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ABSTRACT 

This paper presents two simple multi-grid algorithms for solving the Poisson problem: a 

standard second-order method and a less-common fourth-order method. The two algorithms 

are compared theoretically and numerically, and conclusions are drawn concerning speed, 

accuracy, resolution, and computer storage. For the same set of grids, the fourth-order 

method gives an approximation of greater accuracy, but the second-order method is quicker. 

On the other hand, to achieve a given accuracy, the fourth-order method requires less 

computer time and storage, but the approximation obtained has less resolution than that 

obtained from the second-order method. The numerical calculations were performed on a 

Zenith PC and checked on a Cyber mainframe computer. These results suggest that the 

fourth-order method may begin to suffer from round-off errors and cancellation effects on 

coarser grids sooner than the second-order method. This prediction is discussed; and PC 

users, in particular, are warned to check and question numerical results before accepting 

them. 

; 
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l CHAPTER I 

INTRODUCTION 

Many physical phenomena can be modelled as elliptic boundary-value problems. One 

of the simplest and most common such problem is the Poisson problem given by 

(1) 

with suitable boundary conditions. Consequently, many numerical methods have been 

developed to solve elliptic boundary-value problems such as the Poisson problem. 

Classically, the Poisson problem was solved by discretizing equation (1) and then solving 

the resulting linear system of equations, either directly using Gaussian elimination or itera-

tively using a relaxation scheme such as Gauss-Seidel, SOR or ADI. Following this, so called 

"fast Poisson solvers" based on cyclic reduction were developed in the 1970's (e.g. Swarz­

trauber [1]). More recently, a second class of "fast solvers" have been d~veloped which give 

the solution with "optimal efficiency", Le., the computational work involved is proportional 

to the number of unknowns. 

Achi Brandt first introduced multi-grid methods in the early 1970's as tools for devel­

oping such "fast solvers" for elliptic boundary-value problems [2]. There are now a wide 

class of multi-grid methods that can solve the Poisson problem with "optimal efficiency." 

Furthermore, these multi-grid methods have an advantage over many of the other "fast 

solvers" in that multi-grid methods are easily generalized and adapted to much more com-

plex problems. In fact, multi-grid methods have now become an important and very efficient 

class of techniques for solving a wide variety of problems. There are many good reviews 

that further describe the history, general concepts, and various applications of multi-grid 

methods (e.g. [3] - [7]). 
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The fundamental idea of multi-grid methods is to approximate the given continuous 

problem, not only on a single fine grid of desired resolution, but also on a sequence of 

increasingly coarser grids, and then to obtain a solution on the finest grid with optimal 

efficiency by cycling between the discrete problems on these various grids. On a given 

grid, a simple relaxation scheme is used to reduce efficiently the components of error which 

oscillate on the scale of that grid. This relaxation, however, does not effectively reduce 

smooth error components (those that are non-oscillatory on the scale of the grid). The 

key to multi-grid methods is the fact that error components which are smooth on one 

grid become more oscillatory on a coarser grid. Thus, the coarser grids can be viewed as 

correction grids which accelerate the convergence of the relaxation scheme on the finest grid 

by efficiently reducing the smooth error components. The basis for the good efficiency of 

multi-grid methods is now clear: much of the work is performed on the coarser grids which 

have relatively few points, and thus, the computational cost involved is greatly reduced. 

Until recently, most multi-grid algorithms actually applied to an elliptic boundary-value 

problem such as the Poisson problem were second-order methods in that their underlying 

discretization schemes were second-order approximations. Higher-order multi-grid algo­

rithms using discretization schemes of fourth- and sixth-order were much less common and 

were generally considered to be too expensive due to their increased complexity. Recently, 

however, these higher-order algorithms have gained new interest and support as methods 

for obtaining high-accuracy approximations [8]. 

Th£. body of this paper will present two simple multi-grid algorithms for solving the 

Poisson problem: a standard second-order method and a less-common fourth-order method. 

Mter notation and basic concepts are introduced, the two algorithms will be described in 

detail and then compared theoretically and numerically. Finally, conclusions concerning 

speed, accuracy, resolution, and computer storage will be made. 



CHAPTER II 

NOTATION AND BASIC CONCEPTS 

The model problem for this paper is the Poisson problem with Dirichlet boundary con-

ditions: 

Lu = V 2u = f 
u=g 

in D 
on 5, 

(2) 

where L is the Laplace operator V2 = ~ +~, D is the unit square [0,1] x [0,1] in R2, f 

is a continuous function defined in D, 9 is a continuous function defined on 5 (the boundary 

of D), and u is the continuous solution which is to be approximated. 

For each h = lIN, where N is a positive integer, a uniform grid Dh with mesh spacing 

h is defined on the unit square as the following set of discrete points of D: 

Dh = {(Zi,!lj) = (ih,jh) : i,j=0,1,2, ... ,N}. 

Such a grid will be called an N-grid, but note that Dh actually contains (N + 1) x (N + 1) 

points. Lexicographic ordering refers to taking the interior grid points (Xi,!lj) in the order 

(i,j) = (1,1), (2, 1), ... , (N -1, 1), (1, 2), ... , (N -1, N -1). The intersection of 5 with Dh 

is denoted by 5 h • 

The grid functions fh and gh designate the pointwise restrictions of the continuous 

functions f and 9 onto Dh and 5 h, respectively. In particular, fh(Xi,!lj) = f(Xi,!lj) = lij 

and gh( Xi, !lj) = g( xi, !lj) = gij. The grid function uh represents the discrete approximation 

to the true solution u; and hence, Uij = uh (Xi, !lj) approximates the true value of u at 

Approximating (2) on a grid Dh using finite differences gives the discrete Poisson prob­

lem: 

(3) 
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where L" is a finite difference operator and F" is a grid function related to f". The residual 

for problem (3) is the grid function rIa = F" - L";:,," , where the grid function ;:,," is the 

current approximation to the solution of (3). The notation rii = r"(zi, !/i) is also used. The 

residual norm is a root-mean-square quantity defined by 

N-l 

RN = h2 L (rii)2 . (4) 
iJ=l 

The basic concept of multi-grid methods can now be demonstrated by the following 

simple two-level multi-grid cycle: 

i. Input initial guess for ;:"k on fine grid with resolution h. 

ii. Perform relaxation on L";:,," = F" to improve ;:,,". 

iii. Transfer residual rIa = F" - Lh;:"h to a coarser grid with resolution 2h using 

a fine-to-coarse grid transfer operator I~h. 

iv. Solve the coarse grid correction equation L2h;;2h = I~" (F" - L";:"h). 

v. Transfer the correction v2h back to the fine grid using a coarse-to-fine grid 

transfer operator Ir", and replace ;:,," by uk + Ir" v2
". 

v!. Perform relaxation on Lh;:,," = Fk to improve ;:"h further. 

This cycle has two main parts: a smoothing part (steps ii and vi) to reduce the high­

frequency error components of ;:,," by relaxation and a coarse grid correction part (steps 

iii-v) to reduce the smooth error components of ;:"h. 

The above two-level cycle can be repeated to improve the approximation uk even further. 

In addition, by using a set of more than two grids, a simple multi-level cycle is easily obtained 

from this two-level cycle by recursion; i.e., by solving the equation in step (iv) by another 

application of a two-level cycle, etc. These simple cycles are examples of multi-grid control 

algorithms. In particular, the multi-level cycle just described forms the basis for the fixed 

V -cycle control algorithm. 



CHAPTER III 

DESCRIPTION OF MULTI-GRID ALGORITHMS 

A specific multi-grid algorithm has several important components: a discretization 

method, a set of grids, grid transfer operators, a relaxation scheme, and a control algo­

rithm. A variety of possible choices exists for each of these components, and hence, a large 

number of different multi-grid algorithms are possible. . 

The two algorithms of this paper differ primarily in the discretization method used. 

The other components are essentially identical for the two algorithms and are typically the 

simplest choices possible. In particular, both algorithms share the following basic compo­

nents: a set of uniform, overlapping grids { nM, D2M, ... , Dl/2} where M is an element of 

{1/64, 1/32, 1/16} ; simple injection for the fine-to-coarse grid transfer of residuals; bilinear 

interpolation for the coarse-to-fine grid transfer of corrections; lexicographic Gauss-Seidel 

relaxation; and a fixed V -cycle control algorithm. These components combine to form the 

basic structure for these two algorithms, as shown in Figure 1. 

