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ABSTRACT OF THESIS

IEGEN: SEMI-AUTOMATIC GENERATION OF INSPECTORS AND

EXECUTORS

Software that simulates real-world phenomena such as heat transfer over surfaces

and molecular interaction is often based on irregular computational kernels. Indi-

rect array accesses such as A[B[i]] that are found in irregular computations often

exhibit a memory access pattern that does not make efficient use of the memory

hierarchy, reducing performance. Additionally, indirect array accesses hinder our

ability to apply loop optimizations to improve data locality or introduce paral-

lelism at compile time. One approach to solving this problem, an inspector/ex-

ecutor strategy, inspects the index arrays (B) at runtime to determine the order of

accesses to the data arrays (A), reorders the data and index arrays, and executes a

transformed computation that accesses the data arrays in a more efficient manner.

For the most part, the application of inspector/executor strategies to irregu-

lar computations has been done manually or with limited generality. This thesis

presents the Inspector/Executor Generator (IEGen). This tool accepts an irregu-

lar computation specification and sequence of run-time reordering transformations

to apply to that computation as input. IEGen then generates serial inspector and

executor code that implements the transformed computation. We contribute an

inspector intermediate representation (IR) called an Inspector Dependence Graph

(IDG), a method for code generation of inspectors based on an IDG, a method for

code generation of executors, and techniques for manipulating affine constraints
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with uninterpreted function symbol (UFS) expressions to enable code generation.

We evaluate our techniques against an existing library that supports limited UFS

expressions and additionally show that generalized generation of inspectors and

executors that implement composed run-time reordering transformations is possi-

ble.

Alan LaMielle
Department of Computer Science
Colorado State University
Fort Collins, CO 80523
Spring 2010
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Chapter 1

Introduction

Applications such as molecular dynamics simulations and finite element analysis

often contain indirect memory references such as A[B[i]] to support the usage

of sparse data structures. Indirect array references like these make it difficult to

apply loop optimizations to improve data locality at compile time. Applying loop

optimizations and performing data reorderings is often a task that is desirable due

to the poor use of the memory hierarchy that indirect array references exhibit.

One approach to improving data locality and introducing parallelism to irregu-

lar applications is to apply various inspector/executor strategies [15]. An inspector

examines the indirect array array accesses at runtime, and may reorder data, or de-

termine a valid tiling for the computation based on this examination. An executor

utilizes the results of the inspector to improve the performance of the original com-

putation. Consecutive packing and locality grouping [11] are examples of data and

iteration permutation run-time reordering transformations. Full sparse tiling [22]

is an example of a sparse tiling transformation that can be used to introduce par-

allelism into irregular applications. Transformations of these types are applied to a

computation at compile time, but the specific reordering or tiling is not determined

by the inspector until runtime. Previously, the application of inspector/executor

strategies was performed manually or with limited generality.
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1.1 IEGen: Inspector/Executor Code Generator

This thesis presents a serial inspector/executor code generator and transforma-

tion tool called IEGen that helps to automate the application of inspector/execu-

tor strategies to irregular applications. IEGen accepts an input file that defines

an irregular computation and a sequence of run-time reordering transformations

(RTRTs) to apply to that computation. The output of IEGen is an inspector

function and an executor function that together implement the transformed com-

putation. We base the code generation of inspector and executor code on the

specification of irregular computations and run-time reordering transformations in

a previously presented framework [21], which we now call the Sparse Polyhedral

Framework (SPF1). Notably, this framework uses collections of integer tuples and

mappings of integer tuples called sets and relations to represent irregular compu-

tations and transformations being applied to such computations. Users of IEGen

can replace the code for the original computation with the generated code. A

transformation writer must provide a compile-time component to transform the

representation of the computation and a run-time component to calculate any re-

orderings or sparse tilings. In summary, IEGen accepts the specification of an

irregular computation and a sequence of transformations as input, creates and

transforms an internal representation of the specified computation, and generates

inspector and executor code that implements the transformed computation.

The contributions of this thesis include a set of techniques used to generate in-

spector and executor code for irregular computations. Specifically, we contribute

three main ideas. First, we have designed a data structure called the inspector

1This term was originally coined by Larry Carter.
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dependence graph (IDG) for representing the data and tasks within an inspector

that are used to perform data reorderings, iteration reorderings, and sparse tilings.

Based on the IDG, we have designed an algorithm to generate inspector code. Sec-

ondly, we contribute a technique for generating executor code that is based on an

existing data structure called the mapping intermediate representation (MapIR).

Finally, we have designed and implemented a data structure and a set of simplifi-

cation rules that allow us to represent and perform operations on sets and relations

including support for uninterpreted function symbols. The simplifications enable

the generation of inspector and executor code.

The remainder of this chapter will present two examples of mathematical frame-

works for applying loop optimizations, called transformation frameworks. The first

example is representative of polyhedral transformation frameworks and is shown as

a baseline of comparison. The second is an example of representing and transform-

ing an irregular computation using the sparse polyhedral framework and is shown in

comparison to the polyhedral example. We show that representing, transforming,

and generating transformed code for the irregular computation requires additional

techniques. IEGen is able to represent and transform both of these examples. We

utilize the sparse polyhedral framework example throughout this thesis to motivate

various techniques and data structures that we present.

1.2 Polyhedral Transformation Example

Current loop transformation frameworks such as Pluto [7] represent and manip-

ulate iteration spaces as polyhedra or unions of polyhedra. Code is generated to

scan the transformed iteration spaces by (1) determining loop bounds that are

affine functions of outer iterators and symbolic constants and (2) computing new

memory/array accesses in terms of the new iterators. Fourier-Motzkin elimination

3



for(i=0; i<=5; i++) {

for(j=0; j<=4; j++) {

A[i,j]=f(...,A[i-1,j+1] ,...);

}

}

Figure 1.1: Original affine computation

for(i’=0; i’ <=9; i’++) {

for(j’=max(i’ ,0); j’<=min(i’ ,5); j’++) {

A[j’,i’-j’]=f(. . .,A[j’-1,i’-j’+1]+1,. . .);

}

}

Figure 1.2: Transformed affine computation

is used to successively project out inner iterators to determine the loop bounds for

outer iterators.

As an example of what polyhedral transformation frameworks can do, con-

sider the original and transformed affine computation in Figures 1.1 and 1.2. The

iteration space specification for the original 2D loop is

{[i, j] : (0 ≤ i ≤ 5) ∧ (0 ≤ j ≤ 4)}.

After applying a skewing transformation and a loop permutation transformation,

the set specification is

{[i′, j′] : (0 ≤ i ≤ 5) ∧ (0 ≤ j ≤ 4) ∧ (i′ = i + j) ∧ (j′ = i)}.

Transforming the computation requires determining loop bounds for the new loop

iterators (i.e., i′ and j′) and determining the new array access functions within the

context of the transformed iteration space (i.e., A[i,j] to A[j’,i’-j’]). Fourier-

Motzkin elimination is a common technique used to project out the existentials

4



for(time =0; time <T; time ++) {

. . .
for(int tri =0; tri <R; tri++) {

. . .
S1: . . .data[n1[tri]]. . .
S2: . . .data[n2[tri]]. . .
S3: . . .data[n3[tri]]. . .

. . .
}

. . .
}

Figure 1.3: Original irregular computation

i and j and to project out j′ to derive the loop bounds for i′ with the goal of

generating the transformed code.

1.3 Irregular Transformation Example

Now we show a similar example for an irregular computation using the SPF. Fig-

ure 1.3 presents a computation over multiple time-steps that iterates over the

triangles in an irregular mesh accessing each of the three nodes in each trian-

gle (based on the index arrays n1, n2, n3). Representing and transforming the

computation in Figure 1.3 requires utilizing mathematical concepts beyond those

offered by the polyhedral model. This is due to the use of the index arrays n1,

n2, and n3 to access the data array data since this array access is not affine. An

insight introduced by Strout et al. in [21] is the use of Presburger relations with

uninterpreted function symbols (UFSs) to represent run-time reordering transfor-

mations (RTRTs). Conceptually, an uninterpreted function symbol f(p1, p2, ..., p3)

is a function whose output value is not known. Therefore, we use uninterpreted

function symbols to represent index arrays (such as n1), permutation reordering

functions, and partitioning/tiling functions at compile time even though their val-

5



/* Create input for consecutive packing */

for (tri =0;tri <=R-1; tri++) {

cpack_input[tri]=n1[tri];

}

/* Call consecutive packing to create ’sigma’ */

cpack(cpack_input ,sigma );

/* Create the inverse of ’sigma’, ’sigma_inv’ */

sigma_inv=genInverse(sigma );

/* Reorder the data array */

reorderArray(data ,sigma);

/* Create input for locality grouping */

for (i=0;i<=R-1;i++) {

locgroup_input[i]=sigma[n1[i]];

}

/* Call locality grouping to create delta */

locgroup(locgroup_input ,delta);

/* Create ’delta_inv’ from ’delta’ */

delta_inv=genInverse(delta );

/* Partition the iterations of the tri loop */

proc=partition(R);

Figure 1.4: Inspector for transformed irregular computation

ues will not be known until runtime. The SPF’s use of Presburger sets and relations

with UFSs mathematically powerful enough to represent and transform irregular

computations.

IEGen reads in a specification of the original computation (Figure 1.3) and a

sequence of transformations. While applying these transformations, it maintains an

internal representation of the current state of the computation. After applying each

transformation, it is then able to generate code for the transformed computation

6



#define S0 . . .data[sigma[n1[delta_inv[tri ]]]] . . .
#define S1 . . .data[sigma[n2[delta_inv[tri ]]]] . . .
#define S2 . . .data[sigma[n3[delta_inv[tri ]]]] . . .

for(time =0; time <T; time ++) {

. . .
for(p=0; p<NUM_PROCS; p++) {

for(tri=0; tri <R; tri++) {

if(p==proc(tri)) {

. . .
S0;

S1;

S2;

. . .
}

}

}

. . .
}

Figure 1.5: Executor for transformed irregular computation

based on its internal representation. Simplified examples of generated inspector

and executor code are presented in Figures 1.4 and 1.5. The generated inspector

code in Figure 1.4 performs three main tasks: reordering the data array data based

on the consecutive packing reordering heuristic, creating the iteration permutation

reordering delta, and partitioning the loop that iterates over triangles. The results

of these tasks are used by the generated executor code in Figure 1.5.

Similarly to the polyhedral example above, we demonstrate how some compo-

nents of the original and transformed irregular computation are represented. The

original iteration space specification for the statement S1 is

I = {[time, tri] : (0 ≤ time < T) ∧ (0 ≤ tri < R)}.

The iteration space set specification for S1 after applying consecutive packing,

7



locality grouping, and a computation partitioning is

I′ = {[time, p, tri] : (0 ≤ time < T) ∧ p = proc(tri) ∧ (0 ≤ tri < R)}.

Note that there are no affine bounds for the iterator p. The original access function

for S1’s access to the array data[] is

Aorig = {[time, tri]→ [out] : out = n1(tri)}.

The access function for the access to the array data[] after transformation is

A′orig = {[time, p, k]→ [out] : k = delta(tri) ∧ out = sigma(n1(tri))}.

