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ABSTRACT OF THESIS 

DEVELOPMENT OF A THIRD-ORDER CLOSURE TURBULENCE MODEL 

WITH SUBGRID-SCALE CONDENSATION 

  
 Boundary layer clouds play an important role in the Earth’s climate system due to 

their local effect on the radiation budget and their expansive geographic extent. Their 

poor representation within many general circulation models provides motivation for the 

development of a turbulence parameterization capable of better simulating these clouds 

and their effect on the turbulent structure of the boundary layer. With this goal in mind, 

this study presents the development and testing of such a model. 

 Since most boundary layer clouds result from convective processes, it is important 

that the new turbulence model be able to accurately predict the growth of the boundary 

layer in a convective regime. Previous studies have shown that third-order closure models 

provide sufficient detail for realistic boundary layer growth in such a regime. For this 

reason, the development of the new turbulence model is based on this level of detail.  

The current model predicts the evolution of 10 second-order moments and diagnoses the 

values of 28 third-order moments. Further, a subgrid-scale condensation scheme is 

utilized to diagnose the cloud fraction and liquid water content. This scheme also allows 

the diagnosed cloud cover to interact with the turbulence variables by modifying the 

buoyancy production terms in their predictive equations. Finally, the diagnosed cloud 



 iv 

cover participates in warm rain processes and a novel procedure is used to account for 

rain falling through partial cloudiness on the subgrid-scale. 

 The new turbulence model is tested as both a single column model and as a 

turbulence parameterization within a host three-dimensional mesoscale model. For the 

single column model, five cases are simulated in order to test the model’s ability in 

different boundary layer regimes: a clear convective case, a stratocumulus-like smoke 

cloud case, a nocturnal drizzling stratocumulus case, a non-precipitating trade-wind 

cumulus case with low cloud fraction, and a precipitating trade-wind cumulus case. It is 

demonstrated that the new model simulates all regimes satisfactorily as the mean and 

turbulent states of the simulated boundary layer are compared with results from large-

eddy simulation intercomparison studies. Finally, the new turbulence model is used as a 

parameterization within a three-dimensional model and two of the previous cases are run. 

The results are compared to those from both large-eddy simulation intercomparison 

studies and the host model run with its standard parameterizations. It is shown that the 

modified version of the three-dimensional model improves upon the results from the 

same model with its standard parameterization suite. 

Grant J. Firl 
Department of Atmospheric Science 

Colorado State University 
Fort Collins, CO 80523 

Fall 2009 
  

 

 

 

 



 v 

 

 

ACKNOWLEDGEMENTS 

 

 I have had the extreme good fortune of working in an environment including both 

world-class teachers and supportive, enthusiastic friends. As a result, my graduate 

education has been shaped by many inspired lectures and thought-provoking discussions. 

No one has contributed more to my growth as a student and scientist than my advisor, Dr. 

David A. Randall, for whom I am eternally grateful. Not only has he personally fostered a 

free exchange of ideas, but has collected a fine group of researchers and students who 

themselves are invaluable resources. Each member has contributed to an incredibly high 

standard of work that I have aspired to attain. Of this group, I’d like to particularly thank 

my officemates Kate Thayer-Calder and Todd Jones for occasional research support and 

more numerous life-centering digressions.  

 I’d like to acknowledge the support of my family and my wife, Julia, who have 

believed in my potential and who have consistently reminded me of what really matters. 

 I’d further like to thank all members of my thesis committee, Drs. David A. 

Randall, Scott Denning, and Donald Estep, who have taken the time to review this work. 

 This research was made possible by funding from the United States Department 

of Energy’s Scientific Discovery through Advanced Computing (SciDAC) grant 

DE-FC02-06ER64302. 

 



 vi 

 

 

TABLE OF CONTENTS 

SIGNATURE PAGE ............................................................................................ ii 

ABSTRACT OF THESIS....................................................................................... iii 

ACKNOWLEDGEMENTS.................................................................................... v 

TABLE OF CONTENTS ....................................................................................... vi 

 

Chapter 1 INTRODUCTION......................................................................... 1 

Chapter 2 MODEL DEVELOPMENT.......................................................... 6 

 2.1 Introduction to derivation................................................................ 6 

 2.2 Choice of mean variables and their equations.................................. 8 

 2.3 Equations for the second-order moments......................................... 10 

 2.4 Equations for the third-order moments ............................................ 14 

 2.5  Parameterization of the pressure correlation terms........................... 18 

 2.6 Parameterization of the dissipation terms ........................................ 21 

 2.7 Parameterization of the fourth-order moments................................. 24 

 2.8 Diagnostic third-order moments ...................................................... 30 

 2.9 Parameterization of the buoyancy terms .......................................... 32 

 2.10 Turbulent timescales ....................................................................... 33 

 2.11 Subgrid-scale condensation ............................................................. 38 

  2.11.1 Cloud fraction and liquid water content ............................... 39 



 vii 

  2.11.2 Liquid water correlations..................................................... 45 

 2.12 Subgrid-scale microphysics............................................................. 60 

 2.13 Complete system of governing equations ........................................ 67 

 2.14  Model discretization........................................................................ 70 

Chapter 3 ONE-DIMENSIONAL MODEL RESULTS................................ 78 

 3.1 Introduction .................................................................................... 78 

 3.2 Daytime clear convective case: Wangara......................................... 79 

  3.2.1 Initial conditions.................................................................. 80 

  3.2.2 Results................................................................................. 83 

   3.2.2.1 Mean variables......................................................... 83 

   3.2.2.2 Second-order moments and their budgets ................. 89 

   3.2.2.3 Selected third-order moments................................... 101 

 3.3 Smoke cloud case............................................................................ 106 

  3.3.1 Initial conditions.................................................................. 107 

  3.3.2 Results................................................................................. 109 

   3.3.2.1 Mean quantities and entrainment parameters............ 109 

   3.3.2.2 Selected second- and third-order moments ............... 119 

 3.4 Drizzling nocturnal stratocumulus case: DYCOMS II ..................... 123 

  3.4.1 Initial conditions.................................................................. 124 

  3.4.2 Results ................................................................................ 127 

   3.4.2.1 Mean variables, cloudiness statistics, and  
    precipitation............................................................. 127 
   3.4.2.2 Turbulent moments and entrainment ........................ 132 

 3.5 Nonprecipitating trade-wind cumulus case: BOMEX ...................... 140 



 viii 

  3.5.1 Case setup ........................................................................... 141 

  3.5.2 Results ................................................................................ 143 

   3.5.2.1 Mean variables and cloudiness statistics................... 143 

   3.5.2.2 Turbulent moments .................................................. 149 

 3.6 Precipitating trade-wind cumulus case: RICO ................................. 154 

  3.6.1 Case setup ........................................................................... 155 

  3.6.2 Results ................................................................................ 157 

   3.6.2.1 Mean variables, cloudiness statistics, and  
    precipitation............................................................. 157 

   3.6.2.2 Turbulent moments .................................................. 162 

 3.7 Notes on model execution time ....................................................... 166 

Chapter 4 THREE-DIMENSIONAL IMPLEMENTATION AND  
  RESULTS...................................................................................... 167 

 4.1 Introduction .................................................................................... 167 

 4.2 Vector Vorticity Model (VVM)....................................................... 168 

 4.3 Coupling with VVM ....................................................................... 169 

 4.4 Three-dimensional model results..................................................... 173 

  4.4.1 Drizzling nocturnal stratocumulus case: DYCOMS II.......... 174 

  4.4.2 Nonprecipitating trade-wind cumulus case: BOMEX........... 182 

 4.5 Notes on model execution time ....................................................... 189 

Chapter 5 CONCLUSION ............................................................................. 190 

APPENDIX A: Solving for the explicit diagnostic third-order moments................. 196 

APPENDIX B: Virtual potential temperature as a function of conservative  
    variables ....................................................................................... 216  

REFERENCES ............................................................................................ 218 



 

 

 

Chapter 1 

Introduction 

One of the key uncertainties in modeling climate with general circulation models 

(GCMs) has been the role of clouds and the feedbacks they participate in. While 

computational speed has increased according to Moore’s Law over the past several 

decades, GCM grid sizes are still constrained to a size too large to resolve clouds 

sufficiently. Deep convection is accounted for with convective parameterizations, and 

stratiform clouds are represented by grid-scale condensation, but this configuration leaves 

much room for improvement. For example, boundary layer clouds cover a large areal 

extent, and due to their considerable effect on the local albedo and radiation budget, have 

critical importance for the Earth’s climate (Slingo 1990, Hartmann et al. 1992). Many 

GCMs, however, fail to accurately represent boundary layer clouds, underestimating the 

expansive areal extent of stratocumulus decks off of the western boundaries of 

continents, and failing to accurately represent the transition from stratocumulus decks to 

shallow cumulus regimes in trade-wind zones. One way to improve a GCM’s ability to 

simulate boundary layer clouds is to improve its turbulence parameterization so that it is 

capable of correctly representing cloud-topped boundary layers and their effects.  

Models used to study cloud-topped boundary layers have generally fallen into one 

of three categories (Bougeault 1985, Bechtold et al. 1992). The first consists of three-
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dimensional dynamical models utilizing fine resolution and sophisticated microphysics 

and radiation schemes. Results from such models are known as large-eddy simulations 

(LESs) and were first produced by Deardorff (1974a). LES models are designed to 

explicitly resolve the energy-containing eddies, and if a subgrid turbulence scheme is 

used, it is usually of minor importance. Many authors have successfully used LES to 

study cloudy boundary layers (e.g., Deardorff 1976b, Sommeria 1976, Klemp and 

Wilhelson 1978, Moeng 1986, Redelsperger and Sommeria 1986, Brown et al. 2002, and 

Stevens et al. 2005). However, this success comes with a high computational cost, 

rendering the LES strategy unusable for GCMs. In the context of parameterization 

development, LES is best used to produce reference data for evaluating less 

computationally expensive models where appropriate data is sparse or missing, as is the 

case with boundary-layer turbulence.  

The second type of model used to study cloud-top boundary layers is the bulk 

mixed-layer model. These models represent the boundary layer as one well-mixed layer, 

the properties of which are governed by surface fluxes, the boundary layer depth, and the 

strength of entrainment at the interface with the free troposphere. Many authors have 

used these models and have had success representing salient features of cloud-topped 

mixed layers (e.g., Lilly 1968, Schubert 1976, Deardorff 1976b, and Schubert et al. 1979) 

Despite these models’ extreme computational efficiency and popularity, they are highly 

parameterized, may provide insufficient detail of the vertical structure of the boundary 

layer, and lack generality.  

The third type of model is the higher-order closure (HOC) turbulence model. 

Such a model has a domain that includes many layers within the boundary layer and 
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solves dynamical equations for mean properties and turbulent moments. Initially, HOC 

models demonstrated success in simulating only clear boundary layers, either 

convectively driven or shear-driven (e.g., Mellor and Yamada 1974, Zeman and Lumley 

1976, André et al 1978, Canuto et al. 1994, Cheng et al. 2005). Subsequently, many 

authors have extended these models to include subgrid-scale condensation, based on the 

ideas pioneered by Sommeria and Deardorff (1977). The precise formulation of such a 

scheme is of critical importance for determining the buoyancy flux and turbulent kinetic 

energy budget, and is discussed in Section 2.11. With such a parameterization, HOC 

turbulence models are well suited to study the cloud-topped boundary layer at a much-

reduced computational cost relative to LES. Bougeault (1985) outlined three main 

advantages of using such a model to study cloudy boundary layers. First, HOC models 

can be used in any type of boundary layer, since the dynamic equations at their core are 

general. As a caveat, however, their parameterized components are not guaranteed to be 

general, e.g., the subgrid-scale condensation parameterization. Second, depending on 

their complexity and which turbulent moments are prognosed, HOC models provide a 

wealth of information about the boundary layer, including variances of thermodynamic 

variables, fluxes of heat, moisture, and momentum, and with third-order closure, the 

transport of the second-order moments. Thirdly, HOC models provide this detail at a 

computational cost reduced by several orders of magnitude from LES. 

HOC turbulence models present modelers with a choice. The derivation of the 

prognostic equations for the second-order moments reveals that the third-order moments 

are needed, and the third-order moment equations need the fourth-order moments, etc. At 

some point, it is necessary to close this loop of dependence, although it is not 
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immediately obvious how many moments are sufficient. It is computationally impractical 

and expensive to calculate a higher order of moments than necessary, and, for a given 

problem, some order of moments may capture the desired detail. For the study of cloudy 

boundary layers where buoyancy is the main source of turbulent kinetic energy, André et 

al. (1976b) and Krueger (1988) contend that prognosing the third-order moments, third-

order closure (TOC), is necessary and sufficient. They claim that second-order closure 

(SOC) models cannot adequately predict the growth of the convective boundary layer 

because the vertical transport of turbulent kinetic energy is too weak (Yamada and Mellor 

1975, Wyngaard and Coté 1975, Yamada and Kao 1986). This vertical transport is a 

third-order moment and is usually treated as down-gradient diffusion in SOC models. 

Subsequent authors have shown that TOC models give better results due to their more 

accurate treatment of vertical fluxes of second-order moments (Zeman and Lumley 1976, 

André et al. 1978). TOC models add significant additional computational cost, however, 

since they may add more than twenty prognostic equations over those required for SOC. 

Zeman and Lumley (1976), Canuto et al. (1994), and Cheng et al. (2005) address this 

high cost by deriving diagnostic algebraic relations for the third-order moments while 

retaining their models’ ability to simulate convective boundary layers. This approach 

seems to form a good balance between model ability and computational cost, and will be 

adopted in the current study. 

The goal of the current study is to develop a HOC model to be used as a 

turbulence parameterization in a mesoscale or general circulation model that is not only 

capable of determining accurate turbulent statistics for a clear boundary layer, but is also 

general enough for every type of cloudy boundary layer regime. Chapter two provides a 
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detailed derivation and description of the model. First, the prognostic mean and second-

order moment equations and parameterizations required for closure are discussed. Next, 

the diagnostic third-order moments, non-Gaussian fourth order-moments, and turbulent 

timescales are covered. Lastly, a discussion of the subgrid-scale condensation and 

microphysics schemes is given. Chapter three presents results of the model’s use as a 

single column model (SCM). Five test cases are simulated and the results are compared 

to those from LES intercomparison projects. Chapter four presents results of the model’s 

use as a turbulence parameterization in a new three-dimensional mesoscale model based 

on the vector vorticity equation (Jung and Arakawa 2008). Finally, chapter five provides 

a concluding discussion. 
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Chapter 2 

Model Development 

2.1 Introduction to derivation 

Given the limitations of second-order closure turbulence models and the success 

of third-order closure turbulence models in simulating convective boundary layers, the 

development of a turbulence parameterization for the study of cloudy boundary layers 

should begin with the latter. In a typical GCM that consists of many computation-

intensive components in addition to the turbulence parameterization, however, the need 

for computational efficiency and speed is often a high priority. Solving the additional 

prognostic equations for the third-order moments can add a high computational cost that 

may be unacceptable. Turbulence schemes such as those of Canuto et al. (1994) and 

Cheng et al. (2005) address this problem by deriving algebraic diagnostic relations for the 

third-order moments. The elimination of the prognostic third-order moments and 

inclusion of algebraic diagnostic third-order moments significantly reduces the 

computational cost, yet maintains more realistic third-order moments and the ability to 

simulate convective boundary layers. For this reason, a scheme such as this is desirable 

for use in a GCM and is the starting point for the current model’s development. 

 This chapter provides a detailed description and derivation of the current 

turbulence scheme. The method closely follows the work of Cheng et al. (2005), hereafter 
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CEA2005, but contains many extensions not found in that work. One notable extension is 

the addition of more prognostic variables. The model of CEA2005 has prognostic 

equations for ! , !w
2 , !u

2 , !w !" , and !"
2 – a total of one prognostic equation for a mean 

quantity and four for second-order moments. The current model has prognostic equations 

for !
l
, q

t
, u , v , !u

2 , !v
2 , !w

2 , !w !u , !w !v , !w "
l
! , !w q

!t
, !"

l

2 , !"lqt
! , and q

t
!2 -- a total of 

four prognostic equations for mean quantities and ten for second-order moments. 

Additionally, the model of CEA2005 has six third-order moments whereas the current 

model has 28.  

The inclusion of additional variables adds considerable computational 

complexity, but is necessary given the scope of this study. In particular, the inclusion of a 

mean moisture variable is a necessary precondition to simulate boundary layer clouds and 

their effect on the turbulent structure of the boundary layer. The mean momentum 

variables are not strictly necessary for a one-dimensional turbulence parameterization, 

but host models that include turbulence parameterizations almost always include 

variables to describe the mean momentum. Their inclusion here provides surface wind 

values needed for the surface flux parameterization for some test cases. The choice of 

second-order moments mostly follows directly from the choice of mean variables. The 

turbulent vertical fluxes of momentum, heat, and moisture are critically important for the 

prediction of their respective mean quantities. The scalar variances and covariances 

provide richness of description for the turbulent state and are necessary for determining 

cloud fraction, cloud liquid water content, and buoyancy terms for the scalar fluxes and 

turbulent kinetic energy components. The turbulent kinetic energy components largely 

determine how vigorous turbulent processes are in the boundary layer. The vertical 
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velocity variance in particular plays a critical role in determining the rate at which 

gradients of the mean variables are mixed. 

 

2.2 Choice of mean variables and their equations  

 First, the thermodynamic variables chosen for use in the current model are liquid 

water potential temperature, !
l
, (Betts 1973) and total suspended water specific 

humidity,q
t
. The use of these variables eliminates several difficulties associated with 

small-scale condensation, since !
l
is conserved under both moist and dry adiabatic 

processes (Deardorff 1976a). The equivalent potential temperature, !
e
, has this property 

and the additional advantage of being conserved under precipitation processes. 

Ultimately, !
l
 was chosen over !

e
due to the fact that !

l
 reduces to !  in the absence of 

condensation and !
l
 has been the preferred variable for use with subgrid-scale 

condensation parameterizations. The prognostic equations for momentum, !
l
,  and q

t
 

with the Boussinesq approximation are: (Stull 1988)  

!ui
!t

= "u j

!ui
!x j

+
#$v

$v0

gi + f %ij3uj "
1

&
0

!p

!xi
+ '

!2ui
!x j

2
 (2.1) 

!"l
!t

= #u j

!"l
!x j

+ $"l

!2"l
!x j

2
#

1

%
0
cp

!Fj
!x j

#
Lv

cp

p
0

p

&
'(

)
*+

,
1

%
0

!P
!x j

 (2.2) 

!qt
!t

= "u j

!qt
!x j

+ #qt

!2qt
!x j

2
+

!qt
!t

$
%&

'
()
MIC

 (2.3) 

where f = 2!sin" , !ijk is the alternating unit tensor, !
0

is the reference density, !  is the 

kinematic molecular viscosity, !
"l

 is the kinematic molecular diffusivity for !
l
, !qt

 is the 
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kinematic molecular diffusivity for q
t
,
!F

j

!x
j

 is the radiative flux divergence, P  is the 

precipitation flux ( kg m!2  s!1 ), !qt
!t

"
#$

%
&'
MIC

is the tendency of q
t
 due to microphysics, and 

from Betts (1973), !l = ! "
!
T

Lv

cp

#

$
%

&

'
( ql , where ql  is the liquid water specific humidity. 

Using Reynolds’ decomposition, equations (2.1)-(2.3) may be written as 

! ui + ui
"( )

!t
= # uj + uj

"( )
! ui + ui

"( )
!x j

+
"$v

$v0

gi # gi + f %ij3 uj + uj
"( ) # 1

&
0

! p + "p( )
!xi

+'
!2 ui + ui"( )

!x j
2

 (2.4) 

! "l +"l#( )
!t

= $ uj + uj
#( )
! "l +"l#( )

!x j
+ %"l

!2 "l +"l#( )
!x j

2
$

1

&
0
cp

! Fj + Fj
#( )

!x j

$
Lv

cp

p
0

p

'
()

*
+,

-
1

&
0

! P + P#( )
!x j

 (2.5) 

! qt + qt
"( )

!t
= # uj + uj

"( )
! qt + qt

"( )
!x j

+ $qt

!2 qt + qt"( )
!x j

2
+

!qt
!t

%

&'
(

)*
MIC

+
!qt"

!t

%

&
'

(

)
*
MIC

 (2.6) 

where the overbar denotes a grid-cell mean and primes indicate local deviations from the 

grid-cell mean. We wish to describe the grid-cell mean properties. In order to derive 

equations that describe the grid-cell mean state, we may average equations (2.4)-(2.6) to 

yield 

!ui
!t

= "u j

!ui
!x j

"
!ui#uj

#

!x j
" gi + f $ij3uj "

1

%
0

!p

!xi
+ &

!2ui
!x j

2
 (2.7) 
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!"l
!t

= #u j

!"l
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!qt
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"
!u j

#qt#

!x j
+ $qt

!2qt
!x j

2
+

!qt
!t

%
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(

)*
MIC

. (2.9) 

 

2.3 Equations for the Second-order Moments 

 
The equations for the mean state variables include the second-order moment 

terms ui!uj
! , uj

!"l
! , and uj

!q
t
! . It is possible to derive prognostic equations for these 

terms. Subtracting the mean equations, (2.7)-(2.9), from their respective total equations, 

(2.4)-(2.6), yields equations for the fluctuating variables: 

!ui"

!t
= #u j

!ui"

!x j
# uj

" !ui
!x j

# uj
" !ui

"

!x j
+
!ui"uj

"

!x j
+

"$v

$v0

gi + f %ij3uj
" #

1

&
0

! "p

!xi
+ '

!2ui"

!x j
2

 (2.10) 

!"l#

!t
= $u j

!"l#

!x j
$ uj

# !"l
!x j

$ uj
# !"l

#

!x j
+
!u j

#"l#

!x j
+ %"l

!2"l#

!x j
2
$

1

&
0
cp

!Fj#

!x j
$
Lv

cp

p
0

p

'
()

*
+,

-
1

&
0

!P#

!x j
 (2.11) 
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Two more fluctuating variable equations useful for the remainder of the derivation are 

obtained by substituting another arbitrary momentum component, u
l
!  or u

k
! , for u

i
! . The 

results are 

!ul"

!t
= #u j

!ul"

!x j
# uj

" !ul
!x j

# uj
" !ul

"

!x j
+
!ul"uj

"

!x j
+

"$v

$v0

gl + f %lj3uj
" #

1

&
0

! "p

!xl
+ '

!2ul"

!x j
2

 (2.13) 
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!uk"
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= #u j
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Next, the second-order moment equations may be constructed by utilizing the product 

rule for differentiation, e.g. 
!u

i
"u

l
"

!t
= u

i
"
!u

l
"

!t
+ u

l
"
!u

i
"

!t
. Table 2.1 summarizes the 

operations to be performed and the results are given in equations (2.15)-(2.20). 

Second-order Moment Operation Performed 

u
i
!u

l
!  u

l
! *  Eq. (2.10)  +  u

i
! *  Eq. (2.13)  

u
i
!"

l
!  u

i
! *  Eq. (2.11)  +  "

l
! *  Eq. (2.10)  

ui
!qt
!  ui

! *  Eq. (2.12)  +  qt
! *  Eq. (2.10)  
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l
"2  2!
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q
t
!2  2q

t
! *  Eq. (2.12)   

!l
"qt
"  !l

" *  Eq. (2.12)  +  qt
" *  Eq. (2.11)  

Table 2.1     Operations performed to derive second-order moment equations 
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 (2.20) 

One may notice that equations (2.18)-(2.20) are for second-order moments that are not 

needed directly in the mean equations or in the other second-order moment equations 

(2.15)-(2.17). They are necessary, however, for determining the buoyancy terms in 

equations (2.15)-(2.17), as discussed in Section 2.9. 



 13 

The last step is to average equations (2.15)-(2.20) and to make some 

simplifications. First, advection by the mean wind is neglected. This simplification is 

valid for a single column model where horizontal advection has no meaning and the 

vertical velocity is unknown. For a three-dimensional application, these terms should 

remain. Second, the Coriolis force is insignificant on scales under consideration, and all 

terms involving the Coriolis parameter are neglected. Third, all terms involving the 

precipitation flux divergence and radiative flux divergence are neglected. Fourth, 

equations (2.17), (2.19), and (2.20) contain terms involving the time rate of change of the 

fluctuating portion of q
t
 due to microphysics. Presumably, microphysical processes do 

affect the time rate of change of the second-order moments. For example, autoconversion 

converts cloud water into rain water, potentially depleting higher values of q
t
 within a 

grid cell leading to a decrease in its variance. For the purposes of this study, however, 

these terms are assumed to be small and are therefore neglected. Using these 

simplifications yields 
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2
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2

   (2.21) 
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= $u j

#"l
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!qt

!x j
$ uj

#qt
#
!"l

!x j
$
!u j

#"l
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+ %qt

"l
#
!
2
qt
#

!x j
2
+ %

"l
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#
!
2
"l
#

!x j
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.  (2.26) 

After the simplifying assumptions, equations (2.21)-(2.26) are still not a closed set 

because there are terms in them that are incalculable from known quantities. Equations 

(2.21), (2.22), and (2.23) contain unknown terms involving pressure fluctuations and 

buoyancy, and all of the equations contain unknown terms involving molecular viscosity. 

In addition, all of the second-order equations contain unknown third-order moments. This 

demonstrates the turbulence closure problem, namely that equations for nth-order 

moments contain terms with (n+1)-order moments.  

The following sections describe how these terms are parameterized in the present 

model. Since much of this work is motivated by the success and computational efficiency 

of the work of CEA2005, the parameterizations follow that work where appropriate, 

especially for the pressure correlation and third-order moment terms. Deviations from 

CEA2005 are made for the buoyancy terms and the molecular viscosity, or dissipation, 

terms. These deviations are necessary since the model of CEA2005 does not include a 
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moisture variable and therefore does not include the effects of moisture on buoyancy. A 

rich literature for the buoyancy and dissipation terms guides their choice. 

