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ABSTRACT 
 
 
 

USING SPATIOTEMPORAL CORRELATIVE NICHE MODELS FOR EVALUATING 

THE EFFECTS OF CLIMATE CHANGE ON MOUNTAIN PINE BEETLE 

 

 
Over the last decade western North America has experienced the largest mountain pine beetle 

(Dendroctonus ponderosae Hopkins) outbreak in recorded history and Rocky Mountain forests have been 

severely impacted. Although bark beetles are indigenous to North American forests, climate change has 

facilitated the beetle’s expansion into previously unsuitable habitats. I used three correlative niche models 

(MaxEnt, Boosted Regression Trees, and Generalized Linear Models) to estimate: (i) the current potential 

distribution of the beetle in the U.S. Rocky Mountain region, (ii) how this extent has changed since 

historical outbreaks in the 1960s and 1970s, and (iii) how the potential distribution may be expected to 

change under future climate scenarios. Additionally, I evaluated the temporal transferability of the niche 

models by forecasting historical models and testing the model predictions using temporally independent 

outbreak data from the current outbreak. My results indicated that there has been a significant expansion 

of climatically suitable habitat over the past 50 years and that much of this expansion corresponds with an 

upward shift in elevation across the study area. Furthermore, my models indicate that drought was a more 

prominent driver of current outbreak than temperature, which suggests a change in the climatic signature 

between historical and current outbreaks. The current climatic niche of the mountain pine beetle includes 

increased precipitation, colder winter temperatures, and a later spring than the historical climatic niche, 

which reflects a shift into higher elevation habitats. Projections under future conditions suggest that there 

will be a large reduction in climatically suitable habitat for the beetle and that high-elevation forests will 

continue to become more susceptible to outbreak. While all three models generated reasonable predictions 

(AUC = 0.85 - 0.87), the generalized linear model correctly predicted a higher percentage of current 

outbreak localities when trained on historical data. My findings suggest that projects aiming to reduce 
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omission error in estimates of future species responses may have greater predictive success with simpler, 

generalized models. 
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PREFACE 
 

 

 

 Beginning in the late 1990s, a historical mountain pine beetle (MPB, Dendroctonus ponderosae 

Hopkins) outbreak in western North America resulted in widespread tree mortality as high as 90% in 

some lodgepole pine (Pinus contorta) stands. The Rocky Mountain region--Colorado, Utah, Wyoming, 

Montana, and Idaho--has previously experienced large MPB outbreaks, but the recent epidemic is unique 

in its scope and intensity. To better understand how environmental conditions in the region have changed 

over the past 50 years, and how these changes have contributed to the severity of the recent outbreak, I 

conducted a spatio-temporal analysis of historical and current MPB outbreaks in the Rocky Mountain 

region to identify the potential distribution of the beetle based on areas of environmental suitability. 

Additionally, I estimated future potential distributions in 2050 under two different climate change 

scenarios. Using MPB occurrence data from historical (1960-1980) and current (1997-2010) MPB 

infestations, and climate data from historical, current, and future time periods, I modeled the changes in 

both geographic and climatic space with three commonly used species distribution models (SDMs; 

MaxEnt, boosted regression trees, and generalized linear models) and a principal components analysis 

(PCA). Because predictions by SDMs are infrequently tested across time periods, I also evaluated the 

temporal transferability of the three models. The following four primary questions guided the research: 

1. How has the potential distribution of MPB shifted under changing climatic conditions, and how is 

this reflected in the species’ climatic niche; i.e., has it expanded, contracted, or shifted 

elevationally or latitudinally? 

2. What were the primary drivers of MPB outbreaks from 1960-1980 and 1997-2010 in the Rocky 

Mountain region, and how have they changed? 

3. How will the utilized climatic space of the beetle be expected to shift under projected future 

climatic conditions and how might this modify the distribution of the species? 

4. Which SDM is most appropriate for predicting suitable habitat under future climate conditions? 
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Based on past work, I hypothesized that the climatic niche expanded between historical and current 

outbreaks, and that the resulting distribution expanded upwards in elevation across the study area. I 

anticipated that the current outbreak was driven by increased summer warming and lengthening of the 

growing season as opposed to the reduction of extreme cold temperatures. Lastly, I expected that the 

projected future conditions would restrict the potential distribution. 

 This thesis is the culmination of my graduate research and was written as a manuscript for 

submission to a peer-reviewed journal. Chapter one contains the manuscript in its entirety: an introduction 

and literature review, the methods used in the analyses, modeling and statistical results, a discussion of 

my findings, and conclusions.  Chapter two discusses the key findings of my research and reflections on 

my research experience. The Appendices detail the data included in my database, the initial variables 

considered in the analysis, supplementary model results/maps, and different code (scripts) used in my 

analysis. 
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CHAPTER 1  

USING SPATIOTEMPORAL CORRELATIVE NICHE MODELS FOR EVALUATING THE 

EFFECTS OF CLIMATE CHANGE ON MOUNTAIN PINE BEETLE 
 
 

 

Introduction  

Global surface temperatures have warmed over the last three decades, with each successive decade 

warmer than the preceding decade (IPCC 2014). Substantial warming is projected in the U.S. Rocky 

Mountain region (Colorado, Utah, Wyoming, Montana, and Idaho) by mid-century with temperatures 

exceeding the global mean, and particularly pronounced at higher elevations (Bentz et al. 2010, Lukas and 

Gordon 2015). Combined with a shift in the timing and frequency of precipitation events, the Rocky 

Mountain region is forecast to grow hotter and more susceptible to drought in the coming decades (Seager 

et al. 2007, Lukas and Gordon 2015). These climatic changes portend significant ecological changes 

including species range shifts and an increase in landscape-shaping disturbances such as outbreaks of the  

mountain pine beetle (MPB, Dendroctonus ponderosae Hopkins), one of the principal drivers of 

landscape-level change in western North America (Dale et al. 2001, Parmesan 2006, Lenoir et al. 2008, 

Negrón and Fettig 2014).  

The recent MPB epidemic is a historically large outbreak that has impacted over 6.5 million hectares 

of forest in the western U.S. (Bentz et al. 2010, USFS 2011). The MPB is a major disturbance agent that 

causes widespread tree mortality and substantially alters the structure, composition, and function of North 

American coniferous forests (Logan and Powell 2001, Carroll et al. 2006, Raffa et al. 2008). Given the 

severity of the recent beetle eruption, there has been a considerable focus on the ecology and long-term 

ramifications of the infestation on North American forests (Bentz et al. 2010, Negrón and Fettig 2014). 

The Rocky Mountain region has previously experienced large MPB outbreaks (Assal et al. 2014), but fire 

suppression, reduced habitat heterogeneity, and the climatic release of previously unsuitable habitats have 

driven an outbreak unique in its scope and intensity (Taylor and Carroll 2003, Carroll et al. 2006, Raffa et 

al. 2008).  
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The MPB prefers large-diameter trees and will infest any native pine in its range, though the two most 

important host species are lodgepole pine (Pinus contorta) and ponderosa pine (P. ponderosa) found in 

montane forests throughout the study area (Amman 1978, Logan and Powell 2001). The recent outbreak, 

which initiated in the mid-1990s, has also expanded into high-elevation subalpine forests (3,000 – 3,500 

m) that were previously deemed too climatically harsh for eruptive MPB outbreaks (Logan and Powell 

2001, Carroll et al. 2006). Potential hosts in subalpine forests include five-needle pines such as whitebark 

pine (P. albicaulis), limber pine (P. flexilis), and both Rocky Mountain and Intermountain bristlecone 

pines (P. aristata and P. longaeva, respectively) (Logan and Powell 2001). During an outbreak, MPB will 

overwhelm its host via a pheromone-driven “mass attack” that results in the establishment of egg galleries 

in the phloem (Negrón and Fettig 2014). The tree is killed by a blue-stain fungus introduced by the beetle 

that penetrates the xylem and blocks water transport from the soil to the canopy; however, phloem-

feeding by adults and larvae also girdles the tree and contributes to its demise (Fairweather et al. 2013, 

Hubbard et al. 2013). 

Outbreaks of MPB are greatly influenced by climate, which primarily influences MPB in three ways:  

through adaptive seasonality, cold-induced mortality, and drought stress on host trees (Creeden et al. 

2014). Many stages of the beetle’s life cycle are thermally regulated and MPB displays adaptive 

seasonality when the emergence of adults from host trees is synchronized to the climatic conditions at the 

appropriate time of year so that MPB experiences a one-year life cycle (Amman 1978, Safranyik 1978, 

Safranyik and Carroll 2006, Hicke et al. 2006, Sambaraju et al. 2012). Adaptive seasonality is conducive 

for large outbreaks, while maladaptive seasonality (two- or three-year life cycles) can restrict outbreak 

potential (Creeden et al. 2014). In contrast to adaptive seasonality, which facilitates large outbreaks, 

extreme cold temperatures may restrict the population success of MPB by reducing over-winter survival 

and causing widespread beetle mortality (Safranyik 1978, Campbell 2007, Sambaraju et al. 2012). Cold-

induced mortality of over-wintering larvae is an important factor in MPB population dynamics, but MPB 

cold tolerance varies geographically and among seasons (Régnière and Bentz 2007). Drought indirectly 
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drives outbreaks by restricting the host tree’s ability to defend itself against beetle attacks and increases 

the probability of eruptive outbreaks (Safranyik 1978, Creeden et al. 2014). Drought is as an important 

component of beetle outbreaks, though many past studies have emphasized warming temperatures as the 

primary climatic driver behind the recent epidemic (Logan and Powell 2001, Hicke et al. 2006, Bentz et 

al. 2010, Jewett et al. 2011). 

The relationship of climate to MPB has been modeled using a variety of statistical approaches, both 

mechanistic and correlative. Mechanistic, or process-based, models have been used to incorporate explicit 

relationships between climate and MPB performance to predict adaptive seasonality (Logan and Powell 

2001, Hicke et al. 2006), cold-induced mortality (Régnière and Bentz 2007), and climatic suitability 

(Safranyik et al. 1975, Carroll et al. 2006, Bentz et al. 2010, Safranyik et al. 2010). Correlative models, 

which statistically correlate MPB outbreaks and climate, have been used to determine the climatic 

associations of MPB outbreaks and better understand the climatic conditions that support eruptive beetle 

outbreaks (Aukema et al. 2008, Evangelista et al. 2011, Jewett et al. 2011, Sambaraju et al. 2012, Creeden 

et al. 2014). Many of these models have been applied to future climate change scenarios to predict the 

climatic suitability for MPB outbreaks in a warming environment (Carroll et al. 2006, Hicke et al. 2006, 

Bentz et al. 2010, Safranyik et al. 2010, Evangelista et al. 2011, Sambaraju et al. 2012).  While many of 

these studies evaluate MPB behavior through time, none explicitly compare the climatic drivers of 

historical outbreaks with the drivers of the recent epidemic in the Rocky Mountain region. 

I utilized three correlative niche models to spatiotemporally evaluate the climatic correlates of MPB 

outbreaks since 1960. Correlative niche models—also known as bioclimatic envelopes, species 

distribution models, or ecological niche models—are probabilistic models that statistically correlate 

species’ occurrences to its present environment and are often used to estimate a species’ distribution and 

predict changes to the distribution under changing climatic conditions (Guisan and Zimmermann 2000). 

The technical foundations and relative performance of niche models have been widely reviewed (Guisan 

and Zimmermann 2000, Guisan and Thuiller 2005, Elith et al. 2006, Elith and Leathwick 2009), and these 
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models have been implemented to explore the potential impacts of climate change on a variety of species 

(Thuiller et al. 2008, Monahan et al. 2013, Khanum et al. 2013, Anderson 2013).  

I investigated how the climatic niche, potential distribution, and climatic drivers of MPB have 

changed across three time periods: 1960-1980 (historical), 1997-2010 (current), and 2040-2069 (future). I 

also refer to the potential distribution as climatically suitable habitat, or the abiotic conditions 

(topographic and climatic) that could support an MPB outbreak. Additionally, I tested niche models’ 

transferability through time, or how well models project into different time periods with conditions not 

currently found in the study area. Four primary questions guided the research: (1) How has the potential 

distribution of MPB shifted under changing climatic conditions between historical and current outbreaks 

and how will this be expected to change under future climate change scenarios? (2)  What were the 

primary climatic drivers of the historical and current outbreaks and how do they differ? (3) How will the 

utilized climatic space of the beetle be expected to shift under projected future climatic conditions and 

how might this modify the distribution of the species? and (4) Which correlative niche model is most 

appropriate for predicting suitable habitat under future climate conditions (i.e. temporal transferability)? 

Data and Methods   

The study was conducted in five U.S. states (Colorado, Idaho, Montana, Utah, and Wyoming) which 

have experienced, and continue to experience, extensive outbreaks (Figure 1, Appendix 1). To evaluate 

changes to the potential distribution and climatic drivers of MPB outbreaks, I used past and current U.S. 

Forest Service (USFS) aerial detection survey (ADS) data and a spatiotemporal modeling scheme that 

covered three time periods: 1960-1980 (historical), 1997-2010 (current), and 2040-2069 (future) (Figure 

2). Additionally, I used a Principal Components Analysis (PCA) to show changes to the occupied climatic 

niche between historical and current outbreaks. Model transferability was assessed by training each niche 

model on historical data and projecting into current climate conditions, using current occurrence data as 

the test, or evaluation, data set (Figure 2). 
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Occurrence Data 

The species occurrence data used in the analysis were generated from USFS ADS polygons that 

delineate the annual extents of MPB infestation and other forest disturbance across the five-state Rocky 

Mountain region (McConnell et al. 2000). Survey data were collected for “historical” (1960-1980) and 

“current” (1997-2010) time periods. All data were re-projected into the North American Datum 1983 

(NAD83) Albers Equal Area projection to reduce latitudinal background selection of pseudo-absence 

(background) points in the niche models (Brown 2014). All MPB polygons from each study period were 

dissolved into a single layer and a sample of 5,000 stratified random points (where strata are polygons) 

was generated from within this layer using the Geospatial Modelling Environment software (Beyer 2012). 

This sample of occurrence localities was spatially filtered with the SDMToolbox so that no occurrence 

localities were within 10 km of another occurrence (Brown 2014). Spatial filtering can reduce model 

overfitting and spatial autocorrelation, and ensures independence of the test and training data when using 

a cross-validation evaluation technique (Veloz 2009, de Oliveira et al. 2014, Boria et al. 2014, 

Radosavljevic and Anderson 2014). I filtered at 10 km because MPB generally occurs in mountainous 

terrain with high spatial heterogeneity, similar to previous modeling studies that used the 10-km filter in 

mountainous regions (Pearson et al. 2007, Anderson and Raza 2010, Boria et al. 2014). Spatial filtering 

reduced the historical dataset from 5,000 original points to 882 points. The current data exhibited a wider 

geographic spread, and therefore contained more points, so the current data were also reduced to 882 

points via random point selection to maintain consistency across the time periods.  

Historical data were acquired from individual USFS Regional Offices. The historical data were 

originally collected on marked topographic quadrangles and georeferenced and digitized in geographic 

information systems (ArcGIS, ESRI v10.2). Because there are historical surveys that remain un-digitized, 

and therefore unavailable for use in this study, it should be noted that the historical dataset is partially 

incomplete and may not reflect the full range of MPB presence in the years 1960-1980. Current data were 

downloaded from the Insect and Disease Detection Survey (IDS) Data Explorer (USFS 2014).  
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Climate data  

Climate data were acquired from ClimateWNA (version 5.10) at 1-km grid cell resolution (Wang et 

al. 2012). Historical climate data were selected for the 30-year normal period spanning 1951-1980, and 

current climate data span 1981-2010. The 30-year normal for future climate projections covers the years 

2040–69, which I refer to as “2050”. I used the global mean of 15 GCMs for two representative 

concentration pathways (RCP), RCP 4.5 and RCP 8.5, selected from phase five of the Coupled Model 

Intercomparison Project (CMIP5) multi-model data set that corresponds with the Fifth Assessment Report 

from the Intergovernmental Panel on Climate Change (IPCC) (Moss et al. 2010, Taylor et al. 2012, Wang 

et al. 2012). RCP 4.5 is considered a medium stabilization scenario (~650 ppm CO2 equivalent by 2100) 

that encompasses the vast majority of the scenarios assessed in the Fourth Assessment Report (van 

Vuuren et al. 2011). RCP 8.5 is considered a very high emissions scenario (~1370 ppm CO2 equivalent by 

2100) that assumes no current or future climate policy (van Vuuren et al. 2011).   

Forty-five initial variables were chosen from the full ClimateWNA dataset (Appendix 2, Table 5) 

based on the known climatic and environmental influences on MPB biology and ecology. These variables 

were tested for correlation based on the Pearson, Spearman, and Kendall coefficients and highly 

correlated variables (׀r0.7 ≤ ׀) were filtered using expert knowledge of MPB ecology and were chosen to 

represent seasonal climatic influences on MPB. However, four pairs of highly correlated variables were 

retained in the final analysis to examine seasonal influences on the beetle. The final predictors included 

14 climatic and topographic variables (Table 1).  