3a. the second-order algorithm (Algorith~ 

The discretization scheme of Algorithm 1 utilizes the standard second-order centered 

finite difference operator (Lhh defined by the five-point difference stencil 

(L'), = (l/h') [1-~ 1 L 
For a given grid Dh, the discrete problem (3) now assumes the form 

(l/h') [1-! 1 L u' =" in D' 

on Sh. 
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Figure 1: The fixed V -cycle structure of the multi-grid algorithms of this paper (for the 
case where the finest grid is a 64-grid). 

(finest grid) Dl/64 

(coarsest grid) Dl/2 

Key: "1 perform "1 relaxation sweeps 
"2 perform .,z relaxation sweeps 
--+ transfer residual by injection 
~ solve the discrete problem on the coarsest grid 
::::::} transfer correction by bilinear interpolation 

Reference: (adapted from [6]) 
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The error in this approximation to the Poisson problem is of the order h2 (Le., the truncation 

error is 0 (h2 )) , and hence, this algorithm is classified as second-order [9). 

From (5), an equation of the following form is obtained for each interior grid point 

(Xi, !I;) in Dh: 

(Ui-l,; + Ui,j-l + Ui+l,j + Ui,Hl - 4Ui;) /h2 = Ii;. 

The equation for lexicographic Gauss-Seidel relaxation in Algorithm 1 therefore becomes 

- new _ (- new - new + - - h2 I ) /4 tli; - tli-l,j + tli,j-l Ui+1,; + Ui,Hl - Ji; • (6) 

Note that ui_l,;new and ui,;-l new are already computed before reaching the point (Xi,!I;). 

The residual for problem (5) can be expressed by the equation 

(7) 

ab. the fourth-order algorithm (Algorithm 2) 

The discretization scheme of Algorithm 2 utilizes a more complex fourth-order finite 

difference operator (Lh)" defined by the nine-point difference stencil 

(Lh) = (1/6h2
) [ ! -:0 !] 

" 1 4 1 h 

This operator is sometimes referred to as a Mehrstellen Verfahren difference operator [10]. 

For a given grid Dh, the discrete problem (3) is obtained by using this operator with a set 

of weights applied to I h and assumes the form 

(1/6h') [ ~ -~ ~ L u' = (1/12) [ 1 ~ 1 L " 
(8) 

This finite difference equation is easily derived using a Taylor series approach. The error in 

this approximation to the Poisson problem is of the order h" (i.e., the truncation error is 

O(h")), and hence, this algorithm is classified as fourth-order [8 and 11]. 

From (8), an equation of the following form is obtained for each interior grid point 

(Xi, !I;) in Dh: 
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[Ui-l,;-l + Ui+1.i-l + tli+1,j+l + Ui-l,;+1 - 20tLij 

where Fij = (Ii-I'; + h.j-l + fi+l,; + h.Hl + 8lij) /12. The equation for lexico-

graphic Gauss-Seidel relaxation in Algorithm 2 therefore becomes 

- new [- new + new + - + -tLij = tLi-l,j-l tL,+1,j-l tLi+1.i+1 Ui-I,j+1 

Note that all of the "new" quantities on the right-hand side of (9) have already been 

computed before reaching the point (Xi, 'Jj). The residual for problem (8) can be expressed 

by the equation 

·(10) 

3c. pseudo-code for Algorithms 1 and 2 

The use of Algorithms 1 and 2 for solving the discrete problem 

onSH , 

where H is an element of {1/64, 1/32, 1/16}, can now be summarized by the following 

pseudo-code: 

Initialize: uH = 0 

FH =fH 

FH : (1/12) [ 1 

h=H 

for Algorithm 1 

! 1 1 f H for Algorithm 2 

I H 

Input convergence tolerance TOL 

Calculate initial residual rH using (7) for Algorithm 1 and (10) for 

Algorithm 2 
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Calculate initial residual norm RN using (4) 

Perform the following until RN < TOL {this gives the stopping criterion} 

Repeat until h = 1/2 

Perform "1 relaxation sweeps on Lhuh = Fh using (6) for Algorithm 1 

and (9) for Algorithm 2 

Store uh and Fh 

Calculate residual rh using (7) for Algorithm 1 and (10) for Algorithm 2 

Set: u2h = 0 {initialize coarse grid correction} 

F2h = ~hrh {transfer residual by injection} 

h=2h 

Solve L 1/2u1/2 = F 1/2 {i.e., use "3 relaxation sweeps} 

Repeat until h = H 

Set uh/2 = uh/2+I:/2uh {transfer correction using bilinear interpolation} 

Set h = h/2 

Perform "2 relaxation sweeps on Lhuh = Fh using (6) for Algorithm 1 

and (9) for Algorithm 2 

Calculate residual ,.H using (7) for Algorithm 1 and (10) for Algorithm 2 

Calculate residual norm RN using (4) 

Set uH = uH {final solution}. 

The actual FORTRAN code used for Algorithms 1 and 2 is given in Appendices A and B. 

The values of "1, "2, and lIS used in this paper were 2, 1, and 3, respectively. 



CHAPTER IV 

THEORETiCAL COMPARISONS 

From the pseudo-code at the end of the last section, it is dear that Algorithms 1 and 2 

have identical structures and differ only in the formulas used at various steps. This ob­

servation simply reflects the fact that the two algorithms are actually the same multi-grid 

method applied to two different finite difference equations, namely (5) and (8), respectively. 

4a. complexity versus truncation error 

The finite difference equation (8) is dearly more complex than the finite difference 

equation (5). Consequently, the formulas used in Algorithm 2 are more complex than 

the corresponding formulas in Algorithm 1; e.g., compare the relaxation formula (9) for 

Algorithm 2 with the corresponding formula (6) for Algorithm 1. Therefore, an apparent 

disadvantage of Algorithm 2 is its increased complexity. Until recently, this was a common 

criticism of such higher-order methods. 

Algorithm 2, however, also has a possible advantage. Since the finite difference equation 

(8) has a smaller truncation error than the finite difference equation (5), it follows that 

Algorithm 2 has the potential to produce a more accurate solution to the Poisson problem 

than Algorithm 1 under the same conditions. In addition, since the truncation error depends 

on the mesh spacing of the finest grid, Algorithm 2 has the potential of producing on a 

coarser grid as accurate a solution as Algorithm 1 produces on a finer grid. It is this balance 

between the complexity disadvantage and the truncation error advantage of Algorithm 2 

that will be examined numerically in the next section. 
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4b. work and computer storage requirements 

From the pseudo-code for the two algorithms, it is clear that uh and Fh must be stored 

at each grid before transferring to the next coarser grid. Letting S represent the storage 

requirement for the two grid functions uh and Fh on the finest grid and noting that each 

coarser grid has approximately one-fourth as many points as the next finer grid, the storage 

requirement for the two algorithms can be approximated by 

where m is the number of grid levels used. Thus, the storage requirements for the two 

algorithms are not much greater than those for solving the problem just on the finest grid. 

By a similar argument, it follows that the work required per V -cycle (ignoring the work 

involved in residual transfers and interpolation-which is typically small) is less than 4/3 

times the work required for (VI + V2) relaxation sweeps on the finest grid alone. Thus, if 

the finest grid has 0(N2) points, the work per V-cycle is also 0(N2) operations. 

In coding the two algorithms, a large one-dimensional array was used to store the infor-

mation of each grid. The table below indicates the required size of this storage array as a 

function of the finest grid used: 

finest grid size of storage array 

DI/64 11436 
Dl/32 2986 
D l /16 808 

Clearly, in terms of computer storage it is best to use the coarsest resolution possible to 

achieve a desired accuracy. 