Note that the specification after transformation includes an existential (tri) in-

volved in UFS constraints that are not in the final code. Finally, note that the

UFSs sigma, delta, and proc are created in the inspector and utilized in the

executor. Each of these are issues that must be addressed before we are able to

generate the code in Figures 1.4 and 1.5.

1.4 Thesis Contributions

IEGen implements our approaches to solving the problems we highlighted with the

irregular transformation framework example. The contributions of IEGen and this

thesis are thus threefold:

• we show how to represent and generate code for the inspector after applying

a sequence of transformations,

• we show how to generate code for the executor based on the MapIR after

applying a sequence of transformations,

• and we show how to enable code generation based on our representation of

sets and relations with UFSs.
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Each of these contributions is discussed in this thesis. We first present a high-

level introduction to IEGen in Chapter 2. Chapter 3 discusses our techniques

for generating inspector and executor code after transforming the computation.

We show the details of how we represent irregular computations and enable code

generation in Chapter 4. The techniques for enabling code generation from sets and

relations form the basis of our code generator and thus are the core contribution of

this thesis. The data structure we have designed for representing sets and relations

with UFSs is discussed in Chapter 5. Finally, we discuss previous research related

to ours, discuss possible future work building on this project, and conclude in

Chapters 6 and 7.

9



Chapter 2

IEGen: An Irregular Code
Transformation Tool

This chapter discusses at a high level the IEGen inspector/executor generator

tool for specifying irregular computations, specifying transformations on irregular

computations, and generating inspector and executor functions that implement

the resulting transformed computation. We show how to specify the irregular

computation in Figure 1.3 and two transformations (a data reordering and an

iteration reordering) as input to IEGen. We then discuss the main steps our tool

takes to represent this computation, transform it using these transformations, and

generate inspector and executor functions for the final transformed computation.

We highlight the specific contributions of this thesis as we describe these steps.

2.1 IEGen Overview

The Inspector/Executor Generator (IEGen) consists of two main components: a

middle end and a back end. The middle end applies the specified sequence of

transformations to an internal program representation and constructs other inter-

mediate representations while the back end generates the resulting code based on

the final transformed program representation. These two components additionally

use an internal library for representing collections of integer tuples and mappings

10



IEGen

MapIR' IDG

MapIR

CLooG

Set/Relation
Operations

Inspector
Codegen

Executor
Codegen

Back-end

inspector()
{
    ...
}

executor()
{
    ...
}

Transformation
Loop

Middle-end
.spec file

Computation

Transformations

(1) (2)

(3)

(4)

Legend
Data Flow

Uses

Figure 2.1: Block diagram of IEGen

of integer tuples to other integer tuples (we call these sets and relations respec-

tively). We use this library to represent entities such as iteration spaces and array

accesses. For detailed descriptions of sets and relations, we defer the reader to

Chapter 4.

We present a block diagram of the structure of IEGen in Figure 2.1 and briefly

describe the various components within this diagram. IEGen accepts input in the

form of specification files (labeled as (1) in Figure 2.1) that define a computa-

tion and a sequence of transformations to apply to that computation. Running a

command such as

iegen examples/example trans.spec − o example.c

invokes IEGen, tells it to read in the spec file examples/example trans.spec, and

write the generated code to the file example.c. Once IEGen is invoked, it reads

in the specified spec file and creates a data structure that represents the specified

computation called the mapping intermediate representation (MapIR). The middle

11



end (2) then successively applies the specified transformations to produce a trans-

formed MapIR (denoted as MapIR’ in Figure 2.1) and an inspector dependence

graph (IDG).

An IDG is a data structure that represents the tasks and data for the inspector.

One may consider the MapIR’ as the data structure representing the transformed

executor, and the IDG as the data structure representing the inspector for this

executor. Next, the back end code generator (3) uses the MapIR’ and IDG to

generate the associated code for each of the inspector and executor functions (4).

Notice that we utilize an external tool called CLooG [3, 4, 5] to generate loops

for scanning the integer points within a polyhedral space. Note also that both the

middle end and the back end utilize the set/relation library for manipulation of

the computation representations.

IEGen contains two common components of a typical loop transformation and

code generation tool: a method for transforming computations (the middle end)

and a method of generating code after transforming the computation (the back

end). In addition to these two components, other more complete computation

optimization tools may also include a component to determine a sequence of pro-

gram transformations to apply to optimize for some particular objective function

(minimize running time, maximize battery life, etc.) and a legality checker to

ensure that the specified transformations are legal. At this point IEGen contains

no guidance component for choosing what transformations to apply—IEGen as-

sumes an expert user. In addition, IEGen also assumes the transformations that

are specified are legal and does nothing during the application of transformations

to ensure that they maintain program correctness.

12



2.2 Specification Files

The input to IEGen is a specification file (.spec) that defines the computation

and a sequence of transformations to apply to that computation. In this section,

we describe how a user of IEGen can describe a computation and a sequence of

transformations. As an initial example, Figure 2.2 presents a whole computation

specification file for the code in Figure 1.3. Figure 2.3 presents a second file that

includes example comp.spec and defines two transformations to apply to that

computation. The rest of this section discusses the details of the various pieces

of these files including: symbolic constants, data arrays, index arrays, statements,

access relations, data dependences, and transformations.

2.2.1 Symbolics

Symbolic constants define values that are constant for a given computation but

may not be known until execution-time. Therefore, we denote them with a symbol

until the actual value is known. Three symbolic constants are needed for the

computation in Figure 1.3: T, R, and N. These represent the number of time-steps,

triangles, and data items respectively. We only specify lower bounds for each:

T > 1, N > 1, and R > 1. We specify the symbolic constant T in a spec file with a

name, type string, and lower bound as:

spec.add_symbolic(
name=’T’,
type=’int %s’,
lower_bound =1) #Number of time steps

The type string is used for variable and function argument declarations and the

lower (and possibly upper) bound is used by CLooG.

13



#Define the symbolic constants for the computation

spec.add_symbolic(name=’T’,
type=’int %s’,
lower_bound =1) #Number of time steps

spec.add_symbolic(name=’R’,
type=’int %s’,
lower_bound =1) #Number of triangles

spec.add_symbolic(name=’N’,
type=’int %s’,
lower_bound =1) #Number of data values

#Define the data arrays for the computation

spec.add_data_array(name=’data’,
type=’double *%s’,
elem_size=’sizeof(double)’,
bounds=’{[k]: 0<=k and k<N}’)

#Define the index arrays for the computation

spec.add_index_array(name=’n1’,
type=’int *%s’,
input_bounds=’{[k]: 0<=k and k<R}’,
output_bounds=’{[k]: 0<=k and k<N}’)

#Similar definitions for n2 and n3

#Define the statements for the computation

spec.add_statement(name=’S1’,
text=’... data [%(a1)s]...;’,
iter_space=’’’{[time ,tri]:

0<=time and time <T and 0<=tri and tri <R}’’’,
scatter=’{[time ,tri]->[c0 ,time ,c1 ,tri ,c0]:

c0=0 and c1=1}’)
#Similar definitions for S2 and S3

#Define the access relations for the statements

spec.add_access_relation(statement_name=’S1’,
name=’a1’,
data_array=’data’,
iter_to_data=’{[time ,tri]->[k]: k=n1(tri)}’)

#Similar definitions for a2 and a3

Figure 2.2: Example computation specification file (example comp.spec)
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#Include the example computation specification

iegen.include(’example_comp.spec’)

#CPACK data reordering

spec.add_transformation(
type=iegen.trans.DataPermuteTrans ,
name=’cpack’,
reordering_name=’sigma ’,
data_arrays =[’data’],
iter_sub_space_relation=

’{[c0,time ,c1,tri ,x]->[tri] : c0=0 && c1=1}’,
target_data_arrays =[’data’],
erg_func_name=’cpack’)

#Locality Grouping iteration permutation

spec.add_transformation(
type=iegen.trans.IterPermuteTrans ,
name=’locgroup ’,
reordering_name=’delta ’,
iter_sub_space_relation=’{[x,s,c1 ,i,y]->[i]: c1=1}’,
target_data_arrays =[’data’],
erg_func_name=’locgroup ’,
iter_space_trans=Relation(

’’’{[c0,time ,c1,tri ,x]->[c0 ,time ,c1 ,out ,x]:
c0=0 && c1=1 && out = delta(tri)}’’’))

Figure 2.3: Example transformation specification file (example trans.spec)

2.2.2 Data Arrays

Data arrays are collections of data relevant to the computation and generally con-

tain inputs to the computation or results that are computed during the compu-

tation. Only one data array is referenced in Figure 1.3, data, and it is defined

as:

spec.add_data_array(
name=’data’,
type=’double *%s’,
elem_size=’sizeof(double)’,
bounds=’{[k]: 0<=k and k<N}’)
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We specify the data array’s name, type string, string for calculating the size of

each element, and a set that represents the bounds of the array, typically from 0

to the length of the array. Data arrays are typically one dimensional for sparse

codes and therefore so too are the bounds that are specificed for each data array

in a spec file.

2.2.3 Index Arrays

Index arrays introduce an additional level of indirection to the accesses of data ar-

rays and are what make irregular computations difficult to analyze and transform.

The array n1 is an index array in the example computation:

spec.add_index_array(
name=’n1’,
type=’int *%s’,
input_bounds=’{[k]: 0<=k and k<R}’,
output_bounds=’{[k]: 0<=k and k<N}’)

We define it in the spec file using its name, type string, input bounds as a set, and

output bounds as a set. Though no relation needs to be specified explicitly for this

index array, it is implied for n1 to be:

{[k]→ [j] : j = n1(k)}

This shows the use of an uninterpreted function symbol, n1, in a relation. Just as

with data arrays, index arrays are typically one dimensional in sparse codes.

2.2.4 Statements

We next define each statement in the computation. Specification of a statement

requires three pieces of information: the statement’s text, its iteration space, and

its scheduling function. The statement S1 in the example computation is specified

as:
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spec.add_statement(
name=’S1’,
text=’... data [%(a1)s]...;’,
iter_space=’’’{[time ,tri]:

0<=time and time <T and 0<=tri and tri <R}’’’,
scatter=’{[time ,tri]->[c0 ,time ,c1 ,tri ,c0]:

c0=0 and c1=1}’)

The name (S1) is used to refer to this particular statement when defining access

relations (in the next section). The statement text defines the specific computation

for the statement. Notice the presence of the place holder labeled as a1 in the

statement text. This place holder signifies that we will be accessing the data array

data but the exact expression for the access is not yet known. The iteration space

of a statement is defined as a set where each dimension represents a loop iterator

(in this case time and tri). Intuitively, the scheduling function for a statement

defines the statement’s position in the context of the whole computation. More

details about the scheduling function are discussed in Chapter 4. Also note that

this information has also been referred to as a scattering function and thus why

the spec file uses this terminology.

2.2.5 Access Relations

Access relations define how statements access data arrays. For each statement, we

may define zero or more place holders in the statement texts for access relations.

