
A COMPARISON OF TWO MULTI-GRID METHODS
FOR SOLVING THE POISSON PROBLEM

by

Richard K. Taft

Department of Atmospheric Science
Colorado State University

Fort Collins, Colorado

A COMPARISON OF TWO MULTI-GRID METHODS
FOR SOLVING THE POISSON PROBLEM

by

Richard K. Taft

This report was prepared with support provided by the
Naval Environmental Prediction Research Facility, Monterey, CA,

under program element 61153N 'Multi grid Elliptic Solver Development'
ONR Grant N00014-87-K-0535

Principal Investigators: Wayne H. Schubert and Gerald D. Taylor

Department of Atmospheric Science
Colorado State University

Fort Collins, CO 80523

June 1987

Atmospheric Science Paper No. 415

ABSTRACT

This paper presents two simple multi-grid algorithms for solving the Poisson problem: a

standard second-order method and a less-common fourth-order method. The two algorithms

are compared theoretically and numerically, and conclusions are drawn concerning speed,

accuracy, resolution, and computer storage. For the same set of grids, the fourth-order

method gives an approximation of greater accuracy, but the second-order method is quicker.

On the other hand, to achieve a given accuracy, the fourth-order method requires less

computer time and storage, but the approximation obtained has less resolution than that

obtained from the second-order method. The numerical calculations were performed on a

Zenith PC and checked on a Cyber mainframe computer. These results suggest that the

fourth-order method may begin to suffer from round-off errors and cancellation effects on

coarser grids sooner than the second-order method. This prediction is discussed; and PC

users, in particular, are warned to check and question numerical results before accepting

them.

;

TABLE OF CONTENTS

1 INTRODUCTION

2 NOTATION AND BASIC CONCEPTS

3 DESCRIPTION OF MULTI-GRID ALGORITHMS

1

3

5

3a. the second-order algorithm (Algorithm 1) 5

3b. the fourth-order algorithm (Algorithm 2) 7

3c. pseudo-code for Algorithms 1 and 2 8

4 THEORETICAL COMPARISONS 10

4a. complexity versus truncation error. .. 10

4b. work and computer storage requirements 11

4c. analysis of relaxation and convergence. .. 11

5 NUMERICAL COMPARISONS 14

5a. test problems , 14

5b. measurement of numerical performance 14

5c. truncation error and convergence tolerance. .. 15

5d. numerical results. .. 15

5e. check of numerical results. .. 17

6 CONCLUSIONS

REFERENCES

APPENDIX A. FORTRAN code for Algorithm 1

APPENDIX B. FORTRAN code for Algorithm 2

; ;

20

22

23

30

I,
I
l CHAPTER I

INTRODUCTION

Many physical phenomena can be modelled as elliptic boundary-value problems. One

of the simplest and most common such problem is the Poisson problem given by

(1)

with suitable boundary conditions. Consequently, many numerical methods have been

developed to solve elliptic boundary-value problems such as the Poisson problem.

Classically, the Poisson problem was solved by discretizing equation (1) and then solving

the resulting linear system of equations, either directly using Gaussian elimination or itera-

tively using a relaxation scheme such as Gauss-Seidel, SOR or ADI. Following this, so called

"fast Poisson solvers" based on cyclic reduction were developed in the 1970's (e.g. Swarz­

trauber [1]). More recently, a second class of "fast solvers" have been d~veloped which give

the solution with "optimal efficiency", Le., the computational work involved is proportional

to the number of unknowns.

Achi Brandt first introduced multi-grid methods in the early 1970's as tools for devel­

oping such "fast solvers" for elliptic boundary-value problems [2]. There are now a wide

class of multi-grid methods that can solve the Poisson problem with "optimal efficiency."

Furthermore, these multi-grid methods have an advantage over many of the other "fast

solvers" in that multi-grid methods are easily generalized and adapted to much more com-

plex problems. In fact, multi-grid methods have now become an important and very efficient

class of techniques for solving a wide variety of problems. There are many good reviews

that further describe the history, general concepts, and various applications of multi-grid

methods (e.g. [3] - [7]).

2

The fundamental idea of multi-grid methods is to approximate the given continuous

problem, not only on a single fine grid of desired resolution, but also on a sequence of

increasingly coarser grids, and then to obtain a solution on the finest grid with optimal

efficiency by cycling between the discrete problems on these various grids. On a given

grid, a simple relaxation scheme is used to reduce efficiently the components of error which

oscillate on the scale of that grid. This relaxation, however, does not effectively reduce

smooth error components (those that are non-oscillatory on the scale of the grid). The

key to multi-grid methods is the fact that error components which are smooth on one

grid become more oscillatory on a coarser grid. Thus, the coarser grids can be viewed as

correction grids which accelerate the convergence of the relaxation scheme on the finest grid

by efficiently reducing the smooth error components. The basis for the good efficiency of

multi-grid methods is now clear: much of the work is performed on the coarser grids which

have relatively few points, and thus, the computational cost involved is greatly reduced.

Until recently, most multi-grid algorithms actually applied to an elliptic boundary-value

problem such as the Poisson problem were second-order methods in that their underlying

discretization schemes were second-order approximations. Higher-order multi-grid algo­

rithms using discretization schemes of fourth- and sixth-order were much less common and

were generally considered to be too expensive due to their increased complexity. Recently,

however, these higher-order algorithms have gained new interest and support as methods

for obtaining high-accuracy approximations [8].

Th£. body of this paper will present two simple multi-grid algorithms for solving the

Poisson problem: a standard second-order method and a less-common fourth-order method.

Mter notation and basic concepts are introduced, the two algorithms will be described in

detail and then compared theoretically and numerically. Finally, conclusions concerning

speed, accuracy, resolution, and computer storage will be made.

CHAPTER II

NOTATION AND BASIC CONCEPTS

The model problem for this paper is the Poisson problem with Dirichlet boundary con-

ditions:

Lu = V 2u = f
u=g

in D
on 5,

(2)

where L is the Laplace operator V2 = ~ +~, D is the unit square [0,1] x [0,1] in R2, f

is a continuous function defined in D, 9 is a continuous function defined on 5 (the boundary

of D), and u is the continuous solution which is to be approximated.

For each h = lIN, where N is a positive integer, a uniform grid Dh with mesh spacing

h is defined on the unit square as the following set of discrete points of D:

Dh = {(Zi,!lj) = (ih,jh) : i,j=0,1,2, ... ,N}.

Such a grid will be called an N-grid, but note that Dh actually contains (N + 1) x (N + 1)

points. Lexicographic ordering refers to taking the interior grid points (Xi,!lj) in the order

(i,j) = (1,1), (2, 1), ... , (N -1, 1), (1, 2), ... , (N -1, N -1). The intersection of 5 with Dh

is denoted by 5 h •

The grid functions fh and gh designate the pointwise restrictions of the continuous

functions f and 9 onto Dh and 5 h, respectively. In particular, fh(Xi,!lj) = f(Xi,!lj) = lij

and gh(Xi, !lj) = g(xi, !lj) = gij. The grid function uh represents the discrete approximation

to the true solution u; and hence, Uij = uh (Xi, !lj) approximates the true value of u at

Approximating (2) on a grid Dh using finite differences gives the discrete Poisson prob­

lem:

(3)

4

where L" is a finite difference operator and F" is a grid function related to f". The residual

for problem (3) is the grid function rIa = F" - L";:,," , where the grid function ;:,," is the

current approximation to the solution of (3). The notation rii = r"(zi, !/i) is also used. The

residual norm is a root-mean-square quantity defined by

N-l

RN = h2 L (rii)2 . (4)
iJ=l

The basic concept of multi-grid methods can now be demonstrated by the following

simple two-level multi-grid cycle:

i. Input initial guess for ;:"k on fine grid with resolution h.

ii. Perform relaxation on L";:,," = F" to improve ;:,,".

iii. Transfer residual rIa = F" - Lh;:"h to a coarser grid with resolution 2h using

a fine-to-coarse grid transfer operator I~h.

iv. Solve the coarse grid correction equation L2h;;2h = I~" (F" - L";:"h).

v. Transfer the correction v2h back to the fine grid using a coarse-to-fine grid

transfer operator Ir", and replace ;:,," by uk + Ir" v2
".

v!. Perform relaxation on Lh;:,," = Fk to improve ;:"h further.