4c. analysis of relaxation and convergence 

The relaxation process and speed of convergence of a multi-grid method can be analyzed 

using a technique called local mode analysis. Although this technique contains certain 

underlying assumptions, such as periodic boundary conditions, Achi Brandt claims that 

it always gives reliable estimates of the overall convergence rate of any multi-grid method 

[3]. This technique, in its simplest form, uses Fourier analysis to examine the effects of the 
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relaxation scheme on the high frequency components of the error. In this simple form, the 

grid transfer processes are not considered. 

Let tJh = uh - uh and tJh,new = uh - uh,new be the error [between the exact solution to the 

finite difference equation (uh) and the current approximation to this solution1 before and 

after a single relaxation sweep, respectively. Using the discrete Fourier modes E, (xi,Yl:) = 

exp [i (j91 + k92 ) 1, where 9 = (91,92) is the discrete vector wavenumber and the components 

91 and 92 are integral multiples of 21rh between -1r and 1r, one can represent the errors 

tJh and tJh,new as sums of components of the form A,E, and A,new E" respectively. One 

relaxation sweep reduces the amplitude of the error component E, by the convergence 

factor p (9) = IA,new IAII. The smoothing factor jl is defined as the maximum convergence 

factor p(9) for the high wavenumbers, i.e., 

jl = 7r max p (0) 
2" < 101 < 7r 

where 191 = max (1011,1821). The smoothing factor is a measure of the rate at which the 

high frequency components of error are reduced by the relaxation process. In particular, 

-(log jl)-1 relaxation sweeps are needed to reduce all the high frequency components by an 

order of magnitude. 

It is easily shown (see [8]) that the convergence factors for Algorithms 1 and 2 are given 

by 

and 
4 (ei 'l + ei '2) + ei (ll +82) + e-i(11-12) 

pee) = 
20 - 4 (e- il1 + e-iI2 ) - e-i (ll+8:1) - ei (11-12) , 

respectively. The smoothing factors are therefore calculated to be 

jl = 0.500 
jl = 0.464 

(Algorithm 1) 
(Algorithm 2) 

It follows that 3.32 relaxation sweeps are required by Algorithm 1 to reduce all the high 

frequency components of the error by an order of magnitude, while Algorithm 2 only requires 

3.00 relaxation sweeps. Thus, the relaxation scheme of Algorithm 2 is slightly more efficient 
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as a smoothing process than that of Algorithm 1, and hence, the rate of convergence for 

Algorithm 2 should be slightly faster than that for Algorithm 1. 



CHAPTER V 

NUMERICAL COMPARISONS 

The two algorithms were coded in Microsoft FORTRAN (version 3.31)-see Appendices 

for program listings-and run on a Zenith ZF-158-42 PC (an IBM compatible) under MS­

DOS (version 3.1). The PC was run at a 8 Mhz clock speed and was equipped with an 8088 

processor, an 8087-2 math coprocessor, and 640 KB of dynamic RAM. 

5a. test problems 

The model test problem is the following Poisson problem with Dirichlet boundary con-

ditions: 

V 2u(x,y) _ 
u(x,y) -

-4:1r2 (a2 + b2) sin (2:1rax + 2:1rby) m D = [0,1] x [0,1] 
sin (2:1rax + 2:1rby) on S = aD. 

In particular, the following three specific cases were tested: 

Test Problem 
1 
2 
3 

Wavenumber a 
1.0 
3.5 
0.5 

Wavenumber b 
2.0 
3.0 
3.5 

Analytical Solution 
u(x, y) = sin(2"-x + 4,.-y) 
u(x, y) = sin(7,.-x + 6,.-y) 
u(x, y) = sin(,.-x + 7,.-y) 

Note the varying degree of oscillation in the solutions to these three different test problems. 

5b. measurement of numerical performance 

Execution time (real-time) and final solution error are used to measure the numerical 

performance of the two algorithms in solving these test problems. The execution time is 

a meaningful and reproducible quantity, in this case, since the computer used is a single-

user machine. This real-time execution time is obtained by interfacing to the MS-DOS 

subroutine TIME before and after the multi-grid algorithm executes. The final solution 

error is given by the grid function Eh = Uh - uh , where Uh is the actual solution projected 
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on Dh and uh is the final approximation to Uh. The final solution error is measured using 

a discrete analog of the continuous Euclidean norm of Eh, 

5c. truncation error and convergence tolerance 

Since the actual solutions to the test problems are known, the actual truncation errors 

involved can be computed. If the grid function Rh is defined as Rh = Fh - LhUh, where 

U" is the actual solution projected on D", then the truncation error (T E) becomes 

Thus, the truncation error is simply the residual norm (equation 4) calculated using the 

actual solution; i.e., the actual solution to the partial differential equation solves the finite 

difference equation with an error of T E. To solve the finite difference equation to a greater 

accuracy than T E is therefore not meaningful, and hence, T E was used as the convergence 

tolerance (see the pseudo-code of the two algorithms). 

The truncation errors for the three test problems and for a variety of grids are given 

in Table 1. Note that for each problem, the truncation error of Algorithm 2 is always 

smaller than that of Algorithm 1. In fact, for test problems 1 and 2 the truncation error 

for Algorithm 2 on a IS-grid is actually smaller than that for Algorithm 1 on a 64-grid. 

Also note that the tr1.'!ncation errors for both algorithms decrease as the grid mesh spacing 

decreases. 

5d. numerical results 

The results of applying Algorithms 1 and 2 to test problems 1, 2, and 3 are summarized 

in Table 2. 
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Table 1: truncation error analysis for the three test problems (using Zenith PC) 

Test Mesh Truncation Error 
froblem Grid SEacing Algorithm 1 Algorithm 2 

1 64 .01563 0.37472 0.0028675 
1 32 .03125 1.4690 0.0053262 
1 16 .06250 5.5938 0.080740 

2 64 .01563 5.0810 0.015203 
2 32 .03125 19.781 0.20172 
2 16 .06250 73.245 2.1938 

3 64 .0]563 3.3000 0.019108 
3 32 .03125 12.833 0.29093 
3 16 .06250 47.312 4.2243 

Table 2: numerical results of applying Algorithms 1 and 2 to the three test problems 
(using Zenith PC) 

Test Finest Required Final Solution Execution 
Problem Alg. Grid V-Cycles Error (x1000) Time (sec.) 

1 1 64 3 1.805 40 
1 32 2 7.827 7 
1 16 2 29.01 4 
2 64 5 0.002121 92 
2 32 4 0.02703 19 
2 16 3 0.4310 4 

2 1 64 2 6.103 27 
1 32 2 23.32 7 
1 16 1 280.4 1 
2 64 4 0.01608 73 
2 32 3 0.2577 14 
2 16 2 3.476 3 

3 1 64 3 7.335 40 
1 32 2 32.08 7 
1 16 1 170.1 1 
2 64 4 0.04494 73 
2 32 3 0.6444 14 
2 16 2 11.05 3 
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5e. check of numerical results 

The numerical results obtained from computer calculations (particularly those obtained 

on a PC) should always be checked and questioned since computers can only perform finite 

precision arithmetic. Round-off errors and cancellation effects can reduce the number of 

significant digits in a computed result, even to the point that no significant digits remain. 

There is an easy check that can be performed on the truncation error results in Table 1. 

Since the truncation error is 0(h2) for Algorithm 1 and 0(h4) for Algorithm 2, the truncation 

error for a given problem should decrease by approximately a factor of four for Algorithm 

1 and sixteen for Algorithm 2 as the mesh spacing is halfed (i.e., resolution doubled). The 

results in Table 1 follow these patterns, except the result for test problem 1 using Algorithm 

2 on a 64 grid. This particular result is certainly questionable; and it is possible, therefore, 

that all the results are questionable. 

Probably the best method for checking the reliability of a numerical result obtained 

using single precision arithmetic is to redo the calculation either in double precision on the 

same computer or in single precision on a different computer which has a greater number 

of significant digits. The Zenith PC used to obtain the results of Tables 1 and 2 is a 16-

bit machine which uses two bytes to store a real number in single precision. This storage 

corresponds to approximately seven significant digits. To check the results of Tables 1 and 

2, the calculations were redone in single precision on a Cyber 720 mainframe computer, a 

64-bit machine which stores a real number with approximately twice the significant digits 

as the Zenith PC. These new results (see Tables 3 and 4) are less prone to the problems 

associated with finite precision arithmetic and are, therefore, considered more reliable than 

those in Tables 1 and 2. 