For statement S1 in the spec file, we define the single access relation a1 as:

spec.add_access_relation(
statement_name=’S1’,
name=’a1’,
data_array=’data’,
iter_to_data=’{[time ,tri]->[k]: k=n1(tri)}’)

An access relation is defined by specifying the statement it is associated with,

its name in that statement, the data array it is accessing, and a relation that

defines how it accesses that data array. The relation is a mapping from the whole
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iteration space of the computation to the domain of the data array that is being

accessed. While transforming the computation, the access relations will be updated

according to how the transformation modifies array accesses. The separation of

array accesses from statements allows these updates to be made.

2.2.6 Data Dependences

We define data dependences as relations from points in the full iteration space

to other points in the full iteration space. Data dependences are updated for

each transformation that is applied based on how that transformation modifies

the computation. As noted earlier, we assume an expert user and thus do not

automatically extract data dependences. The data dependences must be specified

explicitly by the user of IEGen.

2.2.7 Using Existing Transformations

The final component to define in a spec file is a sequence of transformations to apply

to the computation. Figure 2.3 defines two transformations, a data permutation

(cpack), and an iteration permutation (locgroup). IEGen currently supports data

permutation transformations, iteration permutation transformations, and iteration

alignment.

As an example, consider the specification of the data permutation transforma-

tion cpack in Figure 2.3:

spec.add_transformation(
type=iegen.trans.DataPermuteTrans ,
name=’cpack’,
reordering_name=’sigma ’,
data_arrays =[’data’],
iter_sub_space_relation=

’{[c0,time ,c1,tri ,x]->[tri] : c0=0 && c1=1}’,
target_data_arrays =[’data’],
erg_func_name=’cpack’)
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The type of transformation is defined as a DataPermuteTrans, which speci-

fies a data permutation transformation. Other transformation types, such as

IterPermuteTrans, are available as well. The name of the transformation, cpack,

is used internally. The only requirement is that all transformation names be unique.

The reordering name specifies the name of the uninterpreted function symbol that

will be used at compile time to represent the reordering that will be calculated

at run-time by the specified function name (cpack in this case). The data arrays

collection defines the names of the previously specified data arrays that will be

reordered based on this transformation. The target data arrays collection defines

the names of the data arrays that will be used by the reordering heuristic to de-

termine the new reordered array. Finally, the iteration subspace relation defines

what subspace of the full computation iteration space will be examined for data

array accesses.

2.2.8 Writing New Transformations

We are working towards supporting a broad class of transformations, but not all

possibilities are currently supported. However, if the particular transformation

you desire is not natively supported in IEGen, all is not lost. It is possible to

implement custom transformations for use in IEGen. This process involves two

components, a compile-time component and a run-time component.

Adding support for a new transformation at compile time consists of imple-

menting a new transformation component based on the base Transformation

class. Transformation is the base class of all transformations in IEGen. This

class defines an interface of four methods that must be implemented when writing

a new transformation:

• calc inputs: This method calculates the compile-time inputs that are needed
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for the transformation. Additionally, any IDG nodes that need to be created

for the input to the transformation will be created and added to the IDG

here.

• calc outputs: This method calculates the compile-time description of the

inputs that are needed for the transformation. IDG nodes pertinent to the

output from the transformation will be created and added to the IDG here.

• update mapir: This method updates various components of the MapIR (such

as statement access relations and scattering functions).

• update idg: This method updates the IDG with new nodes that are related

to this transformation.

Additionally, there are four fields that may be needed: set fields,

relation fields, data array fields, and data arrays fields. These fields

enable the IEGen spec files to be much more user friendly. You may notice that

IEGen spec files are fairly syntactically simple. Sets and relations are specified as

strings. Data arrays, symbolics, and statements are referenced by name. These

features are supported in part by these four fields. Each should define a collection

of field names (strings) that are names of parameters that are specified to the

constructor of the transformation. For example, when one of these parameters is a

Set, the set fields field should contain the name of this parameter. By includ-

ing this name, users are able to specify only a string for the set, but IEGen knows

that it should be created as a Set object before the transformation is instantiated.

The relation and data array fields work similarly.

In addition to compile-time components, a new transformation needs to (po-

tentially) provide a run-time component. For example, if the user is implementing

a new sparse tiling method, the code that determines the tiles for a given input

20



will need to be implemented.

One major component of the run-time portion of IEGen is a data structure

called an explicit relation. Explicit relations are the runtime manifestation of

compile-time relations. This data structure represents relations from tuples of one

arity to tuples of a different arity, explicitly storing the tuple mappings. Any run-

time functions will need to be written using explicit relations. Explicit relations

provide the IEGen code generator and run-time transformation writers a common

interface with which to communicate.

Note that it may be necessary for a user to provide either an additional compile-

time transformation class, run-time code, or both. For example, if a user desires

to use a new data permutation heuristic with IEGen, no compile-time components

will need to be rewritten. However, a run-time function that implements this

heuristic using explicit relations will need to be provided.

2.3 IEGen Middle End: Transforming the Com-

putation

After the user specifies a computation and a sequence of transformations to apply

to that computation, the middle end of IEGen can take over. The crux of IEGen’s

middle end is the transformation loop, which successively applies the specified

transformations to the computation. The main transformation loop is expressed

in Algorithm 1. For each transformation, we perform four main tasks. These

tasks are implemented within the transformation using the methods calc input,

calc output, update mapir, and update idg. The calculate input and output

methods construct any necessary data structures used to represent runtime entities

that are either input to or output from the transformation.

The update IDG and MapIR methods modify the data structures that represent
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the transformed computation. One of the main contributions of our work in this

thesis is the inspector dependence graph (IDG). This is a data structure that

represents the data and tasks that will be used and performed by the inspector.

During the application of transformations to the computation, we build the IDG.

More information about the IDG can be found in Chapter 3. In addition to creating

and updating the IDG, we also manipulate the MapIR.

The result of the middle end of IEGen are two final data structures: the IDG

and the MapIR. These two data structures represent the inspector and executor

and will be used by the back end of IEGen to generate code.

for each transformation t do
Calculate inputs to t;
Calculate outputs from t;
Update the MapIR based on t;
Updated the IDG based on t;

end

Algorithm 1: Transformation algorithm

2.4 IEGen Back End: Generating Code

After transforming the computation, the final step is to generate code based on the

data structures that represent the inspector and executor: the IDG and the MapIR.

Code generation based on these two data structures is another main contribution

of our work in this thesis and is covered in detail in Chapter 3. The result of the

back end of IEGen is a source file containing functions for the inspector and the

executor. This pair of functions can be called from driver code or be called as a

replacement for the original computation.
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2.5 IEGen Usage Summary

In summary, IEGen is a tool for specifying irregular computations, transform-

ing these irregular computations, and generating the transformed inspector and

executor code that implements the transformed computations. This chapter has

described the major components of IEGen, including the input (spec files), the

middle end that transforms the computation, the back end that generates the

code, and the output (generated inspector and executor code). A user of IEGen

thus needs to provide a spec file that defines an irregular computation. This spec

file contains symbolic constants, data arrays, index arrays, statements, access re-

lations for those statements, and data dependences between statement instances.

The user also specifies a sequence of transformations to apply to this computation

using existing transformations that are a part of IEGen or new transformations

the user has created. When developing a new transformation, the user will typi-

cally provide a compile-time transformation component and a run-time reordering

component. Once the spec file has been created, the user invokes IEGen with a

command such as

iegen examples/example trans.spec − o example.c

This command specifies that IEGen should read the spec file

examples/example trans.spec, transform the computation specified in that

spec file, and write the generated code to the file example.c. The user may then

replace the generated code with the untransformed computation in the application

that the user is attempting to optimize.
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Chapter 3

Inspector/Executor Code
Generation

As noted in Chapter 1, one of the core contributions of this thesis is a code gener-

ator for inspectors and executors that implement a transformed irregular compu-

tation. This chapter discusses the details of our code generation techniques. We

present three discussions related to the generation of inspectors and executors: a

data structure called the inspector dependence graph (IDG) that we build while

applying transformations to the computation (Sections 3.1 and 3.2), generation of

inspector code based on the IDG (Section 3.3), and generation of executor code

based on the MapIR (Section 3.4).

3.1 An Example Inspector Dependence Graph

We base the generation of inspector code on a new intermediate representation

(IR) called an inspector dependence graph (IDG). The IDG represents data used

by the inspector, tasks performed by the inspector, and dependences between the

data and tasks. As an example, consider Figure 3.1, an IDG that corresponds

to inspector code in Figure 3.2 that we previously presented in Chapter 1. The

rectangular nodes represent data, the oval nodes represent tasks, and edges between

nodes represent dependences between the nodes. For example, the call to cpack
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IDGDataArray
data: 0

IDGCall
reorderArray

IDGDataArray
data: 1

IDGIndexArray
n1

IDGGenERSpec
cpack_input

IDGGenERSpec
locgroup_input

IDGERSpec
cpack_input

IDGERSpec
locgroup_input

IDGCall
cpack

IDGOutputERSpec
sigma

IDGGenERSpec
sigma_inv

IDGOutputERSpec
sigma_inv

IDGCall
locgroup

IDGOutputERSpec
delta

IDGGenERSpec
delta_inv

IDGOutputERSpec
delta_inv

Figure 3.1: Example IDG for the example computation in Figure 3.2 after applying
the cpack and locgroup transformations
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/* Create input for consecutive packing */

for (tri =0;tri <=R-1; tri++) {

cpack_input[tri]=n1[tri];

}

/* Call consecutive packing to create ’sigma’ */

cpack(cpack_input ,sigma );

/* Create the inverse of ’sigma’, ’sigma_inv’ */

sigma_inv=genInverse(sigma );

/* Reorder the data array */

reorderArray(data ,sigma);

/* Create input for locality grouping */

for (i=0;i<=R-1;i++) {

locgroup_input[i]=sigma[n1[i]];

}

/* Call locality grouping to create delta */

locgroup(locgroup_input ,delta);

/* Create ’delta_inv’ from ’delta’ */

delta_inv=genInverse(delta );

/* Partition the iterations of the tri loop */

proc=partition(R);

Figure 3.2: Inspector for the transformed irregular computation

in Figure 3.2 corresponds to the IDGCall task node for cpack in Figure 3.1. This

call produces sigma, a data node.

The IDG in Figure 3.1 represents an inspector for two transformations: cpack

and locgroup. cpack is a data reordering heuristic that reorders a data array to

improve temporal and/or spatial locality based on the accesses to the data array.

The input to cpack is an explicit relation that maps each iteration of the triangle

loop in Figure 1.3 to the indices of the data array that are accessed in that iteration.
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Based on this input, the function cpack determines a new order of elements in the

data array. The index array n1 is used to calculate the input to cpack. The call

to the function cpack produces the sigma explicit relation, which is then used to

reorder the data array data and to create sigma inverse. Notably, the task node

labeled reorderArray takes data nodes sigma and data:0 as input and produces

a new data node data:1 that is a reordered version of the array data. We annotate

data arrays in the IDG with version numbers to signify that a node such as the

call to reorderArray modifies the data array.