Spatiotemporal Modeling 

I used three correlative niche models (Appendix 3) and a PCA to evaluate historical and current MPB 

outbreaks. The niche models were used to estimate the potential distribution of MPB and the PCA was 

used to evaluate the potential climatic niche shift in multidimensional space. Three distinct models were 

run for this analysis: maximum entropy (MaxEnt) (Phillips et al. 2006), boosted regression trees (BRT) 

http://www.climatewna.com/
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(Elith et al. 2008), and generalized linear models (GLM) (McCullagh and Nelder 1989, Austin 2002); see 

details on model parameterization in Appendix 3. These three models have consistently demonstrated 

high performance across species functional groups and compare favorably to other correlative models 

(Elith et al. 2006, Guisan et al. 2007, Austin 2007, Stohlgren et al. 2010). All models were trained using 

the same 14 variables across all time periods (Table 1). Each model was tested internally using a 10-fold 

cross-validation (Fielding and Bell 1997). The potential geographic overlap between models was 

calculated with Schoener’s D statistic via the ‘ENMeval’ package in R v.3.1.2 (Warren et al. 2008, 

Muscarella et al. 2014, R Core Team 2014). All final maps were clipped to the combined forest 

classifications from the National Land Cover Dataset (NLCD) for 2001, 2006, and 2011 (Homer et al. 

2007, Fry et al. 2011, Jin et al. 2013). Forested areas include the sum of forest land cover classification 

codes 41 (deciduous forest), 42 (evergreen forest) and 43 (mixed forest).   

MaxEnt is a general-purpose machine learning method that was run in the stand-alone software 

package (Phillips et al. 2006). A number of recent studies have underscored the importance of carefully 

calibrating the MaxEnt model (Merow et al. 2013, Shcheglovitova and Anderson 2013, Radosavljevic and 

Anderson 2014). To parameterize MaxEnt models for MPB I experimentally tuned the parameters using 

the “ENMeval” package in R v.3.1.2 (Appendix 3, Figure 7, 8; Muscarella et al. 2014, R Core Team 

2014). I ran all MaxEnt models (historical, current, and projected) using the “all features” setting, a 

regularization multiplier of 3.0, and 20,000 background samples. Based on the ENMeval metrics, these 

settings produced the best performing models with biologically reasonable response curves (Appendix 4, 

5).   

Boosted regression trees are an ensemble method for fitting statistical models that use regression trees 

and boosting to combine many simple models and improve performance (De’ath 2007, Elith et al. 2008). 

Boosted regression trees tend to overfit models, so regularization methods are used to constrain the fitting 

procedure by optimizing three parameters: number of trees, learning rate, and tree complexity (Elith et al. 

2008). The BRT models were fitted using the Software for Assisted Habitat Modeling (SAHM) and I 
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experimentally parameterized the learning rate and tree complexity to derive models with at least 1,000 

trees and biologically sensible response curves (Morisette et al. 2013). The best settings that resulted in at 

least 1,000 trees for the historical model had a learning rate of 0.005 and tree complexity of 5; the current 

model was parameterized at 0.005 and 3.  

Generalized linear models are a regression approach that fits parametric terms using some 

combination of linear, quadratic, and/or cubic terms (Elith et al. 2006). Within SAHM I fit the GLM to a 

binomial distribution with a logit link function, and the SAHM algorithm selected the optimal model 

based on a bidirectional stepwise procedure to select covariates based on Akaike’s Information Criterion 

(AIC; Morisette et al. 2013).  

I evaluated elevational range shifts, range expansion, and range contraction to assess geographic 

trends across time periods (Figure 2). In addition to calculating these values for each individual model, I 

created an ensemble prediction for each time period to assess the average progression through time. 

Ensemble models are a solution to inter-model variation and capture the areas of agreement across models 

(Araújo and New 2007). To create the ensemble, binary suitability maps were produced using a fixed 

95% sensitivity threshold; that is, the threshold was the lowest predicted probability that encompassed 

95% of the occurrence localities (Peterson et al. 2011). The binary maps for each model were combined 

so that the resulting ensemble map contained only pixels that were deemed environmentally suitable by 

all three models (Stohlgren et al. 2010).  

The correlative niche models encompass two strategies for modeling presence-only data. MaxEnt 

draws pseudo-absences from a random sample of background pixels to account for the presence-only 

structure of the occurrence data, whereas the BRT and GLM models are derived from regression 

techniques generally associated with presence-absence data (Phillips et al. 2006). Because absence data 

were not available for the historical period, I used background data as pseudo-absences for the BRT and 

GLM models (Phillips et al. 2009). Background samples were constrained by a kernel density estimator 
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(KDE) to account for potential sampling bias that may exist when aerial surveys are primarily flown over 

federal lands (Kumar et al. 2014a, b). The KDE restricted background sampling to general “use areas” for 

MPB so that all background samples were drawn from environmental conditions the species is more 

likely to reach (Merow et al. 2013). The constrained background sampling corrects for sampling bias in 

the species occurrences by applying the same bias to the background points, thereby cancelling out the 

bias in the modeling process (Phillips et al. 2009). The KDE was generated in SAHM using a 95% 

isopleth on MPB occurrence data; i.e., the resulting mask represented the smallest area providing a 95% 

probability of finding MPB (Fieberg 2007, Morisette et al. 2013). I created separate surfaces for both 

historical and current occurrence data that were used to restrict the background “absences” in BRT and 

GLM; these surfaces were used as a bias file in MaxEnt.  

Models were evaluated using a threshold independent metric, AUC, and a threshold dependent 

metric, sensitivity (the true positive rate). The AUC metric is a commonly used statistic that represents an 

overall measure of a model’s predictive accuracy and summarizes the model’s ability to distinguish 

between a species’ presence and absence (Peterson et al. 2011). Though AUC can be a misleading 

measure of model performance, it was useful for this study because all models were trained on the same 

geographic extent and background samples were extracted from the general use area defined by the KDE 

(Lobo et al. 2008). I also evaluated sensitivity to assess model performance through time when climatic 

conditions may differ. Sensitivity is the rate of known presences correctly predicted by the model 

prediction (1 – the omission error rate) and represents the absence of omission error (Peterson et al. 

2011).   

To assess the temporal transferability of the various modeling techniques, I trained each model on the 

historical data (historical occurrences and climate data) and projected them onto current climate 

conditions (Figure 2). To assess the quality of the predictions of the forecast model, I tested the 

predictions—trained with historical occurrence data—against current occurrence localities and generated 

AUC and sensitivity statistics for each model. Sensitivity was calculated by thresholding the projection at 
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the same 95% sensitivity threshold of the historical model; for example, if the 95% threshold for the 

historical model was 0.26 then this value was used as the threshold for the projected model as well. I 

calculated AUC values for the projected models using the ROC/AUC calculator (Schroeder 2006), and 

created multivariate environmental similarity surface (MESS) maps to quantify the extent of extrapolation 

in model projections (Elith et al. 2010). The MESS maps were generated within SAHM (Morisette et al. 

2013). All current models were then projected to two climate scenarios for 2050, RCP 4.5 and RCP 8.5.  

The models were trained using the current occurrence localities and climate data, and forecast climate 

conditions were substituted to provide a projection of future climatic suitability. 

Lastly, I used a PCA model in R v.3.1.2, adapted from Broennimann et al. (2012), to assess potential 

shifts of the climatic niche in multivariate environmental space (R Core Team 2014). I ran three separate 

PCA analyses with all 14 environmental variables to contrast the fundamental niche shift of MPB across 

time periods: historical to current, current to RCP 4.5, and current to RCP 8.5. To prepare the data for the 

PCA, 20,000 random background points were selected from across the study extent and variable values 

were extracted at each point. Additionally, data were extracted at each of the 882 occurrence localities for 

each time period. Contrasting principal components were overlaid to determine the extent of MPB in 

ordinal space and to assess the niche overlap between time periods (West et al. 2015). Additionally, I 

calculated niche overlap in climatic space using Schoener’s D metric, which varies from 0 (no overlap) to 

1 (complete overlap) (Warren et al. 2008, Broennimann et al. 2012).  

Results  

Historical models 

MaxEnt and BRT were the top performing historical models with test AUC values of 0.85; GLM 

slightly underperformed these two models with a test AUC of 0.81 (Table 2). All models displayed a 

good fit, meaning they captured a large fraction of the total variability in the data, with minimal 

difference between training and test AUC values for the MaxEnt and GLM models. A pairwise 
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comparison of niche overlap predicted by the models revealed strong agreement among the models. 

MaxEnt and BRT shared 85% overlap (as calculated by Schoener’s D statistic), MaxEnt and GLM had 

80% overlap, and GLM and BRT also had 80% overlap. The historical ensemble model predicted 249,002 

km2 of climatically suitable habitat for MPB from 1960-1980 (Table 3). 

The top three predictors for the MaxEnt model were (in order of importance) summer precipitation, 

summer degree-days above 18°C, and precipitation as snow between August and the following July 

(Table 2). The top predictors for BRT were summer degree-days above 18°C, precipitation as snow, and 

the climatic moisture deficit. The top predictors for GLM were summer degree-days above 18°C, winter 

degree-days below 0°C, and elevation. The only top predictor common to all three models was summer 

degree-days above 18°C. 

Current models 

Similar to the historical models, MaxEnt and BRT were the top performing current models with a test 

AUC value of 0.82; the current GLM model had an AUC of 0.80 (Table 2). Again, all models produced 

strong predictions, though with a slight decrease in performance across the board, and all models also 

showed good fit with low ΔAUC values. A comparison of the niche overlap between current model 

predictions again showed high agreement among the models. MaxEnt and BRT shared 86% overlap, 

MaxEnt and GLM had 82% overlap, and GLM and BRT also had 84% overlap.  

The top predictors for the current outbreak showed more consistency among the models than for the 

historical models. Summer degree-days above 18°C and the climatic moisture deficit were top predictors 

in all three models. The other top predictors included summer precipitation (MaxEnt), slope (BRT), and 

the date of the end of the frost-free period (GLM). 

All models estimated a substantial range expansion for the pine beetle between the historical and the 

current time periods (Table 3). Among individual models, the BRT predicted the highest net expansion 
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with the current model estimating 38,444 km2 of additional climatically suitable habitat (Table 3). 

MaxEnt showed a net expansion of 35,577 km2 in the current time period and GLM estimated an 

expansion of 22,929 km2. The current ensemble estimates that forests in the Rocky Mountain region 

contain 295,207 km2 of climatically suitable habitat for MPB from 1997-2010, an estimated net expansion 

from the historical ensemble of 46,205 km2 (Table 3).  

In addition to an overall range expansion, the model results suggest that this range expansion 

correlates with an upward shift in elevation (Figure 3, Table 3). All of the individual models show a 

statistically significant upward shift in the mean elevation across the potential distribution. Again, the 

ensemble models demonstrate the greatest change with an elevation shift of +115 meters (p < 0.0001). Of 

the individual models, the BRT showed the greatest shift at +99 m (p < 0.0001), which corresponds with 

the greatest net expansion across the range. The MaxEnt models exhibited a +79 m (p < 0.0001) shift and 

GLM showed an increase of +22 m (p < 0.0001) between the two time periods.  

Future projections 

Under the RCP 4.5 scenario, all models predicted a net contraction of climatically suitable habitat for 

MPB (Figure 4, Table 3). The GLM model predicted the greatest contraction with a decrease of 81,553 

km2. MaxEnt predicted a contraction of 43,082 km2 and BRT estimated a 32,335 km2 decrease in 

climatically suitable habitat. The ensemble map of the three RCP 4.5 forecasts estimated 228,111 km2 of 

climatically suitable habitat in 2050, a contraction of 67,096 km2 from the current estimation and less than 

historical ensemble as well. The projections under RCP 4.5 showed greater disagreement than the 

historical and current models. The MaxEnt and BRT models showed a predicted niche overlap of 78%; 

MaxEnt and GLM overlap by 87%; and the BRT and GLM models overlap by 75%.  

The second forecast projected the models onto data from the RCP 8.5 scenario. The patterns of 

contraction seen in the RCP 4.5 projections held true for RCP 8.5 forecasts as well: GLM predicted the 

greatest contraction of 116,990 km2, MaxEnt predicted the next largest contraction at 67,404 km2, and 
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BRT estimated a reduction of 45,486 km2 of suitable area. The ensemble map of the RCP 8.5 forecasts 

estimates 194,420 km2 of climatically suitable habitat for 2050, a contraction of 100,787 km2 from the 

current estimation and a smaller range than under historical conditions. The RCP 8.5 projections had the 

least agreement of all the temporal segments. MaxEnt and BRT models showed a predicted niche overlap 

of 74%; MaxEnt and GLM overlap by 86%; and the BRT and GLM models overlap by 70%.  

Model Transferability 

All three historical models demonstrated good fit and high AUC values when projected into the 

current climate conditions; based on the test AUC values, each model performed better than the current 

models trained on the current occurrences (Table 4). Based on AUC, the MaxEnt and BRT models were 

the top performing models with AUC of 0.87, and GLM had an AUC of 0.86. MaxEnt had a slightly 

higher sensitivity of 82% compared to BRT (81%), but both were lower than GLM, which correctly 

predicted 90% of the current occurrences. Overall, all three models provided reasonable predictions 

across time periods. 

While evaluating model transferability, I used MESS maps to track the extent of extrapolation in 

model projections (Figure 5, Elith et al. 2010). The MESS maps show minimal extrapolation in all 

projections, from historical to current and current to 2050 (RCP 4.5 and RCP 8.5). Areas of high 

extrapolation were generally outside the estimated climatic niche of MPB, in alpine environments or the 

southern reaches of the study extent dominated by non-forested grassland, shrubland, and desert. 

Potential Niche Shift 

I evaluated shifts in the climatic niche space utilized by the mountain pine beetle across time periods 

using the PCA. The PCA shows the relative niche occupancy along each axis of the PCA. The first PCA 

compared the historical climatic niche to the current niche and was run with all 14 climatic and 

topographic variables and showed a significant niche between outbreaks (Figure 6). Three variables 

displayed similar loadings for the first principal component (PC1): winter degree-days below 0°C, 
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beginning of the frost free period, and spring degree-days below 0°C. The highest loading of the second 

component (PC2) was autumn precipitation. The niche overlap (Schoener’s D) between the two time 

periods was 0.30. This suggests that only 30% of the ordinal historical niche was utilized by the species 

during the current outbreak. This shift shows that the historical and current climatic niche were not 

significantly similar (p = 0.207). 

I ran the PCA comparing the current climatic niche with the potential niche under two future climate 

change scenarios, RCP 4.5 and RCP 8.5 under the assumption that the current occurrence localities would 

remain suitable habitat under future conditions (Figure 6). The results were similar under both future 

scenarios. The top loadings of the PC1 were winter degree-days below 0° C, beginning of the frost free 

period, and spring degree-days below 0° C. The PC2 was loaded primarily by autumn and spring 

precipitation. The niche shift was slightly more pronounced under RCP 8.5, which shared 54% of the 

ordinal climate space with the current niche. The overlap between the current niche and RCP 4.5 was 

61%. 

Discussion 

The models used in this study represent approximations of climatic suitability for MPB outbreaks and 

shifts in suitable area is estimated based on the correlative relationships between the predictors and the 

occurrence localities. The model results should be treated as distributional hypotheses that are limited to 

the predictors, extent of the study region, and location of MPB occurrences (Lobo et al. 2008). My results 

imply that climatic changes in the latter half of the 20th century significantly increased the amount of 

climatically suitable habitat for MPB in the U.S. Rocky Mountain region and that the recent MPB 

outbreak displayed a different climatic signature than historical outbreaks. The expansion of climatically 

suitable habitat reflects an upward elevational shift into previously unsuitable habitats and a change in 

MPB’s climatic niche. Yet, despite the recent expansion of suitable habitat for MPB, future projections 

suggest that climate warming will reduce the amount of climatically suitable areas by mid-century. 
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Climatic drivers of mountain pine beetle outbreak and range expansion 

My results revealed both direct and indirect climatic drivers of MPB outbreaks. The primary climatic 

drivers for both the historical and current outbreaks were summer heat accumulation and drought (Table 

2), which align with past findings on the climatic influence on MPB outbreaks (Bentz et al. 2010, 

Evangelista et al. 2011, Chapman et al. 2012, Creeden et al. 2014). However, my model results showed 

different climatic signatures between historical outbreaks and the recent epidemic. All three correlative 

niche models agree that the climatic moisture deficit was the most important predictor variable for the 

current outbreak which suggests that drought has played a larger role in the current outbreak than in 

historical outbreaks. An increase in summer heat, particularly at higher elevations, has certainly 

contributed to the intensity of the recent outbreak by facilitating adaptive seasonality and reducing the 

risk of over-winter mortality, but long-term drought that has contributed to increased tree mortality in the 

region has also made host trees far more susceptible to eruptive MPB outbreaks (Hicke et al. 2006, van 

Mantgem et al. 2009).  My results indicate that drier summers with reduced moisture availability and an 

earlier spring that diminishes snowpack are critical elements of shifting MPB distributions that have 

intensified over the past 50-60 years in the region (Westerling et al. 2006, Bentz et al. 2010).  