Note that the truncation error results of Table 3 now completely follow the expected 

pattern mentioned earlier in this section. The one result of Table 1 that was questionable 

since it did not follow the expected pattern was, in fact, a meaningless result. (The more 

reliable result of Table 3 is an order of magnitude different.) Also note that three other 

results of Table 1 were significantly affected by round-off errors and cancellation effects, 

even though these three results "passed" the expected pattern test. 
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Table 3: truncation error analysis for the three test problems (using Cyber mainframe 
computer) 

Test Mesh Truncation Error 
Problem Grid Spacing Algorithm 1 Algorithm 2 

1 64 .01563 0.37470 0.00033647 * 
1 32 .03125 1.4690 0.0052814 * 
1 16 .06250 5.5938 0.080735 

2 64 .01563 5.0810 0.013865 * 
2 32 .03125 19.781 0.20173 
2 16 .06250 73.245 2.1938 

3 64 .01563 3.3000 0.018774 * 
3 32 .03125 12.833 0.29093 
3 16 .06250 47.312 4.2243 

Note: an asterisk indicates that the corresponding value from Table 1 does not agree (to at 
least two digits) with this value. 

Table 4: numerical results of applying Algorithms 1 and 2 to the three test problems 
(using Cyber mainframe computer) 

Extrapolated 
Test Finest Required Final Solution Execution 

Problem Alg. Grid V -Cycles Error (xl000) Time (sec.) 
1 1 64 3 1.805 40 

1 32 2 7.827 7 
1 16 2 29.01 4 
2 64 6 0.001612 * 110 
2 32 4' 0.02703 19 
2 16 3 0.4310 4 

2 1 64 2 6.103 27 
1 32 2 23.32 7 
1 16 1 280.4 1 
2 64 4 0.01605 73 
2 32 3 0.2577 14 
2 16 2 3.476 3 

3 1 64 3 7.335 40 
1 32 2 32.08 7 
1 16 1 170.1 1 
2 64 4 0.04485 73 
2 32 3 0.6444 14 
2 16 2 11.05 3 

Note: an asterisk indicates that the corresponding value from Table 2 is significantly dif-
ferent from this result. 
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The more reliable truncation error results of Table 3 were used as the convergence 

tolerances when obtaining the results in Table 4 on the Cyber mainframe computer. Note 

that only one result in Table 4 was significantly different from the corresponding result in 

Table 2. This difference is probably due more to the use of a smaller convergence tolerance 

in obtaining the result in Table 4 than to problems with finite precision arithmetic. The 

execution time listed in Table 4 is not the execution time for the Cyber mainframe computer, 

but is an extrapolated value for the execution time on the Zenith pc. This extrapolated 

value was obtain using the number of V -cycles required on the Cyber mainframe computer 

and the results in Table 2. 

In conclusion, it appears that the truncation error analysis for Algorithm 2 begins to 

have problems with round-off errors and cancellation effects when used on a 64-grid. H 

progressively finer grids are used, the truncation error analysis for both algorithms would 

eventually develop problems due to this finite precision arithmetic. It is reasonable that such 

problems develop sooner (i.e., on a.coarser grid) for Algorithm 2 than for Algorithm 1 since 

formula (10) for the residual in Algorithm 2 involves approximately twice the number of 

subtractions as does formula (7) for the residual in Algorithm 1. These observations suggest 

that Algorithm 2 itself will suffer such round-off and cancellation problems on coarser grids 

sooner than Algorithm 1, but further testing is needed to verify this prediction. In any 

case, the above comments should be a warning, particularly to pc users, that numerical 

results must be checked and questioned. 



CHAPTER VI 

CONCLUSIONS 

The results obtained (see Tables 2 and 4) are very similar for each of the three test 

problems. In particular, for all three test problems, the following observations can be 

made: 

i. For a given resolution, Algorithm 1 is faster than Algorithm 2. 

ii. For a given resolution, Algorithm 2 is more accurate than Algorithm 1. 

iii. Algorithm 2 at a given resolution is faster and more accurate than Algorithm 

1 at twice that resolution. 

Note that observations (i) and (ii) are expected results, since Algorithm 2 is more complex 

and has a better truncation error than Algorithm 1. Observation (iii), on the other hand, 

is a less expected and more interesting result. 

From these observations, it is clear that conclusions concerning which algorithm is best 

for solving the Poisson problem are case dependent. Consider the case where one is forced 

by resolution requirements to use a particular finest grid. Then Algorithm 1 is expected 

to be "best" in terms of speed, while Algorithm 2 is expected to be "best" in terms of 

accuracy. For example, if one were solving a problem, the solution of which was expected to 

have local behavior requiring approximately a 64-grid to resolve, then one would be forced 

to use at least a 64-grid as the finest grid. In such a case, Algorithm 2 should be used if 

accuracy is more important than speed, while Algorithm 1 should be used if speed (and 

hence, computer expense) is of greater concern than very high accuracy. 

Now consider the case where the choice of which finest grid to use is much less restricted 

and the primary concern is to obtain a solution of some desired accuracy. In this case, 
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one would hope to choose a finest grid and an algorithm which would give a solution of 

the desired accuracy in the least amount of time. It is in this context that observation 

(iii) becomes relevant. For example, suppose one were solving a problem, the solution of 

which was expected to be fairly smooth locally so that even a IS-grid could resolve it, and 

suppose that, while using Algorithm 1, one was forced to use a 54-grid as the finest grid 

in order to achieve a desired accuracy. In this case, it may be "better" to use Algorithm 2 

and only a 32-grid as the finest grid. It is expected that this combination would produce a 

more accurate solution in less time; however, this combination has a possible disadvantage 

in that one obtains the solution at only about one-quarter as many discrete points of the 

domain. IT this disadvantage is a problem in a particular context, it may be possible to 

use a fourth-order interpolation method, such as cubic spline interpolation, to fill in the 

solution between the grid points. 

In conclusion, both algorithms can be practical methods for solving the Poisson problem 

and neither method is in general better than the other. Although Algorithm 2 is generally 

thought to be more accurate, but slower, than Algorithm 1, it appears that in at least certain 

cases Algorithm 2 can be used in such a way that it is both more accurate and faster than 

Algorithm 1. Thus, even though standard second-order methods such as Algorithm 1 are 

more typically used, higher-order methods such as Algorithm 2 deserve to be considered in 

many cases. 

Note that the above conclusions do not take into consideration the potential problems 

which may occur due to finite precision arithmetic. The truncation error results suggest that 

Algorithm 2 will begin to suffer from round-off errors and cancellation effects on coarser grids 

sooner than Algorithm 1. This prediction, if true, is a potential disadvantage of Algorithm 

2. For example, if one were forced to work on a particular grid on which Algorithm 2 suffered 

from these round-off and cancellation problems, but Algorithm 1 did not, then Algorithm 1 

would be the method of choice, regardless of speed and accuracy considerations. PC users, 

in particular, may be forced to consider this potential disadvantage of Algorithm 2. 
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APPENDIX A 

FORTRAN CODE FOR ALGORITHM 1 

FORTRAN Code for Setting Up Mult~.-Grid Solver: 

$STORAGE:2 
$NOFLOATCALLS 
$LARGE 
C 

C ************************************************************** 
C 

C 

C 

C 

INTERFACE TO SUBROUTINE DATE (N.STR) 

CHARACTER*10 STR [NEAR,REFERENCE] 
INTEGER*2 N [VALUE] 

END 

C *********************************************************** 
C 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

PROGRAM MULTIG 

AUTHOR: 
DATE: 

LANGUAGE: 

PURPOSE: 

INTEGER 
PARAMETER 
REAL 
REAL 
REAL 

Richard Taft 
March lS, lQS1 
Microsoft FORTRAN (version 3.31) 

(Libraries used: SOS7.LIB and FORTRAN.LIB) 

This routine sets up and uses subroutine MGSOLV to 
approximate the solution to the 2-D Poisson problem 

xx yy 
in [O,l]x[O,l] 

on the boundary. 

