin, northwest Colorado, USA, 2012–2014.
	APPENDIX 3.1:
	LAND COVER CLASSIFICATION AND RECLASSIFIED LAND COVER CATEGORIES
	Appendix 3.1. Colorado Vegetation Classification Project (CVCP) land cover classification and reclassified land cover categories.
	APPENDIX 4.1:
	MODEL SELECTION RESULTS FOR STAGE ONE ANALYSIS EVALUATING THE INFLUENCE OF WINTER RANGE
	DEVELOPMENT CHARACTERISTICS ON DAILY NEONATAL MULE DEER MORTALITY
	Appendix 4.1. Multi-state mark-recapture model selection results for stage one analysis evaluating the influence of winter range development characteristics on daily neonatal mule deer mortality, Piceance Basin in northwestern Colorado, USA, 2012–2014...
	APPENDIX 4.2:
	MODEL SELECTION RESULTS FOR STAGE ONE ANALYSIS EVALUATING THE INFLUENCE OF SUMMER RANGE
	DEVELOPMENT CHARACTERISTICS ON DAILY NEONATAL MULE DEER MORTALITY
	Appendix 4.2. Multi-state mark-recapture model selection results for stage one analysis evaluating the influence of summer range development characteristics on daily neonatal mule deer mortality, Piceance Basin in northwestern Colorado, USA, 2012–2014...
	APPENDIX 4.3:
	MODEL SELECTION RESULTS FOR STAGE ONE ANALYSIS EVALUATING THE INFLUENCE OF ADULT FEMALE
	CHARACTERISTICS ON DAILY NEONATAL MULE DEER MORTALITY
	Appendix 4.3. Multi-state mark-recapture model selection results for stage one analysis evaluating the influence of adult female characteristics on daily neonatal mule deer mortality, Piceance Basin in northwestern Colorado, USA, 2012–2014. Each model...
	APPENDIX 4.4:
	MODEL SELECTION RESULTS FOR STAGE ONE ANALYSIS EVALUATING THE INFLUENCE OF NEONATE
	CHARACTERISTICS ON DAILY NEONATAL MULE DEER MORTALITY
	Appendix 4.4. Multi-state mark-recapture model selection results for stage one analysis evaluating the influence of neonate characteristics on daily neonatal mule deer mortality, Piceance Basin in northwestern Colorado, USA, 2012–2014. Each model prov...
	APPENDIX 4.5:
	MODEL SELECTION RESULTS FOR STAGE ONE ANALYSIS EVALUATING THE INFLUENCE OF TEMPORAL
	CHARACTERISTICS ON DAILY NEONATAL MULE DEER MORTALITY
	Appendix 4.5. Multi-state mark-recapture model selection results for stage one analysis evaluating the influence of temporal characteristics on daily neonatal mule deer mortality, Piceance Basin in northwestern Colorado, USA, 2012–2014. Each model pro...
	APPENDIX 4.6:
	MODEL SELECTION RESULTS FOR STAGE ONE ANALYSIS EVALUATING THE
	DETECTION OF NEONATAL MULE DEER
	Appendix 4.6. Multi-state mark-recapture model selection results for stage one analysis evaluating detection of neonatal mule deer, Piceance Basin in northwestern Colorado, USA, 2012–2014. Transition probabilities were held constant for all these mode...
	APPENDIX 4.7:
	MODEL SELECTION RESULTS FOR STAGE TWO ANALYSIS OF DAILY NEONATAL MULE DEER MORTALITY
	Appendix 4.7. Multi-state mark-recapture model selection results for stage two analysis of daily neonatal mule deer mortality, Piceance Basin in northwestern Colorado, USA, 2012–2014. Each model provided a parameter estimate for probability of transit...

