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ABSTRACT

The periodic-stochastic model, used to describe the structure of historic hydrologic time series, is
examined in the light of finding that it distorts the distribution of residuals, or of the time-independent
stochastic component under certain circumstances. In general, this distortion caused the distribution of an
independent stochastic component to have a sharper peak, and sometimes it appears to follow a double branch
exponential distribution function. The apparent cause for distortions is the failure of the least-squares
method to accurately estimate amplitudes and phases of harmonics in periodic parameters of historic data.

The unremoved and/or misestimated dependence of the autoregressive type in stochastic component was found to
also affect the inferred distribution of residuals. The investigation method used is by generating new samples
of given sizes and properties by the classical Monte Carlo method.
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Chapter |
INTRODUCTION

1-1 Hydrologic Simulation

Simulation of new samples of streamflow, precipi-
tation and other hydrologic stochastic processes has
become beneficial for water resource planmers, often
used in conjunction with design or policy decisions in
water utilization. The possible courses of action may
be evaluated in a more thorough, statistically accept-
able manner than is possible using only the observed
hydrologic data as inputs and outputs. The usefulness
of generated samples is limited by the statistical ac-
curacy of inferred models and estimated parameters
from the observed data. In defining mathematical models
for such simulation the analyst must retain statistical
properties of the original data, with some of the more
obvious being: (1) The overall mean, variance, and
parameters related to higher-order moments of the his-
torical records; (2) Trends and periodicities displayed
by the original data; (3) Serial correlation proper-
ties; and (4) The distribution of the independent
stochastic component as the noise underlying the com-
posed process. If all of these statistical character-
istics of the original data could be retained in
generated samples, then the water resources planner
would have a useful tool for evaluating different
courses of action in water resources planning and
management .

Past attempts to model such hydrologic processes
as streamflow and precipitation have met with varied
success. In particular, some attempts to model daily
series of precipitation and runoff have not in general
been able to retain reasonably well the distribution
of inferred independent stochastic components in the

modeling process. Unusual departures of distributions
of independent stochastic components by the modeling
process in comparison with the inferred distribution,
led some investigators to question the completeness
of the models, and to search for sources of errors in
modeling techniques.

1-2 Study Objectives

The purpose of this study is to investigate the
simulation of periodic-stochastic processes as applied
to daily series, and to examine the sources of errors
involved in the modeling process. By examining sources
of such errors, reasons for arriving at distorted dis-
tributions by the modeling process should be evident.
The results are expected to lead to remedies and an
improved modeling technique.

1-3 Study Approach

Since statistical characteristics of daily series
of precipitation and streamflow are not easily express-—
ed in mathematical terms, it is necessary to simulate
samples of complex hydrologic processes in a computer.
One can start with the assumption that the true
population properties of a series are known prior to
simulation. The periodic-stochastic structural analy-
sis is then applied to generated samples, and differ-
ences determined between the properties that are
incorporated and the estimated statistical properties
of generated samples. By varying the complexity of a
population process the sources of errors in the techni-
que of structural analysis may become apparent and
could be quantified.



Chapter Il
MODELING TECHNIQUE AND ITS APPLICATION

2-1 Brief Overview of Time Series Analysis

In general, currently known techniques for model-
ing a given historic time series may be divided into
three basic phases: (1) Identification and removal of
trends, periodicities or almost-periodic long-term
movements in parameters of the process in order to
isolate an approximate second-order or higher-order
stationary time dependent process; (2) Identification
and removal of time dependence of inferred second-order
or higher-order statiomary process in order to obtain
an inferred independent, second-order or higher-order
stationary stochastic residual process; and (3) Analy-
sis of the probability distribution of the random re-
sidual variables, which are assumed to be independent
and identically distributed, that constitute the re-
sulting stationary stochastic process.

A temporarily stationary time series may be defined
as one in which the statistical properties of the series
do not vary with time for sufficient periods of the
immediate past and future. Because it is extremely
difficult to prove the stationarity either for the
historical series of random variables or for unobserved
past and future periods, a less rigid definition of
stationarity is often used in practice. A series X
is said to be weakly stationary, statiomary in a wide
sense, or to possess second-order stationary if its
expected mean at any time position is equal to a con-
stant and its autocorrelation function px(EJ is a

|1:.-
1
only. The concept of stationarity is important in
examining the effects of unremoved periodicities between
the above first and second phases of analysis of a

time series.

function of a finite time difference & = ti+£

2-2 The Periodic-Stochastic Model

Several modeling techniques are extensively dis-
cussed in various publications and dissertations [8],
(12], [16], [23]. Since it is the stated purpose of
this study to review one such technique, the periodic-
stochastic model, the equations and assumptions are
briefly summarized below. For a detailed discussion of
the technique see Yevjevich [23].

The model being considered is parametric, with
amplitudes as constants for the inferred significant
harmonics in periodic parameters. The basic form of
the periodic portion of this model requires that each
periodic hydrologic parameter in the model be modeled
as a sum of several independent sine and cosine func-
tions. Thus, if o is the value of any periodic para-

meter (such as the mean, variance, skewness, etc.) at
time t within a fundamental period w of a given
hydrologic series to be modeled and mathematically des-
cribed, then

T

4
= 2nj1
Vo= v+ ; C; cos (——i—— +aj).
j=1 (2-1)
A mathematically equivalent form of Eq. (2-1) is

e [ a o () ny o (282)]

T w

j=1
(2-2)

w
where 1
v= = v_ , the mean of v_ series, (2-3)
w t= T E
with w_  the parameter values along the period w,

and I = number of significant harmonics.

The Fourier coefficients Aj and Bj of significant

harmonics, are obtained from the estimates VT of Ve

by using the least squares estimation method:

w
A. = E—. Z V cos (EE) 4
3 ey T s (2-4)
and
w
Bow 2 D, . sl (3111).
T B w
@2-5)
The amplitude Cj and the phase angle ej of Eq. (2-1)
are related to the coefficients Aj and Bj by
2
c. = AT + B (2-6)
j j i
and
5 s
Gj = tan El .
i (2-7)

The major problem encountered at this point in
the modeling process of periodic parameters is deter-
mining the number of significant harmonics 1 to be
included in Eq. (2-1). Analytical methods of infering
the value of 7 have been suggested by Schuster [19],
Walker [21] and Fisher [9]. All of these have limita-
tions when applied to hydrological data. Yevjevich
[24] discusses the following practical method. Let

SZ(VT) be the estimate of the variance of the w
estimates VT of Vs and let the variance of the j-th

harmonic be

2

2
v L o BT ‘ 2-8
ar hJ (AJ BJ )/2 (2-8)

The amount of the variance SZ(VT} explained by the

j-th harmonic is estimated by the ratio

var h, (A + BY)
Wy gt 2
S {VT) 2 5 (VTJ
(2-9)
with
W
2
)= L v =D
=1 (2-10)
ST | u
Va — L |
where W Egi T (2-11)



Once the portion of explained variance by each harmonic
is estimated, those harmonics which are significant
may be chosen by setting a significance level based on
experience and choosing as significant those harmonics
whose explained variance exceeds the chosen signifi-
cance level. A significance level of 0.01 or 0.02 may
be chosen for this purpose. Previous studies [16]
have indicated that for hydrologic parameters of daily
time series, such as mean, standard deviation, and
autocorrelation coefficients, that harmonics computed
beyond the first six are rarely significant.

Another empirical method is suggested by Yevjevich
[23] using two criteria, Pmin and Pmax as given below,
for the inference of 1, with

k[w/cn]}/2 (2-12)

P,
min

Poax = 1~ Pnin (2-13)
where k = a constant, n = the number of years of
record, ¢ = the highest moment used in computing a
parameter and w = the period. A value of k = 0.033
may be initially chosen but it could be changed to

suit the particular application. Using Eq. (2-9), if

6
f 4 P, <P . the process is not considered to be
je1 3 min

periodic. If this inequality is reversed, then I

harmonics are considered to be significant where [ =

1,2,...,6, is the minimum number of harmonics which
satisfies

I AP, >P A value of I = 6 is chosen in case
) j max

the second inequality is not satisfied for 7 = 6.

The model as applied by Quimpo [16] and Tao [20]
to series of daily river flows considers as periodic
parameters the mean By and the standard deviation

9. thus the model for daily river flow series Qp .

becomes

=Y + Qg E
+T T T Pat

where p represents the year, Tt represents the day
within a year and Ep = the approximate second-order
2

(2-14)

stationary, stochastic dependent series. The series

Ep L is obtained as follows by using ﬁT and ST, the
*

periodic means and standard deviations evaluated
through inferred numbers and estimated parameters of

harmonics

T (2-15)

The Yp % series is then standardized to zero mean
X A
and unit variance, to become the ¢

£l

series,

3T
S(Y) :

€
Pt
(2-16)

where Y = the mean of Y . series, and S(Y) = its

With the inferred second-order
» the analysis of time dependence

standard deviation,
stationary series Ep

begins. Common dependence models for stationary time
series are the autoregressive schemes, moving average
schemes, and mixed autoregressive-moving average
schemes (ARMA). Box and Jenkins [4] and Jenkins and
Watts [11]‘'provide the complete analytical treatments
for these modeling schemes. Yevjevich [22] has demon-
strated some physical evidence for hydrologic dependent
stationary series to be represented by autoregressive
schemes. In this study the autoregressive models will
be used exclusively. The general m-th order autore-
gressive model of a non-periodic process is given by

m
= (s T e i
"% ;E% i o I
(2-17)
in which a, = the autoregressive coefficient, m = the

order of the model, and E; = the assumed underlying
independent stationary stochastic process.

For discrete time series used in this study, the
population autocorrelation coefficient Py for lag k
is defined by

cov tll. :i"‘k) ntxt‘i#kj-satn[xiok]

- -
P ™ e pvarce, 0172 500-x) 172 (02, - ex, 0 12

(2-18)

in which Xi and x1+k are observations at times i

and i+k, respectively, cov(xi, xi+k] is the autoco-

variance function, and var(xi) and var[Xi+k) are

variances at lag 0 and lag k, respectively.

For the open series approach, the o) are esti-

mated by the sample serial correlation coefficients,
Tys S follows

(2-19)
with N = the total number of sample observations. From
estimates of serial correlation coefficients, Tys it

is possible to obtain estimates of autoregressive co-
efficients, L of Eq. (2-17) for any order m by

using the Yule-Walker equations [4]:

+Q_zpl+...+ﬂ'.ﬂl

pl = {‘1 m "m-
Py M@y P T % Yo Yag opog
P =0y Py * Og Ppeg Yees TGy

(2-20)



Since these equations are linear in uj, i =1,

2, ..., m, they may be solved efficiently for large
values of m on a computer by Gaussian elimination
technique [10]. For smaller values of m it is often
more efficient to use a direct algebraic approach.

Estimates % of the autoregression coefficients

mj for the first three order models are:

First-order model, m = ]

8 =7 (2-21)
Second-order model, m = 2
Ty = T 1
L S (N
1 2
1- Ty (2-22)
and
2
2= %
a, =
1 -1 (2-23)
1
Third-order model, m = 3
(1-r,2) (x,-r) - (-r.)(r, T, - T.)
_ Ml M 2 3 e 3 (2-24)
1 3 » -
{1-r2}(1-2r1 0 rZJ
2 2
(1-r2)(r2 * 1" - 1" -1y Ty) (2-25)
32“ 3 »
and (1-r21(1~2r1 - rz}
2 E
o (rl—rs](r1 - rz} - (l-rz](rl T, - rS]
3 2
(l—rz)(l--Zrl + rz) (2-26)

The estimated autocorrelation coefficients may be
considered to be periodic and expressed as Ty oo
’

k=1,2,..., t=1,2,...,u. They are estimated in the same
way as in Eq. (2-19) except that N is replaced by n,
the number of years of data if w-t > k and by n-1 if
w-t < k. If periodicities in the autocorrelation are
significant, the autoregression coefficients are also
sipnificantly periodic, in which case the Yule-Walker
cquations, Eq. (2-20), are modified to suit, and
solutions to the periodic coefficients are given by
Sulaz-la Cruz and Yevjevich [18].