The second transformation expressed in the IDG in Figure 3.1 is locgroup, an

iteration permutation transformation. Similarly to cpack, locgroup is a heuristic

that attempts to improve data locality based on how statements within a loop

access data. It differs in that it reorders the iterations of the loop rather than

the data itself (this is actually achieved by reordering the entries in the index

arrays). Just as with cpack, the input to locgroup is an explicit relation that

maps iterations of a loop to the indices of the data array that are accessed. The

result of the call to locgroup is the explicit relation delta. Finally, note that

nodes for the symbolic constants T, R, and N are present in the IDG created by

IEGen, but that we have omitted these nodes for clarity. The symbolic constant

nodes that were omitted are data (rectangle) nodes that were input to every task

(oval) node present in Figure 3.1 and thus introduced many edges that obscured

other details of the IDG.

3.2 General Description of Inspector Depen-

dence Graphs

We now discuss the inspector dependence graph (IDG) in a more general setting

including the semantics of the IDG, its nodes, and its edges. At a high level, the
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IDG is an abstract representation of an inspector. Specifically, the IDG represents

tasks, data, and their interaction within the inspector. This means an IDG consists

of two main types of nodes: task nodes and data nodes. Task nodes represent tasks

the inspector will perform, such as calling a function. Data nodes represent data,

such as index arrays and explicit relations, that will be used by tasks. The edges

of the IDG thus represent the relationships (dependences) between data and tasks.

A few simple statements define the rules for the existence of an edge between a

data and a task node:

• An edge from a data node to a task node represents a data dependence

and data consumption relationship within the inspector: The task cannot be

performed until all incoming data is available—the task will make use of the

data when it is performed.

• An edge from a task node to a data node signifies a data creation relationship:

the task will calculate or produce the data.

• Edges from a data node to another data node or from a task node to another

task should not exist and have no meaning.

It is useful to amend this more general discussion of the IDG semantics by a

few more details concerning data nodes. We utilize Figure 3.1 to identify some of

these details. First, nodes that represent data have one of the following lifetimes:

• Input : Some nodes represent data that is input to the inspector, such as sym-

bolic constants and index arrays. The IDGIndexArray node n1 in Figure 3.1

is an example of this situation. One may recognize these nodes easily as

they are not the output of any task node in the IDG (i.e., have no incoming

edges).
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• Output : Some nodes represent data that is computed within the inspector

and is needed by the executor once the inspector completes. The IDGOut-

putERSpec node sigma in Figure 3.1 is an example of this. This node repre-

sents the reordering calculated by a call to cpack. This information is needed

by the executor once the inspector has completed. All IDGOutputERSpec

nodes, and only nodes of this type, will be outputs from the inspector.

• Internal : Some nodes represent data that is computed within the inspector

and are not needed after the inspector tasks are completed. The IDGERSpec

node cpack input in Figure 3.1 is an example of this. This node is needed

as input to the call to cpack but is not needed again after this call. All data

nodes that do not fall into the previous two lifetimes are members of this

group.

These lifetimes are useful to know when generating code so that we may deallocate

certain data structures when they are no longer needed. Internal nodes may be

deallocated after the inspector is complete (or possibly earlier in the inspector

when they are no longer useful). Output nodes are utilized by the executor and

thus cannot be deallocated until after the executor completes.

Second, a special case exists for the way data arrays are represented in the

IDG. Note in Figure 3.1 that two separate nodes refer to the data array data:

one with the number 0 and one with the number 1. Both of these nodes refer to

the same data array object, data, however they represent this data array in two

different states. The IDGCall node for reorderArray permutes a data array given

a permutation reordering explicit relation. They reorder the incoming data array

to produce a data array with a new version number.

Creating an intermediate representation (IR) for the inspector provides us with

various benefits, such as the ability to answer questions required for generating

29



inspector code. Specifically, the IDG approach provides us with the following

benefits:

• We can examine the IDG to determine the parameters to the inspector and

necessary variable declarations using simple topological traversals of the IDG

and maintaining information about the visited nodes.

• Language agnostic code generation can be done by traversing the IDG since

it is not specific to any particular programming language. Note that this is

conceptually possible but that our IDG implementation has certain language-

specific information embedded in various nodes and thus we can currently

only target C-like languages.

• Coarse-grain parallelism within the inspector may be discovered in the IDG.

Since we explicitly express the tasks and data as individual units in the IDG,

we may easily discover parallel tasks and thus execute them in parallel.

• We can perform effective memory management of data structures within the

inspector and utilize global information about the composed inspector; it is

obvious when a given memory allocation is no longer needed.

• We can express inspector optimizations (such as collapsing nested index ar-

ray accesses) as transformations of the IDG, which makes them easier to

understand and implement.

It is important to note that this work does not examine language-agnostic inspector

code generation, code generation of parallel inspectors, or efficient memory man-

agement techniques within inspectors. However, as we are using the IDG-based

approach, extending IEGen to support these ideas will be far easier than if we did

not have this intermediate representation.
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Table 3.1: IDG Node Types

Node Type Description

IDGNode Root node type (base class) for all IDG nodes (not directly present
in IDG)

IDGSymbolic Represents a symbolic scalar value
IDGIndexArray Represents an index array
IDGDataArray Represents a data array

IDGERSpec Represents an explicit relation
IDGOutputERSpec Represents an explicit relation that will be used outside of the in-

spector (usually the output of a reordering function, e.g. cpack)
IDGCall Represents a call to a function

Finally, Table 3.1 summarizes the possible node types found in an IDG and

their descriptions.

3.3 Inspector Code Generation

Inspector code generation is based on traversal of the inspector dependence graph

(IDG). The IDG represents the data and tasks of an inspector. For code generation,

we are able to examine the IDG and extract information about function parameters

to the inspector, variable declarations, and tasks to be performed. Based on this

information, we can generate the final inspector code.

Answering various questions about an IDG, such as ‘what parameters are

needed by the inspector’, is made possible by a topological traversal of the nodes

in the IDG. Algorithm 2 presents our algorithm for visiting the nodes of the IDG

in a topologically-valid order. We have implemented the visitor design pattern

allowing us to implement various visitors to answer the questions required for code

generation orthogonally to the details of this algorithm. These visitors include:

• Topological Visitor: The base visitor class that implements Algorithm 2.
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• Parameter Visitor: Determines and generates the parameter list that will be

needed by the inspector function.

• Declaration Visitor: Determines and generates the variables declarations for

the inspector.

• Code Generation Visitor: Generates the body of the inspector.

• Dot Printing Visitor: Prints a .dot file useful for visualizing an IDG.

For a given IDG, we can thus utilize the parameter, declaration, and code genera-

tion visitors to generate the inspector. Figure 3.2 is an example of code that will

be generated based on the IDG in Figure 3.1.

depcounts=mapping from node to number of dependences;
while more nodes left in depcounts do

nodeps=all nodes in depcounts with 0 dependences;
if nodeps is empty then

fail due to cycle in IDG;
end
for each node n in nodeps do

visit n;
reduce the dependence count for nodes that depend on n;
remove n from depcounts;

end

end

Algorithm 2: IDG topological visit algorithm

3.4 Executor Code Generation

We now discuss the details of executor code generation, which is more straight-

forward than code generation for the inspector and is based on the MapIR data

structure. Overall, we must perform two distinct tasks: generate loops for the
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#define S0 . . .data[sigma[n1[delta_inv[tri ]]]] . . .
#define S1 . . .data[sigma[n2[delta_inv[tri ]]]] . . .
#define S2 . . .data[sigma[n3[delta_inv[tri ]]]] . . .

for(time =0; time <T; time ++) {

. . .
for(p=0; p<NUM_PROCS; p++) {

for(tri=0; tri <R; tri++) {

if(p==proc(tri)) {

. . .
S0;

S1;

S2;

. . .
}

}

}

. . .
}

Figure 3.3: Executor for transformed irregular computation

transformed computation (Section 3.4.1) and generate statements for the trans-

formed computation (Section 3.4.2) Transforming the computation produces a

modified MapIR (labeled as MapIR’ in Figure 2.1) that represents the code for

the transformed executor. The relevant pieces of information contained in the

MapIR for each statement include iteration spaces, scattering functions, and ac-

cess relations. Executor code generation thus seeks to generate loops that scan the

full iteration space for all statements and statement text filled in with transformed

access relation expressions. The previously presented executor code in Figure 3.3

is an example of code that will be generated.

3.4.1 Executor Loop Generation

We utilize CLooG [3, 4, 5] for generating a loop nest that scans all points in the

full iteration space for the computation. For example, the loops for the iterators
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time, p, and tri in Figure 3.3 were generated by CLooG. After transformation,

each statement will have a scattering function that is a relation that places the

statement in the full context of the computation based on the statement’s iteration

space. We translate all statement iterations spaces and scattering functions into a

format that CLooG accepts.

Chapter 4 presents our techniques for translating the sets and relations that

represent the iteration spaces and scattering functions for input to CLooG. Specif-

ically, we present techniques for manipulating set and relation constraints with

uninterpreted function symbols into a form that CLooG can handle. One of the

manipulations that we must perform is to introduce affine bounds on the iterator

p for the transformed iteration space of the first statement in the triangle loop in

Figure 3.3. The constraint p=proc(tri) is not supported by CLooG and thus must

be handled by our techniques before being passed to CLooG for loop generation.

The output from CLooG is a complete loop nest that scans the full iteration

space for all statements. Within the loop nest CLooG inserts statement place-

holders (such as S0 in Figure 3.3) in the appropriate positions based on how it

generated the nesting. We use this loop nest as the main loop for the executor.

3.4.2 Executor Statement Generation

The statement place-holders that CLooG inserts into the generated loop nest are

where the text for each statement will be inserted. Additionally, a statement’s

text may have been specified with one or more ‘holes’ for array accesses (access

relations). For example, the statement text for S1 is defined in Figure 2.2 as

’...data[%(a1)s]...; which contains a hole denoted by %(a1)s. This hole cor-

responds to the access relation named a1.

After the computation has been transformed, the final access relations define

how a statement accesses a data array for each of these holes. For statement S1,
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the access relation a1 is

{[c0, time, c1, k, c2]→ [out] : out = sigma(n1(delta−1(k)))}.

The details of how we obtain this relation are discussed in Chapter 4. Generating

the statements for the executor thus involves determining the expression that the

single output tuple variable is equal to for each of the access relations. In this

example, we must determine that the output tuple variable out is equal to the

expression sigma(n1(delta−1(k))). We then replace the holes in the statement

texts with the appropriate expression string.
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Chapter 4

Enabling Code Generation in the
Sparse Polyhedral Framework

This chapter discusses our techniques for manipulating sets and relations with

uninterpreted function symbols to enable code generation. Existing libraries and

techniques such as Fourier-Motzkin elimination do not support projecting variables

out of constraints involving uninterpreted function symbols. This chapter discusses

techniques to project out such existentials and to introduce affine bounds to en-

able code generation for inspectors and executors (Section 4.2). Before introducing

these techniques, in Section 4.1 we discuss the mathematical framework this work

is based on. Section 4.3 evaluates these techniques by comparing our implemen-

tation’s performance and ability to project out existentials to Omega, a similar

library.

