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A Study of Effects of Sonar Bandwidth for
Underwater Target Classification

De Yao, Mahmood R. Azimi-Sadjadsenior Member, IEEFArta A. Jamshidi, and Gerald J. Dobeck

Abstract—The problem of classifying underwater targets narrowband sonar relies on morphological clues in the signal to
is addressed in this paper. The proposed classification system classify returns, wideband sonar offers the possibility of using
consists of several subsystems including preprocessing, subbandsya iy classification schemes at one or more scattering angles

decomposition using wavelet packets, linear predictive coding, t timate other t t t has f t ¢
feature selection and neural network classifier. A multi-aspect 0 estimate other target parameters such as face curvature, or to

fusion system is introduced to further improve the classification detect characteristic resonances and other spectral signatures.
accuracy. The classification performance of the overall system Wide bandwidth further allows the use of sparse arrays with
is demonstrated and benchmarked on two different acoustic their obvious advantages, and reduces the down-range size
backscattered data sets with 40- and 80-kHz bandwidth. A com- ¢ 5 geattering cell. Additionally, environmental sensing can

prehensive study is then carried out to compare the classification be d . broadband to aid i -ti ..
performance using these data sets in terms of the receiver oper- e done LSing broadband sonartio ald in - reasime  mission

ating curves, error locations, and generalization and robustness Planning and dynamic adjustment of mine-hunting strategy.
on a large set of noisy data. Additionally, the importance of A number of different schemes have been developed for clas-

different frequency bands for the wideband 80-kHz data is also sijfication of underwater targets from the acoustic backscattered
investigated. For the wideband data, a subband fusion mechanism signals. A review of the previous methods is provided in [1].

Is introduced which offers very promising reslts. The method in this reference uses a wavelet packet-based clas-
_Index Terms—Freature extraction, neural networks, target clas-  sjfication scheme to discriminate mine-like and nonmine-like
sification, wideband sonar. objects from the acoustic backscattered signals. The results

on ten different noisy realizations with signal-to-reverberation
|. INTRODUCTION ratio (SRR) of 12 dB indicated a very good classification per-
formance on both single-aspect and multi-aspect decision cases.

HE PROBLEM of discriminating between underwateﬁ.l]e system described in [2] was based on a new combination

mines and similarly sized nontargets at ranges of sever? simulated dolphin clicks, simulated auditory filters and

hundred meters remains a challenge. The objective is 3.3 . . .
. . . : . artificial neural networks. Cylinders of various compositions

discover what information is contained in the backscattered o : .

were studied in the experiment. In this system, features from the

signals that might be exploited for target classification. Mine hoes were extracted using a combination of a matched filter,

classification in shallow water is dominated by the needs & . ! . . :
o . . . envelope detection, a gammatone filterbank, time integration

discriminate mines in reverberation and to separate them from . ) o
. . . and Principal Component Analysis (PCA). The classification
competing clutter. The best way to accomplish this goal IS .
. . . - was performed by using a two-layer feedforward neural
through increasing sonar bandwidth as well as viewing the . . o
network with a modified SoftMax normalization. The results

target over mu_lt|ple aspects. Increasing the band_W|dth 9IVERowed the best error rate as 5.9% when training samples are
greater resolution of the target and at the same time reduces

reverberation by decreasing the effective scattering area of e arated only by“2 !—|uynh [3] presented a feature gxtractmn
meéthod based on time-frequency analysis and Bienenstock,

b°“°”".'- . - - Cooper, and Munro (BCM) theory. Although the task in this
Designing a system for transmitting and receiving broadbana? . .
reference was to classify the underwater mammals according to