 

2.4 Equations for the Third-order Moments 

As with the second-order moments, prognostic equations may be derived to 

predict the third-order moments, although it is expected that they will also contain 

unknown terms including fourth-order moments, pressure correlation terms, molecular 

viscosity terms, and buoyancy terms. In the derivation of these equations, the product rule  

Third-Order Moment Operation Performed 

u
i
!u

l
!u

k
!  u

i
!u

l
! *  Eq. (2.14)  +  u

k
! *  Eq. (2.15)  

u
i
!u

l
!"

l
!  u

i
!u

l
! *  Eq. (2.11)  +  "

l
! *  Eq. (2.15)  

ui
!ul
!qt
!  ui

!ul
! *  Eq. (2.12)  +  qt! *  Eq. (2.15)  

u
l
!"

l
!2  u

l
!"

l
! *  Eq. (2.11)  +  "

l
! *  Eq. (2.16)  

ul
!qt
!2  ul

!qt
! *  Eq. (2.12)  +  qt

! *  Eq. (2.17)  

ul
!"l
!qt
!  ul

!"l
! *  Eq. (2.12)  +  qt! *  Eq. (2.16)  

!
l
"3  3!

l
"2 *  Eq. (2.11)  

q
t
!3  3q

t
!2 *  Eq. (2.12)  

!l
"2qt

"  !l
"qt
" *  Eq. (2.11)  +  !l

" *  Eq. (2.20)  

!l
"qt
"2  !l

"qt
" *  Eq. (2.12)  +  qt

" *  Eq. (2.20)  

Table 2.2     Operations performed to derive third-order moment equations 
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for differentiation is key once again, and the equations for the turbulent  

variables, (2.10)-(2.14), and the unaveraged second-order moment equations, (2.15)-

(2.20), are needed. Table 2.2 summarizes the operations to be performed, and the results  

follow. As with the second-order moment equations, terms involving the mean wind, 

Coriolis parameter, precipitation flux divergence, radiative flux divergence, and 

microphysics are neglected. 
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"
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 (2.27) 
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2.5 Parameterization of the pressure correlation terms 

 Pressure correlations in CEA2005 are parameterized following the work of 

Zeman and Lumley (1979) and Canuto (1992). They consist of a return-to-isotropy term 

that acts on longer timescales to restore isotropic turbulence when anisotropic turbulence 

is present, and a “fast term” that acts on shorter timescales and effectively damps the 

moments governed by the equations in which they appear. The pressure correlations in 

equations (2.21), (2.22), (2.27), (2.28), and (2.30) are taken directly from CEA2005, 

except where the parameterizations include buoyancy terms. In these terms, ! v
"  is 

substituted for !" to account for the effects of water vapor and liquid water on buoyancy. 

Pressure correlations in equations (2.23), (2.29), (2.31), and (2.32), where the total water 

specific humidity appears, are obtained analogously to those found in equations (2.22), 

(2.28) and (2.30), respectively. In addition, the leading coefficient two’s for terms 

involving c
4
,c

6
,  c

8
, and c

9
 found in CEA2005 are included in the coefficients 

themselves, in accordance with other works (Bougeault 1981b, Golaz et al. 2002a, André 
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et al. 1978). The parameterizations are summarized in Table 2.3. For reference, !  is the 

Kronecker delta, g is the acceleration of gravity, and ! =
1

"
v
0

 is the thermal expansion 

coefficient,e =
1

2
u!2 + v!2 + w!2"

#$
%
&'

 is the turbulence kinetic energy,!
1
 and !

2
are the 

turbulent timescales, and the c
n

 are model constants. The constants are discussed in 

Section 2.6 and turbulent timescales are discussed in Section 2.10. 
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Equation Pressure Correlation Parameterization 
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Table 2.3 Pressure correlation parameterizations 
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2.6 Parameterization of the dissipation terms 

Each molecular viscosity term can be split into two separate terms using the 

product rule and the chain rule, e.g. !A
"
2
B

"x
2
+ !B

"
2
A

"x
2
= !

"
2
AB

"x
2

# 2!
"A

"x

"B

"x
. The first 

term on the right-hand side represents diffusion by molecular processes and the second 

term on the right-hand side represents dissipation. Using a scaling argument, Stull (1988) 

argues that the molecular diffusion term is several orders of magnitude smaller than other 

terms in the second- and third-order moment equations and can be neglected. The 

dissipation term needs to be retained, however.  

For most moments, CEA2005 parameterize the dissipation as simple damping 

whose magnitude is controlled by a constant and the turbulent timescale. This same  

Equation Molecular Viscosity Term Parameterization 
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Table 2.4     Second-order moment dissipation parameterizations 
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Table 2.5     Third-order moment dissipation parameterizations 
parameterization is used in the current model, except for the dissipation in the turbulent 

kinetic energy components. CEA2005 assume that the dissipation of !u
i

2 is proportional to 

the total turbulent kinetic energy, i.e. !
1

3

TKE

"
. This differs from the dissipation 

parameterization of the other second-order moments where a tunable constant is used, 
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e.g. !c
i

SOM

"
, where SOM stands for any second-order moment. In the current model, 

the latter form is used for the dissipation of the turbulent kinetic energy components as is 

done in the work of Golaz et al. (2002a). A noteworthy deviation from that work, 

however, is the absence of an ad hoc diffusion term. The parameterizations of the 

dissipation terms for the second- and third-order moments used in this model are given in 

Tables 2.4 and 2.5. 

The nondimensional constants c
1
,c

2
,c

4
,c

5
,c

6
,c

7
,c

8
,c

10
,  and c

11
used in the 

parameterization of the pressure correlation and dissipation terms are presented in Table 

2.6. The first two, c
1
and c

2
, appear in the dissipation terms of the second-order moments. 

Their values in the current model are somewhat smaller than those used in previous 

turbulence models, but this does not necessarily indicate that dissipation is weaker in the 

current model. The turbulence timescale discussed in Section 2.10 factors into this term 

heavily, and its parameterization differs from previous models. The constants c
4
, c

5
, c

6
, 

and c
7
appear in the return-to-isotropy portion of the pressure correlation terms in the 

second-order moments. Their values are the same or very similar to those used in the 

models of Bougeault (1981b) and Golaz (2002a). Finally, the constants c
8

, c
10

, and c
11

 

appear in the return-to-isotropy and dissipation terms of the third-order moments. 

Previous models have inflated the values of these constants to help control unrealistically 

large third-order moments and its associated effect on model stability. Large values for 

these constants were found to be unnecessary with the current model. 

c
1
 c

2
 c

4
 c

5
 c

6
 c

7
 c

8
 c

10
 c

11
 

0.5 0.5 4.5 0.0 4.0 0.6 3.0 2c
2
 0.4 

Table 2.6     Constants used in the parameterizations 
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2.7 Parameterization of the fourth-order moments 

At this point, the system is closed except for parameterizing the fourth-order 

moments and buoyancy terms. Many authors have assumed that the fourth-order 

moments have a joint Gaussian distribution allowing the fourth-order moments to be 

parameterized as !a !b !c !d = !a !b * !c !d + !a !c * !b !d + !a !d * !b !c    (André et al. 1978; 

Canuto et al. 1994; Canuto 1992; Bougeault 1981b; Zeman and Lumley 1976). This 

assumption leads to unphysical and destabilizing values of the third-order moments, 

causing many authors to adopt the “clipping approximation” realizability constraint 

(André et al. 1976a,b; André et al. 1978) or another form of damping unrealistic growth 

of the third-order moments. In addition, Moeng and Randall (1984) discovered “spurious 

oscillations” in their simulations of the boundary layer with a third-order closure 

turbulence model and found them to be associated with the mean gradient terms in the 

third-order moment equations, even with the use of the clipping approximation and other 

damping terms. CEA2005 developed a new parameterization for the fourth-order 

moments that includes nonzero fourth-order cumulants based on large-eddy simulation 

results. Use of this new parameterization has been shown to obviate the use of the 

clipping approximation and to avoid the spurious oscillations associated with the mean 

gradients in the third-order moment equations. CEA2005’s procedure is outlined here, 

but as in the rest of the model, is extended to include the moist conservative variables. 

The fourth-order moment closure of CEA2005 splits the fourth-order moments 

into a component modeled by the quasi-normal approximation (QN) and a nonzero 

cumulant (NC) component that is parameterized from large-eddy simulation data, e.g.  
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! "a "b "c "d

!z
=
! "a "b "c "d

!z
QN

+
! "a "b "c "d

!z
NC

=
!

!z
"a "b * "c "d + "a "c * "b "d + "a "d * "b "c( ) +

! "a "b "c "d

!z
NC

 (2.37) 

The quasi-normal approximations for the fourth-order moments in equations (2.27)-

(2.36) are listed in Table 2.7 for reference, although only the vertical dimension is listed. 

 From equations (2.27) – (2.36), the dynamic equations for the third-order 

moments can be described in the following way: 

TOM  tendency = mean gradient production terms( ) + buoyancy terms( )

+ pressure correlation terms( ) + SOM  gradient production terms( )

+ dissipation terms( ) + FOM  terms( )

 (2.38) 

Using the fourth-order moment closure of CEA2005, the FOM  terms( ) are split into two 

terms according to Equation (2.37), a QN part and a NC part. If one assumes stationarity 

and neglects the time tendency of the TOMs, one can algebraically solve for the NC part 

of the fourth-order moments: 

FOM
NC

= mean gradient production terms( ) + buoyancy terms( )

+ pressure correlation terms( ) + SOM  gradient production terms( )

+ dissipation terms( ) + FOMQN

 (2.39) 

The first set of terms on the right hand side of equations (2.40) – (2.49) show the results 

of this algebraic manipulation. The equations are reduced to the vertical dimension and 

parameterizations for the pressure correlation, dissipation, and QN terms from Tables 2.3, 

2.5, and 2.7 have been substituted for the exact terms from equations (2.27) – (2.36). The 

second set of terms on the right-hand side of equations (2.40) – (2.49) show how the NC 

terms are parameterized according to CEA2005. The vertical derivatives of nonzero 

cumulants are assumed to be linear combinations of the third-order moments with tunable 
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coefficients. The terms with tunable coefficients labeled with p’s combine with the 

return-to-isotropy portion of the pressure correlations and dissipation parameterizations 

to damp the growth of the third-order moments.  

Equation Term Quasi-normal fourth-order moment vertical derivative 
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Table 2.7     Quasi-normal components of fourth-order moment vertical derivatives 
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 (Note: Equations (2.41) and (2.42) should contain a term with a coefficient of 

c
8

3
+ c

9
!
c
10

3

"
#$

%
&'

, but CEA2005 point out that for realizability, this coefficient must 

evaluate to zero. Using the values of c
8

 and c
10

 in Table 2.6, to satisfy realizability the 

value of c
9

 must be !2
3

. For this reason, this term has been left out.) 
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 The specification of the p
n

 and d
m

 coefficients are all that remain for closed 

fourth-order moments. CEA2005 determine these coefficients for six fourth-order 

moments by best-fit analysis from large-eddy simulation data. Perhaps coincidentally, the 

best fit for the p
n

 and d
m

 coefficients eliminates the mean gradient terms in the third-

order moment equations. CEA2005 point out that mean gradient terms in the third-order 

moment equations have been assumed to be zero before by Zeman and Lumley (1976), 

but these authors rationalized this simplification by arguing that these terms are small. 

CEA2005 present an argument using LES data that shows the mean gradient terms in the 

third-order moment equations are effectively canceled out by the non-zero cumulant 

portion of the fourth-order moments. Regardless, the elimination of the mean gradient 

terms constitutes a welcome simplification and solves the  “spurious oscillation” problem 

discovered by Moeng and Randall (1984).  
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 In the current model, p
n

 and d
m

need to be determined for 28 fourth-order 

moments. I postulate that the appropriate p
n

 coefficients for the fourth-order moments 

not covered in CEA2005 can be determined by analogy; e.g. the p
n

 for !w
2
q
t
!2  will be 

the same as the p
n

 for !w
2
"!

2 , the p
n

 for !w
3
q
t
!  will be the same as the p

n
 for !w

3
"! , 

and so on, since the equations for each pair are derived in the same way with analogous 

matching terms. As with other constants, the p
n

 are left as free parameters in the model 

so that they may be easily changed if future research warrants. The d
m

 for the 28 fourth-

order moments are determined in the same way, and in each fourth-order moment 

equation, the choice of d
m

 eliminates any dependence on mean gradient terms. Specific 

values for p
n

 and d
m

 are given in Appendix A. 

 

2.8 Diagnostic third-order moments 

With the closure of the fourth-order moments, they may be substituted back into 

the third-order moment equations. Following Zeman and Lumley (1976), Canuto et al. 

(1994), and Cheng et al. (2005),  stationarity will be assumed, leaving diagnostic 

relations for the third-order moments. This reduces computational complexity by 

eliminating the need to time-step and, as shown by the authors above, produces 

satisfactory simulations of the convective boundary layer. The diagnostic third-order 

relations with the pressure correlation, dissipation, and fourth-order moment 

parameterizations included are given by 
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Even with elimination of the mean gradient terms due to the specification of the 

d
m

constants, equations (2.50) – (2.59) are not yet a closed set since the buoyancy terms 
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contain third-order moments.  They do, however, represent a system of 28 equations with 

28 unknowns, and it is possible to explicitly solve for the third-order moments in one of 

two ways. First, one can solve a system of linear equations for the 28 unknowns each 

time step within the model. Alternatively, one can solve the system symbolically as 

Canuto et al. (1994) and CEA2005 have done using a symbolic algebra program. The 

latter method has some important advantages. First, the latter method is more 

computationally simple and efficient. The system needs only to be solved once rather 

than every time step. Second, it becomes trivial to simplify the diagnostic third-order 

moments. Canuto et al. (1994) point out that the third-order moments can be reverted to 

simple down-gradient diffusion by setting a select few coefficients to zero. Due to these 

advantages, the latter method is employed. Appendix A outlines the exact procedure, and 

the explicit algebraic third-order moments are given in equations (A29) – (A56). Each 

third-order moment becomes a linear combination of the vertical derivatives of the 

second-order moments with extensive coefficients. These coefficients are given in Table 

A4 in Appendix A. 

 

2.9 Parameterization of the buoyancy terms 

The final closure involves the determination of the buoyancy terms in both the 

second-order moment equations and the third-order moment relations. As mentioned in 

the works of Bougeault (1981a) and Golaz et al. (2002a) and shown in Appendix B, the 

virtual potential temperature, !
v
, may be expressed in terms of moist conservative 

variables as 
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where !
0
is the ratio of the dry air gas constant to the water vapor gas constant, and !

0
 is 

a reference potential temperature. This allows all buoyancy terms that need to be 

parameterized to be written in general form as 

!" #v
! = !" #l! + CT0

!" qt! + D(z) !" ql! , (2.61) 
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. This effectively shifts the closure to 

finding liquid water correlations, which may be accomplished from a subgrid condensation 

scheme discussed in Section 2.11.2. 

 

 

2.10 Turbulent timescales 

Turbulent timescales play a key role in higher-order closure turbulence models 

due to their influence in the dissipation and pressure-correlation terms in both the second- 

and third-order moments. The importance of their parameterization is even greater in the 

current model because of the use of diagnostic third-order moments. The turbulent time 

scale appears in each coefficient of every third-order moment relation and therefore helps 

to determine the magnitudes of all third-order moments. 

A common way to model turbulent, or dissipation, timescales is  
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! =
L

e

 (2.62) 

where L is the “eddy length scale” or the “dissipation length scale.” Parameterizations for 

this length scale vary greatly in the literature, and are often chosen to best match a 

particular turbulence scheme to observations (Stull 1998, Lenderink and Holtslag 2004). 

Further, their formulations have often been dependent on the type of boundary layer that 

the author’s model is intended to simulate. Some work well in buoyancy-driven boundary 

layers and others work well for shear-driven boundary layers. The formulation of the 

length scale given in CEA2005 is shown to work well in clear buoyancy-driven mixed 

layers. It is calculated as an average of three length scales: one based on the depth of the 

mixed layer, one applicable to the surface layer, and one that is determined by local 

buoyancy. Its calculation loosely follows the work of Nakanishi (2001), wherein the 

constants used to determine the surface length scale are dependent on tuning for various 

boundary layer regimes. 

 While the eddy length scale formulation from CEA2005 works well for dry 

convective boundary layer cases, its use in testing led to instability for cloudy boundary 

layer cases, especially for boundary layers capped by strong inversions like those found 

in stratocumulus-topped boundary layer regimes. Rather than continuing the practice of 

tuning the eddy length scale to fit observations, or calculating it by averaging several 

other length scales designed for various scenarios, it is appropriate to seek a length scale 

based on simple physical properties that is general in nature and will work well in any 

given boundary layer regime. Bougeault and André (1986) developed a new eddy length 

scale that has shown promise in meeting those criteria. It has been used extensively in 

turbulence parameterizations to model many different boundary layer regimes, including 
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clear convective cases, shallow cumulus cases, stratocumulus cases, broken cumulus 

cases, and even orography-induced turbulence above the boundary layer (e.g., Bougeault 

and André 1986, Bougeault and Lacarrere 1989, Bechtold et al. 1992, Cuxart et al. 2000, 

and Golaz et al. 2002a). 

 The length scale parameterization of Bougeault and André (1986) is formed from 

an average of two length scales, Lup  and L
down

 that are defined by  

g

!v
0

!v "z( ) #!v z( )$% &'z

z+Lup

( d "z = e z( )   (2.63) 

and 

g

!v
0

!v z( ) "!v #z( )$% &'z"Ldown

z

( d #z = e z( ) . (2.64) 

The length scales can be interpreted as the “upward free path” and the “downward free 

path,” respectively (Bougeault and André 1986).  The upward (downward) free path of a 

given level is determined by a parcel originating at that level given an initial kinetic 

energy equal to the mean turbulence kinetic energy at that level. The parcel may travel 

upward (downward) until the accumulated buoyancy accelerations exhaust the parcel’s 

kinetic energy. Figure 2.1 is taken from Cuxart et al. 2000 and illustrates the concept. The 

averaging operation used to combine  Lup  and L
down

 is important and has caused debate 

within the literature. Bougeault and André (1986) initially used a harmonic average 

L = 2
1

Lup
+

1

Ldown

!

"
#

$

%
&

'1

, but Bougeault and Lacarrere (1989), Cuxart et al. (2000), and 

Golaz et al. (2002a), used the geometric average L = LupLdown . Since shorter eddy 

length scales create more turbulence dissipation and the geometric average is smaller than  
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Figure 2.1   Upward and downward free path illustration {from Cuxart et al. 
(2000)} 
the harmonic average, using the geometric average results in more turbulence dissipation. 

The geometric average is used in the current study. 

 Cuxart et al (2000) recognized the need to include lateral entrainment into the 

parcel, but did not modify the length scale to include it since it was deemed less 

important for the cases they were studying. Golaz et al. (2002a) found that for cumulus 

regimes, the omission of lateral entrainment caused the upward free path to be 

underestimated. To improve this deficiency, they included the effects of lateral 

entrainment by modifying Lup  in the following way: 

g

!v0

!v "z( ) #!v, parcel "z( )$% &'z

z+Lup

( d "z = e z( )  (2.65) 



 37 

The virtual potential temperature of the parcel changes due to lateral entrainment at each 

level. They assumed a constant fractional entrainment rate of 

µ =
1

M

dM

dz
= 6.0 !10

"4
 m

-1 . The change in the virtual potential temperature with height 

is then given by 
d!v, parcel

dz
= "µ ! v, parcel "! v( ) . In addition, although this formulation of 

the eddy length scale is nonlocal, Golaz et al. (2002a) further modify Lup  and L
down

 to 

better represent the nonlocal nature of cumulus layers. They note that a parcel originating 

at a certain level above the ground may only ascend a small distance, while a parcel 

originating from lower in the column may ascend to greater heights. Likewise, a parcel at 

a given level may not descend as far as a parcel that originates above it. To account for 

this, the following modification is made to Lup  and L
down

.  As Lup  is calculated level by 

level from the surface, the maximum level reached by all parcels originating below the 

current level is recorded, z
max

. If z
max

> z + L
up
z( ) , then Lup  is set to z

max
! z . L

down
 is 

modified analogously. Both the entrainment modification and the nonlocalizing 

procedure are retained in the current study. To prevent instabilities, Golaz et al. (2002a) 

restrain the eddy length scale to an interval. A lower limit equal to the vertical grid size 

and a 400 m upper limit are used for all length scales except for those involved in the 

return-to-isotropy terms of the scalar fluxes. There, an upper limit of 2000 m is used. 

 The strengths of this formulation for the length scale are many. The original 

motivation for using this length scale in Bougeault and André (1986) was to eliminate 

unstable oscillations discovered by Moeng and Randall (1984) that developed near the 

inversion of stratocumulus-topped boundary layers. That work has shown that the shorter 

length scales calculated from this formulation near the inversion do, in fact, eliminate 
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those errors, in addition to being more physically realistic. In addition, the nonlocal 

nature of the formulation guarantees that physical boundaries, such as inversions and the 

surface, are properly accounted for. Finally, several authors (e.g., Bougeault and André 

1986, Bougeault and Lacarrere 1989,  Bechtold et al. 1992, Cuxart et al. 2000) have 

pointed out that in layers with constant stratifications, this length scale reduces to be 

proportional to the buoyancy length scale proposed by Deardorff (1980), 

L = e
g

!
v0

"!
v

"z

#

$
%
%

&

'
(
(

)1/2

. 

 

2.11 Subgrid-scale condensation 

The traditional approach to determining cloud cover within an atmospheric model 

is to determine whether condensation occurs on the grid-scale using grid mean variables 

and traditional microphysics. When using a large grid size as in a general circulation 

model, however, the assumption that a box several kilometers wide and hundreds of 

meters tall becomes saturated at once is both physically unfounded and computationally 

problematic. A better approach was pioneered by Sommeria and Deardorff (1977), 

hereafter SD77, where condensation is allowed to occur on the subgrid scale. By 

parameterizing cloud fraction and liquid water on scales smaller than the grid, a smooth 

transition from a clear grid cell to a cloudy one is made possible. In addition, areas 

featuring lower cloud fractions like trade-wind or fair-weather cumulus can more 

properly be represented with such a scheme. In addition to cloud fraction and liquid 

water, a subgrid-scale condensation scheme is able to diagnose liquid water correlations 

that are important for buoyancy terms in a higher-order closure model. A discussion of 
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the cloud fraction and liquid water content is given first, followed by the liquid water 

correlations. 

2.11.1 Cloud fraction and liquid water content 

  The scheme of SD77 uses a statistical approach to determine cloud fraction and 

liquid water content. If one considers a large grid cell containing some portion of clouds, 

variables such as !
l
 and q

t
 may vary considerably within. SD77 assume that the 

variation in these variables can be represented by a joint-Gaussian distribution. If !
l
, q

t
, 

!
l
"2 , q

t
!2 , and !l"qt" are all known, the precise joint-Gaussian distribution is determined. 

Further, SD77 demonstrate that the saturation specific humidity can be obtained from 

!
l
,q

t
, and p to a good approximation. With this information, it is possible to obtain the 

cloud fraction by integrating over the part of the probability distribution function (PDF) 

where values of !
l
 and q

t
 indicate a parcel is saturated. Similarly, the cloud liquid water 

can be obtained with the use of ql = qt ! qs .  Fig. 2.2, taken from SD77, illustrates the 

concept, and in general, cloud fraction and cloud liquid water content can be expressed 

by  

R = Gdqtd!l
qs

"

#$"

"

#  and (2.66) 

 ql = qt ! qs( )Gdqtd"l
qs

#

$!#

#

$  (2.67) 

where G is the joint probability density function for !
l
 and q

t
. 
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Figure 2.2 - (from SD77, Figure 1) Contours represent the probability of a 
particular !

l
 and q

t
pair, given their mean values, variances, and the covariance 

between them. The long-dashed line represents the actual saturation specific 
humidity curve, while the short-dashed line represents the approximation given in 
SD77. Cloud fraction can be computed by integrating this PDF above the saturation 
specific humidity line. 
 
 Subsequent authors have questioned the use of the joint-Gaussian assumption for 

the PDF of  !
l
 and q

t
. Using a subgrid-scale condensation scheme to model trade-wind 

cumulus, Bougeault (1981a), hereafter B81a, noted that the tails of the distribution are 

extremely important for the development for cumulus and that a better PDF to use for this 

regime is an exponential distribution or a simple positively skewed one. An attempt to 

generalize to all cloudy regimes was made in Bougeault (1982), where a gamma 

distribution was utilized to study both cumulus and stratocumulus cases. Tompkins 
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(2002) reduces the subgrid-scale condensation scheme to defining a PDF for only q
t
, 

arguing that temperature fluctuations are smaller and less important than those of q
t
. He 

then assumes a beta distribution for q
t
 to calculate cloud fraction, liquid water content, 

and liquid water correlations. Other authors have extended the subgrid-scale 

condensation scheme to include fluctuations in vertical velocity as well, and have 

assumed bimodal distributions (Lewellen and Yoh 1993; Golaz et al. 2002a; Larson et al. 

2002). 

Given the spread of PDFs used and the apparent inability of one particular PDF to 

describe all cloudy boundary layers, another approach was taken by Cuijpers and 

Bechtold (1995), hereafter CB95. They studied boundary layers containing cloud 

fractions from zero to one using a large eddy simulation with a goal of finding a simple 

subgrid-scale condensation parameterization for all cloudy boundary layers without 

assuming a joint PDF for the thermodynamic variables a priori. They found that the cloud 

fraction and liquid water content could be parameterized by a simple function of the 

“normalized saturation deficit, Q
1
.” The quantity Q

1
 also appears in previous 

implementations of SD77-type schemes and is given by 

Q
1
=
s

!
s

 (2.68) 

where !
s
= "s

2 is the standard deviation of s,  

s = aqt
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T
l
=

T

!

"

#$
%

&'
!
l
, qsl = qs Tl( ) , and 

!qsl

!Tl
=
qsLv

RvTl
2

. Given this nomenclature, a new variable 

is constructed following Mellor (1977a) and Bechtold et al. (1995), t =
s

!
s

, so that the 

double integrals for cloud fraction and liquid water content can be converted to single 

integrals and can be evaluated easier. The integrals become 

R = G t( )dt
0

!

"   and  (2.69) 

ql

! x

= tG t( )dt
0

"

# . (2.70) 

Assuming a joint-Gaussian distribution in SD77, the cloud fraction is found to be 

R =
1

2
1+ erf

Q
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2

!
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(
)

*

+
, ,           (2.71) 

whereas in B81a a simple positively skewed PDF is assumed and cloud fraction is given 

by a piece-wise function  

R =
e
Q

1
!1

     Q
1
" 1

1           Q
1
> 1

#
$
%

.            (2.72) 

The original scheme of SD was found to underestimate cloud fraction for low values of  

Q
1
 including cumulus regimes, but performed well for high values of  Q

1
 including 

stratocumulus regimes. The scheme of B81a was found to be well suited for low values of 

Q
1
, but admittedly inadequate for high values of Q

1
. The scheme of CB95 is given by the 

simple function  

R = max 0.0,min 1.0,0.5 + 0.36arctan 1.55Q
1( )!" #${ }        (2.73) 
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Figure 2.3 Solid line -- CB95; "Gaussian" -- SD; "Skewed" -- Bougeault (1981a)  
{from Bougeault (1981a), Figure 3} 

 

Figure 2.4   As in Figure 2.3 {from Bougeault (1981a),  Figure 4} 
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and is shown to resemble SD77 for high values of Q
1
 and B81a for low values of Q

1
 (See 

Figure 2.3). It is therefore found to be a useful general parameterization for cloud fraction. 

