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ABSTRACT 

The periodic-stochastic model, used to describe the structure of historic hydrologic time series, is 
examined in the light of finding that it distorts the distribution of residual s, or of the time-independent 
stochastic component under certain circumstances . In general, this distortion caused the distribution of an 
independent stochastic component to have a sharper peak, and sometimes i t appears to follow a double branch 
exponential distribution function. The apparent cause for distortions is the failure of the least-squares 
method t o accurately estimate amplitudes and phases of harmonics in periodic parameters of historic data. 
The unremoved and/or misestimated dependence of the autoregressive type in stochastic component was found to 
also affect the inferred distribution of residuals. The investigation met hod used is by generating new samples 
of given sizes and properties by the classical ~lonte Carlo method . 

iv 



Chapter I 
INTRODUCTION 

1-1 Hydrologic Simulation 

Simulation of new samples of streamflow, precipi­
tation and other hydrologic stochastic processes has 
become beneficial for water resource planners, often 
used in conjunction with design or policy decisions in 
water utilization. The possible courses of action may 
be evaluated in a more thorough, statistically accept­
able manner than is possible using only the observed 
hydrologic data as inputs and outputs. The usefulness 
of generated samples is limited by the statistical ac­
curacy of inferred models and estimated parameters 
from the observed data. In defining mathematical models 
for s uch simulation the analyst must retain statistical 
properties of the original data, with some of the more 
obvious being: (1) The overall mean, variance, and 
parameters related to higher-order moments of the his­
torical records; (2) Trends and periodicities displayed 
by the original data ; (3) Serial correlation proper­
ties; and (4) The distribution of the independent 
stochastic component as the noise underlying the com­
posed process. If all of these statis£ical character­
istics of the original data could be retained in 
generated sa~les , then the water resources planner 
would have a useful tool for evaluating different 
courses of action in water resources planning and 
management. 

Past attempts to model such hydrologic processes 
as streamflow and precipitation have met with var ied 
success. In particular, some attempts to model daily 
series of precipitation and runoff have not in general 
been able to retain reasonably well the distribution 
of inferred independent stochastic components in t he 
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modeling process. Unusual departures of distributions 
of independent stochastic components by the modeling 
process in comparison with the inferred distribution, 
led some investigators to question the completeness 
of the models , and to search for sources of errors in 
modeling techniques. 

1-2 Study Objectives 

The purpose of this study is to investigate the 
simulation of periodic-stochastic processes as applied 
to daily series , and to examine the sources of errors 
involved in the modeling process . By examining sources 
of such errors , reasons for arriving at distorted dis­
tributions by the modeling process should be evident. 
rhe results are expected to lead to remedies and an 
improved modeling technique. 

1- 3 Study Approach 

Since statistical characteristics of daily series 
of precipitation and streamflow are not easily express­
ed in mathematical terms, it is necessary to simulate 
samples of complex hydrologic processes in a computer. 
One can start with the assumption that the true 
population properties of a series are known prior to 
simulation. The periodic-stochastic structural analy­
sis is then applied t o generated samples, and differ­
ences determined between the pr operties that are 
incorporated and the estimated statistical properties 
of generated samples . By varying the complexity of a 
population process the sources of errors in the techni­
que of structural analysis may become apparent and 
could be quantified. 



Chapter II 
MODELING TECHNIQUE AND ITS APPLICATION 

2-1 Brief Overview of Time Series Analysis 

In general , currently known techniques for model­
ing a given historic time series may be divided into 
three basic phases: (l) Identification and removal of 
trends, periodicities or almost-periodic l ong- term 
movements in paramet ers of the process in order to 
isolate an approximate second-order or higher-order 
stationary time dependent process; (2 ) Identification 
and removal of time dependence of inferred second- order 
or higher-order s tationary process in order t o obtain 
an· inferred i ndependent, second-order or higher-order 
stationary s tochastic residual process; and (3) Analy­
s is of the probability distribution of the random re­
sidual variables , which are assumed to be independent 
and identically di stributed, that constitut e the re­
sulti ng stationary stochastic process . 

A temporaril y s tationary time -series may be defined 
as one in which t he s tat istical properties of t he series 
do not vary with time for sufficient periods of t he 
immediate past and future. Because it i s extremely 
difficult to prove the stationarity either for the 
historical series of random variables or for unobserved 
past and future periods , a l ess rigid definition of 
stationarity is often used i n practice. A ser ies Xt 
is said to be weakly stationary , stationary i n a wide 
sense , or to possess second-order stationary if its 
expected mean at any t ime position is equal to a con­
stant and its autocorrelation function p (t) is a 

funct ion of a finite time difference t = x I t . t _ I 
~ J.+i 

only. The concept of stationarity is important i n 
examining the effects of unremoved periodicities between 
the above first and second phases of analysis of a 
time series . 

2-2 The Periodic-Stochas t ic Model 

Several model i ng techniques are extensively dis­
cussed in various publications and dissert ations (8] , 
[1 2], (16), (23). Since it is the stated purpose of 
this o;tudy t o review one such technique, the periodic­
stochastic mode l , the equations and assumptions are 
briefly summarized below. For a det ailed discussi on of 
the technique see Yevjevich [23) . 

The model being considered is paramet ric , with 
ampl i tudes as cons t ants for the i nferred sign i f icant 
harmonics in periodic parameters . The basic form of 
the periodic portion of this model requires that each 
periodic hydrologic parameter in t he model be modeled 
as a sum of several independent sine and cosine func­
t i ons. Thus, if v, is the value of any periodic para-

meter (such as the mean, variance, skewness, et c.) at 
time T within a fundamental period w of a given 
hydrologi c series t o be modeled and mathematical l y des­
cribed, then 

v 
T 

v + 

A mathematically 

\1 =; + [ t 
T j=l 

(2 - 1) 

equivalent form of Eq. (2-1) is 

A. cos ( 21ljT )+B. sin ( 211~1') ] 
J w l 

(2-2) 

2 

w 
where 1 2 v= \1 t he mean of \1 series, (2- 3) w t =l T T 

With \1 
T 

the parameter values along the period w, 

and z = number of significant harmonics. 

The Fourier coefficients A. and B. ofsignificant 
J J 

harmonics, are obt ained from the estimates VT of v, 

by using the leas t squares estimation method: 

w 

A. 2 L: v (~) -) w t a l 
T COS W , 

(2-4) 

and 

(II 

B. 2 L: v sin (¥). J (&) 
t =l T 

(2- S) 

The amplitude cj and the phase angle e. of 
J 

Eq . (2-l) 

are related t o the coefficients A. and B. by 
J J 

c. v A~+ B2 
J J 

(2-6) 

and 

e. tan -1 (~) J (2- 7) 

The maj or problem encountered at this point in 
the modeling process of per iodic parameters is det er­
mining the number of significant harmonics Z to be 
incl uded in Eq . (2-1). Analytical methods of i n fer ing 
the value of Z have been suggest ed by Schuster (19) , 
Walker (21) and Fisher [9). All of these have limita­
tions when applied to hydrological data . Yevj evich 
(24) discusses the following practical method. Let 

s2(v ) be the estimate of t he variance of the w 
T 

estimates v, of vT, and let the variance of the j -th 

harmonic be 

Var h. = (A. 2 
+ 8. 2)/2 . (2-8) 

J J J 

The amount of the vari ance s2(v ) explained by the 
T 

j - t h harmonic i s estimated by the rat io 

(2-9) 
with 

S2 
(V ) 

1 
w 

(V - V )
2 

• w- 1 l: T -r=l T 
(2-10) 

w 

where V= 2:: v w l= l T (2-11) 



Once the portion of explained variance by each harmonic 
is estimated, those harmonics which are significant 
may be chosen by setting a significance level based on 
experience and choosing as significant those harmonics 
whose explained variance exceeds the chosen signifi­
cance level. A significance level of 0.01 or 0.02 may 
be chosen for this purpose . Previous studies [16] 
have indicated that for hydrologic parameters of daily 
time series, such as mean, standard deviation, and 
autocorrelation coefficients, that harmonics computed 
beyond the first six are rarely significant. 

Another empirical method is suggested by Yevjevich 
[23) using two criteria, Pmin and Pmax as given belo~ 

for the inference of ~, with 

P . = k[w/cn] 112 
m~n 

p 1 - p . max m1n 

(2-12) 

(2- 13) 

where k = a constant, n = the number of years of 
record, c = the highest moment used in computing a 
parameter and w = the period. A value of k = 0. 033 
may be i nitially chosen but it could be changed to 
suit the particular application. Using Eq. (2-9), if 

6 
L A Pj < Pmin the process is not considered to be 
jcl 

periodic. If this inequality is reversed, then Z 
harmonics are considered to be significant where ~ 
1,2, ... ,6 , is the minimum number of harmonics which 
satisfies 
z 
L A P. > P A value of Z = 6 is chosen in case 
j =l max 

the second inequality is not satisfied for Z = 6. 

The model as applied by Quimpo [16) and Tao [20] 
to series of daily river flows considers as periodic 
parameters the mean ~, and the standard deviation 

o~ , thus the model for daily river flow series 0 • -p, T 

becomes 

(2-14) 

where p represents the year, T represents tho day 
within a year and e: = the approximate second-order p, T 
stationary, stochastic dependent series . The series 

c is obtained as follows by using ~ and ~ , the p, T T T 

periodic means and standard deviations evaluated 
through inferred numbers and estimated parameters of 
harmonics 

y 
p , -r 

(2-15) 

TheY 
p ,T 

series is then standardized to zero mean 

and unit variance, to become the 

e: 
p,T 

y - v 
p,T 

S(Y) 

" . e: ser~es, p, T 

(2 - 16) 

3 

where Y = t he mean of Y series, and S(Y) = its 
p,T 

standard deviation. With the inferred second -order 
stationary series £ , the analysis of time dependence p,l 
begins. Common·dependence models for stationary time 
series are the autoregressive schemes, moving average 
schemes, and mixed autoregressive-moving average 
schemes (ARMA). Box and Jenkins [4) and Jenkins and 
Watts (11] ' provide the complete analytical treatments 
for these modeling schemes. Yevjevich [22) has demon­
strated some physical evidence for hydrologic dependent 
stationary series to be represented by autoregressive 
schemes. In this study the autoregressive models will 
be used exclusively . The general m-th order autore­
gressive model of a non-periodic process is given by 

£ . 
l 

m 

L: 
j=l 

a. e: •. + l;l. ' 
) ~-) 

(2- 17) 

in which a . = the autoregressive coefficient, m = the 
J 

order of the model, and ~i = the assumed underlying 

independent stationary stochastic process. 

For discrete time series used i n this study, the 
popul ation autocorrelation coefficient pk for lag k 
is defined by 

cov (Xi' Xi+k) E(XlXl+lt)-E(Xi)E(Xl+lt) 

fit • [var(Xi)var(Xi+lt) I 1/2 • [E(Xi)- (EXi) 211/2 [E(xf+lt)- (EXi•lt) 21 l/2 

(2-18) 

in which Xi and Xi+k arc observations at times i 

and i+k, respectively, cov(Xj, Xi+k) is the autoco­

variance function , and var(Xi) and var(Xi+k) are 

vari ances at lag 0 and lag k, respectively. 

For the open series approach, the pk are esti­

mated by the sample serial correlation coefficients, 
rk, as follows 

(2-19) 

~~i th N " the total number of sample observations . From 
estimates of ~erial correlation coefficients, rk, it 

is possible to obtain estimates of autoregressive co­
efficients, llj, of Eq. (2- 17) for any order m by 

using the Yule-Walker equations (4]: 

... 