This cycle has two main parts: a smoothing part (steps ii and vi) to reduce the high­

frequency error components of ;:,," by relaxation and a coarse grid correction part (steps

iii-v) to reduce the smooth error components of ;:"h.

The above two-level cycle can be repeated to improve the approximation uk even further.

In addition, by using a set of more than two grids, a simple multi-level cycle is easily obtained

from this two-level cycle by recursion; i.e., by solving the equation in step (iv) by another

application of a two-level cycle, etc. These simple cycles are examples of multi-grid control

algorithms. In particular, the multi-level cycle just described forms the basis for the fixed

V -cycle control algorithm.

CHAPTER III

DESCRIPTION OF MULTI-GRID ALGORITHMS

A specific multi-grid algorithm has several important components: a discretization

method, a set of grids, grid transfer operators, a relaxation scheme, and a control algo­

rithm. A variety of possible choices exists for each of these components, and hence, a large

number of different multi-grid algorithms are possible. .

The two algorithms of this paper differ primarily in the discretization method used.

The other components are essentially identical for the two algorithms and are typically the

simplest choices possible. In particular, both algorithms share the following basic compo­

nents: a set of uniform, overlapping grids { nM, D2M, ... , Dl/2} where M is an element of

{1/64, 1/32, 1/16} ; simple injection for the fine-to-coarse grid transfer of residuals; bilinear

interpolation for the coarse-to-fine grid transfer of corrections; lexicographic Gauss-Seidel

relaxation; and a fixed V -cycle control algorithm. These components combine to form the

basic structure for these two algorithms, as shown in Figure 1.

3a. the second-order algorithm (Algorith~

The discretization scheme of Algorithm 1 utilizes the standard second-order centered

finite difference operator (Lhh defined by the five-point difference stencil

(L'), = (l/h') [1-~ 1 L
For a given grid Dh, the discrete problem (3) now assumes the form

(l/h') [1-! 1 L u' =" in D'

on Sh.

6

Figure 1: The fixed V -cycle structure of the multi-grid algorithms of this paper (for the
case where the finest grid is a 64-grid).

(finest grid) Dl/64

(coarsest grid) Dl/2

Key: "1 perform "1 relaxation sweeps
"2 perform .,z relaxation sweeps
--+ transfer residual by injection
~ solve the discrete problem on the coarsest grid
::::::} transfer correction by bilinear interpolation

Reference: (adapted from [6])

7

The error in this approximation to the Poisson problem is of the order h2 (Le., the truncation

error is 0 (h2)) , and hence, this algorithm is classified as second-order [9).

From (5), an equation of the following form is obtained for each interior grid point

(Xi, !I;) in Dh:

(Ui-l,; + Ui,j-l + Ui+l,j + Ui,Hl - 4Ui;) /h2 = Ii;.

The equation for lexicographic Gauss-Seidel relaxation in Algorithm 1 therefore becomes

- new _ (- new - new + - - h2 I) /4 tli; - tli-l,j + tli,j-l Ui+1,; + Ui,Hl - Ji; • (6)

Note that ui_l,;new and ui,;-l new are already computed before reaching the point (Xi,!I;).

The residual for problem (5) can be expressed by the equation

(7)

ab. the fourth-order algorithm (Algorithm 2)

The discretization scheme of Algorithm 2 utilizes a more complex fourth-order finite

difference operator (Lh)" defined by the nine-point difference stencil

(Lh) = (1/6h2
) [! -:0 !]

" 1 4 1 h

This operator is sometimes referred to as a Mehrstellen Verfahren difference operator [10].

For a given grid Dh, the discrete problem (3) is obtained by using this operator with a set

of weights applied to I h and assumes the form

(1/6h') [~ -~ ~ L u' = (1/12) [1 ~ 1 L "
(8)

This finite difference equation is easily derived using a Taylor series approach. The error in

this approximation to the Poisson problem is of the order h" (i.e., the truncation error is

O(h")), and hence, this algorithm is classified as fourth-order [8 and 11].

From (8), an equation of the following form is obtained for each interior grid point

(Xi, !I;) in Dh:

r 8

[Ui-l,;-l + Ui+1.i-l + tli+1,j+l + Ui-l,;+1 - 20tLij

where Fij = (Ii-I'; + h.j-l + fi+l,; + h.Hl + 8lij) /12. The equation for lexico-

graphic Gauss-Seidel relaxation in Algorithm 2 therefore becomes

- new [- new + new + - + -tLij = tLi-l,j-l tL,+1,j-l tLi+1.i+1 Ui-I,j+1

Note that all of the "new" quantities on the right-hand side of (9) have already been

computed before reaching the point (Xi, 'Jj). The residual for problem (8) can be expressed

by the equation

·(10)

3c. pseudo-code for Algorithms 1 and 2

The use of Algorithms 1 and 2 for solving the discrete problem

onSH ,

where H is an element of {1/64, 1/32, 1/16}, can now be summarized by the following

pseudo-code:

Initialize: uH = 0

FH =fH

FH : (1/12) [1

h=H

for Algorithm 1

! 1 1 f H for Algorithm 2

I H

Input convergence tolerance TOL

Calculate initial residual rH using (7) for Algorithm 1 and (10) for

Algorithm 2

9

Calculate initial residual norm RN using (4)

Perform the following until RN < TOL {this gives the stopping criterion}

Repeat until h = 1/2

Perform "1 relaxation sweeps on Lhuh = Fh using (6) for Algorithm 1

and (9) for Algorithm 2

Store uh and Fh

Calculate residual rh using (7) for Algorithm 1 and (10) for Algorithm 2

Set: u2h = 0 {initialize coarse grid correction}

F2h = ~hrh {transfer residual by injection}

h=2h

Solve L 1/2u1/2 = F 1/2 {i.e., use "3 relaxation sweeps}

Repeat until h = H

Set uh/2 = uh/2+I:/2uh {transfer correction using bilinear interpolation}

Set h = h/2

Perform "2 relaxation sweeps on Lhuh = Fh using (6) for Algorithm 1

and (9) for Algorithm 2

Calculate residual ,.H using (7) for Algorithm 1 and (10) for Algorithm 2

Calculate residual norm RN using (4)

Set uH = uH {final solution}.

The actual FORTRAN code used for Algorithms 1 and 2 is given in Appendices A and B.

The values of "1, "2, and lIS used in this paper were 2, 1, and 3, respectively.

CHAPTER IV

THEORETiCAL COMPARISONS

From the pseudo-code at the end of the last section, it is dear that Algorithms 1 and 2

have identical structures and differ only in the formulas used at various steps. This ob­

servation simply reflects the fact that the two algorithms are actually the same multi-grid

method applied to two different finite difference equations, namely (5) and (8), respectively.

4a. complexity versus truncation error

The finite difference equation (8) is dearly more complex than the finite difference

equation (5). Consequently, the formulas used in Algorithm 2 are more complex than

the corresponding formulas in Algorithm 1; e.g., compare the relaxation formula (9) for

Algorithm 2 with the corresponding formula (6) for Algorithm 1. Therefore, an apparent

disadvantage of Algorithm 2 is its increased complexity. Until recently, this was a common

criticism of such higher-order methods.

Algorithm 2, however, also has a possible advantage. Since the finite difference equation

(8) has a smaller truncation error than the finite difference equation (5), it follows that

Algorithm 2 has the potential to produce a more accurate solution to the Poisson problem

than Algorithm 1 under the same conditions. In addition, since the truncation error depends

on the mesh spacing of the finest grid, Algorithm 2 has the potential of producing on a

coarser grid as accurate a solution as Algorithm 1 produces on a finer grid. It is this balance

between the complexity disadvantage and the truncation error advantage of Algorithm 2

that will be examined numerically in the next section.

11

4b. work and computer storage requirements

From the pseudo-code for the two algorithms, it is clear that uh and Fh must be stored

at each grid before transferring to the next coarser grid. Letting S represent the storage

requirement for the two grid functions uh and Fh on the finest grid and noting that each

coarser grid has approximately one-fourth as many points as the next finer grid, the storage

requirement for the two algorithms can be approximated by

where m is the number of grid levels used. Thus, the storage requirements for the two

algorithms are not much greater than those for solving the problem just on the finest grid.

By a similar argument, it follows that the work required per V -cycle (ignoring the work

involved in residual transfers and interpolation-which is typically small) is less than 4/3

times the work required for (VI + V2) relaxation sweeps on the finest grid alone. Thus, if

the finest grid has 0(N2) points, the work per V-cycle is also 0(N2) operations.