using either a standard second-order or a less common 
fourth-order fixed V-cycle multi-grid algorithm. The 
analytical solution is given by 

FGRID,CGRID,MAXGRD,GRIDPT,I,J,Vl,VC,V2,ALG,VMAX 
(MAXGRD=65) 
A,B,TWOPI.WX,WY.H,TOL,RNORM,ERROR 
UCALC(MAXGRD,MAXGRD) ,F (MAXGRD ,MAXGRD) 
UEXACT(MAXGRD,MAXGRD) 



C 
C 
C 

C 

C 

C 
C 
C 

C 

C 
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ANSWER ,STORE 
TODAY 
OUTFIL 

CHARACTER 
CHARACTER*10 
CHARACTER*12 
CHARACTER*14 
CHARACTER*46 
DATA 

NAME,PURPOS,PLACE,PROG 

DATA 
DATA 
DATA 

STENCIL 
VMAX,Vl,VC,V2,FGRID,CGRID,ALG/9,2,3,l,64,2,l/ 
A,B,TOL/1.O,2.0,3.7472E-Ol/ 
NAME,PURPOS/'RICHARD TAFT','MASTER"S WORK'/ 
PLACE,PROG/'CSU MATH DEPT','MULTIG PROGRAM'/ 

*** SET-UP PROBLF~ SPECS *** 

20 WRITE(*,1000)'MULTIGRID SOLVER' 
WRITE(* , 1060) 'PROBLEM SPECS:' 
WRITE(*,1100)A,B 

40 WRITE(*,1200) 'ENTER: P to modify problem specs', 
+ 'M to see method specs', 
+ 'Q to quit this session' 
READ(*, '(lA) ')ANSWER 

IF (ANSWER.EQ.'P') THEN 
WRITE(*, ' (//6X,A\) ') 'Input new wavenumber A ... (XX.X) ... >' 
READ(*,'(F4.1)')A 
WRITE(*,'(5X,A\)')'Input new wavenumber B ... (YY.Y) ... >' 
READ(*,'(F4.1)')B 
GOTO 20 

ELSEIF (ANSWER.EQ.'M') THEN 
GOTO 60 

ELSE IF (ANSWER. EQ. 'Q') THE., 
STOP 

ELSE 
GOTD 40 

END IF 

*** SET-UP METHOD SPECS *** 

60 H • 1.0/REAL(FGRID) 
80 WRITE(*,1000)'MULTIGRID SOLVER' 

WRlTE(* , 1050) 'METHOD SPECS:' 
IF (ALG.EQ.1) THEN 

STENCIL E 'Standard Second-order FDE (5-Point Stencil)' 
ELSE 

STENCIL • 'A Fourth-order FDE (9-Point Stencil)' 
END IF 
WRITE(*,1300)STENCIL,Vl,VC,V2,FGRID,CGRID,H,TOL,VMAX 

100 WR~TE(*,1400)'ENTER: M to modify method specs', 
+ 'P to review problem specs', 
+ ' S to solve problem' , 
+ 'Q to quit this session' 
READ(*,'(lA)')ANSWER 

IF (ANSWER.EQ.'M') THEN 
120 WRITE(*, 1400) 'ENTER: D to modify the discretization scheme', 

+ 'V to modify the V-cycle sweeps or VMAX', 



C 

C 
C 

C 
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+ 'G to modify the grid intervals', 
+ 'T to modify the convergence tolerance', 
+ 'M to return to Method Specs' 

READ(*, ' (1A)')ANSWER 
IF (ANSWER.EQ.'D') THEN 

ALG • 2/ALG 
GOTO 80 

ELSEIF (ANSWER.EQ.'V') THEN 
WRITE(*,'(//6X,A\)')'Input new value for V1 ... (1-9) ... >' 
READ(*,'(I1)')V1 
WRITE(*,'(5X,A\)')'Input new value for VC ... (1-9) ... >' 
READ(*,'(I1)')VC 
WRITE(*, ' (6X,A\) ') 'Input new value for V2 ... (1-9) ... >' 
READ(*,'(Il)')V2 
WRITE(*,'(5X,A\)')'Input new value for VMAX ... (1-9) .. >' 
READ(*,'(Il)')VMAX 
GOTO 80 

ELSE IF (ANSWER.EQ.'G') THEN 
WRITE(*,'(//6X,A,A\)')'lnput intervals for finest grid', 

+ ' ... (4,8,16,32,64) ... >' 
READ(*, '(12) ')FGRID 
WRlTE(*,'(6X,A,A\)')'Input intervals for coarsest grid', 

+ ' ... 2,4,8,16,32 and < fine grid) ... >' 
READ(*,'(I2)')CGRID 
GOTO 60 

ELSEIF (ANSWER.EQ.'T') THEN 
WRITE(*, '(//5X,A,A\)') 'Input new value for convergence'., 

+ ' tolerance ... (X.XXXXE-YY) ... >' 
READ(*, '(EI0.4) ')TOL 
GOTO 80 

ELSEIF (ANSWER.EQ.'M') THEN 
GOTO 80 

ELSE 
GOTO 120 

END IF 
ELSEIF (ANSWER.EQ.'P') THEN 

GOTO 20 
ELSE IF (ANSWER.EQ.'S') THEN 

GOTO 140 
ELSEIF (ANSWER.EQ.'Q') THEN 

STOP 
ELSE 

GOTO 100 
END IF 

*** REPORT PROBLEM AND METHOD SPECS *** 

140 OPEN(l,FILE='PRN') 
CALL DATE (10,TODAY) 
WRITE(l,1450)NAME,PURPOS,PLACE,TODAY,PROG 
WRITE(l,1000)'MULTIGRID SOLVER' 
WRITE(1,1160) 'PROBLEM SPECS:' 
WRITE(l,l100)A,B 
WRITE(l,1250) 'METHOD SPECS:' 
WRITE (1 ,1300)STENCIL,V1 ,VC,V2,FGRID,CGRID,H,TOL,VMAX 
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C *** DISCRETIZE ANALYTICAL SOLUTION AND RIGHT-HAND SIDE OF *** 
C *** FDE AND SET-UP INITIAL GUESS FOR CALCULATED SOLUTION *** 
C 

C 

C 

!WOPI ~ 2.0*ACOS(-1.0) 
WX E !WOPI*A 
WY • TWOPI*B 
GRIDPT • FGRID + 1 

CALL U2GRID(UEXACT,WX,WY,H,GRIDPT) 
CALL F2GRID(F,WX,WY,H,GRIDPT,ALG) 
CALL C2GRID(0.O,UCALC,GRIDPT) 
CALL U2BDRY(UCALC,WX,WY,H,GRIDPT) 

C *** SOLVE AND REPORT RESULTS *** 
C 

CALL MGSOLV(UCALC,F,FGRID,CGRID,Vl,VC,V2,VMAX,TOL,RNORM,ALG) 
ERROR • DIFNRM(UEXACT,UCALC,H,GRIDPT) 
WRITE(l,1600) 'RESULTS: ','Final Residual Norm',RNORM, 

+ 'Final Solutio~ Error',ERROR 
C 
C *** STORE SOLUTION *** 
C 

C 

C 

C 

C 

WRITE(*, '(//6X,A\) ') 'Store solution? ... (Y or N) ... >' 
READ(*, '(lA) ')STORE 

IF (STORE.EQ.'Y') THEN 
WRITE(*,'(/6X,A,A\)')'Input new file name for storage 

+ '(Y:IXXXIX.ZZZ) ... >· 
READ(*,'(A)')OUTFIL 
OPEN(2,FILE=OUTFIL,STATUS-'NEW') 
WRITE(2,1600)'SOLUTION:','I','J','ACTUAL U(I,J)', 

+ ' CALC U(I,J) ','I','J','ACTUAL U(I,J)', 
+ ' CALC U(I,J) , 

DO 600 J-l,FGRID-l,2 
DO 600 l=l,GRIDPT 

WRITE(2,1700)I-l,J-l,UEXACT(I,J) ,UCALC(I,J) , 
+ I-l,J,UEXACT(I,J+l),UCALC(I,J+l) 