+ 

+ ••• + a 
m 

(2 -20) 



Since these equations are linear in aj, j : 1, 

2, ... , m, they may be solved efficient l y for large 
values of m on a computer by Gaussian e limination 
technique [10). For smaller values of m it is often 
more efficient to use a direct algebraic approach. 

Estimates a. of the autoregression coefficients 
J 

o. for the first three order models are: 
J 

and 

and 

First-order model , m • 1 

Second-order model, m = 2 

rl - rl r2 
2 

1 - r 1 

a = 1 

r2 - rl 
2 

1 - r 
2 

1 

Third-order model, m • 3 

2 
(1-r~) (r1 {1-rl ) (rl-r3) -

al 

a2 

a . = 
.) 

(l-r2)(1 -2r1 
2 

+ r 2) 

(1-r2) (r2 ~· :-2 
2 

- rl 
2 

- rl 

(l-r2) (l-2r
1 
2 + r~) 

<. 

(2-21) 

(2-22) 

(2-23) 

r2 - r 3) 
, (2-24) 

r3) (2- 25) 

(2- 26) 

The estimated autocorrelation coefficients may be 
~onsidered to be periodic and expressed as rk,t' 

~= 1, 2, ... , T~l ,2, ... , w. They are estimated in t he sane 
,;ay as in Eq. (2-19) except that N is replaced by n, 
the number of years of data if w- t > k and by n-1 if 
w- r < k. If periodicities in the autocorrelation are 
~ ignificant, the autoregression ~oefficients ar e also 
s iMni ficantly periodic, in which case the Yule-Walker 
t'ltttations , Eq. (2-20) , are modified to suit, and 
~e lutions to the periodic coeffi cients are given by 
'>:tla: - la Cruz and Yevj cvich (18). 

Selecting the order of the autoregressive model 
is the first step , in order to insure that the residual 
ccr i cs , t 1, is close to an independent series. A 

~impltficd method to accomplish the task of sel ecting 
rile proper order i s proposed by Yevjcvich [23]. This 
method uses the coefficient of determination, RJ, as 

r he criterion for selecting the order of the model. 
rhc coeffici ent of determination is ~he part of the 
variance of series '\ • which is expl ained by the 

·.dccted model. The remaining portion of the variance 
i~ that of the independent component, ~i . The 

4 

estimates of coefficients of determination R~ 
linear autoregressive 

2 2 
Rl = rl 

R 2 
2 

2 
rl + 

models are 

The selection criteria ::rre as follows: 

For the first-order model 

For the second-order model 

J 
for 

(2-27) 

(2- 28) 

(2-29) 

R 2 
2 ::rnd R~2 - R2

2 
< 0.01, 

.) - (2-31) 

and for the third-order model 

R 2 
2 R/ > 0. 01 , 

Once the order of the autoregressive model is 
chosen, the independent stochastic series is computed 
by 

m 
e:. 

l. - ~ aj e:. 
1-j 

~ · 
'•1 

l. l m m r - L: L: ~ aj rk-j 
k=l j co l 

(2-33) 

The ~i series is then tested for independence 

and if shown as such, is accepted as a second-order 
stationary independent s tochastic process, assuming 
that autoregression coefficients are not periodic . 
Values of the t. series are used to obtain the proba-

1 

bility distribution function of the best fit to their 
tmpirjcal frequency distribution. Tao [20) reviews 
severai possible probability distribution functions 
as distributions for ~· component . 

l 

:!-3 Past Applications of t he Periodic-Stochastic Model 
to Hydrologic Time Series 
Applications of the periodic-stochastic modeling 

technique of time series in hydrology arc found in the 
literature for such cases as riverflow, long-term 
climatic changes, etc. Adamowski and Smith [2] s tudied 
the technique as a means of simulating the daily rain­
fall over Bark Lake, Ontario. The model used ''as one 
in which only the harmonics in tho mean were removed. 



The correlogram of the residual series was found to 
have persistence at lag one with a periodic appearance 
for larger lags, though this part of the correlogram 
is well defined within the tolerance limits drawn for 
the independent series. A linear autoregressive model 
of the first order (a1 m 0.097) was chosen because the 

coefficient of determination is not significantly in­
creased for higher-order models. 

The distribution of the independent series ti 

was not reported, but the conclusions of the study did 
indicate results other than what the authors expected. 
Some of the conclusions of the Bark Lake study were: 
(1) Several short-term periodicities appeared at the 
5 to 6 day, 8 to 10 day and at 16 day intervals in the 
resulting independent series; and (2) The short-term 
periodicities, if they exist at a l l, are difficult to 
justify and model by existing generation techniques. 

In studies on rainfall series Landsberg(l4) found 
short-term periodicities in the calculated independent 
component of dai ly rainfall series at Woodstock, 
Maryland. Computed periodicities were of 3 day, 5 to 
7 day, 15 days and 25 days length. Dickenson [6] 
showed that anticyclones located north of 60°N latitude 
can block the normal flow of air over the earth and 
possibly be correlated to a 10 day or a lesser cycle 
in rainfall patterns. This anticyclone theory was in 
part discarded because it was of little value in ex­
plaining the calculated periodicities greater than 10 
days and is of a questionable value for explaining t~e 
short-term periodicities of 3 days or less. The pro­
bability distributions of the assumed independent 
stochastic series ti was not reported in any of these 

studies· of the structure of daily rainfall series. 

Roesner and Yevjevich [17) model ed the monthly 
precipitation and runoff series by using the periodic­
stochast ic model. It was found that the resulting 
correlograms of dependent series, after the removal of 
significant harmonics in the mean ~. and in the 

standard deviation a, of the series , were strongly 

periodic unless a large number of harmonic terms were 
removed. Also, the resulting dependent series for 
some runoff series may have periodicity in the autore­
gressive coefficients. Periodic autoregressive 
coefficients invalidate the assumption of the second­
order stationarity of the series . Jones and Brelsford 
[12] found the autoregressive coefficients periodic in 
modeling several kinds of meteorological data. The 
periodicity in these coefficients is explained as being 
related to changing physical mechanisms from season to 
season. No description of the probability distribution 
of the inferred independent series was reported either 

by Roesner and Yevjevich or by Jones . 

In the area of streamflows , Quimpo [16) applied 
the periodic-stochastic modeling to 17 daily river flow 
series, which had no man-made disturbances in records. 
Some of the major conclusions of that study are as 
follows: (1) Both the estimated daily means and the 
daily standard deviations of river flow have the annual 
periodicity; (2) The estimated correlation coeffi­
cents rk are often shown to be periodic; and (3) 

,t 
The resulting dependent stochastic process, after 
removing the estimated periogic functions of the mean 
~ , the standard deviation a , and the autocorr ela-

T T 

5 

tion coefficients o. , could in general be acceptable 
J,T 

as stationary of the second-order autoregressive models. 

Tao [20) used the same model and the same 17 daily 
river series for investigating the.distributions of 
the resulting independent series , ~. . The major con-

1 

elusions of his thesis are: (1) Errors in estimating 
the number and amplitudes of significant harmonics in 
the mean and standard deviation greatly affect t he 
accuracy of the resulting dependent stochastic se~ies, 
&. ; (2) Tails of distributions of independent c. 

l l 

series are generally long, found to be well approxi­
mated by the simple exponential functions; and (3) 
Tested probability distribution funct!on did not fit 
well the frequency distributions of Ci; none passed 

the chi~square test of goodness of fit; among the 
several distribution functions tested, the smallest 
chi-square values were for the double-branch gamma 
distribution, exemplified by a sharp peak at the mode, 
high kurtosis, and a long exponential tail. 

Chin [5) used the periodic-stochastic model to 
describe the long-term climatic changes. He found an 
indication of the overall temperatures of the earth for 
many thousands of years in the long series of oxygen 
isotope data taken from deep sea sediment cores. In 
this study four separate series were modeled by 
deterministic-stochastic methods. In all but the 
longest series. almost periodic terms were replaced by 
nonlinear or linear trends. In the longest oxygen 
isotope data series, which extends approximately 
126,000 years into the past, the long-term almost­
periodic effect s due to various astronomical cycles, 
first described by Milankovich, were modeled and re­
moved. The independent residuals found in the three 
series after the trend was removed were found to be 
approximately normally distributed, while the one 
series which was modeled with an inferred almost­
periodic component showed a sharp peak in the distri­
bution of the independent residual series; it was 
fitted by a double branch gamma distribution. 



Chapter Ill 
PRACTICAL CONSIDERATIONS IN ANALYSIS OF PERIODIC TIME SERIES 

3-1 Approximate or Temporary Stationarity 

It has been found necessary for most structural 
models of hydrologic time series to remove the periodi­
city in at least the mean and standard deviation. The 
deterministic portion of the periodic-stochastic pro­
cess should describe periodicities whi ch exist in 
nature. After the periodic parameters of historic data 
have been inferred and removed, the residual series, 
Eq. (2-16), is assumed to be stationary up to the 
highest order parameters which are shown to be periodk. 
This assumption is true only if the number, ampl i tudes 
and phases of the inferred harmonics ln periodic para­
meters are equal to the true state of nature which is 
unknown. If the number or amplitudes of the removed 
harmonics differ from the true state of nature, the 
resulti ng residual series will in fact contain some 
harmonics in its parameters. This will produce errors 
(which have been apparently ignored in t he past) in 
any further anal ysis of the series, since the analysis 
of the residual dependent series assumes its stationa­
rity. Errors resulting from the estimation of numbers 
and parameters of harmonics in the residual dependent 
series are explored in this chapter. 

3-2 Error Propagation 

Tao [20] noted in his dissertation that errors 
involv~d in estimating the harmonic components and the 
order of the autoregressive model had the potential of 
seriously altering the respective residual series pro­
duced at each stage of the analysis. In his analysis 
the errors were assumed to be so small as to be negli­
gible. However, specia l attention is given to the 
effects of such errors in this study. For example of 
possible serious effect s of errors i n the estimate of 
harmonics in periodic parameters of the time series, 
see Tao [20). 

Errors made in the autoregressive modeling of a 
true autoregressive process in general do not have 
such a profound effect on residuals as the errors in 
estimation of the number and the amplitudes of har­
monics. If the dependent stochastic component includes 
the errors , it can be written as 

(3-1) 

If e~ and e
0 

represent errors made in estimating the 

harmonic terms in the mean ~, and the standard devia­

tion series a,, respectively, then it can be demon­

strated that if e
0 

and e~ are constants the correlo­

gram p£(l) will not be affected. The real problem is 

when e and e are time dependent errors (or in 
1.1 0 

other words they are periodic) and have a significant 
serial correlation structure. 

The remaining aspect is the overest imation or 
underestimation of the autoregressive coefficients in 
the dependent stochastic process of the model. The 
question is one that pertains to mathematical statistics, 
but a few generalizations are offered here on various 
aspects of the problem. The estimates commonly used 
for autoregressive coefficients are often based in the 
estimates by serial correlation coefficients , pt(k), 

6 

of the particular realization of a stochasti c process 
i nvestigated. Depending on the computational formula 
used to estimate the serial correlation coefficients, 
the estimates of autoregressive coefficients will be 
either biased, less biased, or will be the minimum 
variance estimates [ll]. In either case the estimates 
of autoregressive coefficients increase in accuracy as 
the length of the series of stochastic process being 
investigated increases. The real problem is not in 
overestimation or underestimation of autoregressive 
coefficients but in determining the number of coeffi­
cients to be estimated. Quenouille [15], Jenkins and 
Watts [11), and Yevjevich (23], suggest methods for 
estimating the order of the autoregressive model . As 
tho number of autoregressive terms increases, they 
generally have a corrective influence on each other, 
and the actual overestimation or underestimation of 
autoregressive coeffic i ents tend to decrease. 