In coding the two algorithms, a large one-dimensional array was used to store the infor-

mation of each grid. The table below indicates the required size of this storage array as a

function of the finest grid used:

finest grid size of storage array

DI/64 11436
Dl/32 2986
D l /16 808

Clearly, in terms of computer storage it is best to use the coarsest resolution possible to

achieve a desired accuracy.

4c. analysis of relaxation and convergence

The relaxation process and speed of convergence of a multi-grid method can be analyzed

using a technique called local mode analysis. Although this technique contains certain

underlying assumptions, such as periodic boundary conditions, Achi Brandt claims that

it always gives reliable estimates of the overall convergence rate of any multi-grid method

[3]. This technique, in its simplest form, uses Fourier analysis to examine the effects of the

12

relaxation scheme on the high frequency components of the error. In this simple form, the

grid transfer processes are not considered.

Let tJh = uh - uh and tJh,new = uh - uh,new be the error [between the exact solution to the

finite difference equation (uh) and the current approximation to this solution1 before and

after a single relaxation sweep, respectively. Using the discrete Fourier modes E, (xi,Yl:) =

exp [i (j91 + k92) 1, where 9 = (91,92) is the discrete vector wavenumber and the components

91 and 92 are integral multiples of 21rh between -1r and 1r, one can represent the errors

tJh and tJh,new as sums of components of the form A,E, and A,new E" respectively. One

relaxation sweep reduces the amplitude of the error component E, by the convergence

factor p (9) = IA,new IAII. The smoothing factor jl is defined as the maximum convergence

factor p(9) for the high wavenumbers, i.e.,

jl = 7r max p (0)
2" < 101 < 7r

where 191 = max (1011,1821). The smoothing factor is a measure of the rate at which the

high frequency components of error are reduced by the relaxation process. In particular,

-(log jl)-1 relaxation sweeps are needed to reduce all the high frequency components by an

order of magnitude.

It is easily shown (see [8]) that the convergence factors for Algorithms 1 and 2 are given

by

and
4 (ei 'l + ei '2) + ei (ll +82) + e-i(11-12)

pee) =
20 - 4 (e- il1 + e-iI2) - e-i (ll+8:1) - ei (11-12) ,

respectively. The smoothing factors are therefore calculated to be

jl = 0.500
jl = 0.464

(Algorithm 1)
(Algorithm 2)

It follows that 3.32 relaxation sweeps are required by Algorithm 1 to reduce all the high

frequency components of the error by an order of magnitude, while Algorithm 2 only requires

3.00 relaxation sweeps. Thus, the relaxation scheme of Algorithm 2 is slightly more efficient

13

as a smoothing process than that of Algorithm 1, and hence, the rate of convergence for

Algorithm 2 should be slightly faster than that for Algorithm 1.

CHAPTER V

NUMERICAL COMPARISONS

The two algorithms were coded in Microsoft FORTRAN (version 3.31)-see Appendices

for program listings-and run on a Zenith ZF-158-42 PC (an IBM compatible) under MS­

DOS (version 3.1). The PC was run at a 8 Mhz clock speed and was equipped with an 8088

processor, an 8087-2 math coprocessor, and 640 KB of dynamic RAM.

5a. test problems

The model test problem is the following Poisson problem with Dirichlet boundary con-

ditions:

V 2u(x,y) _
u(x,y) -

-4:1r2 (a2 + b2) sin (2:1rax + 2:1rby) m D = [0,1] x [0,1]
sin (2:1rax + 2:1rby) on S = aD.

In particular, the following three specific cases were tested:

Test Problem
1
2
3

Wavenumber a
1.0
3.5
0.5

Wavenumber b
2.0
3.0
3.5

Analytical Solution
u(x, y) = sin(2"-x + 4,.-y)
u(x, y) = sin(7,.-x + 6,.-y)
u(x, y) = sin(,.-x + 7,.-y)

Note the varying degree of oscillation in the solutions to these three different test problems.

5b. measurement of numerical performance

Execution time (real-time) and final solution error are used to measure the numerical

performance of the two algorithms in solving these test problems. The execution time is

a meaningful and reproducible quantity, in this case, since the computer used is a single-

user machine. This real-time execution time is obtained by interfacing to the MS-DOS

subroutine TIME before and after the multi-grid algorithm executes. The final solution

error is given by the grid function Eh = Uh - uh , where Uh is the actual solution projected

15

on Dh and uh is the final approximation to Uh. The final solution error is measured using

a discrete analog of the continuous Euclidean norm of Eh,

5c. truncation error and convergence tolerance

Since the actual solutions to the test problems are known, the actual truncation errors

involved can be computed. If the grid function Rh is defined as Rh = Fh - LhUh, where

U" is the actual solution projected on D", then the truncation error (T E) becomes

Thus, the truncation error is simply the residual norm (equation 4) calculated using the

actual solution; i.e., the actual solution to the partial differential equation solves the finite

difference equation with an error of T E. To solve the finite difference equation to a greater

accuracy than T E is therefore not meaningful, and hence, T E was used as the convergence

tolerance (see the pseudo-code of the two algorithms).

The truncation errors for the three test problems and for a variety of grids are given

in Table 1. Note that for each problem, the truncation error of Algorithm 2 is always

smaller than that of Algorithm 1. In fact, for test problems 1 and 2 the truncation error

for Algorithm 2 on a IS-grid is actually smaller than that for Algorithm 1 on a 64-grid.

Also note that the tr1.'!ncation errors for both algorithms decrease as the grid mesh spacing

decreases.

5d. numerical results

The results of applying Algorithms 1 and 2 to test problems 1, 2, and 3 are summarized

in Table 2.

16

Table 1: truncation error analysis for the three test problems (using Zenith PC)

Test Mesh Truncation Error
froblem Grid SEacing Algorithm 1 Algorithm 2

1 64 .01563 0.37472 0.0028675
1 32 .03125 1.4690 0.0053262
1 16 .06250 5.5938 0.080740

2 64 .01563 5.0810 0.015203
2 32 .03125 19.781 0.20172
2 16 .06250 73.245 2.1938

3 64 .0]563 3.3000 0.019108
3 32 .03125 12.833 0.29093
3 16 .06250 47.312 4.2243

Table 2: numerical results of applying Algorithms 1 and 2 to the three test problems
(using Zenith PC)

Test Finest Required Final Solution Execution
Problem Alg. Grid V-Cycles Error (x1000) Time (sec.)

1 1 64 3 1.805 40
1 32 2 7.827 7
1 16 2 29.01 4
2 64 5 0.002121 92
2 32 4 0.02703 19
2 16 3 0.4310 4

2 1 64 2 6.103 27
1 32 2 23.32 7
1 16 1 280.4 1
2 64 4 0.01608 73
2 32 3 0.2577 14
2 16 2 3.476 3

3 1 64 3 7.335 40
1 32 2 32.08 7
1 16 1 170.1 1
2 64 4 0.04494 73
2 32 3 0.6444 14
2 16 2 11.05 3

17

5e. check of numerical results

The numerical results obtained from computer calculations (particularly those obtained

on a PC) should always be checked and questioned since computers can only perform finite

precision arithmetic. Round-off errors and cancellation effects can reduce the number of

significant digits in a computed result, even to the point that no significant digits remain.

There is an easy check that can be performed on the truncation error results in Table 1.

Since the truncation error is 0(h2) for Algorithm 1 and 0(h4) for Algorithm 2, the truncation

error for a given problem should decrease by approximately a factor of four for Algorithm

1 and sixteen for Algorithm 2 as the mesh spacing is halfed (i.e., resolution doubled). The

results in Table 1 follow these patterns, except the result for test problem 1 using Algorithm

2 on a 64 grid. This particular result is certainly questionable; and it is possible, therefore,

that all the results are questionable.

Probably the best method for checking the reliability of a numerical result obtained

using single precision arithmetic is to redo the calculation either in double precision on the

same computer or in single precision on a different computer which has a greater number

of significant digits. The Zenith PC used to obtain the results of Tables 1 and 2 is a 16-

bit machine which uses two bytes to store a real number in single precision. This storage

corresponds to approximately seven significant digits. To check the results of Tables 1 and

2, the calculations were redone in single precision on a Cyber 720 mainframe computer, a

64-bit machine which stores a real number with approximately twice the significant digits

as the Zenith PC. These new results (see Tables 3 and 4) are less prone to the problems

associated with finite precision arithmetic and are, therefore, considered more reliable than

those in Tables 1 and 2.