Selecting the order of the autoregressive model
is the first step, in order to insure that the residual
series, £, is close to an independent series. A

simplified method to accomplish the task of selecting
the proper order is proposed by Yevjevich [23]. This
method uses the coefficient of determination, R?, as
the criterion for selecting the order of the model.

I'he coefficient of determination is the part of the
viriance of series €5+ Which is explained by the

welected model. The remaining portion of the variance
is that of the independent component, & The

estimates of coefficients of determination Rz for

i

linear autoregressive models are
2 2

Ry“ =, (2-27)
2 2 2
2. B ¥Ry AR
R = i
2 2
1R T (2-28)
r’+r2+r +2r3r +2r2 +2r 1557
2 1 3 13 l e 5 i S
Rs ) 1-2 2 2'Zr’,
U e
2 4 4 2 2)
- (2r1r2*4r1r2r~+r +r2*r1r3
2 .2 2
- res2
1 2rl r2+.r1r2 (2-29)
The selection criteria are as follows:
For the first-order model
2 2 2 2
R,” - R} <0.01, and Ry - R,” <0.02,
’ (2-30)
For the second-order model
2
R,2 - R > 0000, and RZ - R <0.01,
= (2-31)
and for the third-order model
2 2 2 2
RZ - Rl >0.01 , and R.” - Ry™ > 0.01
C = (2-32)

Once the order of the autoregressive model is
chosen, the independent stochastic series is computed

by

m -~
- E a8 & 5

- j-l
8 = m o m 1/2 °
e A M
k=1 j=1
(2-33)
The éi series is then tested for independence

and if shown as such, is accepted as a second-order
stationary independent stochastic process, assuming
that autoregression coefficients are not periodic.

Values of the &, series are used to obtain the proba-

bility distribution function of the best fit to their
:mpirical frequency distribution. Tao [20] reviews
several possible probability distribution functions
as distributions for 5 component.

2-3 Past Applications of the Periodic-Stochastic Model

to Hydrologic Time Series

Applications of the periodic-stochastic modeling
technique of time series in hydrology are found in the
literature for such cases as riverflow, long-term
climatic changes, etc. Adamowski and Smith [2] studied
the technique as a means of simulating the daily rain-
fall over Bark Lake, Ontario. The model used was one
in which only the harmonics in the mean were removed.



The correlogram of the residual series was found to
have persistence at lag one with a periodic appearance
for larger lags, though this part of the correlogram
is well defined within the tolerance limits drawn for
the independent series. A linear autoregressive model
of the first order {ul = 0.097) was chosen because the

coefficient of determination is not significantly in-
creased for higher-order models.

-

The distribution of the independent series &

was not reported, but the conclusions of the study did
indicate results other than what the authors expected.
Some of the conclusions of the Bark Lake study were:
(1) Several short-term periodicities appeared at the
5 to 6 day, 8 to 10 day and at 16 day intervals in the
resulting independent series; and (2) The short-term
periodicities, if they exist at all, are difficult to
justify and model by existing generation techniques.

In studies on rainfall series Landsberg[14] found
short-term periodicities in the calculated independent
component of daily rainfall series at Woodstock,
Maryland. Computed periodicities were of 3 day, 5 to
7 day, 15 days and 25 days length. Dickenson [6]
showed that anticyclones located north of 609N latitude
can block the normal flow of air over the earth and
possibly be correlated to a 10 day or a lesser cycle
in rainfall patterns. This anticyclone theory was in
part discarded because it was of little value in ex-
plaining the calculated periodicities greater than 10
days and is of a questionable value for explaining the
short-term periodicities of 3 days or less. The pro-
bability distributions of the assumed independent
stochastic series Ej was not reported in any of these

studies of the structure of daily rainfall series.

Roesner and Yevjevich [17] modeled the monthly
precipitation and runoff series by using the periodic-
stochastic model. It was found that the resulting
correlograms of dependent series, after the removal of
significant harmonics in the mean Mo and in the

standard deviation &T of the series, were strongly

periodic unless a large number of harmonic terms were
removed. Also, the resulting dependent series for
some runoff series may have periodicity in the autore-
gressive coefficients. Periodic autoregressive
coefficients invalidate the assumption of the second-
order stationarity of the series. Jones and Brelsford
[12] found the autoregressive coefficients periodic in
modeling several kinds of meteorological data. The
periodicity in these coefficients is explained as being
related to changing physical mechanisms from season to
season. No description of the probability distribution
of the inferred independent series was reported either

by Roesner and Yevjevich or by Jones.

In the area of streamflows, Quimpo [16] applied
the periodic-stochastic modeling to 17 daily river flow
series, which had no man-made disturbances in records.
Some of the major conclusions of that study are as
follows: (1) Both the estimated daily means and the
daily standard deviations of river flow have the annual
periodicity; (2) The estimated correlation coeffi-
cents rk,t are often shown to be periodic; and (3)

The resulting dependent stochastic process, after
removing the estimated periodic functions of the mean
Moo the standard deviation o and the autocorrela-

, could in general be acceptable
T

tion coefficients oy
3
as stationary of the second-order autoregressive models.

Tao [20] used the same model and the same 17 daily
river series for investigating the distributions of
the resulting independent series, Ei. The major con-

clusions of his thesis are: (1) Errors in estimating
the number and amplitudes of significant harmonics in
the mean and standard deviation greatly affect the
accuracy of the resulting dependent stochastic series,
€5 (2) Tails of distributions of independent Ei

series are generally long, found to be well approxi-
mated by the simple exponential functions; and (3)

Tested probability distribution function did not fit
well the frequency distributions of £;; none passed

the chi-square test of goodness of fit; among the
several distribution functions tested, the smallest
chi-square values were for the double-branch gamma
distribution, exemplified by a sharp peak at the mode,
high kurtosis, and a long exponential tail.

Chin [5] used the periodic-stochastic model to
describe the long-term climatic changes. He found an
indication of the overall temperatures of the earth for
many thousands of years in the long series of oxygen
isotope data taken from deep sea sediment cores. In
this study four separate series were modeled by
deterministic-stochastic methods. 1In all but the
longest series, almost periodic terms were replaced by
nonlinear or linear trends., In the longest oxygen
isotope data series, which extends approximately
126,000 years into the past, the long-term almost-
periodic effects due to various astronomical cycles,
first described by Milankovich, were modeled and re-
moved. The independent residuals found in the three
series after the trend was removed were found to be
approximately normally distributed, while the one
series which was modeled with an inferred almost-
periodic component showed a sharp peak in the distri-
bution of the independent residual series; it was
fitted by a double branch gamma distribution.



Chapter Il
PRACTICAL CONSIDERATIONS IN ANALYSIS OF PERIODIC TIME SERIES

3-1 Approximate or Temporary Stationarity

It has been found necessary for most structural
models of hydrologic time series to remove the periodi-
city in at least the mean and standard deviation. The
deterministic portion of the periodic-stochastic pro-
cess should describe periodicities which exist in
nature. After the periodic parameters of historic data
have been inferred and removed, the residual series,
Eq. (2-16), is assumed to be stationary up to the
highest order parameters which are shown to be periodic.
This assumption is true only if the number, amplitudes
and phases of the inferred harmonics in periodic para-
meters are equal to the true state of nature which is
unknown. If the number or amplitudes of the removed
harmonics differ from the true state of nature, the
resulting residual series will in fact contain some
harmonics in its parameters. This will produce errors
(which have been apparently ignored in the past) in
any further analysis of the series, since the analysis
of the residual dependent series assumes its stationa-
rity. Errors resulting from the estimation of numbers
and parameters of harmonics in the residual dependent
series are explored in this chapter.

3-2 Error Propagation

Tao [20] noted in his dissertation that errors
involved in estimating the harmonic components and the
order of the autoregressive model had the potential of
seriously altering the respective residual series pro-
duced at each stage of the analysis. In his analysis
the errors were assumed to be so small as to be negli-
gible. However, special attention is given to the
effects of such errors in this study. For example of
possible serious effects of errors in the estimate of
harmonics in periodic parameters of the time series,
see Tao [20].

Errors made in the autoregressive modeling of a
true autoregressive process in general do not have
such a profound effect on residuals as the errors in
estimation of the number and the amplitudes of har-
monics. If the dependent stochastic component includes
the errors, it can be written as

& + ﬁci =8, 8 * L (3-1)
4
I e,
harmonic terms in the mean " and the standard devia-

and e, represent errors made in estimating the

tion series L respectively, then it can be demon-

strated that if e, and e, are constants the correlo-

gram pt(Z) will not be affected. The real problem is

and e,

other words they are periodic) and have a significant
serial correlation structure.

when e, are time dependent errors (or in

The remaining aspect is the overestimation or
underestimation of the autoregressive coefficients in
the dependent stochastic process of the model. The

question is one that pertains to mathematical statistics,

but a few generalizations are offered here on various
aspects of the problem. The estimates commonly used
for autoregressive coefficients are often based in the
estimates by serial correlation coefficients, pE(k),

of the particular realization of a stochastic process
investigated. Depending on the computational formula
used to estimate the serial correlation coefficients,
the estimates of autoregressive coefficients will be
either biased, less biased, or will be the minimum
variance estimates [11]. In either case the estimates
of autoregressive coefficients increase in accuracy as
the length of the series of stochastic process being
investigated increases. The real problem is not in
overestimation or underestimation of autoregressive
coefficients but in determining the number of coeffi-
cients to be estimated. Quenouille [15], Jenkins and
Watts [11], and Yevjevich [23], suggest methods for
estimating the order of the autoregressive model, As
the number of autoregressive terms increases, they
generally have a corrective influence on each other,
and the actual overestimation or underestimation of
autoregressive coefficients tend to decrease.

Relating errors in estimating either the number
or the magnitude of autoregressive coefficients to
errors which will be propagated into the distribution
of independent stochastic components, a small effect
is found. If the true distribution of the resulting
independent stochastic process is normal, the dependent
stochastic process £ Eq. (2-17), represents a sum of

normally distributed random variables, which is normal
regardless of constant multipliers involved. Thus a
change in the number or magnitude of autoregressive
coefficients results only in a change of the variance
of the normal distribution of the Ei variable, but

the basic form of the distribution will stay the same.

3-3 Effect of Unremoved Harmonics on Autoregressive
Models

A linear autoregressive equation may be represent-
ed by
m
Si = Zl ﬂj El_j + Ei (3-2)
J=
with m = an unknown value to be determined, where
a, = the true autoregressive coefficients, and g =

a normally distributed and uncorrelated variable, with
unknown mean and variance. The problem in this
approach is that the model may have harmonic terms
left in the estimated residual series. This residual
series is now designated by Xi.