The complexity increases substantially as the bandwi heir emitted sounds, it presented a very interesting method for

increases. so careful attention should be paid to how mucer?ture extraction. The input raw signals were first transformed
' P -using the Daubechies 4 wavelets. Training of a 10-BCM neuron

bandwidth is enough. For reducing reverberation and in-.
. - . . ing the transformed data was then performed. These neurons
creasing definition of the target, the optimum resolution shou ; T
ere fully connected and formed a network with lateral inhibi-
be chosen such that most of the structure of the target can _bé -
t|Pn. After the training converged, the wavelet transformed data

separated, while the reverberation changes from a relative Y.< transformed again using the BCM network. These, were
smooth scattering function to distributed patches. Althoug\{ﬁen used as features to a subsequent classifier similar to the
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Fig. 1. Feature extraction and reduction processes.

to improve the classification rate and reduce the false alarm rateFeature extraction is then followed by a feature reduction
Moreover, a study is conducted to determine the importanpeocess that reduces the dimensionality of the feature space ac-
of different frequency bands for the wideband data set. Addierding to the discriminatory ability of each selected feature.
tionally, a new subband fusion scheme is proposed which pif® select an appropriate set of features, a criterion function can
vides excellent single-aspect target classification. This papebis used to provide the discriminatory power of the individual
organized as follows. A brief description of the classificatiofeatures. In this study, the Fisher discriminant function [7] was
system is presented in Section Il. The single-aspect classificaged to evaluate the distance between the two classes for each
tion system and its results on the two data sets are preserfaature, i.e.
in Section Ill. Two different multi-aspect fusion mechanisms )
are described and their results are analyzed and benchmarked Dy, j) = i — 1] 1)
in Section V. For the 80-kHz data set, the importance of dif- ’ ol 402
ferent frequency regions in the transmit signal and their effects
on the classification performance are investigated in SectionWherey; ando? represent the mean and variance of the features
The subband fusion system is also introduced in this section. li-classi, respectively. The features are sorted in a decreasing
nally, Section VI gives the conclusions and final remarks on tlegder of importance and the ones with higher discriminatory
results of this paper. power were then selected to form the reduced feature vector.
This process results in a reduced feature vector of 22 elements
for both data sets. Note that the reduction of the wavelet fea-
tures also removes the noise effects to some extent. For a more
detailed description, the reader is referred to [1].

The steps involved in the front-end feature extraction and
selection system are shown in Fig. 1. A wavelet packet-based IIl. CLASSIEICATION SYSTEM AND RESULTS
scheme [4], [5] is used to decompose the frequency spectra .
of the backscattered signals into several subbands that contaiﬁ‘ two-layer back pro_paganorj neural net_work (BPNN) [8]
useful target information. Wavelet packet decomposition er—'th structure 22-42-2 (i.e., 22 inputs, 42 h|o_|(_1|en layer _n_ode_s,
vides an optimal multi-resolution decomposition of the sign nd 2 output nodes) was used as a classifier. Classification

spectrum in a manner very similar to the biological system ecision was based upon discriminating mine-like from

The multi-resolution property allows for capturing fine detailfonm,me'Ilke objects. The BPNN was trained using adaptive
or subtleties in the signals the same way as zooming-in abil S;arnlng rate, r'_‘ome”t“m facter 0.9, sum squared error goal

in the biological visual system in order to observe the small de- 10 and maximum num_bef of ep(_)‘_:lf.'s 4000. Momen_tur_n
tails in the detected objects. In WP decomposition, each Sﬂ?_creases chk—propagatlon s sensitivity to small det§|ls in the
band extracts certain tonal features of the acoustic backscatteéted" surface_m order to prevent thg networ_k from getting stuck
signals. To avoid phase distortion and at the same time ensffghallow minima, and the adaptive Iearnlng_ rate attempts to
the orthogonality of the representation, Symlet 4 wavelet [4] {6€P the learning step size as large as possible while keeping

used in this study. Only those subbands that reside within t} learning stable. In this sec_ti_on, the single aspect classifica-
frequency range of the transmit signal, i.e., 20-60 kHz for tﬁ%ﬂ results of the BPNN classifier are presented and analyzed.