Note that the truncation error results of Table 3 now completely follow the expected

pattern mentioned earlier in this section. The one result of Table 1 that was questionable

since it did not follow the expected pattern was, in fact, a meaningless result. (The more

reliable result of Table 3 is an order of magnitude different.) Also note that three other

results of Table 1 were significantly affected by round-off errors and cancellation effects,

even though these three results "passed" the expected pattern test.

18

Table 3: truncation error analysis for the three test problems (using Cyber mainframe
computer)

Test Mesh Truncation Error
Problem Grid Spacing Algorithm 1 Algorithm 2

1 64 .01563 0.37470 0.00033647 *
1 32 .03125 1.4690 0.0052814 *
1 16 .06250 5.5938 0.080735

2 64 .01563 5.0810 0.013865 *
2 32 .03125 19.781 0.20173
2 16 .06250 73.245 2.1938

3 64 .01563 3.3000 0.018774 *
3 32 .03125 12.833 0.29093
3 16 .06250 47.312 4.2243

Note: an asterisk indicates that the corresponding value from Table 1 does not agree (to at
least two digits) with this value.

Table 4: numerical results of applying Algorithms 1 and 2 to the three test problems
(using Cyber mainframe computer)

Extrapolated
Test Finest Required Final Solution Execution

Problem Alg. Grid V -Cycles Error (xl000) Time (sec.)
1 1 64 3 1.805 40

1 32 2 7.827 7
1 16 2 29.01 4
2 64 6 0.001612 * 110
2 32 4' 0.02703 19
2 16 3 0.4310 4

2 1 64 2 6.103 27
1 32 2 23.32 7
1 16 1 280.4 1
2 64 4 0.01605 73
2 32 3 0.2577 14
2 16 2 3.476 3

3 1 64 3 7.335 40
1 32 2 32.08 7
1 16 1 170.1 1
2 64 4 0.04485 73
2 32 3 0.6444 14
2 16 2 11.05 3

Note: an asterisk indicates that the corresponding value from Table 2 is significantly dif-
ferent from this result.

19

The more reliable truncation error results of Table 3 were used as the convergence

tolerances when obtaining the results in Table 4 on the Cyber mainframe computer. Note

that only one result in Table 4 was significantly different from the corresponding result in

Table 2. This difference is probably due more to the use of a smaller convergence tolerance

in obtaining the result in Table 4 than to problems with finite precision arithmetic. The

execution time listed in Table 4 is not the execution time for the Cyber mainframe computer,

but is an extrapolated value for the execution time on the Zenith pc. This extrapolated

value was obtain using the number of V -cycles required on the Cyber mainframe computer

and the results in Table 2.

In conclusion, it appears that the truncation error analysis for Algorithm 2 begins to

have problems with round-off errors and cancellation effects when used on a 64-grid. H

progressively finer grids are used, the truncation error analysis for both algorithms would

eventually develop problems due to this finite precision arithmetic. It is reasonable that such

problems develop sooner (i.e., on a.coarser grid) for Algorithm 2 than for Algorithm 1 since

formula (10) for the residual in Algorithm 2 involves approximately twice the number of

subtractions as does formula (7) for the residual in Algorithm 1. These observations suggest

that Algorithm 2 itself will suffer such round-off and cancellation problems on coarser grids

sooner than Algorithm 1, but further testing is needed to verify this prediction. In any

case, the above comments should be a warning, particularly to pc users, that numerical

results must be checked and questioned.

CHAPTER VI

CONCLUSIONS

The results obtained (see Tables 2 and 4) are very similar for each of the three test

problems. In particular, for all three test problems, the following observations can be

made:

i. For a given resolution, Algorithm 1 is faster than Algorithm 2.

ii. For a given resolution, Algorithm 2 is more accurate than Algorithm 1.

iii. Algorithm 2 at a given resolution is faster and more accurate than Algorithm

1 at twice that resolution.

Note that observations (i) and (ii) are expected results, since Algorithm 2 is more complex

and has a better truncation error than Algorithm 1. Observation (iii), on the other hand,

is a less expected and more interesting result.

From these observations, it is clear that conclusions concerning which algorithm is best

for solving the Poisson problem are case dependent. Consider the case where one is forced

by resolution requirements to use a particular finest grid. Then Algorithm 1 is expected

to be "best" in terms of speed, while Algorithm 2 is expected to be "best" in terms of

accuracy. For example, if one were solving a problem, the solution of which was expected to

have local behavior requiring approximately a 64-grid to resolve, then one would be forced

to use at least a 64-grid as the finest grid. In such a case, Algorithm 2 should be used if

accuracy is more important than speed, while Algorithm 1 should be used if speed (and

hence, computer expense) is of greater concern than very high accuracy.

Now consider the case where the choice of which finest grid to use is much less restricted

and the primary concern is to obtain a solution of some desired accuracy. In this case,

21

one would hope to choose a finest grid and an algorithm which would give a solution of

the desired accuracy in the least amount of time. It is in this context that observation

(iii) becomes relevant. For example, suppose one were solving a problem, the solution of

which was expected to be fairly smooth locally so that even a IS-grid could resolve it, and

suppose that, while using Algorithm 1, one was forced to use a 54-grid as the finest grid

in order to achieve a desired accuracy. In this case, it may be "better" to use Algorithm 2

and only a 32-grid as the finest grid. It is expected that this combination would produce a

more accurate solution in less time; however, this combination has a possible disadvantage

in that one obtains the solution at only about one-quarter as many discrete points of the

domain. IT this disadvantage is a problem in a particular context, it may be possible to

use a fourth-order interpolation method, such as cubic spline interpolation, to fill in the

solution between the grid points.

In conclusion, both algorithms can be practical methods for solving the Poisson problem

and neither method is in general better than the other. Although Algorithm 2 is generally

thought to be more accurate, but slower, than Algorithm 1, it appears that in at least certain

cases Algorithm 2 can be used in such a way that it is both more accurate and faster than

Algorithm 1. Thus, even though standard second-order methods such as Algorithm 1 are

more typically used, higher-order methods such as Algorithm 2 deserve to be considered in

many cases.

Note that the above conclusions do not take into consideration the potential problems

which may occur due to finite precision arithmetic. The truncation error results suggest that

Algorithm 2 will begin to suffer from round-off errors and cancellation effects on coarser grids

sooner than Algorithm 1. This prediction, if true, is a potential disadvantage of Algorithm

2. For example, if one were forced to work on a particular grid on which Algorithm 2 suffered

from these round-off and cancellation problems, but Algorithm 1 did not, then Algorithm 1

would be the method of choice, regardless of speed and accuracy considerations. PC users,

in particular, may be forced to consider this potential disadvantage of Algorithm 2.

[IJ

[2J

[3J

[4]

[5J

[6]

[7]

[8]

[9]

22

REFERENCES

P.N. SWARZTRAUBER, "The methods of cyclic reduction, Fourier analysis and the
FACR algorithm for the discrete solution of Poisson's equation on a rectangle," SIA~!
Review, 19 (1977), pp. 490-501.

A. BRANDT, "Multi-level adaptive technique (MLAT) for fast numerical solution to
boundary value problems," Proceedings Third International Conference on Numerical
Methods in Fluid Mechanics (Paris, 1972), Lecture Notes in Physics, Springer-Verlag,
Berlin, 18 (1973), pp. 82-89.

A. BRANDT, "Multi-level adaptive solutions to boundary-value problems," Math.
Comp., 31 (1977), pp. 333-390.

A. BRANDT, "Guide to multigrid development," Multigrid Methods (W. Hackbusch,
U. Trottenberg, eds.), Lecture Notes in Mathematics, Springer-Verlag, Berlin, 960
(1982), pp. 220-312.

K. STUBEN and U. TROTTENBERG, "Multigrid methods: fundamental algorithms,
model problem analysis and applications," Multigrid Methods (W. Hackbusch, U.
Trottenberg, eds.), Lecture Notes in Mathematics, Springer-Verlag, Berlin, 960 (1982),
pp. 1-176.

S.R. FULTON, P.E. CIESIELSKI, and W.H. SCHUBERT, "Multigrid methods for
elliptic problems: a review," Mon. Wea. Rev., 114 (1986), pp. 943-959.

A. BRANDT, "Multi-level approaches to large scale problems," to appear: Proceedings
International Congress of Mathematicians, 1986, Berkley, CA.