4.1 The Sparse Polyhedral Framework (SPF)

Strout et al. originally introduced the sparse polyhedral framework in [21] where

it was described as a compile-time framework for composing run-time reordering

transformations. In this section, we provide a basic introduction to the SPF:

how to represent computations in the SPF, how to transform these computations,

and introduce a new problem that arises in this context. The SPF provides a
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mathematical framework for representing and transforming irregular computations

in a way that is analogous to the polyhedral model for regular computations. SPF

builds on the work discussed by Kelly and Pugh in [13], which is based on the

concept of Presburger sets and relations. The Kelly and Pugh framework has the

ability to express computations and transformations in the polyhedral model as

well non-affine memory references and control flow using uninterpreted function

symbols (UFSs) [20]. The key addition to the SPF over the Kelly and Pugh

framework is the usage of UFSs to express run-time entities such as index arrays

and run-time reordering transformations at compile-time and the requirement that

the input and output domains of UFSs be specified to enable code generation. We

now review the concept of sets and relations, a few operations on these sets and

relations, and finish with a discussion of the problems that inhibit code generation.

4.1.1 Sets

We use sets to represent computation spaces. A set represents an unordered col-

lection of integer tuples in Zm. For the example in Figure 1.3, the computation

space is specified with the set

I = {[time, tri] : (0 ≤ time < T) ∧ (0 ≤ tri < R)}.

In general sets have the form

s = {[x1, . . . , xm] : c1 ∧ . . . ∧ cn}, (4.1)

where each xi is a tuple variable/iterator and each cj is a constraint. The con-

straints in a set are equalities and inequalities that are affine expressions involving

the tuple variables, symbolic constants, and existentials. A symbolic constant rep-

resents a constant value that does not change during the computation, but may

not be known until runtime. An existential is any variable in the constraints that
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is not a tuple variable or a symbolic constant. Our definition of sets supports a

single level of existential quantification and no support for universal quantifiers.

Tuple variables and existentials are existentially quantified variables. The above

set s is said to have arity m as it has m tuple variables.

Sets can also be unions of collections of integer tuples and have the form

s = {~x : C1} ∨ {~x : C2} ∨ . . . ∨ {~x : Cp}, (4.2)

where ~x represents the vector of tuple variables and each Ci represents the con-

straints for each component of the union. We refer to the complete union of

multiple sets as a disjunction and each individual component of the union as a

conjunction. This arises from the fact that the constraints of a set are in disjunc-

tive normal form.

Sets in the SPF can also have constraints with uninterpreted function symbol

(UFS) expressions. The following iteration space for the example computation in

Figure 1.5 contains the UFS proc:

I′ = {[time, p, tri] : (0 ≤ time < T) ∧ p = proc(tri) ∧ (0 ≤ tri < R)}.

An uninterpreted function symbol has the form f(a1, a2, . . . , am), where f is the

name of the function and a1 through am are the m arguments to the function.

Just as with constraints, the arguments are affine expressions involving the tuple

variables, symbolic constants, existentials, and other uninterpreted function sym-

bols (allowing for the possibility of nested functions). Since a UFS is a function,

it holds that for a UFS f , if i = j the f(i) = f(j). We use UFSs to represent

entities in irregular computations that will not be known until runtime, such as

index arrays (n1) and run-time reorderings (proc). The domain and range of a

UFS must be a union of polyhedra and thus cannot be expressed in terms of other

UFSs. Also, the arguments to UFS must be UFS expressions (i.e., affine and UFS)
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of tuple variables and symbolic constants. An existential can only be an argument

to a UFS that is a bijection with only one argument.

4.1.2 Relations

We use relations to represent memory access functions, scheduling functions, and

transformation functions. A relation represents an unordered mapping of integer

tuples from Zm to Zn. For the example in Figure 1.3, the first access to the data

array data[] is defined by the relation

Aorig = {[time, tri]→ [k] : k = n1(tri)}.

This access function defines the indices of the data array data[] that are accessed

given the loop iterators time and tri. Notice here the use of the UFS n1, an

example of using a UFS to represent an index array. Index arrays introduce a

layer of indirection when accessing a data array and thus only at runtime can we

know exactly what elements of the data array are accessed.

In general relations have the form

r = {[x1, . . . , xm]→ [y1, . . . , yn] : c1 ∧ . . . ∧ cp}, (4.3)

where each xi is an input tuple variable, each yj is an output tuple variable, and

each ck is a constraint. The constraints of a relation follow the same restrictions

as set constraints. The above relation r is said to have an input arity of m and an

output arity of n as it has m input tuple variables and n output tuple variables.

Unions of relations are also possible and have the following form (similar to

unions of sets)

{~x→ ~y : C1} ∨ {~x→ ~y : C2} ∨ . . . ∨ {~x→ ~y : Cq}, (4.4)

where ~x is the vector of input tuple variables, ~y is the vector of output tuple

variables, and each Ci represents the constraints for each component in the union.
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As a second example, the scheduling/scattering [5, 3] function for the statement

S1 in Figure 1.3 is defined by the relation

S = {[time, tri]→ [0, time, 1, tri, 0]},

where we have denoted that the first and fifth output tuple variables are equal to

zero and the third is equal to one. A scheduling function maps iteration points of

a specific loop nest to points in an iteration space for the whole computation [13,

1, 5, 3]. The lexicographic order of the points in the full iteration space defines

the order of execution for the whole computation.

Figure 1.5 shows a transformed version of the original computation after ap-

plying three transformations: consecutive packing, locality grouping, and a parti-

tioning. Consecutive packing (cpack) and locality grouping (locgroup) are data

and iteration reordering heuristics used to improve data locality by optimizing the

order of data accesses and were introduced by Ding and Kennedy [11]. In this

example, we permute the data array data[] and permute the iterations of the

tri loop based on the run-time computed permutations determined by cpack and

locgroup. The partitioning introduces potential parallelism into the computation

by adding a processor loop and a guard that ensures that the computation for

each triangle is only executed on the processor that the triangle is mapped to (this

is commonly referred to as an owner-computes strategy of parallelism). We note

that the introduction of the processor ‘guard’ is sub-optimal. We are developing

techniques for removing such guards, but the discussion of these techniques is be-

yond the scope of this thesis. This loop could be annotated using an OpenMP

#pragma to introduce parallelism across multiple processors. We represent these
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three transformations in the SPF using the following relations:

Rcpack = {[in]→ [out] : out = sigma(in)},

Tlocgroup = {[c0, time, c1, tri, c2]→ [c0, time, c1, k, c2] : k = delta(tri)}, and

Tpart = {[c0, time, c1, tri, c2]→ [c0, time, c1, p, c2, tri, c3] : p = proc(tri)}.

Note the use of the UFSs sigma, delta, and proc to represent mappings that will

not be known until runtime.

4.1.3 The Apply Operation

Building on our definitions of sets and relations from the previous sections, next

we describe three operations on sets and relations that are required by our trans-

formation framework: first we discuss the apply operation in this section fol-

lowed by the inverse and compose operations in Section 4.1.4. To generate

code a transformation framework must be able to apply a schedule to a state-

ment’s iteration space to determine the statement’s position in the context of the

full computation. A statement’s iteration space is represented with a set (e.g.,

I = {[time, tri] : (0 ≤ time < T) ∧ (0 ≤ tri < R)}). The scheduling function is

represented as a relation (e.g., S = {[time, tri] → [0, time, 1, tri, 0]}). By applying

the original scheduling function to the statement’s iteration space, we can derive

the full iteration space for that statement, including the nesting and ordering of

that statement relative to other statements. For example:

F = S(I)

= {[time, tri]→ [0, time, 1, tri, 0]}( {[time, tri] : (0 ≤ time < T) ∧ (0 ≤ tri < R)} )

= {[0, time, 1, tri, 0] : (0 ≤ time < T) ∧ (0 ≤ tri < R)}.

In general, the resulting set s of the apply operation s = r1(s1) has the same

tuple variables as the output tuple from the relation r1, has constraints from both
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the relation r1 and the input set s1, and additionally has constraints that the input

tuple variables from r1 are pairwise equal to the tuple variables of s1. Mathemat-

ically, the apply operation is defined as (~x ∈ s)⇐⇒ (∃~y s.t. ~y ∈ s1 ∧ ~y → ~x ∈ r1).

The general form of the apply operation is

s =r1(s1) (4.5)

={[y1, . . . , ym]→ [z1, . . . , zn] : c1 ∧ . . . ∧ ck}(

{[x1, . . . , xm] : ck+1 ∧ . . . ∧ cj+k+1} )

={[z1, . . . , zn] : c1 ∧ . . . ∧ ck+j+1 ∧ x1 = y1 ∧ . . . ∧ xm = ym}.

The apply operation is only legal when the arity of s1 matches the input arity of

r1. The xi and yj variables become existentials in the resulting set, which later

simplification will project out. If s1 and/or r1 involve more than one conjunction,

then the above operation is performed on the Cartesian product of the two dis-

junctions of conjunctions. Note that in the following formulas, Ci and Di denote

conjunctions of constraints rather than single constraints:

r1 ={~y → ~z : C1} ∨ {~y → ~z : C2} ∨ . . . ∨ {~y → ~z : Ck}, (4.6)

s1 ={~x : D1} ∨ {~x : D2} ∨ . . . ∨ {~x : Dj},

s =r1(s1)

={~z : C1 ∧D1 ∧ ~x = ~y} ∨ {~z : C1 ∧D2 ∧ ~x = ~y} ∨ . . . ∨ {~z : Ck ∧Dj ∧ ~x = ~y}.

4.1.4 The Inverse and Compose Operations

We now describe both the inverse and compose operations. Just as with iteration

spaces, a transformation framework must be able to place access functions within
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the whole context of the computation being represented and manipulated. The

access function Aorig = {[time, tri] → [k] : k = n1(tri)} is specified in terms of

only the iterators of a single statement (in this case time and tri). Using the

scheduling function for the statement (e.g., S = {[time, tri] → [0, time, 1, tri, 0]})

with the inverse and compose operations allows us to construct an access function

that is in terms of the full iteration space F. The scheduling function is a relation

from the iterations of a single statement to the full iteration space. We use the

inverse operation to produce a new relation from the full iteration space to the

iterators for the single statement. Finally, we compose the original access function

(a relation from the single statement iterators to an array position) with this new

relation to produce the full access function from the full iteration space to an array

position:

Afull =Aorig(S−1)

={[time, tri]→ [k] : k = n1(tri)}( ({[time, tri]→ [0, time, 1, tri, 0]})−1 )

={[time, tri]→ [k] : k = n1(tri)}( {[0, time, 1, tri, 0]→ [time, tri]} )

={[0, time, 1, tri, 0]→ [k] : k = n1(tri)}.

In general, the resulting relation r of the inverse operation r = r−1
1 is a relation

with the same constraints as r1 but with input and output tuple variables swapped.

Mathematically, the inverse operation is defined as (~x→ ~y ∈ r)⇐⇒ (~y → ~x ∈ r1).

In general, inverse has the form

r =r−1
1 (4.7)

=({~x→ ~y : C1} ∨ {~x→ ~y : C2} ∨ . . . ∨ {~x→ ~y : Ck})−1

={~y → ~x : C1} ∨ {~y → ~x : C2} ∨ . . . ∨ {~y → ~x : Ck}.

The calculation of the full access function also utilizes the compose operation.