These climatic drivers resulted in a substantial expansion of the climatically suitable habitat of MPB 

between 1960 and 2010. Though there was some variability among the models, all three models, as well 

as the ensemble model, showed a net expansion of suitable habitat during the current outbreak (Table 3). 

As conditions grew warmer over the past 50 years, MPB expanded into previously unsuitable high-

elevation forests (Carroll et al. 2006), which is reflected in the primary habitat gains along the range 

margins and an increase in the average elevational range of the species (Table 3). A considerable portion 

of this expansion occurred in northwest Wyoming in the Greater Yellowstone Ecosystem. This ecosystem 

has recently experienced high rates of whitebark pine mortality driven by warmer, drier conditions 

(Jewett et al. 2011). These climatic conditions correspond with the primary climate variables that drove 

the expansion of suitable environment for MPB throughout the region, which supports past arguments 
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that climate change is largely responsible for the expansion of the beetle into this previously unsuitable 

domain (Logan and Powell 2001, Carroll et al. 2006). My estimates of the current expanse of suitable 

environment are similar to that of Evangelista et al. (2011); however, by using climate data through 2010 

I was able to capture suitable habitat in northwest Wyoming that was not predicted by their models using 

climate data through 2000. 

The transition of MPB into high-elevation forests is also shown in the utilized climatic niche. Three 

predictors contained a majority of the variability in the first principal component: the beginning of the 

frost-free period (bFFP) and degree-days below 0°C in both the spring and winter; the shift in the second 

principal component was driven by increases in precipitation in the spring and autumn. The climatic niche 

of the current outbreak shifted positively along both axes of the PCA, which indicates higher correlation 

with the principal loadings of the axes. Higher elevations would be expected to have a later last frost, 

more cold days in the winter and spring, and more precipitation in the spring and fall, and the positive 

correlations of these variables with MPB occupancy in the current outbreak suggest that the current 

outbreak occupied suitable habitats at higher elevations than in the historical outbreak.  

With regards to future predictions of climatic suitability, my models projected a net contraction under 

both future scenarios, RCP 4.5 and RCP 8.5. The net contraction was more pronounced under RCP 8.5, 

the high emissions scenario, but both projections were indicative of a decrease in climatically suitable 

habitat for MPB. There are a number of possible explanations for this trend, though none were tested 

explicitly in the modeling. The life cycle of MPB is under direct temperature control and population 

success is closely tied to phenology; adult beetles must emerge late enough in the summer to avoid lethal 

freezing, but not so late as to reduce ovipositional potential through fall/winter cooling (Logan and Bentz 

1999). Projected decreases in suitable habitat are likely related to a reduction in areas of adaptive 

seasonality; i.e., conditions that promote earlier emergence may expose overwintering larvae to cold 

temperatures before they are sufficiently cold-hardened (Hicke et al. 2006). Further warming could also 

disrupt current suitable habitat by promoting maladaptive seasonality or disrupting the beetle’s 
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physiology (e.g. flight), which could reduce the effectiveness of the species’ “mass attack” strategy and 

other key life stages (McCambridge 1971, Safranyik 1978, Logan and Bentz 1999). Though climate 

change is expected to intensify all aspects of insect outbreaks, warming at lower elevations and latitudes 

could result in the reduction of suitable environments for MPB, which is shown in the model predictions 

(Figure 4, Logan et al. 2003). There is less confidence in forecasts of precipitation in climate models, so 

anticipating the effects of drought on climatically suitable habitat in the future may be more difficult than 

linking potential changes to warming temperatures. 

The PCA revealed a potential niche shift under both RCP 4.5 and RCP 8.5 (Figure 6). Without known 

future occurrences I was only able to estimate the background environment and extract forecast 

conditions at the current outbreak localities, so this approach assumes that the current suitable habitat will 

also be suitable—biologically and climatically—in the future. Moreover, this approach does not take into 

account any future expansion, biotic interactions, and currently unaccounted localities. The two principal 

components were loaded similarly to the historical/current PCA; the first component reflected the 

beginning of the frost-free period (bFFP) and degree-days below 0°C in both the spring and winter and 

the second principal component was loaded by precipitation in the spring and autumn. The future niche 

space was similar under both climate scenarios, but expansion of the niche under RCP 8.5 was slightly 

more pronounced than RCP 4.5, which would be expected because it is a more severe forecast. Overall, 

the future climatic space shifted negatively along the x-axis and positively along the y-axis, which 

suggests a reduction in degree-days below 0°C in the winter and a warmer, earlier spring. The shift along 

the y-axis indicates an increase in precipitation in the spring and fall, though this was fairly minimal 

compared to the horizontal shift. The PCA suggests that currently occupied habitats will continue to grow 

warmer and that the high-elevation habitats will become more conducive to beetle outbreaks.   
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Spatiotemporal model transferability 

Predicting a species’ response to climate change assumes that models are transferable through time 

and that models adequately extrapolate to novel conditions, or conditions not currently found in the study 

area. Predicting species’ responses to novel conditions often involves extrapolation beyond the range of 

the data used to train the model, which can be more complicated than interpolative forecasting because 

temporal or spatially independent data is often unavailable to test model predictions (Williams et al. 

2007). This transferability (also called “generality”) refers to a model’s ability to make useful predictions 

in a different context from which it was trained, and models with better transferability would be expected 

to make more useful predictions (Dobrowski et al. 2011). In general, broadly applicable models provide 

more useful predictions than those that only accurately predict occurrence based on a narrow set of 

conditions (Wenger and Olden 2012).  

Multiple studies have addressed the issue of temporal transferability for a range of models (Araújo et 

al. 2005, Pearman et al. 2008, Kharouba et al. 2009, Dobrowski et al. 2011, Heikkinen et al. 2012), but 

given the relative lack of temporally independent data sets such investigations are still fairly uncommon 

(Araújo et al. 2005). Because a species’ observed distribution alone cannot provide information on how a 

species may respond to novel conditions, assessments of temporal transferability are important for 

determining the usefulness of predicted responses to climate change (Fitzpatrick and Hargrove 2009). In 

my study, all three model projections provided reasonably good predictions (test AUC values > 0.85) 

when projected through time and there was little difference in model performance (Table 4). Given past 

research on transferability, the relative similarity between model projections was expected; in general, the 

functional traits of species influence transferability more than differences in the modeling algorithms 

(Kharouba et al. 2009, Dobrowski et al. 2011, Heikkinen et al. 2012). The results from this study may be 

useful for predicting the climate change responses of other native bark beetles (Coleoptera: 

Curculionidae, Scolytinae) such as the spruce beetle (D. rufipennis Kirby) and western pine beetle (D. 

brevicomis).  
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The choice of modeling algorithm for forecasting will largely be determined by the goals of the 

project, but my analysis suggests that a simpler model, such as the GLM, may be more appropriate for 

future predictions that seek to limit omission error. GLM performed 8-9% better than the BRT and 

MaxEnt models but did not adequately discriminate between unsuitable high-elevation environments and 

the mid-elevation environments that are the primary habitats of the beetle. Because of this generality the 

GLM predicted a much narrower elevational shift and less expansion of suitable habitat between the time 

periods; however, the generalized prediction yielded more accurate predictions of current outbreaks. The 

GLM had the lowest omission error, which is especially important in analyses of relocation, translocation, 

or species reintroduction, as well in assessments of risk from invasive species or disease (Araújo and 

Peterson 2012).  

The MESS maps reveal that, despite projection across temporal domains, extrapolation in the model 

projections was fairly limited (Figure 5). None of the forecasts from either the historical to current time 

period, or from the current to future scenarios, exhibit significant novelty in regards to the variables used 

in the models, and regions that did exhibit novel conditions are not generally susceptible to MPB 

outbreaks (non-forested, high-elevation alpine and southern shrub and desert ecosystems). There are a 

couple of possible explanations for this. First, the chosen time periods may not be separated by enough 

time to show significant climatic changes. Yet, the past three decades have shown unprecedented 

warming, a trend that is anticipated to continue over the next three decades (IPCC 2014). Both current 

and future climate data should reflect this warming, and novel conditions would be expected. Instead, it is 

more likely that the projections lacked novel conditions because the models were trained on data drawn 

from a heterogeneous landscape. Rocky Mountain landscapes are highly varied and have significant 

topographic relief throughout the region in addition to a large latitudinal gradient.  As a result, though 

certain locations might see drastic climatic changes, the new conditions are likely found elsewhere in the 

study area and were used to train the model. For MPB, a generalist herbivore, estimates of climatically 

suitable areas in the future can be viewed with a higher degree of confidence than a specialist species with 
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a more restrictive elevation or latitudinal range because model projections were not extrapolating to novel 

conditions. 

Modeling future suitability requires a number of assumptions that may not be true under novel 

climatic and environmental conditions. For example, over the past 20-30 years the study region has 

undergone significant population growth in exurban areas that overlap with MPB habitat, and the current 

outbreak largely coincides with an increase in large forest fires (>400 ha) across the same habitats 

(Westerling et al. 2006, Maestas et al. 2011). These changes have introduced substantial environmental 

change to habitats that support MPB, and as a result, current MPB occurrences may not reflect a species 

at equilibrium with its environment, which is one of the key assumptions of correlative niche models 

(Wiens et al. 2009). This can be problematic when applying modeling algorithms to novel temporal 

domains under future climate scenarios, and future predictions should be interpreted cautiously (Araújo 

and Peterson 2012). Correlative niche models are also unable to account for evolutionary adaptations that 

may occur over time (Pearson and Dawson 2003). When projecting future responses of MPB to climate 

change, I can estimate future suitable habitat but cannot forecast the effects of warming on host trees or 

how the beetle may respond to other rapidly changing environmental conditions (Bentz et al. 2010). I 

have high confidence in the modeled response of the beetle to 20th-century warming because the 

predictions are rooted in actual occurrences, but future projections should be interpreted cautiously.   

Furthermore, there is inherent uncertainty in the data used in this analysis. Although improvements in 

global positioning systems (GPS), GIS, and aerial detection techniques have reduced the uncertainty of 

recent outbreak polygons, rates of omission—when a category other than ‘no damage’ is found on the 

ground but no observation was recorded on the aerial survey map—for aerial detection survey data can be 

as high as 35% in lodgepole pine forests. The historical MPB dataset may have higher error rates resulting 

from georeferencing and digitizing old topographic quadrangles (Johnson and Ross 2008). For this 

analysis, I can reasonably expect that a 1-km pixel would encompass most of the uncertainty from the 

aerial survey; however, this geographic error may result in an MPB occurrence correlating with different 
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conditions than the species experienced in the environment. There are also varying levels of uncertainty 

associated with the different climate data products used. The various interpolative and downscaling 

techniques used by ClimateWNA introduce uncertainty into the data, and future climate forecasts retain 

internal model variability (Beaumont et al. 2007, Wang et al. 2012). Through careful calibration and a 

deliberate consideration of this uncertainty I was able to reduce some of the uncertainty in my modeling, 

but model predictions—particularly forecasts into future domains—should be interpreted as estimates and 

geographic approximations, not certainties.  

Conclusions 

My research reveals a significant expansion of climatically suitable area for MPB over the past half-

century in both geographic and climatic space; however, projected warming may reduce climatic 

suitability under future climate scenarios. Furthermore, my results suggest that the recent MPB epidemic 

showed a different climatic signature than historical outbreaks as drought drove model predictions more 

so than temperature increases. The shift of climatically suitable habitats into higher elevations is expected 

to continue in the future, and this shift threatens sensitive high-elevation ecosystems such as those 

dominated by whitebark pine, but may also reflect the de-stabilization of currently suitable habitats at 

lower elevations (Jewett et al. 2011). My results confirm that climate change has driven a range expansion 

of MPB and corroborates past research on the effects of climate on the spatial distribution of MPB 

outbreaks. 

I have also demonstrated that three common correlative niche models provide fairly reliable estimates 

of species response to climate change. While studies utilizing correlative models should always be aware 

of the assumptions and limitations of the models, correlative niche models can be an effective and reliable 

tool in predicting change across temporal domains (Pearson and Dawson 2003, Araújo and Peterson 

2012). Simpler algorithms, like the GLM, may provide more general predictions that project better across 

temporal domains and reduce omission error.  
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Table 1: Predictor variables used in the three niche models. For a detailed description of climate variables see Wang et al. (2012). 

 

Variable Description Rationale

CMD Hargreaves climatic moisture deficit (CMD). Sum of the monthly 

difference between reference atmospheric evaporative demand (Eref) and 

precipitation. A higher CMD reflects a greater moisture deficit. 

PAS Precipitation as snow (PAS, mm) between August of previous year and 

July of current year

PPT_sp Spring precipitation between March - May

PPT_sm Summer precipitation between June - August

PPT_at Autumn precipitation between September - November Reduction in autumn moisture immediately following an 

attack benefits larval over-winter survival (Amman 

1978).

bFFP Julian date on which the frost-free period (FFP) begins Spring temperature affects larval development (Amman 

1978, Aukema et al. 2008)

eFFP Julian date on which the frost-free period ends Early onset of frost period in the late summer and 

autumn may affect egg and larval development 

(Safranyik 1978)

Tmin_wt Winter mean minimum temperature (°C)

DD_0_wt Winter degree-days below 0° C

DD_0_sp Spring degree-days below 0° C Spring temperature affects larval development (Amman 

1978, Aukema et al. 2008)

DD18_sm Summer degree-days above 18° C Summer heat accumulation affects many aspects of the 

MPB life cycle including emergence, flight, and egg 

hatch (Sambaraju et al. 2012)

elevation Digital elevation model (DEM) at 1-km resolution

slope Maximum change in elevation between each cell and its eight neighbors

aspect Downslope direction of a grid cell

Severe winter temperatures can reduce over-winter 

survival and cause widespread beetle mortality 

(Safranyik 1978, Campbell 2007, Sambaraju et al. 2012)

Topographic variables roughly define suitable 

topography for host species (Safranyik 1978, Sambaraju 

et al. 2012)

Drought affects the host tree’s ability to defend itself 

against bark beetle attack (Safranyik 1978, Creeden et al. 

2014). Below-average precipitation across the growing 

season correlate with increased MPB (Amman 1978, 

Carroll et al. 2006).
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Table 2: Model summary and results. Training AUC calculated with an internal 10-fold cross-validation; Δ AUC is a measure of model 

overfit (over parameterization) and lower values indicate better fit. 

Model
Number 

variables* 
Top variables

Training 

AUC
Test AUC Δ AUC

MaxEnt – Historical 12
Summer precipitation, summer degree-days 

(18°C), precipitation as snow
0.86 0.85 0.01

BRT – Historical 10
Summer degree-days (18°C), precipitation 

as snow, climatic moisture deficit
0.88 0.85 0.03

GLM - Historical 6
Summer degree-days (18°C), winter degree-

days below 0°C, elevation
0.81 0.81 0

MaxEnt - Current 12
Climatic moisture deficit, summer 

precipitation, summer degree-days (18°C)
0.82 0.82 0

BRT - Current 6
Climatic moisture deficit, summer degree-

days (18°C), slope
0.84 0.82 0.02

GLM – Current 7
Climatic moisture deficit, summer degree-

days (18°C), end of frost-free period
0.8 0.8 0

Model Description Model Evaluation

* All variables were included in the initial run, but were reduced through a jackknife test of variable importance. In 

MaxEnt, variables of low importance were manually removed. The BRT and GLM algorithms in SAHM automatically 

removed variables of low importance.
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Table 3: The predicted area (km2) of climatically suitable habitat for the mountain pine beetle 

across historical, current, and future time periods. Predicted changes in area for current and 2050 

estimates show the calculated areas of suitable habitat and the extent of expansion and contraction 

from the preceding time period (i.e. range expansion for the current estimates reflects change 

compared to the historical predictions). The elevation shift reflects the mean elevation of 

climatically suitable habitats. All values reflect suitable habitat clipped to the NLCD forest layers. 

Model
Total 

Area

Range 

expansion

Range 

contraction 
Net 

Elevation shift 

(m)

Historical

MaxEnt - Historical 275,565 - - - -

BRT - Historical 267,840 - - - -

GLM - Historical 311,565 - - - -

Ensemble - Historical 249,002 - - - -

Current

MaxEnt - Current 311,142 41,254 5,677 35,577 + 79

BRT - Current 306,284 45,510 7,066 38,444 + 99

GLM - Current 322,123 17,224 6,666 10,558 + 22

Ensemble - Current 295,207 52,350 6,145 46,205 + 115

Future - RCP 4.5

MaxEnt – RCP 4.5 267,970 2,987 46,069 -43,082 + 41

BRT - RCP 4.5 273,949 3,830 36,165 -32,335 + 19

GLM - RCP 4.5 240,570 46 81,599 -81,553 + 110

Ensemble - RCP 4.5 228,111 1,570 68,666 -67,096 + 87

Future - RCP 8.5

MaxEnt - RCP 8.5 243,738 1,440 68,844 -67,404 + 74

BRT - RCP 8.5 260,798 2,381 47,867 -45,486 + 24

GLM - RCP 8.5 205,133 0 116,990 -116,990 + 171

Ensemble - RCP 8.5 194,420 731 101,518 -100,787 + 139
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Table 4: Evaluation of model transferability from historical to current climate conditions. Sensitivity is based on the 95% sensitivity 

threshold used for the historical model and applied to projections with the current climate data. The current occurrence localities were 

used as test data, temporally independent from the training data. Sensitivity is the number of correctly predicted current occurrences out 

of 882 occurrence localities. 