S. SCHAFFER, "Higher order multi-grid methods," Math. Comp., 43 (1984), pp.
89-115.

A.R. MITCHELL and D.F. GRIFFITHS, The Finite Difference Method in Partial
Differential Equations, John Wiley & Sons, New York, 1980, p. 104.

[10] L. COLLATZ, The Numerical TI-eatment of Differential Equations, Springer-Verlag,
Berlin, 1960, pp. 384-387.

[11] E.N. HOUSTIS and T.8. PAPATHEODOROU, "High-order fast elliptic equation
solver," ACM nans. Math. Software,5 (Dec. 1979), pp. 431-441.

APPENDIX A

FORTRAN CODE FOR ALGORITHM 1

FORTRAN Code for Setting Up Mult~.-Grid Solver:

$STORAGE:2
$NOFLOATCALLS
$LARGE
C

C **
C

C

C

C

INTERFACE TO SUBROUTINE DATE (N.STR)

CHARACTER*10 STR [NEAR,REFERENCE]
INTEGER*2 N [VALUE]

END

C ***
C

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

PROGRAM MULTIG

AUTHOR:
DATE:

LANGUAGE:

PURPOSE:

INTEGER
PARAMETER
REAL
REAL
REAL

Richard Taft
March lS, lQS1
Microsoft FORTRAN (version 3.31)

(Libraries used: SOS7.LIB and FORTRAN.LIB)

This routine sets up and uses subroutine MGSOLV to
approximate the solution to the 2-D Poisson problem

xx yy
in [O,l]x[O,l]

on the boundary.

using either a standard second-order or a less common
fourth-order fixed V-cycle multi-grid algorithm. The
analytical solution is given by

FGRID,CGRID,MAXGRD,GRIDPT,I,J,Vl,VC,V2,ALG,VMAX
(MAXGRD=65)
A,B,TWOPI.WX,WY.H,TOL,RNORM,ERROR
UCALC(MAXGRD,MAXGRD) ,F (MAXGRD ,MAXGRD)
UEXACT(MAXGRD,MAXGRD)

C
C
C

C

C

C
C
C

C

C

24

ANSWER ,STORE
TODAY
OUTFIL

CHARACTER
CHARACTER*10
CHARACTER*12
CHARACTER*14
CHARACTER*46
DATA

NAME,PURPOS,PLACE,PROG

DATA
DATA
DATA

STENCIL
VMAX,Vl,VC,V2,FGRID,CGRID,ALG/9,2,3,l,64,2,l/
A,B,TOL/1.O,2.0,3.7472E-Ol/
NAME,PURPOS/'RICHARD TAFT','MASTER"S WORK'/
PLACE,PROG/'CSU MATH DEPT','MULTIG PROGRAM'/

*** SET-UP PROBLF~ SPECS ***

20 WRITE(*,1000)'MULTIGRID SOLVER'
WRITE(* , 1060) 'PROBLEM SPECS:'
WRITE(*,1100)A,B

40 WRITE(*,1200) 'ENTER: P to modify problem specs',
+ 'M to see method specs',
+ 'Q to quit this session'
READ(*, '(lA) ')ANSWER

IF (ANSWER.EQ.'P') THEN
WRITE(*, ' (//6X,A\) ') 'Input new wavenumber A ... (XX.X) ... >'
READ(*,'(F4.1)')A
WRITE(*,'(5X,A\)')'Input new wavenumber B ... (YY.Y) ... >'
READ(*,'(F4.1)')B
GOTO 20

ELSEIF (ANSWER.EQ.'M') THEN
GOTO 60

ELSE IF (ANSWER. EQ. 'Q') THE.,
STOP

ELSE
GOTD 40

END IF

*** SET-UP METHOD SPECS ***

60 H • 1.0/REAL(FGRID)
80 WRITE(*,1000)'MULTIGRID SOLVER'

WRlTE(* , 1050) 'METHOD SPECS:'
IF (ALG.EQ.1) THEN

STENCIL E 'Standard Second-order FDE (5-Point Stencil)'
ELSE

STENCIL • 'A Fourth-order FDE (9-Point Stencil)'
END IF
WRITE(*,1300)STENCIL,Vl,VC,V2,FGRID,CGRID,H,TOL,VMAX

100 WR~TE(*,1400)'ENTER: M to modify method specs',
+ 'P to review problem specs',
+ ' S to solve problem' ,
+ 'Q to quit this session'
READ(*,'(lA)')ANSWER

IF (ANSWER.EQ.'M') THEN
120 WRITE(*, 1400) 'ENTER: D to modify the discretization scheme',

+ 'V to modify the V-cycle sweeps or VMAX',

C

C
C

C

25

+ 'G to modify the grid intervals',
+ 'T to modify the convergence tolerance',
+ 'M to return to Method Specs'

READ(*, ' (1A)')ANSWER
IF (ANSWER.EQ.'D') THEN

ALG • 2/ALG
GOTO 80

ELSEIF (ANSWER.EQ.'V') THEN
WRITE(*,'(//6X,A\)')'Input new value for V1 ... (1-9) ... >'
READ(*,'(I1)')V1
WRITE(*,'(5X,A\)')'Input new value for VC ... (1-9) ... >'
READ(*,'(I1)')VC
WRITE(*, ' (6X,A\) ') 'Input new value for V2 ... (1-9) ... >'
READ(*,'(Il)')V2
WRITE(*,'(5X,A\)')'Input new value for VMAX ... (1-9) .. >'
READ(*,'(Il)')VMAX
GOTO 80

ELSE IF (ANSWER.EQ.'G') THEN
WRITE(*,'(//6X,A,A\)')'lnput intervals for finest grid',

+ ' ... (4,8,16,32,64) ... >'
READ(*, '(12) ')FGRID
WRlTE(*,'(6X,A,A\)')'Input intervals for coarsest grid',

+ ' ... 2,4,8,16,32 and < fine grid) ... >'
READ(*,'(I2)')CGRID
GOTO 60

ELSEIF (ANSWER.EQ.'T') THEN
WRITE(*, '(//5X,A,A\)') 'Input new value for convergence'.,

+ ' tolerance ... (X.XXXXE-YY) ... >'
READ(*, '(EI0.4) ')TOL
GOTO 80

ELSEIF (ANSWER.EQ.'M') THEN
GOTO 80

ELSE
GOTO 120

END IF
ELSEIF (ANSWER.EQ.'P') THEN

GOTO 20
ELSE IF (ANSWER.EQ.'S') THEN

GOTO 140
ELSEIF (ANSWER.EQ.'Q') THEN

STOP
ELSE

GOTO 100
END IF

*** REPORT PROBLEM AND METHOD SPECS ***

140 OPEN(l,FILE='PRN')
CALL DATE (10,TODAY)
WRITE(l,1450)NAME,PURPOS,PLACE,TODAY,PROG
WRITE(l,1000)'MULTIGRID SOLVER'
WRITE(1,1160) 'PROBLEM SPECS:'
WRITE(l,l100)A,B
WRITE(l,1250) 'METHOD SPECS:'
WRITE (1 ,1300)STENCIL,V1 ,VC,V2,FGRID,CGRID,H,TOL,VMAX

26

C *** DISCRETIZE ANALYTICAL SOLUTION AND RIGHT-HAND SIDE OF ***
C *** FDE AND SET-UP INITIAL GUESS FOR CALCULATED SOLUTION ***
C

C

C

!WOPI ~ 2.0*ACOS(-1.0)
WX E !WOPI*A
WY • TWOPI*B
GRIDPT • FGRID + 1

CALL U2GRID(UEXACT,WX,WY,H,GRIDPT)
CALL F2GRID(F,WX,WY,H,GRIDPT,ALG)
CALL C2GRID(0.O,UCALC,GRIDPT)
CALL U2BDRY(UCALC,WX,WY,H,GRIDPT)

C *** SOLVE AND REPORT RESULTS ***
C

CALL MGSOLV(UCALC,F,FGRID,CGRID,Vl,VC,V2,VMAX,TOL,RNORM,ALG)
ERROR • DIFNRM(UEXACT,UCALC,H,GRIDPT)
WRITE(l,1600) 'RESULTS: ','Final Residual Norm',RNORM,

+ 'Final Solutio~ Error',ERROR
C
C *** STORE SOLUTION ***
C

C

C

C

C

WRITE(*, '(//6X,A\) ') 'Store solution? ... (Y or N) ... >'
READ(*, '(lA) ')STORE