Il. BRIEF DESCRIPTION OF THEFEATURE
EXTRACTION/SELECTION SYSTEM

40-kHz data and 30-110 kHz for the wideband 80-kHz data set!® pgrformance co.m.parison Is made in terms of the recei_ver
are selected. The transmit signal was also decomposed usindl{ﬁeérat'ng characteristic curves (ROC) and the error location
same WP tree structure. plots for both data sets.

In each selected subband, the cross-correlation between
the transmit signal and the backscattered signal is performfég Backscattered Data Sets
as shown in Fig. 1. Then, the linear predictive coding (LPC) The data sets used in this study were collected by the Coastal
scheme [6] commonly used for speech coding and recognitiBgstems Station (CSS) in Panama City, FL. These data sets
applications is applied to the matched filtered result in eadontain backscattered signals corresponding to six different
subband. For the 40-kHz data, a fourth-order linear autom@bjects—two mine targets namely a bullet-shape metallic
gressive (AR) modekoy(n) = z(n) — Ele a;y(n — i) was object and a truncated-cone-shape plastic object; and four
employed while for the 80-kHz case a third-order AR modelontargets, namely a water-filled drum, an irregular shape
was used to represent the data. The model coefficiergand limestone rock, a smooth granite rock, and a water-saturated
the gainag are used as features for classification. wooden log. The transmit signal was a linear frequency
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modulated (LFM) up-sweep with frequency range from 20 tc
60 kHz for the first set and 30 to 110 kHz for the second one est -/~ -
Each object was insonified at aspect angles from 0 to 355 de
with 5-deg separation. This resulted in 72 aspect angles out
which the even-angles were used in the training data set whi =7
the odd-angle samples were used as the testing samples. A
result, for each object there are 36 patterns (at different aspe
angles) in the training or testing data sets. The training dai, s}
set contained the feature vectors of backscattered data wi
synthesized reverberation with SRR12 dB that corresponds
to nominal operating conditions. The procedure for generatin «s}-
synthesized reverberation involves convolving the transm
signal with a random sequence and scaling the resultant sigr Er
according to the specified SRR [1]. This reverberation signal i =1+ -
then added to the backscattered signal to generate one “noi ‘ ‘ , . ‘ :
realization.” The process is repeated for every aspect ang o TTRTTTRE T s e es e o eE 68
multiple times in order to generate a statistically rich data set
for determining the generalization ability of the classifier. The
testing data in our study contained two sets of ten and fift
noisy realizations with SRR= 12 dB for each aspect angle
in the testing data in order to obtain statistically significant
results. The results in the next section are obtained based ont *
ten-realizations testing set while the results for the robustne: o7t
study in Section IlI-C use the second data set.

A five-level WP decomposition was then employed and 6 (fo
40 kHz) or 12 (for 80 kHz) subbands that reside within the band, & sk - -
width of the transmit signal were selected. The transmit signe
was also decomposed in the same way. Then, the cross-ci
relation of the subband signals of the backscattered and tl cs}
corresponding subband signals of the transmit was performe
as mentioned before. A fourth-order (or a third-order for the
80-kHz data) AR model was then fitted to the resultant data il st} -
each subband, and the model coefficients were extracted a : , : :
used as features. This leads to a total of 30 (or 48) featuresc & st e2 03 o4 05 08 o7 0BE 039 1
of which 22 features with high discriminatory power were se- )

lected according to the criterion in (1). These were then used for
classification of the data. Fig. 2. ROC curves for the two data sets. (a) 40-kHz data set. (b) 80-kHz
data set.
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B. ROC Analysis and Classification Error of Different