A similar discussion applies to liquid water content, with the SD77 scheme giving 

ql = ! s RQ
1
+
e
"Q

1

2

2

2#

$

%
&
&

'

(
)
)

,           (2.74) 

the B81a scheme giving 

 ql = ! s

e
Q1 "1

     Q
1
# 1

Q
1
           Q

1
> 1

$
%
&

,           (2.75) 

and the scheme of CB95 giving  

ql = ! s

e
"1
+ 0.66Q

1
+ 0.086Q

1

2
     Q

1
< 0

e
1.2Q1 "1

                                 Q
1
# 0

$
%
&

'&
.        (2.76) 

See Figure 2.4 for plots of the different schemes’ liquid water contents. The generality 

and simplicity of the CB95 scheme make it an attractive one to use, and it has been 

adopted by many authors (e.g., Bechtold and Siebesma 1998, Lenderink and Holtslag 

2004) and is the scheme used in the current model. 

 Just as it is possible to integrate over the joint PDF to diagnose the liquid water 

content, it is also possible to integrate over the same PDF to diagnose the amount of 

liquid water that exists in concentrations over some threshold value. Such a quantity is of 

interest for the autoconversion process of many microphysics schemes, including the one 

used in the current model described in Section 2.12. One can define a quantity called 

“autoconversion-eligible” cloud water asql = qt ! qs( ) ! ql ,THRESHOLD  where the threshold 

value is the cloud water specific humidity above which the autoconversion process 
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becomes efficient. As with the total liquid water content, this quantity can be diagnosed 

as in equation (2.67) from the joint PDF of  !
l
 and q

t
 using 

ql AUTO = qt ! qs( ) ! ql ,THRESHOLD = qt ! qs( ) ! ql ,THRESHOLD"# $%Gdqt d&lqs

'

(!'

'

( . (2.77) 

Using the same logic as for the total liquid water content, one can use the scheme of 

CB95 to diagnose the autoconversion-eligible liquid water content as 

ql AUTO = ! s

e
"1
+ 0.66Q

1r
+ 0.086Q

1r

2
     Q
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< 0

e
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     (2.78) 

where the normalized saturation deficit, Q
1
, has been modified to 

Q
1 r
=
a qt ! qsl( ) ! ql ,THRESHOLD"
#

$
%

& s

.        (2.79) 

 
 

2.11.2 Liquid water correlations 

The other important aspect of a subgrid condensation scheme is the diagnosis of 

liquid water correlations. As demonstrated in Section 2.9, liquid water correlations have 

an important role to play in the turbulent second- and third-order turbulent moments. 

Perhaps most importantly, the vertical liquid water flux is a major part of the vertical 

buoyancy flux term and is consequently quite important for accurately predicting 

turbulent kinetic energy in cloudy boundary layers. SD77 includes a brief discussion of 

the buoyancy flux in partly cloudy layers, but do not mention the liquid water flux or 

other liquid water correlations. Mellor (1977a,b) fills in the gap left by SD77 and 

includes a logical extension to address the liquid water correlations in a joint-Gaussian 
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framework. If one assumes that any variable, m, has a joint-Gaussian distribution with the 

variable s, then the liquid water correlation !m ql
!  may be calculated as 

!m ql
! = !m !s
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where sql
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+  following Bechtold et al. (1995). Notice that the 

evaluation of sql
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 depends on the assumed PDF. For the joint-Gaussian PDF, 

sql
!

" s

2

#

$
%
%

&

'
(
(
=
1

2
1+ erf

Q
1

2

#
$%

&
'(

)

*
+

,

-
. = R . (2.81) 

As with the cloud fraction and liquid water content, many authors have 

questioned the validity of the joint-Gaussian assumption for determining liquid water 

correlations. Some authors continue to use an explicitly assumed PDF for the conserved 

variables, but vary the particular PDF based on the type of boundary layer regime under 

consideration (e.g., Bougeault 1981a and Bougeault 1982). Others have added vertical 

velocity as another variable in the PDF and assumed a bimodal double Gaussian 

distribution (e.g.,  Lewellen and Yoh 1993 and Golaz et al. 2002a). Still others have 

dropped the use of an analytic PDF for the conserved variables and have used LES data 

to develop a general form for the liquid water correlations (e.g., Bechtold et al. 1995, 

Cuijpers and Bechtold 1995, and Bechtold and Siebesma 1998). All approaches have 

demonstrated some measure of success, but each has flaws and no particular one has 

proven general and simple enough to render the others obsolete. 
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An excellent discussion of alternative distributions for the conservative variables 

can be found in B81a, Bougeault (1982), and Bechtold et al. (1995), hereafter BEA95, 

wherein distributions are compared according to the skewness of s. Bougeault (1982) 

points out that a cumulus boundary layer contains thin updrafts of fast moving cloudy air 

and wide downdrafts of slowly descending clear air. One would expect that the actual 

distribution in such a case would be have a strong positive skewness of s. Within a 

stratocumulus regime, though, updrafts and downdrafts take up roughly the same area, 

and the skewness of s for the actual distribution would be closer to zero, like for the 

Gaussian distribution. In his study, Bougeault (1982) used a gamma distribution with 

variable skewness of s, and made plots of the resultant cloud fraction, liquid water 

content, and sql
!

" s

2

#

$
%
%

&

'
(
(

 as functions of Q
1
, shown here as Figure 2.5. Immediately evident 

from the plots is that cloud fraction and liquid water content are almost independent of 

the skewness of s for Q
1
>-1, and sql

!

" s

2

#

$
%
%

&

'
(
(

 is almost independent of Q
1
 for Q

1
> 0. For 

values of Q
1
 lower than those values, however, all three quantities strongly depend on the 

skewness of s. This result helps one to draw the conclusion, as BEA95 did, that the 

stratocumulus boundary layer regime can be appropriately represented by any reasonable 

PDF, but that cumulus boundary layer regimes are very sensitive to the choice. B81a and 

B81b show that a simple positively skewed PDF with skewness of s of 2 is adequate for 

use in simulating a trade-wind cumulus regime. Given this choice, the integration over 

the PDF for the liquid water correlations results in the piecewise function 
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Without assuming a joint Gaussian PDF, however, B81a points out that it is intractable to 

find an exact form for !m ql
!  as is done for the joint Gaussian case demonstrated in 

equation (2.88). He assumes, however, that all variables are well correlated inside the 

cloud layer, and that the liquid water correlations may be written 

sql
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" s
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(
=

!w ql
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"w" s

=
qt
!ql!

" qt
" s
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*l!ql!

"*l
" s

. (2.83)  

This assumption is equivalent to saying that !w ,!
l
" , and q

t
!  are all correlated with liquid 

water in exactly the same way within a cloud, which may seem like a strange assumption 

to make. Using LES data, however, B81a shows that equation (2.83) is a much better 

assumption than equation (2.80) for cumulus regimes. It should be noted that many 

subsequent authors continue to use equation (2.80), despite it having been derived for the 

special case of a joint Gaussian PDF for lack of a better assumption. (Bougeault 1982, 

Bechtold et al. 1995, Cuijpers and Bechtold 1995, Bechtold and Siebesma 1998). 
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Figure 2.5  Cloud fraction, liquid water content, and sql
!

" s

2

#

$
%
%

&

'
(
(

  as functions of Q
1
. The 

labels indicate skewness of s; the dashed "0" line is the Gaussian scheme. {from 
BEA95 after Bougeault (1982)} 
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Alternatively, a new line of parameterizations begins with BEA95 and drops the 

notion that one analytic PDF for the conserved variables must be assumed a priori. They 

keep the Gaussian integration for liquid water correlations as in equation (2.80), but add 

γ, a “proportionality coefficient”: 

!m ql
! = " !m !s

sql
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)

. (2.84) 

BEA95 acknowledge that γ can take values of one to five, depending on the value of Q
1
, 

with higher values of γ for lower values of Q
1
. However, they keep γ  at unity, and 

instead opt to change the parameterization of  sql
!

" s

2
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'
(
(

 to reflect increases in liquid water 

correlations in cumulus regimes with low values of Q
1
. They use  
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= RFNG  (2.85) 

where F
NG

 is the “non-Gaussian transport factor” given by the piecewise function 

F
NG

=

1                 Q
1
> 0
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. (2.86) 

When Q
1
 is greater than zero, the formulas for the liquid water correlations revert back to 

the Gaussian formulas of Mellor (1977a,b), but for values less than zero, the non-

Gaussian transport factor increases to greater than five (see Figure 2.6).  
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Figure 2.6   Non-Gaussian transport factor as a function of Q
1
{from BEA95} 

 
 CB95 extend the ideas of BEA95 by using LES to determine the non-Gaussian 

transport factor. Using this method, a PDF for liquid water potential temperature and total 

water specific humidity is not explicitly assumed. Instead, LES results from various 

cloudy boundary layer regimes help to determine a general formula for the liquid water 

correlations. Figures 2.7 and 2.8 show the non-Gaussian transport factor determined from 

LES and the best fit from the LES data. Figure 2.7 shows that the non-Gaussian transport 

factor increases exponentially as Q
1
 decreases according to 

F
NG

=

1            Q
1
! 0

e
"1.4Q1     Q

1
< 0

#
$
%

. (2.87) 

Equation (2.87) is the best fit given the wide range of values of skewness of s for all 

cloudy boundary layer regimes. Figure 2.8 shows that the skewness of s near the cloud 
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base tends toward zero and therefore the non-Gaussian transport factor tends toward one 

there. 

 

Figure 2.7   Non-Gaussian transport factor determined from LES. The symbols in 
the legend indicate values of skewness of s. {from CB95} 

 

Figure 2.8   Non-Gaussian transport factor determined from LES {from CB95} 
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 Bechtold and Siebesma (1998), hereafter BS98, continue along this same line of 

parameterization. They use equations (2.84) and (2.85) to determine liquid water 

correlations, but determine the non-Gaussian transport factor using a mass-flux approach. 

They determine that  

FNG =
1

R

ql ,c

a qs T( ) ! qt( ) + ql ,c"# $%
 (2.88) 

where ql ,c =
ql

R
 is the in-cloud liquid water content. BS98 show that equation (2.96) is an 

accurate formula for calculating liquid water correlations for many boundary layer cloud 

regimes. Figure 2.9 shows the non-Gaussian transport factor for various cloudy boundary 

layer cases. Their results are consistent with BEA95 and CB95 in that the non-Gaussian 

transport factor increases strongly for values of Q
1
 less than zero. BS98 further show the 

mean buoyancy flux in cloudy boundary layer has two maxima – one for cumulus 

regimes and one for stratocumulus regimes (see figure 2.10). This last result is consistent 

with the findings of Randall (1987). 
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Figure 2.9   Non-Gaussian transport factor calculated from the mass-flux approach 
in BS98 for various cloudy boundary layer regimes {from BS98} 

 

Figure 2.10   Non-Gaussian transport factor multiplied by cloud fraction – this 
product is the same as sql

!

" s

2

#

$
%
%

&

'
(
(

 for the BS98 framework. {from BS98} 
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 Even though the schemes of BEA95, CB95, and SB98 have increasing 

sophistication in determining the non-Gaussian transport factor, their use in testing was 

found to be inadequate to produce satisfactory results for boundary layers containing 

cumulus clouds. In particular, the vertical liquid water flux was found to be too small, 

which resulted in a buoyancy flux that was not sufficient to generate or maintain enough 

turbulent kinetic energy for a trade-wind cumulus boundary layer. On the other hand, the 

scheme of B81a that was developed specifically for trade-wind cumulus boundary layers 

worked well in the current model for this type of boundary layer, although it predictably 

generated too much turbulent kinetic energy for the stratocumulus cases. For the 

stratocumulus cases, the scheme based on the Gaussian PDF was found to work well. 

Unfortunately, none of the schemes mentioned in this study worked well for all cloudy 

boundary layers. This provides motivation and means to create a new scheme that will 

work well for any cloudy boundary layer. 

 One way to create such a scheme is to combine two schemes that work in the 

limiting cases, when Q
1
 is small as in cumulus boundary layers and when Q

1
 is large as 

in stratocumulus boundary layers. This approach has been used for the cloud fraction and 

liquid water content in BEA95 and in Abdella and McFarlane (2001), but never for the 

liquid water correlations. For the current model, this idea is adopted for all liquid water 

correlations. The scheme of B81a is used to determine liquid water correlations for low 

values of Q
1
 and the Gaussian scheme of M77 is used for high values of Q

1
. For 

intermediate values of Q
1
, a linear interpolation between the two schemes is used. The 

limits of Q
1
 that determine where one scheme switches to the other are somewhat 
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arbitrary and tunable, but are guided by the information obtained from the non-Gaussian 

transport factor found in BEA95, CB95, and SB98.  

 Since Q
1
 is calculated at each level to determine the mean cloudiness statistics, 

the simplest implementation of the Q
1
-based liquid water correlation idea is to simply use 

the value of Q
1
 at each level to determine which liquid water correlation scheme to use 

for that level. This approach allows for differing cloud schemes within the same column, 

and may be useful for situations where a stratocumulus deck is eroded by a growing 

cumulus layer below. However, it was found during testing that when used in a typical 

stratocumulus regime, while most of the cloud layer consists of levels with high cloud 

fraction, the cloud base and cloud top levels often had only a small cloud fraction and 

values of Q
1
 that fell in the cumulus regime. The result was a stratocumulus layer 

bounded by thin cumulus layers and led to unrealistic profiles of the buoyancy flux and 

TKE.  

 To eliminate this problem, the following procedure was used. Given the mean 

cloud fraction diagnosed as in section 2.11.1, one can also diagnose the cloud type using 

some artificial means. In the current model, a simple formulation based on the maximum 

cloud fraction found in the column is used: 

Rmax ! Rcu : cumulus regime

R
cu
< Rmax ! Rsc transitional regime

Rmax > Rsc stratocumulus regime

   

where R
max

is the maximum cloud fraction in the column. When determined to be in the 

cumulus regime, liquid water correlations are calculated according to B81a and when 

determined to be in the stratocumulus regime, the M77 scheme is used. If it is determined 

that the cloud regime falls between the cumulus regime and stratocumulus regime, linear 
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interpolation is used to calculate the liquid water correlations from the two limiting 

schemes. 

 Explicitly, the liquid water correlations are calculated as follows: 
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Then, liquid water correlations are calculated according to 
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where Q
1cu

=

tan
R
cu
! 0.5( )
0.36

"

#
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&
'

1.55
,  and Q

1sc
=

tan
R
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! 0.5( )
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#
$

%
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'

1.55
.R

cu
and R

sc
are cloud 

fraction thresholds that determine which liquid water correlation scheme is used for a 

given cloud fraction. Experimental values for the current model are R
cu

= 0.25 and 

R
sc

=0.5. 

 The third-order moment liquid water correlations are handled in a similar way: 
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Then, liquid water correlations are calculated according to 
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2.12 Subgrid-scale microphysics 

 The use of a subgrid-scale condensation parameterization makes it necessary to 

handle precipitation processes in a non-traditional way. Traditional microphysics 

schemes assume an entire grid box is either saturated or unsaturated and calculate 

precipitation processes and their effects on the thermodynamics accordingly. A different 

approach that takes into account partial cloudiness within a grid cell is needed instead. 

For example, precipitation that is generated by autoconversion at some height above the 

surface may fall through cloudy areas where collection and other processes may enhance 

the precipitation, or through clear areas where evaporation diminishes the precipitation. 

With grid cells containing partial cloudiness, it is not clear whether the precipitation falls 

through the cloudy or clear portions or which microphysical processes should be applied 

since the subgrid-scale condensation scheme does not provide any information about the 

spatial arrangement of the partial cloudiness. 

 One way to account for partial cloudiness in a microphysics scheme is to define 

two rain water variables: one to keep track of in-cloud rain water and one for rain water 

falling through clear air. Using a cloud overlap assumption, it is possible to keep track of 

the conversion of cloudy rain water to clear rain water (and vice versa) as it falls through 

a partly cloudy column. The microphysics processes that one wishes to include only 

affects one species of rain water. For the current model, only warm rain processes are 

considered. Autoconversion and collection of cloud water by rain drops provide a source 

of cloudy rain water, and evaporation provides a sink of clear rain water.  

The dynamic equations governing each rain water species are given by 
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where the rain flux divergence term accounts for the rain falling into and out of cloudy 

and clear areas. The parameterization of the warm rain processes follows Khairoutdinov 

and Randall (2003). The tendency of cloudy rain water due to autoconversion is given by 

!qr
!t AUTO

= R *max 0,"ql AUTO#
$

%
&  (2.114) 

where R, the cloud fraction, is added to account for the fact that autoconversion only 

occurs within the cloudy area of a grid cell, !  is the autoconversion rate coefficient, and 

ql AUTO is the autoconversion-eligible cloud water diagnosed from the subgrid-scale 

condensation scheme. The tendency of cloudy rain water due to accretion is give by 

!qr

!t ACCR

= aP,CLDAar ql ,CLDqr ,CLD

3+br

4  (2.115) 

where  

Aar =
!
4
arN0rErc" 3+ br( )

#ref
#
0

$

%&
'

()

0.5

#
0

!#rN0r

$

%&
'

()

3+br

4

, 

a
P,CLD

 is the area containing cloudy rain water, 

and ql ,CLD =
ql

R
. The tendency of clear rain water due to evaporation is given by 
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where 
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water. Table 2.8 lists the unspecified constants. 

Symbol Description Value Units 
a
r
 constant in fall speed formula for rain 842 m

1!b
s
!1  

afr  constant in ventilation factor for rain 0.78  
b
r
 exponent in fall speed for rain 0.8  

bfr  constant in ventilation factor for rain 0.31  
C
r
 rain shape factor 1.0  

D
a
 diffusion coefficient of water vapor at 0ºC 2.210 !10

"5  m
2
s
!1  

E
rc

 collection efficiency of rain for cloud water 1.0  
N
0r

 intercept parameter for rain 8.0 !10
6  m

4  
K

a
 thermal conductivity of air at 0ºC 2.4 !10

"2  J  m K
!1
s
!1  

!  autoconversion rate 0.001 s
!1  

!ref  reference air density 1.29 kg m
!3  

!
r
 density of rain 1000 kg m

!3  
µ  dynamic viscosity of air at 0ºC 1.717 !10

"5  kg m
!1
s
!1  

Table 2.8   Constants used in the microphysics parameterization. 
 Yet to be determined are the precipitation flux divergence terms. Given the 

possibility of rain falling from cloudy air into clear air and vice versa, these terms must 

account for these transitions. For the cloudy rain water, the flux divergence term is given 

by 
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 (2.117) 

where the terms in the first parentheses on the right-hand side represent the rain flux 

falling into the cloudy rain area from both cloudy and clear area of the level directly 

above, and the terms in the second parentheses represent the rain flux falling out of the 
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cloudy rain area into either cloudy or clear area of the level below. Similarly, the flux 

divergence term for the clear rain water is given by 
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Next, one needs to calculate P
CLD,k+1!CLD,k

, P
CLR,k+1!CLD,k

, P
CLD,k+1!CLR,k

, and 

P
CLR,k+1!CLR,k

, the rain flux falling from cloud above into cloud below, the rain flux 

falling from clear sky above into cloud below, the rain flux falling from cloud above into 

clear sky below, and the rain flux falling from clear sky above into clear sky below, 

respectively, for each model level. To do so, one must make an assumption about how the 

partial cloudiness overlaps in the vertical dimension.  

The work of Jakob and Klein (2000), hereafter JK2000, provides an intuitive and 

convenient choice for the cloud overlap assumption and the framework to use it in. The 

cloud overlap assumption of JK2000 is taken from the ECMWF model. At each level, k, 

they define the area covered by clouds from all levels above, C
k
, as: 

C
k
= 1! 1! C

k+1( )
1!max R

k
,R

k+1( )
1!min R

k+1
,1! "( )

 (2.119) 

where levels increase upward and ! = 1"10
#6  to prevent division by zero. 

C
k
can be thought of as the area of the shadow generated by optically opaque clouds from 

a light source at nadir. This expression “gives maximum overlap for clouds in adjacent 

levels with cloud fraction monotonically increasing or decreasing with height, and 

random overlap for clouds either separated by clear levels of for levels of changing sign 

in the vertical gradient of cloud fraction” (JK2000). Given C
k
, it is then possible to 

determine the portion of clouds at level k that has no clouds above it: !C
k
= C

k
" C

k+1
. In 
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the JK2000 scheme, this quantity represents the cloud fraction that cannot possibly have 

precipitation falling into it from above, and is instrumental in determining areas of cloudy 

and clear precipitation flux. 

 Next, one needs to use the cloud overlap assumption to determine the areas of 

cloudy precipitation flux and clear precipitation flux. Figure 2.11 taken from JK2000 

demonstrates the concept. They identify four possibilities for the precipitation flux that 

can happen at the interface between two levels (see Figure 1): 

1. Cloudy precipitation flux falling into cloudy sky:  

2. Cloudy precipitation flux falling into clear sky 

3. Clear precipitation flux falling into cloudy sky 

4. Clear precipitation flux falling into clear sky. 

In order to calculate these precipitation fluxes, one needs to know the total precipitation 

flux and the areas of cloudy and clear precipitation flux. The areas of cloudy and clear 

precipitation flux as well as the areas of transition are calculated as follows.  

• For each level starting from the top, if qr ,CLR and qr ,CLD  are zero, then the areas of 

cloudy and clear precipitation flux, a
P,CLD

 and a
P,CLR

, are zero.  

• If qr ,CLR + qr ,CLD > 0 , then the rain must occupy some area and the areas of cloudy 

and clear precipitation for the first level containing rain water are determined by 

aP,CLDK
=

Rk if qr ,CLD > 0

0 if qr ,CLD = 0

!
"
#

$#

aP,CLRK
=

1% Rk if qr ,CLR > 0

0 if qr ,CLR = 0

!
"
#

$#

 (2.120) 
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• For each level below the topmost level of rainfall, the areas of cloudy and clear 

precipitation flux are calculated as 

aP,CLDk
=

Rk if Rk > 0.01 and ql ,AUTO > 0

aP,CLDk+1
+ !aP,CLR"CLDk

# !aP,CLD"CLRk
otherwise

$
%
&

'&

aP,CLRk
= aP,CLRk+1

# !aP,CLR"CLDk
+ !aP,CLD"CLRk

(2.121) 
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The quantities !a
P,CLR"CLDk

 and !a
P,CLD"CLRk

 represent the areas containing 

precipitation flux where precipitation is falling from a cloudy region to a clear 

region and from a clear region to a cloudy one, respectively. 

 

Figure 2.11   Illustration of precipitation fluxes and their areas {from JK2000} 
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 With the areas of cloudy and clear precipitation flux and the areas of transition 

calculated, it is now possible to calculate the four possible types of precipitation fluxes. 

First, the total precipitation flux is calculated according to Khairoutdinov and Randall 

(2003) as  
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ar! 4 + br( )
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The total precipitation flux is then divided into a cloudy and clear part according to 
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From these two fluxes, the four possible precipitation fluxes are calculated according to 
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 To discretize the predictive equations for the two rain water species, the simple 

forward-in-time scheme is used for the microphysics terms. The precipitation flux 

divergence terms, however, constitute advection and should be treated differently. Since 

the precipitation flux is always in one direction, the upstream scheme is prudent to use. 

The discretized form of equations (2.112) and (2.113) are given by 
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Since the upstream scheme is conditionally stable, certain conditions must be enforced. 

The conditional stability criterion for the upstream scheme is given by 
c!t

!z
" 1 , where c 

is the advecting speed. Since the precipitation flux is given by P = !
0
q
r
V
t
, the advecting 

speed is then c = V
t
=

P

!
0
q
r

. For stability, one must enforce Vt!t
!z

=
P!t

"
0
q
r
!z

# 1  or 

P

!
0
q
r

"
#z

#t
. Since !z and !t  are fixed in the model and P is a function of q

r
, the 

stability criterion effectively puts a maximum limit on q
r
. 

 

 
2.13 Complete system of governing equations 

 At this point, the closure of the model is complete. The turbulent variables 

predicted or diagnosed are included in Table 2.9. When used as a turbulence 

parameterization, ten prognostic second-order moment equations and 28 algebraic third-

order moments are solved. When used as a one-dimensional model, an additional 4 

equations for the mean variables are included. Finally, if the microphysics scheme is 

used, an additional two prognostic equations are solved. The mean equations are 
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where the microphysics terms are given in Section 2.12. 

Mean 
Variables Second-order Moments Third-order Moments 

!
l
,q

t
u , v  

qr ,CLD ,

qr ,CLR

!

"
#

$

%
&  

!u
2
, !v

2
, !w

2 , 

!w !u , !w !v , !w "l
! , !w qt

! , 

!l
"2 ,!l

"qt
" ,qt

"2  

!w
3
, !w !u

2
, !w !v

2
, !w

2
!u , !w

2
!v , 

!u
2
"l
! , !v

2
"l
! , !w

2
"l
! , !u

2
qt
! , !v

2
qt
! , !w

2
qt
! , 

!w !u "l
! , !w !u qt

! , !w !v "l
! , !w !v qt

! , 

!u "l
!2 , !v "l

!2 , !w "l
!2 , !u qt

!2 , !v qt
!2 , !w qt

!2 , 

!u "l
!qt
! , !v "l

!qt
! , !w "l

!qt
! , 

!l
"3,!l

"2qt
" ,!l

"qt
"2 ,qt

"3  

Table 2.9     Main variables 

The second-order moment equations with the included parameterizations are  
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The explicit algebraic third-order moments are given in equations (A29) – (A56) in the 

appendix. The buoyancy terms in equations (2.130) – (2.139) are calculated according to 

sections 2.9 and 2.11. The turbulent timescales are discussed in section 2.10. 
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2.14 Discretization 

To discretize the continuous equations, one must choose how to place variables 

on a grid, how to calculate spatial derivatives, how to calculate time derivatives, and 

whether to enforce realizability constraints. The choice of variable placement on a grid is 

guided by many factors. First is the desire to limit computational dispersion or diffusion. 