Relating error s in estimating either t he number 
or the magnitude of autoregressive coefficients to 
errors which will be propagated into the distribution 
of independent stochastic components, a small effect 
i s found. lf the true distribution of the resulting 
independent stochastic process is normal, the dependent 
stochastic process e

1
, Eq . (2-17), represents a sum of 

normally distributed random variables, which i s normal 
regardless of constant multipliers involved. Thus a 
change in the number or magnitude of autoregressive 
coefficients results only in a change of the variance 
of the normal distribution of the 'i variable , but 

the basic form of the distribution will stay the same. 

3- 3 Effect of Unremoved Harmonics on Autoregressive 
Models 

A linear autoregressive equation may be represent­
ed by 

1 (3-2) 

with m = an unknown value to be determined, where 
a . : the true autoregressive coefficients, and c. 

J 1 

a normally distributed and uncorrelated variable, with 
unknown mean and variance. 'fhe problem in this 
approach is that the model may have harmonic terms 
left in the estimated residual series. This residual 
series is now designated by Xi. 

The computed dependent series X. may be 
represented as a function of remainink harmonics in 
the mean, ~T ' the standard deviation, o,, and the 

true autoregres sive process Ei' namely as 

(3- 3) 

where ~, and a, have the form of Eq. (2- 1) and £i 

is defined by Eq. (3-2). It should be assumed that 
the amplitude of any harn1unic included in 1.1, or o, 
is so sma ll , that it would not be included as signifi­
cant in any previous tost for significance of harmonic 
terms . However, the sum of all unremoved or over­
removed harmonic terms may explain a relatively large 
portion of the variance of the x1 series . 



The first st ep in analyzing the serial dependence 
st r ucture of the nonstationary Xi series is to find 
the expected correlogram of the Xi series, denoted by 

Px (k). In order to accomplish this task it is useful 

to simplify the Xi series and examine i t in various 

stages. As a first approximation, it is assumed t hat 
the computed residual series Xi has the remaining 

harmonic t erms in its mean only, with Eq. (3-3) then 
.given in the form 

(3-4) 

It is assumed that u, and ei are independent . The 

expected correl ogram Px(k) for lag k, k = 1,2 , ... , of 

the X series can now be computed 

(3-5) 
and by substituting for u, then 

Px Ck) (3-6) 

Cow 

•x~> · --~~------~.-r-~~~~~--~----~----LL 

or 

2 
0 

E 

( 3-13) 

By combining all of the above terms the fo llowing 
expression for the expected correl ogram of the non­
stationary Xi seri es is 

PxCk) 

m 2 2 L C./2 cos [A ~ (k)] + pE(k) • OE 
j=l J J 

y (C~/2) 
j=l J 

2 
+ 0 e: 

(3-14) 

A f urther simplifying assumption is made, that the 
time dependent seri es, Ei of Eq. (3-2), is in fact of 
the order one , i.e. , 

and 

Using this assumption expressions for 
can be used [24] as fol lows: 

(3-15) 

(3-16) 

(3-17) 

(3- 7) For these expression substituted into Eq . (3-14) then 

where m = the number of harmonics, A: = 211'j/w , k = the 
J 

lag (in days), and w = the length of fundamental 
harmonic (w = 365 days for daily series), and'= the 
point on the periodic time scal e. Since all of the 
cosine terms in summations of Eq. (3-7) are orthogonal, 
they are mutually independent. Also, t hey are i nde­
pendent of the e: i series. Thus, the covariance 

operator may be taken inside the summations resulting 
in the expression 

cl eos{>j<•> • ei] , {cl «>> (>j (••k) • •l>J} • Cov [<i' <i •kl 

•x~l - ~~~~--~~.--~L-~----~----~~-------­
I Var[Cj co• (1j (T) + ej) I • Var c1 J•l . 

(3-8) 

Substitution can be made as 

Var (C. cos (A ~ (i) + 9 .)] 
J J J 

(3-9) 

Var 2 
e:i = oe: (3-10) 

and 

m 
L Cov[C. cos (A!(i) +e .) , c. cos (A!(i+k) +e .)] 

j=l J J J J J J 

m c~ 
L _j_ COS(A! (k)) 

j =1 2 J 

By definition 

Cov (e:i' Ei+k) 
Var (e:1) 

(3-11) 

(3-12) 
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(3-18) 

For small lags (k = 1,2,3), the sum of the 
terms cos [A!(k) ] could be approximated by unity. 

J 
With this assumption there are only two unknown 
quantities in the expected correlogram. These are 

l:C~/2 and o.1 . 

It is now possible to set up a system of 

simultaneous equations and solve for I c~ J 
and ~1 • using 

only Px (1) and Px(2). 

2 - 1 m 
al (1-al) + L C~/2 

P x<l) 
'=1 J (3-19) 

2 - 1 m 
C~/2 (1-al) .. l: 

j=l J 

and 

2 2 -l m 
a
1 

(1-a
1

) + I cZ.12 
Px(2J 

'=1 J 
2 -1 m 

C~/2 (l-a1) + l: 
j=l J 

(3-20) 



Solving these two simultaneous equations for the 
two unknowns yields 

Px(l) - Px(2) 
a l 1 - PxCl) 

(3-21) 

and 

m 
C~/2 = cx(l) - al) 

2 -1 
I (1-al) 

j=l J 1 - Px(l) 
(3- 22) 

Thus, f rom the estimated correlogram of the Xi series 

it is possibl e to estimate a, the true lag one auto-

m 2 
regressive coefficient, and I C./2, the variance of 

j = 1 J 
the remaining harmonic terms of the Xi series. With-

out such estimates, common practice is to assume that 

I C~/2 = 0, for a 1 = Px(l), which may lead to mislead­

ing results. 

If the model used for investigat ion of the raw 
data has periodicity in both the mean and the standard 
deviation, the calculated residual ser ies Xi may 

have periodicity in the mean and stancard deviation as 
given by Eq . (3-3) . The influence of the term crt e:i 

is not simple to analyze mathemat ical ly. However, its 
presence must be accounted for in the modeling process . 
Experimental analysis by Jones and Brelsford (12] sug­
gest s that the time series wi th the periodic structure 
in the standard deviation may also have the periodic 
autoregressive coefficient s . Both Jones (12) and 
Yevjevich (23] suggest simi lar modeling techniques to 
handle periodicity in the autoregressive coeffi cients, 
the influence of the periodic standard deviation in 
the calculated Xi series is presumably accounted 

for. Tao (20] used the periodic autoregressive coeffi­
cients . However, Chi n [5] did not use the periodic 
autoregressive coefficients in the analy.sis of the 
almost-periodic series in his investigation . Because 
both Tao and Chin found the double branch gamma dis­
tribution as the best fits for the residual series , 
after removing the est imated time dependence of the 
Xi series, it suggests that the modeling of the 

periodic autoregressive coefficients may not entirel y 
account for the presence of the remaining periodicity 
in the standard deviation of the Xi series. This 

subj ect is i nvestigat ed in the experimental part of 
this study. 

If the true nature of the e:i series of Eq . (3-2) 

is of a high-order (two or greater), the analysis be­
comes more complex. Kendall and Stuart (13] give the 
fo llowing form of the expected correlograrn of an auto­
regressive process of the order two 

e:i • 0 1 e: i-1 + 0 2 e: i-2 + ti ' (3- 23) 

k/2 sin (ke + wl (l2 
p£(k) sin (\II) 

(3-24) 

where 

e arc cos c-~) (3-25) 

8 

and 

1 + Cl2 
tan w = --- tan e (3-26) 1 - a2 

The variance of the £i series of the order two 
is [24) 

Var (e:i) = a~ = [i 2 2 r1 - 0.1 - a2 - 2a1 
(l • p£(1) • (3-27) 

2 

Theoretically, with the harmonics in the mean 
only, it should be possible to substitute Eqs. (3-24) 
through (3-27) into the expected correlogram of Eq. 
(3-24), and solve it for the unknown values of 

a 1, a2, and I C~/2 in term.s of values of Px(l), 

Px(2) and Px(3), which can be estimated by Eq. (2-19). 

Thi s computation is mathematically intractable, and 
past investigations have resorted to modeling the 
periodic autoregressive coefficients. It can be con­
cluded at this moment that the X. series has become 

~ 

complex, and investigators must resort to simplifying 
assumptions and techniques . 

3-4 Distribution of Independent Residuals 

If it is assumed here that the modeling procedure 
used for generating sampl es of the assumed independent 
series of Eq. (2 -33) allows the errors in est i mated 
harmonic terms o f the mean c~t) and the standard 

deviation (o,) to be carried into the estimated s ecies 

from the sample as the independent stochastic componen~ 
then the eff ect s of the unremoved or overremoved 
harmonic terms on the distribution of the estimated 
independent series can be investigat ed. The series 
X. r epr esent s now the residual series after the 
aGtoregressive d ependence has been removed, or 

(3-28) 

The difference between Eq. (3- 28) and Eq . (3-23) is in 
the term ~i' which is assumed to be a series of uncor-

related, normal l y distributed random variables. The 
ideal s t a t istical approach would be to mathematically 
describe the exact theoretical distribution of the Xi 

series of Eq . (3-28). Theoretical approaches such as 
the use of the characteristic functions or the convolu­
tion formulas [7] are available to describe distribu­
tions of sums and products of independent random vari­
ables . These approaches are mathematically complex 
and when combined with the complex expressions for ~. 

and o,, they become intractable. 

Most investigators resort to simpler solutions by 
fitting the residual series by several known distri­
bution functions , and accept as the result that distri­
bution which has the smallest least chi-square val ue. 
This simplifying procedure is used here also. The two 
probability density functions used to investigate dis­
tributions of i ndependent residual series here are the 
normal and the doubl e-branch exponential probability 
functions . 

The NormaL ProbabiZity Function. The probability 
density function of the normal distribution used is 

f(t) 1 
(3-29) 

• 2 2 
exp [ - ( t - IJ) I 2a ) , 

o& 



in which ~ is the expected value and o standard 
deviation of t. 

The maximum liklihood estimated of parameters of 
the normal density function are 

N 
1 L: F;i ll = N and i =l 

(3-30) 

[ ~ 
N • ] 1/2 

8 = L (~i - ll) 
i=l ( 3-31) 

in which N is the sample size. 

The Bil.atera~ or Doub~e-Branch E.xponentia~ 
Probabi~ity Density Function. The probability density 
function of the bilateral exponential distribution is 

f ( t) = ...!._ exp [- .!. I~ - 1l I) 
2S S 

(3-32) 
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in which ~ i s the 2xpected value of the random 
variable ~i and 2S its variance. 

If a value of either 1l or B is obtained from an 
apriori knowledge of the process, then a maximum likli­
hood estimator of the remaining parameter can be 
derived analytically. If neither u nor S is known, 
an empirical approach using the numerical methods may 
be required to maximize the likelihood function for 
estimating the two parameters. For the purpose of-this 
study, it was assumed that an apriori knowledge for u 
is availabl e , with u=O, because ~i is an independent 

random series derived from £. which has been 
l 

standardized as a (0,1)-series . Thus , t he maximum 
likelihood estimator of S is given by 

N 

a = - L I ~i I 
N i=l 

(3-33) 

By simulating the Xi series of Eqs . (3-3) and 

(3-28) distributions, can be experimentally determined 
and compared to distributi ons found by Tao and Chin. 