Classifiers Fig. 2(a) and (b) shows the ROC curves for the 40- and
In this study, the data sets containing ten noisy realiz80-kHz data sets, respectively. As can be observed from these
tions with SRR= 12 dB was used to compare the performand@OC curves, both cases led to excellent classification results
of the classifier on the two data sets. The comparison is magsed upon only the single-aspect information. The classifier
in terms of their ROC curves and the error location plots verstigined and tested based upon the 40-kHz data set provided
aspect angle. The ROC curve is the plot of the probability 8f1.94% correct classification..) and 8.12% false alarm rates
correct classification raté.. versus probability of false-alarm (Py.) at the knee of the ROC curve, while the one for the wide-
Py,. Of particular importance is the behavior of the classifidtand data gave slightly better performance, i&.,= 95.83%
at the “knee point” of this ROC that corresponds to a decisi@nd P, = 4.24% at the knee of the ROC curve. To study the
threshold leading t&’.. + P, = 1. The error location plot, classification performance for each individual target, the error
on the other hand, gives the corresponding classification ertegation plots in Fig. 3(a) and (b) are generated for the 40- and
locations and their frequencies versus aspect angles for eB6kkHz data sets, respectively. The classification decision was
object. In this plot each ring corresponds to a particular objetade based on the threshold corresponding to the “knee” point
(i.e., objects 1-6) and each grid on the ring represents an aspggdéhe ROC curves. As shown in Fig. 3(a), for the 40-kHz data,
angle. In the counter-clockwise direction, the aspect anglesrfect classification results were obtained for objects 1, 5, and
start from 5 to 355 deg with 10-deg separation since there &ei.e., cylindrical mine target, granite rock, and wooden log.
36 odd aspect angles for every object in the test set. The gMigclassifications occur very frequently at three aspect angles
levels in each grid, which can vary from 0 to 10, represents tf@y object 3, i.e., 50-gallon water filled drum. All other errors
frequency of classification error at that particular aspect angleccurred for objects 2 and 4, i.e., the second target and the
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Fig. 3. Error location plots for the two data sets. (a) 40-kHz data sdjistogram for the 40-kHz data set. (b) Classification error rate histogram for the
(b) 80-kHz data set. 80-kHz data set.

limestone rock, owing to their irregular shape and similarity} follows a binomial distribution. For a very largethis dis-

of their features. For the 80-kHz data set, as evident frotkibution approaches normal distribution. To estimate the error
Fig. 3(b), the errors are mostly concentrated for target 1, tFale statistics of the classifier.s, fifty Qiﬁerent Mo_nte Carlo_ trial_s
blunt-bullet-shape metallic object, object 3, the 50—gallon drufere performed. For each trial, a different testing set with dif-
and object 6, the wooden log saturated in water. The differendgent reverberation realizations was used. As before, each set
between the results of the two data sets can be attributed to ¢q8tained 216 backscattered signals corresponding to odd as-

fact that the target strength and signature varies as a functioP§ft angles and different synthesized reverberation sequences

classification error for the 40 and 80-kHz data sets, respectively.
These results are obtained under the assumption that false pos-
itive and negative errors have the same weighting, i.e., the false
To study the robustness and generalization of the classifiatarm and misclassification errors are summed up to a total clas-
to reverberation, we have studied the error rate statistics fosification error. The classification decision is made based on the
larger number of trials. For a given setwofinput pattern vec- threshold at the “knee” point of the ROC curve. The classifica-
tors, the number of misclassificatioms can be viewed as ation error statistics (i.e., the meam,and the standard deviation
random variable resulting in a randomly varying empirical errer) are. = 0.0782 ando = 0.011 for the 40-kHz data set and
rate cempirical = m/n. In [9], irrespective of the pattern sourcey, = 0.0447 ando = 0.005 for the 80-kHz data set, respec-
and the type of the classifier, itis shown that the random varialileely. The results in Fig. 4(a) and (b) and the statistics clearly

C. Robustness Analysis of Different Classifiers
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Fig.5. ROC curves and error locations of the three-aspect fusion system for the two data sets. (a) ROC curve of the fusion system for the 40-kb)RRBE set.
curve of the fusion system for the 80-kHz data set. (c) Error location of the fusion system for the 40-kHz data set. (d) Error location of the fusifor gyste
80-kHz data set.

