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Abstract—The problem of classifying underwater targets
is addressed in this paper. The proposed classification system
consists of several subsystems including preprocessing, subband
decomposition using wavelet packets, linear predictive coding,
feature selection and neural network classifier. A multi-aspect
fusion system is introduced to further improve the classification
accuracy. The classification performance of the overall system
is demonstrated and benchmarked on two different acoustic
backscattered data sets with 40- and 80-kHz bandwidth. A com-
prehensive study is then carried out to compare the classification
performance using these data sets in terms of the receiver oper-
ating curves, error locations, and generalization and robustness
on a large set of noisy data. Additionally, the importance of
different frequency bands for the wideband 80-kHz data is also
investigated. For the wideband data, a subband fusion mechanism
is introduced which offers very promising results.

Index Terms—Feature extraction, neural networks, target clas-
sification, wideband sonar.

I. INTRODUCTION

T HE PROBLEM of discriminating between underwater
mines and similarly sized nontargets at ranges of several

hundred meters remains a challenge. The objective is to
discover what information is contained in the backscattered
signals that might be exploited for target classification. Mine
classification in shallow water is dominated by the needs to
discriminate mines in reverberation and to separate them from
competing clutter. The best way to accomplish this goal is
through increasing sonar bandwidth as well as viewing the
target over multiple aspects. Increasing the bandwidth gives
greater resolution of the target and at the same time reduces
reverberation by decreasing the effective scattering area of the
bottom.

Designing a system for transmitting and receiving broadband
signals is much more challenging than for narrowband sonar.
The complexity increases substantially as the bandwidth
increases, so careful attention should be paid to how much
bandwidth is enough. For reducing reverberation and in-
creasing definition of the target, the optimum resolution should
be chosen such that most of the structure of the target can be
separated, while the reverberation changes from a relatively
smooth scattering function to distributed patches. Although
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narrowband sonar relies on morphological clues in the signal to
classify returns, wideband sonar offers the possibility of using
spectral classification schemes at one or more scattering angles
to estimate other target parameters such as face curvature, or to
detect characteristic resonances and other spectral signatures.
Wide bandwidth further allows the use of sparse arrays with
their obvious advantages, and reduces the down-range size
of a scattering cell. Additionally, environmental sensing can
be done using broadband sonar to aid in real-time mission
planning and dynamic adjustment of mine-hunting strategy.

A number of different schemes have been developed for clas-
sification of underwater targets from the acoustic backscattered
signals. A review of the previous methods is provided in [1].
The method in this reference uses a wavelet packet-based clas-
sification scheme to discriminate mine-like and nonmine-like
objects from the acoustic backscattered signals. The results
on ten different noisy realizations with signal-to-reverberation
ratio (SRR) of 12 dB indicated a very good classification per-
formance on both single-aspect and multi-aspect decision cases.
The system described in [2] was based on a new combination
of simulated dolphin clicks, simulated auditory filters and
artificial neural networks. Cylinders of various compositions
were studied in the experiment. In this system, features from the
echoes were extracted using a combination of a matched filter,
envelope detection, a gammatone filterbank, time integration
and Principal Component Analysis (PCA). The classification
was performed by using a two-layer feedforward neural
network with a modified SoftMax normalization. The results
showed the best error rate as 5.9% when training samples are
separated only by 2. Huynh [3] presented a feature extraction
method based on time-frequency analysis and Bienenstock,
Cooper, and Munro (BCM) theory. Although the task in this
reference was to classify the underwater mammals according to
their emitted sounds, it presented a very interesting method for
feature extraction. The input raw signals were first transformed
using the Daubechies 4 wavelets. Training of a 10-BCM neuron
using the transformed data was then performed. These neurons
were fully connected and formed a network with lateral inhibi-
tion. After the training converged, the wavelet transformed data
was transformed again using the BCM network. These, were
then used as features to a subsequent classifier similar to the
back propagation neural network. The results were compared
with PCA method and showed a much better performance, i.e.,
90% correct classification rate.