The resulting relation r of the compose operation r = r1(r2) has the input tuple

43



variables from r2 and the output tuple variables from r1, has constraints from both

relations r1 and r2, and additionally has constraints that the output tuple variables

from r2 are pairwise equal to the input tuple variables from r1: Mathematically, the

compose operation is defined as (~x→ ~y ∈ r)⇐⇒ (∃~z s.t. ~x→ ~z ∈ r2∧~z → ~y ∈ r1).

In general, compose has the form

r =r1(r2) (4.8)

={[d1, . . . , di]→ [e1, . . . , en] : ck+1 ∧ . . . ∧ cj+k+1}(

{[a1, . . . , am]→ [b1, . . . , bi] : c1 ∧ . . . ∧ ck})

={[a1, . . . , am]→ [e1, . . . , en] : c1 ∧ . . . ∧ ck+j+1 ∧ b1 = d1 ∧ . . . ∧ bi = di}.

The compose operation is only legal when the output arity of r2 is equal to the

input arity of r1. The bi and ci variables become existentials in the resulting set,

which later simplification will attempt to project out. If r1 and/or r2 involve more

than one conjunction, then the above operation is performed on the Cartesian

product of the two collections of conjunctions as follows:

r1 ={~d→ ~e : F1} ∨ {~d→ ~e : F2} ∨ . . . ∨ {~d→ ~e : Fj}, (4.9)

r2 ={~a→ ~b : C1} ∨ {~a→ ~b : C2} ∨ . . . ∨ {~a→ ~b : Ck},

r =r1(r2)

={~a→ ~e : C1 ∧ F1 ∧~b = ~d} ∨ {~a→ ~e : C1 ∧ F2 ∧~b = ~e}∨

. . . ∨ {~a→ ~e : Ck ∧ Fj ∧~b = ~d}.
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4.1.5 The Problems Arise: Transforming the Computation

This section presents two examples of situations where an operation produces a set

or relation for which we are unable to generate code using existing code generation

techniques. We have shown in Sections 4.1.1, 4.1.2, 4.1.3, and 4.1.4 how to rep-

resent the computation in Figure 1.3 and how to manipulate this representation

to prepare it for transformation. Now we show that applying the transformations

Rcpack, Tlocgroup, and Tpart to the data and the computation results in sets and

relations that inhibit code generation.

We first apply the consecutive packing transformation to the computation.

This involves composing the access function transformation (e.g., Rcpack = {[in]→

[out] : out = sigma(in)}) with the full access function for the statement (e.g.,

Afull = {[0, time, 1, tri, 0] → [k] : k = n1(tri)}) to derive the transformed access

function:

A′full =Rcpack(Afull)

={[0, time, 1, tri, 0]→ [out] : out = sigma(n1(tri))}.

When applying an iteration permutation RTRT such as locality grouping, we

must update the access functions of the statements that are within the loop whose

iterations are being permuted using a transformation relation (e.g., Tlocgroup =

{[c0, time, c1, tri, c2] → [c0, time, c1, p, c2, tri, c3] : p = proc(tri)}). As an example,

consider the following operations that update A′full:

A′′full =A′full(T
−1
locgroup)

={[0, time, 1, tri, 0]→ [out] : out = sigma(n1(tri))}(

{[c0, time, c1, k, c2]→ [c0, time, c1, tri, c2] : k = delta(tri)})

={[c0, time, c1, k, c2]→ [out] : k = delta(tri) ∧ out = sigma(n1(tri))}.
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Notice this operation results in the presence of the existential tri as the input

to the UFS delta. This is a problem as existing techniques such as Fourier-

Motzkin do not support projecting out existentials that are inputs to UFSs. To

generate efficient code for this access function, we need the output tuple variable

out expressed as a function of the input tuple variables.

Finally, we apply a partitioning transformation (e.g., Tpart =

{[c0, time, c1, tri, c2] → [c0, time, c1, p, c2, tri, c3] : p = proc(tri)}) to the com-

putation by updating the iteration spaces of the affected statements (e.g.,

F = {[0, time, 1, tri, 0] : (0 ≤ time < T) ∧ (0 ≤ tri < R)}):

F′ =Tpart(F)

={[c0, time, c1, tri, c2]→ [c0, time, c1, p, c2, tri, c3] : p = proc(tri)}(

{[0, time, 1, tri, 0] : (0 ≤ time < T) ∧ (0 ≤ tri < R)})

={[c0, time, c1, p, c2, tri, c3] : (0 ≤ time < T) ∧ (0 ≤ tri < R) ∧ p = proc(tri)}.

Note the fact that the iterator p does not have explicit affine bounds but rather is

equal to the output of the UFS proc. In order to generate code that iterates over

all points in this set, we need affine bounds for each iterator/tuple variable.

The application of both the locality grouping and partitioning transformations

resulted in situations where code generation is inhibited. In the first case, the

resulting access function contains a constraint where an existential is an input to a

UFS. In the second case, we do not have explicit bounds on a loop iterator. These

types of situations inhibit the generation of polyhedral scanning loop nests by tools

such as CLooG [3, 4, 5] or the generation of expressions for array accesses based

on access functions. Section 4.2 introduces techniques to rectify these situations

to enable code generation.
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4.2 Constraint Simplification in the SPF

Section 4.1 showed examples of how a computation can be represented and trans-

formed using the Sparse Polyhedral Framework. After applying RTRTs to the

computation it is possible to produce constraints that contain existentials as in-

puts to UFSs (e.g., A′′full) or tuple variables without explicit affine bounds (e.g.,

F′)—situations that inhibit code generation. This section introduces remedies for

these situations.

We identify three general situations where code generation is inhibited. In the

following, let v be an existential, let t be a tuple variable, let f be a UFS:

• t = f(v): An existential is an input to a UFS,

• v = expr: An existential is equal to an affine expression, possibly containing

a UFS instance, and

• t = f(. . .): A tuple variable is equal to a UFS instance and no affine bounds

are present for that variable in other constraints.

These situations were generalized from specific instances of each that arose during

our work with the SPF on an example benchmark. This list is thus necessary but

may not be sufficient for enabling code generation—there may be other situations

involving UFSs that we have not encountered that make it difficult to generate

code. We examine each of these general cases in the following subsections.

4.2.1 Inverse Function Simplification

When performing operations on sets and relations to represent and transform com-

putations in the SPF, it is possible to introduce an existential that is an input to

a UFS. We have shown that this is possible by applying the locality grouping iter-

ation permutation RTRT to our example computation. Specifically, we produced
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the following access function:

A′′full = {[c0, time, c1, k, c2]→ [out] : k = delta(tri) ∧ out = sigma(n1(tri))}.

Notice in the constraint k = delta(tri) that the argument to the function delta,

tri, is an existential. Therefore we need to manipulate these constraints in some

way so that we can remove the existential.

If we are given the fact that the UFS delta is invertible (with its inverse named

delta−1 for example), we can utilize this information to remove the existential

from the constraints. More specifically, we can utilize information that delta is a

bijection to perform an obvious simplification on the equality constraint. We often

deal with permutations such as those that are the result of cpack or locgroup.

Since permutations are bijections, they can be inverted automatically at runtime.

For this simplification to apply, we only require to know that a given UFS is a

bijection and what the inverse of the UFS is named.

When we apply this simplification rule to the constraint in the relation A′′full,

we obtain the following relation:

A′′full = {[c0, time, c1, k, c2]→ [out] : delta−1(k) = tri ∧ out = sigma(n1(tri))}.

This relation is now one step closer to having all existentials removed from

the constraints. At this point, assuming we knew sigma and n1 were also bi-

jections, we could apply the inverse simplification rule twice to the constraint

out = sigma(n1(tri)) to obtain the constraint n1−1(sigma−1(out)) = tri. In

order to generate code, however, we require constraints be in terms of the output

tuple variable out. Additionally, the permutability of n1 is not known and there-

fore we could not apply this rule for this UFS to expose the existential tri. The

next section will discuss how we completely remove the existential tri from the

remaining constraints using a different approach.
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In general, the inverse function simplification applies to equality constraints of

the form:

t = f(v),

where t is a tuple variable, v is an existential, and we know that f is a function

that admits an inverse and that inverse is f−1. In this situation, we can transform

the constraint into:

f−1(t) = v,

to produce a constraint with tuple variable t as input to the inverse function f−1.

We show that this is a legal constraint manipulation using the fact that f

admits an inverse:

t =f(v) (4.10)

=⇒ f−1(t) =f−1(f(v))

=⇒ f−1(t) =v.

4.2.2 Existential Equality Simplification

We utilize a second simplification rule to remove existentials involved in equalities

with UFSs. The use of the inverse function simplification in the previous section

produced the following relation:

A′′full = {[c0, time, c1, k, c2]→ [out] : delta−1(k) = tri ∧ out = sigma(n1(tri))}.

This relation still contains the existential tri We remove this variable using the

existential equality simplification. If an existential is present in an equality con-

straint, we can remove that constraint and replace all instances of that variable’s
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equivalent value. In this example, we replace tri with delta−1(k) to produce the

following relation:

A′′full = {[c0, time, c1, k, c2]→ [out] : out = sigma(n1(delta−1(k)))}.

After applying this simplification, we have removed all existentials from the con-

straints of this relation and thus may generate code for this access function.

In general, the existential equality simplification can be used with equality

constraints of the form

v = expr,

where v is an existential and expr is any expression, possibly involving UFSs

(though this is not required). If an equality constraint of this form is found,

we can:

1. remove the equality constraint from the collection of constraints of the set

or relation and

2. replace all instances of the existential v with the expression that v is equal

to (expr).

The legality of this simplification can be ensured by considering the fact that we

apply this simplification to equality constraints. Since the existential in question

is equal to the expression we are replacing it with, we know that simply removing

that constraint and modifying all other constraints that reference this existential

is legal. Note that we do not apply this simplification rule in situations where the

existential in question is not used in other constraints.

4.2.3 Affine Approximation

In this section, we introduce a method for introducing affine bounds for tuple

variables that are constrained by an equality with a UFS. Consider the following
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full iteration space that we derived at the end of Section 4.1.5:

F′ = {[c0, time, c1, p, c2, tri, c3] : (0 ≤ time < T) ∧ (0 ≤ tri < R) ∧ p = proc(tri)}.

One method of code generation requires that all iterators of an iteration space

have affine bounds. However, note that the tuple variable p is only involved in an

equality constraint that contains a UFS.

To fix the situation when a tuple variable has no explicit affine bounds, we

utilize additional information about the UFS to which it is equal. Specifically, we

note that if we know the range of the UFS proc in the above example, we can

introduce inequalities that bound the tuple variable p:

F′ ={[c0, time, c1, p, c2, tri, c3] :

(0 ≤ time < T) ∧ (0 ≤ tri < R) ∧ p = proc(tri) ∧ (0 ≤ p < n procs)}.

Here we have introduced two inequalities that bound p from above and below. We

utilize the information that the UFS proc ranges from 0 to n procs to allow us

to approximate the value of p. After this approximation, we are able to generate

a loop that scans the range of possible values for p.