 

Model Test AUC Sensitivity 

MaxEnt – historical projected to current 0.87 82% (728/882) 

BRT – historical projected to current 0.87 81% (717/882) 

GLM – historical projected to current 0.85 90% (798/882) 
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Figure 1: The five-state Rocky Mountain region comprising Colorado, Utah, Wyoming, Montana, 

and Idaho. The map shows topographic relief (1-km cells) across the region. Legend: elevations 

displayed as low elevation (140-1000 m, green), mid-elevation (1000-2500 m, orange/red), and high-

elevation (> 2500 m, gray/white). 



 

28 
 

 

Figure 2: Schematic representation of the modeling design. See Methods for details; ADS is aerial 

detection survey. 
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Figure 3: Estimated shift in climatically suitable areas between historical and current outbreaks. 

Legend: Suitable conditions in both outbreaks (gray), range expansion (green), range contraction 

(red).
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Figure 4: The ensemble models showing the shift in climatically suitable conditions under both the RCP 4.5 and RCP 8.5 future climate 

scenarios Legend: Climatically suitable habitat for current outbreak (gray), range expansion (green), range contraction (red). 
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Figure 5: A comparison of predictor variables using Multivariate Environmental Similarity Surface 

(MESS) maps. The MESS calculation represents how similar a point is to a reference set of points. 

Negative values indicate novel environments where at least one variable has a value outside the 

range of environments found in the reference data. Sites with positive values indicate that the full 

range of environmental variables was found in the reference data; high positive values are fairly 

common and lower values represent a relatively unusual environment (Elith et al. 2010). Legend: 

green (positive), white (around zero), red (negative). Darker colors indicate more extreme values. 
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Figure 6: Principal component analysis of niche shift in environmental space for D. ponderosae. 

Blue shading represents overlap between periods. The solid and dashed contour lines illustrate, 

respectively, 100% and 50% of the available (background) environment. The solid arrows 

represent the shift of the niche for occupied sites and the dashed lines represent the shift across the 

full study area extent. Axes show the primary loadings of each principal component. (A) historical 

(green) and current (red); (B) current (red) and future under RCP 4.5 (gold); (C) current (red) and 

future under RCP 8.5 (purple). 



 

33 
 

REFERENCES 
 
 
 

Amman, G. D. 1978. Biology, ecology, and causes of outbreaks of the mountain pine beetle in lodgepole 

pine forests. – In: Kibbee, D.L. et al. (eds), Theory and practice of mountain pine beetle 

management in lodgepole pine forests, 25-27, April 1978, Pullman, WA. Univ. of Idaho, Moscow, 

pp. 31–53. 

Anderson, R. P. 2013. A framework for using niche models to estimate impacts of climate change on 

species distributions. - Ann. N. Y. Acad. Sci. 1297: 8–28. 

Anderson, R. P. and Raza, A. 2010. The effect of the extent of the study region on GIS models of species 

geographic distributions and estimates of niche evolution: Preliminary tests with montane rodents 

(genus Nephelomys) in Venezuela. - J. Biogeogr. 37: 1378–1393. 

Araújo, M. B. and New, M. 2007. Ensemble forecasting of species distributions. - Trends Ecol. Evol. 22: 

42–7. 

Araújo, M. B. and Peterson, A. 2012. Uses and misuses of bioclimatic envelope modeling. - Ecology 93: 

1527–1539. 

Araújo, M. B. et al. 2005. Validation of species – climate impact models under climate change. - Glob. 

Chang. Biol. 11: 1504–1513. 

Assal, T. J. et al. 2014. Modeling a historical mountain pine beetle outbreak using Landsat MSS and 

multiple lines of evidence. - Remote Sens. Environ. 155: 275–288. 

Aukema, B. H. et al. 2008. Movement of outbreak populations of mountain pine beetle: influences of 

spatiotemporal patterns and climate. – Ecography. 31: 348–358. 

Austin, M. 2002. Spatial prediction of species distribution: an interface between ecological theory and 

statistical modelling. - Ecol. Modell. 157: 101–118. 



 

34 
 

Austin, M. P. 2007. Species distribution models and ecological theory: A critical assessment and some 

possible new approaches. - Ecol. Modell. 200: 1–19. 

Beaumont, L. J. et al. 2007. Where will species go? Incorporating new advances in climate modelling into 

projections of species distributions. - Glob. Chang. Biol. 13: 1368–1385. 

Bentz, B. J. et al. 2010. Climate change and bark beetles of the western United States and Canada: Direct 

and indirect effects. - Bioscience 60: 602–613. 

Beyer, H.L. 2012. Geospatial modelling environment (Version 0.7.3.0). 

http://www.spatialecology.com/gme.  

Boria, R. A. et al. 2014. Spatial filtering to reduce sampling bias can improve the performance of 

ecological niche models. - Ecol. Modell. 275: 73–77. 

Broennimann, O. et al. 2012. Measuring ecological niche overlap from occurrence and spatial 

environmental data. - Glob. Ecol. Biogeogr. 21: 481–497. 

Brown, J. L. 2014. SDMtoolbox: A python-based GIS toolkit for landscape genetic, biogeographic and 

species distribution model analyses. - Methods Ecol. Evol. 5: 694–700. 

Campbell, E. 2007. Spatial distribution of mountain pine beetle outbreaks in relation to climate and stand 

characteristics: a dendroecological analysis. - J. Integr. Plant … 49: 168–178. 

Carroll, A. L. et al. 2006. Impacts of climate change on range expansion by the mountain pine beetle. - 

Mt. Pine Beetle Initiat. 2006-14 

Chapman, T. B. et al. 2012. Spatiotemporal patterns of mountain pine beetle activity in the southern 

Rocky Mountains. - Ecology 93: 2175–85. 

Creeden, E. P. et al. 2014. Climate, weather, and recent mountain pine beetle outbreaks in the western 

United States. - For. Ecol. Manage. 312: 239–251. 

Dale, V. H. et al. 2001. Climate change and forest disturbances. - Bioscience 51: 723. 

http://www.spatialecology.com/gme


 

35 
 

de Oliveira, G. et al. 2014. Evaluating, partitioning, and mapping the spatial autocorrelation component in 

ecological niche modeling: a new approach based on environmentally equidistant records. - 

Ecography. 37: 001–011. 

De’ath, G. 2007. Boosted trees for ecological modeling and prediction. - Ecology 88: 243–251. 

Dobrowski, S. Z. et al. 2011. Modeling plant ranges over 75 years of climate change in California, USA: 

Temporal transferability and species traits. - Ecol. Monogr. 81: 241–257. 

Elith, J. and Leathwick, J. R. 2009. Species distribution models: Ecological explanation and prediction 

across space and time. - Annu. Rev. Ecol. Evol. Syst. 40: 677–697. 

Elith, J. et al. 2006. Novel methods improve prediction of species’ distributions from occurrence data. - 

Ecography. 29: 129–151. 

Elith, J. et al. 2008. A working guide to boosted regression trees. - J. Anim. Ecol. 77: 802–13. 

Elith, J. et al. 2010. The art of modelling range-shifting species. - Methods Ecol. Evol. 1: 330–342. 

Evangelista, P. H. et al. 2011. Assessing forest vulnerability and the potential distribution of pine beetles 

under current and future climate scenarios in the Interior West of the US. - For. Ecol. Manage. 262: 

307–316. 

Fairweather, M.L., McMillin, J., Rogers, T., Conklin, D., and Fitzgibbon, B. 2006. Field guide to insects 

and diseases of Arizona and New Mexico forests. – USDA Forest Service Southwestern, Region 

MR-R3-16-3, p. 215. 

Fieberg, J. 2007. Kernel density estimators of home range: smoothing and the autocorrelation red herring. 

- Ecology 88: 1059–1066. 

Fielding, A. H. and Bell, J. F. 1997. A review of methods for the assessment of prediction errors in 

conservation presence/absence models. - Environ. Conserv. 24: 38–49. 



 

36 
 

Fitzpatrick, M. C. and Hargrove, W. W. 2009. The projection of species distribution models and the 

problem of non-analog climate. - Biodivers. Conserv. 18: 2255–2261. 

Fry, J. A. et al. 2011. Completion of the 2006 national land cover database for the conterminous United 

States. - Photogramm. Eng. Remote Sensing 77: 858–566. 

Guisan, A. and Zimmermann, N. E. 2000. Predictive habitat distribution models in ecology. - Ecol. 

Modell. 135: 147–186. 

Guisan, A. and Thuiller, W. 2005. Predicting species distribution: offering more than simple habitat 

models. - Ecol. Lett. 8: 993–1009. 

Guisan, A. et al. 2007. What matters for predicting the occurrences of trees: techniques, data, or species’ 

characteristics? - Ecol. Monogr. 77: 615–630. 

Heikkinen, R. K. et al. 2012. Does the interpolation accuracy of species distribution models come at the 

expense of transferability? - Ecography. 35: 276–288. 

Hicke, J. A. et al. 2006. Changing temperatures influence suitability for modeled mountain pine beetle 

(Dendroctonus ponderosae) outbreaks in the western United States. - J. Geophys. Res. 1965: 1–23. 

Homer, C. et al. 2007. Completion of the 2001 national land cover database for the conterminous United 

States. - Photogramm. Eng. Remote Sens. 73: 337–341. 

Hubbard, R. M. et al. 2013. Changes in transpiration and foliage growth in lodgepole pine trees following 

mountain pine beetle attack and mechanical girdling. - For. Ecol. Manage. 289: 312–317. 

IPCC 2014. Climate Change 2014: Synthesis Report. - In Core Writing Team, R.K. Pachauri and L.A. 

Meyer (eds), Contribution of working groups I, II and III to the fifth assessment report of the 

Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland, 151 pp. 

Jewett, J. T. et al. 2011. Spatiotemporal relationships between climate and whitebark pine mortality in the 

Greater Yellowstone ecosystem. - For. Sci. 57: 320–335. 



 

37 
 

Jin, S. et al. 2013. A comprehensive change detection method for updating the national land cover 

database to circa 2011. - Remote Sens. Environ. 132: 159–175. 

Johnson, E. W. and Ross, J. 2008. Quantifying error in aerial survey data. - Aust. For. 71: 216–222. 

Khanum, R. et al. 2013. Predicting impacts of climate change on medicinal asclepiads of Pakistan using 

Maxent modeling. - Acta Oecologica 49: 23–31. 

Kharouba, H. M. et al. 2009. Historically calibrated predictions of butterfly species’ range shift using 

global change as a pseudo-experiment. - Ecology 90: 2213–2222. 

Kumar, S. et al. 2014a. Assessing the potential for establishment of western cherry fruit fly using 

ecological niche modeling. - J. Econ. Entomol. 107: 1032–1044. 

Kumar, S. et al. 2014b. Evaluating correlative and mechanistic niche models for assessing the risk of pest 

establishment. - Ecosphere 5: 86, http://dx.doi.org/10.1890/ES14-00050.1. 

Lenoir, J. et al. 2008. A significant upward shift in plant species optimum elevation during the 20th 

century. - Science 320: 1768–71. 

Lobo, J. M. et al. 2008. AUC: a misleading measure of the performance of predictive distribution models. 

- Glob. Ecol. Biogeogr. 17: 145–151. 

Logan, J. A. and Bentz, B. J. 1999. Model analysis of mountain pine beetle (Coleoptera: Scolytidae) 

seasonality. - Environ. Entomol. 28: 924-934. 

Logan, J. A. and Powell, J. A. 2001. Ghost forests, global warming, and the mountain pine beetle 

(Coleoptera : Scolytidae). - Am. Entomol. 47: 160–173. 

Logan, J. A. et al. 2003. Assessing the impacts of global warming on forest pest dynamics. - Front. Ecol. 

Environ. 1: 130–137. 



 

38 
 

Lukas, J. and Gordon, E. 2015. Chapter 2—Colorado’s climate: Past and future. In Gordon, E. and Ojima, 

D. (ed.), Colorado Climate Change Vulnerability Study. University of Colorado-Boulder Colorado 

State University. 

Maestas, J. D. et al. 2011. Biodiversity and land-use change in the American mountain west. - Geogr. 

Rev. 91: 509–524. 

McCambridge, W. 1971. Temperature limits of flight of the mountain pine beetle, Dendroctonus 

ponderosae. - Ann. Entomol. Soc. Am. 64: 534–535. 

McConnell, T. et al. 2000. A guide to conducting aerial sketchmapping surveys. – FHTET 00-01. U.S. 

Department of Agriculture, Forest Service, Fort Collins, CO. 

McCullagh, P. and Nelder, J.A. 1989. Generalized linear models. – Chapman and Hall. 

Merow, C. et al. 2013. A practical guide to MaxEnt for modeling species’ distributions: what it does, and 

why inputs and settings matter. – Ecography. 36: 1058–1069. 

Monahan, W. B. et al. 2013. Forecasting distributional responses of limber pine to climate change at 

management-relevant scales in rocky mountain national park. - PLoS One 8: e83163. 

Morisette, J. T. et al. 2013. VisTrails SAHM: visualization and workflow management for species habitat 

modeling. - Ecography. 36: 129–135. 

Moss, R. H. et al. 2010. The next generation of scenarios for climate change research and assessment. - 

Nature 463: 747–56. 

Muscarella, R. et al. 2014. ENMeval: An R package for conducting spatially independent evaluations and 

estimating optimal model complexity for Maxent ecological niche models. - Methods Ecol. Evol. 5: 

1–8. 

Negrón, J. F. and Fettig, C. J. 2014. Mountain pine beetle, a major disturbance agent in US western 

coniferous forests: A Synthesis of the state of knowledge. - For. Sci. 60: 409–413. 



 

39 
 

Parmesan, C. 2006. Ecological and evolutionary responses to recent climate change. - Annu. Rev. Ecol. 

Evol. Syst. 37: 637–669. 

Pearman, P. B. et al. 2008. Prediction of plant species distributions across six millennia. - Ecol. Lett. 11: 

357–369. 

Pearson, R. G. and Dawson, T. P. 2003. Predicting the impacts of climate change on the distribution of 

species: are bioclimate envelope models useful? - Glob. Ecol. Biogeogr. 12: 361–371. 

Pearson, R. G. et al. 2007. Predicting species distributions from small numbers of occurrence records: a 

test case using cryptic geckos in Madagascar. - J. Biogeogr. 34: 102–117. 

Peterson, N. et al. 2011. Ecological niches and geographic distributions. – Princeton Univ. Press. 

Phillips, S. J. et al. 2006. Maximum entropy modeling of species geographic distributions. - Ecol. Modell. 

190: 231–259. 

Phillips, S. et al. 2009. Sample selection bias and presence-only distribution models: implications for 

background and pseudo-absence data. - Ecol. Appl. 19: 181–197. 

Radosavljevic, A. and Anderson, R. P. 2014. Making better Maxent models of species distributions: 

complexity, overfitting and evaluation. - J. Biogeogr. 41: 629–643. 

Raffa, K. F. et al. 2008. Cross-scale drivers of natural disturbances prone to anthropogenic amplification: 

The dynamics of bark beetle eruptions. - Bioscience 58: 501. 

Régnière, J. and Bentz, B. J. 2007. Modeling cold tolerance in the mountain pine beetle, Dendroctonus 

ponderosae. - J. Insect Physiol. 53: 559–72. 

 Safranyik, L. 1978. Effects of climate and weather on mountain pine beetle populations. – In: Kibbee, 

D.L. et al. (eds), Theory and practice of mountain pine beetle management in lodgepole pine forests, 

25-27, April 1978, Pullman, WA. Univ. of Idaho, Moscow, pp. 77–84. 

Safranyik, L. and Carroll, A. L. 2006. The biology and epidemiology of the mountain pine beetle in 

lodgepole pine forests. - In: Safranyik, L. and Wilson, W. R. (eds), The Mountain pine beetle: A 



 

40 
 

synthesis of biology, management, and impacts on lodgepole pine. Pacific Forestry Centre, pp. 3–

66. 

Safranyik, L. et al. 1975. An interpretation of the interaction between lodgepole pine, the mountain pine 

beetle and its associated blue-stain fungi in western Canada. – In: Baumgartner, D. M. (ed.), 

Management of lodgepole pine ecosystems. Washington State Univ. Cooperative Extension Service, 

Pullman, pp. 406 – 428. 