The goal of this paper is to develop an underwater target clas-
sification system and study its performance and in particular
its robustness property for two different data sets with 40- and
80-kHz bandwidths. A three-aspect fusion algorithm is devised
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Fig. 1. Feature extraction and reduction processes.

to improve the classification rate and reduce the false alarm rate.
Moreover, a study is conducted to determine the importance
of different frequency bands for the wideband data set. Addi-
tionally, a new subband fusion scheme is proposed which pro-
vides excellent single-aspect target classification. This paper is
organized as follows. A brief description of the classification
system is presented in Section II. The single-aspect classifica-
tion system and its results on the two data sets are presented
in Section III. Two different multi-aspect fusion mechanisms
are described and their results are analyzed and benchmarked
in Section IV. For the 80-kHz data set, the importance of dif-
ferent frequency regions in the transmit signal and their effects
on the classification performance are investigated in Section V.
The subband fusion system is also introduced in this section. Fi-
nally, Section VI gives the conclusions and final remarks on the
results of this paper.

II. BRIEF DESCRIPTION OF THEFEATURE

EXTRACTION/SELECTION SYSTEM

The steps involved in the front-end feature extraction and
selection system are shown in Fig. 1. A wavelet packet-based
scheme [4], [5] is used to decompose the frequency spectra
of the backscattered signals into several subbands that contain
useful target information. Wavelet packet decomposition pro-
vides an optimal multi-resolution decomposition of the signal
spectrum in a manner very similar to the biological systems.
The multi-resolution property allows for capturing fine details
or subtleties in the signals the same way as zooming-in ability
in the biological visual system in order to observe the small de-
tails in the detected objects. In WP decomposition, each sub-
band extracts certain tonal features of the acoustic backscattered
signals. To avoid phase distortion and at the same time ensure
the orthogonality of the representation, Symlet 4 wavelet [4] is
used in this study. Only those subbands that reside within the
frequency range of the transmit signal, i.e., 20–60 kHz for the
40-kHz data and 30–110 kHz for the wideband 80-kHz data set,
are selected. The transmit signal was also decomposed using the
same WP tree structure.

In each selected subband, the cross-correlation between
the transmit signal and the backscattered signal is performed
as shown in Fig. 1. Then, the linear predictive coding (LPC)
scheme [6] commonly used for speech coding and recognition
applications is applied to the matched filtered result in each
subband. For the 40-kHz data, a fourth-order linear autore-
gressive (AR) model, was
employed while for the 80-kHz case a third-order AR model
was used to represent the data. The model coefficients,s and
the gain are used as features for classification.

Feature extraction is then followed by a feature reduction
process that reduces the dimensionality of the feature space ac-
cording to the discriminatory ability of each selected feature.
To select an appropriate set of features, a criterion function can
be used to provide the discriminatory power of the individual
features. In this study, the Fisher discriminant function [7] was
used to evaluate the distance between the two classes for each
feature, i.e.

(1)

where and represent the mean and variance of the features
in class , respectively. The features are sorted in a decreasing
order of importance and the ones with higher discriminatory
power were then selected to form the reduced feature vector.
This process results in a reduced feature vector of 22 elements
for both data sets. Note that the reduction of the wavelet fea-
tures also removes the noise effects to some extent. For a more
detailed description, the reader is referred to [1].

III. CLASSIFICATION SYSTEM AND RESULTS

A two-layer back propagation neural network (BPNN) [8]
with structure 22-42-2 (i.e., 22 inputs, 42 hidden layer nodes,
and 2 output nodes) was used as a classifier. Classification
decision was based upon discriminating mine-like from
nonmine-like objects. The BPNN was trained using adaptive
learning rate, momentum factor 0.9, sum squared error goal

10 and maximum number of epochs 4000. Momentum
decreases back-propagation’s sensitivity to small details in the
error surface in order to prevent the network from getting stuck
in shallow minima, and the adaptive learning rate attempts to
keep the learning step size as large as possible while keeping
the learning stable. In this section, the single aspect classifica-
tion results of the BPNN classifier are presented and analyzed.
The performance comparison is made in terms of the receiver
operating characteristic curves (ROC) and the error location
plots for both data sets.