In general, suppose we have a constraint of the form

t =f(...),

where t is a tuple variable, f is some UFS for which we have compile-time range

information and no other affine bounds are available for t. In this case, since we

know the range of f , we can add approximate constraints on t. Specifically, we can

conservatively say that t will fall somewhere within the upper and lower bounds

of the range of f , or

lower bound(range(f)) ≤ t ≤ upper bound(range(f))
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in constraint form. We may safely introduce these inequality constraints without

changing the meaning of the set or relation since we are only bounding the values

of the tuple variable t and not restricting its value beyond the original equality

constraint.

4.2.4 Simplification Algorithm

In the previous sections we described three techniques for manipulating set and

relation constraints that are required to enable code generation of the transformed

code in Figure 1.5. Our approach for applying these three techniques as a complete

simplification algorithm is shown as Algorithm 3. Our implementation uses this

algorithm in two situations: at the time a set or relation is constructed from a

user’s specification and on a set or relation that is the result of an operation such

as apply, inverse, or compose.

This algorithm attempts to successively project out each existential present in

a set or relation’s constraints. For each existential we attempt to apply the inverse

function simplification and existential equality simplification as many times as

they are applicable. Once these have been applied, we check that no existential is

present in constraints containing a UFS. We then use Fourier-Motzkin elimination

to project the existential out of any remaining affine constraints. Finally, we apply

the affine approximation technique to introduce affine bounds for tuple variables

where possible.

4.3 Evaluation

In this section, we present a discussion concerning the complexity and performance

of the set and relation operations and simplifications. We first discuss the complex-

ity of each operation and the simplification algorithm presented in Section 4.2.4.
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for each existential v do
Inverse function simplifications;
Existential equality simplifications;
if v present in a UFS constraint then

fail
end
Project out v from the constraints using Fourier-Motzkin;

end
Affine approximation;

Algorithm 3: Set/Relation Simplification Algorithm

The second half of this section will present the performance of our implementation

of the set and relation concepts from this thesis.

4.3.1 Complexity Analysis

Understanding the algorithmic complexity of the set and relation operations and

simplifications allows us to have some idea for the upper bound on the expected

running time of a code generation tool based on our techniques. We first present

the complexity of the constraint simplification techniques followed by the overall

complexity of the set/relation operations. For the following discussion, take N to

be the number of constraints and M to be the number of conjunctions.

In general when performing an operation such as union or compose, we first

perform the steps required by the operation to produce a new set of constraints.

Following this we apply our simplification techniques to attempt to project out

existentials from the constraints. Therefore, the complexity of each operation is a

function both of the operation itself and of simplification. Since simplification is

common to all operation complexity, we discuss this first.

We have discussed our simplification algorithm in Section 4.2.4 and have pre-

sented it as Algorithm 3. For each existential present in a set or relation’s con-

straints, this algorithm attempts to project out that variable. It first applies the
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inverse function simplification and the existential equality simplification to remove

existentials from constraints containing UFSs. It then uses Fourier-Motzkin elimi-

nation to project the variable out of the constraints that do not contain UFSs. The

complexity of Fourier-Motzkin elimination is double exponential in the number of

constraints and variables. Therefore, this is the dominating term for our simpli-

fication algorithm. However, for the sake of completeness, we note that both the

inverse function simplification and the existential equality simplification are O(N)

for each existential since we must perform a linear scan through all constraints.

Also, as an optimization, we note that we can utilize the existential equality sim-

plification when projecting out existentials involved in equality constraints. We

have found that this optimization avoids running full FM in the majority of cases,

avoiding the worst-case exponential complexity of FM.

The complexity of both the apply and compose operations is O(M2) in the

total number of conjunctions since we must create a new conjunction for every

pair of conjunctions between operands. Union is O(M) since we must combine all

conjunctions into a single set or relation. Inverse is O(1) since we only change the

order of the tuple variables and no manipulation of the conjunctions or constraints

is necessary.

4.3.2 Implementation Performance

We evaluate the performance and power of our set and relation implementation by

comparing to Omega [13, 12] where possible. We base our evaluation on a suite

of set/relation operations taken from a real-world run of our tool, IEGen. This

run consisted of the application of three transformations (cpack, locgroup, and

an iteration alignment) and one optimization (pointer update, or collapsing nested

UFSs) to a molecular dynamics benchmark. The benchmark itself, moldyn [16],

consisted of approximately 100 lines of C code with three main loops nested within
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an outer timestep loop. We extracted only the sets and relation operations from

this run to form our suite of operations for benchmarking. We measured various

aspects of performing these operations after constructing the arguments to each

operation. We first present information about these operations only related to

our implementation followed by a discussion of our implementation compared to

Omega.

The whole run of IEGen of the transformation sequence on the moldyn compu-

tation took a total of 1.85 seconds. Running just the set and relation operations

that this consisted of (the operations suite) took 1.46 seconds. Figure 4.1 presents

the number of each operation type for 77 total operations that the operations suite

contains. Figure 4.2 shows a histogram of the numbers of tuple variables in the

results of the operations. Figure 4.3 shows a histogram of the numbers of existen-

tials that need to be projected out for the operations. The time to run each of the

collections of individual operation types is shown in Figure 4.4. Across all opera-

tions, a total of 246 existentials were projected out. Most of these were projected

out using one or more applications of the existential equality simplification. Only

16 existentials required using the full Fourier-Motzkin algorithm to be projected

out of the constraints. The inverse simplification rule was applied a total of 30

times.

Omega’s support for UFSs is limited [20, 26]. Syntatically, it requires that

inputs to UFSs be prefixes of the tuple variables. Additionally, any attempt to

project out an existential that is the input to a UFS results in an UNKNOWN

constraint being added to the result signifying that the result is only an approx-

imation and may not be correct. Due to these restrictions, Omega is not able to

perform all of the 77 operations that the operations suite contains. We filtered

out the operations that Omega could not support to create a subset of operations
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that Omega can support. Of the 136 sets and relations that were arguments to

the operations 81 did not contain UFSs. The total number of operations where all

arguments contain no UFSs is 33, composed of:

• Inverse: 4

• Apply: 16

• Compose: 4

• Set Union: 9

We use these 33 operations to compare our implemementation performance to

Omega’s. Figure 4.5 presents the times taken for our implementation and Omega

to perform all operations from each of the four types above. In most cases we

are two orders of magnitude slower than Omega. We note that our initial im-

plementation goal was not raw performance but rather supporting the operations

and simplifications required for code generation. To improve the performance, we

could utilize techniques implemented in Omega [19]. The performance goal for

our implementation is to be fast enough to support interactive use of IEGen. For

moldyn, we’ve come very close to meeting this goal, but there is clearly still room

for improvement.
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Chapter 5

Sparse Formula Data Structure

A number of libraries have been developed that support the specification and

manipulation of polyhedra and unions of polyhedra including Polylib [25, 14],

ISL [24], PPL [2], and Omega [13, 12, 19]. Traditionally, these libraries have not

included support for uninterpreted function symbols (UFSs), with the exception

being Omega. However, even Omega’s support for UFSs is limited in the ability to

support arbitrary arguments and utilize additional information about individual

UFSs.

To support IEGen and implement the techniques discussed in Chapter 4, we

developed a data structure that supports specifying sets and relations with con-

straints containing tuple variables, existentials, symbolic constants, and arbitrarily

nested UFSs. We use the term formula to refer to both sets and relations. Since

we support UFSs in the formula constraints, we refer to this data structure as the

sparse formula data structure or simply sparse formulas. We’ve implemented op-

erations such as apply, inverse, and compose (discussed in Section 4) on top of the

sparse formula data structure discussed in this section. This chapter describes the

details of our sparse formula implementation starting with an example of the over-

all implementation approach (Section 5.1) followed by a more general description

of the details of the our sparse formula implementation (Section 5.2).
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5.1 A Brief Example

To begin we present an example of how our we represent the set

F′ = {[c0, time, c1, p, c2, tri, c3] : (0 ≤ time < T) ∧ (0 ≤ tri < R) ∧ p = proc(tri)}.

from a previous chapter as a sparse formula. This set was constructed in Chapter 4

and represents the full transformed iteration space for the code in Figure 1.5.

First notice that this set specifies a collection of integer 7-tuples restricted by

the following five constraints: 0 ≤ time, time < T, 0 ≤ tri, tri < R, and

p = proc(tri). Sparse formulas represent inequality and equality constraints as

single expressions that are either ≥ or = to zero. Therefore, we actually represent

these five constraints as: time ≥ 0, −1∗time+T−1 ≥ 0, tri ≥ 0, −1∗tri+R−1 ≥

0, and p − proc(tri) = 0. Each of the five expressions for the constraints are

stored as mappings from a term type to a coefficient. For example, the expression

−1 ∗ time + T− 1 has three types of terms: a tuple variable, a symbolic constant,

and a constant value. Each of these terms has a coefficient, namely -1, 1, and -1

respectively. We signify tuple variables by their position in the tuple—in the case of

this set we have positions zero through six. We signify symbolic constants by their

name—in this case T. There can only be a single constant per expression (multiple

constants may simply be added to obtain the single constant) and thus signifying

the constant term is done with the name Constant. The coefficient mapping for

this expression then is TupleVar(1)→ −1, Symbolic(T)→ 1, Constant→ −1.

Similar coefficient mappings exist for the expressions of the other four constraints

and are presented in Table 5.1.

Representing uninterpreted function symbols is slightly more complicated than

the other types of terms. We use the name UFCall to signify UFS terms in ex-

pressions. Each UFCall has a name and an ordered list of arguments associated
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Table 5.1: Example sparse expressions for equality and inequality constraints

Constraint Expression Term→Coefficient Mappings

time ≥ 0 TupleVar(1)→1

−1 ∗ time + T− 1 ≥ 0 TupleVar(1)→-1 Symbolic(T)→1 Constant→-1

tri ≥ 0 TupleVar(5)→1

−1 ∗ tri + R− 1 ≥ 0 TupleVar(5)→-1 Symbolic(R)→1 Constaint→-1

p− proc(tri) = 0 TupleVar(3)→1 UFCall(proc,TupleVar(5)→1)→-1

with it. Each argument is another expression represented using the same coef-

ficient mapping concept we describe above. Since our expressions can contain

UFSs, this method supports nested functions. The UFS proc in the constraint

p − proc(tri) = 0 has only a single argument, tri. The coefficient mapping for

the single argument is TupleVar(5)→ 1. The constraint expression is represented

as TupleVar(3)→ 1, UFCall(proc, TupleVar(5)→ 1)→ −1 and is also shown in

Table 5.1.

In summary, we build equality and inequality constraints using the coeffi-

cient mapping expressions. We build conjunctions and disjunctions on top of

these constraints. Conjunctions are unordered collections of equality and in-

equality constraints. Disjunctions are unordered collections of conjunctions. Fi-

nally, we store a bijection of tuple variable name to tuple position—in this case

c0 ↔ 0, time↔ 1, c1 ↔ 2, p↔ 3, c2 ↔ 4, tri↔ 5, c3 ↔ 6. This bijection is used
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for tasks like set/relation printing.

5.2 Data Structure Details

After presenting a brief example of the sparse formula data structure in Section 5.1,

we now describe it more generally and completely. As we previously showed, sparse

formulas are based on representing expressions as mappings from term types to

coefficients for those terms. Constraints (both equalities and inequalities) are

represented with a single expression that is assumed to be≥ 0 or = 0. Conjunctions

are unordered collections of constraints. Disjunctions are unordered collections of

conjunctions.