600 CONTINUE 
WRITE(2,*) 

600 CONTINUE 

J=GRIDPT 
DO 700 I=l,GRIDPT 

WRITE(2,l800)I-l,J-l,UEXACT(I,J),UCALC(I,J) 
700 CONTINUE 

CLOSE(2) 
END IF 

CLOSE(l) 
GOTO 20 

C *** FORMAT STATEMENTS *** 
C 

1000 FORMAT(//30X,20('*')/30X,'* ',A,' *'/30X,20('*')//) 
1050 FORMAT(/5X,A/) 
1100 FORMAT(7X,'2-D Poisson Problem',7X,'u (x,y) + u (x,y) 

, .... 
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+ 'f (x,y)' /34X, 'xx' ,9X, 'yy' / /7X, 
+ 'Domain in RxR',13X,'[0,1]x[0,1]'/7X,'Boundary Conditions', 
+ 7X,'Dirichlet'/7X,'Input Function',12X, 
+ 'f(x,y) = C*sin(2*pi*A*x + 2*pi*B*y)'/36X,'where C ... ' 
+ '-4*pi*pi*(A*A + B*B)' /1X,'Analytical Solution', 
+ 7X,'u(x,y) ... sin(2*pi*A*x + 2*pi*B*y)'/7X, 
+ 'Wavenumbers',15X,'!" ',F4.1/33X,'B = ',F4.1/) 

1150 FORMAT(/5X,A/'+',4X,13('_')/) 
1200 FORMAT(/5X,A/2(13X,A/» 
1250 FORMAT(/5X,A/'+',4X,12('_')/) 
1300 FORMAT(7X,'Discretization Scheme',6X,A/7X,'Control Algorithm', 

C 

C 

+ 9X,'Repeated Fixed V-Cycles'/ 
+ 36X,'Vl" ',11,' [relax. sweep(s) per level down]'/ 
+ 36X,'VC = ',11,' [relax. sweep(s) on coarsest grid]'/ 
+ 36X,'V2'" ',11,' [relax. sweep(s) per level up]'/ 
+ 7X,'Grid Intervals',l2X,'FGRID = ',12,' (finest grid)'/ 
+ 33X,'CGRID .. ',12,' (coarsest grid)'/ 
+ 7X, 'Mesh Spacing' ,14X, 'H II: ',F7 .5,' (finest grid)' / 
+ 7X,'Relaxation Scheme',9X,'Gauss-Seidel (lexicographic)'/ 
+ 7X,'Init. Solution Guess',6X,'U'" 0.0 (for interior', 
+ ' grid pts.)'/7X,'Convergence Tolerance',6X,'TOL = ',lP, 
+ El0.4/7X, 'Max Allowed V-Cycles',6X,'VMAX = ',12/) 

1400 FORMAT(/6X,A/4(13X,A/» 
1450 FORMAT(//6(60X,A/» 
1500 FORMAT(/6X,A/'+·.4X.7('_·)//7X,A,7X,lP,E13.6/1X.A,6X,E13.6/'1') 
1600 FORMAT(/2X,A//2(2(2X,A),2(lX,A).lX)/ 

+ 2(2(lX.2('·'»,2(lX,13('·'»,lX)//) 
1100 FORMAT(2(2(lX,I2),lP,2(lX,E13.6») 
1800 FORMAT(2(lX,I2),lP,2(lX,E13.6» 

END 

C *************************************************************** 
C 

SUBROUTINE F2GRID(GRID,WX,\Y'f,H,GRIDPT,ALG) 
C 
C PURPOSE: Puts the function FFUN on [O,l]x[O.l] into the 
C GRIDPTxGRIDPT array GRID using a uniform mesh spacing 
C of H and according to the right-hand side of the 
C f~nite difference equation corresponding to algorithm 
C ALG. 
C 

C 

C 
C 
C 

INTEGER MAXGRD,GRIDPT,I,J,ALG 
PARAMETER (MAXGRD=65) 
REAL H,X,Y,WX,WY,FFUN 
REAL GRID(MAXGRD,MAXGRD),TEMP(MAXGRD,MAXGRD) 

FFUN(X,Y) = -(WX*WX + WY*WY)*SIN(WX*X + WY*Y) 

*** DISCRETIZE FFUll *** 

DO 20 J=l,GRIDPT 
Y .. 0.0 + REAL(J-l)*H 
DO 10 I=l,GRIDPT 

X ... 0.0 + REAL(I-l)*H 
GRID(I,J) .. FFUN(X,Y) 



C 
C 
C 

C 

C 

C 

TEMP(I.J) = FFUN(X.Y) 
10 CONTINUE 
20 CONTINUE 
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*** FORM RIGHT SIDE OF APPROPRIATE FDE *** 

IF (ALG.EQ.1) RETURN 

DO 30 J=2,GRIDPT-1 
DO 30 I=2,GRIDPT-1 

GRID(I,J) = TEMP(I,J+1)+TEMP(I-1,J)+TEMP(I,J-1)+TEMP(I+1,J) 
GRID(I,J) = (GRID(I,J) + 8.0*TEMP(I,J»/12.0 

30 CONTINUE 

RETURN 
END 

C ************************************************************** 
C 

SUBROUTINE U2GRID(GRID,WX,WY,H,GRIDPT) 
C 
C PURPOSE: Puts the function UFUN on [O,l]x[O,l] into the 
C GRIDPTxGRIDPT array GRID using a uniform mesh spacing H. 
C 

C 

C 

C 

C 

INTEGER MAXGRD,GRIDPT,I,J 
PARAMETER (MAXGRD=65) 
REAL H,X,Y,WX,WY,UFUN,GRID(MAXGRD,MAXGRD) 

UFUN(X,Y) = SIN(WX*X + WI*Y) 

DO 20 J=l,GRIDPT 
Y • 0.0 + REAL(J-1)*H 
DO 10 I-1,GRIDPT 

X • 0.0 + REAL(I-1)*H 
GRID(I,J) • UFUN(X,Y) 

10 CONTINUE 
20 CONTINUE 

RETURN 
END 

C ************************************************************** 
C 

SUBROUTINE C2GRID(VALUE,GRID,GRIDPT) 
C 
C PURPOSE: Puts the constant VALUE into the GRIDPTxGRIDPT array 
C GRID. 
C 

C 

INTEGER MAXGRD,GRIDPT,I,J 
PARAMETER (MAXGRD=65) 
REAL VALUE,GRID(MAXGRD,MAXGRD) 

DO 10 J=l,GRIDPT 
DO 10 I=l,GRIDPT 

GRID(I,J) = VALUE 
10 CONTINUE 



C 

C 

RETURN 
END 
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C ************************************************************** 
C 

SUBROUTINE U2BDRY(GRID,WX,WY,H.GRIDPT) 
C 
C PURPOSE: Puts the function UFtnJ on the boundary of [O,1]x[O,1] 
C into the boundary of the GRIDPTxGRIDPT array GRID 
C using a uniform mesh spacing of H. 
C 

C 

C 

C 

C 

C 

INTEGER 
PARAMETER 
REAL 

MAXGRD,GRIDPT,I,J 
(MAXGRD=65) 
H,X,Y,WX,WY,UFUN,GRID(MAXGRD,MAXGRD) 

UFUN(X,Y) -= SIN(WX*X + wy*y) 

DO 10 I=1,GRIDPT 
X z 0.0 + REAL(I-1)*H 
GRID(I,1) z UFUN(X,O.O) 
GRID(I,GRIDPT) -= UFUN(X,1.0) 

10 CONTINUE 

DO 20 J=2,GRIDPT-l 
Y - 0.0 + REAL(J-1)*H 
GRID(1,J) • UFUN(O.O,Y) 
GRID(GRIDPT.J) • UFUN(1.0,Y) 

20 CONTINUE 

RETURN 
END 

C *************************************************************** 
C 

REAL FUNCTION DIFNRM(GRID1,GRID2.H,GRIDPT) 
C 
C PURPOSE: Calculates a discrete analog of the continuous 
C Euclidean norm of the difference of two GRIDPTxGRIDPT 
C arrays (GRID1 AND GRID2) both having a uniform mesh 
C spacing of H. 
C 