Safranyik, L. et al. 2010. Potential for range expansion of mountain pine beetle into the boreal forest of 

North America. - Can. Entomol. 142: 415–442. 

Sambaraju, K. R. et al. 2012. Climate change could alter the distribution of mountain pine beetle 

outbreaks in western Canada. - Ecography. 35: 211–223. 

Schroeder B. 2006. ROC/AUC-calculation. -  

http://brandenburg.geoecology.unipotsdam.de/users/schroeder/download.html.  

Seager, R. et al. 2007. Model projections of an imminent transition to a more arid climate in southwestern 

North America. - Science 316: 1181–1184. 

Shcheglovitova, M. and Anderson, R. P. 2013. Estimating optimal complexity for ecological niche 

models: A jackknife approach for species with small sample sizes. - Ecol. Modell. 269: 9–17. 

Stohlgren, T. J. et al. 2010. Ensemble habitat mapping of invasive plant species. - Risk Anal. 30: 224–35. 

Taylor, S. and Carroll, A. 2003. Disturbance, forest age, and mountain pine beetle outbreak dynamics in 

BC: A historical perspective. - Mt. Pine Beetle Symp. Challenges Solut.: 41–51. 

Taylor, K. E. et al. 2012. An overview of CMIP5 and the experiment design. - Bull. Am. Meteorol. Soc. 

93: 485–498. 

Thuiller, W. et al. 2008. Predicting global change impacts on plant species’ distributions: Future 

challenges. - Perspect. Plant Ecol. Evol. Syst. 9: 137–152. 

http://brandenburg.geoecology.unipotsdam.de/users/schroeder/download.html


 

41 
 

U.S. Forest Service (USFS) 2011. Western bark beetle strategy: Human safety, recovery and resiliency. – 

USDA Forest Service. 

USFS 2014. Insect and disease detection survey database (IDS). Digital Data. - Forest Health Technology 

Enterprise Team. http://foresthealth.fs.usda.gov/ids. 

van Mantgem, P. J. et al. 2009. Widespread increase of tree mortality rates in the western United States. - 

Science 323: 521–4. 

van Vuuren, D. P. et al. 2011. The representative concentration pathways: An overview. - Clim. Change 

109: 5–31. 

Veloz, S. D. 2009. Spatially autocorrelated sampling falsely inflates measures of accuracy for presence-

only niche models. - J. Biogeogr. 36: 2290–2299. 

Wang, T. et al. 2012. ClimateWNA—High-resolution spatial climate data for western North America. - J. 

Appl. Meteorol. Climatol. 51: 16–29. 

Warren, D. L. et al. 2008. Environmental niche equivalency versus conservatism: Quantitative approaches 

to niche evolution. - Evolution, 62: 2868–2883. 

Wenger, S. J. and Olden, J. D. 2012. Assessing transferability of ecological models: An underappreciated 

aspect of statistical validation. - Methods Ecol. Evol. 3: 260–267. 

West, A. M. et al. 2015. Using high-resolution future climate scenarios to forecast Bromus tectorum 

invasion in Rocky Mountain National Park. - PLoS One 10: e0117893. 

Westerling, A. L. et al. 2006. Warming and earlier spring increase western U.S. forest wildfire activity. - 

Science 313: 940–943. 

Wiens, J. A. et al. 2009. Niches, models, and climate change: assessing the assumptions and uncertainties. 

- Proc. Natl. Acad. Sci. U. S. A. 106: 19729–19736. 

Williams, J. W. et al. 2007. Projected distributions of novel and disappearing climates by 2100 AD. - 

Proc. Natl. Acad. Sci. U. S. A. 104: 5738–5742.

http://foresthealth.fs.usda.gov/ids


 

42 
 

CHAPTER 2  

CONCLUSIONS AND REFLECTIONS 
 

 

 

To better understand the future of North American forests under changing climatic regimes, it is 

imperative to understand the conditions that have supported large mountain pine beetle outbreaks over the 

past 50 years. This research used interesting new approaches to species distribution modeling to advance 

the understanding of how climate shaped the distribution of the mountain pine beetle under historical and 

current conditions and estimated distributions under future climate scenarios. My results indicate that 

there has been a significant expansion of suitable environments for the MPB over the past half-century in 

both geographic and environmental space; however, projected warming may reduce this suitable habitat 

under future climate scenarios. Furthermore, my findings show that suitable habitats have shifted upwards 

in elevation and may continue to do so in the future. This shift threatens sensitive high-elevation 

ecosystems, like those dominated by whitebark pine (Jewett et al. 2011), but may also reflect the 

destabilization of currently suitable habitats at lower elevations. My results confirm that climate change 

has driven a range expansion of MPB and corroborates past research on the effects of climate on the 

spatial distribution of MPB outbreaks. 

The three SDM used in this analysis provide fairly reliable estimates of MPB’s response to 

climate change. While studies utilizing SDM should always be aware of the assumptions and limitations 

of the models (Pearson and Dawson 2003, Araújo and Peterson 2012), SDMs can be an effective and 

reliable tool in predicting change across temporal domains. When choosing a model, simpler algorithms, 

like the GLM, may provide general predictions that better project across temporal domains. Confidence in 

model predictions can be bolstered by using MESS maps that show areas of extrapolation in model 

projections (Elith et al. 2010). These features are useful tools that are available in both Maxent and 

SAHM. In this study, the MESS maps indicate that future conditions in the study area, particularly in the 

forested environments that host MPB, may not represent novel conditions due to the heterogeneous 
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landscape of the study area. The MESS analysis helps to reduce uncertainty in SDM projections, though it 

cannot account for the uncertainty inherent in the climate forecasts themselves. 

Species distribution modeling is a rapidly growing and advancing field that has become one of 

the more prominent sub-fields in ecological research over the past 15 years (Pearson and Dawson 2003, 

Elith et al. 2006, Elith et al. 2010, Peterson et al. 2011, Araújo and Peterson 2012). The three models I 

used in this research are common, high-performing algorithms, but they are commonly misused or are not 

parameterized to optimize results (Elith et al. 2008, Merow et al. 2013, Radosavljevic and Anderson 

2014). In addition to the insight on MPB and the effects of climate change in the Rocky Mountain region, 

my research was intended, in part, to demonstrate the current best practices associated with these models. 

Proper parameterization is critical to correctly fit models to the species of interest, sample size, and the 

environmental data.  By utilizing tools such as the “ENMeval” package (Muscarella et al. 2014) and 

various functions in SAHM (Morisette et al. 2013), model performance can be optimized by moving 

beyond the default settings.  

Reflections 

Overall, I have greatly enjoyed my time at NREL and GDPE. I have been repeatedly impressed 

with the breadth of expertise and the diversity of research within both entities, and am grateful to have 

had the opportunity to study here. My time here has not always been easy, but I have grown a great deal 

from my experiences and believe they have made me a better scientist. This final section of my thesis 

contains my reflections on growing as a modeler, my graduate experience, and suggestions for incoming 

graduate students.  

On Modeling 

Graduate school is littered with “aha moments.” Sometimes these moments reflect relatively 

small triumphs—cracking an obstinate chunk of code or finding the elusive words to end a paper—but 

sometimes they provide a moment of clarity that helps elucidate a key concept or question. For me, an 

important “aha” moment helped me to better understand the “why” of ecological models. One of my 
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favorite courses in the Graduate Degree Program in Ecology (GDPE) was taught by Dr. Tom Hobbs, 

Models for Ecological Data. Early in the course, Dr. Hobbs came to class with a fly fishing rod, a 

recording of “Madame Butterfly” by Giacomo Puccini, and a print of “Starry Night” by Vincent van 

Gogh; somehow these items all related to Bayesian statistics and modeling. These seemingly disparate 

items all had one characteristic in common: they represented abstractions, or simplifications, of reality. 

He went on to explain that models of ecological phenomena are also just abstractions of complex and 

dynamic systems. George E.P. Box (1987) is widely credited with saying, “Essentially, all models are 

wrong, but some are useful,” and Dr. Hobbs helped me to truly understand what this means.   

This lesson in abstraction has played a part in defining my approach to SDMs and has aided in the 

interpretation of modeling research. Models can be incredibly useful tools for deriving important 

relationships between a species and its environment, and can elucidate general trends across time or 

space. However, there is a tendency among modelers to over-emphasize results, especially when 

projecting future responses to novel conditions. This has resulted in two broad opinions on the utility of 

SDMs: those who believe in their usefulness and those who do not. I have experienced this dichotomy in 

my own research, and I believe that my awareness of it has made me a better modeler and scientist.  

There are two particular papers that helped clarify my thoughts on the proper usage of SDMs: 

Araújo and Peterson (2012), which eloquently summarized the uses and misuses of SDM, and an earlier 

paper by Pearson and Dawson (2003). Combined with my own experience, these studies have greatly 

informed my approach to correlative modeling. First, scale matters! The scale of the variables used and 

the extent of the study region should be defined by the processes being examined. For example, 

assessment of climatic interactions should be defined at regional to continental scales (> 200 km) where 

large-scale processes are more likely to influence distribution. Variables like land-use and dispersal play a 

far greater role in shaping a species distribution at smaller scales (Pearson and Dawson 2003). The details 

of the modeling process (e.g. variables used, grain size, extent) should be scaled based on the processes 

examined.  
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Secondly, it is critical to investigate any biases and assumptions in the modeling process. 

Sampling bias can misinform models, so it is important to thoroughly understand and vet the data used in 

the models. There are many ways to address sampling bias in the modeling process (Anderson and 

Gonzalez 2011, Barbet-Massin et al 2012, Boria et al. 2014), and these should be implemented to produce 

the best possible models. Some examples of how to do this include spatial filtering of the occurrence data 

and restricting the selection of background pseudo-absences to general areas of use for the species. Other 

assumptions and uncertainties, like species-environment equilibrium (Wiens et al. 2009), are more 

difficult to address but should be accounted for in the discussion and interpretation of the results. 

Uncertainty is inherent in most data sources, particularly models of future climatic conditions, and this 

should be explicitly discussed. 

Uncertainty is largely unavoidable in ecological modeling. Some approaches, like Bayesian 

models, quantify uncertainty, but this is less frequent with correlative models. This uncertainty does not 

invalidate models, but it should guide the interpretation and application of correlative models. Outputs 

from these models should be treated as distributional hypotheses (Lobo et al. 2008), and particularly at 

larger scales, are more useful in defining general trends (e.g. upwards range expansion) than predicting 

locations of occurrence. Though many modelers use SDMs for prediction, I am of the opinion that this is 

generally an inappropriate usage. When prediction is the goal, it should be used in conjunction with field 

sampling and monitoring to validate results. There is danger in wholeheartedly believing in model 

predictions, but they are nevertheless useful tools for identifying important relationships and possible 

future trends. 

I am a firm believer in the utility of models and have enjoyed coming to understand their 

application and function. As I move forward in my career, I will continue using many of the models in my 

research, but I hope to also broaden my future usage by incorporating more field validation and empirical 

analysis. 
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On graduate school 

Coming into GDPE, I was primarily interested in the quantitative research tools (e.g. GIS, remote 

sensing, and statistical modeling) used in ecological analysis, but over the past three years, I have grown 

particularly interested in how climate change shapes large-scale landscape patterns. I am pleased that my 

research incorporated landscape-level change, disturbance, and the impacts of climate change, and I hope 

I have contributed something worthwhile to the field. With every passing year, the implications of climate 

change become direr, and ecologists are increasingly asked to assess the effects of this change and the 

resulting impacts on ecosystems, now and in the future. I believe my research has provided me with the 

skills and knowledge needed to address the impacts of climate change, and a good foundation on which to 

continue building my career. Overall, I am excited by the career possibilities in front of me. 

Of course, there were many challenges to graduate school, and I would like to spend a little time 

imparting my own lessons-learned to ease the process for future students. What follows are my thoughts 

on how to best tackle grad school. It is, by no means, the only path to success, but I hope it is helpful to 

any readers of this document. When I entered graduate school, I was primarily interested in quantitative 

research tools more so than specific ecological systems or questions, so I spent my first year focused on 

learning these tools and less time familiarizing myself with foundational ecological principles. As a result, 

the tools guided the development of my research in its early stages instead of interesting ecological 

questions. I ultimately came to understand that the question should guide the methods, and working 

backwards from a broad ecological question—e.g. how does climate change drive MPB outbreaks?—will 

open up more research possibilities than trying to fit a tool to a problem. Also, from a practical 

perspective, taking courses on quantitative methods at a more advanced stage of one’s degree allows for 

the incorporation of class projects as elements of the thesis.  

It is easy to get caught up in the reading, writing, and coding of grad school, but it is essential to 

take the time to just be in the environment you study. Do not forget to spend time in the study system; if 

that is not possible, at least spend time outside in natural settings. Further, take time to just sit and observe 
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with all your senses. These periods of reflection and observation are essential for grasping how a system 

functions and will ultimately yield a deeper understanding of any results from modeling or geospatial 

analyses. Observation is at the root of the scientific method, so take the time to truly observe what is 

happening in your system.  

It is vital to find an academic community while in graduate school. In my experience, it is 

incredibly important to find other scientists working in the same system and addressing related questions 

or using the same tools. This community will challenge you to improve your research and can be a 

significant support during the challenging periods that are inherent to graduate school. Having a friend to 

read a draft or help troubleshoot a technical difficulty can make a big difference in both the quality and 

enjoyment of one’s work. Conversely, graduate school is a wonderful time to intellectually explore a wide 

variety of research, so do not restrict yourself only to topics that relate to your research. Reading broadly 

(and attending lectures) will help provide perspective on your work and that of your colleagues. 

Occasionally, methods used in other fields may also apply to a problem in ecology.   

I have devoted a great deal of time and effort to this document and believe I have positively 

contributed to the understanding of the impacts of climate change on the mountain pine beetle. Along the 

way, I learned some powerful and interesting tools that will benefit me throughout my career. I reveled in 

the intellectual stimulation of graduate school and leave with many close friends and terrific memories.
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APPENDIX 1 – STUDY AREA 
 
 
 
Recent bark beetle infestations began in the late 1990s and have severely impacted the coniferous 

forests of the western U.S. Five states in particular have experienced, and continue to experience, 

extensive outbreaks (USFS 2011, 2014a): Colorado, Utah, Wyoming, Montana, and Idaho. These five 

states largely comprise the U.S. Rocky Mountain region and define this project’s study area (Figure 1). 

Climate, topography, and vegetative cover vary across the extent. Temperature is intricately linked to 

topography and the region is prone to extended periods of drought. The montane and subalpine forests of 

the Rocky Mountains are characterized by the dominance of coniferous species including ponderosa pine, 

Douglas-fir (Pseudotsuga menziesii), lodgepole pine, whitebark pine, subalpine fir (Abies lasiocarpa), 

and Engelmann spruce (Picea engelmannii) (Evangelista et al. 2011). The eastern margins of the study 

area include the shortgrass prairies of the Great Plains and semi-arid shrubs, while pinyon pine (Pinus 

edulis), and juniper (Juniperus spp.) woodlands dominate the arid southwest portion of the study area 

(Evangelista et al. 2011).  
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APPENDIX 2 – CLIMATE DATA 
 
 
 
The ClimateWNA software provides over 20,000 surfaces of monthly, seasonal, and annual climate 

data for point locations and time series across western North America. ClimateWNA offers a suite of 

directly calculated and derived monthly, seasonal, and annual climatic variables based on the 30-year 

normal for the chosen time period. This software uses the delta approach where historical data (CRU TS 

2.1) and future projections are expressed and interpolated as a difference from the baseline reference 

period (PRISM and ANUSPLIN grids). These interpolations are tested against local weather station data. 

Climate data are downscaled based a digital elevation model (DEM) using partial derivative functions of 

temperature change along elevational gradients (Wang et al. 2012). Topographic variables were generated 

from a 1-km DEM acquired from ClimateWNA and clipped to the study area; all processing was done in 

ArcGIS (ESRI v10.2).  

ClimateWNA includes a suite of 15 general circulation models (GCMs) selected from phase five of 

the Coupled Model Intercomparison Project (CMIP5) multi-model data set that corresponds with the Fifth 

Assessment Report from the Intergovernmental Panel on Climate Change (IPCC) (Taylor et al. 2012, 

Wang et al. 2012). The RCP framework was developed after the IPCC Fourth Assessment Report (IPCC 

2007) and uses scenarios based on future radiative forcings (Moss et al. 2010). For this analysis I used a 

global mean of the 15 GCMs for my future climate scenarios for both RCP 4.5 and RCP 8.5.
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Table 5: Initial set of climatic and topographic variables considered for the model before 

correlation analysis. All variables acquired from ClimateWNA; for a full description of the 

variables see Wang et al. (2012). 

Variable Description 

Directly calculated annual variables 

MAT Mean annual temperature (°C) 

MWMT Mean warmest month temperature (°C) 

MCMT Mean coldest month temperature (°C) 

MAP Mean annual precipitation (mm) 

MSP Mean summer (May to Sept) precipitation (mm) 

Derived annual variables 

DD>5 Degree-days above 5°C, growing degree-days 

EMT Extreme minimum temperature over 30 years.  