We show the classes of the sparse formula implementation with a diagram

in Figure 5.1. This figure shows the Set and Relation classes with fields for

the tuple/position bijection (tuple vars), and fields for the collection of symbolic

constants. Since relations have an input and output arity, the Relation class stores

the input arity in the field arity in. The output arity may be calculated based

on the value of this field the the total number of tuple variables (obtained based

on the tuple vars field). The disjunction field of the Set and Relation classes

stores an instance of the Disjunction class. Disjunction contains an unordered

set of Conjunction instances in the conjunctions field. The Conjunction class

has a constraints field that stores an unordered set of Constraint instances.

The Equality and Inequality classes derive from the base Constraint class.

The Constraint class is defined, as noted earlier, using the Expression class that

contains a mapping of terms to coefficients.

The types of terms supported by the Expression class are shown in Fig-

ure 5.2. These terms include TupleVar, ExistVar, Symbolic, Constant, and

UFCall. TupleVar terms correspond to a particular tuple variable position, stored
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in the pos field. Symbolic and ExistVar terms have a name associated with them,

stored in the name field. Our support for uninterpreted function symbols is intro-

duced with the UFCall expression term type. A UFCall has a name and an ordered

list of arguments. Each argument to a UFCall is an Expression, providing support

for nested uninterpreted function symbols.

We make two assumptions in our sparse formula implementation. First, we

assume that we have all symbolic and existential names available at the time the

formula is created (this excludes the compose and apply operations where certain

tuple variables become existentials). Second, we do not overload function names.

In other words, if a function ’f’ has two arguments, all instances of it must have

two arguments.

In summary, sparse formulas provide a method of representing polyhdera and
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unions of polyhedra whose constraints additionally can contain uninterpreted func-

tion symbols. We base our implementation on the concept of an expression con-

taining terms that map to their coefficients. This coefficient mapping approach

allows us to implement operations such as apply, inverse, and compose without

the need to reallocate columns that a fixed column representation might require

since we do not impose an arbitrary order on the terms in an expression. We uti-

lize sparse formulas throughout IEGen to represent entities such as iteration spaces

and access functions. The support for UFSs that is present in our sparse formula

implementation allows us to implement the simplifications discussed in Chapter 4

and thus enable inspector executor code generation.
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Chapter 6

Related Work

The techniques we have developed during the development of IEGen build upon

many ideas and projects within the field of loop transformation and optimiza-

tion. This section describes how the work we present in this thesis relates to other

projects, including libraries for computation representation, an intermediate rep-

resentation similar to our inspector dependence graph (IDG), and other tools for

program optimization and code generation. The techniques presented in Chap-

ter 4 and data structure presented in Chapter 5 form the basis of a library for

representing irregular computations and transformations on these computations.

This library is similar in many ways to other polyhedral libraries. Our inspector

code generation is based on the IDG graph data structure and is similar to another

graph-based inspector/executor strategy called a slice graph. Finally, our irregular

computation transformation and code generator, IEGen, has functionality similar

to many other program optimization and code generation tools. We discuss similar

projects in this chapter.

We note four polyhedral libraries that provide representations and operations

on polyhedra: Omega, Polylib, PPL, and ISL. The Omega project [13, 12, 19]

is most closely related to the work we present in this thesis. Used primarily for

data dependence analysis, Omega’s implementation of sets and relations (based on
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Presburger arithmetic) supports limited usage of UFSs. Unlike the techniques we

have presented in this thesis, Omega does not utilize any additional information

about UFSs such as the domain and range of UFSs or knowledge that UFSs are

bijections. Therefore, the library is unable to perform operations like the inverse

function simplification or affine approximation. Other limitations are that inputs

to uninterpreted functions in Omega can only be prefixes of input and/or output

tuples and composition of two relations with uninterpreted functions results in an

UNKNOWN constraint. To a limited extent, uninterpreted function symbols have been

used in Omega to represent indirect array accesses for determining more accurate

data dependence information. In comparison, we use UFSs to represent index

arrays and run-time reordering functions whose precise data is not known until

runtime.

Polylib [25, 14] is a library that provides a way to represent and manipulate

unions of parameterized polyhedra. Polylib maintains both constraint and gener-

ator representations of the polyhedra as some operations are more efficient on one

representation than the other. Our implementation uses an approach similar to

the constraint representation. Polylib does not have support for UFSs and thus is

not able to support the class of programs we are targeting. Another library that

represents polyhedra is PPL [2]. Similarly to Polylib, PPL maintains dual repre-

sentations of polyhedra. Just as with Polylib, PPL represents rational polyhedra

as well. PPL has no support for representing UFSs. Finally, ISL [24] is a fourth

library that represents polyhedra. This library was recently adopted as the default

polyhedral backend for CLooG.

Our inspector code generation technique is based on a graph data structure

called in inspector dependence graph (IDG). Das et al. [9] described a program

transformation for reducing multiple indirect array accesses to a single indirect
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array access. This program transformation used an inspector executor strategy

to, at runtime, inspect the multiple levels of indirection and produce a single new

indirection array, thus avoiding multiple layers of indirection. The authors describe

a data structure called a slice graph that in many ways resembles our IDG. The

slice graph is used to generate inspector code that creates the single indirection

array and executor code that uses this new array. The code generation process is

also very similar to our topological traversal of the nodes in the IDG.

CLooG, Pluto, Graphite, FADA, and PoCC are tools used for code generation,

program analysis, and optimization that utilize one or more of the polyhedral li-

braries we have referenced above. CLooG [3, 4, 5] is a tool for generating code that

scans a specified union of polyhedra. We use CLooG for generating loop nests that

scan the iteration spaces of our computations. Pluto [7] is an automatic polyhedral

loop optimizer and parallelizer that utilizes a large set of tools from the polyhedral

community including CLooG for generating scanning loop nests. Graphite [17] is

used as a polyhedral optimizing back end for the popular GCC compiler suite.

FADA [8, 6] (Fuzzy Array Dataflow Analysis) is a tool for performing dataflow

analysis on irregular programs. It performs an ‘instance wise dependence analy-

sis for non-static control programs’ which provides data dependence information

for irregular computations. The FADA Toolkit is a partial implementation of

this analysis. FADA offers full support for static control programs as it extends

Feautrier’s Array Dataflow Analysis (ADA). Additionally, FADA supports while

loops and conditionals, scalar and array references, and indirect array accesses

(such as we require in SPF) and non-affine array accesses. FADA does not sup-

port pointer indirection and array cell aliasing. The output from FADA is a set of

dataflow dependences in the form of quasts (quasi-affine selection tree). Our work

may be able to utilize a tool like the FADA Toolkit to support dataflow analysis to
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determine if a specified transformation is legal. Finally, PoCC [18] (the Polyhedral

Compiler Collection) is a source-to-source optimizing compiler.
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Chapter 7

Future Work and Conclusions

This chapter looks to the future of IEGen and discusses a few potential additions

that could be made to extend the functionality and scope of IEGen. Following our

discussion of future work, we conclude by summarizing the contributions of this

thesis and of the IEGen tool.

7.1 Future Work

It would seem that most large projects are never complete, but only have milestones

marking significant progress—IEGen is no exception to this observation. This

section presents three potential avenues of exploration beyond the current state of

IEGen. First, we suggest implementing additional inspector/executor strategies

using IEGen. Second, we could improve the automation of IEGen to support

extraction of computations from existing code would make using IEGen easier.

Third, we may apply IEGen to a real-world application or simplified application

(‘mini-app’).

Many inspector/executor strategies have been developed since the original idea

was developed [15]. IEGen currently supports a limited subset of these strategies,

including data and iteration reorderings. One obvious type of inspector/executor

strategy, sparse tiling, attempts to improve data locality or introduce parallelism.
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Supporting this type of transformation would be very useful as we could compare

the relative performance benefits of techniques like full sparse tiling [23] and com-

munication avoiding tiling techniques [10]. To extend IEGen to support additional

transformations like tiling may require modifications to the IDG, such as adding

new node types, modifications to the inspector code generation algorithm based

on the IDG, and modifications to the executor code generator.

The second extension piece that would improve the usability of IEGen is to

improve its automation aspects. Currently IEGen accepts input as a spec file that

defines the irregular computation in question and a sequence of transformations to

apply to this computation. However, creating a spec file from an existing piece of

code is often a non-trivial task. We have developed a graphical user interface called

IEGenCC that provides a graphical method for specifying spec files and invoking

IEGen. Tools like Pluto and PoCC allow the user to mark a piece of code to be

extracted and transformed. A similar interface to IEGen would greatly improve its

usability and lower its barrier to entry. Some of the tasks that would be required

are extraction of loop nests, statements, access relations for each statement, and

data dependences from the code. The user would then only need to define the

transformations to apply to this computation. The question of how to specify

these transformations orthogonally to the base computation is an ongoing research

area.

Finally, we suggest using IEGen to optimize a real-world application or ‘mini-

app’. Currently we have only looked at the transformation of small benchmark

computational kernels (around 100 lines of code). A mini-app is a larger piece of

code (around 1000 lines) that exhibits the behavior of a full scientific application

yet has all of the non-performance-critical pieces removed. By applying IEGen

to a mini-app, we would show that our techniques are more widely applicable in
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a real-world setting and are not just solving academic problems. Additionally, a

performance improvement of a real-world application or mini-app would have a

much more direct impact on the scientific research related to the application.

7.2 Conclusions

Many scientific computations utilize indirect array accesses such as A[B[i]], which

make poor use of the memory hierarchy which leads to poor performance. In-

spector/executor strategies for performing run-time reordering transformations are

one approach to optimizing irregular computations. This thesis presented a tool,

IEGen, for applying inspector/executor strategies to irregular computations in a

semi-automated way. IEGen accepts the specification of an irregular computation

and a sequence of transformations to apply to that computation and generates

inspector/executor code that implements the transformed computation.

Implemented in IEGen are three main techniques (the contributions of this

thesis) that enable the generation of this code. First, we have created a new

intermediate representation called an inspector dependence graph (IDG) that rep-

resents the inspector code for the transformed computation. The IDG enables us

to answer various questions about the inspector and we use the answers to these

questions to generated code. Secondly, we devised a method for generating ex-

ecutor code for the transformed computation based on the MapIR data structure.

Executor code generation consists of two pieces: generating loop nests for scanning

the full transformed iteration space and generating statement strings with trans-

formed data array accesses. Finally, we have developed techniques to manipulate

the constraints of sets and relations containing uninterpreted function symbols to

enable the generation of code based on these sets and relations. These techniques

are implemented with our data structure for representing sparse sets and relations.
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By implementing our contributions within IEGen, we are now able to generate

transformed irregular computations that implement composed inspector/execu-

tor strategies. IEGen currently supports the specification and generation of data

and iteration permutation reorderings. By supporting these transformations with

IEGen, we are able to generate code rather than manually implementing it for each

sequence of transformations. This would save programmer time and will allow us

to perform experiments to determine the best of a collection of transformation

sequences that optimizes a computation.
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