Chapter IV 
INVESTIGATION BY USING THE EXPERIMENTAL METHOD O F GENERATED SAMPLES 

4. 1 ~1ethod of Analysis 

The method of experimental analysis is through 
data simulation, using random numbers generated in a 
computer. Several samples of the form of Eq . (3-3) 
were generated using the Monte Carlo technique. Each 
sample was then analyzed using the various steps of the 
~eneral periodic-stochastic model as described in 
Chapter II. The end result of each generation and 
analysis of samples is a frequency distribution curve 
~f the assumed random independent variable denoted by 
ci. This frequency distribution represents the results 

of either an insufficient or excessive estimate of 
harmonic analysis of the periodic-stochastic process. 
The sequence of st eps in the generation and analysis is: 

~: Generate ~i sample, Ci = N(O,l), i =.1 , 2, 

... , N, with N = 365 n, n =the number of years of 
simulated daily data. 

Step 2: 
needed, 

Generate the autoregressive process when 

m 
e:. = l a. e. . + I;. , i = 1, 2, ... , N, with 

l. j =1 J 1 - J 1 

m = the order of autoregressive model, and aj, j = 1, 

2, ... , m, the estimated constants . 

Step 3: Introduce periodic dependence as deviat ions 
in the mean and standard deviation, u, = fu(•), o, 
f

0
(T), with fu(•) , f 0 (t) the periodic functions of 

any form, with the exact equations as inputs. 

Step 4: Generate (daily) series with errors, x1 
ut + o, e:i' i = 1, 2, ... , N. 

Step 5. Estimate 
mean and standard 

experimentally periodic functions of 
deviation, _ 

u, = fll (T), o, = f0 (•), 

with f (t), and£ (t) estimated by Fourier analysis, 
)J 0 

with number of harmonic terms m' · 

Step 6. Remove estimated periodic parameters from Xi 

series by 

i 1 , 2 , . .. , N, and 

-yi yi 
t . . 

l 
i = 1, 2, ... , N, with yi the mean 

0 

of y1 , 

0, and 

y 

-oy = the standard deviation of E: ,. 

S(e:) = 1. 

Step 7. Estimate a. coeffic1ents and remove the 
J 

dependence of autoregressive process from c. by 
1 

-e:. -
1 

lD 

l 
j • l 

a. £ .. , with m' and m input constants 
J 1-) 

aj, 1, 2, . .. , m' , by using Eqs. (2-21) through 

t2-26) . 
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~- Est imate frequency distribut ions of ti' and 

estimate mean, variance, skewness , kurtosis, mode, 
and chi-square in test for normal distribution (0,1). 

Each simulated sample corresponds to approximately 
ten years of daily time series data (365 x 10 = 3650 
values). The mode, skewness and kurtosis of the fre­
quency distribution of ti were initially computed. 

The mean and variance of the frequency distribution 
and of the fitted normal function are 0 and 1, respec­
tively, since the sample was standardized in the 
modeling process . 

It was desirable to remove sampling autocorrela­
tion by the computer in the generated random numbers , 
ti' in each sample. A computer subroutine was used to 

obtain several samples of initially standard normal 
but uncorrelated random variables. Distributions of 
t i were then compared to the standardized normal dis-

tribution by the chi-square goodness of fit test. A 
check for independence of the l;i variable was made 

by computing and plotting the correlogram for each 
sample generated. The t olerance limits given by 
Anderson [3) for correlograms of normal independent 
random variables were computed by 

- 1 - t IN-2 
Q 

N-1 

- 1 + t r'N-2 
Q 

(4-l) N-1 

in which ta is the normal deviate corresponding to 

the probability a of rejection of a hypothesis, and 
N is the number of observations . For the fir st stage 
of this study, N was fixed at 3650. These tolerance 
limits are plotted on correlograms of generated 
standard normal ti variables, Fig. 4-1. 
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Fig. 4-1. Correlograms for the Six Generated Samples 
of Standard Normal Independent Variable, 
~i ' Used to Generate Study Sampl es . All 

Six Series of ti are Serially Independent . 



The chi-square test for goodness of fit is widely 
used in fitting distributions and is described in many 
standard text books of statistics. In executing the 
chi-square test the range of sample observations is 
divided into k mutually exclusive class interval s 
each having~ observed frequency Oi. If the expect-

ed class frequencies from probabilities of the distri­
buti·on being tested are denoted as 1\ then a chi-

s quare statistic is 

2 
X (4. 2) 

This statistic is asymptotically aistributed as a chi­
square distribution with k-1-~ degrees of freedom, 
where ~ is the number of distribution parameters 
estimated from data. Values of the chi-square distri­
bution for various degrees of freedom and probabil ity 
levels are found in standard tables. If the computed 
chi-square statistic is larger than the critical value 
f rom the table for a given probability level, then the 
tested distribution is rejected. 

The generated normally distributed random devia­
tes, ti' may be transformed to standardized gamma 

variates, ~i· with skekness ~ on the basis of the 
2 Wilson-Hilferty approximation to the x - distribution 

as follows, 

4-2 Series with Overremoved and Underremoved Harmonic 
Terms 

The first set of samples was analyzed to test 
whether the over-removal and under -removal of har ­
monic terms in the mean, ~T' and in the standard 

deviation, ~ , wil l change significantly the underly­
't 

ing distribution of the residual independent variable 
~ -. namely to show sharp peaks similar to those found 

l 

by Tao and Chin. The samples of the process 

(4-4) 

i n which the periodic parameters are assumed to be 

5 
IJ " a :10 + " (Aj cos 211jt + B. sin 211jt) , (4-5) 

T T L.,_, W J w 

with 

A. 
J 

and 

j=l 

B. = 3. 0, for j•l, 2, ... , 5, 
J 

(4-6) 

(4-7) 

wi th ~i = the independent standardized normal process, 

were generated and then analyzed as a periodic­
st ochastic process as described in Chapter 11, i nclud­
ing also the use of the periodic autoregressive 
coefficient s . 

Figure 4-2 shows the frequency distribution of 
the generated sample and the estimated independent 
residual series , after one through ten harmonics were 
removed. A first-order autoregressive scheme was used 
in generating the dependent stochastic process £. 

l. 
The coefficient of· determination was used to measure 
the effect of the dependence model, with Eqs. (2-27) 
through (2-32) specifying the approach applied consis­
tently to all samples. The frequenty distributions 
of Fig. 4-2 show that the peaks of density curves are 
a direct result of the number of harmonic terms u.sed, 
being either overestimated or underestimated in com­
parison with those of the original data. When the 
right number of harmonics is inferred and removed, the 

Table 4-1. Statistics of Distributions of Estimated t 1 Series After Removal of One Thr ough Ten Harmonics . 

Series were Generat ed by Using Five Harmonics for the Periodic Mean and Periodic Standard Deviation. 

(1) (2) (3) (4) (5) (6) (i) (8) (9) (10) 
Total Explai ned 

Nu'llber Variance by Chi- Bet: a C:hi-Square 
of Removed Hnrmor.ics Square Parameter For Double-

Har:r.onics Standar.d For (Equ:~.tion Branch 
Sample Remo\'ed Mean Deviati on lt,ode Skewness Kurtosis Normal 3-33) Expon~ntial 

1 1 15.7 37.2 -0.1 0 .7895S 22 . 95 592.84 0 .3769 52.99 

2 2 36.6 51.5 -0 .1 -0.11897 16. 94 344 . 31 0.4825 33 .60 

3 3 61.8 59. 9 -0.1 1.10923 16.36 310.97 0.4733 32.91 

4 4 77.4 64.7 -0.1 0.59519 8.62 43.98 0.5061 30.69 

5 5 90.3 73.3 -0.1 1.11643 37.84 544.59 0.4066 38.25 

6 6 91.0 85.2 -0.1 0. 87061 35.89 486.80 0.3864 36.99 

7 7 91.3 87.3 -0. 1 0 .14577 63.77 403.22 0.4058 33.81 

8 8 91.7 88 .8 0.0 -0.33920 27 .73 431.32 0.5055 31.02 

9 9 92.1 89.4 -0.1 -1.011954 22.51 174.65 0.5579 30.16 

10 10 92.2 89.8 -0.1 -0 .07283 28.82 181.01 0.5365 30.46 
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resulting peaks in frequency distributions of ~i 

should be attributed to inaccuracy in estimat ing the 
amplitudes and phases of the removed harmonics . 

Table 4-1 gives statistics associated with 
frequency distributions shown in Fig . 4-2. This table 
indicates that almost all of these frequency distribu­
tions have slightly negative modes. Such pr operties 
were also found by Tao [20}. It can also be seen that 
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a double-branch exponential distribution fit s the 
estimated frequency dis tributions well enough to pass 
a chi-square test in all cases . The standar d normal 
distribution is rejected in all cases, except when only 
four harmonics were removed, but in that case the 
double-branch exponential function gives a much better 
fit. It can also be seen that the kurtosis coeffi­
ci ent is always high, as it is expected for the sharp­
peaked frequency distributions illustrated in Fig . 4-2 . 
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Fig. 4-2. Frequency Distributions of Estimated Independent ~i Process After One to Ten Harmonics in Parameters 

of the Periodic-Stochastic Process are Removed Sequentially, with an Initial Standard Normal Process, 
with Added Periodicities in t he Mean and Standard Deviation, Each Represented by 5 Harmoni cs . 
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Chapter V 
EFFECT O F REMAINING HARMONICS AND AUTOREGRESSIVE COEFFICIENTS 

ON FREQUENCY DISTRIBUTIONS OF RESIDUALS 

5-l Methodology 

I t was demonstrated in the proceeding chapter that 
mis-estimating the number and amplitudes of harmonics 
i n parameters of a hydrologic time series would lead 
to peaked frequency distributions for the inferred 
independent t. . The effects of the remaining harmonic 

1. 

terms will be studied in more detail in this chapter. 
To perform this analysis the generated series Xi are 

analogous to the inferred ~i series of the previous 

chapter. This is done so that the exact mathematical 
composition of the Xi series may be known before its 

frequency distribution is found, whereas the exact 
mathematical composition of the inferred €i series 

of the previous chapter was difficult to control and 
predict. By studying the frequency distribution of 
the Xi series with different known mat hematical com-

positions , more may be learned regarding the effects of 
remaining harmonics and autoregressive terms on the 
frequency distribution of the inferred independent 
series €. in the modeling process. 

1. 

5-2 Series with Harmonics Remaining in the Mean 

In this section, the study of generated series is 
in the form, 

(5-1) 

with defined by Eq . (2-2) and by Eq. (3-2) . 

Data generated using Eq. (S-1) have harmonics i n 
·the mean only. The first set of samples was generated 
with no autoregressive terms. The frequency distribu­
tions of the Xi ser ies were estimated as the ampli-

tudes in the remaining harmonics in ~, were increased. 