CMD   Hargreaves climatic moisture deficit, a measure of potential 

evapotranspiration 

bFFP   The Julian date on which frost-free period begins 

eFFP   The Julian date on which frost-free period ends 

NFFD The number of frost-free days 

PAS   Precipitation as snow (mm) between August in previous year and 

July in current year 

Directly calculated seasonal variables 

Tave_sp Spring mean temperature (°C) 

Tave_sm Summer mean temperature (°C) 

Tave_at Autumn mean temperature (°C) 

Tmax_sp Spring mean maximum temperature (°C) 

Tmax_sm Summer mean maximum temperature (°C) 

Tmax_at Autumn mean maximum temperature (°C) 

Tmin_wt   Winter mean minimum temperature (°C) 

Tmin_sp Spring minimum temperature 

PPT_sp   Spring precipitation (mm) 

PPT_sm   Summer precipitation (mm) 

PPT_at   Autumn precipitation (mm) 

Derived seasonal variables 

DD_0_wt   Winter degree-days below 0°C 

DD_0_sp   Spring degree-days below 0°C 

DD5_sp Spring degree-days above 5°C 

DD5_at Autumn degree-days above 5°C 
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DD18_sp Spring (Mar-May) degree-days above 18°C 

DD18_sm   Summer (June-August) degree-days above 18°C 

DD18_at Autumn (Sep-Nov) degree-days above 18°C 

CMD_sm Summer Hargreaves climatic moisture deficit (mm) 

CMD_at Autumn Hargreaves climatic moisture deficit (mm) 

Monthly variables 

Tmax Maximum mean temperatures (°C) for July, August, September, 

October, and November 

DD18 Degree-days above 18°C for July, August, September, October, and 

November 

Topographic variables  

Elevation   Digital elevation model (DEM) at 1 km resolution 

Slope   Maximum change in elevation between each cell and its eight 

neighbors.  Calculated from the DEM in ArcGIS 

Aspect   Downslope direction of a grid cell 
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APPENDIX 3 – CORRELATIVE NICHE MODELS 
 
 
 

MaxEnt 

MaxEnt is a maximum-entropy approach that finds a probability distribution defined over the study 

area that satisfies a set of constraints based on the occurrence data; these constraints rely upon 

environmental variables that serve as predictor variables (Phillips et al. 2006, Guisan et al., 2007).  

MaxEnt is a particularly powerful tool for handling presence-only data. In addition to being easy to use 

(Merow et al., 2013), MaxEnt generally outperforms other modeling methods on predictive accuracy 

(Elith et al., 2006; Austin, 2007; Guisan et al., 2007; Stohlgren et al., 2010; Merow et al., 2013). 

A distinct advantage of MaxEnt is its approachability and ease of use; the graphical user interface 

allows the user to easily import data and generate models using the default settings.  This can lead to 

models that are lacking in quality and predictive power, and a number of recent studies have underscored 

the importance of carefully calibrating the MaxEnt model (Merow et al. 2013; Radosavljevic and 

Anderson 2013; Shcheglovitova and Anderson 2014).  Two settings in particular, ‘features class’ and the 

‘regularization multiplier’, can have drastic effects on model fitting.  Features are simple functions 

derived from environmental variables, mathematical transformations that constrain the predictor variables 

(Phillips and Dudík 2008, Merow et al. 2013).  MaxEnt can be run with any single class or various 

combinations of the five feature classes: linear (L), quadratic (Q), product (P), threshold (T), and hinge 

(H).  The choice of feature class(es) to include is related to the sample size of the dataset; the “auto 

features” selection includes all five feature and has been shown to be the optimal combination for sample 

sizes greater than 80 (Phillips and Dudík, 2008).  Regularization is a limit on model complexity in 

MaxEnt, a penalty for each term included in the model and for higher weights given to a term 

(Radosavljevic and Anderson 2013).  MaxEnt uses a regularization multiplier, a coefficient that is applied 

to the parameter of each feature class that changes the overall level of regularization but not the 

parameters individually (Radosavljevic and Anderson 2013).   
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To calibrate the MaxEnt models for the mountain pine beetle, I experimentally tuned using the 

“ENMeval” package in R (Muscarella et al., 2014). The ENMeval package builds a series of candidate 

models in MaxEnt with a variety of settings and then provides multiple evaluation metrics to help select 

the optimal model (Muscarella et al., 2014). The default settings in MaxEnt (tested by Phillips and Dudík, 

2008) include all feature classes (LQHTP) and a regularization multiplier of 1.0. ENMeval was set up to 

test four feature class combinations (LQH, LQHP, LQHT, and LQHPT) and seven regularization 

multipliers (1.0, 1.5, 2.0, 2.5, 3.0, 3.5, and 4.0) for a total of 28 model combinations for both the historic 

and current models. Four evaluation metrics were assessed with ENMeval: the Akaike’s Information 

Criterion corrected for small sample sizes (AICc), area under the receiver operating curve (AUC), the 

difference between training and test AUC values (AUCDIFF), and the ‘minimum training presence’ 

omission rate (ORMIN) (Muscarella et al. 2014). The ENMeval results indicate that the optimal feature 

class combination for both the historical and current models was the “all features” default; however, the 

AUCDIFF values show that the models overfit at low regularization multipliers (Figures 7, 8). 
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Figure 7: Evaluation metrics generated by ENMeval for the historic dataset. 
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Figure 8: Evaluation metrics generated by ENMeval for the current data set. 

Boosted Regression Trees 

Boosted regression trees handle a variety of predictor variable types, have no need for prior data 

transformation, can fit complex nonlinear relationships, and handle interaction effects between predictors 

(Elith et al., 2008).  The BRT begins with a single decision tree then adds a tree that best explains the 

error from the first tree and so on until the model is completed (Morisette et al., 2013).  Compared to 

other modeling methods, BRT have performed well and are generally recognized as having strong 

predictive success similar to MaxEnt (Elith et al., 2006; Austin, 2007; Guisan et al., 2007).  The BRT 

modeling procedure was run through the VisTrails:SAHM framework (Morisette et al., 2013). 

The BRT implementation in SAHM incorporates an algorithm for tuning the model settings, but the 

optimal model chosen with this algorithm repeatedly generated 300 trees, well below the general rule of 
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thumb that models should be fit with at least 1,000 trees (Elith et al., 2008).  In SAHM, learning rate and 

tree complexity were manually parameterized using the ‘Explore’ tool to derive models with at least 

1,000 trees and biologically sensible response curves.  Out of the 12 original variables supplied to the 

BRT, 10 were used in the final historic model and only six were included in the current model. 

Generalized Linear Model 

The generalized linear models used in the analysis were run in the SAHM environment. Generalized 

linear models use a link function to relate the mean of the response variable to a linear predictor, and by 

doing so can handle a variety of distributions (Guisan and Zimmerman, 2000).  SAHM can fit a GLM 

using either presence/absence or count data, which accounts for either a Poisson or binomial distribution.  

Generalized linear models have performed well in studies of species distribution models (Elith et al., 

2006), but because they are limited in the functions they can fit, they can also generate simplified 

functional response curves that may not reflect realistic biological responses (Austin, 2007).  The historic 

GLM model was fit with six final covariates and the current GLM model was fit with seven. 

Principal Components Analysis (PCA) 

To prepare the data for the PCA, 20,000 random background points were selected from across the 

study extent and variable values were extracted at each point using the “MDS Builder” tool in SAHM 

(Morisette et al., 2013).  Additionally, data were extracted at each of the 882 occurrence localities for 

both the historic and current time periods.  Environmental data were extracted for each time period 

(historic, current, and both future projections, RCP 4.5 and RCP 8.5) at the background points spanning 

the study area.  Three separate PCA analyses were run contrasting the climatic niche shift of the pine 

beetle across time periods: historic to current, current to RCP 4.5, and current to RCP 8.5.  The PCA 

analysis was conducted in R v.3.1.2 (R Core Team, 2014) using code adapted and modified from 

Broennimann et al. (2012).  This approach applies a kernel density function to determine the smoothed 

density of MPB occurrences in each grid cell across the environmental space for each time period 
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(Broennimann et al., 2012; West et al., 2015).  The density values are ordered along the PCA axes for 

each period’s environmental grid (the same 20,000 background points).   
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APPENDIX 4 – HISTORICAL MODEL OUTPUTS 
 

 

 

Historical MaxEnt Model Results 

 

Figure 9: Historical MaxEnt predicted probability map for MPB.  



 

61 
 

Response curves 

Each of the following curves represents a different model, namely, a MaxEnt model created using only the corresponding variable. These plots 

reflect the dependence of predicted suitability both on the selected variable and on dependencies induced by correlations between the selected 

variable and other variables. 

 

Figure 10: Historical MaxEnt species response curves. 
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Table 6: Historical MaxEnt variable contributions. 

Variable Percent contribution 
Permutation 

importance 

Summer 

precipitation 
28.4 27.3 

Summer degree-

days above 18°C 
24.1 29.8 

Precipitation as 

snow 
18.3 8.1 

Climatic Moisture 

Deficit 
7.9 2.5 

Autumn 

precipitation 
7.6 5.8 

elevation 5.6 7.5 

slope 3.7 3.3 

Winter degree-days 

below 0°C 
2.1 9 

Spring degree-days 

below 0°C 
0.9 2.4 

end of frost-free 

period 
0.6 1.4 

beginning of frost-

free period 
0.6 0.2 

Spring precipitation 

between March - 

May 

0.2 2.6 
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Figure 11: Relative importance of variables based on jackknife test for historical MaxEnt model. 

Top) training gain. Bottom) AUC. 
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Historical Boosted Regression Trees Model Results 

 

Figure 12: Historical BRT predicted probability map for MPB.  
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Historical BRT model results: 

 

J:\Research\Modeling\SAHM\Historic\final_apply\brt_hist_BRT_5\Covari

ateCorrelationOutputMDS_.csv 

 

  n(pres)                 =      882 

  n(bkgd)                 =      20000 

  n covariates considered =      12 

 

  total time for model fitting = 14.28min 

 

 

Settings: 

(Averaged across available splits) 

 

 random seed used             : 1234 

 tree complexity              : 5 

 learning rate                : 0.005 

 n(trees)                     : 1295.45454545455 

 model simplification         : cross-validation 

 n folds                      : 3 

 n covariates in final model  : 10 

Relative influence of predictors in final model: 

 

     Var   rel.inf 

 DD18_sm 18.746163 

     PAS 14.604355 

     CMD 12.582452 

  PPT_at 11.434956 

   Slope 11.333704 

  PPT_sm  9.998290 

    elev  8.892213 

 DD_0_wt  5.496719 

  PPT_sp  3.870664 

 DD_0_sp  3.040485 

 

Important interactions in at least one split of available points: 

 

 v1   name1 v2   name2 

  6   Slope  4  PPT_at 

  9    elev  4  PPT_at 

  9    elev  5  PPT_sm 

  9    elev  1     CMD 

 10  PPT_sp  8 DD_0_wt 

 10  PPT_sp  9    elev 

  9    elev  3     PAS 

  6   Slope  3     PAS 

  8 DD_0_wt  1     CMD 

 10  PPT_sp  5  PPT_sm 

  9    elev  2 DD18_sm 
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  5  PPT_sm  1     CMD 

  6   Slope  5  PPT_sm 

  8 DD_0_wt  5  PPT_sm 

 10  PPT_sp  6   Slope 

 

 

============================================================  

 

Evaluation Statistics applied to train split: 

 

  

  Correlation Coefficient      : 0.2879767  

  NULL Deviance                : 1.3861 (Averaged over background 

splits) 

  Fit Deviance                 : 0.82768 (Averaged over background 

splits) 

  Explained Deviance           : 0.55839 

  Percent Deviance Explained   : 40.286 

 

  Threshold Methods based on Sens=Spec  

  Threshold                    :  0.65  

 

  Confusion Matrix:  

 

         observed 

predicted     1     0 

        1   708  4149 

        0   174 15851 

 

  AUC                          :  0.8822  

  Percent Correctly Classified :  79.29796  

  Sensitivity                  :  0.8027211  

  Specificity                  :  0.79255  

  Kappa                        :  0.1887337  

  True Skill Statistic         :  0.5952711  

 

 

============================================================  

 

Evaluation Statistics applied to crossValidation split: 

 

  

  Correlation Coefficient      : 0.2625452  (sd 0.011833) 

 

  Threshold Methods based on Sens=Spec  

  Mean Threshold               : 0.654 (sd 0.005164)  

 

  Confusion Matrix:  

 

         observed 

predicted     1     0 

        1   621  4139 
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        0   261 15861 

 

  AUC                          :  0.84905  (sd 0.016267)  

  Percent Correctly Classified :  78.92917  (sd 0.88642)  

  Sensitivity                  :  0.7041113  (sd 0.057349)  

  Specificity                  :  0.79305  (sd 0.0098839)  

  Kappa                        :  0.1602535  (sd 0.016214)  

  True Skill Statistic         :  0.4971613  (sd 0.054509)  

 

Total time = 232.06 min 
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Figure 13: Historical BRT species response curves.
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Historical Generalized Linear Model Results 

 

Figure 14: Historical GLM predicted probability map for MPB.  
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Historical GLM model results: 

 

J:\Research\Modeling\SAHM\Historic\final_apply\glm_hist_GLM_2\Covari

ateCorrelationOutputMDS_.csv 

 

  n(pres)                 =      882 

  n(bkgd)                 =      20000 

  n covariates considered =      12 

 

  total time for model fitting = 0.59min 

 

 

Settings: 

 

  model family          : binomial 

  simplification method : AIC 

 

 

Results: 

  number covariates in final model   : 6 

 

Call: 

glm(formula = response ~ DD18_sm + DD_0_wt + PPT_sm + elev +  

    Slope + PAS, family = model.family, data = dat, weights = 

weight,  

    na.action = "na.exclude") 

 

Deviance Residuals:  

     Min        1Q    Median        3Q       Max   

-0.51347  -0.27985  -0.16571  -0.05659   2.87977   

 

Coefficients: 

              Estimate Std. Error z value Pr(>|z|)     

(Intercept)  2.9877980  0.4182539   7.144 9.10e-13 *** 

DD18_sm     -0.0217417  0.0016642 -13.064  < 2e-16 *** 

DD_0_wt     -0.0033499  0.0004597  -7.287 3.18e-13 *** 

PPT_sm       0.0083146  0.0018570   4.477 7.55e-06 *** 

elev        -0.0005513  0.0001111  -4.963 6.94e-07 *** 

Slope        0.0792822  0.0167076   4.745 2.08e-06 *** 

PAS         -0.0009299  0.0003890  -2.390   0.0168 *   

--- 

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

 

(Dispersion parameter for binomial family taken to be 1) 

 

    Null deviance: 2445.4  on 20881  degrees of freedom 

Residual deviance: 1777.7  on 20875  degrees of freedom 

AIC: 834.09 

 

Number of Fisher Scoring iterations: 6 
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============================================================  

 

Evaluation Statistics applied to train split: 

 

  

  Correlation Coefficient      : 0.224925  

  NULL Deviance                : 0.34998 

  Fit Deviance                 : 1.0792 

  Explained Deviance           : -0.72918 

  Percent Deviance Explained   : -208.35 

 

  Threshold Methods based on Sens=Spec  

  Threshold                    :  0.59  

 

  Confusion Matrix:  

 

         observed 

predicted     1     0 

        1   649  5194 

        0   233 14806 

 

  AUC                          :  0.8122  

  Percent Correctly Classified :  74.01111  

  Sensitivity                  :  0.7358277  

  Specificity                  :  0.7403  

  Kappa                        :  0.1290902  

  True Skill Statistic         :  0.4761277  

 

 

============================================================  

 

Evaluation Statistics applied to crossValidation split: 

 

  

  Correlation Coefficient      : 0.2237511  (sd 0.013817)  

  NULL Deviance                : 0.34998 (sd 0.0012056) 

  Fit Deviance                 : 1.0803 (sd 0.018821) 

  Explained Deviance           : -0.73035 (sd 0.019337) 

  Percent Deviance Explained   : -208.69 (sd 5.8793) 

 

  Threshold Methods based on Sens=Spec  

  Mean Threshold               : 0.587 (sd 0.0048305)  

 

  Confusion Matrix:  

 

         observed 

predicted     1     0 

        1   643  5206 

        0   239 14794 
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  AUC                          :  0.81005  (sd 0.018502)  

  Percent Correctly Classified :  73.92484  (sd 0.62242)  

  Sensitivity                  :  0.728907  (sd 0.068058)  

  Specificity                  :  0.7397  (sd 0.0061923)  

  Kappa                        :  0.1268623  (sd 0.01757)  

  True Skill Statistic         :  0.468607  (sd 0.06748)  

 

Total time = 27.98 min 
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Figure 15: Historical GLM species response curves. 
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APPENDIX 5 – CURRENT MODEL OUTPUTS 
 
 
 

Current MaxEnt Model Results 

 

Figure 16: Current MaxEnt predicted probability map for MPB.  
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Response curves 

Each of the following curves represents a different model, namely, a MaxEnt model created using only the corresponding variable. These plots 

reflect the dependence of predicted suitability both on the selected variable and on dependencies induced by correlations between the selected 

variable and other variables. 