The computed dependent series X. may be
represented as a function of remainin harmonics in

the mean, u_, the standard deviation, 9 and the
true autoregressive process €4 namely as

Ki il (3-3)
where u_ and o have the form of Eq. (2-1) and &

is defined by Eq. (3-2). It should be assumed that

the amplitude of any harmonic included in w_ or .

is so small, that it would not be included as signifi-
cant in any previous test for significance of harmonic
terms. However, the sum of all unremoved or over-
removed harmonic terms may explain a relatively large
portion of the variance of the Xi series.



The first step in analyzing the serial dependence
structure of the nonstationary X, series is to find
the expected correlogram of the X5 series, denoted by

Py (k).
to simplify the Ki series and examine it in various

In order to accomplish this task it is useful

stages. As a first approximation, it is assumed that
the computed residual series X, has the remaining

harmonic terms in its mean only, with Eq. (3-3) then
.given in the form

(3-4)

It is assumed that Mo and e, are independent. The

expected correlogram px(k) for lag k, k = 1,2,..., of
the X series can now be computed
& % Cov (xi, xi+k) .
PxX Var [Xi}
(3-5)
and by substituting for uo then
Cov (b_+ E,, U +e,.)
px(k) . T i® "4k i+k (3-6)

Var (uT + zi] 3

1 ] "
m{[jzl (cj cosfas ) + aj]) i ‘1] : Ij§1 (cj cosfii(rok) » ujl) . .i.k”,

Var {121 [cj ws[lj'{t] » .jll . ‘s}

oy(k) =

(3-7)

where m = the number of harmonics, A! = 2vj/w, k = the

lag (in days), and w = the length of fundamental
harmonic (w = 365 days for daily series), and t = the
point on the periodic time scale. Since all of the
cosine terms in summations of Eq. (3-7) are orthogonal,
they are mutually independent. Also, they are inde-
pendent of the e; series. Thus, the covariance

operator may be taken inside the summations resulting
in the expression

»
j§1 Cav[cj cos[i;(r) - ajll. [cj cos u;lmq + ej]l}° Cov (g5, €, ]

pylk) = =
jgl Var[C; cos (Af(1) + 0111" var ey
(3-8)
Substitution can be made as
Var [C. cos (AL (1) +8,)] = C?/Z, (3-9)
) J ] ]
Var = uz (3-10)
i = 9% » -

and

m
j£1 Cov[Cj cos (A;[t} + ajJ, cj cos (A5(1+k} + aj}] =

2
m C,
jzl "-23- cos (?\5 (k)) (3-11)
By definition
Cov (g., €. )
b (K) = —pam (3-12)

Var (ei)

or
=0 (K) * Var (5;) = o (K) - o2

(3-13)

Cov (!-:i, Ei+k)

By combining all of the above terms the following
expression for the expected correlogram of the non-
stationary Xi series is

B o2 2
I Cj/2 cos A1) + 0 () + o

oyl = L — . : . (A1)

A further simplifying assumption is made, that the
time dependent series, & of Eq. (3-2), is in fact of
the order one, i.e.,

g, = oy €. % ii 3 (3-15)

Using this assumption expressions for pg(k] and
g, can be used [24] as follows:

k
p (k) = () (3-16)

and
-1
2 2
als (1 - oy ) 4 (3-17)

For these expression substituted into Eq. (3-14) then

-1

|I'MB

=

(c3/2) cos (A ()] + o} (1-o})

px(k) = (3-18]

2 2.-1
[CjZZ] + (1-&1}

I~

j=1

(k = 1,2,3), the sum of the
could be approximated by unity.

For small lags
terms cos [A;(k}]

With this assumption there are only two unknown
quantities in the expected correlogram. These are

2
ch/z and .

It is now possible to set up a system of

simultaneous equations and solve for 2 C? and s using

only pxﬁl] and px[Z).

-1 m
a,(1-ad) 4 ] c?/z
o (1) = - =1 (3-19)
2 2
(1-af) + ) oCi/2
1 j=1 j
and
-1 m
(-ad) o+ ] c?/z
py(2) = ; izl : (3-20)
3. o 2
(1-a]) + 7 C/2
j=t



Solving these two simultaneous equations for the
two unknowns yields

px(1) - py(2)
T T M

m 2 pxtl) = al 2 -1

(3-21)

and

(3-22)

Thus, from the estimated correlogram of the Xi series

it is possible to estimate a, the true lag one auto-

m
regressive coefficient, and Z C?/Z, the variance of
j=1

the remaining harmonic terms of the Xi series. With-

out such estimates, common practice is to assume that

2
z Cj/E = 0, for @ = px[lj, which may lead to mislead-
ing results.

If the model used for investigation of the raw
data has periodicity in both the mean and the standard
deviation, the calculated residual series Xi may

have periodicity in the mean and stancard deviation as

given by Eq. (3-3). The influence of the term o gy

is not simple to analyze mathematically. However, its
presence must be accounted for in the modeling process.
Experimental analysis by Jones and Brelsford [12] sug-
gests that the time series with the periodic structure
in the standard deviation may also have the periodic
autoregressive coefficients. Both Jones [12] and
Yevjevich [23] suggest similar modeling techniques to
handle periodicity in the autoregressive coefficients,
the influence of the periodic standard deviation in
the calculated X series is presumably accounted

for. Tao [20] used the periodic autoregressive coeffi-
cients. However, Chin [5] did not use the periodic
autoregressive coefficients in the analysis of the
almost-periodic series in his investigation. Because
both Tao and Chin found the double branch gamma dis-
tribution as the best fits for the residual series,
after removing the estimated time dependence of the

Xi series, it suggests that the modeling of the

periodic autoregressive coefficients may not entirely
account for the presence of the remaining periodicity
in the standard deviation of the X. series. This

subject is investigated in the experimental part of
this study.

If the true nature of the €5 series of Eq. (3-2)

is of a high-order (two or greater), the analysis be-

comes more complex. Kendall and Stuart [13] give the

following form of the expected correlogram of an auto-
regressive process of the order two

€ =@ €&y + 4 €5 o + Ei . (3-23)
azk/2 sin (k6 + )
o (k) = T (3-24)
where
(3-25)

-a,
g = arc cos
2 fE;

and
1+ a
tan § = o tan (] (3-26)
2
The variance of the €5 series of the order two
is [24]

.. i 3 -t
Var [si) = o, ='E - ey - ey - 20 a, pz(lﬂ . (3-27)

Theoretically, with the harmonics in the mean
only, it should be possible to substitute Eqs. (3-24)
through (3-27) into the expected correlogram of Eq.
(3-24), and solve it for the unknown values of

s Gy, and E C?/Z in terms of values of ﬂx(l},
px{2) and px(3), which can be estimated by Eq. (2-19).

This computation is mathematically intractable, and
past investigations have resorted to modeling the
periodic autoregressive coefficients. It can be con-
cluded at this moment that the X, series has become

complex, and investigators must resort to simplifying
assumptions and techniques.

3-4 Distribution of Independent Residuals

If it is assumed here that the modeling procedure
used for generating samples of the assumed independent
series of Eq. (2-33) allows the errors in estimated
harmonic terms of the mean (uTJ and the standard

deviation (01} to be carried into the estimated series

from the sample as the independent stochastic component,
then the effects of the unremoved or overremoved
harmonic terms on the distribution of the estimated
independent series can be investigated. The series

X. represents now the residual series after the
autoregressive dependence has been removed, or

X, = *
1 Mo °T Ei

(3-28)
The difference between Eq. (3-28) and Eq. (3-23) is in
the term Ei’ which is assumed to be a series of uncor-

related, normally distributed random variables. The
ideal statistical approach would be to mathematically
describe the exact theoretical distribution of the xi

series of Eq. (3-28). Theoretical approaches such as
the use of the characteristic functions or the convolu-
tion formulas [7] are available to describe distribu-
tions of sums and products of independent random wvari-
ables. These approaches are mathematically complex

and when combined with the complex expressions for v

and 9. they become intractable.

Most investigators resort to simpler solutions by
fitting the residual series by several known distri-
bution functions, and accept as the result that distri-
bution which has the smallest least chi-square value.
This simplifying procedure is used here also. The two
probability density functions used to investigate dis-
tributions of independent residual series here are the
normal and the double-branch exponential probability
functions.

The Normal Probability Function. The probability
density function of the normal distribution used is

£(£) = expl - (£ - w2207 , (3-29)

oY 2w



in which p 1is the expected value and o standard

deviation of §£.

The maximum liklihood estimated of parameters of
the normal density function are

N
o= ; >, 5 (3-30)
and i=1
LNy
& [“ﬁ ! (Ei-u}]
i=1 (3-31)

in which N is the sample size.

The Bilateral or Double-Braneh Exponential
Probability Density Function. The probability density
function of the bilateral exponential distribution is

£8) = gy expl- 5 18 - ul) (3-32)

in which u is the sxpected value of the random
variable Ei and 2B8* its variance.

If a value of either u or B8 is obtained from an
apriori knowledge of the process, then a maximum likli-
hood estimator of the remaining parameter can be
derived analytically. If neither u nor § is known,
an empirical approach using the numerical methods may
be required to maximize the likelihood function for
estimating the two parameters. For the purpose of this
study, it was assumed that an apriori knowledge for

is available, with u=0, because £, is an independent
random series derived from éi which has been

standardized as a (0,1)-series. Thus, the maximum
likelihood estimator of £ is given by

(3-33)

By simulating the X, series of Eqs. (3-3) and

(3-28) distributions, can be experimentally determined
and compared to distributions found by Tao and Chin.



Chapter IV
INVESTIGATION BY USING THE EXPERIMENTAL METHOD OF GENERATED SAMPLES

4.1 Method of Analysis

The method of experimental analysis is through
data simulation, using random numbers generated in a
computer. Several samples of the form of Eq. (3-3)
were generated using the Monte Carlo technique. Each
sample was then analyzed using the various steps of the
general periodic-stochastic model as described in
Chapter Il. The end result of each generation and
analysis of samples is a frequency distribution curve
of the assumed random independent variable denoted by
&;- This frequency distribution represents the results

of either an insufficient or excessive estimate of
harmonic analysis of the periodic-stochastic process.
The sequence of steps in the generation and analysis is:

Step l: Generate Ei sample, Ei BONLO,L); 1 =L, 2,

+eoy N, with N = 365 n, n = the number of years of
simulated daily data.

Step 2: Generate the autoregressive process when
needed, =
;= E a. e. . +E.,1i=1 2, ..., N, with
i 521 j Ti-j i
m = the order of autoregressive model, and aj’ i=1,
2, ..., m, the estimated constants.
Step 3: Introduce periodic dependence as deviations

in the mean and standard deviation, My = fu(r], T
fU(r), with fu(T), fy(t) the periodic functions of
any form, with the exact equations as inputs.

Step 4: Generate (daily) series with errors, xi =

W, #0 € I N S
Step 5. Estimate experimentally periodic functions of

mean and standard deviation, % . .
we = £, (1), 0. = £,(1),
with %u(r). and ?G(t} estimated by Fourier analysis,
with number of harmonic terms m'-

Step 6. Remove estimated periodic parameters from X,
series by X. - ;t
e ,i=1,2, ..., N, and
g
T
- y'.i..-_-i i -
ci.'_-___'1=1' 2y +y N, with yi=tha mean
o
Y

of yi, SY = the standard deviation of y;, and €=
0, and S(e) = 1.

coefficients and remove the

Step 7. Estimate “j
dependence of autoregressive process from Ei by

m
€ =€ - ) o.c ., with m' and m input constants
SR i-j
i=l
aj. T ., m', by using Eqs. (2-21) through

(2-26).

10

tep 8. Estimate £ ibuti E.
Ste Estimate frequency distributions of El, and

estimate mean, variance, skewness, kurtosis, mode,
and chi-square in test for normal distribution (0,1).