Since the goal of the model is to calculate turbulent properties of the boundary layer, it is 

important that any diffusion in the model be the result of physical turbulence and not 

unrealistic computational dispersion error. Second, for computational speed, spatial 

derivatives should contain as few terms as possible. Third, the order of accuracy should 

be maximized given the number of grid levels used. One way to address all issues is to 

use a staggered grid, centered spatial differences, and only two grid levels in each 

derivative. Since the third-order moments only contain derivatives of the second-order  

moments and the second-order moments contain both derivatives of first- and third-order 

moments, it makes sense to stagger the second- and third-order moments on different 

levels. The mean quantities fit with the third-order moments since they contain 

derivatives of the second-order moments. With the variables placed on the grid in this 

way, no averaging needs to be done for the spatial derivatives and the space-differencing 

can be done with a two-level, centered-difference scheme that is second-order accurate. If 

the variables were placed on an unstaggered grid and the simplest centered difference 

form was used for the spatial derivatives as shown in Figure 2.12, you would essentially 

have two groups of variables that don’t interact with each other. The red variables are all 

that are needed to calculate spatial derivatives for each other and the black variables are 

all that are needed for their respective derivatives. The placement of variables upon the  
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Figure 2.12   An example of an unstaggered grid.  Arrows denote spatial derivative 
dependence. Colors are used to point out that two distinct noninteractive groups of 
variables exist on a grid like this. 

 

Figure 2.13   Depiction of the arrangement of variables upon the grid 
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staggered grid is shown in Figure 2.13. Notice that the variables line up so that no 

averaging must be done to calculate vertical derivatives and there is no redundancy of 

information. 

As mentioned in the discussion about variables on the grid, all spatial derivatives 

are performed using the simplest centered difference quotient with the exception of the 

precipitation flux divergence terms in the microphysics parameterization. The 

precipitation flux and the mean prognostic rain variables reside on the same grid level. 

Since it is assumed that the precipitation flux is always downward, it is prudent to use the 

“upstream” scheme for these terms, where only information from the “upwind” side is 

utilized to calculate the flux divergence. 

Many authors have utilized the second-order accurate centered-in-space spatial 

discretization scheme with a staggered grid for higher-order closure turbulence models 

(e.g., André et al. 1978, Sun and Ogura 1980, Krueger 1988, Canuto et al. 1994, Cheng et 

al. 2005). The time-stepping scheme used with this spatial discretization scheme has 

varied in the literature, however. AEA78 utilized the Euler-backward scheme, Krueger 

(1988) utilized many different time-stepping schemes depending on the individual terms 

in the equations, and Sun and Ogura (1980), Canuto et al. (1994), and Cheng et al. (2005) 

all utilized the simple forward Euler scheme. For ease of implementation and to maintain 

continuity with the model of Cheng et al. (2005), the forward Euler scheme was used in 

the current model.  

 For an example of the complete discretized form of the first-, second-, and third-

order moments, the equations for !
l
, !w "

l
! , and !w

2
"
l
! are shown below. All other 

discretized equations can be written by analogy. 
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where the A
m.n

 are calculated at level k using the arithmetic mean for quantities that must 

be interpolated.  

 Given the complexity of the model, the exact computational stability criterion is 

difficult to obtain. A good estimate can be obtained by consideration of the physical 

processes captured in the individual terms of the model. The second-order moment 

equations involve common terms: a transport term characterized by the divergence of the 

third-order moments, a mechanical production term involving second-order moments and 

mean variable gradients, a return-to-isotropy term that somewhat acts as a smoothing 

operator, a buoyancy production term, and damping terms in the form of dissipation or 

part of the pressure correlation. Of these terms, the transport term involving the third-

order moments has been responsible for computational instability most often in the 
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literature. One can gain a good idea of model stability be examining these terms. 

Excluding all but the transport term, the second-order moments may be written in discrete 

form as 
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The discretized form of the third-order moments may be substituted to obtain  
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This formulation shows that each second-order moment, SOM
n
, is dependent on the 

“diffusion” of many second-order moments, SOM
1
, SOM

2
,  SOM

3
, etc.  For each second-

order moment, however, it is important to notice that it is dependent on the diffusion of 

itself as well. Equation (2.144) can be rewritten 
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Considering that for each second-order moment, the dominant portion of the third-order 

moment transport term is the diffusion of the second-order moment itself, one can 

approximate equation (2.145) by neglecting the diffusion of the other second-order 
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moments. If one does, it is easy to recognize that equation (2.145) constitutes the simplest 

forward-in-time centered-in-space scheme for the diffusion equation. While this scheme 

is unconditionally unstable for advection, it is conditionally stable for diffusion with the 

condition for stability given by 

A!t

!z( )
2
"
1

2
 (2.146) 

where A represents the maximum value of the “diffusion coefficient” calculated in the 

model. Since the diffusion of the other second-order moments was neglected, this 

stability criterion is really only a general guideline. This guideline has proven to be 

useful, however. A simple test was performed with the model where the maximum A for 

the third-order moments was determined to be 100. Using a 25 m grid size, the maximum 

allowable time step is calculated from equation (2.146) as 3.125 seconds. In practice, it 

was found that a time step of 3.2 seconds was usable, whereas the integration of the 

model was destroyed by computational instability when 3.3 seconds was used as the time 

step. 

 Recognizing that the diffusion of the second-order moments is the most likely 

culprit for computational instability, one may question whether it is prudent to calculate 

the divergence of the third-order moments in another way that allows a longer time step. 

The Dufort-Frankel scheme is unconditionally stable for the diffusion equation, so this 

would seem to be a good replacement candidate. Indeed, there is precedent for using this 

scheme. An early second-order closure turbulence model of Wyngaard and Coté (1974) 

used the Dufort-Frankel scheme with success. Using the same parameterization of the 

third-order moments as done in the current model, one could implement the Dufort-
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Frankel scheme by changing how the transport term in the second-order moment 

equations is discretized. It could be discretized as 
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One must be careful when choosing the time step if the Dufort-Frankel scheme is used 

because it is known to be an inconsistent scheme. The ratio 
!t

!z
 must go to zero as the 

grid is refined or else a different partial differential equation is solved than the diffusion 

equation. That is, the time step must decrease faster than the grid size. 

 Lastly, some realizability constraints are implemented in the model. The variances 

of horizontal velocity, vertical velocity, liquid water potential temperature, and total 

water specific humidity are positive-definite quantities. They are enforced to be greater 

than zero in the model. These variances are not guaranteed to be conserved, so they are 

simply set to zero if a negative value is calculated. Other positive-definite quantities 

including temperature and moisture variables are not enforced to be greater than zero 

since it was not required for the cases considered. One future improvement of the model 

would be to include a conservative scheme to maintain these positive-definite quantities. 

Many previous models included the “clipping approximation” of André et al. (1976) to 
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prevent the growth of unrealistic third-order moments (André et al. 1978, Krueger 1988). 

Such an approximation was not necessary for the current model. 
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Chapter 3 

One-Dimensional Model Results 

3.1 Introduction 

For testing and validation of the new turbulence model, five cases were simulated 

and compared with LES results. The first case is based on daytime data from day 33 of 

the Wangara experiment in Hay, Australia (Clarke et al. 1971). This particular day is 

noteworthy for its clear skies and weak large-scale forcing and is widely used as a test 

case for models studying the clear convective boundary layer. The Wangara case is used 

to test how well the new turbulence model works in the absence of complicating factors 

like clouds, precipitation, radiation, and strong shear. The final four cases are all taken 

from those performed by the GCSS Boundary Layer Cloud Working Group (BLCWG). 

The second case is the “smoke cloud” case that features a typical stratocumulus 

thermodynamic profile with a radiatively-active smoke cloud beneath the inversion. It is 

designed to test how the model handles stratocumulus cloud-top entrainment, without the 

complications arising from condensation and precipitation. The third case from the GCSS 

BLCWG also features a typical stratocumulus thermodynamic state but includes activated 

condensation and microphysics schemes. The initial and boundary conditions are adapted 

from the DYCOMS field campaign. The final two cases from the GCSS BLCWG feature  
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Case Name Environment Goal 

Wangara 
(Section 3.2) 

Clear convective boundary 
layer with weak large-scale 
forcing 

Test first-, second-, and 
third-order moments 
without complications due 
to clouds, precipitation, or 
radiation 

Smoke Cloud 
(Section 3.3) 

Boundary layer with strong 
thermal inversion initially 
filled with radiatively-active 
smoke 

Test stratocumulus-like 
cloud top entrainment 
without complications due 
to clouds and precipitation 

DYCOMS RF02 
(Section 3.4) 

Nocturnal stratocumulus-
topped boundary layer with 
drizzle 

Test performance of 
complete model for a 
drizzling stratocumulus 
regime 

BOMEX 
(Section 3.5) 

Nonprecipitating daytime 
trade-wind cumulus 
boundary layer 

Test performance of 
complete model without 
microphysics for a cumulus 
regime 

RICO 
(Section 3.6) 

Precipitating daytime trade-
wind cumulus boundary 
layer 

Test performance of 
complete model for a 
precipitating cumulus 
regime 

Table 3.2   One-dimensional cases run by the SCM. 
trade-wind cumulus. One case features a very low cloud amount without precipitation 

adapted from the BOMEX field campaign and the other features a slightly higher cloud 

fraction with light precipitation and is adapted from the RICO field campaign.  

 

3.2 Daytime clear convective case: Wangara 

 This case is based on the evolution of a clear convective boundary layer over Hay, 

Australia on August 16, 1967, also known as day 33 of the Wangara Experiment. 

Observations show a very shallow initial mixed layer about 100 m deep after sunrise that 

deepens throughout the day from dry convection to roughly 1300 m at its greatest height 

before sunset. Although sunrise occurred at 7:12 a.m., the model is initialized with 

observations from 9:00 a.m. local time, and the experiment spans 8 daytime hours to 5:00 
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p.m. The model is configured with a constant grid size of 50 m and utilizes 40 levels to 

cover the 2 km domain. A time step of 5 s is used. 

3.2.1 Initial conditions 

 To initialize the model, profiles of the mean quantities and second-order moments 

must be specified. The profiles of mean quantities are initialized according to 

observations and are shown in Figure 3.1. The initial potential temperature profile shows 

a very shallow mixed layer with its top near 100 m. Above the shallow mixed layer is an 

inversion of approximately 4 K, topped by a residual mixed layer from about 400 m to 

700 m. Above the residual mixed layer, the atmosphere is stably stratified. The initial 

profile of specific humidity shows a less well-mixed layer to approximately 700 m, above 

which the specific humidity drops almost linearly from 3 g kg-1 to less than 1 g kg-1 at 

1400 m. The initial wind profiles show that both the easterly and northerly components of 

the wind were light, although the easterly wind was between -3 and -2 m s-1 above the  

ground, decreasing somewhat linearly to calm above 1500 m. The northerly wind profile  

 

Figure 3.14   Initial profiles of potential temperature, specific humidity, easterly 
wind speed, and northerly wind speed for the Wangara case 
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features speeds generally less than 1 m s-1, although a direction change occurs above 

1500 m. 

 Initially, all second-order moments and third-order moments are set equal to zero 

above the surface layer. Values of the second-order moments at the surface layer are 

calculated according to Monin-Obukhov similarity theory as set forth in André et al. 

(1978), hereafter AEA78. They are given by: 
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 is the convective velocity, z
i
 is the boundary layer height, and 
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, and  !w q

t
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s
 are the friction velocity, surface heat flux, and surface specific 

humidity flux, respectively. The final three quantities are specified according to AEA78 

as well and are plotted in Figure 3.2. The surface heat flux is given by a sine curve with a 

half period of 10 hours and a maximum of 0.18 K m s-1 at hour 12.5. The moisture flux is 

calculated from the same curve with a proportionality coefficient: 
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where t is the local time in hours and the units for the heat flux and moisture flux are  

K m s-1 and (g g-1) m s-1, respectively. The friction velocity is calculated by linear 

interpolation from hourly values. Finally, to include the effects of a large-scale pressure 

gradient force, the geostrophic wind is specified according to Figure 3.3. 
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Figure 3.15   Specified time series of the surface heat flux (solid), the surface 
moisture flux (dashed), and the friction velocity (dotted) -- Note: The left axis is for 
the two surface fluxes and the right axis is for the friction velocity. 
 

 
Figure 3.16 Profiles of the components of the geostrophic wind; easterly (solid); 
northerly (dashed). 

3.2.2 Results 

3.2.2.1 Mean variables 

 The output of the current model is compared with large-eddy simulation (LES) 

output from Deardorff (1974a) and (1974b), hereafter D74a and D74b, and observations 

from the measurement-intensive Wangara experiment, where available. Additional useful 
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comparisons can be made with the output from other single-column turbulence models, 

such as the models of Wyngaard and Coté (1974), Yamada and Mellor (1975), AEA78 

and Sun and Ogura (1980). Shown in Figure 3.4 is the evolution of potential temperature. 

Instantaneous profiles are given for 9:00, 10:00, 11:00, 13:00, 15:00, and 17:00 local time 

and the position of the boundary layer top is indicated for each time by a labeled 

horizontal line. From the initial conditions (9:00), it is clear that a shallow mixed layer 

exists from the surface to roughly 100 m, above which a residual mixed layer is found 

that extends from about 300 to 700 m. Above the residual mixed layer to the top of the 

domain, potential temperature increases monotonically upward, indicating a stably 

stratified layer. By hour 10, the temperature close to the surface has warmed by about 2 K  

and the mixed layer has grown to about 200 m. The warming and mixing of the surface 

layer have yet to reach the residual mixed layer above at this time. By hour 11, however,  

the surface mixed layer has integrated the residual mixed layer above it, and the boundary  

 

Figure 3.17   Evolution of the potential temperature from the current model (left) 
and Deardorff's LES (right). Labeled horizontal lines in both plots indicate the 
height of the boundary layer top at the indicated time. 
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Figure 3.18   Observations of potential temperature and specific humidity at 09:00, 
12:00, 15:00, and 18:00. {taken from Deardorff (1974a), figures 1b and 2b} 
layer depth grew considerably from just above 200 m to about 900 m in one hour’s time. 

The profiles at times 13:00, 15:00, and 17:00 show continued growth of the mixed layer, 

albeit at a slower pace. By the final hour of the simulation, the potential temperature 

profile shows an almost constant value all the way to the boundary layer top at 1375 m. 

The LES results show a very similar evolution, although the boundary layer increases 

in depth at a quicker pace after 12:00 (also see Figure 3.7). In addition, the LES shows 

the potential temperature of the layer increases to about 13.5 ºC by 16:00, whereas the 

current single column model shows the boundary layer only warming to 12.4 ºC by 

17:00, a nontrivial difference of 1.1 ºC. The observations (Figure 3.5) show that  

while not completely mixed, the boundary layer reaches an average value of about 13 ºC, 

between the values of the two models. 

Figure 3.6 shows profiles of the specific humidity for both the current model and 

Deardorff’s LES, and the evolution is very similar to that of the potential temperature. As  
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Figure 3.19   As in Figure 3.4, but for specific humidity.  
the mixed layer grows, the dry air above the boundary layer gets mixed with relatively 

moist air near the surface. The result is a  mixed layer that gets successively dryer 

throughout the day. As noted in AEA78 and Mahrt (1976), a small negative gradient in 

specific humidity is maintained throughout the mixed layer due to the much dryer air 

above the boundary layer and insufficient turbulence to create a perfectly mixed profile. 

In comparison with Deardorff’s LES, it is once again evident that the LES-computed 

boundary layer becomes about 200 m deeper than observations suggest. In addition, the 

LES-computed boundary layer shows more drying than either the observations or the 

single column model.  

Figure 3.7 shows the time evolution of the boundary layer height, calculated as 

the level of minimum heat flux, for both models. The boundary layer height estimated 

from the observed potential temperature and specific humidity profiles is shown with 

symbols. The single column model seems to represent the boundary layer depth better 

than Deardorff’s LES, as the LES shows the boundary layer growing too fast after 12:00 
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Figure 3.20   Time evolution of the boundary layer height for the current model 
(solid), Deardorff's LES (dotted), and observations (asterisk). 
to about 16:00. By the end of the simulation, the LES boundary layer is 200 m, or about 

15% too deep, while the single column model boundary layer is only 75 m, or about 6% 

too deep. D74a attributes the overestimation to a combination of factors including the 

lack of large-scale subsidence and the possible overestimation of surface fluxes, although 

the absence of large-scale subsidence in the current single-column model suggests that it 

may not be the primary reason. 

 The profiles of the mean easterly and northerly wind components as well as total 

wind speed are given in Figure 3.8. The easterly component shows an almost constant 

wind speed in the mixed layer that increases in time. Above the mixed layer, the easterly 

component is generally reduced by about 2 m s-1. The northerly component oscillates  

around zero in the mixed layer and deviates between -1 and 1 m s-1 above it with a clear 

trend toward the geostrophic value. The wind speed profile shows minor changes, but in 

general, the initial wind speed profile is increased by about 1 m s-1 over the 8 hours of the 

simulation, except next to the surface where the wind speed only increases by about 0.5  
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Figure 3.21   Profiles of the easterly and northerly components  of the mean wind 
and the mean wind speed. 

 

Figure 3.22   Observations of the wind speed {taken from Andre et al. (1978) figure 
6b}. 

 
Figure 3.23   Near-surface wind speed (left axis) and direction (right axis) 
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m s-1. The computed profiles of the wind speed compare favorably with the observations 

shown in Figure 3.9. The shape and evolution of the profiles are in general agreement, 

but the computed values underestimate the observed values of the wind speed in the later 

hours of the simulation. The near-surface wind speed and direction are given in Figure 

3.10. As the profiles in figure 3.8 suggest, there is little notable change in the time series 

as well. The mean surface wind speed increases slowly throughout the day, from about 

3.0 to 3.4 m s-1, and the direction, while mostly from the east, switches from slightly from 

the east-northeast to slightly from the east-southeast, in good agreement with both 

observations and previous models.  

3.2.2.2 Second-order moments and their budgets 

 The evolution of the sensible heat flux is shown in Figure 3.11. Given a mixed 

layer that changes temperature almost uniformly throughout the layer, the governing 

equation for the potential temperature, equation (2.59), mandates that the sensible heat  

flux profile is linear, and the slope of the line is dictated by the surface sensible heat flux 

and the boundary layer top height. The plots in Figure 3.11 demonstrate these 

characteristics. Furthermore, near the top of the boundary layer, a region of negative, or 

downward, sensible heat flux is present at nearly every time. These negative values are 

associated with the entrainment process, whereby air with high turbulent kinetic energy 

near the boundary layer top overshoots the temperature inversion and forces the warmer 

air above the inversion downward. Through this process, the boundary layer can grow in 

depth. The ratio of the downward heat flux to the surface heat flux is an important 

quantity and is an indicator of the strength of the entrainment. Sun and Ogura (1980) 

present a valuable discussion of this quantity, and they determine that observations 
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Figure 3.24   Evolution of the sensible heat flux from the current model (left) and 
Deardorff's LES (right). (Note the difference in units between the two plots.) 

 
Figure 3.25   Evolution of the sensible heat flux overshoot ratio. 
suggest that the ratio is around 5-8% in convective boundary layers. Much larger values 

of around 15-20% are seen in many models, including Deardorff’s LES and the third 

order closure model of AEA78. Figure 3.12 shows the time series of this ratio for the 

current model. During the morning hours, the ratio oscillates around 6%, but increases to 
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oscillations around 11% in the afternoon. In general, these values align well with the 

observational record. 

For more detailed analysis of the sensible heat flux, consider its nondimensional 

budget given in Figure 3.13. Each profile represents the individual terms in equation 

(2.68): “T” is the transport (third-order moment) term given by !
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. Even though the budget is shown for a 

particular moment in time (14:00), the nondimensional representation changes little 

throughout the day, so it is sufficient to present a particular moment in time. The budget 

resembles those presented in D74b and AEA78 and may be explained intuitively. The 

positive heat flux near the ground is generated by two processes. Firstly, there are many 

parcels near the ground that are warmer than their surroundings. This contributes to the 

greater potential temperature variance and therefore the buoyancy term. Secondly, there 

is a shallow superadiabatic layer where the potential temperature decreases with height. 

This layer is mixed by turbulent eddies forcing warm parcels upward and contributes to 

the positive mechanical production term. The transport profile shows divergence near the 

surface and slight convergence around z
z
i

= 0.8 – 0.9, signifying upward transport of the 

heat flux generated near the ground by the preceding processes. Throughout much of the 
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Figure 3.26    Terms in the sensible heat flux equation for hour 14 made 

nondimensional by w*
2
!
*

z
i

.  See text for explanation of terms. 

layer, the heat flux that is generated by buoyancy is countered by the return-to-isotropy 

portion of the pressure correlation term. Near the inversion, three terms become 

dominant. The heat flux is generated by the buoyancy term since there is increased 

potential temperature variance near the inversion, but this is countered by turbulent 

eddies forcing warmer air downward (mechanical term) and the influence of gravity on 

the pressure correlation term. 

 The evolution of the moisture flux profiles is given in Figure 3.14. Qualitative 

agreement of how the moisture flux evolves throughout the day is satisfactory upon 

comparison with LES, although the magnitudes differ considerably. The shape of the 

profiles during most of the day makes intuitive sense, given the evolution of the mean 

specific humidity. One would expect a linear profile from equation (2.60) since the 

evolution of the specific humidity profile shows a mostly mixed layer with nearly 

uniform moisture content. Since the layer is growing into dryer air above, there is upward 
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Figure 3.27   Evolution of the moisture flux from the current model (left) and 
Deardorff’s LES (right) (Note the difference in units between the plots.) 
moisture flux near the boundary layer top. The slope is then determined by the surface 

moisture flux. Since the surface moisture flux is less than the upward moisture flux 

occurring at the boundary layer top, the moisture flux increases linearly with height to the 

boundary layer top. A consequence of more moisture being fluxed out of the boundary 

layer than is being replenished from the surface is that the boundary layer becomes 

uniformly drier, as is shown in Figure 3.6.  

As discussed in D74a, Wyngaard and Cote (1974), and AEA78, anomalous 

negative moisture flux appears near the boundary layer top in many turbulence models. 

This feature is not observed in nature, and its source has been traced to the 

parameterization of the pressure correlation term in the moisture flux equation, i.e. (2.69). 

The current model nearly eliminates this anomaly, although a hint of negative moisture 

flux near the inversion exists. The reason for this improvement can be seen by examining 

the moisture flux budget shown in Figure 3.15. Near the inversion, the buoyancy term, 

g!q
t
"#

v
" , is large and negative. The mechanical production and pressure correlation terms 
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Figure 3.28   Terms in the moisture flux equation made nondimensional by w*
2
q
*

zi
. 

act almost equally to balance the large negative buoyancy term, with a small positive 

contribution from the transport term as well. 

 The evolutions of the easterly and northerly momentum fluxes are shown in 

Figure 3.16. Plots from Deardorff’s LES are not shown because they use a coordinate 

system oriented with the surface wind that makes direct comparison difficult. Agreement 

is satisfactory with studies of the Wangara boundary layer that utilize the conventional 

coordinate orientation, such as AEA78 and Sun and Ogura (1980) (not shown). The 

easterly momentum flux profiles show positive values near the surface and a nearly linear 

decrease to a negative value near the boundary layer top. Since the mean easterly wind is 

negative (from the east), positive values of the easterly wind flux near the surface  

indicate a downward flux of easterly momentum and is consistent with the surface acting 

as a drag on the wind. As discussed in AEA78, the linear shape to the boundary layer top 

can be explained by differentiation of equation (2.61) with height. If easterly momentum 
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Figure 3.29   Evolution of easterly (left) and northerly (right) momentum fluxes. 
is mostly well-mixed in the boundary layer and the northerly geostrophic wind is mostly 

constant with height (see Figure 3.3), differentiation yields 
!
2

"w "u

!z
2

# 0 , or a linear 

profile. A similar analysis applies to the northerly momentum flux profiles. The negative 

values near the surface indicate a downward flux of northerly momentum, and a drag on 

the northerly wind. Differentiation of equation (2.62) with height demonstrates why the 

northerly momentum flux profiles exhibit a parabolic shape: 
!
2

"w "v

!z
2

= f
!ug

!z
= constant . 

 The easterly component of the horizontal velocity variance is shown in Figure 

3.17, and the vertical velocity variance is shown in Figure 3.18. The dimensionless 

horizontal velocity variance is nearly stationary throughout the day, but is overestimated 

from z
z
i

= 0.2 – 0.8 compared with Deardorff’s LES. The dimensionless vertical 

velocity variance is also nearly stationary throughout the integration period. As discussed 

in D74b, AEA78, and Sun and Ogura (1980), the vertical velocity variance exhibits a 

shape well-known and expected in buoyancy driven boundary layers; it increases 
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Figure 3.30   Evolution of the easterly component of the horizontal velocity variance 
from the current model (left) and Deardorff's LES (right). 

 

Figure 3.31   Evolution of the vertical velocity variance for the current model for the 
current model (left) and Deardorff's LES (right). 

smoothly from the surface to roughly z
z
i

! 1
3

 and decreases steadily to zero at a height 

above the boundary layer top. Positive vertical velocity variance above the boundary 

layer top is associated with the strength of the entrainment. The fact that Deardorff’s LES 

exhibits more vertical velocity variance above the boundary layer top reinforces the 

notion that entrainment is too strong in that model, leading to a slightly warmer and dryer 
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boundary layer, and more negative heat flux near the inversion, as already discussed. The 

discrepancy in vertical velocity variance magnitude between the two models is minor, 

with the current model slightly underestimating this quantity compared to the LES. 

Comparison with other studies suggests Deardorff’s LES gives a slight overestimate, 

suggesting that the underestimate in the current model constitutes improvement. 