show the improved robustness of the classifier to different rihe effects of varying the amount of aspect separation interval
verberation realizations for the wideband data. on the classification performance of the fusion system. The per-
formance plot was generated when this separation interval was
varied from 10 to 4 in 10° steps and the optimum case was
selected. For each aspect, the two outputs of the classifier for
The classification results of the two classifiers based on tterget and nontarget are applied to the fusion system where the
single-aspect were fused together in order to further improfieal decision is made based upon the classification results of
the overall classification performance. This is due to the fattie 3-aspect angles.
that even though some target and nontarget cases may not b& two-layer back-propagation neural network was designed
correctly classified at a specific aspect, itis very likely that thep perform the nonlinear three-aspect fusion. The network
will be correctly classified at the neighboring aspects. Thus, thad six inputs corresponding to the classification outputs of
combined results of several aspects may lead to some improtree three aspects, four hidden layer nodes, and two output
ments in the classification performance. In this study, similaodes for final decision. The single-aspect classification
to [1], [10]-[13], we have used sequences of three aspects segsults of two different realizations based on the even aspect
arated by certain degrees. The reason is that in actual minegle data set with different synthesized reverberation real-
hunting scenarios an object is declared as a potential minéziitions were arranged in three-aspect sequence form, e.g.,
strong indications exist in 3—4 sonar pings. The three-aspect @;, 30, 60}, ..., {350, 20, 50} for 30° separation case.
quences are chosen so that overlap between them is allowHuds data set (432 samples) was then used to train the neural
e.g.,{9, 35, 65}, {35, 65, 95}, ..., {355, 25, 55} for 30° as- network. The network reaches the sum squared error (SSE)
pect separation interval. A study was also carried out to examigeal of 10 within 200 epochs with adaptive learning rate and

IV. MULTI-ASPECTFUSION SYSTEM AND RESULTS



624

100 T

©
a
T

Correct Classification rate (%)

©

S
T

e

L

***** 1]

100

3
Sub--band Numberi

@

4
ng

£ o5t

Correct Classification rate (%)

IEEE JOURNAL OF OCEANIC ENGINEERING, VOL. 27, NO. 3, JULY 2002

100

©
a
T

©
S

85

100

Sub--band Numbering

(b)

3 4

©
a
T

90| 90

Correct Classification rate (%
i
/
\

L !
Correct Classification rate (%)
i
\

85 > 85
Sub-band Numbering

Sub—bandzNumbering
() (d)
Fig. 6. Correct classification rates for different subband combination cases. (a) Case 1. (b) Case 2. (c) Case 3. (d) Case 4.

momentum of 0.9. The network was then tested on the testithg overall classification performance. For the 40 kHz, substan-
data set that contains sequences of three odd aspects withtifdémprovements are obtained for objects 2 and 4. In addition,
same aspect separation interval. For the 40-kHz data set, dihgects 1, 3, 5, and 6 are now correctly classified at all aspect
best performance was obtained for° Aeparation interval. As angles in the testing data. As for the 80-kHz data set, substan-
for the 80-kHz data set, the three-aspect fusion system ledtid improvements are obtained for objects 1 and 3. In addition,
perfect classification results at all the separation intervals testetljects 1, 4, 5, and 6 are now correctly classified at all aspect an-
Fig. 5(a) and (b) shows the corresponding ROC curves of thkes in the testing data, while only two errors occurred’adrid
three-aspect fusion results for this two-layer fusion network45 for object 3 and one error occurred at 276r object 2.

For the 40-kHz data sef;.. and FP;, at the knee of this ROC  In summary, all these results point to this important observa-
curve [Fig. 5(a)] are found to be 99.03%, 0.97%, respectiveljon that the multi-aspect fusion indeed improves the classifica-
Fig. 5(b) shows, once again, the perfect classification resulitsn performance. Furthermore, wideband insonification led to
for the wideband three-aspect fusion system. almost perfect target classification performance.