C 

C 

INTEGER MAXGRD.GRIDPT,I,J 
PARAMETER (MAXGRD=65) 
REAL H,DIFF,GRID1(MAXGRD,MAXGRD),GRID2(MAXGRD,MAXGRD) 

DIFNRM a 0.0 
DO 10 J=l,GRIDPT 
DO 10 I=l,GRIDPT 

DIFF • GRID2(I,J) - GRID1(I,J) 
DIFNRM = DIFNRM + DIFF*DIFF 

10 CONTINUE 
DIFNRM = SQRT(DIFNRM*H*H) 

RETURN 
END 



APPENDIX B 

FORTRAN CODE FOR ALGORITHM 2 

FORTRAN Code for Multi-Grid Solver: 

$STORAGE:2 
$NOFLOATCALLS 
$LARGE 
C 
C ************************************************************ 
C 

C 

C 

C 

INTERFACE TO SUBROUTINE TI~~ (N,STR) 

CHARACTER*10 STR [NEAR,REFERENCE] 
INTEGER*2 N [VALUE] 

END 

C ************************************************************** 
C 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

SUBROUTINE MGSOLV(U,F,FGRID,CGRID,Vl,VC,V2,VMAX,TOL,RNORM,ALG) 

.lUTIIOR: 
DATE: 

LANGUAGE: 

PURPOSE: 

Richard Taft 
March lB, 19B7 
Microsoft FORTRAN (version 3.31) 

(Libraries used: BOB7.LIB and FORTRAN.LIB) 

This routine uses a fixed V-cycle multi-grid algorithm 
to approximate the solution to the !inite difference 
equation for the 2-D Poisson problem with Dirichlet 
boundary conditions obtained using either the 
standard second-order 5-point stencil (ALG=l) or a 
less common fourth-order 9-point stencil (ALG=2). 
The initial solution guess is inputted in array U and 
the final calculated solution is returned in array U. 
The right-hand side of the FDE is inputted in array F. 
FGRID and CGRID give the number of intervals of the 
finest and coarsest (uniform) grids, respectively. 
The fixed V-cycle structure is defined by Vl, VC, and 
V2. V-cycles are repeated until either the residual 
norm (RNORM) is less than the convergence tolerance 
(TOL) or the number of V-cycles performed equals the 
maximum allowed V-cycles (VMAX). A trace of the 
residual norm versus the number of V-cycles performed 
and the execution time for the V-cycles performed are 
reported. 



, 

C 

C 
C 
C 

C 

C 
C 
C 

C 

C 

INTEGER 
PARAMETER 
INTEGER 
INTEGER 
INTEGER 
INTEGER 
REAL 
REAL 
CHARACTER*10 
PARAMETER 

WPOINT .. 1 
LEVEL = 0 
GSIZE ., FGRID 
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MAXGRD,WSPACE,MAXLEV 
(MAXGRD=65,WSPACE=11436,MAXLEV=6) 
FGRID,CGRID,GSIZE,GRDPTS(MAXLEV) 
WPOINT,UBEGIN(MAXLEV),FBEGIN(MAXLEV) 
LEVEL,FLEVEL,CLEVEL,STEP,ALG 
Vl,VC,V2,SWEEP,VCOUNT,VMAX 
MESH,H(MAXLEV),TOL,RNORM 
U(MAXGRD,MAXGRD),F(MAXGRD,MAXGRD),W(WSPACE) 
TSTART,TDONE 
(FLEVEL=l,STEP=l) 

*** SET-UP STORAGE ARRAY W *** 

MESH = 1.0/REAL(FGRID) 

6 LEVEL E LEVEL + STEP 
H(LEVEL) .. MESH 
GRDPTS(LEVEL) .. GSIZE+l 
UBEGIN(LEVEL) .. WPOINT 
WPOINT .. WPOINT + GRDPTS(LEVEL)*GRDPTS(LEVEL) 
FBEGIN(LEVEL) E WPOINT 
WPOINT = WPOINT + GRDPTS(LEVEL)*GRDPTS(LEVEL) 
GSIZE .. GSIZE/2 
MESH .. 2.0 * MESH 
IF (GSIZE.GE.CGRID) GOTO 6 
CLEVEL '" LEVEL 

*** PREPARE FOR FIRST V-CYCLE *** 

LEVEL .. FLEVEL 
VCOUNT = 0 

CALL RESNRM(U,F,H(LEVEL) ,GRDPTS(LEVEL) ,RNORM,ALG) 
WRITE(1,1000) 'SOLVING: ','(Using Subroutine MGSOLV)', 

+ 'NUMBER OF V-CYCLES COMPLETED','RESIDUAL NORM', 
+ '0' ,RNORM 

C *** PERFORM A V-CYCLE *** 
C 

C 

C 

CALL TIME (10,TSTART) 
100 DO 10 SWEEP=l,Vl 

CALL GSRLAX(U,F,H(LEVEL) ,GRDPTS(LEVEL) ,ALG) 
10 CONTINUE 

CALL STOREW(U,F,GRDPTS(LEVEL),UBEGIN(LEVEL),FBEGIN(LEVEL),W) 
CALL F2CORS(U,F,H(LEVEL) ,GRDPTS(LEVEL) ,GRDPTS(LEVEL+l) ,ALG) 
LEVEL = LEVEL + STEP 
IF (LEVEL.LT.CLEVEL) GOTO 100 

DO 20 SWEEP = 1 ,VC 
CALL GSRLAX(U,F,H(LEVEL),GRDPTS(LEVEL),ALG) 

20 CONTINUE 



r 

" , 

C 

C 

C 

C 
C 
C 

C 

C 

C 
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200 CALL C2FINE(U,W,GRDPTS(LEVEL),GRDPTS(LEVEL-l),UBEGIN(LEVEL-1» 
LEVEL s LEVEL - STEP 
CALL RETRVW(U,F,GRDPTS(LEVEL),UBEGIN(LEVEL),FBEGIN(LEVEL),W) 

DO 30 SWEEP=1,V2 
CALL GSRLAX(U,F,H(LEVEL) ,GRDPTS(LEVEL) ,ALG) 

30 CONTINUE 

IF (LEVEL.GT.FLEVEL) GO TO 200 

*** PERFORM ANOTHFJl V-CYCLE IF NEEDED *** 

VCOUNT • VCOUNT + 1 
CALL RESNRM(U,F,H(LEVEL),GRDPTS(LEVEL),RNORM,ALG) 
WRITE(1,1100)VCOUNT,RNORM 

IF (RNORM. GT . TOL) THEN 
IF (VCOUNT.LT.VMAX) THEN 

GOTO 100 
ELSE 

WRITE(l,l160) 'WARNING: MAXIMUM ALLOWED V-CYCLES PERFORMED' 
END IF 

ENDIF 

CALL TIME (10,TDONE) 
WRITE(l,1200)'** Execution Time For Performing V-Cycles **', 

+ 'Started: ',TSTART,'Completed:',TDONE 

C *** FORMAT STATEMENTS *** 
C 

1000 FORMAT('l'/6X,A/'+',4X,7('_'),11X,A///l0X,2(6X,A)/15X,28(':'), 
+ 6X,13('·')/29X,A,18X,lP,E13.6) 

1100 FORMAT(28X,I2,18X,lP,E13.6) 
1.150 FORMAT(//16X,A/) 
1200 FORMAT(//16X,A/22X.A.3X,A/20X.A,3X.A/) 

C 

C 

RETURN 
END 

C **************************************************************** 
C 

SUBROUTINE GSRLAX(U,F,H,GRDPTS,ALG) 
C 
C PURPOSE: This routine performs lexicographic Gauss-Seidel 
C relaxation upon the finite difference equation 
C associated with algorithm ALG. 