IF (STORE.EQ.'Y') THEN
WRITE(*,'(/6X,A,A\)')'Input new file name for storage

+ '(Y:IXXXIX.ZZZ) ... >·
READ(*,'(A)')OUTFIL
OPEN(2,FILE=OUTFIL,STATUS-'NEW')
WRITE(2,1600)'SOLUTION:','I','J','ACTUAL U(I,J)',

+ ' CALC U(I,J) ','I','J','ACTUAL U(I,J)',
+ ' CALC U(I,J) ,

DO 600 J-l,FGRID-l,2
DO 600 l=l,GRIDPT

WRITE(2,1700)I-l,J-l,UEXACT(I,J) ,UCALC(I,J) ,
+ I-l,J,UEXACT(I,J+l),UCALC(I,J+l)

600 CONTINUE
WRITE(2,*)

600 CONTINUE

J=GRIDPT
DO 700 I=l,GRIDPT

WRITE(2,l800)I-l,J-l,UEXACT(I,J),UCALC(I,J)
700 CONTINUE

CLOSE(2)
END IF

CLOSE(l)
GOTO 20

C *** FORMAT STATEMENTS ***
C

1000 FORMAT(//30X,20('*')/30X,'* ',A,' *'/30X,20('*')//)
1050 FORMAT(/5X,A/)
1100 FORMAT(7X,'2-D Poisson Problem',7X,'u (x,y) + u (x,y)

,

27

+ 'f (x,y)' /34X, 'xx' ,9X, 'yy' / /7X,
+ 'Domain in RxR',13X,'[0,1]x[0,1]'/7X,'Boundary Conditions',
+ 7X,'Dirichlet'/7X,'Input Function',12X,
+ 'f(x,y) = C*sin(2*pi*A*x + 2*pi*B*y)'/36X,'where C ... '
+ '-4*pi*pi*(A*A + B*B)' /1X,'Analytical Solution',
+ 7X,'u(x,y) ... sin(2*pi*A*x + 2*pi*B*y)'/7X,
+ 'Wavenumbers',15X,'!" ',F4.1/33X,'B = ',F4.1/)

1150 FORMAT(/5X,A/'+',4X,13('_')/)
1200 FORMAT(/5X,A/2(13X,A/»
1250 FORMAT(/5X,A/'+',4X,12('_')/)
1300 FORMAT(7X,'Discretization Scheme',6X,A/7X,'Control Algorithm',

C

C

+ 9X,'Repeated Fixed V-Cycles'/
+ 36X,'Vl" ',11,' [relax. sweep(s) per level down]'/
+ 36X,'VC = ',11,' [relax. sweep(s) on coarsest grid]'/
+ 36X,'V2'" ',11,' [relax. sweep(s) per level up]'/
+ 7X,'Grid Intervals',l2X,'FGRID = ',12,' (finest grid)'/
+ 33X,'CGRID .. ',12,' (coarsest grid)'/
+ 7X, 'Mesh Spacing' ,14X, 'H II: ',F7 .5,' (finest grid)' /
+ 7X,'Relaxation Scheme',9X,'Gauss-Seidel (lexicographic)'/
+ 7X,'Init. Solution Guess',6X,'U'" 0.0 (for interior',
+ ' grid pts.)'/7X,'Convergence Tolerance',6X,'TOL = ',lP,
+ El0.4/7X, 'Max Allowed V-Cycles',6X,'VMAX = ',12/)

1400 FORMAT(/6X,A/4(13X,A/»
1450 FORMAT(//6(60X,A/»
1500 FORMAT(/6X,A/'+·.4X.7('_·)//7X,A,7X,lP,E13.6/1X.A,6X,E13.6/'1')
1600 FORMAT(/2X,A//2(2(2X,A),2(lX,A).lX)/

+ 2(2(lX.2('·'»,2(lX,13('·'»,lX)//)
1100 FORMAT(2(2(lX,I2),lP,2(lX,E13.6»)
1800 FORMAT(2(lX,I2),lP,2(lX,E13.6»

END

C ***
C

SUBROUTINE F2GRID(GRID,WX,\Y'f,H,GRIDPT,ALG)
C
C PURPOSE: Puts the function FFUN on [O,l]x[O.l] into the
C GRIDPTxGRIDPT array GRID using a uniform mesh spacing
C of H and according to the right-hand side of the
C f~nite difference equation corresponding to algorithm
C ALG.
C

C

C
C
C

INTEGER MAXGRD,GRIDPT,I,J,ALG
PARAMETER (MAXGRD=65)
REAL H,X,Y,WX,WY,FFUN
REAL GRID(MAXGRD,MAXGRD),TEMP(MAXGRD,MAXGRD)

FFUN(X,Y) = -(WX*WX + WY*WY)*SIN(WX*X + WY*Y)

*** DISCRETIZE FFUll ***

DO 20 J=l,GRIDPT
Y .. 0.0 + REAL(J-l)*H
DO 10 I=l,GRIDPT

X ... 0.0 + REAL(I-l)*H
GRID(I,J) .. FFUN(X,Y)

C
C
C

C

C

C

TEMP(I.J) = FFUN(X.Y)
10 CONTINUE
20 CONTINUE

28

*** FORM RIGHT SIDE OF APPROPRIATE FDE ***

IF (ALG.EQ.1) RETURN

DO 30 J=2,GRIDPT-1
DO 30 I=2,GRIDPT-1

GRID(I,J) = TEMP(I,J+1)+TEMP(I-1,J)+TEMP(I,J-1)+TEMP(I+1,J)
GRID(I,J) = (GRID(I,J) + 8.0*TEMP(I,J»/12.0

30 CONTINUE

RETURN
END

C **
C

SUBROUTINE U2GRID(GRID,WX,WY,H,GRIDPT)
C
C PURPOSE: Puts the function UFUN on [O,l]x[O,l] into the
C GRIDPTxGRIDPT array GRID using a uniform mesh spacing H.
C

C

C

C

C

INTEGER MAXGRD,GRIDPT,I,J
PARAMETER (MAXGRD=65)
REAL H,X,Y,WX,WY,UFUN,GRID(MAXGRD,MAXGRD)

UFUN(X,Y) = SIN(WX*X + WI*Y)

DO 20 J=l,GRIDPT
Y • 0.0 + REAL(J-1)*H
DO 10 I-1,GRIDPT

X • 0.0 + REAL(I-1)*H
GRID(I,J) • UFUN(X,Y)

10 CONTINUE
20 CONTINUE

RETURN
END

C **
C

SUBROUTINE C2GRID(VALUE,GRID,GRIDPT)
C
C PURPOSE: Puts the constant VALUE into the GRIDPTxGRIDPT array
C GRID.
C

C

INTEGER MAXGRD,GRIDPT,I,J
PARAMETER (MAXGRD=65)
REAL VALUE,GRID(MAXGRD,MAXGRD)

DO 10 J=l,GRIDPT
DO 10 I=l,GRIDPT

GRID(I,J) = VALUE
10 CONTINUE

C

C

RETURN
END

29

C **
C

SUBROUTINE U2BDRY(GRID,WX,WY,H.GRIDPT)
C
C PURPOSE: Puts the function UFtnJ on the boundary of [O,1]x[O,1]
C into the boundary of the GRIDPTxGRIDPT array GRID
C using a uniform mesh spacing of H.
C

C

C

C

C

C

INTEGER
PARAMETER
REAL

MAXGRD,GRIDPT,I,J
(MAXGRD=65)
H,X,Y,WX,WY,UFUN,GRID(MAXGRD,MAXGRD)

UFUN(X,Y) -= SIN(WX*X + wy*y)

DO 10 I=1,GRIDPT
X z 0.0 + REAL(I-1)*H
GRID(I,1) z UFUN(X,O.O)
GRID(I,GRIDPT) -= UFUN(X,1.0)

10 CONTINUE

DO 20 J=2,GRIDPT-l
Y - 0.0 + REAL(J-1)*H
GRID(1,J) • UFUN(O.O,Y)
GRID(GRIDPT.J) • UFUN(1.0,Y)

20 CONTINUE

RETURN
END

C ***
C

REAL FUNCTION DIFNRM(GRID1,GRID2.H,GRIDPT)
C
C PURPOSE: Calculates a discrete analog of the continuous
C Euclidean norm of the difference of two GRIDPTxGRIDPT
C arrays (GRID1 AND GRID2) both having a uniform mesh
C spacing of H.
C