The variable used to describe the proportion of the 
variance of Xi explained by the remaining number of 

harmonics in ~, is 

p 
m 

m 

L 6Pj 
j=l 

where 6P. is defined in Eq. (2-9) . 
J 

distributions of six of the 
under this approach. It is 
are small for low values of 

ten cases 
seen that 
P The 
m 

(5-2) 

Figure S-1 shows 

investigated 
the deviations 
influence of 

~, is large for frequency distributions with double 

peaks. Table S-1 gives the main distribution param­
eters for all ten cases investigated under this appro­
ach. The only noticeable trends shown by this set of 
samples is that as Pm increases the kurtosis coeffi-

cient decreases, while, as expected, the chi-square 
statistic obtained in fitting the standard normal 
function increases. 

The next set of generated samples was also based 
on the appr oach of Eq. (S-1), but for this set a 
first order autoregressive scheme was superposed on 
the generated Xi series . In order to examine the 

influence of the remaining autoregressive dependence 
in the process of eliminating it by the estimation 
procedure, the Pm value was held constant at 0.95 
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and the assumed population values of a
1 

were 

allowed to vary over the range 0.1 to 0.9, the range 
within which values of a1 are commonly found in 

hydrologic time series. 

~ .15~ I i . 15 -~--:--l 
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Fig S-1. Frequency of Estimated Xi Series When 

Harmonics are Left in the Mean, the Initial 
Normal Distribution or t i Series For: 

(1) p m 

(4) P m 

0.95. 

0.1, (2) P
111

"' 0.3, (3) P
111

" (}.5 , 

"0.7, (5) P
111 

• 0.9, and (6) P
111 

Table S-1. Distribution Statistics for Xi Series 

from Samples with Harmonics Remaining in 
the Mean. No Autoregressive Terms 
Included. 

(1) (2) (S) 

2 

4 

5 

6 

7 

8 

9 

10 

Modes 
(3) (4) Skewness 

Riah.t Left Coefficient 

0.1 0.1 

0.2 0.1 

0.3 o.s 

o.:t 0.1 

o.s o.s 

0.6 0.3 

0.7 o.s 

o.8 o.7 

0.9 0.9 

0.95 1.3 

·O.l 

-0.5 

-o.s 

-o.s 
-0.7 

-0.9 

-1. 1 

-1.1 

o.os 

o.os 

o.os 

0.05 

0.05 

0.04 

0.04 

O.Ol 

0.02 

0.01 

(6) (7) 
Chi-Square 

lurtosis for Fittin~ 
Coefficient N( O,l) 

2.95 

2.93 

2.87 

2.78 

2.65 

2.49 

2.30 

2 . 07 

1.81 

1.67 

5.69 

7.89 

13.52 

25.00 

41.12 

53.24 

109.85 

238.62 

396.74 

595.45 

Figure S-2 shows the distribution of the estimat­
ed Xi series for six of the ten samples generated. 

Comparing the results of different series, it can be 
seen that the presence of a large positive auto­
regression coefficient has a smoothing effect on the 
estimated distribution of Xi of these samples. 

Table S-2 gives the values of distribution parameters 
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Fig . 5-2. Dist ribution of the Xi Series for Samples 

with Harmonics i n the Mean Remaining and an 
Autoregressive Series of Order-One for: 

(1) P = 0.95, a 1 ~ 0.1, (2) P 0.95, a 1 0.3, 
(3) P: 0.95 , a1 a 0.5, (4) P: 0.95, a1 ~ 0.7, 
(5) Pm"' 0.95 , a1 = 0.8, (6) Pm 0.95, a1 = 0.9 . 

gives a correl ation coefficient of 0.97. If Eq. 
(3-21) is not used, i t may be assumed that the values 

of column 8 in Table 5-2 are the best estimates rl 
of the true values of a1, given in column 2. This 

assumption would obviously lead to erroneous conclu­
sions regarding the true state of an autoregressive 
process found i n nature. 

5-3 Series with some Harmonics Unremoved in both the 
Mean and the Standard Deviation 

In this section the independent residual series 
is assumed to follow the complex form of Eq. (4-4) , 
which allows the number of remaining harmonics i n the 
mean and the standard deviation to be simulated. The 
first set of sampl es under this approach is generated 
under the assumption that no autoregressive dependence 
is present; however, the amplitude of the remaining 
harmonic terms i n the mean ~, and in the standard 

deviation o, were allowed to vary. The proportion 

of variance explained by the remaining harmonic terms 
i n ~, . and o, was set equal, but increased for 

each new sample . Again, the explained variance is 
measured by Pm. Figure 5-3 shows the estimated fre-

Table 5-2. Distribution Statistics for X. Series with Harmonics in the ~lean Held Constant (Pm 0.95) and 
1 

an Autoregressive Scheme of Order-One. 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 
Modes Chi-Square 

Sample al Right Left Skewness Kurtosis N(O , l) Fit rl r2 Oi l 

1 0.1 1.1 -1. 1 -0.003 

2 0.2 1.1 -1.1 -0. 0(12 

3 0.3 1.1 -1.1 - 0. 002 

4 0. 4 1.1 - 1. 1 - 0.001 

5 0.5 1.1 -1.1 -0.005 

6 0.6 1.1 -1.1 0.001 

7 0.7 1.1 - 1.0 0.006 

8 0.8 1.1 -1. 1 0.014 

9 0. 9 1.0 -1.1 0.047 

for ten samples used under this approach. The con­
clusions from this table are that wi th an increase of 
a

1 
the chi-square value of the standard normal distr i-

bution fit decreases, while the skewness coefficient 
increases marginally. 

The generated samples under this approach allow 
Eq. (3-21) to be checked. Using the estimates r 1 
and r

2
, obtained by using Eq. (2-19), the values of 

a
1 

are estimated by Eq. (3-21) and g~ven i n the last 

column of Table S- 2. The values of a 1 are close 

to the true value of a
1

, given i n the second column 

of Table S-2. A l inear regression between the first 
nine values i n column 2 and column 10 of Table 5-2 

1.65 617.54 0.955 0.948 0.143 

1.65 573 .76 0.958 0.948 0. 243 

1.66 531.39 0.962 0.949 0. 343 

1. 68 491.05 0 .965 0.949 0.444 

1. 69 452.12 0.967 0.950 0.545 

l. 73 442.10 0.970 0.951 0.646 

l. 78 396.74 0.972 0.952 0.749 

1.87 297.03 0.975 0.954 0 . 850 

2.08 252.61 0.979 0.960 0.951 

quency distributions of xi i n f our of the ten 

samples . The sharp-peaked curves i n all cases re­
present frequency distributions of the xi series , 

while the lower curves correspond to the frequency 
distributions of the generated independent normal 
process ~ -· Table 5-3 gives the distribution param-

1. 

eters for all ten samples. 

The chi-square values in Table 5-3 indicate that 
the l argest dif ferences between the generated sample 
and the estimated frequency curve of X. are obtained 
when the remaining harmonics in ~, and oT explain 

between 40 percent and 60 percent of the total variance 
of these parameters. With the 40 percent or 60 per­
cent explained variance, the mode has the largf;}St nega-
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tive values, the skewness and kurtosis coeff icients 
are the l argest, and the chi-square values are a l so 
t he largest. 

In the next set of samples generated, the harmon­
ics in the 11, are held constant while the amplitudes 

of harmonics in the o, were allowed to vary. Again 

no autoregressive term was used to produce the 

series from the generated Ci series. 

X. 
1 

" g 
Q .20 
! 
~ ! . to 
:. 

".30,..---.1 ~~··----; 

~ .20l & 
I! ... 
! 
~ . 10 

:i1 

.00 ·3 

Fig . 5-3 . Distribution of the Xi Series with Equal 

Amplitudes and Phases of Unremoved Harmonics 
in the Mean and Standard Deviation for: 
(1) p := D.2 , (2) p = 0 . 4, (3) p = 0 . 5 , m m m 
(4) Pm = 0.6 . 

Table 5-3. Distribution Statist i cs for t he x. 
l 

Series 

with Equal Amplitude and Phases in Un-
removed Harmonics in the Mean and the 
Standard Deviation. No Autoregressive 
Term is Present. 

(1) (2) (3) (4) (5) (6) 
Chi-Square 

Sarnph p 
• Mode Sk C•'IICSS Xurt.osis N(O,I ) Fi t 

0.) -0.3 0.442 3.63 20.83 

2 0 . 2 -0 .5 0.759 4 .07 99.25 

3 0.3 -0 , 7 0.946 4 .28 172.24 

4 0.4 - 0.7 1.052 4 .36 236.48 

s 0.5 - 0.5 1.087 4.33 236.84 

6 0 .6 -0.5 1.065 4. 25 223 . J 2 

0. 7 : o .5 0.988 4.12 185. 55 

8 0.8 -0.3 0 .851 3.97 139.91 

9 0.9 -0.3 0.629 3. 81 52.75 

10 0.95 - 0.1 0.454 3.72 30. 45 

The ratio c2 ;c2 measures the differences- in s m 
amplitudes of the remaining harmonics in 11, . Values 

2 2 of Cs and em are computed by Eq. (2-6) and the 

ratio is given the range from 0 .111 to 19.0 i n the 

samples tested. The lar ger the ratio c2;c2
, t he s m 

l arger is t he proportion of the variance explained 
by the unremoved harmonics in o, as compared t o 11, . 

15 

Figure 5-4 gives the di stribution of the estimated Xi 

and the genera~ed ~i series in four of the samples . 

Table 5-4 gives the distribution parameters for all 
ten samples. 1t is difficult to determine from Table 
5-4 when the worst conditions occur. It appears that 
equal variance expl ained by the unremoved harmonics 
in ll , and o, will produce l argest differences when 

the variance of o, explained by unremoved harmonics 

is either much greater or much smaller than the vari ­
ance explained by the unremoved harmonics in lit · No 

definite trends can be noticed in the distribut ion 

parameter s as the ratio of c;;c~ increases. 

The next set of generated samples uses the same 
approach of Eq. (4 - 4) . The third sequences ~i and 

the equal explained variances of llT and o, by the 

unremoved harmonics were used. However , the phase 
angle e

1 
of Eq. (2-7) varied from 45 degrees to 405 

~ 
" " ~ .20 .. ... 
~ 
! .10 :. 

. 3l~ 

.... 
" c 
" " 0" .. .. ... 

.20 

.. 
> 
.,.; 

. 10 +' 
! .. 
"' 

Fig. 5-4. 

3 

2 

\ 

Distribution of the X. Series When the 
l 

3 

Amplitude of Unremoved Harmonics in the 
Mean are Held Constant (Pm = 0.5), and the 

Amplitudes of the Unremoved Harmoni cs in 
t he Standard Deviation are Allowed to Vary 

for : (1) c!;c! = 0 . 25 , (2) c!;c! = 0 . 667, 

(3) c2;c2 
= 1.so (4) c2;c2 

= 4.oo 
s m , ' s m 



Table 5-4. Distribution Statistics for the Xi Series 

with Unremoved Har&anics in the Mean are 
Held Constant (Pm = O.S) , and the Unremov-

(I) 

Suplo 

3 

s 

6 

a 

9 

10 

ed Harmonics i n the 
Allowed to Vary. 