A. Backscattered Data Sets

The data sets used in this study were collected by the Coastal
Systems Station (CSS) in Panama City, FL. These data sets
contain backscattered signals corresponding to six different
objects—two mine targets namely a bullet-shape metallic
object and a truncated-cone-shape plastic object; and four
nontargets, namely a water-filled drum, an irregular shape
limestone rock, a smooth granite rock, and a water-saturated
wooden log. The transmit signal was a linear frequency
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modulated (LFM) up-sweep with frequency range from 20 to
60 kHz for the first set and 30 to 110 kHz for the second one.
Each object was insonified at aspect angles from 0 to 355 deg
with 5-deg separation. This resulted in 72 aspect angles out of
which the even-angles were used in the training data set while
the odd-angle samples were used as the testing samples. As a
result, for each object there are 36 patterns (at different aspect
angles) in the training or testing data sets. The training data
set contained the feature vectors of backscattered data with
synthesized reverberation with SRR12 dB that corresponds
to nominal operating conditions. The procedure for generating
synthesized reverberation involves convolving the transmit
signal with a random sequence and scaling the resultant signal
according to the specified SRR [1]. This reverberation signal is
then added to the backscattered signal to generate one “noisy
realization.” The process is repeated for every aspect angle
multiple times in order to generate a statistically rich data set
for determining the generalization ability of the classifier. The
testing data in our study contained two sets of ten and fifty
noisy realizations with SRR 12 dB for each aspect angle
in the testing data in order to obtain statistically significant
results. The results in the next section are obtained based on the
ten-realizations testing set while the results for the robustness
study in Section III-C use the second data set.

A five-level WP decomposition was then employed and 6 (for
40 kHz) or 12 (for 80 kHz) subbands that reside within the band-
width of the transmit signal were selected. The transmit signal
was also decomposed in the same way. Then, the cross-cor-
relation of the subband signals of the backscattered and the
corresponding subband signals of the transmit was performed
as mentioned before. A fourth-order (or a third-order for the
80-kHz data) AR model was then fitted to the resultant data in
each subband, and the model coefficients were extracted and
used as features. This leads to a total of 30 (or 48) features out
of which 22 features with high discriminatory power were se-
lected according to the criterion in (1). These were then used for
classification of the data.

B. ROC Analysis and Classification Error of Different
Classifiers

In this study, the data sets containing ten noisy realiza-
tions with SRR 12 dB was used to compare the performance
of the classifier on the two data sets. The comparison is made
in terms of their ROC curves and the error location plots versus
aspect angle. The ROC curve is the plot of the probability of
correct classification rate versus probability of false-alarm

. Of particular importance is the behavior of the classifier
at the “knee point” of this ROC that corresponds to a decision
threshold leading to . The error location plot,
on the other hand, gives the corresponding classification error
locations and their frequencies versus aspect angles for each
object. In this plot each ring corresponds to a particular object
(i.e., objects 1–6) and each grid on the ring represents an aspect
angle. In the counter-clockwise direction, the aspect angles
start from 5 to 355 deg with 10-deg separation since there are
36 odd aspect angles for every object in the test set. The gray
levels in each grid, which can vary from 0 to 10, represents the
frequency of classification error at that particular aspect angle.

(a)

(b)

Fig. 2. ROC curves for the two data sets. (a) 40-kHz data set. (b) 80-kHz
data set.

Fig. 2(a) and (b) shows the ROC curves for the 40- and
80-kHz data sets, respectively. As can be observed from these
ROC curves, both cases led to excellent classification results
based upon only the single-aspect information. The classifier
trained and tested based upon the 40–kHz data set provided
91.94% correct classification ( ) and 8.12% false alarm rates
( ) at the knee of the ROC curve, while the one for the wide-
band data gave slightly better performance, i.e., %
and % at the knee of the ROC curve. To study the
classification performance for each individual target, the error
location plots in Fig. 3(a) and (b) are generated for the 40- and
80-kHz data sets, respectively. The classification decision was
made based on the threshold corresponding to the “knee” point
of the ROC curves. As shown in Fig. 3(a), for the 40-kHz data,
perfect classification results were obtained for objects 1, 5, and
6, i.e., cylindrical mine target, granite rock, and wooden log.
Misclassifications occur very frequently at three aspect angles
for object 3, i.e., 50-gallon water filled drum. All other errors
occurred for objects 2 and 4, i.e., the second target and the
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(a)

(b)

Fig. 3. Error location plots for the two data sets. (a) 40-kHz data set.
(b) 80-kHz data set.

limestone rock, owing to their irregular shape and similarity
of their features. For the 80-kHz data set, as evident from
Fig. 3(b), the errors are mostly concentrated for target 1, the
blunt-bullet-shape metallic object, object 3, the 50–gallon drum
and object 6, the wooden log saturated in water. The differences
between the results of the two data sets can be attributed to the
fact that the target strength and signature varies as a function of
beamwidth, frequency, grazing angle, etc.