 The turbulent kinetic energy (TKE) is one of the most useful quantities for 

studying the boundary layer since it provides a simple measure of how strong turbulence 

is. It plays an integral role in coupling the surface with the free atmosphere by partially 

determining fluxes of heat, moisture, and momentum (Stull 1988). A time-height cross-

section is presented in Figure 3.19 and its budget is presented in Figure 3.20. The budget 

shows that there are three dominating terms: a positive buoyancy term throughout most 

of the boundary layer to about z
z
i

= 0.9 , a negative dissipation term that cancels out 

much of the buoyancy term, and a transport term that fluxes TKE from near the surface to 

near the inversion. The mechanical production term plays a minor positive role near the 

inversion and even less so near the surface. Even though initially there is only TKE at the 

surface, it increases to fill the depth of the boundary layer due to buoyant production and 

upward vertical transport spinning up turbulence faster than it is being dissipated. At 

about 10:30, there is a dramatic increase in TKE associated with the surface mixed layer 

combining with the residual mixed layer from the previous day. The TKE continues to 

increase in magnitude to about 13:00, roughly coinciding with the maximum surface heat 

flux and maximum buoyancy production. Thereafter, the magnitude of the TKE starts to 

slowly decrease throughout much of the layer, and the rate at which the boundary layer 
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deepens decreases as well. By about 15:30, dissipation of TKE dominates until the end of 

the simulation where very little turbulence remains in the mixed layer. 

 

Figure 3.32   Time-height cross-section of the turbulent kinetic energy (m2s-2). The 
white dotted line indicates the boundary layer top height. 

 

Figure 3.33   Terms in the turbulent kinetic energy equation made dimensionless by 
2g!w

*
"
*
. 
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 The evolution of potential temperature variance and its budget are given in 

Figures 3.21 and 3.22, respectively. Two maxima are evident in the profiles of potential 

temperature variance. The lower maximum is associated with numerous warm thermals 

originating near the surface. The upper maximum near the inversion is associated with 

entrainment. Turbulence near the inversion forces relatively cool mixed layer air upward 

into the stable layer above, and warm air above the inversion is forced downward. The 

magnitude of the potential temperature variance in the current model matches well with 

Deardorff’s LES, but the shape of the peak is narrower in the current model than the LES. 

This is probably a consequence of weaker entrainment in the current model compared 

with LES. The potential temperature variance budget shows that production is 

accomplished by the mechanical production term near the surface and at the inversion, 

and is transported upward from the surface and downward from the inversion by the 

transport term.  

 

Figure 3.34   Evolution of potential temperature variance for the current model 
(left) and Deardorff's LES (right). 
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Figure 3.35   The budgets of potential temperature variance (left) and specific 
humidity variance (right). 
 The final two second-order moments to be discussed are the specific humidity 

variance and the covariance of potential temperature and specific humidity. Figures 3.23 

and 3.24 show their evolution, and Figure 3.22 shows the budget for specific humidity 

variance. The profiles of specific humidity variance show very little variance near the 

surface increasing to a single maximum at the inversion. This makes intuitive sense and  

 

Figure 3.36   Evolution of the specific humidity variance for the current model (left) 
and Deardorff's LES (right). 
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Figure 3.37   Evolution of the covariance of potential temperature and specific 
humidity for the current model. 
agrees with both observations and other models. Parcels near the surface are mostly 

uniformly moist. Near the inversion, however, entrainment mixes the relatively dry air 

above the inversion with the relatively moist air below. The variance budget reinforces 

this concept, since the two terms of most importance are the mechanical production and  

associated dissipation at the inversion. The profiles of the covariance of potential 

temperature and specific humidity are also in good agreement with observations and 

models. Positive values near the surface indicate that parcels are both warm and moist, 

having been in contact with the surface and modified by surface heat and moisture fluxes. 

Negative values are present near the inversion as relatively cool and moist boundary layer 

air is forced into the drier and warmer air above the inversion, and vice versa. 

3.2.2.3 Selected third-order moments 

 Shown in Figure 3.24 are the nondimensional profiles of the flux of turbulent 

kinetic energy from the current model and from the fully prognostic third-order closure 

model of AEA78. The laboratory experiment of Willis and Deardorff (1974) shows that  
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Figure 3.38   Evolution of the flux of turbulent kinetic energy for the current model 
(left) and Andre et al. (1978) (right). 
the flux of turbulent kinetic energy has a nearly parabolic shape with a maximum near 

z
z
i

! 0.5 and a value near 0.12, and the aircraft observations found in that study roughly 

agree with the laboratory results (not shown). The numerical model of AEA78 generates  

a TKE flux profile of a similar shape that remains constant through the daytime of their 

simulation and has a maximum value near 0.07. The current model generates profiles for 

the TKE flux that are not as constant throughout the simulation. The maximum TKE flux 

decreases from 11:00 to 15:00 and increases to 17:00. The TKE flux profile has a near 

parabolic shape with a maximum in the middle of the boundary layer with a value near 

0.05, but it also exhibits a negative “tail” below z
z
i

=0.2, which is not found AEA78’s 

profiles. The negative values of TKE flux near the surface have been reproduced in the 

laboratory experiment of Willis and Deardorff (1974) and the model of Sun and Ogura 

(1980). The transport terms in the equations for the TKE components are flux divergence 

terms, so that the vertical derivative of the TKE flux is what is important. The negative 

values of TKE flux help to create the correct TKE flux divergence, so even though the 
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TKE flux peak magnitude is reduced compared to the model of AEA78, the flux 

divergence terms end up being similar. 

 AEA78 point out that correctly calculating the divergence of the vertical flux of 

turbulent kinetic energy, 1
2

!w !u
2
+ !w !v

2
+ !w

3( ) ,  is a key requirement for simulating 

convective boundary layers since the turbulent kinetic energy needed for entrainment is 

not produced near the inversion (see the TKE budget, Figure 3.20). It must be transported 

from where it is produced by buoyancy lower in the layer to the boundary layer top. 

Indeed, AEA78 justify their use of fully prognostic third-order moments for this very 

reason. They argue that the reason a second-order closure model like the one used in 

Yamada and Mellor (1975) underpredicts the height of the boundary layer and that a fully 

prognostic third-order closure model accurately simulates boundary layer growth is that 

not enough TKE is transported to the boundary layer top to support rigorous entrainment 

in the simpler model, whereas transport is sufficient in the higher-order closure model. 

Although the shape of the TKE flux profile differs from the profile produced by the fully 

prognostic third-order closure of AEA78, they produce very similar TKE flux divergence 

profiles, and the transport term in the TKE budget profile for both of the models matches 

reasonably well. For this reason, both models produce realistic and satisfactory growth of 

the boundary layer. 

 The evolution of four other third-order moments is presented in Figure 3.26. The 

upper left portion shows the vertical flux of the sensible heat flux. It shows that the flux 

of the heat flux is almost always upward, which is consistent with the fact that most of 

the heat flux is generated by the buoyancy production term in the lower half of the 

boundary layer according to its budget (Figure 3.13). Upon comparison with 
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observational values and other numerical studies found in Sun and Ogura (1980) and 

shown from that work in Figure 3.27 (left panel), it appears that the current model’s 

results align better with the observations that the previous models. The vertical flux of 

potential temperature variance in the lower left panel, indicates that there is an upward 

vertical flux of potential temperature variance. This result also follows intuitively from 

the potential temperature variance budget (Figure 3.22) that shows most of the production 

of variance is from mechanical means near the surface. This variance is transported 

upward with the buoyant thermals. Comparison with observations in Figure 3.27 (right 

panel) shows good agreement with observations except very close to the surface. This 

discrepancy arises due to the imposition of zero boundary conditions in the current 

model. 
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Figure 3.39   Evolution of the vertical fluxes of the sensible heat flux (upper left), 
moisture flux (upper right), potential temperature variance (lower left), and specific 
humidity variance (lower right). 
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Figure 3.40   Profiles of the fluxes of sensible heat flux (left) and potential 
temperature variance (right) from Sun and Ogura (1980) and other studies found 
within that work. Symbols represent data from observational studies, whereas lines 
indicate model results. 

3.3 Smoke cloud case 

The first case study of the GCSS BLCWG featured a stratocumulus-topped 

boundary layer and demonstrated that many different LES codes could successfully 

represent the general structure of such a layer. It also highlighted the fact that the 

different codes differed markedly in their calculated entrainment velocity. Since the 

entrainment process in models is affected by a variety of factors, including the dynamics 

core, turbulence, radiation, and microphysics, it was impossible to ascertain the cause of 

the entrainment velocity discrepancy (Moeng et al. 1996). As a result, the second case of 

the GCSS BLCWG was developed with the goal of isolating the impacts of the dynamics 

core and the turbulence scheme on the entrainment process. This was accomplished by 

eliminating liquid clouds and replacing them with a radiatively-active smoke layer. This 

smoke layer was given properties such that the radiative cooling at the top resembled that 

of a typical stratocumulus cloud. In this way, it was found possible to study how the 
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entrainment velocity differs from model to model based solely on its representation of 

boundary layer dynamics and turbulence (Bretherton et al. 1999). This case was 

simulated with the current model and its output is compared with the participating GCSS 

BLCWG models. 

3.3.1 Initial conditions 

 The initial conditions for this case are specified in Bretherton et al. (1999) and are 

as follows. The profiles of potential temperature and smoke concentration, S, are given 

by 
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These profiles form a well-mixed layer below 687.5 m with a uniform smoke 

concentration of 1. A thin transitional layer separates the well-mixed and smoke-filled 

boundary layer from a slightly statically stable clear layer above. Initially, there is zero 

mean wind. The TKE is initialized to 1 m2 s-2 everywhere below 700 m, and this TKE is 

assumed to be isotropic, meaning that all three components of the TKE contain an equal 

share of the total. All other second-order moments and third-order moments are 

initialized to zero. The initial potential temperature profile is modified by including a 

random perturbation of [-0.1 K, 0.1 K] below the inversion (700 m). The surface pressure 

is initialized to 1000 hPa, and the profiles of pressure and density are generated assuming 
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hydrostatic equilibrium and an isentropic profile with !
0
= 291.5 K . Since the current 

model is prone to erroneous negative tracer flux above the inversion (see section 3.2.2.2), 

a global multiplicative hole-filler is employed to ensure positive smoke concentration 

values. 

 Finally, to make the smoke radiatively-active, the longwave radiation flux is 

defined as 
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where F
0
= 60 Wm

-2 is the longwave flux exiting the top of the domain, Ka=0.02 m2 kg-1 

is the absorptivity of the smoke, and the quantity in sigma notation represents the smoke 

path, or the amount of smoke above the current level that the longwave flux must travel 

through. The subscript of the flux indicates that it is calculated at half levels, between the 

levels where the mean quantities “reside.” Given this profile of the flux of longwave 

radiation, its divergence is calculated to determine the time rate of change of potential 

temperature due to radiation: 
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According to Bretherton et al. (1999), this specification of the smoke layer generates 

radiative cooling of about 4 K h-1 at the top of the boundary layer, which is inline with 

typical values for stratocumulus-topped boundary layers. Fifty layers are used at an even 

spacing of 25 m for a total domain depth of 1250 m. The simulation is run for 3 simulated 

hours with a time step of 0.5 s.  
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3.3.2 Results 

3.3.2.1 Mean quantities and entrainment parameters 

Bretherton et al. (1999) compiled model output from several codes that were used 

to simulate the smoke cloud case and performed an intercomparison. They presented 

results from many model configurations, including one-dimensional (1D) single-column 

models, two-dimensional (2D) models, and three-dimensional (3D) LES. For further 

analysis, they also divided their three-dimensional results into groups that submitted 

finer-resolution results (as fine as 5 m in the vertical), and those that used monotone or 

non-monotone advection schemes. They found that the finer-resolution three-dimensional 

LES models produced the most realistic results and best represented the entrainment 

process, and for this reason, these results may be used as a proxy for observations in their 

absence.  

Profiles of potential temperature and smoke concentration are given in Figures 

3.28 and 3.29 for the current model and the high-resolution 3D LES from Bretherton et 

al. (1999). The initial profiles are shown as dotted lines, but all others represent an 

average profile from hours 2-3. The initial potential temperature profile shows a well-

mixed layer (except for small random perturbations) with a strong 7 K inversion at 700 

m. The averaged profile from the last hour of the simulation shows that the mixed layer 

has cooled by about 0.5 K and that the inversion has been elevated by about 25 m. 

Comparison with the LES results shows that the current model reproduces the average 

temperature and structure of the mixed layer well. The slight curvature at the top of the 

mixed layer indicative of radiative cooling that is evident in the LES results is absent in 

the current model’s profile, however. The smoke concentration profile from the current 
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Figure 3.28   Profiles of potential temperature for the current model (left) and fine 
resolution three-dimensional LES from Bretherton et al. (1999); all profiles except 
the one labeled "initial" are averages from hours 2-3. 
model demonstrates similar characteristics as the potential temperature profiles. Namely, 

the mean smoke concentration and the structure of profiles match LES well, but the 

sharpness of the inversion is reduced compared to the LES results. Further, the smoke 

profile of the current model is not as uniformly mixed as the LES results, and shows a 

steady decrease with height. While the average values of smoke concentration of the  

 

 

Figure 3.29   As in Figure 3.27 but for the smoke concentration. 
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models may be similar, the current model produces a smoke concentration that is slightly 

too high near the surface and too low near the inversion. 

 Bretherton et al. (1999) discuss the effect of vertical resolution on the structure of 

the inversion and conclude that the standard resolution of this case (25 m in the vertical) 

is insufficient to resolve the needed variability at the inversion, but that the finer 

resolution (5 m vertical resolution) models show a marked improvement. This conclusion 

was based on the fact that the inversion thickness, defined as the distance between the 

S=0.1 and S=0.9 contours, was almost always less than or equal to 2Δz in the standard 

resolution models, but that the inversion thickness in the high-resolution models was 

almost always greater than 2Δz, often in the range of 2Δz to 6Δz. Further, Bretherton et 

al. (1999) note that the average inversion thickness is three times as large in the standard 

resolution models versus the high-resolution models, 50 m to about 17 m. The time-

height cross-section of the smoke concentration for the current model is shown in Figure 

 
Figure 3.30   Time-height cross-section of the smoke concentration for the current 
model. 
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3.30. Initially, the inversion thickness is about 50 m (2Δz), but grows to about 75 m (3Δz) 

by the end of the simulation. These results suggest that, like the standard resolution 3D 

LES models, the current model’s resolution is insufficient to represent the inversion in a 

realistic way since only two or three grid levels define the inversion. 

 For this case, the boundary layer depth, z
i
, is defined as the height where the 

smoke concentration is exactly one half. Due to the relative coarseness of resolution, this 

value is calculated by linear interpolation. Figure 3.31 shows the evolution of the mixed 

layer depth for the different types of models participating in the GCSS intercomparison 

and for the current model. The high-resolution 3D LES models show almost a linear 

increase in mixed layer depth to about 730 m by the end of the simulation and this is 

considered the benchmark. The standard resolution 3D LES models are split according 

their advection scheme, monotone (“3-DM”) and non-monotone (“3-DN”). The 

monotone 3D models also show a linear increase with time that averages about 730 m by 

the end of the simulation, but there is more spread among the models. The non-monotone 

3D models show a nonlinear accelerating increase in mixed layer depth through time, and 

the final depth reached is generally less than the other two 3D model categories. Both the 

2D and 1D models calculate a higher rate of increase with the mixed layer depth growing 

to about 740 m and greater than 750 m, respectively. The current 1D model shows a 

mixed layer depth increase that is markedly less than the other 1D models and has a 

somewhat nonlinear shape. In addition, the final mixed layer depth calculated from the 

current model (734 m) agrees well with the monotone 3D models, a considerable 

improvement from the other 1D and even 2D models. 
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Figure 3.31   Time series of mixed layer depth for different models participating in 
the GCSS intercomparison; high-resolution 3D LES (upper left), standard 
resolution non-monotone advection 3D LES (upper right), standard resolution 
monotone advection 3D LES (center left), 2D (center right), 1D (lower left), current 
model (lower right). 
 The rate of growth of the mixed layer is determined by entrainment, and the 

differing rates of growth among the models suggest that there are discernible differences 

in how well they represent this process. Bretherton et al. (1999) examine the entrainment 
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process in the intercomparison models by comparing some key parameters including the 

boundary layer average TKE, entrainment rate, w
e
, convective velocity, w

*
, and 

entrainment efficiency, A. For a buoyancy-dominated boundary layer, the last three 

quantities are defined according to Bretherton et al. (1999) as: 

w
e
=
dz

i

dt
  (3.14) 

w
*

3
= 2.5 !w !b

0

zi

" dz  (3.15) 

A =
z
i
w
e
!b

w
*

3
 (3.16) 

where !w !b =
g

"
0

!w !"  and !b  is the buoyancy jump across the inversion. These 

parameters were calculated for the current model and compared with results from the 

GCSS intercomparison. 

The evolution of boundary layer average TKE is shown in Figure 3.32 for the  

various intercomparison models and the current one. There are fundamental differences 

in how many of the intercomparison models handle TKE. Some use a first order closure 

diffusion scheme, while others explicitly predict its evolution. The case specifications 

called for models that predict TKE to be initialized with  1 m2s-2 in the boundary layer 

while those using a first order scheme are initialized to zero. This difference is obvious in 

Figure 3.32, with the first-order closure models showing very small quantities of TKE in 

the beginning while the others start out with their maximum values. In all 3D and 2D 

models, oscillations are present for the first couple of hours, but mostly dampen by the 

last hour. The current model displays behavior similar to the 1D models of the 
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Figure 3.32   As in Figure 3.31 but for the boundary layer average TKE. 
intercomparison study, with a steady state value reached quickly and without oscillations, 

but with a lower magnitude than the other types of models in general. The current model 

produces a higher boundary layer average TKE value than the other 1D models, and 

comes close to matching values from the monotone 3D models. 
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The time evolution of the other entrainment parameters is given in figure 3.33. 

The evolution of the entrainment rate, defined in equation (3.14), exhibits an interesting 

behavior. If one compares the time series of entrainment rate to the time-height cross-

section of the smoke concentration, it is apparent that the boundary layer grows in 

somewhat discrete jumps due to the coarse grid size. The entrainment rate increases 

nonlinearly until the inversion jumps upward one grid level at which point the 

entrainment rate decreases to a baseline level. This anomalous phenomenon appears to 

happen twice during the integration: once around 50 minutes and a longer duration event 

near the end of the simulation. The evolution of the entrainment efficiency mirrors that of 

the entrainment rate, but this is to be expected since the quantities that make it up change 

little throughout the simulation except for the entrainment rate. The convective velocity 

reaches a somewhat steady-state value at 10 minutes into the simulation of about 0.8 

 

Figure 3.33   Time evolution of the entrainment rate (solid line, left), entrainment 
efficiency (dotted line, left), and convective velocity (right). 
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m s-1 , although a temporary increase coinciding with the increase in boundary layer 

average TKE is found near the one hour mark.  

 Figure 3.34 was obtained from Figures 3 and 13 of Bretherton et al. (1999) and 

shows the average values of entrainment rate, boundary layer average turbulent kinetic 

energy and entrainment efficiency for the last hour of the simulation for the different 

types of models. The plots have been modified to include values from the current model 

(red symbols in the 1D column). The entrainment rate plot (left) and entrainment 

efficiency plot (right) contain hatched areas that indicate the range of expected values 

from laboratory experiment analogs to this case (see Bretherton et al. 1999 for more 

details). The entrainment rate plot shows significant difference among the model types, 

with the high-resolution 3D LES models producing values closest to laboratory 

experiments. With the exception of two 3D models, the standard resolution 3D models,  

 
Figure 3.34   Comparison of the final hour average values of entrainment rate (left), 
boundary layer average TKE (center), and entrainment efficiency (right) grouped 
by model type. The current model's values are plotted as red x's in the 1D model 
column. Exact values for the current model are we=4.14 mm/s, TKEblav=0.34 m2/s2, 
and A=1.46. 
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2D models, and the 1D models all produce entrainment rates much higher than what 

laboratory experiments or the high-resolution 3D LES suggest. It is interesting to note, 

however, that the current model produces an entrainment rate smaller than the other 1D 

models, even approaching the range of entrainment rates produced by the 3D LES 

models. For boundary layer average TKE, the current model produces a value greater 

than the other 1D models, and generally inline with the range of values predicted by the 

monotone standard-resolution 3D LES models.  

 The values of the entrainment efficiency are interesting in context of the so-called 

“A-dilemma” presented in Bretherton et al. (1999). According to that paper, laboratory 

experiment analogs designed to study entrainment at the interface of two fluids with 

different densities show that the entrainment efficiency at the top of a smoke-filled 

boundary layer or stratocumulus-topped boundary layer should be between 0.2 and 0.4. 

Both numerical studies and observations suggest, however, that the entrainment 

efficiency of a stratocumulus-topped boundary layer is up to an order of magnitude 

larger. The reason for this discrepancy isn’t clear, but several hypotheses have been put 

forth, including the possibility that laboratory experiment analogs to this case are 

incorrect, that cloud-top evaporation is boosted by turbulence leading to enhanced 

entrainment, that entrainment efficiency is overestimated in stratocumulus layers due to 

their increased spatial complexity, and that the presence of clouds at the top of the 

boundary layer focuses TKE near the inversion and enhances the entrainment efficiency. 

The absence of liquid water and an irregular inversion for this case renders the last three 

explanations ineffective, yet the calculated entrainment efficiency in all models is still 

well above the values found in the laboratory experiments. In fact, an appreciable fraction 
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of the participant models display entrainment efficiencies an order of magnitude larger. 

The category of models that produces that entrainment efficiency closest to laboratory 

experiment range is the high-resolution 3D LES. Note that the current model calculated 

an entrainment efficiency well below the other 1D models and almost as close to the 

laboratory experiment range as some 3D LES models.   

3.3.2.2 Selected second- and third-order moments 

 The profiles of the average heat flux for the last hour of the simulation are given 

in Figure 3.35. The general shape of the heat flux is in qualitative agreement for all 

models below the inversion. Indeed, Bretherton et al. (1999) explain that the particular 

shape is required by the imposed boundary conditions, radiative cooling, and the fact that 

the potential temperature in the mixed layer varies contiguously, so the agreement is not 

surprising. The main differences among the models are the magnitudes of the sub-

inversion maximum and above-inversion minimum and whether or not a spurious 

positive heat flux exists above the inversion. The profile from the current model (lower 

right) displays a maximum heat flux of about 20 W m-2 below the inversion. This value is 

significantly greater than the other 1D models and seems to align well with the average 

standard resolution 3D LES. However, the maximum heat flux is underestimated 

compared to the high-resolution 3D LES. The magnitude of the negative heat flux 

minimum at the inversion and the spurious positive heat flux above in the current model  

are both similar to the standard resolution 3D LES with non-monotone advection, 

although the current model’s spurious heat flux is much reduced compared to those 

models. In the current model, the spurious positive heat flux is a result of the buoyancy 
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term in the heat flux equation. These spurious values can be maintained when there is 

little dissipation above the inversion due to neutral stability there. 

 

Figure 3.35   Profiles of the last hour average heat flux for the GCSS 
intercomparison models and the current model. The layout follows that of Figure 
3.31. 
 



 121 

 

Figure 3.36   Average smoke flux profiles for the last hour for the current model 
(left) and the high-resolution 3D LES (right). 
 The average smoke flux profiles for the last hour of the simulation are shown for 

the current model and the high-resolution 3D LES in Figure 3.36. While qualitatively 

similar for much of the boundary layer, the same difficulties found in the heat flux profile 

are also visible in the smoke flux profile. Namely, the spurious negative smoke flux  

above the inversion is indicative of the same problem discussed with the heat flux: the 

buoyancy term in the smoke flux budget creates a negative smoke flux that is not damped 

properly due to the neutral layer above the inversion. Bretherton et al. (1999) did not 

publish the smoke flux profiles for all of the model types, but they submit that the non-

monotone advection 3D LES models demonstrate similar problems as found with their 

heat flux profiles, and therefore share the same deficiency as the current model, but 

probably for different reasons having to do with their numerical discretization. 

 The average TKE profile for the last hour of the simulation for the current model 

and a representative mix of the GCSS intercomparison models is shown in Figure 3.37. 

General features include an absolute maximum next to the surface, a nearly uniform 

distribution throughout most of the boundary layer, a minor secondary maximum at the  
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Figure 3.37   Profiles of average TKE for the last hour of the simulation for the 
current model (left) and models from the GCSS intercomparison representative of 
their groups. 
inversion, and a second minor relative maximum above the inversion for those models 

with spurious convection there. Comparison between the current model and the GCSS 

intercomparison models shows that the current model produces a similar TKE profile to 

the standard resolution 3D LES models, although a broader secondary maximum in the 

upper half of the boundary layer is found. In addition, spurious weak TKE is found above 

the inversion for the same reason the heat and smoke flux profiles have spurious values 

there. 

Lastly, the profiles of average vertical velocity skewness for the last hour of the 

simulation are shown in Figure 3.37 for the current model and the high-resolution 3D 

LES models from the GCSS intercomparison. The general characteristics show good 

agreement among the models: a small negative value from the surface to where the 

radiative cooling takes place and a small zone of positive skewness near the inversion. 

Values above the inversion show increased scatter due to the division by a small vertical 

velocity variance.  
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Figure 3.38   Average skewness profiles from the last hour of the simulation from 
the current model (left) and the high-resolution 3D LES from the GCSS 
intercomparison (right). 
 
 
3.4 Drizzling Nocturnal Stratocumulus Case: DYCOMS II 

The next test case to be considered is the nocturnal drizzling stratocumulus case 

of the GCSS BLCWG that was developed from data collected during the second research 

flight of the second Dynamics and Chemistry of Marine Stratocumulus field study 

(DYCOMS-II) that took place in a broad region of stratocumulus off the southern 

California coast during July of 2001. The second research flight measured conditions in 

two types of stratocumulus regimes: one that featured low drizzle rates and a solid cloud 

deck and a more broken cloud deck that featured pockets of open cells and higher drizzle 

rates. For the GCSS case, mean conditions from each of these stratocumulus regimes 

were averaged to obtain the initial conditions for the modeling test case. 

Intercomparisons were performed for both LESs and SCMs that simulated this case and 

their results are published in Ackerman et al. (2009) and Wyant et al. (2007), 

respectively. Emphasis for the analyses was placed on the effect of drizzle and cloud 



 124 

droplet sedimentation on the calculated liquid water path, entrainment rate, and overall 

boundary layer dynamics. 

Within the context of this study, this case was performed to test the current 

model’s ability to simulate a stratocumulus regime. This is the first of three cases to test 

the model under various boundary layer cloud regimes, and is the first to have the 

subgrid-scale condensation and subgrid-scale microphysics schemes active. It should be 

noted that stratocumulus regimes have historically been easier for boundary layer 

turbulence parameterizations to simulate given that the joint-Gaussian assumption for the 

thermodynamic variables is more relevant in this regime and that stratocumulus is 

generally more statistically stable through time.  