(2) (3) (4) 

C2/C2 
• • Mode Ske~ness 

O. lll - 0 . 7 0 .719 

0.250 -0.9 0.962 

0 . 429 - 0.9 1.116 

0.667 - 0.7 1.207 

1.000 -o.s 1.240 

1.500 -0.5 1.212 

2.333 -O.l 1.110 

4 . 000 -0 .2 0.915 

9 .000 -0.1 0.592 

19.000 -0.1 0.364 

Standard Deviation are 

(5) (6) 
Chi-Sc,uare 

Xurtosis 1~(0 ,1) Fit 

3.159 34.64 

3.614 132.78 

4.051 255.13 

4.461 297.99 

4.830 396.43 

5.132 431.95 

5.331 450.20 

5.336 376.74 

5. 145 253. 20 

4 .894 188.39 

degrees for the fundamental harmonic of oT was held 

constant at the 45 degrees. The difference between 
the fundamental phase angles of ~T and ot series, 

69, is defined by 

b9 = 91 (for a ) - 4 5 . 
t 

(S-3) 

The amplitudes of the remaining harmonic terms in 
~t and ot are kept equal , and no autoregressive 

term was present for the ti series . Figure S-S shows 

six of the 13 samples generated under this approach. 
Table S-S gives the distributions paramet ers for all 
13 samples. The interesting aspect of this approach 
is the reappearance of the double-peak distribution, 
when the phase angles of the fundamental harmonics of 
ut and ot were out of phase . The phase angles 

are nearly equal in most cases of observed series, and 
distributions are usually with single sharp peak , 
negative mode, high kurtosis and positive skewness. 
No distribution in these samples had a single-peaked 
and a positive mode distribution. 

The next set of generated samples was used to 
detect the influence of the unremoved autoregressive 
dependence in the Ei series, while retaining the 

unremoved harmonics in ~T and ot of Eq . (4-4). 

The fourth sampl e of ~i was used in this generation 

of samples. In the first set , an autoregressive 
scheme of the order one was used in generating the Ei 

series. The remaining harmonic terms in ~t and ot 

expl ained each 40 percent of the variances, whil e the 
autoregr essive lag-one coefficient a1 was allowed 

to vary between 0.1 and 0.9. Figure 5-6 shows four 
cases in this category. Table S-6 gives the param-
eters of Xi distributions for all ten cases. These 

data sets show a. surprising influence of the unr emoved 
part of the autoregressive dependence. As a1 in 
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Fig. 5-5. 

2 

6 

A.-
Distribution of the X. Series When the 

1. 

Phase Angle Between the Harmonics in Mean 
and Standard Deviation are Allowed to Vary 
for: (1) 69 0°, (2) 69 = 30°, (3) 69 "' 
90°, (4) be= 150°, (S) be • 180°, (6) be • 
330° . 

skewness and a negative mode have smaller values. The 
fact that the chi-square values computed for fitting 
the standard normal distribution decrease as 0.1 

increases was r eflected in the decrease of skewness. 
This shows a l esser i nfluence of the large kurtosis 
on the estimated Xi distribution, indicating that a 

large a.1 causes the skewness to decrease faster than 

the kurtosis increases. 

The final set of samples was used with an auto­
regressive scheme of the order two in the t i series, 

and the presence of unremoved harmonics in ~t and ot 

of Eq. (4-4) . The fifth sample of ~i was used. 

Again the percent of the explained variance by un­
re.moved harmonics in ~t and at was held constant 

at 40 percent , the fundamental harmonics in both 
parameters were in phase, while autoregressive 
coefficients were varied according to the following 
relationship 

(S-4) 

(S-S) 

the ti ser ies increases, the kurtosis of the distri­

bution of the Xi series increases , while the positive and (S-6) 

16 



Table 5-5. Distribution Statistics of the Xi Series When the Phase Angle Between 

and the Standard Deviation Vary. No Autoregressive Term Present. 

the Harmonics in the Mean 

.... 
u 
c: 

t .. ... .. 

(1) 

Sample 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

.30'-

.zo 

: . 10 
! .. 
"' 

~ 
~ .20 
g. 
<> .. ... .. 
.!; 
... 10 
! .. 
"' 

Fig. 5- 6. 

(2) (3) (4) (5) (6) (7) (8) (9) 
es em t.e Modes Chi- Square 

Degrees Degrees Degrees Right 

45 45 0 

75 45 30 

lOS 45 60 0.1 

135 45 90 0.1 

165 45 120 0.5 

195 45 150 0.5 

225 45 180 0.5 

255 45 210 0.5 

285 45 240 0.3 

315 45 270 0.3 

345 45 300 0.1 

375 45 330 

405 45 360 

3 

2 

Dis tribution of the Xi Series with Equal 

Amplitudes and Phases of the Harmonics in 
the Mean and Standard Deviation, and an 
Autoregressive Order-One Series , with ~1 
Allowed to Vary: (1) ~1 = 0.2, (2) ~1 = 
0.4, (3) ~1 • 0.6, (4) ~1 • 0.8. 
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Left Skewness Kurtosis N(0,1) Fit 

- 0.3 0.915 5.36 376.74 

-0.2 0.886 5.33 264.54 

-0.5 C.799 5.24 326.23 

-0.1 0.210 4.78 123.86 

-0 .3 -0.468 4.64 131.03 

-0.5 -0.289 4.39 66.61 

-0 .5 -0.736 4.29 71 .08 

-0.5 0.164 4.37 103.50 

-0.5 0.401 4.61 112. 20 

-0.5 0.619 4 .91 173.56 

- 0.5 0. 776 5.16 359.38 

-0.2 0.879 5.32 394.38 

-0.3 0.915 5.36 376.74 

Table 5- 6 . Distributions Statistics for the Xi 

(I) (2) 

2 

4 

5 

6 

7 

8 

9 

0.1 

0.2 

0.3 

0.4 

o.s 

0.6 

0.7 

o.a 

0 .9 

Series When the Amplitudes and Phases of 
Harmonics in the Mean and Standard Devia­
tion are Held Constant, with an Autoregres­
sive Series of Order-One, with ~ . Allowed 
to Vary . 

(3) 

Node 

-0.7 

-0.7 

·0.6 

-0.5 

- 0 . 5 

-0.5 

-o.s 

-0.3 

-0. 1 

Skevness Kurtosis 

1.028 

1.021 

1.007 

0.988 

0.958 

0.910 

0.829 

0.663 

0.209 

4.634 

4 .674 

4.737 

4.819 

4 .923 

5.063 

5.264 

5.555 

5.975 

(6) 
Clti-Squarc 
N(O,I) Fit 

250.42 

279.66 

250.42 

279.46 

289.49 

312.36 

280.38 

173.97 

145.44 

(7) 

0.29 

0.36 

0.43 

o.so 

0.56 

0.63 

0. 71 

0.80 

0 .90 

This allowed the autoregressive process to remain 
stable, and allowed s everal different spectra for auto­
regressive processes to be used [10] . Figure 5-7 shows 
the estimated distribution of Xi for four cases. 

Table S-7 gives the distribution statistics for all 
ten cases of this categor y. The noticeable results 
for this set of samples show that when the a1 
coefficnet increases the a2 coefficient decreases, 

the negative distribution mode decreases, the positive 
skewness increases while the kurtosis decreases. It 
is again not clear what are the worst effects in this 
case. All of the estimated distributions of Xi 
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Table 5-7. 

(1) 12) 

0. 1 

2 0 . 2 

3 0.3 

4 0.4 

s 0.5 

6 0.6 

7 0.7 

8 0.8 

9 0.9 

3 

I 
1 

i 
J 
3 

Distribution of the Xi Series with Equal 

Amplitude and Phase in Unremoved Harmonics 
of the Mean and Standard Deviation, and an 
Autoregressive Order-Two Dependence Which 
is Allowed a1 and a2 to Vary: (1) a1 
0.2 , a2 = 0.6, (2) a1 = 0 . 4, a 2 = 0.2, 

(3) a
1 

= 0.5, a
2 

= 0.0, (4) a1 = 0.6, a 2 
-0.2. 

Distribution Statistics of the Xi Series 

When Amplitudes and Phases in the Unremoved 
Standard Deviation Series are Equal, with 
an Autoregressive Series of Order-Two Which 
Allowed a1 and a 2 to Vary. 

{3) 

0.8 

0 .6 

0.4 

0.2 

0.0 

-0.2 

-0.4 

-0.6 

-0.8 

{4) 

Mode 

-0.3 

-0.4 

-0.5 

·0. 5 

-0.6 

-0.7 

·0. 7 

· 0.7 

- 0.7 

{S) 

Skewness 

1.086 

1.108 

1.114 

1.117 

1.119 

1.121 

1.123 

1.124 

1.127 

{6) 

Kurt<>sis 

5.77 

5 .26 

4 .95 

4.78 

4.66 

4.55 

4 . 47 

4 . 43 

4.42 

{7) 
Chi-Square for 

N{0,1) Fit 

377.35 

310.73 

376.81 

343.76 

328.28 

414.74 

443.25 

378.99 

331.54 

represent a complex transformation of the initial 
generated sample from a standard normal distribution, 
f; i . 

Table 5-8 shows the assumed true population 
autoregressive coefficients a1 and a2, the 

estimated values of t he f irst and second serial corre­
lation coefficients r 1 and r 2, and the estimated 

a1 and a 2 by using the est imat es r
1 

and r 2 and 

Eqs. (2-22) and (2-23) . The wide discrepancy between 
the population values a1 and a 2 and the estimates 
- -a1 and a2 could mainly be attributed to the presence 

of unremoved harmonic terms in ~T and crT . Again, 

an i nvestigator can make erroneous conclusions regard­
ing the true state of the autoregressive process Ei 

in the observed series of hydrologic variable . 

Table S-8. Effect of Unremoved Harmonics in the Mean 
and Standard Deviation on Autoregressive 
Or der-Two Estimates 

(1) (2) (3) (4) (S) (6) {7) 

5311ple a1 a2 Tl r2 a1 a2 

0.1 o.a 0.907 0.824 0.900 0.008 

2 0.2 0.6 0. 824 0.683 0.813 0.013 

3 0.3 0.4 0. 747 o. 568 o. 730 0 .023 

4 0.4 0.2 0.677 0.4 77 0.654 0. 034 

5 0.5 o.o 0.610 0.406 0 . 577 o. 054 

6 0.6 -0. 2 0. 545 0.351 0.503 0.077 

0.7 - 0.4 0.482 0.310 0.433 0.101 

8 0. 8 -0 .6 o. 417 0.282 0 .362 0.131 

9 0.9 - 0.8 0 .351 0.264 0. 295 0.161 

S- 4 Discussion of Experimental Results 

It was demonstrated that the distribution of the 
estimat ed independent stochastic component Xi series 
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by Eq. (4-4) from a generated periodic- stochastic 
process would exhibit a sharp-peaked distribution in 
comparison with the generated sample of an independent 
normal process . This is true with .and without ~he 
presence of the autoregressive terms in the ei series; 

however, it does require a periodic standard deviation 
a,. Therefore,the unremoved or overremoved harmonics 

in the standard deviation of the estimated independent 
stochastic component of periodic-stochastic process 
probably account for the sharply peaked distributions 
of t he estimated independent stochastic component . 
This distribut ion problem is illustrated in Fig. S-8 . 
The periodic standard deviation creates problems 
in estimating the distribution )of the independent 
stochastic component, ~-. The series ~- may not 

l l 

be identically distributed, nor necessarily indepen­
dent, if the mean is periodic and the ei series is 

an autoregressive process. A strictly analytical 
solution of this problem seems to be difficult but 
the validity of any solution could be checked by simu­
lation on computers. 