Each simulated sample corresponds to approximately
ten years of daily time series data (365 x 10 = 3650
values). The mode, skewqess and kurtosis of the fre-
quency distribution of Ei were initially computed.

The mean and variance of the frequency distribution
and of the fitted normal function are 0 and 1, respec-
tively, since the sample was standardized in the
modeling process.

It was desirable to remove sampling autocorrela-
tion by the computer in the generated random numbers,
£ in each sample. A computer subroutine was used to

obtain several samples of initially standard normal
but uncorrelated random variables. Distributions of
Ei were then compared to the standardized normal dis-

tribution by the chi-square goodness of fit test. A
check for independence of the £y variable was made

by computing and plotting the correlogram for each
sample generated. The tolerance limits given by
Anderson [3] for correlograms of normal independent
random variables were computed by

-1 - t“ ¥N-2 -1 + t, N-2

——ye RGN Ve 10

in which t_ is the normal deviate corresponding to

the probability « of rejection of a hypothesis, and
N is the number of observations. For the first stage
of this study, N was fixed at 3650. These tolerance
limits are plotted on correlograms of generated
standard normal 51 variables, Fig. 4-1.

10 1.0

1 [
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-0.2 -02 4
-08 -06
=10 -1.0
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os os\
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~02 -0.2
=086 -0.8
=10 -1 0
1 5 Lags Lags
o 3 1.0 =
06 o_.\ 4
5 o2 0.2
=02 -02
-06 -08
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o 4 8 12 & 20 0o 4 8 2 16 20
Lags Legs
Fig. 4-1. Correlograms for the Six Generated Samples

of Standard Normal Independent Variable,
£s> Used to Generate Study Samples. All

Six Series of zi are Serially Independent.



The chi-square test for goodness of fit is widely
used in fitting distributions and is described in many
standard text books of statistics. In executing the
chi-square test the range of sample observations is
divided into k mutually exclusive class intervals
each having an observed frequency 0;. If the expect-

ed class frequencies from probabilities of the distri-

bution being tested are denoted as Ei then a chi-
square statistic is
, X, 0 -E)
x° = :E: T . (4.2)

i=1 L

This statistic is asymptotically aistributed as a chi-
square distribution with k-1-) degrees of freedom,
where A is the number of distribution parameters
estimated from data. Values of the chi-square distri-
bution for various degrees of freedom and probability
levels are found in standard tables. If the computed
chi-square statistic is larger than the critical value
from the table for a given probability level, then the
tested distribution is rejected.

The generated normally distributed random devia-
tes, Ci’ may be transformed to standardized gamma

variates, g{, with skewness L on the basis of the

Wilson-Hilferty approximation to the xz- distribution
as follows,

§) = (2/0) (1,/6-32/36) -2/ (4-3)

4-2 Series with Overremoved and Underremoved Harmonic
Terms

The first set of samples was analyzed to test
whether the over-removal and under-removal of har-
monic terms in the mean, Mo, and in the standard

Table 4-1. Statistics of Distributions of Estimated Ei

deviation, ;t’ will change significantly the underly-

ing distribution of the residual independent variable
Ei’ namely to show sharp peaks similar to those found

by Tao and Chin. The samples of the process

X, = u (4-4)

1 T

+
L

in which the periodic parameters are assumed to be

5 . ;
- L 2131 s 2miT. o
M, = 0.=10 + E: (A4 cos L. B, sin —NJ—) » (4-5)

with i
Aj = Bj = 3.0} forJel, 25 sy Dy (4-6)
and
e, = 08¢, )+ & (a-7)

with £i = the independent standardized normal process,

were generated and then analyzed as a periodic-
stochastic process as described in Chapter II, includ-
ing also the use of the periodic autoregressive
coefficients.

Figure 4-2 shows the frequency distribution of
the generated sample and the estimated independent
residual series, after one through ten harmonics were
removed. A first-order autoregressive scheme was used
in generating the dependent stochastic process Ei

The coefficient of determination was used to measure
the effect of the dependence model, with Eqs. (2-27)
through (2-32) specifying the approach applied consis-
tently to all samples. The frequenty distributions
of Fig. 4-2 show that the peaks of density curves are
a direct result of the number of harmonic terms used,
being either overestimated or underestimated in com-
parison with those of the original data. When the
right number of harmonics is inferred and removed, the

Series After Removal of One Through Ten Harmonics.

Series were Generated by Using Five Harmonics for the Periodic Mean and Periodic Standard Deviation.

(1) (2) (3) (4) (s) (6) (7 (8) (9) (10)
Total Explained

Number Variance by Chi- Beta Chi-Square

of Removed Harmenics Square Parameter For Double-
Hermonies Standard For (Equation Branch

Sample Removed Mean Deviation Mode Skewness Kurtosis Normal 3-33) Exponential
1 1 15.7 37.2 -0.1 0.78958 22.95 592.84 0.3769 52.99
2 2 36.6 51.5 -0.1 -0.11897 16.94 344.31 0.4825 33.60
3 3 61.8 59.9 -0.1 1.10023 16.36 310.97 0.4733 32.91
4 4 77.4 64.7 -0.1 0.59519 8.62 43.98 0.5061 30.69
5 5 90.3 73.3 -0.1 1.11643 37.84 544.59 0.4066 38.25
6 6 91.0 85.2 -0.1 0.87061 35.89 486.80 0.3864 36.99
7 7 91.3 87.8 -0.1 0.14577 63.77 403.22 0.4058 33.81
8 8 91.7 88.8 0.0 -0,33920 27.73 431.32 0.5055 31.02
9 9 92.1 89.4 -0.1 -1.011954 22.51 174.65 0.5579 30.16
10 10 92.2 89.8 -0.1 -0.07283 28.82 181.01 0.5365 30.46




resulting peaks in frequency distributions of éi

should be attributed to inaccuracy in estimating the
amplitudes and phases of the removed harmonics.

Table 4-1 gives statistics associated with
frequency distributions shown in Fig. 4-2. This table
indicates that almost all of these frequency distribu-
tions have slightly negative modes. Such properties
were also found by Tao [20]. It can also be seen that

a double-branch exponential distribution fits the
estimated frequency distributions well enough to pass
a chi-square test in all cases. The standard normal
distribution is rejected in all cases, except when only
four harmonics were removed, but in that case the
double-branch exponential function gives a much better
fit. It can also be seen that the kurtosis coeffi-
cient is always high, as it is expected for the sharp-
peaked frequency distributions illustrated in Fig. 4-2.
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Fig. 4-2. Frequency Distributions of Estimated Independent Ei Process After One to Ten Harmonics in Parameters

of the Periodic-Stochastic Process are Removed Sequentially, with an Initial Standard Normal Process,
with Added Periodicities in the Mean and Standard Deviation, Each Represented by 5 Harmonics.
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Chapter V
EFFECT OF REMAINING HARMONICS AND AUTOREGRESSIVE COEFFICIENTS
ON FREQUENCY DISTRIBUTIONS OF RESIDUALS

5-1 Methodology

It was demonstrated in the preceeding chapter that
mis-estimating the number and amplitudes of harmonics
in parameters of a hydrologic time series would lead
to peaked frequency distributions for the inferred
independent i The effects of the remaining harmonic

terms will be studied in more detail in this chapter.
To perform this analysis the generated series xi are

analogous to the inferred Ei series of the previous

chapter. This is done
composition of the Xi

so that the exact mathematical
series may be known before its

frequency distribution is found, whereas the exact
mathematical composition of the inferred g, series

of the previous chapter was difficult to control and
predict. By studying the frequency distribution of
the X, series with different known mathematical com-

positions, more may be learned regarding the effects of
remaining harmonics and autoregressive terms on the
frequency distribution of the inferred independent
series Ei in the modeling process.

5-2 Series with Harmonics Remaining in the Mean

In this section, the study of generated series is
in the form,

(5-1)

with Mo defined by Eq. (2-2) and Ei by Eq. (3-2).

Data generated using Eq. (5-1) have harmonics in
‘the mean only. The first set of samples was generated
with no autoregressive terms. The frequency distribu-

tions of the xi series were estimated as the ampli-
tudes in the remaining harmonics in u o were increased.

The variable used to describe the proportion of the
variance of xi explained by the remaining number of

harmonics in Mo is
mn
sz Z APj
j=1
is defined in Eq. (2-9).

(5-2)

where AP, Figure 5-1 shows

distributions of six of the ten cases
under this approach. Tt is seen that
are small for low values of Pm. The

investigated
the deviations
influence of

Mo is large for frequency distributions with double

peaks. Table 5-1 gives the main distribution param-

eters for all ten cases investigated under this appro-
ach. The only noticeable trends shown by this set of
samples is that as Py increases the kurtosis coeffi-

cient decreases, while, as expected, the chi-square
statistic obtained in fitting the standard normal
function increases.

The next set of generated samples was also based
on the approach of Eq. (5-1), but for this set a
first order autoregressive scheme was superposed on
the generated Xi series. In order to examine the

influence of the remaining autoregressive dependence
in the process of eliminating it by the estimation
procedure, the Pnl value was held constant at 0.95

13

and the assumed population values of a, were

1
allowed to vary over the range 0.1 to 0.9, the range
within which values of a, are commonly found in

hydrologic time series.
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Fig 5-1. Frequency of Estimated xi Series When

Harmonics are Left in the Mean, the Initial
Normal Distribution or Ei Series For:

(1) Pm = 0.1, (2) Pm = 0.3, (3) PIn = 0.5,
(4) P = 0.7, (5) P = 0.9, and (6) P =
0.95.

Table 5-1. Distribution Statistics for Xi Series
from Samples with Harmonics Remaining in
the Mean. No Autoregressive Terms
Included.

m @ (s) (6) (N

Modes Chi -Square

()] (4) Skewncss Kurtosis for Fitting
Sample P- Right Left Coefficient Coefficient N(0,1)
1 0.1 0.1 - 0.05 2.95 5.69
2 0.2 0.1 - 0.05 2.93 7.89
3 0.3 0.5 -0.3 0.05 2.87 13.52
4 0.4 0.3 -0.5 0.05 2.78 25.00
5 0.5 0.5 -0.5  0.05 2.65 41.12
‘ 0.6 0.3  -0.5  0.04 2.49 53,24
? 0.7 0.5  -0.7  0.04 2.30 109.85
E 0.8 0.7 -0.9  0.03 2.07 238.62
L4 0.9 0.9 -L.1  0.02 1.81 396.74
L 0.95 1.3 -1.1 ___ 0.01 1.67 595.45

Figure 5-2 shows the distribution of the estimat-
ed X, series for six of the ten samples generated.

Comparing the results of different series, it can be
seen that the presence of a large positive auto-
regression coefficient has a smoothing effect on the
estimated distribution of xi of these samples.

Table 5-2 gives the values of distribution parameters



clusions from this table are that with an increase of
oy the chi-square value of the standard normal distri-

bution fit decreases, while the skewness coefficient
increases marginally.