Fig. 5(c) and (d) shows the corresponding error location plots
of this fusion system for the 40- and 80-kHz data sets, respec-
tively. In this case, the gray levels indicate errors of the system
as a result of fusing the current aspect angle and its two pre-
vious aspect interval £0for the 40-kHz data set, and 3@or The incident signal of the wideband data has a bandwidth that
the 80-kHz data set. Again the classification decision is madpans from 30 to 110 kHz. Since this range covers a wide band-
based on the threshold at the knee of the corresponding R@fdth, the question that arises is that which frequency bands
curve. Comparing to the single aspect results in Fig. 3, it is eyalay dominant role in the classification decision for target versus
dent that the multi-aspect fusion system significantly improvatntarget discrimination. In order to find out the importance of

V. IMPORTANCE OFDIFFERENT FREQUENCY BANDS:
80-kHz Data SET
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each frequency band, in terms of classification, the folloWin( .o reatures

study was carried out.
There were 12 subbands (out of 16) at the fifth level wavele (Blilljsljt'ier

packet decomposition that reside in the frequency range of {

to 110 kHz. Each subband occupies a bandwidth of 7.8125 kHaroup 2

In this study, we devised a scheme so that the subbands are u***""

in different combinations. The features used here are the thir BPNN

order LPC coefficients. | Classifier

 Case 1 In this case, the subbands were grouped intg,,,
groups of 2 subbands, i.€{3, 4}; {5, 6}; {7, 8}; {9,  Subband Features
10}; {11, 12; {13, 14. The subbands collectively cover .
the frequency range from 23.4375 to 117.1875 kHz witt p| Classifier
each group covering a bandwidth of 15.625 kHz. All the
LPC features corresponding to the two nodes in eacg,,,,
combination were used for classification. Subband Features

» Case 2 In this case, three subbands were combined tc
gether in a group, i.e{3, 4, 5}; {6, 7, 8}; {9, 10, 11; Clomsitir
{12, 13, 14. Each 3-subband group covers a bandwidth o
23.4375 kHz. Again, all the LPC features corresponding
to each group of three nodes are used for classification. @

« Case 3Inthis case, four subbands were grouped togethé&ig. 7. Block diagram of the subband fusion system.
ie.,{3,4,5 6; {7, 8,9, 1¢; {11, 12, 13, 14. Each
4-subband group covers a bandwidth of 31.25 kHz. All the

LPC feature_s for the_se nades are used for CIaSS'f'Cat'onnontargets. In other words, the discrimination ability of each
C_ase 4Inthis case, five subbr_:mds were group_ed togem%ﬁbband is dependent on its frequency range and the type of
Since there are 1.2 s_ubbands in total, ovgrlapplng had be[lln(é target/nontarget. This property may be exploited to develop
2(2)? .e{ 1T(? el?LOT; Inl%tlolr};sl\zlv;crﬁgéiui’)t?ér?é {Er;ég' 1(?0’ vlelr's a “subband fusion” system in which the initial decisions based
freq'uenc,y bémd\’/vidt’h o;‘ 39 0625 kHz Aggin aFI)I the LpiPon eagh_ individ_ual su_bband are fused tog_ether to generate the
features were used ' ' inal decision. This section demonstrates this idea on the wide-
T ) ) band data set and compares the results of the subband fusion
A two-layer BPNN classifier with different structures Wa3yith those in Section I1l. In this study, the trained classifiers

used in each case listed above. The network structures werede~_ .. 5 iy the previous section were used. As explained be-

It:rrgrmhea?j(zu:?\fth—a;or:eirfgr?;uvrvehi\llee(t:rt]oer ;&ie]ﬁ;hirhs'gﬁil dfore, for each group of three subbands, all the extracted LPC
y P y features in the associated subbands were combined together to