It is also apparent that the presence of a per­
iodic mean, IJT in Eq. (4-4), causes the mean and 

the mode of the peaked distribution of estimated 
independent component, e .• to be somewhat different, 

l 

and in fact causes the mode to be negative, for the 
unremoved or overremoved harmonics in ~T and crt 

while they are in phase. Thepresence of the unremoved 
or overremoved autogressive dependence i n ~i series 

may also have a slight effect on the kurtosis . 
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~i Component. 
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Table 6-1. 

Coefs. 
from 

Series Stn. 

2 

3 

4 12 

6 11 

7 

8 2 

12 

10 

Simulated X. 
l 

Series Using Standard Normal Noise with Harmonics in the Mean and Standard Deviation 

and Non-Periodic Autoregressive Parameters Estimated from Historical Daily Data. 
Kurtosis of Estimated Independent Residuals, ~i' after Estimating and .Removing 

Skewness and 
Significant Har-

monies and Non-Periodic Autoregressive Dependence . 

SIMUUTED ESTHIATED 

Periodicity in Mean Periodicity in Std. Oev. Periodicity in Mean Periodicity in Std. Dev. 

NHM j NilS j Skewness Kurtosis 

-200.3 -112.4 0.3784 0 

145.4 185.0 0.3971 

3 -85 . 5 -79.9 0.0982 

4 58.0 65.6 0.0550 

-39.7 -72.5 0.0490 

Experiment repeated 
~<ith same simulated 
data 

Experiment repeated 
with same simulated 
data 

s 1 -218.7 -144.4 .4337 0 

2 138.1 189.2 .341>5 

5 

3 -18.2 44.4 .0145 

-1.2 17.6 .0020 

5 -14.7 -11.8 .0022 

1 -234.1 -88.6 .4115 0 

2 134.6 173.3 .3163 

3 22.4 22.8 .00(>7 

4 14.8 -11.9 .0024 

5 -11.8 5.6 .OOll 

-180.7 - 129.5 .2880 0 

189.9 206.6 .4586 

l -17.7 

4 -51.4 

5 -33.7 

3. 7 .0019 

14.6 .0166 

31.9 .0126 

0.033 

0.009 

-0.005 

3 1 -563.8 -6.91 . 7026 

2 198.8 193.8 .1703 

3 -100.0 -158.4 .0779 

1 1 -382.9 202.1 .6556 6 -5n. 1 -32.1 . 7135 1 1 -457.1 257 .s .9492 0.032 

Experiment repeated 
with same simulated 
data 

216.9 189.7 .1794 

3 -3.9 28.9 .OOlS 

2.3 3.3 .0000 

s -22.4 -21.1 .0020 

6 -84.4 -146.9 .0621 

6 1 -598.9 25.5 .7506 1 1 -496.5 241.0 0.9610 0 . 033 

2 188.8 161.1 .1287 

3 20.6 18 .9 .0016 

4 2.8 -15.7 .0005 

5 -2.4 19.1 .0008 

6 - 117.1 - 164.0 .0848 

5 1 -888.4 509.9 0.8546 1 1 -798.3 648.3 0.6009 6 -858.1 383.0 .6699 1 1-1435.61158.1 .9471 0.002 

163.1 -217.5 .0561 

s 

2 -20.2 -311.0 0.0791 

3 -17.7 -1.5 0.0010 

4 -6.2 11.0 0.0005 

5 13.6 -5.3 0.006 

-42.5 64.3 .0045 

4 -88.9 49.7 .0079 

5 -24.7 86.0 .0061 

6 - 168.9 -78.2 .0263 

Experiment repeated 
with same simulated 
data 

6 1 -935.9 502.9 .7352 1 1-1454.61237.5 .9530 0.016 

159.6 -319.8 .0832 

-200.3 -112.4 0.3784 1 1 -123.3 -85.5 0.2706 5 

2 145.4 185.0 o. 3971 

3 -85.5 -79.9 0.0982 

58.0 65.6 0.0550 

5 -39.7 -72.5 0.0490 

-92.4 -22.6 .0059 

4 83.6 26.3 .ooso 

19.6 99.0 .0066 

6 -11.5 -88.0 .0051 

-215.7 -144.9 .4364 

134.6 186.6 .3423 

3 -18.3 40.6 .0128 

4 14.1 11.2 .0021 

-16.5 -18.2 . 0039 

1 1 -197.7 - 132.1 .8984 0.040 

5 1 -563.8 -6.91 .7026 2 -382.9 202.7 .6556 6 

11.4 91.7 .0298 

-561.1 -32.6 . 6393 I 1 - 440.5 l29.3 .9104 0.009 

198.8 193.8 .1703 

-100.8 -158.4 .0779 

Experiment repeated 
with s ame simulated 
data 

242.1 218.8 .2155 

-5.2 12.1 .0004 

4 - 18.5 13.1 . 0010 

5 -2.3 12 . 1 .003 

6 -136.9 -183.6 .1061 

6 1 -579.2 -5.2 .6819 1 1 -449.1 242.9 .9192 0.008 

20 

243.1 189.8 .1934 

3 -27.1 -8.9 .0017 

15.1 10.1 .0007 

s 4.3 24.6 .oon 

6 -99.8 -180.3 .08>63 

3.015· 

2.958 

3.003 

3.0.18 

3.UI2 

2.999 

2.969 

2.97l 

3.S82 

3.657 



Coefs. 
from 

Seri~es Stn. 

11 11 

12 

13 2 

14 12 

15 

16 2 

17 

18 

19 

20 

2 
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Table 6-1. (Continued) 

SIMUI.ATEO ESTIMATED 

Periodicity in Mean Periodicity in Std. Oev. Periodicity in Mean Periodicity i n Std. Oev. 

NIIN j NHS j NIIN j A. 
J 

NHS j Aj Skewness llurtosis 

5 -888 . 4 509.9 0.8546 2 1 -798.3 648.3 0.6009 6 - 781.3 291.6 .6919 2 1 - 1462. 0 1174 .9 .8526 0.020 2.972 

2 -20.2 -311.0 0.0791 2 -235.9-267.6 0.0723 135.0 -156.4 .0425 2 -461.7 -498.8 .ll20 

3 - 17. 7 -1.50.0010 

-6.2 11.0 0.0005 

13.6 -5.3 0.0006 

Experiment repeated 
wi th same simulated 
data 

5 -200.3 -112.4 0.3784 

145.4 185. 0 0.3971 

3 - 85'.5 -79.9 o.o982 

4 58.0 65.6 0.0550 

5 -39.7 -72.5 0.0490 

3 -563.8 -6.91 0.7026 3 

2 198.8 193.8 0>1703 2 

3 -100.8 - 158.4 0.0779 3 

Experiment repeated 
wi th same si,.ulatcd 
data 

5 1 -200.3 -112. 4 o. 3784 3 

2 145.4 185.0 0.3971 2 

- 85.5 -79.9 0.0982 3 

4 58 .0 65.6 0.0550 

s -39.7 -72.5 0.490 

Eltperim""t repea ted 
with sue simulated 
data NHS in estia:ates 
increased t o three 

experiment repeated 
•ti th sat>e simulated 
data NHS in estiutes 
increased to six 

Experiment repeated 
wit.h same sbwlated 
data ~'!iS in estimates 
i ncreased to twelve 

Exper iment repeated 
with same sillulated 
data, non-parametric: 
11ethod for estiutts 

s -200.3 -112. 4 .3784 s 
2 145.4 185.0 .3971 

3 -85.5 -79.9 . 0982 

4 58.0 65.6 . 0550 

-39.7 -72.5 .0490 

Experiment repeated 
wi t h same simulated 
data 

3 

4 

s 

-152.1 -37.3 .0244 

4 -12 . 9 2.0 .0002 

19.9 -70.6 .005·4 

6 100.9 75 . 3 . 01 58 

5 I -920 .7 558.6 . 6875 

2 -10.3 -350.2 .0728 

3 - 74.1 -3.1 .0033 

69.6 86.3 .0073 

3.8 -137.5 .0112 

1 -1448.7 1160.3 .8456 -0.003 3.084 

2 -441.4 -472.0 .1025 

- 123.3 -85.5 0.2706 s - 222.4 -126.2 .4261 2 -195.0 - 136.8 .3933 0. 059 

233 . 1 163.5 .5621 

3.ll8 

141.6 lOS. ? 0 .3750 135.1 189.4 .3526 

-382.9 202.7 . 6556 2 

11.4 91.7 .0298 

-50.2 - 108.9 .0502 

3 -22.8 29.1 .0089 

4 17.2 13.9 .0032 

5 -25.8 -11.9 .0053 

-546.4 - 47 . 4 .6767 

227. 4 224.7 . 2300 

1 l -432.4 210.0 .8656 0 .081 3.794 

6 1 -569.9 3.8 .7138 1 1 -430.2 207.6 .8652 -0.026 3.939 

2 205.7 182.9 . 1665 

-28.1 -4.5 .0018 

4 25. 4 20.9 . 0024 

-7 .s -35.4 .0029 

6 - 89.8 -145.9 .0645 

-123.3 -85.5 0.2706 s 1 -232.1 -102.7 .4116 1 -239.7 - 151.0 .3589 

2 280.1 183.3 .5012 

0.378 8.382 

141.6 105.7 0. 3750 

-66.4 -46.2 0.0786 

2 147.0 171.6 .3262 

3 -0.2 36.5 .0085 

4 11.8 -28 . 4 .0060 

s -5.1 18.5 .0024 

1 -221.3 -125.9 .4228 

2 130.0 192.3 .3510 

3 -24.4 36.0 . 0123 

4 20.7 - 14.1 .0041 

5 -20.6 -14.2 .0041 

(3) 1 -197.5 -138.6 .3540 

2 228.9 164.5 .4830 

3 1.3 -6.0 .0002 

0.191 4 .756 

-232.1 - 102.8 .4l16 (6) I - 239.7 - 151.0 .3589 -0.189 4 .S46 

2 147.0 171.6 .3262 280. 1 183.3 .5012 

-0.2 36.5 .0085 3 2.0 -3.3 .0001 

4 11 .8 -28.4 .0060 4 5.5 -3.5 .0002 

5 -5.1 18.5 .0024 5 15.7 25.1 .0039 

5 1 -198.1 -106.3 .2956 0.2) I -192.6 · 148.3 .3368 -0.089 3.294 

2 174.3 220.7 .4626 2 239 . 9 186.3 . 5261 

-8.9 -5.4 .0006 3 -7.4 - 16.2 .0018 

4 - 50. 2 18.1 .0167 11 . 4 20.4 .0031 

5 -8.3 22.2 .0033 5 -23.7 -43.2 .0138 

lion-Parametric 0.019 3.074 

-123.3 - 85.5 o.2706 s 1 -196.0 -105.6 . 2878 5 1 -189.6 -144 . 1 .2918 0.760 9.584 

141.6 105.7 0.3750 

-66.4 - 46 . 2 0.0786 

75.7 31.7 0.0809 

-47.2 -43.2 0.0492 

5 
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176.1 221.1 .4638 

3 - 8.3 -3.4 . 0005 

4 -52.0 18.4 . 0177 

-7.6 19.9 .0026 

-220.1 -125.7 .4166 

130.4 193. 7 .3540 

3 -27.5 34.8 .0128 

4 21.0 15.3 . 0044 

s -21.6 -12.4 .0040 

233.8 183. 4 . 4545 

3 -5 .5 -18.8 .0020 

4 7.7 22.3 .0029 

5 -24 .2 -43.8 .0129 

5 -198.7 -133.1 .3032 0.732 7.541 

2 224.7 100.8 .4048 



Chapter VI 
APPLICATIONS OF EXPERIMENTAL METHOD IN USING HARMONIC COEFFICIENTS 

FROM HISTORICAL DATA, NORMAL AND GAMMA NOISE AND EFFECT 
OF PERIODIC AUTOCORRELATION 

6-1 Methodology 

In the previous chapter frequencydistributions of 
the constituted X. series were studied when the in-

1 

put was the normal noise with periodicities left in 
the mean and, with the exclusion of results given by 
Tables 5-l and S-2, in the standard deviation. Also, 
in four cases (Tables S-4, S-6, S-7 and S-8) the 
effects of an added autoregressive scheme were investi­
gated. 