3.4.1 Initial conditions 

All initial and boundary conditions are given in Ackerman et al. (2009) and are as 

presented below. The mean profiles of !
l
 (K), qt (g kg-1), u (m s-1), and v (m s-1) are 

given by 
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where zi = 795 m initially. The second- and third-order moments are all initialized to zero 

except for the TKE components below the inversion and all second-order moments at the 

surface. TKE is initially set to 1 m2s-2 and is assumed to be isotropic, so all three TKE 

components are initialized with an equal amount. The surface sensible and latent heat 

fluxes are held constant throughout the simulation at 16 and 93 W m-2 respectively. The 

vertical fluxes of momentum are parameterized according to 

!w !u = "
uu

*

2

u
2

+ v
2

   and    !w !v = "
vu

*

2

u
2

+ v
2

  where u
*
= 0.25 m s

-1 (constant). All other 

second order moments at the surface are treated according to Monin-Obukhov similarity 

theory as detailed for the Wangara case. The surface pressure is initialized to 1017.8 hPa, 

and the profiles of pressure and density are generated assuming hydrostatic equilibrium 

and an isentropic profile with !
0
= 291.5 K . In addition, pseudo-random perturbations of 

[-0.1 K, 0.1 K] are added to the !
l
 profile below the inversion. 

 To consider the effects of the atmosphere outside of the domain, two large-scale 

forcings are included. First, subsidence is calculated according to wLS = !Dz  where 

D = 3.75 !10
"6

 s
-1  is the average divergence observed during the research flight. The 

subsidence acts on the thermodynamic variables to warm and dry the column. Second, a 

large-scale pressure gradient is included into the simulation by specifying profiles for the 

geostrophic wind. For this case, the initial mean wind profiles are used as the geostrophic 

values and the Coriolis parameter is calculated at latitude 31.5º N. In addition to the 

large-scale forcings, there are two associated with the inclusion of liquid clouds. The first 

is the net longwave radiative forcing. The net longwave flux is parameterized as a 

function of height and cloud water mixing ratio for each level as  
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= 1.12 kg m-3 is the density at the inversion, H is the Heaviside step function, and zi is 

defined as the height at which q
t
= 8 g kg-1 . The second forcing associated with cloud 

water is the divergence of the cloud water sedimentation flux. While many bin 

microphysics schemes intrinsically account for this cloud droplet sedimentation, simpler 

schemes like the one included in the current model omit this process. This flux is 

parameterized according to  
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The simulation is run for 6 hours with a time step of 1 second. Sixty layers are used with 

a constant grid spacing of 25 m for a total domain depth of 1500 m. The results from the 

current model are compared mainly with the participant LES codes from Ackerman et al. 

(2009). The LES codes use a variable vertical grid size with maximum resolution of 5 m 

near the surface and the inversion with coarser resolution between and above the 
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inversion. The time steps used vary by model. The first two hours of the simulation is 

observed to be a “spin-up” period, so descriptive statistics are taken from the last 4 hours 

of the simulations where a quasi-steady state is observed. In addition, as in the LES 

study, a sensitivity test is performed where the cloud droplet sedimentation flux is 

neglected. These results are presented along with the standard test. 

3.4.2 Results 

3.4.2.1 Mean variables, cloudiness statistics, and precipitation 

 The mean profiles of the thermodynamic variables from the current model are 

shown in Figure 3.39 and compared with the LES participants of Ackerman et al. (2009). 

All models do an admirable job at maintaining the well-mixed boundary layer and sharp  

 

Figure 3.39   Mean profiles of !
l
 and q

t
for the current model (left in all plots) and 

the LES participants of Ackerman et al. (2009) (right in all plots). For all plots, the 
dotted line denotes the initial profile, the solid line denotes the average over the last 
4 hours of the simulation, and the dashed line denotes results from the no cloud 
droplet sedimentation sensitivity test discussed in Section 3.4.2.3. The circular 
symbols denote observations, with the closed symbols representing the solid 
stratocumulus deck and the open symbols representing the open cellular 
stratocumulus. 
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inversion. The current model develops a !
l
profile that is slightly less stratified at the top 

of the boundary layer, but otherwise, the agreement with LES is quite good. The mean q
t
 

for all models are slightly less well-mixed than !
l
and the profiles show a slight drying of 

about a few tenths of one g kg -1 within the cloud layer and a slight moistening of the 

same magnitude below the cloud layer. The current model’s profile matches the results 

from LES well, except for the lower half of the boundary layer is slightly too moist.  

 Of utmost interest for the first cloudy test case are the calculated cloud field and 

its properties. Profiles of cloud fraction and mean cloud liquid water are shown in Figure 

3.40, while the liquid water path time series is shown in Figure 3.41. The agreement 

between the current model’s results, the LES results, and observations is remarkably  

good. The maximum cloud fraction for the current model is about 98% versus the mean 

LES result of about 97%. The cloud thickness, defined as the thickness between where  

the cloud fraction first crosses 0.5 and where it crosses the same value near the boundary  

 
Figure 3.40   Profiles of  cloud fraction and mean cloud liquid water for the current 
model (left panels) and LES participants (right panels). Lines and symbols are as in 
Figure 3.39. 
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Figure 3.41   Time series of LWP for the current model (left) and the LES 
participants (right). Solid lines represent means for the standard case and dashed 
lines represent results from the no-sedimentation flux sensitivity test. Dotted lines on 
the LES figure denote the range of observations, while the dark and light shading 
represent the middle two quartiles and range of the LES results, respectively. 
 

layer top, is slightly different between the models; the cloud deck in the current model 

occupies about 46% of the boundary layer, while the average LES cloud deck only 

occupies 37% of the boundary layer column. The cloud fraction profile shows that the 

extra cloud depth is found near cloud base. This is consistent with the lower half of the 

boundary layer being a little too moist in the current model. As with cloud fraction, the 

mean cloud liquid water specific humidity profiles compare really well between the 

current model and LES. The maximum values coincide to within 0.07 g kg-1 and the 

shapes of the profile are quite similar. Given that the current model calculates a slightly 

deeper cloud than the mean of the LES models, one might expect the liquid water path to 

be somewhat greater as well. Figure 3.41 demonstrates that this is indeed the case. After 

the two hour spin-up time, the liquid water path settles to a near-constant value around 

120 g m-2, compared with about 110 g m-2 for the LES participants. The current model’s 
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results not only match the mean of the LES participants well, but also fall within the 

range of observations.  

 Given these results, it seems as though the SGS condensation scheme 

implemented in the current model can accurately capture the defining characteristics of a 

stratocumulus regime. With this accurate portrayal of the cloud field, can the SGS 

microphysics scheme also produce realistic results? Figure 3.42 shows the time-height 

cross-section of the total precipitation flux, which includes the parameterized cloud-

droplet sedimentation flux. After a brief burst of relatively heavy precipitation during the 

spin-up period, the precipitation flux reaches a quasi-steady state that is maintained 

throughout the simulation except for a brief decrease associated with the inversion 

jumping one grid level upward. The spatial distribution of the precipitation flux matches 

what one would expect in a stratocumulus regime with the maximum precipitation flux  

collocated with the maximum cloud liquid water. Descending within the cloud, the  

 

Figure 3.42   Time-height cross section of precipitation flux; contours units are W 
m-2. The white dotted lines denote cloud top and cloud base. 
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precipitation flux decreases rapidly, and below cloud base, the precipitation flux is further 

depleted by evaporation. 

Figures 3.43 and 3.44 show comparisons of the mean calculated precipitation flux 

profiles and the time series of surface precipitation with the LES results, respectively. 

Figure 3.43 also shows the separate components of the total precipitation flux: the rain 

flux diagnosed from the SGS microphysics scheme (solid blue line) and the 

parameterized cloud droplet sedimentation flux (solid red line). Through most of the 

cloud layer, the cloud droplet sedimentation flux dominates, but this is to be expected 

since this flux is proportional to ql
5
3 , and the liquid water content increases with height 

in the cloud layer to the maximum value near the boundary layer top. As one descends 

through the cloud layer, the rain flux diagnosed from the SGS microphysics scheme 

increases due to cumulative autoconversion and collection and peaks at cloud base. 

Below this level, evaporation decreases the precipitation flux at a slower rate. Compared  

 

Figure 3.43   As in Figure 3.39, but for the precipitation flux. The red and blue solid 
lines for the current model plot indicate the cloud water sedimentation flux and the 
diagnosed rain flux. 
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Figure 3.44   As in Figure 3.41, but for the surface precipitation flux. 
with the LES results, the precipitation flux profile from the current model matches pretty 

well, with the maximum flux coinciding in placement and magnitude. The main 

difference between the two mean profiles is the shape near and below the transition from 

cloud layer to sub-cloud layer. This difference is probably attributed to differences in 

how evaporation of precipitation is handled. Compared with observations, the LES 

models’ precipitation flux matches the open-cellular values in the cloud layer, but 

approaches the lower closed-cell values below the cloud layer, indicating the sub-cloud 

evaporation might be too strong. The current model calculates a precipitation flux that is 

greater than the LES results and closed-cellular values, but still considerably less than the 

observed open-cellular values. The time series of surface precipitation flux shows that the 

mean of the LES results slightly undershoots the observed range of 0.25-0.45 mm day-1 

while the current model generates surface precipitation that falls within the range of 

observations. 
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3.4.2.2 Turbulent moments and entrainment 

 Profiles of the total fluxes of the thermodynamic variables are shown in Figure 

3.45. The total flux of !
l
includes not only its vertical turbulent flux, but also the 

contributions from the radiative, precipitation, and cloud droplet sedimentation fluxes.  

Likewise, the total flux of q
t
includes its vertical turbulent flux and contributions from 

the precipitation and cloud droplet sedimentation fluxes. As with the Wangara case, the  

linear profiles are indicative of a well-mixed layer that warms or cools and moistens or  

dries in a constant way throughout the layer. The slightly negative constant slope of both 

profiles equates to a uniformly warming and moistening boundary layer. The basic shape 

of both profiles from the current model agrees with the results from LES, but there are 

important differences. For the total flux of !
l
,  the slope is slightly more vertical. This is 

indicative of a boundary layer that doesn’t warm as much as the one from LES, especially 

in the cloud layer (see Figure 3.39 for confirmation). Similarly, the slope of the total flux 

of q
t
profile is less vertical than the LES profile which is indicative of a moister boundary  

 
Figure 3.45   As in Figure 3.39 but for the total fluxes of  !

l
 and q

t
. 
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layer (see Figure 3.39). All models, however, fail to accurately reproduce the 

observational values, particularly the values from the open-cellular convection. It is 

worth noting that the current model’s results are slightly closer to the observed values 

than the LES results. 

 To gain a better perspective of the turbulent state of the modeled stratocumulus 

regime, mean profiles of the vertical velocity variance and buoyancy contribution to the 

TKE are shown in Figure 3.46. The buoyancy term profile matches nearly perfectly with 

both LES results and observations. The subcloud layer features a nearly linear profile 

consistent with clear convective boundary layers, and a significantly positive buoyancy 

flux is present in the cloud layer. Above the cloud layer is a thin layer of slightly negative 

buoyancy flux present in all models. The vertical velocity variance profiles show some  

disagreement, both between the current model and the LES and the LES participants 

themselves. The observations for both types of stratocumulus convection show a near 

parabolic shape that is consistent with well mixed convective boundary layers (see Figure  

 
Figure 3.46  As in Figure 3.38 but for the buoyancy contribution to the TKE 
production and the vertical velocity variance. 
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3.18 of Section 3.2.2.2). The LES models produce profiles that are smaller in magnitude 

and that have two maxima, one below the cloud layer and one in the cloud layer. This  

double maximum profile is indicative of a cloud layer that has decoupled from the clear  

convective subcloud layer, which is not observed in this case. The profile from the  

current model is slightly better than the LES results, with a less pronounced local 

minimum near cloud base and higher values of vertical velocity variance below the cloud 

layer. 

 The time series for the maximum vertical velocity variance is shown in Figure 

3.47 along with the time series of entrainment rate in Figure 3.48, where the entrainment 

rate is defined as E =
dz

i

dt
! w

LS
z
i( ) , or the time rate of change of the boundary layer 

depth minus the large scale subsidence at the inversion. As hinted in the vertical velocity  

variance profiles in Figure 3.46, the maximum vertical velocity variance is 

underestimated considerably in all models, although the current model is no worse than 

the LES participants. Despite this shortcoming, however, the models are still generally  

 
Figure 3.47  As in Figure 3.40 but for the maximum vertical velocity variance. 
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Figure 3.48   As in Figure 3.41 but for the entrainment rate. 
able to reproduce an entrainment rate that is both reasonable and close to observations.  

The current model’s entrainment rate is still generally underpredicted, though, and shows 

spikes associated with discrete inversion height changes. 

 

3.4.2.3 Cloud Droplet Sedimentation Flux Omission Sensitivity Test 

 One of the goals of this GCSS intercomparison case was to study the effects of 

drizzle and cloud water sedimentation on boundary layer dynamics in a stratocumulus 

regime (Ackerman et al., 2009). These processes play an important role in the field of 

climate science due to their influence on indirect aerosol effects, particularly the 

“Twomey effect”. This phenomenon results from increased aerosol concentrations that 

provide more cloud condensation nuclei for water vapor to condense upon. This leads to 

more numerous but smaller cloud droplets that are able to reflect more shortwave 

radiation. The Twomey effect is thought to be enhanced by less efficient drizzle 

generation and increased cloud water sedimentation that also results from the smaller, 

more numerous droplets. For this reason, it is important for a model to accurately include 
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drizzle and cloud droplet sedimentation, and to understand how these processes affect 

other boundary layer variables. 

 Two previous studies by Ackerman et al. (2004) and Bretherton et al. (2007) 

demonstrate that the inclusion of cloud droplet sedimentation plays a critical role in 

decreasing the entrainment rate in stratocumulus regimes. The mechanism by which the 

reduction is created is debated between the two studies, however. Ackerman et al. (2004) 

postulate that cloud droplet sedimentation leads to a reduction in the moisture level of 

cloudy updrafts that robs moisture available for evaporation in downdrafts. This 

reduction in evaporative cooling reduces downdraft strength and results in decreased 

TKE and convective intensity within the cloud layer. The reduction in cloud layer TKE 

near the inversion hampers the boundary layers ability to entrain above-inversion air. 

Bretherton et al. (2007), on the other hand, found that TKE near the cloud top was 

unaffected by cloud droplet sedimentation. They propose that entrainment is reduced by 

two mechanisms both associated with the removal of liquid water from the entrainment 

zone. The first is the reduction in entrainment-enhanced evaporative cooling, and the 

second is the reduction in radiative cooling near cloud top as a result of the reduced liquid 

water. They also assert that the first mechanism is more important than the second. 

 As stated in the case setup, a sensitivity test was performed with the current 

model, in which cloud droplet sedimentation was neglected. All other model parameters 

and processes were left unchanged, including the microphysics scheme that was left on to 

produce drizzle by autoconversion. Figures 3.39 through 3.47 (with the exception of 

figure 3.42) all contain results from the no cloud droplet sedimentation sensitivity test 

(dashed lines). Compared to the standard case with cloud droplet sedimentation included, 
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the sensitivity test produced a boundary layer with nearly the same turbulence strength 

especially in the cloud layer (Figures 3.46 and 3.47), a slightly higher entrainment rate 

(2.18 mm/s vs. 1.69 mm/s) (Figure 3.48), a thinner cloud deck with a reduced liquid 

water path (116.80 g/m2 vs. 94.97 g/m2)(Figures 3.40 and 3.41), and reduced surface 

precipitation (Figure 3.44). This is broadly consistent with the findings of Ackerman et 

al. (2004) and Bretherton et al. (2007), whereby cloud droplet sedimentation reduces 

entrainment, increases LWP, and increases precipitation.  

 This broad agreement is encouraging, but which mechanism for entrainment 

reduction was responsible? With the nontraditional subgrid-condensation scheme and 

diagnosed cloud liquid water content, the process of cloud water evaporation is 

completely absent in the current model. Therefore, it is impossible to confirm or refute 

the claim of Ackerman et al. (2004) that cloud droplet sedimentation leads to reduced 

evaporative cooling in cloudy downdrafts, reduced in-cloud TKE, and finally reduced 

entrainment. The fact that vertical velocity variance remains mostly unchanged in the 

cloud layer should not be interpreted as evidence that this mechanism does not take place 

in nature. Likewise, the first process proposed by Bretherton et al. (2007) of a reduction 

in entrainment-enhanced evaporative cooling due to cloud droplet sedimentation is also 

not represented in the current model. However, the second process of reduced cloud-top 

radiative cooling is represented. In support of Bretherton et al. (2007), Figure 3.49 shows 

that cloud droplet sedimentation reduces cloud water near the boundary layer top by up to 

0.17 g kg-1. This demonstrates that cloud droplet sedimentation does in fact reduce the 

liquid water available for evaporation and evaporative cooling by dry entrained air, even 

though this process is not represented in the model. In addition, the radiative cooling 



 139 

profile shows a reduction in cloud-top radiative cooling of about 0.3 K/h when cloud 

droplet sedimentation is included. In addition, the position of the maximum radiative 

cooling has move downward somewhat. The difference in the two curves is plotted with a 

dotted line, and shows the downward displacement of maximum radiative cooling when 

sedimentation is included. A positive value on this curve indicates that the case run with 

sedimentation does not cool as much compared with the no-sedimentation sensitivity test. 

Further, Section 3.2.2.1 mentions that a potential mechanism for the increased 

entrainment efficiency, A,  in stratocumulus regimes is the influence of enhanced 

evaporative and radiative cooling at cloud top. Bretherton et al. (2007) found that the 

entrainment efficiency was reduced when cloud droplet sedimentation was included and 

they interpret this finding as further evidence that the reduction of liquid water at cloud 

top is responsible for the reduction in entrainment rate. The current model supports this  

 

Figure 3.49   The profile on the left shows the difference between the no-
sedimentation flux sensitivity test and the standard case. The profile on the right 
shows the difference in radiative forcing between the standard case (solid line) and 
the no-sedimentation flux sensitivity test (dashed line). 
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claim, at least for the cloud-top radiative cooling, since the entrainment efficiency, A, 

decreases about 34% from 0.53 to 0.35 when cloud droplet sedimentation is included. 

 

3.5 Nonprecipitating trade-wind cumulus case: BOMEX 

The fourth test case is based on mean conditions present during phase three of the 

Barbados Oceanographic and Meteorological Experiment (BOMEX) off the coast of 

Barbados in 1969, and is representative of steady-state non-precipitating maritime trade-

wind cumulus. As with previous cases, the observational dataset chosen to create the test 

case was carefully chosen to minimize the effects of large-scale advection and other 

complicating factors in order to isolate processes of interest, namely shallow trade-wind 

cumulus convection. Also in accordance with the previous two cases, this case was 

developed for study by the BLCWG of GCSS. A detailed case description and results 

from a LES intercomparison are available in Siebesma et al. (2003). The main objectives 

of this case in the context of GCSS were to decipher how well the participant LES 

ensemble could reproduce the observed cloud structure and to what extent common cloud 

parameterizations could capture the relevant cloud dynamics. 

In the context of the current study, the goal of using this test case aligns with the 

first objective of the GCSS BLCWG, namely to determine to what extent the current 

model is capable of reproducing a shallow trade-wind cumulus boundary layer regime. 

Recall in section 2.12 that subgrid-scale condensation schemes have historically been 

most useful for stratocumulus regimes and that cumulus regimes have proved to be a 

greater challenge. This is a product of the highly localized nature of the cloudy 

convective updrafts and expansive size of the broadly descending surrounding 
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environment leading to a highly skewed joint distribution of the thermodynamic 

variables. The precise PDF to use for a diagnostic subgrid-scale condensation scheme has 

yet to be determined, though many different forms have been tried with some success, 

including the one used in the current model. For this reason, it is reasonable to expect less 

favorable agreement between the current model’s results and LES or observations. 

3.5.1 Case setup 

 All initial and boundary conditions are given in Siebesma et al. (2003) and are 

presented below. The mean profiles of the thermodynamic and wind variables are 
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v = 0   (3.26) 

where the momentum components have units of m s-1, !
l
is in K, and q

t
is in g kg-1. 

The initial second- and third-order moments are initialized to zero above the surface, 

except for the TKE components. The TKE profile is given by  
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mean momentum values are taken from the lowest model level above the surface. All 

other second-order moments are treated according to Monin-Obukhov similarity theory 

as specified for the Wangara case. The surface pressure is initialized to 1015.0 hPa, and 

the profiles of pressure and density are generated assuming hydrostatic equilibrium and 

an isentropic profile with !
0
= 299.1 K . In addition, pseudo-random perturbations in the 

range of  [-0.1 K, 0.1 K] and [-0.025 g kg-1, 0.025 g kg-1] are added to the !
l
 and 

q
t
profiles below 1500 m. 

 Large scale forcings include warming and drying from subsidence, radiative 

cooling, large-scale moisture advection, and a large-scale pressure gradient through the 

specification of geostrophic wind profiles. First, the subsidence is given by 
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The horizontal advection and radiative cooling rates are given by 
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where the horizontal advection term is in kg kg-1 s-1 and the radiative cooling term is in K 

day-1. The final forcing is the geostrophic wind, specified as 

u
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. (3.31) 

The BOMEX observation area is located about 15° N, implying a  Coriolis parameter of 

f = 3.77 !10
"5

 s
"1 . 

 A total of 30 grid levels at an even 100 m spacing are used, implying a domain 

depth of 3000 m. As in the previous DYCOMS RF02 case, the subgid-scale condensation 

scheme is activated, but since this case is supposed to have non-precipitating cumulus, 

the subgrid-scale microphysics scheme is switched off. A time step of 1 s is used and the 

simulation is run for 6 hours. The results are compared with those from the LES 

participants as found in Siebesma et al. (2003). Unless stated otherwise, mean profiles are 

averaged over the last 3 hours of the simulation. 

3.5.2 Results 

3.5.2.1 Mean variables and cloudiness statistics 

 Mean profiles of the mean variables for the BOMEX case are shown in Figures 

3.50, 3.51, and 3.52. In these plots, the mean profile represents an average over the last  
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Figure 3.50   Mean profiles of !  for the current model (left) and the LES 
participants (right). Solid lines indicate the mean profile from the last hour of the 
simulation, and the dotted lines indicate the initial profile. The shaded region for the 
LES plot indicates twice the standard deviation of the partipants’ results. 

 

Figure 3.51   As in Figure 3.50, but for q
v

. 

hour of the simulation. The LES results show little change in ! from the initial profile to 

the end of the simulation. The lowest 700 m layer is slightly warmer, but the well-mixed 

layer maintains its depth. Other changes include minimal cooling between 1000 and 1500 

m and a slight warming around 2000 m. The potential temperature profile from the 

current model matches the LES profile well, with a couple differences. The slight  
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Figure 3.52   As in Figure 3.50, but for the mean wind components. 

warming  in the lowest 700 m is not reproduced, except for a thin layer from 300 m to 

700 m. Cooling in the middle layer (800-1500 m) is slightly more pronounced, and 

warming above this layer creates a stronger inversion than existed at the beginning of the 

simulation. Similar discrepancies exist between the mean profiles of q
v

 . The LES results 

show little change from the initial state, with a slight moistening below 500 m and slight 

drying from 700 – 1200 m and above 1400 m. The current model shows more moistening 

below 500 m and more drying above 1400 m, but matches LES extremely well in the 

cloud layer. The mean wind profiles in Figure 3.50 compare pretty well between the 

current model and LES, but both components are reduced a bit too much near the surface 

compared to LES. 

 Given the similarity of the mean profiles of the thermodynamic variables between 

the current model and LES, one might expect a commensurate cloud response. This  

response is evident in Figures 3.53, 3.54, and 3.55 which show the time-height cross-

section of cloud fraction, mean profiles of cloud fraction, and mean profiles of cloud 
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Figure 3.53   Time-height cross-section of cloud fraction for the current model.  

water, respectively. The evolution of cloud fraction represented in Figure 3.53 shows 

some interesting features. First, while the cloud base remains steady in both observations 

and LES, it descends by about 100 m during the simulation in the current model. This 

anomalous feature is most likely a product of the increased subcloud layer moisture  

shown in Figure 3.51. Second, the current model produces what appears to be a 

succession of short-lived clouds that start at the LCL near 500 m and grow to a final 

height from 1300 to 1500 m. The complete lifetime of each cloud is about 30 – 40 min, 

although during its lifetime, it does not maintain a steady cloud base. The cloud base rises 

upward with the ascending thermal so that an individual’s cloud depth is only about 500 

m. Before one cloud reaches its maximum height and dissipates, another discrete cloud 

forms near cloud base, so that a new cloud is being created at cloud base every 15  

minutes or so. This cloud fraction oscillation is somewhat similar to how shallow cumuli 

operate in nature, although for a model that is attempting to simulate the mean state, this 

behavior is undesirable.  
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 The spurious cloud water oscillation is not unique to the current model and has 

been investigated further by Cheng et al. (2004).  The authors identified the source of the 

oscillation as the third-order moments involving the cloud liquid water [Equations (2.97)-

(2.109)]. These moments are parameterized using the subgrid-scale condensation scheme 

and contribute to the buoyancy terms of the diagnostic third-order moments. Having 

come to the same conclusion that this oscillation is undesirable, the authors proposed 

three ways to dampen it. The first method involves adding ad hoc diffusion to the second-

order moments. While this method is shown to dampen the oscillation and increase its 

period, the inclusion of ad hoc diffusion may have other consequences. For example, it 

may increase entrainment rates unrealistically or diffuse a sharp inversion. The second 

method involves using the modified turbulence length scale of Bougeault and André  

(1986). This effectively increases turbulence dissipation near cloud base. Cheng et al. 

(2004) show that when this method is combined with the first method, the cloud water 

oscillation is dampened further. Neither method one or two, or a combination thereof, 

completely damps the oscillation, however. The third method described in the study of 

Cheng et al. (2004) entails diagnostically determining the third-order moments involving 

cloud liquid water using the double-Gaussian PDF method of Golaz et al. (2002a). It is 

shown that method three is the only completely effective way to eliminate the cloud 

water oscillation, although its implementation constitutes a significant change to the 

subgrid-scale condensation scheme. While method two is employed in the current model, 

method one is not used due to its side effects. The third method is not used in the current 

model either, but will likely be put to use in future research. 
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Figure 3.54  As in Figure 3.50, but for cloud fraction.  