C. Robustness Analysis of Different Classifiers

To study the robustness and generalization of the classifiers
to reverberation, we have studied the error rate statistics for a
larger number of trials. For a given set ofinput pattern vec-
tors, the number of misclassifications can be viewed as a
random variable resulting in a randomly varying empirical error
rate . In [9], irrespective of the pattern source
and the type of the classifier, it is shown that the random variable

(a)

(b)

Fig. 4. Classification error statistics for fifty trials. (a) Classification error rate
histogram for the 40-kHz data set. (b) Classification error rate histogram for the
80-kHz data set.

follows a binomial distribution. For a very largethis dis-
tribution approaches normal distribution. To estimate the error
rate statistics of the classifiers, fifty different Monte Carlo trials
were performed. For each trial, a different testing set with dif-
ferent reverberation realizations was used. As before, each set
contained 216 backscattered signals corresponding to odd as-
pect angles and different synthesized reverberation sequences
with SRR 12 dB. Fig. 4(a) and (b) shows the histograms of
classification error for the 40 and 80-kHz data sets, respectively.
These results are obtained under the assumption that false pos-
itive and negative errors have the same weighting, i.e., the false
alarm and misclassification errors are summed up to a total clas-
sification error. The classification decision is made based on the
threshold at the “knee” point of the ROC curve. The classifica-
tion error statistics (i.e., the mean,, and the standard deviation

) are and for the 40-kHz data set and
and for the 80-kHz data set, respec-

tively. The results in Fig. 4(a) and (b) and the statistics clearly



YAO et al.: A STUDY OF EFFECTS OF SONAR BANDWIDTH FOR UNDERWATER TARGET CLASSIFICATION 623

(a) (b)

(c) (d)

Fig. 5. ROC curves and error locations of the three-aspect fusion system for the two data sets. (a) ROC curve of the fusion system for the 40-kHz data set.(b) ROC
curve of the fusion system for the 80-kHz data set. (c) Error location of the fusion system for the 40-kHz data set. (d) Error location of the fusion system for the
80-kHz data set.

show the improved robustness of the classifier to different re-
verberation realizations for the wideband data.

IV. M ULTI-ASPECTFUSION SYSTEM AND RESULTS

The classification results of the two classifiers based on the
single-aspect were fused together in order to further improve
the overall classification performance. This is due to the fact
that even though some target and nontarget cases may not be
correctly classified at a specific aspect, it is very likely that they
will be correctly classified at the neighboring aspects. Thus, the
combined results of several aspects may lead to some improve-
ments in the classification performance. In this study, similar
to [1], [10]–[13], we have used sequences of three aspects sep-
arated by certain degrees. The reason is that in actual mine-
hunting scenarios an object is declared as a potential mine if
strong indications exist in 3–4 sonar pings. The three-aspect se-
quences are chosen so that overlap between them is allowed,
e.g., for 30 as-
pect separation interval. A study was also carried out to examine

the effects of varying the amount of aspect separation interval
on the classification performance of the fusion system. The per-
formance plot was generated when this separation interval was
varied from 10 to 40 in 10 steps and the optimum case was
selected. For each aspect, the two outputs of the classifier for
target and nontarget are applied to the fusion system where the
final decision is made based upon the classification results of
the 3-aspect angles.

A two-layer back-propagation neural network was designed
to perform the nonlinear three-aspect fusion. The network
had six inputs corresponding to the classification outputs of
the three aspects, four hidden layer nodes, and two output
nodes for final decision. The single-aspect classification
results of two different realizations based on the even aspect
angle data set with different synthesized reverberation real-
izations were arranged in three-aspect sequence form, e.g.,

for 30 separation case.
This data set (432 samples) was then used to train the neural
network. The network reaches the sum squared error (SSE)
goal of 10 within 200 epochs with adaptive learning rate and
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(a) (b)

(c) (d)

Fig. 6. Correct classification rates for different subband combination cases. (a) Case 1. (b) Case 2. (c) Case 3. (d) Case 4.