 

Figure 17: Current MaxEnt species response curves.
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Table 7: Current MaxEnt variable contributions. 

Variable Percent contribution 
Permutation 

importance 

Climatic Moisture 

Deficit 
41.2 22.4 

Summer degree-days 

above 18°C 
21.4 18.1 

Summer precipitation 10.5 20.3 

slope 10.4 11.1 

Spring precipitation 

between March - May 
5.3 0.4 

elevation 5.2 6 

beginning of frost-free 

period 
1.9 0 

Autumn precipitation 1.1 4.6 

Precipitation as snow 0.9 6.4 

Winter degree-days 

below 0°C 
0.8 4.2 

Spring degree-days 

below 0°C 
0.7 2.6 

end of frost-free 

period 
0.5 3.8 

 

 



 

77 
 

 

Figure 18: Relative importance of variables based on jackknife test for current MaxEnt model. 

Top) training gain. Bottom) AUC.
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Current Boosted Regression Trees Model Results 

 

Figure 19: Current BRT probability map.  
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Current BRT model results: 

 

J:\Research\Modeling\SAHM\Present\final_apply2\brt_hist_BRT_1\Covari

ateCorrelationOutputMDS_.csv 

 

  n(pres)                 =      882 

  n(bkgd)                 =      20000 

  n covariates considered =      12 

 

  total time for model fitting = 10.98min 

 

 

Settings: 

(Averaged across available splits) 

 

 random seed used             : 1234 

 tree complexity              : 3 

 learning rate                : 0.005 

 n(trees)                     : 1009.09090909091 

 model simplification         : cross-validation 

 n folds                      : 3 

 n covariates in final model  : 6 

Relative influence of predictors in final model: 

 

     Var   rel.inf 

     CMD 35.990234 

 DD18_sm 20.883903 

   Slope 13.232663 

  PPT_sp 10.944816 

  PPT_sm  9.527353 

    elev  9.421031 

 

Important interactions in at least one split of available points: 

 

 v1  name1 v2   name2 

  6 PPT_sp  4   Slope 

  6 PPT_sp  3    elev 

  3   elev  1     CMD 

  4  Slope  3    elev 

  3   elev  2 DD18_sm 

  5 PPT_sm  4   Slope 

  5 PPT_sm  3    elev 

  5 PPT_sm  1     CMD 

  6 PPT_sp  5  PPT_sm 

 

 

============================================================  

 

Evaluation Statistics applied to train split: 
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  Correlation Coefficient      : 0.2507271  

  NULL Deviance                : 1.3861 (Averaged over background 

splits) 

  Fit Deviance                 : 0.93053 (Averaged over background 

splits) 

  Explained Deviance           : 0.45554 

  Percent Deviance Explained   : 32.865 

 

  Threshold Methods based on Sens=Spec  

  Threshold                    :  0.65  

 

  Confusion Matrix:  

 

         observed 

predicted     1     0 

        1   670  4705 

        0   212 15295 

 

  AUC                          :  0.8443  

  Percent Correctly Classified :  76.4534  

  Sensitivity                  :  0.7596372  

  Specificity                  :  0.76475  

  Kappa                        :  0.1526722  

  True Skill Statistic         :  0.5243872  

 

 

============================================================  

 

Evaluation Statistics applied to crossValidation split: 

 

  

  Correlation Coefficient      : 0.2379018  (sd 0.0072098) 

 

  Threshold Methods based on Sens=Spec  

  Mean Threshold               : 0.645 (sd 0.0052705)  

 

  Confusion Matrix:  

 

         observed 

predicted     1     0 

        1   630  4799 

        0   252 15201 

 

  AUC                          :  0.82491  (sd 0.011133)  

  Percent Correctly Classified :  75.81171  (sd 0.56227)  

  Sensitivity                  :  0.7143769  (sd 0.034876)  

  Specificity                  :  0.76005  (sd 0.0056098)  

  Kappa                        :  0.136968  (sd 0.010021)  

  True Skill Statistic         :  0.4744269  (sd 0.035519)  

 

Total time = 153.77 min 
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Figure 20: Current BRT species response curves. 
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Current Generalized Linear Model Results 

 

Figure 21: Current GLM predicted probability map for MPB.  
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Current GLM model results: 

 

J:\Research\Modeling\SAHM\Present\final_apply2\glm_hist_GLM_1\Covari

ateCorrelationOutputMDS_.csv 

 

  n(pres)                 =      882 

  n(bkgd)                 =      20000 

  n covariates considered =      12 

 

  total time for model fitting = 0.71min 

 

 

Settings: 

 

  model family          : binomial 

  simplification method : AIC 

 

 

Results: 

  number covariates in final model   : 7 

 

Call: 

glm(formula = response ~ DD18_sm + CMD + DD_0_wt + Slope + eFFP +  

    PAS + PPT_sm, family = model.family, data = dat, weights = 

weight,  

    na.action = "na.exclude") 

 

Deviance Residuals:  

     Min        1Q    Median        3Q       Max   

-0.50140  -0.28693  -0.15898  -0.07468   2.45480   

 

Coefficients: 

              Estimate Std. Error z value Pr(>|z|)     

(Intercept) 10.7375701  2.4068328   4.461 8.15e-06 *** 

DD18_sm     -0.0086294  0.0015361  -5.618 1.94e-08 *** 

CMD         -0.0052952  0.0009163  -5.779 7.52e-09 *** 

DD_0_wt     -0.0026091  0.0005966  -4.373 1.23e-05 *** 

Slope        0.0603926  0.0164043   3.682 0.000232 *** 

eFFP        -0.0239110  0.0075590  -3.163 0.001560 **  

PAS         -0.0009759  0.0004569  -2.136 0.032683 *   

PPT_sm      -0.0042897  0.0021570  -1.989 0.046734 *   

--- 

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

 

(Dispersion parameter for binomial family taken to be 1) 

 

    Null deviance: 2445.4  on 20881  degrees of freedom 

Residual deviance: 1809.7  on 20874  degrees of freedom 

AIC: 853.61 
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Number of Fisher Scoring iterations: 6 

 

 

 

============================================================  

 

Evaluation Statistics applied to train split: 

 

  

  Correlation Coefficient      : 0.2197055  

  NULL Deviance                : 0.34998 

  Fit Deviance                 : 1.0957 

  Explained Deviance           : -0.74576 

  Percent Deviance Explained   : -213.09 

 

  Threshold Methods based on Sens=Spec  

  Threshold                    :  0.6  

 

  Confusion Matrix:  

 

         observed 

predicted     1     0 

        1   645  5345 

        0   237 14655 

 

  AUC                          :  0.8012  

  Percent Correctly Classified :  73.26884  

  Sensitivity                  :  0.7312925  

  Specificity                  :  0.73275  

  Kappa                        :  0.1231538  

  True Skill Statistic         :  0.4640425  

 

 

============================================================  

 

Evaluation Statistics applied to crossValidation split: 

 

  

  Correlation Coefficient      : 0.2166679  (sd 0.010107)  

  NULL Deviance                : 0.34998 (sd 0.0012056) 

  Fit Deviance                 : 1.0983 (sd 0.012971) 

  Explained Deviance           : -0.74828 (sd 0.013198) 

  Percent Deviance Explained   : -213.81 (sd 3.997) 

 

  Threshold Methods based on Sens=Spec  

  Mean Threshold               : 0.599 (sd 0.0031623)  

 

  Confusion Matrix:  

 

         observed 

predicted     1     0 

        1   632  5316 



 

85 
 

        0   250 14684 

 

  AUC                          :  0.79673  (sd 0.013598)  

  Percent Correctly Classified :  73.34544  (sd 0.52594)  

  Sensitivity                  :  0.7165603  (sd 0.042764)  

  Specificity                  :  0.7342  (sd 0.0052132)  

  Kappa                        :  0.120343  (sd 0.011186)  

  True Skill Statistic         :  0.4507603  (sd 0.042932)  

 

Total time = 32.21 min 
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Figure 22: Current GLM species response curves. 
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APPENDIX 6 – LIST OF ABBREVIATIONS 
 

 

 

ADS - aerial detection survey 

AUC - area under the receiver operating characteristic curve 

bFFP - beginning of the frost-free period 

BRT - boosted regression trees 

ClimateWNA - Climate western North America, software 

CMD - climatic moisture deficit 

CMIP5 - phase five of the Coupled Model Intercomparison Project multi-model data set  

CO2 - carbon dioxide 

DD_0_sp - spring degree days below 0° C 

DD_0_wt - winter degree days below 0° C 

DD18_sm - summer degree days above 18° C 

DEM - digital elevation model 

eFFP - end of the frost-free period 

GIS - geographic informations systems 

GLM - generalized linear model 

IDS - insect and disease detection survey 

IPCC - Intergovernmental Panel on Climate Change 

KDE - kernel density estimator 

MaxEnt - maximum entropy modeling software 

MESS - multivariate environmental similarity surface 

MPB - mountain pine beetle 

PAS - precipitation as snow (mm) between August of previous year and July of current year 

PCA - principal components analysis 

ppm - parts per million 
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PPT_at - autumn precipitation  

PPT_sp - spring precipitation  

PPT_sm - summer precipitation  

RCP - relative concentration pathway; used to identify future climate scenarios 

SAHM - Software for Assisted Habitat Modeling 

SDM - species distribution model or species distribution modeling 

Tmin_wt - winter mean minimum temperature (°C) 

USFS - United States Forest Service 

USGS – United States Geological Survey 

 



 

89 
 

APPENDIX 7 – DATABASE METADATA AND ORGANIZATION 
 

 

 

Summary 

The database included with this thesis contains all of the data used in the analysis including mountain 

pine beetle infestation data and environmental data. All data was processed in ArcGIS 10.2.1. The data 

are provided as an archive file format (*.zip). The data provided here would allow a user to replicate the 

models used in this analysis. 

Projection: USA Contiguous Albers Equal Area Conic (ESRI: 102003). This is an ESRI projection 

equivalent to the North American Albers Equal Area Conic. 

Proj4:  

+proj=aea +lat_1=29.5 +lat_2=45.5 +lat_0=37.5 +lon_0=-96 +x_0=0 

+y_0=0 +ellps=GRS80 +datum=NAD83 +units=m +no_defs 

.PRJ File: 

PROJCS["USA_Contiguous_Albers_Equal_Area_Conic",GEOGCS["GCS_North

_American_1983",DATUM["D_North_American_1983",SPHEROID["GRS_1980"

,6378137,298.257222101]],PRIMEM["Greenwich",0],UNIT["Degree",0.01

7453292519943295]],PROJECTION["Albers"],PARAMETER["False_Easting"

,0],PARAMETER["False_Northing",0],PARAMETER["central_meridian",-

96],PARAMETER["Standard_Parallel_1",29.5],PARAMETER["Standard_Par

allel_2",45.5],PARAMETER["latitude_of_origin",37.5],UNIT["Meter",

1]] 

Datum: North American 1983 

Raster Information: This applies to all raster data, topographic and climatic. 

Extent  

 Top: 1453116.6009 

 Left: -1715671.06279 
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 Right: -504671.062786 

 Bottom: -39883.3990072 

Columns, Rows: 1211, 1493 

Cell size (X, Y): 1000, 1000 (m) 

Format: TIFF 

Primary contact: Aaron Sidder, aaron.sidder@gmail.com, (720) 933-0925.  

Secondary contact: Dr. Melinda Laituri, melinda.laituri@colostate.edu; 970-491-0292 

Description: These data were collected from a variety of sources and are described below. 

Environmental Data: The 1-km DEM was provided by Dr. Andreas Hamann of ClimateWNA and was 

used to download the climatic data from the ClimateWNA software at 1-km grid cell resolution. Slope 

and aspect were created by Aaron Sidder in ArcGIS. Historical climate data reflect climate conditions 

from 1951-1980, current data are from 1981-2010, and future data are from 2040-2069 from the RCP 8.5 

emissions scenario. Data from the RCP 4.5 emissions scenario were not included in this database due to 

space constraints, but are available for download from ClimateWNA.  

Historical MPB data: Historical MPB data were digitized from USFS aerial detection surveys collected 

from USFS regions 1, 2, and 4, and the data here date from 1960-1980. The data were acquired from 

regional USFS offices: Region 1- Tim Assal (U.S. Geological Survey, Graduate Degree Program in 

Ecology, CSU); Region 2 - Brian Howell and Justin Backsen (Forest Health Protection, U.S. Forest 

Service [USFS], Rocky Mountain Region); and Region 4 - Dick Halsey (Forest Health Protection, USFS, 

Boise Field Office). The original data was separated by year and contained information on numerous 

forest disturbances and pest outbreaks. This data represent the presence of the mountain pine beetle 

(MPB) and were extracted from the original data using the search by attributes function (DCA = 11006). 

After each state's MPB infestation polygons were separated, the data from all years of the study were 

merged into this master shapefile and all polygons were dissolved into a single feature. This polygon 

represents the extent of MPB infestation from 1960-1980 across the regions represented.  

mailto:aaron.sidder@gmail.com
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Current MPB data: Current MPB data were collected from the USFS IDS Database: 

http://foresthealth.fs.usda.gov/ids. This layer combines all of the MPB aerial detection survey polygons 

from Colorado, Utah, Wyoming, Montana, and Idaho from the years 1997-2010. The polygons were 

downloaded from the USFS IDS Explorer website for the years 1997-2010, which also included data on 

other forest health indicators and pest outbreaks. All MPB polygons were extracted using the search by 

attributes function (DCA = 11006) for the years 1997-2010 to align with available climate data through 

Climate WNA. After each state's MPB infestation polygons were separated, the data from all five states 

were merged into this master shapefile and all polygons were dissolved into a single feature. 

MPB point data: These points were randomly generated from MPB polygons and spatially filtered so that 

no point is within 10 km of another point. The points were randomly generated in the Geospatial 

Modeling Environment (Beyer 2012) and spatially filtered in the SDM Toolbox (Brown 2014). 

Study Area: The study area shapefile was clipped to the current extent and was downloaded from the U.S. 

Census Bureau TIGER database. The TIGER/Line shapefiles and related database files (.dbf) are an 

extract of selected geographic and cartographic information from the U.S. Census Bureau's Master 

Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database 

(MTDB). 

Credits 

Forest Health Protection, U.S. Forest Service; U.S. Census Bureau 

ClimateWNA (Wang et al. 2012): http://climatewna.com/.  

The geodatabase can be credited to Aaron Sidder, M.S. Candidate of the Graduate Degree Program in 

Ecology of Colorado State University and Dr. Melinda Laituri, Department of Ecosystem Science and the 

Natural Resource Ecology Laboratory.

http://foresthealth.fs.usda.gov/ids
http://climatewna.com/
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Database Architecture (Note: The ESRI geodatabase contains all environmental rasters in the main 

folder; they are not separated into historical, current, and future datasets) 

Sidder_Thesis_data 

 Environmental Data 

 Historic_envtl_variables 

 Hist_Aspect.tif 

 Hist_bFFP.tif 

 Hist_CMD.tif 

 Hist_DD_0_sp.tif 

 Hist_DD_0_wt.tif 

 Hist_DD18_sm.tif 

 Hist_eFFP.tif 

 Hist_elev.tif 

 Hist_PAS.tif 

 Hist_PPT_at.tif 

 Hist_PPT_sm.tif 

 Hist_PPT_sp.tif 

 Hist_Slope.tif 

 Hist_Tmin_wt.tif 

 Current_envtl_variables 

 Curr_Aspect.tif 

 Curr_bFFP.tif 

 Curr_CMD.tif 

 Curr_DD_0_sp.tif 

 Curr_DD_0_wt.tif 

 Curr_DD18_sm.tif 
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 Curr_eFFP.tif 

 Curr_elev.tif 

 Curr_PAS.tif 

 Curr_PPT_at.tif 

 Curr_PPT_sm.tif 

 Curr_PPT_sp.tif 

 Curr_Slope.tif 

 Curr_Tmin_wt.tif 

 RCP85_envtl_variables 

 Aspect_rcp85.tif 

 bFFP_rcp85.tif 

 CMD_rcp85.tif 

 DD_0_sp_rcp85.tif 

 DD_0_wt_rcp85.tif 

 DD18_sm_rcp85.tif 

 eFFP_rcp85.tif 

 elev_rcp85.tif 

 PAS_rcp85.tif 

 PPT_at_rcp85.tif 

 PPT_sm_rcp85.tif 

 PPT_sp_rcp85.tif 

 Slope_rcp85.tif 

 Tmin_wt_rcp85.tif 

 Occurrence_data 

 Current_10km_albers_882.shp 

 Current_1997_2010_all_states.shp 
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 Historic_10km_albers_882.shp 

 Historic_1960_1980_all_regions.shp 

 Study_Area 

 study_area_albers.shp 

 



 

95 
 

APPENDIX 8 – VARIOUS CODE USED IN ANALYSIS 
 
 
 

ClimateWNA Grid Processing - R 

 
## This was written based on the tutorial from Dr. Andreas Hamann ## 

## It worked. March 3, 2015 ## 

## edited by Aaron Sidder ## 

 

##### ----------------------------------------- ##### 

##### ----------------------------------------- ##### 

# The first step of the analysis is to clip your reference DEM to 

the study area and determine the cell size (resolution) of your study.  