 

Figure 3.55   As in Figure 3.50, but for cloud liquid water mixing ratio.  
 The profiles of the mean cloud fraction shown in Figure 3.54 don’t hint at the 

oscillation evident in the time-height cross section. It shows a more-or-less constant 

cloud fraction of 3% from about 500 to 1300 m with lesser amounts above and below. 

Most simulations of shallow cumulus, including this LES comparison, show that the 

maximum of the mean cloud fraction is found near cloud base, a result of the fact that 

most cumuli start at the lifted condensation level and reach various heights according to 

their buoyancy and other factors. The current model does not reproduce this behavior. 
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Further, the LES participants produce deeper clouds, up to nearly 2000 m, in contrast 

with the current model that only diagnoses clouds up to about 1500 m. The profiles of 

mean cloud water shown in Figure 3.55 are consistent with the cloud fraction profiles, 

and show that the current model slightly overestimates cloud water through much of the 

middle cloud layer, but underestimates the cloud water at cloud base and fails to produce 

any liquid water above 1550 m.  

 Despite the differences apparent in the spatial distribution of cloud as revealed by 

profiles, vertically integrated cloud statistics compare more favorably. Figure 3.56 shows 

time series of total cloud cover and LWP for the current model and the LES ensemble.  

Total cloud cover is often interpreted as the aerial extent of cloud cover as seen from a 

satellite, and for this reason could potentially influence radiative calculations. Since the 

current model is one-dimensional, there is no information about the spatial distribution of 

the cloud fraction that is diagnosed. However, the same cloud overlap assumption used  

for the microphysics scheme (Equation 2.119) is used to calculate cloud cover. The value  

 

Figure 3.56 Time series of total cloud cover (top) and liquid water path (bottom) for 
the current model (left) and LES ensemble (right). As with the profiles from 
Siebesma et al. (2003), the shaded area denotes twice the standard deviation of the 
LES participants. 
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plotted in Figure 3.56 is the maximum cloud cover calculated from that equation. For the 

final three hours, cloud cover remains mostly steady between 10 and 15% for the current  

model, generally agreeing with the LES ensemble. The time series of LWP confirms the 

agreement in the cloud cover time series. Both the current model and the LES ensemble 

maintain a LWP between 5 and 8 g m-2. 

3.5.2.2 Turbulent moments 

 To examine how well the turbulent properties of a trade-wind cumulus boundary 

layer are represented in the current model, key turbulent moments are discussed. First, the 

time series and profile of TKE and its vertical velocity variance component are shown in 

Figures 3.57, 3.58, and 3.59, respectively. Figure 3.57 shows that the vertically integrated 

TKE increases slowly throughout the simulation, until about the last hour. The current 

model reproduces the increase, although it overestimates this quantity by about 100  

kg m-1 s-2 compared with the LES ensemble mean after the spin-up period. The mean 

profiles of TKE over the last 3 hours of the simulation in Figure 3.58 show some 

important differences. The LES ensemble produces three maxima: one near the surface, 

one at the top of the subcloud layer, and one near the top of the cloud layer, but the 

current model does not reproduce the local maximum near the top of the subcloud layer. 

Also, TKE is considerably overestimated in the cloud layer compared with LES. 

Examination of the vertical velocity variance profile in Figure 3.59 shows that most of 

the overestimation in the cloud layer comes from this component. An examination of the 

TKE budget (not shown) indicates that the production of TKE by the buoyancy term in 

the cloud layer is too strong. Figure 3.62 shows the overestimation of the buoyancy flux. 
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Figure 3.57   As in Figure 3.55 but for vertically integrated TKE. 

 

Figure 3.58   As in Figure 3.50, but for TKE. 

 

Figure 3.59   As in Figure 3.50, but for vertical velocity variance. 
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 The mean profiles of the vertical turbulent fluxes of .!
l
.and q

t
 are shown in 

Figures 3.60 and 3.61. The mean profile of !w "
l
!  is in good agreement with LES as far as 

the magnitude and placement of the negative peak. However, the shape of the profile 

does not curve as smoothly as in the LES ensemble. The mean profile of !w q
t
! for the  

 

Figure 3.60   As in Figure 3.50, but for the vertical liquid water potential 
temperature flux. 
 

 

Figure 3.61  As in Figure 3.50, but for the vertical total water specific humidity flux. 
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current model has qualitative similarities to LES, but there are some important 

differences. First, the magnitude of decrease with height in the subcloud layer is too 

great, resulting in too much moisture convergence in this layer and ultimately to a cloud 

base that is 100 m too low. Additionally, in the bottom 200 m of the cloud layer (500 – 

700 m), !w q
t
!  increases with height, indicating moisture flux divergence and drying of 

this layer. This feature could be responsible for the difference in shape between the 

current model’s cloud fraction profile and LES. 

 Lastly, the mean buoyancy flux profile is presented in Figure 3.62. Compared 

with LES, the buoyancy flux is overestimated in the cloud layer. Recall that in the current 

model, the buoyancy flux is given by Equation 2.61, a combination of !w "
l
! , !w q

t
! , and 

!w ql
! . These individual terms are plotted along with their total. Since the first two  

quantities don’t differ enough from LES to account for an overestimate in the buoyancy 

flux, the culprit is the diagnosis of the liquid water flux from the subgrid-scale  

 

Figure 3.62   As in Figure 3.50, but for the vertical buoyancy flux. 
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Figure 3.63  As in Figure 3.50, but for the liquid water flux. 
condensation scheme. Figure 3.63 shows the mean liquid water flux compared to LES. 

This quantity is overestimated in the current model by about 40% compared to LES. 

  

3.6 Precipitating trade-wind cumulus case: RICO 

 The fifth and final test case is based on mean conditions during a three week 

undisturbed period of the Rain In Cumulus over the Ocean (RICO) field campaign in the 

winter of 2004-2005. The initial conditions are somewhat similar to the BOMEX case, 

but the conditionally unstable layer is deeper, implying somewhat deeper and potentially 

thicker clouds. In addition, many of the trade-wind cumuli produced light rainfall during 

the field campaign, so model participants were asked to leave their microphysics 

parameterizations active to see how well they could reproduce the observed rainfall of 

about 0.3 mm day-1.  In addition to testing whether the model participants accurately 

simulate the light precipitation, this intercomparison case also tests how well the 

participants capture the mean and turbulent properties of the boundary layer, as with the 

previous four cases. Results of the intercomparison have yet to be formally published, 
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although preliminary results and other case information may be found on the case website 

(http://www.knmi.nl/samenw/rico). Within the context of the current study, this case is 

run as a second challenging cumulus case, differing from BOMEX only by the initial and 

boundary conditions, large-scale forcings, and activated microphysics scheme. 

3.6.1 Case setup 

 The initial profiles of the mean quantities are given by 
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All second- and third-order moments are initialized to zero above the surface except for 

TKE components, which receive an equal share of the initial TKE, defined as  

TKE = 1.0 !
z

4000
 (m2 s-2). (3.36) 

The surface fluxes are parameterized according to  
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where mean values are taken from the first level above the surface and the constants are 

Ch = 0.001094, Cq = 0.001133, and Cm = 0.001229 . Other second-order moments are 

calculated according to Monin-Obukhov similarity theory as in the Wangara case. The 

surface pressure is initialized to 1015.4 hPa, and the profiles of pressure and density are 

generated assuming hydrostatic equilibrium and an isentropic profile with !
0
= 298.5 K . 

In addition, pseudo-random perturbations in the range of  [-0.1 K, 0.1 K] and [-0.025 g 

kg-1, 0.025 g kg-1] are added to the !
l
 and q

t
profiles below 740 m. 

 Large scale forcings include warming and drying due to subsidence, horizontal 

advection of !
l
 and q

t
, radiative cooling, and the geostrophic wind. The subsidence 

profile is given by 
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the horizontal advection and radiative cooling terms are combined to a constant value 

independent of height of  
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and the geostrophic wind profiles are identical to the initial mean wind profiles. The 

RICO observation area is 18° N implying a Coriolis parameter of f = 4.5 !10
"5

 s
"1 . 

 A total of 100 grid levels at an even 40 m spacing is used, implying a domain 

depth of 4000 m. As with the DYCOMS RF02 case, both subgrid-scale condensation and 

microphysics are activated. A time step of 5 s is used and the simulation is run for 24 

hours. The results are compared with those from the preliminary analysis of the LES 

participants as found on the RICO case website mentioned in the introduction. Unless 

stated otherwise, mean profiles are averaged over the last 4 hours of the simulation. 

3.6.2 Results 

3.6.2.1 Mean variables, cloudiness statistics, and precipitation  

 To understand how the current model captures the mean thermodynamic state 

compared to LES, the mean profiles of the thermodynamic variables are shown in Figures 

3.64 and 3.66 along with the change in the profiles from the initial conditions in Figures 

3.65 and 3.67. Figure 3.64 shows that all model are adequately capable of resolving the 

transition from the initial shallow 700 m thick mixed layer to a boundary layer that is 

over 2 km deep that contains a conditionally unstable layer above a shallow well-mixed 

layer. However, Figure 3.65 is useful in pointing out differences among the models, and 

one major difference stands out. The cooling in the cloud layer (500 – 2100 m) is too 

strong compared with the LES ensemble mean. The maximum cooling in the current 

model is about 2.8 K near the inversion top versus a mean of about 2.1 K for the LES 

participants. The current model lies within the ensemble range, however.  
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Figure 3.64   Mean profiles of !
l
 for the last four hours of the simulation for the 

current model (left) and the LES participants (right). The initial profile is given by 
the dotted line on the left plot. Each colored line indicates a particular LES 
participant result, and the solid black line represents the mean of the LES ensemble. 

 

Figure 3.65   As in Figure 3.63, but for the change in !
l
 from the initial conditions to 

the profiles in Figure 3.63. 
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Figure 3.66   As in Figure 3.63, but for q
t
. 

 

 

Figure 3.67   As in Figure 3.65, but for q
t
. 

The mean profile of q
t
in Figure 3.66 compares as favorably with the LES participants. 

The moisture is shown to increase through the depth of the cloud layer, but particularly at 

cloud base and cloud top. Above cloud top, the gradient in moisture sharpens. The 

change in total water specific humidity profiles from the initial conditions to the final 
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state in Figure 3.67 shows a similar picture, although it demonstrates that the current 

model dries too much just above the inversion compared to LES.  

 The time-height cross-section of cloud fraction in Figure 3.68 shows the evolution 

of the cloud field throughout the simulation. The plot is surprisingly qualitatively 

different than the same plot for the BOMEX case. The cloud fraction slowly increases in 

height through the simulation, with a hint of an oscillation, but there are not discrete 

cumulus clouds as evident in the BOMEX case. In addition, the maximum cloud fraction 

is located toward the upper half of the cloud instead of near cloud base as in LES results 

and observations. Comparison of the cloud fraction profiles in Figures 3.69 shows that 

cloud fraction is overestimated substantially in the middle of the cloud layer, but 

underestimated near cloud base, and the depth of the cloud cover is underestimated. The 

maximum cloud fraction near cloud base for the mean of the LES results is around 6% 

versus the maximum cloud fraction of about 9% near 1700 m for the current model.  

While the cloud fraction profile still resembles cumulus due to its relatively low cloud  

 

Figure 3.68   Time-height cross-section of cloud fraction. 
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Figure 3.69   As in Figure 3.64, but for cloud fraction.  
fraction, it demonstrates that there is still much room for improvement in the current 

model. 

 The mean profiles of precipitation flux are shown in Figure 3.70. Even with the 

overestimation of cloud fraction and cloud liquid water (not shown), the precipitation 

flux is underestimated compared to the mean LES results. The LES profiles suggest that 

rain production starts high within the cumulus ensemble, and reaches its maximum value 

at about 1500 m, roughly in the middle of the mean cloud deck. Below this point, 

precipitation is evaporated, even as it passes through the maximum cloud fraction near 

cloud base. The current model produces a different profile shape. As with LES, 

precipitation generation starts near cloud top, but unlike LES, the precipitation flux does 

not peak around mid-cloud. Instead, the precipitation flux is not reduced by evaporation 

until after it reaches cloud base. It is interesting to note that even with the differences in 

the precipitation flux profiles, the mean surface precipitation of the models is similar: 5 

W m-2for the current model and 7 W m-2 for the LES ensemble. Over the 24 hours of  
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Figure 3.70   As in Figure 3.64, but for the precipitation flux. 
simulated time, the current model produces surface precipitation at a rate of about 0.12 

mm day-1, which is about one third of the observed value of  0.3 mm day-1 but inline with 

the results from LES. 

3.6.2.2 Turbulent moments 

 The discussion of the current model’s representation of the turbulent structure of 

the boundary layer in a cumulus regime was discussed for the BOMEX case in section 

3.5.2.2. A similar discussion is presented here for the RICO case to determine if a higher 

cloud fraction cumulus regime with precipitation presents a similar challenge. First, the 

mean profiles of TKE and the vertical velocity variance are presented in Figures 3.71 and 

3.72. In all models, TKE reaches a maximum next to the surface, decreases to a local 

minimum at cloud base, maintains a significant level in the cloud layer, and decreases to 

zero above cloud top. The current model agrees with the LES ensemble for this general 

pattern, but tends to overestimate TKE in the cloud layer almost by a factor of two 
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compared to the LES ensemble mean. A look at the vertical velocity variance profile in 

Figure 3.69 identifies this component as a major contributor to this overestimation.  

Horizontal momentum variances are also overestimated by a similar amount (not shown). 

The overestimation of the vertical velocity variance is a direct result of the 

overestimation of the buoyancy flux (not shown) as in the BOMEX case. 

 

Figure 3.71   As in Figure 3.64, but for the TKE. 

 

Figure 3.72 As in Figure 3.64, but for the vertical velocity variance. 

 The turbulent vertical fluxes of !
l
and q

t
 are shown in Figures 3.73 and 3.74, 

respectively. Both turbulent fluxes look qualitatively similar to their LES ensemble 
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counterparts, but a few important differences are noticeable. First, the current model 

produces slight curvature in the turbulent heat flux profile from the surface to the  

minimum point near 1800 m, whereas the LES ensemble mean profile is nearly linear 

here. Second, the current model has the moisture flux decreasing too quickly with height 

in the boundary layer, indicative of too much moistening.  

 

Figure 3.73   As in Figure 3.64, but for the vertical turbulent flux of !
l
. 

 

Figure 3.74   As in Figure 3.64, but for the vertical turbulent flux of q
t
. 



 165 

  

Figure 3.75   As in Figure 3.64, but for !
l
"  2 . 

 

Figure 3.76   As in Figure 3.64, but for q
t
!  2 . 

 Lastly, the variances of  !
l
and q

t
 are shown in Figures 3.75 and 3.76, 

respectively. These two quantities play an important role in the buoyancy terms of the 

equations for the turbulent vertical fluxes of !
l
and q

t
and are also needed to determine 

the normalized saturation deficit, Q
1
, and hence the cloud fraction and cloud liquid water 

content in the subgrid-scale condensation scheme. Qualitatively, the current model does a 

good job of matching the general shape of the LES ensemble mean profiles, with peaks in 
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variance near the boundary layer top for both quantities and another peak near cloud base 

for the moisture variance. The magnitude of the moisture variance peaks are slightly 

underestimated, but overall, the current model performs well compared to LES for these 

two quantities. 

 
 
3.7 Notes on model execution time 

 All five cases were run on a dual 2 GHz PowerPC G5 Apple PowerMac. The 

processor time used by each model was calculated using the Unix “time” utility and the 

results are presented in Table 3.2. 

Case Name Process Execution Time 
Wangara 

(Section 3.2) 0.40 s 

Smoke Cloud 
(Section 3.3) 2.34 s 

DYCOMS RF02 
(Section 3.4) 4.31 s 

BOMEX 
(Section 3.5) 1.18 s 

RICO 
(Section 3.6) 5.32 s 

Table 3.2   Processor time used for each model. 
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Chapter 4 

Three-Dimensional Implementation and 
Results 
 
4.1 Introduction 

The results of the previous chapter demonstrate that the third-order closure 

turbulence model developed in this paper is capable of accurately modeling clear 

convective, stratocumulus-topped, and cumulus-containing boundary layers as well as 

approximating the entrainment process in a satisfactory fashion. Indeed, the current 

model has proven to be a valuable one-dimensional tool for studying cloudy boundary 

layers in general. Given this success, it is reasonable and fitting to couple the current 

model as a turbulence parameterization to a three-dimensional mesoscale model. While 

the current model could conceivably be coupled to any such model that requires the 

inclusion of vertical turbulent fluxes of heat, moisture, and momentum, a novel new 

three-dimensional model developed recently by Jung and Arakawa (2008) was chosen to 

be the recipient. The implementation of the coupling and the results produced from the 

resultant model are presented in this chapter. 
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4.2 Vector Vorticity Model (VVM) 

The novelty of the host model, dubbed the Vector Vorticity Model (VVM), is 

attributed to its unique dynamical core. Rather than predicting the three momentum 

components as is traditionally done in GCMs and cloud models, VVM predicts the three-

dimensional vorticity field. Specifically, only the two horizontal vorticity components are 

predicted at every grid point, while the vertical component of vorticity only needs to be 

predicted at one level. Its value at the remaining grid points can be diagnosed using the 

nondivergence of vector vorticity. Given the predicted vector vorticity field, the vertical 

velocity can be diagnosed with the solution of a three-dimensional elliptic equation. The 

horizontal velocity can also be diagnosed by splitting each component into its rotational 

and divergent parts and solving a two-dimensional elliptic equation for each part, at one 

specified level in the model. The remaining values at the other levels can be retrieved by 

integration and the definitions of horizontal vorticity components. Readers interested in 

the specifics of the dynamical core and its derivation are directed to Jung and Arakawa 

(2008) and Jung and Arakawa (2005). 

The thermodynamic state is represented by the potential temperature and six 

species of water: vapor, cloud water, cloud ice, rain, snow, and graupel. Processes 

accounted for in the prediction of the thermodynamic variables include advection, 

radiation, microphysical transformations, fluxes due to turbulence, and large-scale 

forcings. The radiation terms are parameterized following the scheme of Fu et al. (1995) 

and the microphysics scheme follows Krueger et al. (1995), Lin et al. (1983), and Lord et 

al. (1984). The turbulence scheme used is the first-order closure scheme of Shutts and 

Gray (1994) with surface fluxes from Deardorff (1972). Finally, the advection scheme is 
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“an upstream-weighted partially third-order scheme” using an Eulerian space-difference 

scheme and the second-order Adams-Bashforth scheme in time (Jung and Arakawa 

2008). 

4.3 Coupling with VVM 

 Coupling the turbulence model presented in Chapter 2 to the VVM requires 

significant modification to both. First, for the same reasons mentioned in Section 2.2, the 

thermodynamic variables of the VVM are changed to match the moist-adiabatically 

conserved variables of the turbulence model, liquid water potential temperature and total 

water specific humidity. Rather than using six prognostic individual species of water as in 

the VVM, only three species of water are now considered: two prognostic rain water 

species from the subgrid-scale microphysics scheme and one diagnostic cloud water 

species from the subgrid-scale condensation scheme. With the change in thermodynamic 

variables it becomes more straightforward to use the output from the turbulence model 

that is formulated for the use of moist conservative variables. However, the buoyancy 

term found in the prognostic equations for the horizontal components of vorticity must be 

changed to reflect the new variable choice. Following Appendix B, the buoyancy term 

may be written in terms of the moist conservative variables as 
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 The next change is the replacement of the Shutts and Gray (1994) turbulence 

scheme with the current model. Other than porting the current model from Fortran 90 to 

Fortran 77 used in VVM, this switch is mostly straightforward. The integration of the 

current model’s output to VVM is accomplished by replacing all turbulence terms found 
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in VVM with the equivalent terms calculated from the turbulence model. The tendencies 

due to turbulence of the thermodynamic variables are calculated as 
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Finally, the turbulence terms in the vorticity equation must be formulated from the 

available momentum fluxes calculated from the turbulence model. The turbulence terms 

for the ! , ! , and !  components of vorticity are given by 
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where the F terms are the turbulent flux convergence terms from the momentum 

equations 

F
u
= !

" #u 2

"x
!
" #u #v

"y
!
1

$
0

"$
0

#w #u

"z
, F

v
= !

" #u #v

"x
!
" #v 2

"y
!
1

$
0

"$
0

#w #v

"z
, and 

F
w
= !

" #w #u

"x
!
" #w #v

"y
!
1

$
0

"$
0

#w 2

"z
. Terms involving horizontal derivatives and fluxes are 

negligible compared with vertical derivatives and fluxes for grid configurations where the 

vertical grid spacing is considerably finer than the horizontal spacing, as is the case for 
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GCM’s and the intended use of this coupled model. Therefore, these terms are neglected. 

The resultant vorticity tendencies due to turbulence are then given by 
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(Note: The definition of !  in the model code was multiplied by -1 by Jung and Arakawa, 

and therefore the RHS term of equation 4.8 should be multiplied by -1 in the model 

code.) As with the one-dimensional turbulence model, the surface fluxes are handled 

according to the specifications of each GCSS case. For the DYCOMS and BOMEX cases 

presented in this chapter, the surface heat and moisture fluxes are parameterized as a 

constant value and surface momentum fluxes are calculated from the same bulk formulas 

presented in Sections 3.4 and 3.5. 

 In addition to the replacement of the turbulence parameterizations, the other 

physical parameterizations of the VVM are changed by necessity. First, the use of a 

subgrid-scale condensation scheme and subgrid-scale microphysics scheme in the 

turbulence model obviates the need for the grid-scale microphysics scheme found in the 

regular VVM formulation. While the subgrid-scale microphysics scheme is considerably 

less complex without inclusion of ice processes, its consideration of partial cloudiness 

and warm rain processes are suitable for the intended purpose. While the radiation 

scheme could conceivably be used even with the given modifications, the scheme has 
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been switched off for the GCSS cases considered in this paper in favor of the simple 

parameterizations mentioned in the individual cases. 

 In Chapter 2, during the derivation of the turbulence model, it was deemed 

unnecessary, and indeed impossible, to include advection of the second-order moments in 

a one-dimensional framework and without a calculated vertical velocity. In a three- 

dimensional framework with a calculated vertical velocity, however, it becomes possible 

and prudent to include this process. In the interest of computational efficiency and for the 

reasons mentioned for the vorticity turbulence terms in the preceding paragraph, only 

vertical advection of the second-order moments are considered. The advection scheme for 

the second-order moments is replicated exactly as it is done for the main prognostic 

variables from VVM.  

 Finally, the position of variables on a three-dimensional grid is discussed. A 

schematic is shown in Figure 4.1. For the VVM, the vertical grid is described in Jung and 

Arakawa (2008) as being similar to the “Lorenz grid” for quasistatic models. Fortunately, 

the existing staggering of variables for VVM match well with the staggered grid for the 

turbulence model found in Figure 2.12, and as originally specified in Canuto et al. (1994). 

The second-order moments, cloud fraction, cloud liquid water, and precipitation flux 

remain at the same point, and are located at the “w-point” (also labeled “SOM” in Figure 

4.1).  The third-order moments are then located at the “! -point” (also labeled “TOM” in 

Figure 4.1). 
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Figure 4.41   Placement of variables upon the grid. 
 

4.4 Three-dimensional model results 

 As in Chapter 3, the coupled model is tested by running GCSS BLCWG test 

cases. For brevity, only two representative cases are considered: the nocturnal drizzling 

stratocumulus case from DYCOMS II RF02 and the non-precipitating shallow cumulus 

BOMEX case. In addition to comparing the coupled model’s results to an LES ensemble 

and a few observations as is done in Chapter 3, they are also compared with results from 

the standard VVM with existing parameterizations. In this way, it is possible to decipher 

any improvement rendered by the inclusion of the new turbulence model and subgrid-
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condensation and microphysics schemes. It is worth noting that the turbulence 

parameterization included in the standard version of the VVM was intended to be 

temporary and was mainly used for testing purposes for the VVM. In this context, one 

should expect a certain amount of improvement simply by replacing the temporary 

scheme with a more detailed one. 

4.4.1 Drizzling nocturnal stratocumulus case: DYCOMS II 

 The first test case run with the coupled VVM is the same case presented in 

Section 3.4. As with the one-dimensional run, the subgrid-scale condensation and 

microphysics schemes are activated. For computational efficiency, a small 32 km x 32 

km x 1.5 km domain is used with a horizontal grid spacing of 2 km and a constant 

vertical grid spacing of 25 m. The simulation is run for 6 hours with a 2 second time step.  

The standard VVM is run with the same setup using its conventional parameterizations  

 

Figure 4.42   Mean profiles of liquid water potential temperature (left) and total 
water specific humidity (right). In this and subsequent Section 4.4.1 plots, red 
denotes the modified VVM, green denotes the standard VVM, and black represents 
results from the GCSS LES intercomparison of Ackerman et al. (2009) used in place 
of observations. Where appropriate, black dotted lines denote initial conditions. 
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except for the radiation scheme which is replaced by the case-mandated calculation. The 

results are presented in a similar format to those in Chapter 3.  

The mean profiles of liquid water potential temperature and total water specific 

humidity are shown in Figure 4.2. From the initial conditions, the LES ensemble shows 

an increase in !
l
 of about 0.5 K and a decrease in q

t
 of about 0.25 g kg-1 in the cloud 

region from z/zi = 0.5 to 1.0. Below the cloud layer, the LES ensemble shows that !
l
is 

only slightly warmer than the initial conditions whereas q
t
increases toward the surface 

where it moistens by over 0.5 g kg-1. The performance of the modified VVM compared to  

the standard version is quite apparent for these thermodynamic fields. The coupled VVM 

matches the LES !
l
profile nearly perfectly below the inversion, but tends to diffuse the 

inversion boundary and warm the lower boundary layer, while the standard VVM is 

slightly too cool through most of the boundary layer. Interestingly, the same 

improvement is not apparent in the moisture field. The modified VVM moistens the 

boundary layer too much below z
z
i

= 0.8. Compared to both LES and the standard VVM, 

the modified version is worse. The only region where the modified VVM shows 

improvement over the standard VVM is below z
z
i

= 0.1 where the standard VVM is 

considerably too moist. 

 To examine the cloud and precipitation fields, Figures 4.3 – 4.6 show the mean 

profiles of cloud fraction and cloud liquid water, time-height cross-sections of cloud 

fraction, time series of LWP, and mean profiles of the precipitation flux. The cloud 

fraction and cloud liquid water content profiles show some interesting differences. First,  
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Figure 4.43   Mean cloud fraction and cloud liquid water profiles. 
the modified VVM demonstrates good skill in calculating the magnitude and placement 

of the cloud fraction peak, as its profile nearly matches the LES results above z
z
i

= 0.8.  