momentum of 0.9. The network was then tested on the testing
data set that contains sequences of three odd aspects with the
same aspect separation interval. For the 40-kHz data set, the
best performance was obtained for 40separation interval. As
for the 80-kHz data set, the three-aspect fusion system led to
perfect classification results at all the separation intervals tested.
Fig. 5(a) and (b) shows the corresponding ROC curves of the
three-aspect fusion results for this two-layer fusion network.
For the 40-kHz data set, and at the knee of this ROC
curve [Fig. 5(a)] are found to be 99.03%, 0.97%, respectively.
Fig. 5(b) shows, once again, the perfect classification results
for the wideband three-aspect fusion system.

Fig. 5(c) and (d) shows the corresponding error location plots
of this fusion system for the 40- and 80-kHz data sets, respec-
tively. In this case, the gray levels indicate errors of the system
as a result of fusing the current aspect angle and its two pre-
vious aspect interval 40for the 40-kHz data set, and 30for
the 80-kHz data set. Again the classification decision is made
based on the threshold at the knee of the corresponding ROC
curve. Comparing to the single aspect results in Fig. 3, it is evi-
dent that the multi-aspect fusion system significantly improved

the overall classification performance. For the 40 kHz, substan-
tial improvements are obtained for objects 2 and 4. In addition,
objects 1, 3, 5, and 6 are now correctly classified at all aspect
angles in the testing data. As for the 80-kHz data set, substan-
tial improvements are obtained for objects 1 and 3. In addition,
objects 1, 4, 5, and 6 are now correctly classified at all aspect an-
gles in the testing data, while only two errors occurred at 5and
145 for object 3 and one error occurred at 175for object 2.

In summary, all these results point to this important observa-
tion that the multi-aspect fusion indeed improves the classifica-
tion performance. Furthermore, wideband insonification led to
almost perfect target classification performance.

V. IMPORTANCE OFDIFFERENT FREQUENCY BANDS:
80-kHz DATA SET

The incident signal of the wideband data has a bandwidth that
spans from 30 to 110 kHz. Since this range covers a wide band-
width, the question that arises is that which frequency bands
play dominant role in the classification decision for target versus
nontarget discrimination. In order to find out the importance of
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each frequency band, in terms of classification, the following
study was carried out.

There were 12 subbands (out of 16) at the fifth level wavelet
packet decomposition that reside in the frequency range of 30
to 110 kHz. Each subband occupies a bandwidth of 7.8125 kHz.
In this study, we devised a scheme so that the subbands are used
in different combinations. The features used here are the third-
order LPC coefficients.

• Case 1: In this case, the subbands were grouped into
groups of 2 subbands, i.e.,3, 4 ; 5, 6 ; 7, 8 ; 9,
10 ; 11, 12 ; 13, 14 . The subbands collectively cover
the frequency range from 23.4375 to 117.1875 kHz with
each group covering a bandwidth of 15.625 kHz. All the
LPC features corresponding to the two nodes in each
combination were used for classification.

• Case 2: In this case, three subbands were combined to-
gether in a group, i.e., , 4, 5 ; 6, 7, 8 ; 9, 10, 11 ;
12, 13, 14 . Each 3-subband group covers a bandwidth of

23.4375 kHz. Again, all the LPC features corresponding
to each group of three nodes are used for classification.

• Case 3: In this case, four subbands were grouped together,
i.e., 3, 4, 5, 6 ; 7, 8, 9, 10 ; 11, 12, 13, 14. Each
4-subband group covers a bandwidth of 31.25 kHz. All the
LPC features for these nodes are used for classification.

• Case 4: In this case, five subbands were grouped together.
Since there are 12 subbands in total, overlapping had be to
done. The combinations were:3, 4, 5, 6, 7 ; 8, 9, 10, 11,
12 ; 10, 11, 12, 13, 14. Each 5-subband group covers a
frequency bandwidth of 39.0625 kHz. Again all the LPC
features were used.