C 
INTEGER MAXGRD,GRDPTS,I,J,ALG 
PARAMETER (MAXGRD=65) 
REAL U(MAXGRD,MAXGRD),F(MAXGRD,MAXGRD) 
REAL H,H2,H26,A 

C 
IF (ALG.EQ.l) THEN 

H2 = H*H 
DO 10 J=2,GRDPTS-l 



C 

C 
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DO 10 I=2.GRDPTS-1 
U(I.J) - (U(I-1.J)+U(I.J-1)+U(I+1.J)+U(I.J+1)-H2*F(I,J»/4.0 

10 CONTINUE 
ELSE 

H26 .. 6.0*H*H 
DO 20 J=2.GRDPTS-1 
DO 20 I=2.GRDPTS-1 

A - 4.0*(U(I-1.J)+U(I,J-1)+U(I+1,J)+U(I.J+1» - H26*F(I,J) 
U(I,J) - (A+U(I+1,J+1)+U(I-1,J+1)+U(I-1,J-1)+U(I+1,J-1»/20.0 

20 CONTINUE 
END IF 

RETURN 
END 

C *************************************************************** 
C 

SUBROUTINE RESNRM(U,F.H,GRDPTS.RNORM.ALG) 
C 
C PURPOSE: This routine calculates the residual norm for the 
C finite difference equation associated with algorithm 
C ALG. 
C 

C 

C 

C 

C 

C 

INTEGER MAXGRD.GRDPTS.I.J,ALG 
PARAMETER (MAXGRD=65) 
REAL H.H2.H26,LU,R,RNORM 
REAL U(MAXGRD,MAXGRD),F(MAXGRD,MAXGRD) 

RNORM - 0.0 
H2 - H*H 

IF (ALG.EQ.1) THEN 
DO 10 J-2,GRDPTS-1 
DO 10 I-2,GRDPTS-1 

R .. F(I.J)-(U(I-l,J)+U(I,J-l)+U(I+l,J)+U(I,J+1)-4.0*U(I.J))/H2 
RNORM - RNORM + R*R 

10 CONTINUE 
ELSE 

H26 .. 6.0*H2 
DO 20 J-2,GRDPTS-l 
DO 20 I-2,GRDPTS-l 

LU - 4.0*(U(I-l,J)+U(I,J-l)+U(I+l.J)+U(I,J+l» - 20.0*U(I,J) 

LU - LU + U(I+l,J+l)+U(I-l.J+l)+U(I-l.J-l)+U(I+l,J-l) 
R • F(I,J) - LU/(H26) 
RNORM .. RNORM + R*R 

20 CONTINUE 
END IF 

RNORM = SQRT(RNORM*H2) 

RETURN 
END 

C ************************************************************** 
C 

SUBROUTINE STOREW(U.F,GRDPTS.STARTU.STARTF.W) 
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C 
C PURPOSE: Copies the 2-D arrays U and F into the 1-D array W. 
C 

C 

C 

C 

C 

INTEGER MAXGRD.STARTU.STARTF.DIFF.SUB.GRDPTS.I.J 
PARAMETER (MAXGRD=65) 
REAL U(MAXGRD.MAXGRD).F(MAXGRD.MAXGRD).W(*) 

DIFF :0: STARTF - STARTU 

DO 10 J=l.GRDPTS 
DO 10 I=l.GRDPTS 

SUB = STARTU + (1-1) + (J-1)*GRDPTS 
W(SUB) = un. J) 
W(SUB + DIFF) = F(I.J) 

10 CONTINUE 

RETURN 
END 

C ************************************************************** 
C 

SUBROUTINE F2CORS(U.F.HF.FGPTS.CGPTS.ALG) 
C 
C PURPOSE: Transfers the interior residual for the finite 
C difference equation corresponding to algorithm ALG to 
C the next coarser grid F by injection and initializes 
C the next coarser grid U. 
C 

C 
C 
C 

C 

C 

INTEGER MAXGRD.FGPTS.CGPTS.CI.CJ.FI.FJ.ALG 
PARAMETER (MAXGRD=65) 
REAL HF.HF2.HF26.LU.U(MAXGRD.MAXGRD).F(MAXGRD.MAXGRD) 

*** TRANSFER RESIDUAL TO COARSE GRID F *** 

HF2 '" HF*HF 

IF (ALG.EQ.1) THEN 
DO 10 CJ=2.CGPTS-1 
DO 10 CI"'2.CGPTS-1 

FJ '" 2*CJ - 1 
FI '" 2*CI - 1 
LU '" U(FI-1.FJ)+U(FI.FJ-1)+U(FI+1.FJ)+U(FI.FJ+1)-4.0*U(FI.FJ) 
F(CI.CJ) '" F(FI.FJ) - LU/HF2 

10 CONTINUE 
ELSE 

HF26 = 6. 0*HF2 
DO 20 CJ=2.CGPTS-1 
DO 20 CI=2.CGPTS-1 

FJ = (2*CJ)-1 
FI = (2*CI)-1 
LU = 4.0*(U(FI-l.FJ) + U(FI.FJ-l) + U(FI+l.FJ) + U(FI.FJ+1» 
LU = LU+U(FI+l.FJ+l)+U(FI-l.FJ+l)+U(FI-l.FJ-l)+U(FI+l.FJ-l) 
F(CI.CJ) = F(FI.FJ) _ (LU _ 20.0*U(FI.FJ»/HF26 

20 CONTINUE 
END IF 



r 

C 
C 

C 

C 
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*** INITIALIZE COARSE GRID U *** 

DO 30 CJ=l,CGPTS 
DO 30 CI=l,CGPTS 

U(CI,CJ) = 0.0 
30 CONTINUE 

RETURN 
END 

C ************************************************************** 
C 

SUBROUTINE C2FINE(U,W,CGPTS,FGPTS,START) 
C 
C PURPOSE: Transfers the coarse grid correction (array U) to the 
C next finer grid by bilinear interpolation and adds it 
C to the previous solution on this finer grid (stored 
C in array W) 
C 

C 

C 

C 

C 

C 

C 

C 

INTEGER MAXGRD,CGPTS,FGPTS,START,SUB,CI,CJ,FI,FJ 
PARAMETER (MAXGRD=65) 
REAL AVG1,AVG2,U(MAXGRD,MAXGRD),W(*) 

W(START) = W(START) + U(l,l) 

DO 10 CI=2,CGPTS 
FI = 2*CI - 1 
SUB '"' START + FI - 1 
W(SUB) = W(SUB) + U(CI,l) 
W(SUB-1) '"' W(SUB-t) + 0.6*(U(CI-1,1) + U(CI.t» 

10 CONTINUE 

DO 20 CJ=2,CGPTS 
FJ & 2*CJ - 1 
AVG2 = 0.5*(U(1,CJ-1) + U(1.CJ» 
SUB '"' START + (FJ-1)*FGPTS 
W(SUB) = W(SUB) + U(1.CJ) 
W(SUB-FGPTS) '"' W(SUB-FGPTS) + AVG2 

DO 30 CI=2,CGPTS 
FI = 2*CI -1 
AVGl '"' AVG2 
AVG2 = 0.6*(U(CI.CJ-1) + U(CI,CJ» 
SUB = START + (FI-1) + (FJ-t)*FGPTS 
W(SUB) = W(SUB) + U(CI,CJ) 
W(SUB-FGPTS) = W(SUB-FGPTS) + AVG2 
W(SUB-l) z W(SUB-1) + 0.6*(U(CI-l,CJ) + U(CI,CJ» 
W(SUB-FGPTS-t) = W(SUB-FGPTS-l) + 0.6*(AVG1 + AVG2) 

30 CONTINUE 

20 CONTINUE 

RETURN 
END 

C ************************************************************** 
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C 
SUBROUTINE RETRVW(U.F.GRDPTS.5TARTU.STARTF.W) 

C 
C PURPOSE: Retrieves info stored in the 1-D array W and copies 
C it into the 2-D arrays U and F. 
C 

C 

C 

C 

INTEGER MAXGRD.STARTU.STARTF.DIFF.SUB,GRDPTS,I,J 
PARAMETER (MAXGRD=65) 
REAL U(MAXGRD.MAXGRD),F(MAXGRD,MAXGRD),W(*) 

DIFF = STARTF - STARTU 

DO 10 J=l,GRDPTS 
DO 10 I=l.GRDPTS 

SUB • STARTU + (1-1) + (J-1)~GRDPTS 
UO.J) • W(SUB) 
F(I.J) = W(SUB + DIFF) 

10 CONTINUE 

RETURN 
END 
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