C

C

INTEGER MAXGRD.GRIDPT,I,J
PARAMETER (MAXGRD=65)
REAL H,DIFF,GRID1(MAXGRD,MAXGRD),GRID2(MAXGRD,MAXGRD)

DIFNRM a 0.0
DO 10 J=l,GRIDPT
DO 10 I=l,GRIDPT

DIFF • GRID2(I,J) - GRID1(I,J)
DIFNRM = DIFNRM + DIFF*DIFF

10 CONTINUE
DIFNRM = SQRT(DIFNRM*H*H)

RETURN
END

APPENDIX B

FORTRAN CODE FOR ALGORITHM 2

FORTRAN Code for Multi-Grid Solver:

$STORAGE:2
$NOFLOATCALLS
$LARGE
C
C **
C

C

C

C

INTERFACE TO SUBROUTINE TI~~ (N,STR)

CHARACTER*10 STR [NEAR,REFERENCE]
INTEGER*2 N [VALUE]

END

C **
C

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

SUBROUTINE MGSOLV(U,F,FGRID,CGRID,Vl,VC,V2,VMAX,TOL,RNORM,ALG)

.lUTIIOR:
DATE:

LANGUAGE:

PURPOSE:

Richard Taft
March lB, 19B7
Microsoft FORTRAN (version 3.31)

(Libraries used: BOB7.LIB and FORTRAN.LIB)

This routine uses a fixed V-cycle multi-grid algorithm
to approximate the solution to the !inite difference
equation for the 2-D Poisson problem with Dirichlet
boundary conditions obtained using either the
standard second-order 5-point stencil (ALG=l) or a
less common fourth-order 9-point stencil (ALG=2).
The initial solution guess is inputted in array U and
the final calculated solution is returned in array U.
The right-hand side of the FDE is inputted in array F.
FGRID and CGRID give the number of intervals of the
finest and coarsest (uniform) grids, respectively.
The fixed V-cycle structure is defined by Vl, VC, and
V2. V-cycles are repeated until either the residual
norm (RNORM) is less than the convergence tolerance
(TOL) or the number of V-cycles performed equals the
maximum allowed V-cycles (VMAX). A trace of the
residual norm versus the number of V-cycles performed
and the execution time for the V-cycles performed are
reported.

,

C

C
C
C

C

C
C
C

C

C

INTEGER
PARAMETER
INTEGER
INTEGER
INTEGER
INTEGER
REAL
REAL
CHARACTER*10
PARAMETER

WPOINT .. 1
LEVEL = 0
GSIZE ., FGRID

31

MAXGRD,WSPACE,MAXLEV
(MAXGRD=65,WSPACE=11436,MAXLEV=6)
FGRID,CGRID,GSIZE,GRDPTS(MAXLEV)
WPOINT,UBEGIN(MAXLEV),FBEGIN(MAXLEV)
LEVEL,FLEVEL,CLEVEL,STEP,ALG
Vl,VC,V2,SWEEP,VCOUNT,VMAX
MESH,H(MAXLEV),TOL,RNORM
U(MAXGRD,MAXGRD),F(MAXGRD,MAXGRD),W(WSPACE)
TSTART,TDONE
(FLEVEL=l,STEP=l)

*** SET-UP STORAGE ARRAY W ***

MESH = 1.0/REAL(FGRID)

6 LEVEL E LEVEL + STEP
H(LEVEL) .. MESH
GRDPTS(LEVEL) .. GSIZE+l
UBEGIN(LEVEL) .. WPOINT
WPOINT .. WPOINT + GRDPTS(LEVEL)*GRDPTS(LEVEL)
FBEGIN(LEVEL) E WPOINT
WPOINT = WPOINT + GRDPTS(LEVEL)*GRDPTS(LEVEL)
GSIZE .. GSIZE/2
MESH .. 2.0 * MESH
IF (GSIZE.GE.CGRID) GOTO 6
CLEVEL '" LEVEL

*** PREPARE FOR FIRST V-CYCLE ***

LEVEL .. FLEVEL
VCOUNT = 0

CALL RESNRM(U,F,H(LEVEL) ,GRDPTS(LEVEL) ,RNORM,ALG)
WRITE(1,1000) 'SOLVING: ','(Using Subroutine MGSOLV)',

+ 'NUMBER OF V-CYCLES COMPLETED','RESIDUAL NORM',
+ '0' ,RNORM

C *** PERFORM A V-CYCLE ***
C

C

C

CALL TIME (10,TSTART)
100 DO 10 SWEEP=l,Vl

CALL GSRLAX(U,F,H(LEVEL) ,GRDPTS(LEVEL) ,ALG)
10 CONTINUE

CALL STOREW(U,F,GRDPTS(LEVEL),UBEGIN(LEVEL),FBEGIN(LEVEL),W)
CALL F2CORS(U,F,H(LEVEL) ,GRDPTS(LEVEL) ,GRDPTS(LEVEL+l) ,ALG)
LEVEL = LEVEL + STEP
IF (LEVEL.LT.CLEVEL) GOTO 100

DO 20 SWEEP = 1 ,VC
CALL GSRLAX(U,F,H(LEVEL),GRDPTS(LEVEL),ALG)

20 CONTINUE

r

" ,

C

C

C

C
C
C

C

C

C

32

200 CALL C2FINE(U,W,GRDPTS(LEVEL),GRDPTS(LEVEL-l),UBEGIN(LEVEL-1»
LEVEL s LEVEL - STEP
CALL RETRVW(U,F,GRDPTS(LEVEL),UBEGIN(LEVEL),FBEGIN(LEVEL),W)

DO 30 SWEEP=1,V2
CALL GSRLAX(U,F,H(LEVEL) ,GRDPTS(LEVEL) ,ALG)

30 CONTINUE

IF (LEVEL.GT.FLEVEL) GO TO 200

*** PERFORM ANOTHFJl V-CYCLE IF NEEDED ***

VCOUNT • VCOUNT + 1
CALL RESNRM(U,F,H(LEVEL),GRDPTS(LEVEL),RNORM,ALG)
WRITE(1,1100)VCOUNT,RNORM

IF (RNORM. GT . TOL) THEN
IF (VCOUNT.LT.VMAX) THEN

GOTO 100
ELSE

WRITE(l,l160) 'WARNING: MAXIMUM ALLOWED V-CYCLES PERFORMED'
END IF

ENDIF

CALL TIME (10,TDONE)
WRITE(l,1200)'** Execution Time For Performing V-Cycles **',

+ 'Started: ',TSTART,'Completed:',TDONE

C *** FORMAT STATEMENTS ***
C

1000 FORMAT('l'/6X,A/'+',4X,7('_'),11X,A///l0X,2(6X,A)/15X,28(':'),
+ 6X,13('·')/29X,A,18X,lP,E13.6)

1100 FORMAT(28X,I2,18X,lP,E13.6)
1.150 FORMAT(//16X,A/)
1200 FORMAT(//16X,A/22X.A.3X,A/20X.A,3X.A/)

C

C

RETURN
END

C **
C

SUBROUTINE GSRLAX(U,F,H,GRDPTS,ALG)
C
C PURPOSE: This routine performs lexicographic Gauss-Seidel
C relaxation upon the finite difference equation
C associated with algorithm ALG.