A two-layer BPNN classifier with different structures was
used in each case listed above. The network structures were de-
termined such that for a feature vector size of, the hidden
layer had neurons while the output layer still had
2 neurons. The neuron activation functions were still the sig-
moidal function and the training parameters were the same as
those used for the other studies. The classification performance
for these four cases are presented in the plots in Fig. 6 for dif-
ferent subband groups. Note that in this study since we are
comparing the performance of different classifiers on the same
data set all the classification decisions are made based upon
hard-limiting decision, i.e., if , where and are the
outputs of the BPNN, then the unknown pattern is classified as
Target, otherwise is classified as Non-Target. As can clearly be
seen, nodes3, 4 ; 5, 6 and 11, 12 ; 13, 14 , which cover
frequency bands from 23.4375 to 54.6875 kHz and 85.9375 to
117.1875 kHz,consistently provide much better classification
than the nodes7, 8 and 9, 10 which cover the frequency
band from 54.6875 to 85.9375 kHz. This is evident by the ap-
pearance of a dip shown consistently in all the four cases. This
study reveals the important observation that the useful informa-
tion for classification may primarily be located in the sides of the
bandwidth of the wideband data. This result may be exploited
in the design of appropriate transmit signals for a specific wide-
band sonar target classification problem.

A. Subband Fusion Results: 80-kHz Data Set

In the study of the previous section, we saw that different fre-
quency bands play different role in distinguishing targets from

(a)

Fig. 7. Block diagram of the subband fusion system.

nontargets. In other words, the discrimination ability of each
subband is dependent on its frequency range and the type of
the target/nontarget. This property may be exploited to develop
a “subband fusion” system in which the initial decisions based
upon each individual subband are fused together to generate the
final decision. This section demonstrates this idea on the wide-
band data set and compares the results of the subband fusion
with those in Section III. In this study, the trained classifiers
for Case 2 in the previous section were used. As explained be-
fore, for each group of three subbands, all the extracted LPC
features in the associated subbands were combined together to
form a 12-dimensional (four LPC coefficients per subband) fea-
ture vector. This gives four sets of feature vectors for the four
groups. For each group, a two-layer BPNN with 12 inputs, 22
hidden layer neurons and two output neurons (12-22-2) was
trained based upon the even aspect data associated with that
group. The training was repeated for 36 trials with different ran-
domly initialized weights in order to select the best trained net-
work. This procedure was repeated for each group resulting in
four trained networks. These networks were then tested on the
testing data set that consisted of ten noisy (reverberation) real-
izations of the odd aspect data with SRR12 dB. The outputs
of these four classifiers were fused together in another two-layer
BPNN with 8 inputs, 20 hidden layer nodes, and 2 output nodes.
This network, which was trained based upon the outputs of the
preceding networks using the even aspect data, performs non-
linear fusion of the decisions. The entire system is shown in
Fig. 7. This subband fusion system provided exceptionally supe-
rior classification results when compared to those in Section III.
The ROC curve and the error location plot for this new fusion
system are shown in Fig. 8(a) and (b). At the knee point of
ROC, we have correct classification and false alarm rates of

% and %, respectively. It must be empha-
sized that these results are obtained based upon only single-as-
pect decision. The error location plot also attests to this superior
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(a)

(b)

Fig. 8. Classification results of the subband fusion scheme for the 80-kHz data
set. (a) ROC curve. (b) Error location plot.

performance. These results clearly show the promise of the sub-
band fusion strategy.

VI. CONCLUSION

The results presented in this paper indicate that the BPNN
classifier performed very well for different conditions, in
both single-aspect and multi-aspect cases. The wideband
80-kHz data provided much better discrimination than the
40-kHz data set. The single-aspect classification performance,

%, %, was considered to be very
good for this data set. The three-aspect fusion system provided
almost perfect classification performance by combining the
results of three aspects. The generalization ability and robust-
ness of the classifiers were also demonstrated on fifty noisy
realizations with SRR 12-dB conditions using Monte Carlo
simulations. The study in Section V indicated that certain
frequency regions in the wideband data play more important
role in the classification than the others. It was observed that the
middle frequency band of 55 to 86 kHz may be less important
comparing to those in the sides, as far as target classification is
concerned. This is an interesting point which may be exploited
in the design of the transmit signals for a specific wideband

sonar system. Finally, we studied the idea of subband fusion for
combining the decisions at different subbands for the 80-kHz
data set. This study indicated that this new fusion paradigm
provides exceptionally superior single-aspect classification
results when compared to our previous results as well as to
those of the others on this data set.
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