The generated samples under this approach allow
Eq. (3-21) to be checked. Using the estimates T,
and T,, obtained by using Eq. (2-19), the values of
are estimated by Eq. (3-21) and given in the last
are close

5

column of Table 5-2. The values of 51

to the true value of @ given in the second column

of Table 5-2. A linear regression between the first
nine values in column 2 and column 10 of Table 5-2

14

goas 11"5 I gives a correlation coefficient of 0.97. If Eq.
ol {0 (3-21) is not used, it may be assumed that the values
; . | i T, of column 8 in Table 5-2 are the best estimates
i i of the true values of a,, given in columm 2. This
I e~ e e v s s T - T T T R 1
. assumption would obviously lead to erroneous conclu-
% <% 7] '8 3 sions regarding the true state of an autoregressive
18 o process found in nature.
& ™,
i - 1-05 5-3 Series with some Harmonics Unremoved in both the
1 pol e | s J Mean and the Standard Deviation
- -3 -2 4 01 23 > 3 -2 4 0 1 2 3
" J:r———«——r~—-m———-——1;Js - 7 In this section the independent residual series
§ b ‘ i | is assumed to follow the complex form of Eq. (4-4),
§ i ! which allows the number of remaining harmonics in the
& os; ﬂ - .08} ‘fj’\ mean and the standard deviation to be simulated. The
L 00! i i.ooi first set of samples under this approach is generated
i 3-2 4 0 1 2 3 3 -2 -1 01 2 3 under the assumption that no autoregressive dependence
is present; however, the amplitude of the remaining
Fig. 5-2. Distribution of the xi Series for Samples harmonic terms in the mean be and in the standard
with Harmonics in the Mean Remaining and an deviation o_ were allowed to vary. The proportion
£ for: . k)
Autoregressive Series of Order-One for: of variance explained by the remaining harmonic terms
(1) P = 0.95, a = 0.1, (2) P =0.95, a = 0.3, in u_, and o was set equal, but increased for
Eg; gn : g'g:’ & : g'g' E;; ;n z g'gg' o g 0.7, each new sample. Again, the explained variance is
m Ry St m w39 By ® 0.9. measured by Pm. Figure 5-3 shows the estimated fre-
Table 5-2. Distribution Statistics for Xi Series with Harmonics in the Mean Held Constant (P_ = 0.95) and
an Autoregressive Scheme of Order-One. "
(1) (2) (3) (4) (5) (6) (7) (8) (&) (10)
o Modes Chi-Square s
Sample 1 Right Left Skewness Kurtosis N(0,1) Fit 1 s t
1 0.1 (% | -1.1 -0.003 1.65 617.54 0.955 0.948 0.143
2 0.2 1] -1.1 -0.002 1.65 573.76 0.958 0.948 0.243
3 0.3 1.1 -1.1 -0.002 1.66 531.39 0,962 0.949 0.343
4 0.4 i | -1.1 -0.001 1.68 431.05 0.965 0.949 0.444
5 0.5 1.1 -1.1 -0.005 1.69 452.12 0.967 0.950 0.545
6 0.6 1.1 -1.1 0.001 1.73 442,10 0.970 0.951 0.646
7 0.7 S -1.0 0.006 1.78 396.74 0.972 0.952 0.749
8 0.8 1.1 -1.1 0.014 1.87 297.03 0.975 0.954 0.850
9 0.9 1.0 -1.1 0.047 2.08 252.61 0.979 0.960 0.951
for ten samples used under this approach. The con- quency distributions of Xi in four of the ten

samples. The sharp-peaked curves in all cases re-
present frequency distributions of the xi series,

while the lower curves correspond to the frequency
distributions of the generated independent normal
process £.. Table 5-3 gives the distribution param-

eters for all ten samples.

The chi-square values in Table 5-3 indicate that
the largest differences between the generated sample
and the estimated frequency curve of X, are obtained
when the remaining harmonics in e o, explain
between 40 percent and 60 percent of the total variance

of these parameters. With the 40 percent or 60 per-
cent explained variance, themode has the largest nega-



tive values, the skewness and kurtosis coefficients
are the largest, and the chi-square values are also
the largest.

In the next set of samples generated, the harmon-
ics in the u_ are held constant while the amplitudes

of harmonics in the o were allowed to vary. Again
no autoregressive term was used to produce the X,

series from the generated £y series.
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Fig. 5-3. Distribution of the X, Series with Equal
Amplitudes and Phases of Unremoved Harmonics
in the Mean and Standard Deviation for:
(1) Pm 80,2y (2) Pm = 0.4, (3) Pm = 0.5,
= 0.6.
(4) Pm 6
Table 5-3. Distribution Statistics for the Xi Series
with Equal Amplitude and Phases in Un-
removed Harmonics in the Mean and the
Standard Deviation. No Autoregressive
Term is Present.
) @ (3) (4) (5} _(6)
Chi-Square
Sample Pn Mode Skewness Kurtosis N(0,1) Fit
1 0.1 -0.3 0.442 3.63 20.83
2 0.2 -0.5 0.759 4,07 99.25
3 0.3 -0.7 0.946 4.28 172,24
4 0.4 -0.7 1.052 4.36 236.48
5 0.5 -0.5 1.087 4.33 236,84
6 0.6 -0.5 1.065 4.25 223.12
7 0.7 -0.5 0.988 4.12 185.55
8 0.8 -0.3 0.851 3.97 139,91
9 0.9 -0.3 0.629 3.81 52.75
10 0.95 -0.1 0.454 3.72 30.45
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The ratio Cifci measures the differences in
amplitudes of the remaining harmonics in u,- Values

of Cz and C; are computed by Eq. (2-6) and the

ratio is given the range from 0.111 to 19.0 in the
samples tested. The larger the ratio Ci/ci, the
larger is the proportion of the variance explained
by the unremoved harmonics in o¢_ as compared to B
Figure 5-4 gives the distribution of the estimated Xi
and the generated Ei series in four of the samples.

Table 5-4 gives the distribution parameters for all
ten samples. It is difficult to determine from Table
5-4 when the worst conditions occur. It appears that
equal variance explained by the unremoved harmonics

in u  and o will produce largest differences when
the variance of g explained by unremoved harmonics

is either much greater or much smaller than the vari-
ance explained by the unremoved harmonics in Mo No

definite trends can be noticed in the distribution
. 2 s
parameters as the ratio of CS/C; increases.
The next set of generated samples uses the same
approach of Eq. (4-4). The third sequences & and
the equal explained variances of n and o by the

unremoved harmonics were used.
angle 61

However, the phase
of Eq. (2-7) varied from 45 degrees to 405
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Fig. 5-4. Distribution of the Xy

Amplitude of Unremoved Harmonics in the
Mean are Held Constant {Pm = 0.5), and the

Series When the

Amplitudes of the Unremoved Harmonics in
the Standard Deviation are Allowed to Vary

for: (1) cX/c2 = 0.25, (2) c/e2 = 0.667,
2,2 S 2,2%
3) c¥/c2 = 1.50, (8) ¢/t = 4.00



Table 5-4. Distribution Statistics for the Ii Series
with Unremoved Harmonics in the Mean are
Held Constant (Pn = 0.5), and the Unremov-
ed Harmonics in the Standard Deviation are
Allowed to Vary.
m () 3) [C)] 51 (6)
2. 2 - Chi-Square
Sample C,!C. Mode Skewness Kurtosis  N(0,1) Fit
1 0.111 -0.7 0.719 3.159 54.64
2 0.250 -0.9 0.962 3.614 132.78
3 0.429 -0-9. 1.116 4.051 255.13
4 0.667 -0.7 1.207 4.461 297.99
5 1.000 -0.5 1.240 4.830 596.43
6 1.500 -0.5 1.212 5.132 431.95
7 2.333 -0.3 1.110 5.331 450.20
8 4.000 -0.2 0.915 5.336 376,74
9 9.000 -0.1 0.592 5.145 253.20
10 19.000 -0.1 0.364 4.894 188.39

degrees for the fundamental harmonic of g, was held

constant at the 45 degrees. The difference between

the fundamental phase angles of Me and o series,
A8, 1is defined by
48 = 8, (for o) - 45 . (5-3)
The amplitudes of the remaining harmonic terms in
Mo and o . are kept equal, and no autoregressive

term was present for the £ series. Figure 5-5 shows
six of the 13 samples generated under this approach.
Table 5-5 gives the distributions parameters for all

13 samples. The interesting aspect of this approach

is the reappearance of the double-peak distribution,
when the phase angles of the fundamental harmonics of

o and o, were out of phase. The phase angles

are nearly equal in most cases of observed series, and
distributions are usually with single sharp peak,
negative mode, high kurtosis and positive skewness.

No distribution in these samples had a single-peaked
and a positive mode distribution.

The next set of generated samples was used to
detect the influence of the unremoved autoregressive
dependence in the €5 series, while retaining the

o

2 of Eq. (4-4).
The fourth sample of £, was used in this generation

unremoved harmonics in o and

of samples. In the first set, an autoregressive
scheme of the order one was used in generating the e,
series. The remaining harmonic terms in v and o,

explained each 40 percent of the variances, while the
autoregressive lag-one coefficient @, was allowed

to vary between 0.1 and 0.9. Figure 5-6 shows four
cases in this category. Table 5-6 gives the param-
eters of Xi distributions for all ten cases. These

data sets show a surprising influence of the unremoved

part of the autoregressive dependence. As % in
the € series increases, the kurtosis of the distri-

bution of the X series increases, while the positive
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Fig. 5-5. Distribution of the Ki Series When the

Phase Angle Between the Harmonics in Mean
and Standard Deviation are Allowed to Vary
for: (1) A6 = 0%, (2) 48 = 30°, (3) 48 =
90°, (4) a8 = 150°, (5) 48 = 180°, (6) A8 =
330°.

skewness and a negative mode have smaller values. The
fact that the chi-square values computed for fitting
the standard normal distribution decrease as ay

increases was reflected in the decrease of skewness.
This shows a lesser influence of the large kurtosis
on the estimated Xy distribution, indicating that a

large o, causes the skewness to decrease faster than
the kurtosis increases.

The final set of samples was used with an auto-
regressive scheme of the order two in the L series,
and the presence of unremoved harmonics in W and o
of Eq. (4-4). The fifth sample of Ei was used.

Again the percent of the explained variance by un-
removed harmonics in e and o, was held constant

at 40 percent, the fundamental harmonics in both
parameters were in phase, while autoregressive
coefficients were varied according to the following
relationship

2a

g T d (5-4)
0.1 <a <1.0 (5-5)
and -1.0 e, < 1.0 (5-6)



Table 5-5. Distribution Statistics of the xi Series When the Phase Angle Between the Harmonics in the Mean

and the Standard Deviation Vary.

No Autoregressive Term Present.