2 neurons. The neuron activation functions were still the sw;;glr a 12-dimensional (four LPC coefficients per subband) fea-
moidal function and the training parameters were the same gn ( P )

those used for the other studies. The classification performaﬁ%e vector. This gives four sets of feature vectors for the four

for these four cases are presented in the plots in Fig. 6 for d#f°UPS- For each group, a two-layer BPNN with 12 inputs, 22

ferent subband groups. Note that in this study since we atdden layer neurons and two output neurons (12-22-2) was
comparing the performance of different classifiers on the saff@ined based upon the even aspect data associated with that
data set all the classification decisions are made based u§RUP- The training was repeated for 36 trials with different ran-
hard-limiting decision, i.e., ib; > o2, whereo; ando. are the domly initialized weights in order to select the best trained net-
outputs of the BPNN, then the unknown pattern is classified Work. This procedure was repeated for each group resulting in
Target, otherwise is classified as Non-Target. As can clearly fr trained networks. These networks were then tested on the
seen, node$3, 4}; {5, 6} and{11, 12; {13, 14}, which cover testing data set that consisted of ten noisy (reverberation) real-
frequency bands from 23.4375 to 54.6875 kHz and 85.9375izations of the odd aspect data with SRRL2 dB. The outputs
117.1875 kHz,consistently provide much better classificatiar these four classifiers were fused together in another two-layer
than the nodeg7, 8} and{9, 10} which cover the frequency BPNN with 8 inputs, 20 hidden layer nodes, and 2 output nodes.
band from 54.6875 to 85.9375 kHz. This is evident by the aphis network, which was trained based upon the outputs of the
pearance of a dip shown consistently in all the four cases. Tipieceding networks using the even aspect data, performs non-
study reveals the important observation that the useful informimear fusion of the decisions. The entire system is shown in
tion for classification may primarily be located in the sides of theig. 7. This subband fusion system provided exceptionally supe-
bandwidth of the wideband data. This result may be exploiteidr classification results when compared to those in Section III.
in the design of appropriate transmit signals for a specific widghe ROC curve and the error location plot for this new fusion
band sonar target classification problem. system are shown in Fig. 8(a) and (b). At the knee point of
} ROC, we have correct classification and false alarm rates of

A. Subband Fusion Results: 80-kHz Data Set P.. = 98% andP;, = 2%, respectively. It must be empha-

In the study of the previous section, we saw that different freized that these results are obtained based upon only single-as-
quency bands play different role in distinguishing targets fropect decision. The error location plot also attests to this superior
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Fig. 8. Classification results of the subband fusion scheme for the 80-kHz data[g]
set. (a) ROC curve. (b) Error location plot. [10]

performance. These results clearly show the promise of the subi-]
band fusion strategy.

(12]

VI. CONCLUSION

The results presented in this paper indicate that the BPNI£I13]
classifier performed very well for different conditions, in
both single-aspect and multi-aspect cases. The Widebaqg4]
80-kHz data provided much better discrimination than the
40-kHz data set. The single-aspect classification performance,
P = 95.83%, Py, 4.24%, was considered to be very
good for this data set. The three-aspect fusion system provided
almost perfect classification performance by combining the
results of three aspects. The generalization ability and robu
ness of the classifiers were also demonstrated on fifty noi
realizations with SRR= 12-dB conditions using Monte Carlo
simulations. The study in Section V indicated that certal
frequency regions in the wideband data play more imports
role in the classification than the others. It was observed that 1§
middle frequency band of 55 to 86 kHz may be less importa
comparing to those in the sides, as far as target classification

T"

concerned. This is an interesting point which may be exploited,,oration, Melbourne
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sonar system. Finally, we studied the idea of subband fusion for
combining the decisions at different subbands for the 80-kHz
data set. This study indicated that this new fusion paradigm
provides exceptionally superior single-aspect classification
results when compared to our previous results as well as to
those of the others on this data set.
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