In this chapter estimates of parameter~ from 
recorded historical data, used earlier by Quimpo 
[16) and others, are applied to produce the input 
data which has a variable distribution in i ts random 
component and the distribution of the independent 
resi duals, ~i' is re- examined. 

The stations pertaining to this study are as 
follows: (1) Tioga, Far Twins, New York; (2) Oconto, 
Gillette, Wisconsin; (11) Powell, Arthur, Tennessee; 
and (12) St . Maries, Lotus, Idaho. 

A larger sample size of 40 years of daily data is 
used throughout and generated data are of the form 
given by 

X. 
l 

= )JT 
+ 0 . 

T 
E. 

1 
(6-1) 

where T i (module w) and 

m 
E. ~ E. + ~i l j =l 1- j 

(6-2) 

The standardized random series , ~i' have either 

normal or gamma distributions . The gamma variates 
are obtained by Eq . (4-3) . This algorithm produces 
numbers which are ser ially uncorrelated but when a 
skewness , X, greater than 2 is applied the skewness 
of the variates differs significantl y f rom X (the 
difference increases when X increases) and also 
require standardization to zero mean and unit variance. 
In addition, the distribution is not strictly gamma . 
On the other hand, with the one-to-one transformation 
the algorithm is more economical than others and is 
therefore chosen for this study. 

The order, m, of the autoregressive process 
and the coefficients, ., are those estimat ed from 

J 
historical data. Harmonic coefficients from the 
original data are used but the numbers of significant 
harmonics are varied. Periodicities in the Xi 

series are then removed by inferring the numbers of 
harmonics and estimating the coefficients . The 
skewness and kurtosis of the independent residuals, 
~i ' were evaluated after removing the serial depen-

dence through a fitted non-periodic autoregressive 
scheme. 

For the second phase, a periodic autoregressive 
scheme as discussed in Chapter II is incorporated, 
with the means and standard deviations, IJT and ot' 

constant for all values of t. As before, a non­
periodic scheme is used to remove serial dependence 
and the distribution statistics are evaluated for 
the cases of normal and gamma noise. For the gamma 
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input, the skewness and kurtosis given i n tables are 
those evaluated after the a l gorithm is applied . 

6-2 Periodicities in the Mean and Standard Deviation 

The results for a normal input with a variable 
number of harmonics in the mean·and standard devia­
tion, denoted by NHM and NHS respectively, are given 
in Table 6-1. If the i nput does not contain any 
per iodicity in the standard deviation, as in the first 
three series, the ~i of the output are found to be 

normally distributed. The addition of one harmonic 
to the standard deviation of the i nput fo llowed by the 
removal of periodicities in the mean and standard 
deviation also resulted i n normally dist ributed 
independent residuals as seen in series 4 through 8 of 
Table 6-1. The results from the next five series, 
9-13 , show that , wi th the i nput subjected to two 
harmonics i n the standard deviation, the kurtosis 
can exceed three. The skewness and kurtosis increase 
when NHS is increased further and this i ndicates 
inferential errors regarding the number of significant 
harmonics in the periodic standard deviation. 

Although it appears that from t he results of the 
16th series only two harmonics in the standard devia­
t ion ~ere significant , the experiments were repeated 
with NHS in the output increased arbitrarily as given 
by numbers within brackets in the next three series, 
14-16 . This resulted in a decrease in the skewness 
and kurtosis. Results by using the non-parametric 
method given by the 20th series show the possibility 
of obtaining a normal output and emphasize the un­
certainties in the parametric method especially in the 
case of the two subsequent series for the input of 
which NHS = S.. 

The experiment w~s repeated using gamma noise 
and the harmonics from station 2 data with NHM = 5 
and NHS varying from 0 to 4 in the input. The results 
in Table 6-2 show, as in the case when normal noise 
was used , that differences between the input and output 
distributions tend to increase when NHS increases. 
However in this case there is a decrease i n the skew­
ness and kurtosis compared to the results in Tabl e 6-1 . 

6-3 Periodicities in the Autoregressive Coefficients 

The effects of periodicities in the autoregressive 
structure on the probabi lity distribution of i ndepen­
dent residuals formed by using a non-periodic auto­
regressive scheme are shown in Table 6-3 (normal 
noise) and Table 6-4 (gamma noise). The 3rd order 
autoregressive coefficients estimated from station 
data in which Tao (20) found periodicities in the 
serial correlation coefficients were used to produce 
series 1 of Table 6-3. It appears that the estimated 
coefficient s do not affect distributions. The other 
series were produced using the arbitrary harmonic 
coefficients representing periodicities in the 
serial correlation coefficients . When the amplitudes 
increase, the skewness and kurtosis t end to increase 
also. However, increasing the order of the process 
seems to have a normalizing effect. 

To produce the results of Table 6- 4 skewness 
coefficients of 1 and approximately 4 were applied 
to the ~i series. For low values of skewness and 

low amplit udes in the periodic autocorrelation 
coefficients, the distribution statistics are 



Table 6-2. Simulated Xi Series Using Standardized 

Gamma Noise with Harmonics in the Mean and 
Standard Deviation and Non-Periodic Auto­
regressive Parameters Estimated from Sta­
tion 2 Data. Skewness and Kurtosis of 
Estimated Independent Residuals, ~i' 

after Estimating and Removing Significant 
Harmonics and Non-Periodic Autoregressive 
Dependence. 

.St.ulated Est!Juted 

Nuaber of 
JlafW)rtic:s, 1 

Sel'ies Mean Std. Oev. Skewness Kurtosis Skewness Kurtosis 

1 5 0 1.062 4.81 0.919 4.47 

2 s 0 2.158 10.21 1.851 8 . 72 

3 5 0 4.30 31.69 3.61 24 .61 

4 s I 0.993 4.40 0 . 784 4.13 

5 s 1 1.988 8.83 1.575 7.44 

6 s 1 3 . 885 27.06 2.976 19.21 

7 5 2 0.982 4.39 0.635 4.02 

8 s 2 1.985 8.80 1.314 6.50 

9 s 2 3.872 26.16 2.611 16.53 

10 5 3 1.025 4.67 0.632 4.14 

11 5 3 2.096 9.95 1.287 6. 75 

12 5 3 4.197 32.78 2.542 17.28 

13 5 4 1.026 4.66 0.954 6.23 

14 5 4 2.097 9.85 1.612 9.28 

15 5 4 4.256 31.65 2. 796 19.66 

Table 6-3. Simulated Xi Series Using Standard 

Normal Noise and Periodic Autoregressive 
Scheme of Order m, m = 1,2,3. Means of 
Lag 1, 2 and 3 Periodic Serial Correlation 
Coefficients from 365 Values are 0.370, 
0.513 and 0.404 Respectively (Station 1 
Data). Series 1 is Based on Harmonics in 
Serial Correlation Coefficients of Station 
1 Data. Skewness and Kurtosis of Esti­
mated Independent Residuals, ~i' after 

..,.., .... 
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I 

I I 

Z I 
l I 

I I I 

.' Z I 
10 s 1 

Estimating and Removing Non-Periodic Auto­
regressive Dependence . 
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Table 6-4. Simulated Xi Series Using Standardized 

Gamma Noise and Periodic First Order Auto­
regressive Scheme. Means of Lag 1,2, and 
3 Periodic Serial Correlation Coefficients 
from 365 Values are 0.370, 0.513 and 0.404 
Respectively (Station 1 Data). Skewness 
and Kurtosis of Estimated Independen~ 
Residuals , Ci, after Estimating and Re-
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moving Non-Periodic Autoregressive Depen­
dence. 
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generally lower, regardless of the order of the pro­
cess . An increase in amplitudes usually results in an 
increase in the skewness and kurtosis of the ci 

series as in the case of normal residuals, but the 
interactions between the various combinations of sta­
stics seem to be highly complicated . 

The conclusions of this part of the study are 
fi·r stly that the existing methods of inferring 
periodicities in the standard deviat ion are inadequate 
as noted from ~he results in Chapter V. Further 
research is required on this aspect especially if the 
objective is to determine a more accurate distribution 
of the independent residuals. The alternative method 
of using the non-parametric method is not attractive 
because of the multiplicity of parameters that need 
to be estimated and the l ikelihood of incorporating 
the effect of large sampl ing errors into the mathe­
matical models. Secondl y, regarding the periodicities 
in the serial correlation coefficients , these do not 
seem to cause serious problems with respect to the 
estimation of probability distributions, provided 
that periodici~ies are not highly significant . If 
periodicities are found , higher -order autoregressive 
processes than indicated by the usual methods of in­
ference seem to be the remedy, and periodicities need 
to be removed prior to the evaluation of the distri­
bution statistics. 



Chapter VII 
CONCLUSIONS 

The main conclusions of this study are as follows: 

(1) The use of the periodic-stochastic model for 
hydrologic series to describe daily time series, with 
the annual periodicity in parameters, results often 
in a sharp-peaked curve of the estimated frequency 
distribution of the independent stochastic component 
in comparison with the population distribution which 
is normal (0,1). The frequency curve is also distorted 
when the population is non-normal. These deviations 
are caused by the modeling process and the sampling 
errors in estimating periodicities. 

(2) The distorted distribution of the estimated 
independent residuals of stochastic components of a 
periodic-stochastic process indicates the limitations 
in current methods of inferring the numbers of signi­
ficant harmonics and in the least-square estimation 
of Fourier coefficients of inferred harmonics. 

(3) Inferential errors pertaining to the periodi­
city in the mean do not seem to have a serious effect 

24 

on the distrib~tion of independent residuals. Larger 
errors in the e~timated distributions are caused by 
errors in the estimates of harmonics in the standard 
deviation. 

(4) Periodicity which remains in the dependent 
stochastic component of the periodic-stochastic process 
leads to biased estimates of autoregressive coeffi­
cients. 

(5) The bias is reduced by taking account of 
periodicities in the autocorrelation structure. 
However, these may not be highly significant and the 
greatest uncertainty lies in estimating periodicity 
in the standard deviation. 

(6) A reduction in the number of significant 
harmonics and an improved fit is obtained through 
a logarithmic transformation. The weighted Fourier 
analysis also leads to some improvement but there 
may be undesirable effects particularly if the approach 
is used with the logarithmic transformation. 
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for distortions is the failure of the least-squares method 
to accurately estimate amplitudes and phases of harmonics in 
periodic parameters of historic data . The unremoved and/or 
misestimated dependence of the autoregressive type in sto­
chastic component was found to also affect the inferred dis­
tribution of residuals. The investigation method us.ed is 
by generating new samples of given sizes and properties by 
the classical f.lonte Carlo method. 

Reference: Bullard, K. L. , V. Yevjevich and N. Kottegoda, 
Colorado State University, Hydrology Paper No. 88 (Nove111ber 
1976) , Effect of Misestimating Harmonics in Periodic Hydro­
logic Parameters. 
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