(€Y (2) (3) (4) (5) (6) N (8) (9)
s m 40 Modes Chi-Square
Sample  Degrces Degrees Degrees Right Left Skewness Kurtosis N(0,1) Fit
1 45 45 0 -— -0.3 0.915 5.36 376.74
2 75 45 30 -=- -0.2 0.886 5.33 264,54
3 105 45 60 0.1 -0.5 €.799 5.24 326.23
4 135 45 90 0.1 -0.1 0.210 4.78 123.86
5 165 45 120 0.5 -0.3 -0.468 4.64 131.03
6 195 45 150 0.5 -0.5 -0.289 4.39 66.61
7 225 45 180 0.5 -0.5 -0.736 4.29 71.08
8 255 45 210 0.5 -0.5 0.164 4.37 103.50
9 285 45 240 0.3 -0.5 0.401 4.61 112.20
10 315 45 270 0.3 -0.5 0.619 4.91 173.56
11 345 45 300 0.1 -0.5 0.776 5.16 359.38
12 375 45 330 - -0.2 0.879 5.32 394.38
13 405 45 360 -— -0.3 0.915 5.36 376.74
30 Sy ' 3 Table 5-6. Distributions Statistics for the xi
Series When the Amplitudes and Phases of
> Harmonics in the Mean and Standard Devia-
€ tion are Held Constant, with an Autoregres-
% sive Series of Order-One, with a, Allowed
w to Vary.
o
g ) @ (3) ) s) 6) )]
.| Chi-Square R
K] Sample &, Mode Skewness Kurtosis N(0,1) Fit a
o 1 0.1 -0.7 1.028  4.634 250.42 0.29
M %Ak R 2 02 -07 1,021 4.674 279.66 0.36
3 0.3 -0.6 1.007  4.757 250.42 0.43
- 4 0.4 -0.5 0.988  4.819 279.46 0.50
' S 2 3 5 0.5 -0.5 0.958 4,923 289,49 0.56
5 6 0.6 -0.5 0.910  5.063 312.36 0.63
S‘ .20 7 0.7 -0.5 0.829  5.264 280.38 0.71
= 8 0.8 -0.3 0.663  5.555 173,97 0.80
2 9 0.9 -0.1 0.209  5.975 145,44 0.90
o .o
K] This allowed the autoregressive process to remain
stable, and allowed several different spectra for auto-
_dﬂ,// regressive processes to be used [10]. Figure 5-7 shows
=32 a0 2 3 S a0 2 3 the estimated distribution of X, for four cases.

Fig. 5-6. Distribution of the X, Series with Equal

Amplitudes and Phases of the Harmonics in
the Mean and Standard Deviation, and an
Autoregressive Order-One Series, with ay

Allowed to Vary: (1) @ = 0.2, (2) a =
0.4, (3) @ = 0.6, (4) 4 = 0.8.
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Table 5-7 gives the distribution statistics for all
ten cases of this category. The noticeable results
for this set of samples show that when the oy

coefficnet increases the ay coefficient decreases,

the negative distribution mode decreases, the positive
skewness increases while the kurtosis decreases. It
is again not clear what are the worst effects in this
case. All of the estimated distributions of Xi
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Fig. 5-7. Distribution of the X, Series with Equal
Amplitude and Phase in Unremoved Harmonics
of the Mean and Standard Deviation, and an
Autoregressive Order-Two Dependence Which
is Allowed oy and a, to Vary: (1) o, =
= = N = .2
0.2, dy 0.6, (2) oy 0.4, oy 0.2,
(3) % = 0.5, a, = 0.0, (4) a = 0.6, a, =
-0.2.
Table 5-7. Distribution Statistics of the Xi Series
When Amplitudes and Phases in the Unremoved
Standard Deviation Series are Equal, with
an Autoregressive Series of Order-Two Which
Allowed oy and a, to Vary.
1 2 (3) 4 (5) (6) (3]

W Chi-Square for
Sample o, a, Mode Skewness Kurtosis N(0,1) Fit
1 0.1 0.8 -0.3 1.086 5.77 377.35
2 0.2 0.6 -0.4 1.108 5.26 310.73
3 0.3 0.4 -0.5 1.114 4.95 326,81
4 0.4 0.2 -0.5 1.117 4.78 343.76
5 0.5 0.0 0.6 1.119 4.66 328.28
6 0.6 -0.2 -0.7 1.121 4.55 414,74
7 0.7 -0.4 0.7 1.123 4.47 443,25
8 0.8  -0.6 -0.7 1.124 4.43 378.99
9 0.9 -0.8 -0.7 1.127 4.42 331,54

represent a complex transformation of the initial
generated sample from a standard normal distribution,

€y-

Table 5-8 shows the assumed true population
autoregressive coefficients ay and g5 the
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estimated values of the first and second serial corre-

lation coefficients T and ), and the estimated

2y 2 by using the estimates
Eqs. (2-22) and (2-23).
the population values

and a

r, and and

1 2
The wide discrepancy between
and @, and the estimates

: of

9

could mainly be attributed to the presence
Again,

an investigator can make erroneous conclusions regard-
ing the true state of the autoregressive process €

1 and e,

of unremoved harmonic terms in uT and

[ 3

a_.
T

in the observed series of hydrologic variable.

Table 5-8. Effect of Unremoved Harmonics in the Mean
and Standard Deviation on Autoregressive
Order-Two Estimates
(1) (2) (3) (4) (s) (f) (3}
Sample a a, T T, a a,
1 0.1 0.8 0.907 0.824 0.900 0.008
2 0.2 0.6 0.824 0.683 0.813 0.013
3 0.3 0.4 0.747 0.568 0.730 0.023
4 0.4 0.2 0.677 0.477 0.654 0.034
s 0.5 0.0 0.610 0.406 0.577 0.054
6 0.6 -0.2 0.545 0.351 0.503 0.077
7 0.7 -0.4 0.482 0.310 0.433 0.101
g 0.8 -0.6 0.417 0.282 0.362 0.131
9 0.9 -0.8 0.351 0.264 0.295 0.161

5-4 Discussion of Experimental Results

It was demonstrated that the distribution of the
estimated independent stochastic component Xi series

by Eq. (4-4) from a generated periodic-stochastic
process would exhibit a sharp-peaked distribution in
comparison with the generated sample of an independent
normal process. This is true with and without the
presence of the autoregressive terms in the Ei series;

however, it does require a periodic standard dewiation
.- Therefore,the unremoved or overremoved harmonics

in the standard deviation of the estimated independent
stochastic component of periodic-stochastic process
probably account for the sharply peaked distributions
of the estimated independent stochastic component,

This distribution problem is illustrated in Fig. 5-8.
The periodic standard deviation creates problems

in estimating the distribution |of the independent
stochastic component, Ei. The series Ei may not

be identically distributed, nor necessarily indepen-
dent, if the mean is periodic and the éi series is

an autoregressive process. A strictly analytical
solution of this problem seems to be difficult but
the validity of any solution could be checked by simu-
lation on computers.

It is also apparent that the presence of a per-
iodic mean, uo in Eq. (4-4), causes the mean and

the mode of the peaked distribution of estimated
independent component, Ei’ to be somewhat different,

and in fact causes the mode to be negative, for the

unremoved or overremoved harmonics in (o and 9.

while they are in phase. The presence of the unremoved
or overremoved autogressive dependence in Ei series

may also have a slight effect on the kurtosis.



Figure 5-8. Illustration of the Effect of a Periodic Standard Deviation on the Distribution of the Estimated
&, Component. '
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Table 6-1. Simulated Xi Series Using Standard Normal Noise with Harmonics in the Mean and Standard Deviation

and Non-Periodic Autoregressive Parameters Estimated from Historical Daily Data. Skewness and
Kurtosis of Estimated Independent Residuals, s after Estimating and Removing Significant Har-

monics and Non-Periodic Autoregressive Dependence.

SIMULATED ESTIMATED
Coefs. Periodicity in Mean Periodicity in S5td. Dev. Periodicity in Mean Periodicity in Std. Dev.
Series an::? NHM j Aj Bj APj NHS j Aj Bj APj NHM j Aj Bj .nFj NHS j Aj Bj APj Skewness Kurtosis
1 2 5 1 -200.3 -112.4 0.3784 0 5 1 -218.7 -144.4 4337 0 0.033 3.015
2 145.4 185.0 0.3971 2 138.1 189.2 .3465
3 -85.5 -79.9 0.0982 3 -18.2 44.4 0145
4 58,0 65.6 0.0550 4 -1.2 17.6 .0020
5 -39.7 -72.5 0.0490 5 -14.7 -11.8 .0022
2 Experiment repeated 5 1 -234.1 -BB.6 .4115 0 0.009 2,958
Sk s simlazed 2 134.6 173.3 .3163
3 22,4 22.8 .0067
4 14.8 -11.9 .0024
5 -11.8 5.6 .00L1
3 Experiment repeated 5 1 -180.7 -129.5 .2880 O -0.005 3.003
::E: sane samulated 2 189.9 206.6 .4586
3 -17.7 3.7 .00L9
4 -51.4 14.6 .0l66
5 -33.7 31.9 .0126
4 12 3 1 -563.8 -6.91 .7026 1 1 -382.9 202.7 .6556 6 1 -573.7 -32.7 .7135 1 1 -457.1 257.5 .9492 0.032 3.018
2 198.8 193.8 .1703 2 216.9 189.7 .1794
3 -100.0 -158.4 .0779 3 -3.9 28.9 .00L8
4 2.3 3.3 .0000
5 -22.4 -21.1 .0020
6 -B4.4 -146.9 .0621
5 Experiment repeated 6 1 -598.9 25.5 .7506 1 1 -496.5 241.0 0.9610 0.033 3.182
e Pl 2 188.8 161.1 .1287
3 20.6 18.9 .0016
4 2.8 -15,7 .0005
5 -2.4 19.1 .0008
6 -117.1 -164.0 .0848
6 11 5 1 -888.4 509.9 0.8546 1 1 -798.3 648.3 0.6009 6 1 -858.1 383.0 .6699 1 1-1435.61158.1 .9471 0.002 2.999
2 -20.2 -311.0 0.0791 2 163.1 -217.5 .0561
3 -17.7 -1.5 0.0010 3 -42.5 64.3 .0045
4 -6.2 11.0 0.0005 4 -8B.9 49.7 .0079
5 13.6 -5.3 0.006 5 -24.7 86.0 .0061
6 -168.9 -78.2 .0263
7 Experiment repeated 6 1 -935.9 502.9 .7352 1 1-1454.61237.5 .9530 0.016 2.969
with same simulated 2 159.6 -319.8 .0832
data
3 -92.4 -22.6 .0059
4 83.6 26.3 .0050
5 19.6 99.0 .0066
6 -11.5 -88.0 .0051
8 2 S 1-200.5 -112.4 0.3784 1 1 -123.3 -85.5 0.2706 5 1 -215.7 -144.9 .4364 1 1 -197.7 -132.1 .8984 0.040 2.973
2 145.4 185.0 0.3971 2 134.6 186.6 .3423
3 -85.5 -79.9 0.0982 3 -18.3 40.56 ,0128
4 58.0 65.6 0.0550 4 14.1 11.2 .0021
5 -39.7 -72.5 0.0490 5 -16.5 -18.2 .0039
8 12 5 1 -563.8 -6.91 .7026 2 1 -382.9 202.7 .6556 6 1 -561.1 -32.6 .6393 1 1 -440.5 £29.3 .9104 0.009 3.582
2 198.8 193.8 .1703 2 11.4 91.7 ,0298 2 242.1 21B.8 .2155
3 -100.8 -158.4 _g779 3 -5.2 12,1 .0004
4 -18.5 13.1 .0010
5 -2.3 12,1 .003
6 -136.9 -183.6 .1061
10 Experiment repeated 6 1 -579.2 -5.2 .6819 1 1 -449.1 242.9 .9192 0.008 3.657
::3‘ same similsted 2 243.1 189.8 .1934
3 -27.1 -8.9 .0017
4 15.1 10.1 .0007
5 4.3  24.6 ,0013
6 -99.8 -180.3 .0863



Table 6-1. (Continued)

SIMULATED ESTIMATED
Coefs. Periodicity in Mean Pericdicity in Std, Dev. Periodicity in Mean Periodicity in Std. Dev.