Prepare your DEM so that it matches your desired projection, grain 

size, and extent. 

# Once you have created your reference DEM you will be able to use 

it to download climate data from Climate WNA. 

# Save the reference DEM as an ASCII file (.asc) 

 

## load R packages and set the working directory 

library(SDMTools) 

library(foreign) 

library(tools) 

setwd("J:\\Research\\DATA\\Climate_Data\\ClimateWNA_prep") 

 

## Call in the ASCII reference DEM (DEM) file 

table1 = asc2dataframe("ref_elev_alb.asc") 

head(table1) 

fix(table1) #rename "var.1" to "elev" 

head(table1) 

write.csv(table1, "table1.csv", row.names=F, quote=F) 

 

##### ----------------------------------------- ##### 

##### ----------------------------------------- ##### 

# Read table1.csv into ArcGIS and convert to points file; it will be 

projected in your initial projection.  

# Create a points shapefile and re-project as WGS84 coordinate 

system (lat/long) for input into Climate WNA 

# Add the lat/long coordinates to the attribute table using the 

'AddXYCoordinates' tool 

# In this example, this shapefile is named table2.shp 

# At this point, the table will have an x, y, lat, long, and elev 

column 

 

## Read in table2.shp to create Climate WNA input ##  

table2 <- read.dbf("table2.dbf") 

head(table2) 

table3 <- table2[,c(1,2,5,4,3)] # reorganize column to preferred 

order for ClimateWNA 
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head(table3) 

fix(table3) #col headers as y, x, lat, long, elev 

head(table3) 

write.csv(table3, "table3.csv", row.names=F, quote=F) 

 

# table 3 will be used in Climate WNA in its current format.  You 

can rename it to be more specific if needed. ## 

 

## read the Climate WNA output CSV and export to individual ASCII 

files ## 

setwd("J:\\Research\\DATA\\Climate_Data\\ClimateWNA_output\\table3_g

lobalmean_rcp85_2050_seasonal") 

list.files(pattern="*.csv") 

table4 = 

read.csv("table3_GlobalMean_rcp85_r1i1p1_2050s_seasonal.csv", 

nrows=1808030, header=T) 

head(table4) 

ncol(table4) 

## annual  

#table4 = table4[,c("y","x","bFFP", "eFFP", "PAS", "CMD")]  

 

## seasonal  

table4 = table4[,c("y","x","Tmin_wt", "DD_0_wt", "DD_0_sp", 

"DD18_sm", "PPT_at", "PPT_sm", "PPT_sp")]  

 

## all 

#table4 = table4[,c(1,2,6:ncol(table4))] # can break into batches of 

50 for large datasets 

                                         # (6:50, 51:100, 

101:ncol(table4)) 

 

head(table4) 

# update output directory with folder name 

dataframe2asc(table4, outdir=paste(getwd(), sep=""))   

rm(list = ls()) # clear environment 

gc() # garbage collect, drops memory allocation 

 



 

97 
 

SAHM – PARC data preparation - R 

library(tools) 

 

## Future climate variables ## 

 

rcp45 = list_files_with_exts(dir = 

"J:/Research/Modeling/ENV_data/Future_variables_rcp45/TIF/PARC_RCP45_f

uture_ref_elev_alb", exts = "tif") 

 

rcp85 = list_files_with_exts(dir = 

"J:/Research/Modeling/ENV_data/Future_variables_rcp85/TIF/PARC_RCP85_f

uture_ref_elev_alb", exts = "tif") 

 

## Write future predictor lists to CSV 

head(rcp45) 

rcp45.predictor <- cbind(rcp45, "0", "Bilinear", "Mean") 

colnames(rcp45.predictor) <- c("PARCOutputFile", "Categorical", 

"Resampling", "Aggregation") 

head(rcp45.predictor) 

nrow(rcp45.predictor) # should be 14 

write.csv(rcp45.predictor, 

"J:/Research/Modeling/SAHM/rcp45_predictors.csv", row.names=F, 

quote=F) 

 

head(rcp85) 

rcp85.predictor <- cbind(rcp85, "0", "Bilinear", "Mean") 

colnames(rcp85.predictor) <- c("PARCOutputFile", "Categorical", 

"Resampling", "Aggregation") 

head(rcp85.predictor) 

nrow(rcp85.predictor) # should be 14 

write.csv(rcp85.predictor, 

"J:/Research/Modeling/SAHM/rcp85_predictors.csv", row.names=F, 

quote=F) 

 

write.csv(rcp45.predictor, 

"J:/Research/Modeling/SAHM/rcp45_predictors.csv", row.names=F, 

quote=F) 

 

head(rcp85) 

rcp85.predictor <- cbind(rcp85, "0", "Bilinear", "Mean") 

colnames(rcp85.predictor) <- c("PARCOutputFile", "Categorical", 

"Resampling", "Aggregation") 

head(rcp85.predictor) 

nrow(rcp85.predictor) # should be 14 

write.csv(rcp85.predictor, 

"J:/Research/Modeling/SAHM/rcp85_predictors.csv", row.names=F, 

quote=F) 
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ENMeval for Maxent regularization – R  

 

## ------ Run ENMevaluation on Maxent ------ ## 

## ------ February 3, 2015 ------ ## 

## 882 Historical data points @ 10 km min distance ## 

 

rm(list=ls()) 

setwd("J:\\Research\\Modeling\\ENV_data\\Present_variables") 

list.files(pattern =".asc") 

 

## load libraries ## 

library(ENMeval) 

library(raster) 

 

## format data points ## 

pts <- 

read.csv("J:\\Research\\Modeling\\FieldData\\Pres_10km_maxent.csv", 

header = TRUE) 

head(pts) 

occ <- pts[,c(2,3)] 

head(occ) 

nrow(occ) # nrow = 882 

 

## call in rasters and create rasterStack ## 

# create raster layers from variables 

aspect <- 

raster("J:\\Research\\Modeling\\ENV_data\\Present_variables\\aspect.as

c") 

bFFP <- 

raster("J:\\Research\\Modeling\\ENV_data\\Present_variables\\bFFP.asc"

) 

cmd <- 

raster("J:\\Research\\Modeling\\ENV_data\\Present_variables\\cmd.asc") 

DD_0_sp <- 

raster("J:\\Research\\Modeling\\ENV_data\\Present_variables\\DD_0_sp.a

sc") 

DD_0_wt <- 

raster("J:\\Research\\Modeling\\ENV_data\\Present_variables\\DD_0_wt.a

sc") 

dd18_sm <- 

raster("J:\\Research\\Modeling\\ENV_data\\Present_variables\\dd18_sm.a

sc") 

eFFP <- 

raster("J:\\Research\\Modeling\\ENV_data\\Present_variables\\eFFP.asc"

) 

elev <- 

raster("J:\\Research\\Modeling\\ENV_data\\Present_variables\\elev.asc"

) 

PAS <- 

raster("J:\\Research\\Modeling\\ENV_data\\Present_variables\\PAS.asc") 
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ppt_at <- 

raster("J:\\Research\\Modeling\\ENV_data\\Present_variables\\ppt_at.as

c") 

PPT_sm <- 

raster("J:\\Research\\Modeling\\ENV_data\\Present_variables\\PPT_sm.as

c") 

PPT_sp <- 

raster("J:\\Research\\Modeling\\ENV_data\\Present_variables\\PPT_sp.as

c") 

slope <- 

raster("J:\\Research\\Modeling\\ENV_data\\Present_variables\\slope.asc

") 

tmin_wt <- 

raster("J:\\Research\\Modeling\\ENV_data\\Present_variables\\tmin_wt.a

sc") 

 

# create rasterStack from rasters 

env <- stack(aspect, bFFP, cmd, DD_0_sp, DD_0_wt, dd18_sm, eFFP, 

elev, PAS, ppt_at, PPT_sm, PPT_sp, slope, tmin_wt, native=TRUE) 

nlayers(env) 

 

## create Maxent arguments 

RM <- c(seq(1.0, 4.0, 0.5)) 

fc <- c("LQH", "LQHP", "LQHT","LQHPT") 

#fc <- c("LQH", "LQHP", "LQHT", "LQHPT") 

 

## run ENMevaluate ## 

enmeval_results <- ENMevaluate(occ, env, RMvalues=RM, fc=fc, 

method="randomkfold", kfolds=5, n.bg=20000, overlap=FALSE, 

bin.output=TRUE, clamp=TRUE) 

 

#enmeval_results <- ENMevaluate(occ, env, RMvalues=RM, fc=fc, 

method="randomkfold", kfolds=5, n.bg=10000, overlap=TRUE, 

categoricals=c("nlcd2006forrcls"),bin.output=TRUE, clamp=TRUE) 

 

## view results 

enmeval_results 

 

### See table of evaluation metrics 

results <- enmeval_results@results 

write.csv(results, 

"J:\\Research\\Modeling\\Maxent\\Maxent_present\\ENMeval\\ENMeval_resu

lts3.csv", row.names=F, quote=F) 

enmeval_results@overlap 

 

 

## plot results 

par(mfrow=c(2,2)) 

eval.plot(enmeval_results@results, legend.position="topright")  

eval.plot(enmeval_results@results, "Mean.AUC", 

legend.position="right") 
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eval.plot(enmeval_results@results, "Mean.AUC.DIFF", 

variance="Var.AUC.DIFF") 

eval.plot(enmeval_results@results, "Mean.ORmin", 

legend.position="right") 
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MPB Polygon, Select by Attribute, all regional codes – Python 

#-------------------------------------------------------------------

------------ 

# Name:        Select by Attributes batch 

# Purpose:     To separate out mountain pine beetle polygons by 

agent using extract by attributes for all coding methods in National 

forest units. 

# 

# Author:      Aaron Sidder 

# 

# Created:     16/10/2014 

# Copyright:   (c) asidder 2014 

# Licence:     <your licence> 

 

# ***** BEFORE YOU RUN THIS CODE, CHANGE mywspace, outputFolder, 

new, lyr, selectLayer ***** 

# ***** Change forest and folder each run ***** 

# ***** UPDATE README.TXT IN THE FOLDERS AS YOU GO ***** 

#-------------------------------------------------------------------

------------ 

 

#Import system module 

import arcpy 

from arcpy import env 

from arcpy.sa import * 

 

# Define workspace 

mywspace = 

"K:\\Research\\DATA\\ADS_data\\Historic\\R2_ADS_Historical_Maps\\Digit

ized Data\\SanJuan" 

arcpy.env.workspace = mywspace 

 

#Set overwrite on/off 

arcpy.env.overwriteOutput = "TRUE" 

 

# 

**********************************************************************

********* 

# Coding Method 1 

# 

**********************************************************************

********* 

 

# Output folder - Coding method 1 

outputFolder1 = "K:\\Research\\DATA\\Historic\\SanJuan\\MPB_Code1" 

 

try: 

# This can be ListDatasets, ListFeatureClasses, ListFiles, 

ListRasters, ListTables, or ListWorkspaces 



 

102 
 

    featureclassList1 = arcpy.ListFeatureClasses("*","POLYGON") # or 

use (,"ALL") 

    for featureClass1 in featureclassList1: 

            print featureClass1 

            new1 = outputFolder1 + "\\" + featureClass1[0:-4] + 

"_MPB" + ".shp"  # new = mywspace + "\\" + featureClass + "_MPB"   

#this is to be used for a gdb 

            print new1 

            lyr1 = arcpy.MakeFeatureLayer_management(featureClass1, 

"lyr1" ) 

            print lyr1 

            select_lyr1 = 

arcpy.SelectLayerByAttribute_management(lyr1, "NEW_SELECTION", " 

\"CODE\" LIKE '5%' OR \"CODE\" LIKE '6%' OR \"CODE\" LIKE '7%' ")    # 

SelectLayerByAttribute_management (in_layer_or_view, {selection_type}, 

{where_clause}) 

            final1 = arcpy.CopyFeatures_management(select_lyr1, 

new1)   # CopyFeatures_management (in_features, out_feature_class, 

{config_keyword}, {spatial_grid_1}, {spatial_grid_2}, 

{spatial_grid_3}) 

            print final1 

            arcpy.SelectLayerByAttribute_management(lyr1, 

"CLEAR_SELECTION") 

 

# Folder will contain all shapefiles but will have empty files 

deleted manually. 

# Note: when reviewing the files note that 5/6/7 that indicate MPB 

also are used to code different beetles in coding method 2.  If a 

color is associated with the code 

# then the coding is method 2 (e.g. 5-blue, black hills beetle light 

intensity) 

 

except: 

    print "Failure for coding method 1." 

    print arcpy.GetMessages() 

 

else: 

    print "coding method 1 completed successfully." 

 

# 

**********************************************************************

********* 

# Coding Method 2 

# 

**********************************************************************

********* 

 

# Output folder - Coding method 2 

outputFolder2 = "K:\\Research\\DATA\\Historic\\SanJuan\\MPB_Code2" 

 

try: 
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# This can be ListDatasets, ListFeatureClasses, ListFiles, 

ListRasters, ListTables, or ListWorkspaces 

    featureclassList2 = arcpy.ListFeatureClasses("*","POLYGON") # or 

use (,"ALL") 

    for featureClass2 in featureclassList2: 

            print featureClass2 

            new2 = outputFolder2 + "\\" + featureClass2[0:-4] + 

"_MPB" + ".shp"  # new = mywspace + "\\" + featureClass + "_MPB"   

#this is to be used for a gdb 

            print new2 

            lyr2 = arcpy.MakeFeatureLayer_management(featureClass2, 

"lyr2" ) 

            print lyr2 

            select_lyr2 = 

arcpy.SelectLayerByAttribute_management(lyr2, "NEW_SELECTION", " 

\"CODE\" LIKE '4%' ")    # SelectLayerByAttribute_management 

(in_layer_or_view, {selection_type}, {where_clause}) 

            final2 = arcpy.CopyFeatures_management(select_lyr2, 

new2)   # CopyFeatures_management (in_features, out_feature_class, 

{config_keyword}, {spatial_grid_1}, {spatial_grid_2}, 

{spatial_grid_3}) 

            print final2 

            arcpy.SelectLayerByAttribute_management(lyr2, 

"CLEAR_SELECTION") 

 

# Folder will contain all shapefiles but will have empty files 

deleted manually. 

 

except: 

    print "Failure for coding method 2." 

    print arcpy.GetMessages() 

 

else: 

    print "coding method 2 completed successfully." 

 

 

# 

**********************************************************************

********* 

# Coding Method 3-19: Coding beginning with "MPB..." instead of 

numbers. 

# 

**********************************************************************

********* 

 

# Output folder - Coding method 3 

outputFolder3 = 

"K:\\Research\\DATA\\Historic\\SanJuan\\MPB_Lettering_Code" 

 

try: 

# This can be ListDatasets, ListFeatureClasses, ListFiles, 

ListRasters, ListTables, or ListWorkspaces 
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    featureclassList3 = arcpy.ListFeatureClasses("*","POLYGON") # or 

use (,"ALL") 

    for featureClass3 in featureclassList3: 

            print featureClass3 

            new3 = outputFolder3 + "\\" + featureClass3[0:-4] + 

"_MPB" + ".shp"  # new = mywspace + "\\" + featureClass + "_MPB"   

#this is to be used for a gdb 

            print new3 

            lyr3 = arcpy.MakeFeatureLayer_management(featureClass3, 

"lyr3" ) 

            print lyr3 

            select_lyr3 = 

arcpy.SelectLayerByAttribute_management(lyr3, "NEW_SELECTION", " 

\"CODE\" LIKE 'MPB%' ")    # SelectLayerByAttribute_management 

(in_layer_or_view, {selection_type}, {where_clause}) 

            final3 = arcpy.CopyFeatures_management(select_lyr3, 

new3)   # CopyFeatures_management (in_features, out_feature_class, 

{config_keyword}, {spatial_grid_1}, {spatial_grid_2}, 

{spatial_grid_3}) 

            print final3 

            arcpy.SelectLayerByAttribute_management(lyr3, 

"CLEAR_SELECTION") 

 

# Folder will contain all shapefiles but will have empty files 

deleted manually. 

 

except: 

    print "Failure for coding method 3." 

    print arcpy.GetMessages() 

 

else: 

    print "     Coding method 3 completed successfully." 

    print "     All processes completed successfully." 

 

# 

**********************************************************************

********* 

# End of Script 

# 

**********************************************************************

********* 