C
INTEGER MAXGRD,GRDPTS,I,J,ALG
PARAMETER (MAXGRD=65)
REAL U(MAXGRD,MAXGRD),F(MAXGRD,MAXGRD)
REAL H,H2,H26,A

C
IF (ALG.EQ.l) THEN

H2 = H*H
DO 10 J=2,GRDPTS-l

C

C

33

DO 10 I=2.GRDPTS-1
U(I.J) - (U(I-1.J)+U(I.J-1)+U(I+1.J)+U(I.J+1)-H2*F(I,J»/4.0

10 CONTINUE
ELSE

H26 .. 6.0*H*H
DO 20 J=2.GRDPTS-1
DO 20 I=2.GRDPTS-1

A - 4.0*(U(I-1.J)+U(I,J-1)+U(I+1,J)+U(I.J+1» - H26*F(I,J)
U(I,J) - (A+U(I+1,J+1)+U(I-1,J+1)+U(I-1,J-1)+U(I+1,J-1»/20.0

20 CONTINUE
END IF

RETURN
END

C ***
C

SUBROUTINE RESNRM(U,F.H,GRDPTS.RNORM.ALG)
C
C PURPOSE: This routine calculates the residual norm for the
C finite difference equation associated with algorithm
C ALG.
C

C

C

C

C

C

INTEGER MAXGRD.GRDPTS.I.J,ALG
PARAMETER (MAXGRD=65)
REAL H.H2.H26,LU,R,RNORM
REAL U(MAXGRD,MAXGRD),F(MAXGRD,MAXGRD)

RNORM - 0.0
H2 - H*H

IF (ALG.EQ.1) THEN
DO 10 J-2,GRDPTS-1
DO 10 I-2,GRDPTS-1

R .. F(I.J)-(U(I-l,J)+U(I,J-l)+U(I+l,J)+U(I,J+1)-4.0*U(I.J))/H2
RNORM - RNORM + R*R

10 CONTINUE
ELSE

H26 .. 6.0*H2
DO 20 J-2,GRDPTS-l
DO 20 I-2,GRDPTS-l

LU - 4.0*(U(I-l,J)+U(I,J-l)+U(I+l.J)+U(I,J+l» - 20.0*U(I,J)

LU - LU + U(I+l,J+l)+U(I-l.J+l)+U(I-l.J-l)+U(I+l,J-l)
R • F(I,J) - LU/(H26)
RNORM .. RNORM + R*R

20 CONTINUE
END IF

RNORM = SQRT(RNORM*H2)

RETURN
END

C **
C

SUBROUTINE STOREW(U.F,GRDPTS.STARTU.STARTF.W)

34

C
C PURPOSE: Copies the 2-D arrays U and F into the 1-D array W.
C

C

C

C

C

INTEGER MAXGRD.STARTU.STARTF.DIFF.SUB.GRDPTS.I.J
PARAMETER (MAXGRD=65)
REAL U(MAXGRD.MAXGRD).F(MAXGRD.MAXGRD).W(*)

DIFF :0: STARTF - STARTU

DO 10 J=l.GRDPTS
DO 10 I=l.GRDPTS

SUB = STARTU + (1-1) + (J-1)*GRDPTS
W(SUB) = un. J)
W(SUB + DIFF) = F(I.J)

10 CONTINUE

RETURN
END

C **
C

SUBROUTINE F2CORS(U.F.HF.FGPTS.CGPTS.ALG)
C
C PURPOSE: Transfers the interior residual for the finite
C difference equation corresponding to algorithm ALG to
C the next coarser grid F by injection and initializes
C the next coarser grid U.
C

C
C
C

C

C

INTEGER MAXGRD.FGPTS.CGPTS.CI.CJ.FI.FJ.ALG
PARAMETER (MAXGRD=65)
REAL HF.HF2.HF26.LU.U(MAXGRD.MAXGRD).F(MAXGRD.MAXGRD)

*** TRANSFER RESIDUAL TO COARSE GRID F ***

HF2 '" HF*HF

IF (ALG.EQ.1) THEN
DO 10 CJ=2.CGPTS-1
DO 10 CI"'2.CGPTS-1

FJ '" 2*CJ - 1
FI '" 2*CI - 1
LU '" U(FI-1.FJ)+U(FI.FJ-1)+U(FI+1.FJ)+U(FI.FJ+1)-4.0*U(FI.FJ)
F(CI.CJ) '" F(FI.FJ) - LU/HF2

10 CONTINUE
ELSE

HF26 = 6. 0*HF2
DO 20 CJ=2.CGPTS-1
DO 20 CI=2.CGPTS-1

FJ = (2*CJ)-1
FI = (2*CI)-1
LU = 4.0*(U(FI-l.FJ) + U(FI.FJ-l) + U(FI+l.FJ) + U(FI.FJ+1»
LU = LU+U(FI+l.FJ+l)+U(FI-l.FJ+l)+U(FI-l.FJ-l)+U(FI+l.FJ-l)
F(CI.CJ) = F(FI.FJ) _ (LU _ 20.0*U(FI.FJ»/HF26

20 CONTINUE
END IF

r

C
C

C

C

35

*** INITIALIZE COARSE GRID U ***

DO 30 CJ=l,CGPTS
DO 30 CI=l,CGPTS

U(CI,CJ) = 0.0
30 CONTINUE

RETURN
END

C **
C

SUBROUTINE C2FINE(U,W,CGPTS,FGPTS,START)
C
C PURPOSE: Transfers the coarse grid correction (array U) to the
C next finer grid by bilinear interpolation and adds it
C to the previous solution on this finer grid (stored
C in array W)
C

C

C

C

C

C

C

C

INTEGER MAXGRD,CGPTS,FGPTS,START,SUB,CI,CJ,FI,FJ
PARAMETER (MAXGRD=65)
REAL AVG1,AVG2,U(MAXGRD,MAXGRD),W(*)

W(START) = W(START) + U(l,l)

DO 10 CI=2,CGPTS
FI = 2*CI - 1
SUB '"' START + FI - 1
W(SUB) = W(SUB) + U(CI,l)
W(SUB-1) '"' W(SUB-t) + 0.6*(U(CI-1,1) + U(CI.t»

10 CONTINUE

DO 20 CJ=2,CGPTS
FJ & 2*CJ - 1
AVG2 = 0.5*(U(1,CJ-1) + U(1.CJ»
SUB '"' START + (FJ-1)*FGPTS
W(SUB) = W(SUB) + U(1.CJ)
W(SUB-FGPTS) '"' W(SUB-FGPTS) + AVG2

DO 30 CI=2,CGPTS
FI = 2*CI -1
AVGl '"' AVG2
AVG2 = 0.6*(U(CI.CJ-1) + U(CI,CJ»
SUB = START + (FI-1) + (FJ-t)*FGPTS
W(SUB) = W(SUB) + U(CI,CJ)
W(SUB-FGPTS) = W(SUB-FGPTS) + AVG2
W(SUB-l) z W(SUB-1) + 0.6*(U(CI-l,CJ) + U(CI,CJ»
W(SUB-FGPTS-t) = W(SUB-FGPTS-l) + 0.6*(AVG1 + AVG2)

30 CONTINUE

20 CONTINUE

RETURN
END

C **

36

C
SUBROUTINE RETRVW(U.F.GRDPTS.5TARTU.STARTF.W)

C
C PURPOSE: Retrieves info stored in the 1-D array W and copies
C it into the 2-D arrays U and F.
C

C

C

C

INTEGER MAXGRD.STARTU.STARTF.DIFF.SUB,GRDPTS,I,J
PARAMETER (MAXGRD=65)
REAL U(MAXGRD.MAXGRD),F(MAXGRD,MAXGRD),W(*)

DIFF = STARTF - STARTU

DO 10 J=l,GRDPTS
DO 10 I=l.GRDPTS

SUB • STARTU + (1-1) + (J-1)~GRDPTS
UO.J) • W(SUB)
F(I.J) = W(SUB + DIFF)

10 CONTINUE

RETURN
END

	0415_Bluebook_Page_01
	0415_Bluebook_Page_02
	0415_Bluebook_Page_03
	0415_Bluebook_Page_04
	0415_Bluebook_Page_05
	0415_Bluebook_Page_06
	0415_Bluebook_Page_07
	0415_Bluebook_Page_08
	0415_Bluebook_Page_09
	0415_Bluebook_Page_10
	0415_Bluebook_Page_11
	0415_Bluebook_Page_12
	0415_Bluebook_Page_13
	0415_Bluebook_Page_14
	0415_Bluebook_Page_15
	0415_Bluebook_Page_16
	0415_Bluebook_Page_17
	0415_Bluebook_Page_18
	0415_Bluebook_Page_19
	0415_Bluebook_Page_20
	0415_Bluebook_Page_21
	0415_Bluebook_Page_22
	0415_Bluebook_Page_23
	0415_Bluebook_Page_24
	0415_Bluebook_Page_25
	0415_Bluebook_Page_26
	0415_Bluebook_Page_27
	0415_Bluebook_Page_28
	0415_Bluebook_Page_29
	0415_Bluebook_Page_30
	0415_Bluebook_Page_31
	0415_Bluebook_Page_32
	0415_Bluebook_Page_33
	0415_Bluebook_Page_34
	0415_Bluebook_Page_35
	0415_Bluebook_Page_36
	0415_Bluebook_Page_37
	0415_Bluebook_Page_38
	0415_Bluebook_Page_39
	0415_Bluebook_Page_40