Series g:: NHM § "j Bj nPj NHS j "‘j Ij APJ NHM j '\j !'j nPj NHS j Aj Bj APj Skewness Kurtosis
11 11 5 1 -888.4 509.9 0.8546 2 1 -798.3 648.3 0.6009 6 1 -781.3 291.6 .6919 2 1-1462.01174.9 .8526 0.020 2,972
2 -20.2 -311.0 0.079i 2 -235.9-267.6 0.0723 2 135.0 -156.4 0425 2 -461.7 -498.8 .1120

3 -17.7 -1.5 0.0010 3 -152.1 -37.3 .0244
4 -6.2 11.0 0.0005 4 -12.9 2.0 .0002
5 13.6  =5.3 0.0006 5 19,9 -70.6 .0054
6 100.9 75.3 .0158
12 Experiment repeated 5 1 -920.7 558.6 .6875 2 1-1448.71160.3 .8456 -0.003 3.084
WD dae simsioel 2 -10.3 -350.2 .0728 2 -441.4 -472,0 .1025
3 -74.1 -3.1 .0033
4 69.6 86.3 .0073
5 5.8 -137.5 .0112
13 2 5 1 -200.3 -112.4 0.3784 2 1 -123.3 -85.5 0.2706 5 1 -222.4 -126.2 .4261 2 1 -195.0 -136.8 .3935 0.059 3.118
2 145.4 185.0 0.3971 2 141.6 105.7 0.3750 2 135.1 189.4 ,3526 2 233.1 163.5 .5621
5 -85.5 -79.9 0.0982 3 -22.8 29.1 .0089
4 58.0 65.6 0.0550 4 17.2 13.% ,0032
5 -39.7 -72.5 0.0490 § -25.8 -11.9 .0053
14 12 3 1 -5635.8 -6.91 0.7026 3 1 -382.9 202.7 .6556 2 1 -546.4 -47.4 .6767 1 1 -432.4 210.0 .8656 0.081 3.794
2 198.8 193.8 0,1703 2 11.4 91.7 .0298 2 227.4 224.7 ,2300

5 -100.8 -158.4 (,0779 5 -50.2 -108.9 .0502
15 Experiment Tepeated 6

1-569.9 3.8 .7138 1 1 -430.2 207.6 .8652 -0.026 3.939
ey o s RE AN 2 205.7 182.9 .1665
3 -28.1 -4.5 .0018
4 25.4 20.9 .0024
5§ 7.5 -35.4 .0029
6 -89.8 -145.9 .0645
16 2 5 1-200.3 -112.4 0.3784 3 1 -123.3 -85.5 0.2706 § 1 -232.1 -102.7 .4116 2 1 -239.7 -151,0 .3589 0,378  8.382
2 145.4 185.0 0.3971 2 141.6 105.7 0.3750 2 147.0 171.6 .3262 2 280.1 183.3 .5012
3 -85.5 -79.9 0,0982 3 -66.4 -46.2 0.0786 3 -0.2 36.5 .0085
4 58.0 65.6 0.0550 4 11.8 -28.4 .0060
5§ -39.7 -72.5 0.490 5 5.1 18.5 .0024
17 Experiment Tepeated § 1 -221.3 -125.9 .4228 (3) 1 -197.5 -138.6 .3540 0.191  4.756
with same simulated 2 130.0 192.3 .3510 2 228.9 164.5 .4830
data MHS in estimates
increased to three 3 -24.4 36.0 .0123 3 1.3 -6.0 .0002
4 20.7 -14.1 .0041
5 -20.6 -14.2 .0041
18 Experiment repeated 5 1 -232.1 «102.8 .4116 (6) 1 -239.7 -151.0 .3589 -0.189 4.546
with same simulated 2 147.0 171.6 .3262 2 280.1 183.3 .5012
data MHS in estimates
increased to six 3 -0.2 36.5 .0085 3 2.0 -3.3.0001
4 11.8 -28.4 .0060 4 5.5 -3.5.0002
5 -5.1 18.5 .0024 5 15.7 25.1 .0039
19 Experiment repeated 5 1 -198.1 -106.3 .2956 Q2 1 -192.6 -148.3 .3368 -0.089 3.294
with same simulated 2 174.3 220.7 .4626 2 239.9 186.3 .5261
data NHS in estimates
increased to twelve 3 -8.9 5.4 .0006 3 -7.4 -16.2 .0018
4 -50,2 18.1 .0167 4 11,4 20.4 ,0031
s -8.3 22.2 .0033 5 -23.7 -43.2 .0138

0 Experiment repeated Non-Parametric 0.019 3.074
with same simulated
data, non-parametric
method for estimates

a2 § 1-200.3 -112.4 .378¢ § 1 -125.3 -85.5 0.2706 5 1 -196.0 -105.6 .2878 S 1 -189.6 -144.1 .2918 0.760  9.584
2 145.4 185.0 .3971 2 141.6 105.7 0.3750 2 176.1 221.1 .4638 2 233.8 183.4 .4545
3 -85.5 -79,9 .0982 3 -66.4 -46.20.0786 3 -8,3 -3.4 .0005 3 -5.5 -18.8 .0020
4 $8.0 65.6 .0S50 4 75.7 31.7 0.0809 4 -52.0 18,4 .0177 4 7.7 22.3 .0029
§ -39.7 -72.5 .0490 S .47.2 -43.2 0.0492 5 7.6 19.9 .0026 § -24.2 -43.8 .0129
22 Experinent ropeated § 1 -220.1 -125.7 .4166 S 1 -198.7 -138.1 ,3032 0.752  7.541
with same simulated 2 130.4 193.7 .3540 2 224.7 100.8 .4048
dare 3 -27.5 34.8 .0128
4 21.0 15.3 .0044
5 -21.6 -12.4 .0040
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Chapter VI
APPLICATIONS OF EXPERIMENTAL METHOD IN USING HARMONIC COEFFICIENTS
FROM HISTORICAL DATA, NORMAL AND GAMMA NOISE AND EFFECT
OF PERIODIC AUTOCORRELATION

6-1 Methodology

In the previous chapter frequencydistributions of
the constituted Xi series were studied when the in-

put was the normal noise with periodicities left in
the mean and, with the exclusion of results given by
Tables 5-1 and 5-2, in the standard deviation. Also,
in four cases (Tables 5-4, 5-6, 5-7 and 5-8) the
effects of an added autoregressive scheme were investi-
gated.

In this chapter estimates of parameters from
recorded historical data, used earlier by Quimpo
[16] and others, are applied to produce the input
data which has a variable distribution in its random
component and the distribution of the independent
residuals, 6y is re-examined.

The stations pertaining to this study are as
follows: (1) Tioga, Far Twins, New York; (2) Oconto,
Gillette, Wisconsin; (11) Powell, Arthur, Tennessee;
and (12) S5t. Maries, Lotus, Idaho.

A larger sample size of 40 years of daily data is
used throughout and generated data are of the form
given by

xi =M. O Ey (6-1)
where t = i (module w) and
m
&y =j§1 =5 Byg £y (6-2)

The standardized random series, Ei’ have either
normal or gamma distributions. The gamma variates

are obtained by Eq. (4-3). This algorithm produces
numbers which are serially uncorrelated but when a
skewness, A, greater than 2 is applied the skewness
of the variates differs significantly from A (the
difference increases when A increases) and also
require standardization to zero mean and unit variance.
In addition, the distributionis not strictly gamma.

On the other hand, with the one-to-one transformation
the algorithm is more economical than others and is
therefore chosen for this study.

The order, m, of the autoregressive process
and the coefficients, =j, are those estimated from

historical data. Harmonic coefficients from the
original data are used but the numbers of significant
harmonics are varied. Periodicities in the Xi

series are then removed by inferring the numbers of
harmonics and estimating the coefficients. The
skewness and kurtosis of the independent residuals,
€y, were evaluated after removing the serial depen-

dence through a fitted non-periodic autoregressive
scheme.

For the second phase, a periodic autoregressive
scheme as discussed in Chapter II is incorporated,
with the means and standard deviations, Mo and

constant for all values of 1. As before, a non-
periodic scheme is used to remove serial dependence
and the distribution statistics are evaluated for
the cases of normal and gamma noise. For the gamma

Gt,
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input, the skewness and kurtosis given in tables are
those evaluated after the algorithm is applied.

6-2 Periodicities in the Mean and Standard Deviation

The results for a normal input with a variable
number of harmonics in the mean -and standard devia-
tion, denoted by NHM and NHS respectively, are given
in Table 6-1. If the input does not contain any
periodicity in the standard deviation, as in the first
three series, the Ei of the output are found to be

normally distributed. The addition of one harmonic

to the standard deviation of the input followed by the
removal of periodicities in the mean and standard
deviation also resulted in normally distributed
independent residuals as seen in series 4 through 8 of
Table 6-1. The results from the next five series,
9-13, show that, with the input subjected to two
harmonics in the standard deviation, the kurtosis

can exceed three. The skewness and kurtosis increase
when NHS is increased further and this indicates
inferential errors regarding the number of significant
harmonics in the periodic standard deviation.

Although it appears that from the results of the
16th series only two harmonics in the standard devia-
tion were significant, the experiments were repeated
with NHS in the output increased arbitrarily as given
by numbers within brackets in the next three series,
14-16. This resulted in a decrease in the skewness
and kurtosis. Results by using the non-parametric
method given by the 20th series show the possibility
of obtaining a normal output and emphasize the un-
certainties in the parametric method especially in the
case of the two subsequent series for the input of
which NHS = 5.

The experiment was repeated using gamma noise
and the harmonics from station 2 data with NHM = 5
and NHS varying from 0 to 4 in the input. The results
in Table 6-2 show, as in the case when normal noise
was used, that differences between the input and output
distributions tend to increase when NHS increases.
However in this case there is a decrease in the skew-
ness and kurtosis compared to the results in Table 6-1.

6-3 Periodicities in the Autoregressive Coefficients

The effects of periodicities in the autoregressive
structure on the probability distribution of indepen-
dent residuals formed by using a non-periodic auto-
regressive scheme are shown in Table 6-3 (normal
noise) and Table 6-4 (gamma noise). The 3rd oxder
autoregressive coefficients estimated from station 1
data in which Tao [20] found periodicities in the
serial correlation coefficients were used to produce
series 1 of Table 6-3. It appears that the estimated
coefficients do not affect distributions. The other
series were produced using the arbitrary harmonic
coefficients representing periodicities in the
serial correlation coefficients. When the amplitudes
increase, the skewness and kurtosis tend to increase
also. However, increasing the order of the process
seems to have a normalizing effect.