Below this height, however, the modified VVM produces too much cloud fraction as the 

cloud base is extended about 80 m. This is undoubtedly a result of the overly moist 

moisture profile in this region. The standard VVM, on the other hand, underestimates the 

peak cloud fraction by about 10%, but still has too deep of a cloud layer, like the 

modified version. The cloud liquid water content confusingly shows contradicting results. 

Figure 4.3 shows that even though the modified VVM nearly matches the cloud fraction 

profile of the LES results, the liquid water specific humidity is underestimated by about 

0.1 g kg-1. In addition, even though the cloud fraction is significantly underestimated in 

the standard VVM, its liquid water content is overestimated, particularly in the lower 

cloud. The cloud fraction time-height cross-sections in Figure 4.4 show the time 

evolution of the cloud field for both the coupled and standard versions of the VVM. For  
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Figure 4.44   Time-height cross-sections of cloud fraction for the coupled VVM (top) 
and the standard VVM (bottom). 
both models, the highest values of cloud fraction can be found near the beginning of the 

simulation, and the cloud fraction generally decreases through time. Diffusion of the 

cloud layer is evident in both models. As the values of cloud fraction decrease, the liquid  

water path is mostly steady as the cloud water is diluted into a greater volume. The 

standard VVM plot hints at an oscillatory evolution of the cloud fraction, and seems less 

statistically stable compared to the coupled VVM cloud fraction that varies smoothly in  
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Figure 4.45   Time series of mean liquid water path for the VVMs (top) and the LES 
ensemble (bottom). Note that while the shading in both plots gives a measure of 
variability, the shading in the bottom plot denotes quartiles instead of standard 
deviation. 
time. In accordance with the liquid water content profiles, the liquid water path time 

series shows that modified VVM produces a slight underestimate in liquid water path, 

although well within the range of observations. The standard VVM overestimates the  

liquid water path considerably, but this is to be expected given a cloud layer that is too 

deep and too thick as shown in Figure 4.3. It is also interesting to note that the mean 

liquid water path for the analogous one-dimensional test case in Section 3.4 found in 

Figure 3.41 is between 10 and 20 g m-2 greater than the mean liquid water path calculated 

for the three-dimensional modified VVM. 
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Figure 4.46   Mean profiles of the precipitation flux. The additional lines are 
explained in the text. 

The mean total precipitation flux profiles are shown in Figure 4.6. The plot also 

includes the individual contributions from the cloud droplet sedimentation flux (dotted 

lines) and parameterized precipitation flux (dashed lines). The modified VVM 

significantly overestimates the total surface precipitation flux while the standard VVM  

matches the LES results. The overestimate found in the modified VVM is a product of a 

cloud layer that is too deep allowing too much collection of cloud water and a subcloud 

layer that is too moist, impeding evaporation. Not surprisingly, the standard VVM 

overestimates the sedimentation flux since this flux is parameterized from the cloud 

liquid water. The modified VVM does pretty well in the cloud layer due to its better 

representation of cloud water there. 

The final two figures illuminate some of the turbulent properties of the standard 

and modified VVM compared to the LES ensemble. Figure 4.7 shows the mean total 

fluxes of !
l
and q

t
. As in Section 3.4.2.2, the total fluxes include the subgrid and  
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Figure 4.47  Total fluxes of liquid water potential temperature (left) and total water 
specific humidity (right). The green dotted lines represent average profiles for only 
the last three hours of the standard VVM simulation. 
resolved turbulent fluxes, and contributions from radiation, precipitation, and cloud 

droplet sedimentation: 

cp!0 "w #l" TOTAL = cp!0 "w #l" RESOLVED + cp!0 "w #l" SGS + FRAD + LvP + LvFSED

Lv!0 "w qt
"
TOTAL

= Lv!0 "w qt
"
RESOLVED

+ Lv!0 "w qt
"
SGS

$ LvP $ LvFSED

 

While the modified VVM profiles differ from the LES ensemble profiles by up to 10 W 

m-2, this difference is largely attributed to the differences in precipitation fluxes found in 

Figure 4.6. Otherwise, the modified VVM profiles match the shape and slope of the LES 

profiles well, signifying that the flux divergence is similar for the modified VVM and 

LES. The shape of the standard VVM profiles is somewhat misleading. Recall that each 

of the profiles shown represents an average profile over the last four hours of the 

simulation. In Figures 4.4 and 4.5, it is apparent that the standard VVM has not 

completed its “spin up” time. It doesn’t appear that the standard VVM reaches a quasi-

steady state until about 2.5 hours in the simulation. Thus for the first 30 minutes of the 
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averaging period, the standard VVM is still somewhat in a state of flux which skews the 

statistics. The mean profile of the total flux of !
l
is mostly the right shape, but differs 

from LES by about 20 W m-2. The mean profile of q
t
, on the other hand, displays a shape 

quite dissimilar from both LES and the modified VVM. The positive slope from the 

surface to z
z
i

= 0.6 indicates a drying of this lower layer, something that is not observed 

from Figure 4.2. The time-height cross section of standard VVM cloud fraction in Figure 

4.4 shows a considerable thinning of the stratocumulus deck from hour 2 to 2.5, which 

does provide evidence of temporary drying in this subcloud layer. Also plotted in Figure 

4.7 are mean profiles of only the last three hours of the standard VVM simulation, when 

spin up has been completed. These profiles more closely resemble results from the 

modified VVM and LES intercomparison. The moisture flux profile in particular is much 

better, although it exhibits curvature not found in the other simulations, indicating a 

moistening of the lower subcloud layer and drying of the cloud layer. 

 The mean buoyancy flux and vertical velocity variance profiles are shown in 

Figure 4.8. The buoyancy flux profiles demonstrate reasonably good agreement between 

the modified VVM and LES, although the standard VVM is considerably worse. In the 

cloud layer, the modified VVM slightly overestimates the buoyancy flux but the standard  

VVM overestimates it by about a factor of two. In addition, the standard VVM has the  

wrong shape in the subcloud layer. This is due to the fact that this profile only represents 

the resolved buoyancy flux because the standard VVM does not calculate a subgrid-scale 

term. The vertical velocity variance profiles also show considerable disagreement. The 

standard VVM does not estimate this quantity at the subgrid scale and the resolved  
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Figure 4.48   Mean profiles of the buoyancy flux term (left) and vertical velocity 
variance (right). 
portion drastically underestimates the quantity throughout the boundary layer. The 

modified VVM does a good job matching the LES ensemble, particularly in the cloud 

layer. In the subcloud layer, the modified VVM overestimates vertical velocity variance 

compared to LES, but Figure 3.46 in Section 3.4.2.2 shows that the modified VVM is 

closer to actual observations. Both the LES ensemble and modified VVM show evidence 

of a spurious decoupling of the cloud layer from the subcloud layer, whereas the 

observed vertical velocity variance profile maintains a parabolic shape. 

 

4.4.2 Nonprecipitating trade-wind cumulus case: BOMEX 

 The other test case run with the modified VVM is the same case presented in 

Section 3.5, the non-precipitating shallow cumulus case based on the BOMEX field 

campaign. As with the one-dimensional run, the subgrid-scale condensation scheme is 

activated, but the subgrid microphysics scheme is not. Once again, a limited domain of 

32 km x 32 km x 3.0 km is used with a horizontal grid spacing of 2 km and a constant  
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Figure 4.49   Mean profiles of potential temperature (left) and water vapor specific 
humidity (right). The colors denote the same models as in Section 4.4.1, but the 
black LES profiles represent the average of the LES intercomparison models from 
Siebesma et al. (2003). 
vertical grid spacing of 100 m. The simulation is run for 6 hours with a 5 second time 

step. The standard VVM is run with the same setup using its conventional 

parameterizations except that the radiation scheme and the precipitation-generating 

portion of the microphysics scheme are switched off. 

The profiles of the mean thermodynamic variables for the last three hours of the 

simulation are shown in Figure 4.9. The potential temperature profile is characterized by 

a shallow 400-500 m well-mixed layer below a roughly 1000 m thick conditionally 

unstable layer and a broad stably stratified layer above about 1600 m. The LES ensemble 

displays little change from the initial state except for slight cooling in the conditionally 

unstable layer, slight warming in the well-mixed layer, and a general “rounding” of the 

sharp corners of the initial profile. The modified VVM is able to match the LES ensemble 

almost exactly except for too little warming in the mixed layer. The standard VVM, on 

the other hand, generally warms too much below the inversion, cools above 1600 m, and 

greatly mixes out the sharp interfaces from the initial profile. A similar picture is found  
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Figure 4.50   Mean profiles of cloud fraction (left) and liquid water specific humidity 
(right). 
for the water vapor specific humidity. The modified VVM matches the LES ensemble 

particularly well throughout the column. The standard VVM again mixes out the sharp 

interfaces between layers in the moisture profile, creating a more linear profile from the 

surface to the inversion. 

The simulated cloud field is examined with the mean profiles of cloud fraction 

and cloud liquid water in Figure 4.10, the time-height cross-section of cloud fraction in 

Figure 4.11, and the liquid water path time series in Figure 4.12. Figure 4.10 shows that 

the modified VVM underestimates the peak of cloud fraction near cloud base, but does a 

decent job of capturing the right cloud amount above 1000m. The cloud top height is still 

underestimated as it was for the one-dimensional model, but the VVM extends the cloud 

top height upward about 150 m compared to the one-dimensional model. The standard 

VVM captures more of a peak in cloud fraction at cloud base, but overestimates the cloud 

top height considerably. The cloud liquid water profiles show a more pronounced 

difference between the standard and modified VVMs. The modified VVM clearly does a 
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better job at estimating the cloud liquid water content despite it being slightly 

underestimated throughout the cloud layer. The standard VVM shows too much liquid 

water especially in the upper reaches of the cumulus cloud deck.  

 The time-height cross-sections of cloud fraction shown in Figure 4.11 show 

interesting differences in how cumulus clouds are represented in the two versions of 

VVM. The coupled VVM shows a relatively steady-state cloud fraction after the initial  

 

Figure 4.51   Time-height cross-section of cloud fraction for the coupled VVM (top) 
and the standard VVM (bottom). 
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spin-up period with slight undulations at regular intervals. The cloud thickness is mostly  

constant throughout the simulation, with a small cloud fraction from about 500 m to  

about 1500 m. The standard VVM demonstrates a different behavior. No clouds are 

observed to grow until about 90 minutes into the simulation when a sudden strong burst  

of clouds are created that extend well into the stable layer. After this long spin-up period, 

the growth of clouds is somewhat steadier, but continues to show cloud growth well 

above 1600 m. The time series of LWP tells a similar story. The modified VVM produces  

a steady LWP that evens out at about 6 g m-2 , reasonably close to the LES ensemble. The 

standard VVM shows large undulations in LWP that range from 0 to 50 g m-2 during the  

 

Figure 4.52   Mean LWP for the VVMs (top) and for the LES ensemble (bottom).  
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Figure 4.53   Mean profiles of the horizontal components of wind (left) and the total 
vertical flux of easterly momentum (right). 
last three hours of the simulation, consistent with taller cumuli than were calculated by  

the LES ensemble. 

The mean profiles of the horizontal winds and the vertical flux of easterly 

momentum are shown in Figure 4.13. Both models do a decent job of reproducing the 

LES ensemble winds, although both the modified and standard VVMs underestimate the 

easterly wind by about 1 m s-1. Through most of the boundary layer, both VVM’s 

reproduce the shape of the momentum flux profile reasonably well, but the modified 

version does a better job particularly near the surface. 

 Finally, the turbulent structure of the BOMEX boundary layer is examined. The 

mean profiles of the total vertical fluxes (subgrid-scale and resolved) of liquid water 

potential temperature and total water specific humidity are shown in Figure 4.14. For 

both variables, the modified VVM performs pretty well, matching the heat flux profile to 

within a few W m-2 and the moisture flux profile in shape and magnitude. Both 

quantities, however, are underestimated by about 25% in the cloud layer from 500 to  
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Figure 4.54   Mean profiles of the total turbulent fluxes of liquid water potential 
temperature (left) and total water specific humidity (right). 
1500 m. This underestimate is a considerable improvement over the standard VVM, 

however. The standard VVM creates fluxes that are too large and extend higher in the  

column, consistent with taller, more vigorous cumuli. It is worth mentioning that the 

source of variability between the VVM versions differs markedly.  The coupled VVM 

generates almost all variability on the subgrid scale from the turbulence parameterization, 

while the standard VVM generates most of its variability on the resolved scale. 

 The mean profiles of vertical velocity variance and TKE are shown in Figure 

4.15. The vertical velocity variance profiles of the LES ensemble and the modified VVM 

both have the same qualitative shape with  local maxima located in the middle of the 

subcloud and cloud layers. As with the one-dimensional turbulence model, the modified  

VVM overestimates both vertical velocity variance and TKE in the cloud layer. This 

overestimation is discussed in Section 3.5.2.2 and is attributed to the overestimation of 

the buoyancy flux in a cumulus regime. The standard VVM underestimates the vertical 

velocity variance throughout the column, except for where there is extraneous cumulus  
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Figure 4.55   Mean profiles of total vertical velocity variance (left) and TKE (right). 
development above 2000 m. The considerable overestimate of TKE by the standard 

VVM in the subcloud and upper cloud layers together with an underestimate of the  

vertical velocity variance points to too much resolved horizontal velocity variance in that 

model. 

  
 
4.5 Notes on Model Execution Time 

 Both control VVM runs and both modified VVM runs were executed on a dual 2 

GHz PowerPC G5 Apple PowerMac. The processor time used by each model was 

calculated using the Unix “time” utility and the results are presented in Table 4.1. 

Case Name Standard Model 
Execution Time 
(HH:MM:SS) 

Modified Model 
Execution Time 
(HH:MM:SS) 

Execution Time Penalty 
for Using Modifications 

 
DYCOMS RF02 
(Section 4.4.1) 01:03:44 01:07:01 6.5 % 

BOMEX 
(Section 4.4.2) 00:09:54 00:11:17 14.0% 

Table 4.1   Processor time used for each model. 
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Chapter 5 

Conclusion 
  

Despite exciting progress in the succeeding decades after the first development of 

GCMs, there is a continual need for improvement in the parameterization of unresolvable 

processes. Boundary layer turbulence and cloudiness presents one ongoing challenge that 

has been addressed with increasing elegance and complexity during the progression of 

GCM development, and the goal of the current study in this context was to contribute to 

this process. Specifically, a new turbulence parameterization including subgrid-scale 

condensation and microphysics was created using a novel and more computationally 

efficient approach to calculating higher-order moments with the goal of achieving an 

accurate representation of boundary layer turbulence and cloudiness without undue 

computational expense. This study has presented the development of the new 

parameterization, testing of the new model in a one-dimensional configuration, the 

coupling of the new parameterization with an innovative three-dimensional cloud model, 

and testing of the resultant modified model. 

 The development of the new turbulence parameterization began with the work of 

Canuto et al. (1994) and Cheng et al. (2005). The first study demonstrated a novel way of 

retaining the strengths of a third-order closure turbulence model without having to 

prognose the third-order moments. The second study expanded upon the first, and 
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included new non-Gaussian fourth-order moments that improved the performance and 

efficiency of the Canuto et al. (1994) model. The derivation of the current model used the 

methods of these two studies to expand the model further to include moisture, moist 

conservative variables, momentum fluxes, additional necessary scalar second-order 

moments, and additional third-order moments. The inclusion of moisture allowed the 

possibility of including subgrid-scale condensation as first described by Sommeria and 

Deardorff (1977).  

In order to create a general model more capable of simulating any type of cloudy 

boundary layer, ideas from studies expanding on Sommeria and Deardorff (1977) were 

used. Many studies concluded that the diagnosis of subgrid-scale cloud fraction and 

liquid water content depended on the cloud type being simulated since stratocumulus 

clouds and cumulus clouds have very different joint probability density functions of 

liquid water potential temperature and total water specific humidity. Similarly, other 

authors concluded that the buoyancy fluxes generated by the subgrid-scale cloudiness 

also differs based on cloud type and joint PDFs. Given these findings, using one type of 

PDF for all boundary layer cloud types seemed insufficient. Many subsequent authors 

have attempted to develop subgrid-scale cloudiness schemes for specific cloud types and 

for general use. The scheme used in the current study was based on these efforts. 

Given subgrid-scale cloudiness, a conventional microphysics scheme must be 

adjusted to account for the lack of grid-scale condensation. As rain is produced within the 

cloudy areas of a grid cell, it must be allowed to fall through the column and interact with 

cloudy and clear areas. Unfortunately, the subgrid-scale condensation parameterization 

does not provide information on the spatial arrangement of the partial cloudiness, so 
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some assumption must be made about how the areas of partial cloudiness overlap. The 

work of Jakob and Klein (2000) presents a convenient framework for handling this 

problem. They split the precipitation flux into a cloudy and clear portion and define the 

interaction between the two. Although their scheme assumes an infinite fall speed, which 

is a poor assumption for models with shorter time steps, their idea can be adapted to 

include prognostic equations for cloudy and clear portions of the rain water specific 

humidity. All that remains to close the microphysics parameterization is to specify how to 

calculate the rates of change of rain water due to microphysical processes. Only warm 

rain processes such as autoconversion, collection, and evaporation are considered in this 

model and the bulk formulas from Khairoutdinov and Randall (2003) are used to 

calculate them. 

The new turbulence model was tested by simulating five cases: one based on a 

clear convective boundary layer during the Wangara experiment commonly used in the 

literature and four cases from the GCSS BLCWG. The Wangara case was used to test the 

turbulence model core, without the complications of cloud cover or precipitation. The 

evolution of the mean variables was found to agree well with both past LES studies and 

observations. In fact, the evolution of the boundary layer height from the current model 

matched observations even better than high-resolution LES. For this case, it was found 

the LES often overestimated the vigor of turbulence and turbulent fluxes in the boundary 

layer while the current turbulence model represented them more accurately. The first 

GCSS case featured a stratocumulus-like thermodynamic profile without the inclusion of 

moisture. Instead, a radiatively active “smoke cloud” was used to generate cloud-top 

cooling and to drive turbulence and entrainment. The conclusion of this test showed that 
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the new turbulence parameterization can successfully simulate the entrainment process in 

this type of regime. It outperformed other one- and two-dimensional models used in the 

intercomparison study for many entrainment parameters, and even approached the 

performance of some of the three-dimensional models. The second GCSS case was based 

on the DYCOMS II field experiment and featured nocturnal precipitating stratocumulus. 

The new model produced results in remarkably good agreement with the LES ensemble 

and observations from the GCSS intercomparison study. A sensitivity test omitting cloud 

droplet sedimentation was conducted in accordance with the intercomparison study and 

the reduced entrainment rate, increased LWP, and increased precipitation were all 

consistent with previous studies. The last two GCSS cases featured cumulus regime 

boundary layers: one featured non-precipitating trade-wind cumulus with a low cloud 

fraction (BOMEX), and one featured precipitating trade-wind cumulus with a higher 

cloud fraction (RICO). In both cases, the turbulence model did reasonably well, but 

didn’t match LES or observations as well as with the stratocumulus case. In particular, 

cloud fraction and liquid water content were overestimated through much of the cloud 

layer, while the cloud top height was underestimated. The profiles of most turbulent 

variables was satisfactory for these two cases, but the turbulent kinetic energy 

components were found to be overestimated in the cloud layer due to an overly active 

diagnostic buoyancy flux. 

After testing in a one-dimensional configuration, the turbulence model was 

coupled to the Vector Vorticity Model (VVM) of Jung and Arakawa (2008) as a 

turbulence parameterization. Vertical advection of the second-order moments was added 

to the turbulence model and several modifications were made to VVM including the use 
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of moist conservative variables, replacement of the turbulence parameterization, and 

replacement of the microphysics parameterization. The coupled VVM was then tested by 

simulating the BOMEX trade-wind cumulus case and the DYCOMS II stratocumulus 

case. Results were compared to those from both the standard configuration of the VVM 

and the LES ensemble results found in the GCSS intercomparison studies. For both cases, 

the modified VVM performed considerably better than the standard VVM and matched 

the thermodynamic state, turbulent state, and cloud fields of the LES ensemble better. 

The three-dimensional modified VVM also performed better than the one-dimensional 

turbulence model alone. 

This study demonstrates the usefulness of a new turbulence model, but future 

work is needed to improve upon it and further the progress of turbulence 

parameterization in GCMs. First, more work needs to be done to find a more general and 

elegant solution for the calculation of the buoyancy flux in the subgrid-scale 

condensation framework. The current solution of calculating the buoyancy flux based on 

the diagnosed cloud regime constitutes a quasi-trigger mechanism, and can probably be 

avoided, much like Cuijpers and Bechtold  (1995) formulated a continuous function to 

calculate cloud fraction and liquid water content based on the normalized saturation 

deficit, without resorting to individualized PDF's based on cloud regime. Second, the 

number of prognostic second-order moments and diagnostic third-order moments was 

formulated for the current model based on the goal of accuracy of the turbulent state and 

thoroughness. It is quite possible that the number of prognostic or diagnostic variables 

might be reduced by using simpler formulations for some while maintaining the skill of 

the complete set, much like Mellor and Yamada (1974) developed degrees of 
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sophistication in their turbulence model. Third, like most turbulence parameterizations, 

there are many “tunable” parameters that must be specified throughout the model. A 

study by Golaz et al. (2007) demonstrates a way to find the best values of these 

parameters by comparing an ensemble of model runs with differing parameters to a 

reference LES dataset as well as helping to illuminate possible structural model errors. 

This technique would be extremely useful for improving the performance of the current 

model. Fourth, as with any atmospheric model running further test cases may always 

point out potential pitfalls and improvements, and should be performed. Finally, the new 

turbulence parameterization needs to be tested as part of a GCM, with coarser resolution 

and a global domain, longer time steps, and a longer integration period. 
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Appendix A 

Solving For the Explicit Diagnostic  
Third-order Moments 

 The 28 algebraic third-order moment relations from equations (2.48)-(2.57) are: 
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CEA2005 only determine values for the p
n

 and d
m

constants given in Table A1 since 

they only consider 6 fourth-order moments. A logical extension to these constants for all 

28 fourth-order moments in this model follows in Tables A2 and A3, where d’s are 

assigned values so that they are in accordance with CEA2005 and so they eliminate the 

dependence of third-order moments on mean variable gradients. The p
n

constants in 

CEA2005 are determined from LES data and are tunable. Increases in the p
n

 constants 

result in more damping of the third-order moment to which the constant applies.  
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Table A1 Constants for the fourth-order moments from Cheng et al.  
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 d
24

 d
25

 d
26

 d
27

 d
28

 d
29

 d
30

 
1 1 1 1 1 1 1 1 1 1 
d
31

 d
32

 d
33

 d
34

 d
35

 d
36

 d
37

 d
38

 d
39

 d
40

 
1 1 1 1 1 1 1 1 1 1 
d
41

 d
42

 d
43

 d
44

 d
45

 d
46

 d
47

 d
48

 d
49

 d
50

 
1 1 1 1 1 1 1 1 1 1 
d
51

 d
52

 d
53

 d
54

 d
55

 d
56

 d
57

 d
58

 d
59

 d
60

 
1 1 1 2 1 1 1 1 2 1 

Table A2 d  Constants for the fourth-order moments 
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p
1
 p

2
 p

3
 p

4
 p

5
 p

6
 p

7
 p

8
 p

9
 p

10
 

4 4 4 4 4 4 1 1 1 1 
p
11

 p
12

 p
13

 p
14

 p
15

 p
16

 p
17

 p
18

 p
19

 p
20

 
0 0 0 0 0 0 4 4 4 2 
p
21

 p
22

 p
23

 p
24

 p
25

 p
26

 p
27

 p
28

   
2 2 4 4 4 2 2 2   

Table A3 p  Constants for the fourth-order moments 

 Since equations (A1)-(A28) represent a system of 28 equations with 28 unknown 

third-order moments, it is possible to explicitly solve for the unknowns as the studies of 

Canuto et al. (1994) and CEA2005 have done. Equations (A1)-(A28) were put into a 

symbolic algebra program with the buoyancy terms parameterized following section 2.9. 

Terms involving !u "l
! , !u qt

! , !v "l
! ,  and !v qt

!  were neglected since this model is only 

considering vertical fluxes. The results are shown as equations (A29)-(A56). Each third-

order moment is a linear combination of vertical derivatives of the second-order moments 

with extensive coefficients. For organizational purposes, each coefficient has two indices 

separated by a period – the first one to denote which third-order moment the coefficient 

appears in and the second to indicate which second-order moment derivative the 

coefficient modifies. These coefficients are found in Table A4. In addition, 14 of the 

third-order moments have a third-order moment liquid water correlation term denoted as 

L’s and listed in Table A5. These liquid water correlations, if not neglected, need to be 

calculated in a subgrid-scale condensation scheme. 
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Table A4    Coefficients for the diagnostic third-order moments 
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Third-order Moment Liquid Water Correlation Terms 
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Table A5   Liquid water correlation terms in the diagnostic third-order moments 

Upon inspection of the coefficients in Tables A4 and A5, it is apparent that many 

terms contain multiples of the turbulent timescale to the third or fourth power. These 

terms originate during the process of solving the extensive system of 28 equations, and 

the power associated with the turbulent timescale is an indication of the dependence of a 
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particular third-order moment on the term the coefficient modifies. Higher powers 

indicate more distant relationships. Since the turbulent timescale is somewhat of an 

artificial parameterized quantity, terms containing its third or fourth power can be 

considered more highly parameterized and potentially less accurate. For this reason in 

addition to the destabilizing influence of terms containing higher-order multiples, it is 

prudent to consider neglecting these terms as a simplifying assumption. Table A6 and A7 

list the simplified coefficients and third-order liquid water correlations, and these are the 

relations used in the current model. 
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Table A6   Simplified coefficients for the diagnostic third-order moments 

Third-order Moment Liquid Water Correlation Terms 
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All other third-order moment liquid water correlations are the same as in Table A5 
Table A7   Simplified third-order moment liquid water correlations 
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Appendix B 
 
Virtual potential temperature as a 
function of conservative variables 
 
The virtual potential temperature is defined as the potential temperature a parcel of dry 

air would need to have in order to have the same density as a parcel that includes 

moisture, written mathematically as 
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where ! is the potential temperature, q
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is the water vapor specific humidity, ql is the 

liquid water specific humidity, and !
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 is the ratio of the dry air gas constant to the 
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to the right-hand side of equation (B1): 
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Group the terms as follows: 
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