To produce the results of Table 6-4 skewness
coefficients of 1 and approximately 4 were applied
to the &i series. For low values of skewness and

low amplitudes in the periodic autocorrelation
coefficients, the distribution statistics are



Table 6-2. Simulated xi Series Using Standardized Table 6-4, Simulated Xi Series Using Standardized
Gamma Noise with Harmonics in the Mean and Gamma Noise and Periodic First Order Auto-
Standard Deviation and Non-Periodic Auto- regressive Scheme. Means of Lag 1,2, and
regressive Parameters Estimated from Sta- 3 Periodic Serial Correlation Coefficients
tion 2 Data. Skewness and Kurtosis of from 365 Values are 0.370, 0.513 and 0.404
Estimated Independent Residuals, E£,, Respectively (Station 1 Data). Skewness
after Estimating and Removing Significant ;‘;ilg:ﬁ:“sa"f E:g::‘;gt;:::g:“d::: Has
Harmonics and Non-Periodic Autoregressive 2 By 4
Dependence. moving Non-Periodic Autoregressive Depen-
dence.
Sisulated Estimated
Simulated Estimated
Number of Terseades in
Harmonics, & Ser, Cor. Coafflcients. Periodic | Ind. Res. Non-periodic
Autoregressive Moldel, order W | Autoregressive Model
Series | Mean Std. Dev.| Skewness | Xurtosis | Skewness | Kurtosis . | TP ST
1 5 0 1.062 4.81 0.919 4.47 Saries | 8 | Skewmens | urtosta [ A By | A 8 | A B | Skeemess | Eurtosts
2 5 0 2.158 10.21 1.851 8.72 1 1] 1.oe a2 | -1 o 0.60 a1
2 1 1.03 4,64 =1 1] =1 d F .44 3.43
3 5 0 4.30 31.69 3.61 24.61 ) 2| 100 a8 [ -0 e e a] e 487
a4 2 an 31.70 =1 «1 4.99 45,27
4 5 1 0.993 440 0.784 geds 5 3| a2 e | - a1 |ea a1 2.84 16,58
[ 5 1 1.988 8.83 1.575 7.44 o s | oam 2 | -1 el fea | 300 16,07
6 5 1 3.885 27.06 2.976 19.21 T[] om 440 |-z .2 0.5 5.8
[} 1 1.4 4.7 -2 2 |-2 .2 0.86 4.51
7 5 2 0.982 4.39 0.635 4.02 ] 2 1.08 4.87 C S [ S ) I R 1.28 6,87
18 2 3.0 .06 =1 .1 4.0 1.9
8 s 2 1.985 8.80 1.314 6.50 i H s s i PR Yok pids
9 5 2 3.872 26.16 2.617 16.53 12 3| a Bay | -2 2.2 a3]-2 2| em | s
13 1| e L5 T I T R | 1.08 6,18
10 5 3 1.025 4.67 0.632 4.14 i i |- i v 15 Sl s s s
11 5 3 2.0%6 9.95 1.287 6.75 15 H 1.0 453 -3 3|-3 3([-3 3 1.56 b6l
18 2 N .10 =} .3 5.15 45.12
12 5 3 4187 52.78 2542 13:28 1] 3| s | -3 3.3 .3 S0 3.8
13 5 s 1.026 4.66 0.954 6.23 " 3| a2 s | -3 3|-3 5]|-3 3] am “oas
14 5 4 2.097 9.85 1.612 9.28
15 5 4 4.256 31.65 2.796 19.66

Table 6-3. Simulated Xi Series Using Standard

Normal Noise and Periodic Autoregressive
Scheme of Order m, m = 1,2,3. Means of
Lag 1, 2 and 3 Periodic Serial Correlation generally lower, regardless of the order of the pro-
Coefficients from 365 Values are 0.370, cess. An increase in amplitudes usually results in an
0.513 and 0.404 Respectively (Station 1 increase in the skewness and kurtosis of the zi
Data). Series 1 is Based on Harmonics in
Serial Correlation Coefficients of Station
1 Data. Skewness and Kurtosis of Esti-
mated Independent Residuals, Ei’ after

series as in the case of normal residuals, but the
interactions between the various combinations of sta-
stics seem to be highly complicated.

The conclusions of this part of the study are

i ng and Removing Non-Periodic Auto-
s . firstly that the existing methods of inferring

regressive Dependence.

periodicities in the standard deviation are inadequate
i) Parisaced as noted from the results in Chapter V. Further
Rumdan 1A Jov Gor. Sopfnimmste 0 oy o research is required on this aspect especially if the
— —— e objective is to detem}na a more accurate d;stnbutlon
of the independent residuals. The alternative method
Sorim| 0 | 3| 4 I I I e T O e e of using the non-parametric method is not attractive
v | 3|3 | .0307|-.0rma | .o297 [-.03m | o3 |-.0e00 | .oz | 300 because of the multiplicity of parameters that need
2| -0228| 0074 | .0043| 0230 | -.0129 | 0219 to be estimated and the likelihood of incorporating
: ::: ::: ':1: ﬁ ::z :::: the effect of large sampling errors into the mathe-
e Wproeed el (i) Bsioped st sy matical models. Secondly, regarding the periodicities
6| .omea|-.0203 | .oma| .cor | .08 | 0083 in the serial correlation coefficients, these do not
1 1l1] -8 A o289 | 378 seem to cause serious problems with respect to the
s |elaf-a | a w1 | a e.omr | 3.8 estimation of probability distributions, provided
¢ |3j1]=a |2 |-b Ja el ) el that periodicities are not highly significant. If
0 | 1 o AR I W e | & periodicities are found, higher-order autoregressive
r {ala]-a | -2 2 -2 2 0.33 | 4.3 processes than indicated by the usual methods of in-
s Yalalss 3 0.72 | s.m ference seem to be the remedy, and periodicities need
LR T I A T I T I I o0 | 498 to be removed prior to the evaluation of the distri-
W) spn] S s Bk Joa s jod o] M e bution statistics.
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Chapter VII
CONCLUSIONS

The main conclusions of this study are as follows:

(1) The use of the periodic-stochastic model for
hydrologic series to describe daily time series, with
the annual periodicity in parameters, results often
in a sharp-peaked curve of the estimated frequency
distribution of the independent stochastic component
in comparison with the population distribution which
is normal (0,1). The frequency curve is also distorted
when the population is non-normal. These deviations
are caused by the modeling process and the sampling
errors in estimating periodicities.

(2) The distorted distribution of the estimated
independent residuals of stochastic components of a
periodic-stochastic process indicates the limitations
in current methods of inferring the numbers of signi-
ficant harmonics and in the least-square estimation
of Fourier coefficients of inferred harmonics.

(3) Inferential errors pertaining to the periodi-
city in the mean do not seem to have a serious effect
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on the distribution of independent residuals. Larger
errors in the estimated distributions are caused by
errors in the estimates of harmonics in the standard
deviation.

(4) Periodicity which remains in the dependent
stochastic component of the periodic-stochastic process
leads to biased estimates of autoregressive coeffi-
cients.

(5) The bias is reduced by taking account of
periodicities in the autocorrelation structure.
However, these may not be highly significant and the
greatest uncertainty lies in estimating periodicity
in the standard deviation.

(6) A reduction in the number of significant
harmonics and an improved fit is obtained through
a logarithmic transformation. The weighted Fourier
analysis also leads to some improvement but there
may be undesirable effects particularly if the approach
is used with the logarithmic transformation.



10.

11

12,

13,

REFERENCES

Adamowski, K., 1971, Special Density of River Flow
Time Series, Journal of Hydrology, Vol. 14,
October 1971, pp. 43-50.

Adamowski, K., and Smith, F.K., 1972, Stochastic
Generation of Rainfall, Journal of Hydraulics
Division, American Society of Civil Engineers,
Vol. 98, No. H41l, November 1972, pp. 1935-
1945,

Anderson, R.L., 1942, Distribution of the Serial
Correlation Coefficient, Annals of Mathemati-
cal Statistics, Vol. 13, 1942, pp. 1-13.

Box, E.P.G., and Jenkins, G.M., 1971, Time Series
Analysis Forecasting and Control. Holden-Day
Co., San Francisco, 553 p.

Chin, William Q., 1973, A Deterministic-Stochastic
Model of Long-Term Climatic Changes. Ph.D.
Dissertation, Colorado State University, Ft.
Collins, Colorado, pp. 157-169.

Dickenson, R., 1971, On the Relationship of Vari-
ance Spectra of Temperature to Large Scale
Atmospheric Circulation. Journal of Applied
Meteorology, Vol. 10, No. 2, Feb. 1971, pp.
157-169.

Dwass, Meyer, 1970, Probability Theory and Appli-
cations. W.A. Benjamin Inc., New York, pp.
245-249.

Fiering, M.B., and Jackson, B.B., 1971, Synthetic
Streamflow. American Geophysical Union, Water
Resources Monograph No. 1, McGregor and
Weiner Inc., Washington, D. C., 210 p.

Fisher, R.A. 1929, Tests of Significance in Har-
monic Analysis, Proceedings of the Royal
Society, Series A, Vol. 125, pp. 55-59.

Hastings, C., 1955, Approximations for Digital
Computers. Princeton University Press.
Princeton, New Jersey, 195 p.

Jenkins, G.M., and Watts, D.G., 1969, Spectral
Analysis and Its Applications. Holden-Day,
San Francisco, 525 p., pp. 149-152.

Jones, H.J., and Brelsford, W.M., 1967, Time
Series with Periodic Structure. Biometrica,
Vol. 54,1967, pp. 403-410.

Kendall, M.G., and Stuart, A., 1966, The Advanced
Theory of Statistics, Vol. 3. Haffnner, New
York, pp. 419-420.

14.

15.

16,

17,

18.

19.

20.

21.

22;

23,

24,

25

Landsberg, H.E., J.M. Mitchell, and H.L. Crutcher,
1959, Power Spectrum Analysis of Climatolo-
gical Data for Woodstock College, Maryland.
Monthly Weather Review, Vol. 87, No. 8, 1959,
pp. 283-298.

Quenoille, M.H., 1949, A Large Sample Test for the
Goodness of Fit in Autoregressive Schemes.
Journal of the Royal Statistical Society.
Vol. 10, pp. 123-129.

Quimpo, R.G., 1967, Stochastic Model of Daily
River Flow Sequences. Hydrology Paper 18,
Colorado State University, Ft. Collins,
Colorado, pp. 11-13.

Roesner, L.A., and V.M. Yevjevich, 1966, Mathe-
matical Models for Time Series of Monthly
Precipitation and Monthly Runoff. Hydrology
Paper 15, Colorado State University, Ft.
Collins, Colorado, 34 p.

Salaz-la Cruz, J.D., and V. Yevjevich, 1972,
Stochastic Structure of Water Use Time
Series, Hydrology Paper 52, Colorado State
University, Ft. Collins, Colorado.

Schuster, A., 1898, On the Investigation of
Hidden Periodicities with Application to a
Supposed 26-Day Period of Meteorological
Phenomenon, Terr. Mag., V. 3, No. 1, pp. 13-
41, Journal of Geophysical Research, Washing-
ton, D. C.

Tao, Pen-Chih, 1973, Distribution of Hydrologic

Independent Stochastic Components. Ph.D.

Dissertation, Colorado State University, Ft.

Collins, Colorado.

Walker, G.T., 1925, On Periodicity, Royal
Meteorological Society Journal, V. 51,
pp. 337-346.

Yevijevich, V.M., 1964, Fluctuations of Wet and
Dry Years. Part II, Analysis by Serial Corre-
logram, Hydrology Paper 4, Colorado State
University, Ft. Collins, Colorado.

Yevjevich, V.M., 1972, Structural Analysis of
Hydrologic Time Series. Hydrology Paper 56,
Colorado State University, Ft. Cellins,
Colorado, pp. 18-55.

Yevjevich, V.M., 1972, Stochastic Processes in
Hydrology. Water Resources Publications,
Ft. Collins, Colorado, 260 p., pp. 35-43.



Key Words: Hydrologic time series, harmonics of periodic
parameters, misestimation of harmonics, residual stochastic
series, structural analysis of time series.

Abstract: The periodic-stochastic model, used to describe the
structure of historic hydrologic time series, is examined in
the light of finding that it distorts the distribution of re-
siduals, or of the time-independent stochastic component under
certain circumstances. In general this distortion caused the
distribution of an independent stochastic component to have

a sharper peak, and sometimes it appears to follow a double
branch exponential distribution function. The apparent cause
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for distortions is the failure of the least-squares method
to accurately estimate amplitudes and phases of harmonics in
periodic parameters of historic data. The unremoved and/or
misestimated dependence of the autoregressive type in sto-
chastic component was found to also affect the inferred dis-
tribution of residuals. The investigation method used is
by generating new samples of given sizes and properties by
the classical Monte Carlo method.
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