
THESIS

PRECONDITIONING POLYNOMIAL SYSTEMS FOR HOMOTOPY

CONTINUATION

Submitted by

Steven L Ihde

Department of Mathematics

In partial fulfillment of the requirements

For the degree of Master of Science

Colorado State University

Fort Collins, Colorado

Summer 2011

Master’s Comittee:

Advisor: Dan Bates

Chris Peterson
Peter Young

ABSTRACT

PRECONDITIONING POLYNOMIAL SYSTEMS FOR HOMOTOPY

CONTINUATION

Polynomial systems are ubiquitous in today’s scientific world. These systems

need to be solved quickly and efficiently. One key solution method comes from

Numerical Algebraic Geometry, specifically Homotopy Continuation. This method

involves following paths from the solutions of a simpler system to the solutions of

the target system. If we can follow fewer or better conditioned paths to the solution

set, the result is better efficiency. Our goal is to precondition the original system

in order to achieve such efficiency. Using dual spaces and H-bases, we are able to

remove poorly conditioned paths and at worst replace them with, possibly more,

better conditioned paths. At best we can trim the system down so that we track

only the paths that lead to solutions. These techniques require only numerical

linear algebra and are therefore easily computed. In this thesis we will introduce

H-bases and dual spaces, show some promising preliminary results, and discuss

further work in this area.

ii

TABLE OF CONTENTS

1 Introduction 1
1.1 Root Counts . 1
1.2 The Idea . 2

2 General Background 4
2.1 Ideas from Algebra . 4
2.2 Homogeneous Systems . 8
2.3 Homotopy Continuation . 10
2.3.1 Predictor and Corrector . 11
2.3.2 Square Systems . 13

3 Dual Spaces and H-bases 15
3.1 Linear Algebra . 16
3.2 Hilbert Function . 18
3.3 H-bases . 19
3.4 Computational Method . 22

4 H-Basis Examples 23
4.1 Preliminary Examples . 23
4.1.1 Example 1 . 23
4.1.2 Example 2 . 25
4.2 Reimer 3 . 26
4.3 A Problem From Economics . 27

5 Conclusion 29
5.1 Computation Time . 30
5.2 Discussion . 31
5.3 Future Work . 32

iii

Chapter 1

INTRODUCTION

The idea of a system of polynomial equations can be found throughout scien-

tific literature. These systems of equations arise everywhere from systems biology

and chemical reaction networks to robotics and engineering. The efficient solution

of these equations can help push the science further. There are several different

methods throughout mathematical literature that work at solving such systems of

equations. One area is Numerical Algebraic Geometry, specifically the area of al-

gebraic geometry involving numerical methods. One of the core ideas in this area

is that of homotopy continuation. We will briefly define and discuss homotopy

continuation in the next chapter but the main idea is simple. We start with a

system of equations that we want to solve. We solve a simpler system and build a

homotopy, or continuous morphing, from the simpler system to the target system.

We must be careful, though, as this can cause problems when the paths that we

follow are ill-conditioned.

1.1 Root Counts

One question that has driven much research throughout the history of alge-

braic geometry is that of root counts. That is, we are interested in the number of

zeros, or roots, of a polynomial. By the Fundamental Theorem of Algebra, we have

that a polynomial of degree d in one variable over C must have exactly d roots [5].

1

Once we move beyond a single variable, the question becomes far more interesting.

The first way to count comes from a theorem of Bézout [3]. This is the total degree

count, an upper bound on the number of distinct, isolated solutions to a system of

polynomials is determined by the product of the degrees of the polynomials. So,

a system of 6 equations each of degree d would have a total degree count of d6.

While this is a most efficient way to compute an upper bound, it is rarely sharp.

Another type of count is the mixed volume calculation. This count uses New-

ton polytopes built by the degrees of all of the monomials of each polynomial.

Each polynomial in a system creates its own associated Newton polytope. At this

point a calculation called a Minkowski sum “adds” the polytopes in order to create

one large polytope. The volume of this new polytope, called the mixed volume, is

another upper bound for the number of roots [3]. This count is more effective and

is often much lower than that of the Bézout bound. For sparsely populated sys-

tems, this method is very efficient. However, if the system is too large, or there are

too many monomial terms, the mixed volume calculations become unwieldy. Even

for moderately sized problems, the calculation can easily become unmanageable.

Part of the problem is that these root counts are generic. They are not specific to

each system. As a result, while the total degree is easy to compute and the mixed

volume is often a very good bound, they are still just upper bounds.

1.2 The Idea

Associated to each of these root counts is a specific homotopy. Due to these

generic root counts, one problem that arises using homotopy continuation is that

the simple start system may create many more paths than there are solutions.

For example, consider a start system based on a total degree (or Bézout) count

2

for the number of roots. Since this is generally a large upper bound, some of the

extraneous paths may lead off to ∞. These infinite paths are computationally

expensive to track as they must be followed to a predetermined tolerance in order

to determine that they are infinite. Then, they must be truncated at some point

which may lead to the loss of a solution if the bound was not correctly set. Our

goal is to precondition the original system to cut down the number of paths being

tracked. We are especially interested in removing the paths that go off to ∞. If

we can inexpensively precondition the system to remove paths at ∞, we can save

computational cost. This allows for the solving of larger systems in a reasonable

amount of time and with less computing power.

We are going to use dual spaces and H-bases to precondition these systems.

By homogenizing our system and moving to the dual space of the system, we are

able to cut away these infinite paths. As an added bonus, if we follow this enough

steps, we are able to read off the exact number of solutions. We will be saturating

the ideal generated from our system by the homogenizing variable in order to

remove extraneous points. These computations, normally computed using Gröbner

bases, will be reduced to linear algebra and numerical linear algebra computations.

The Gröbner calculations, usually computed in a computer algebra system such as

Macaulay 2 [6], can break down when a system becomes too large since they tend to

grow combinatorially. The fact that these dual space computations are essentially

linear will allow for the solution of larger problems with less computational cost.

Another benefit of the methods using only numerical linear algebra is that they are

naturally parallelizable. This is joint work with Dan Bates and Jon Hauenstein.

3

Chapter 2

GENERAL BACKGROUND

Before we can begin to precondition polynomial systems for solving, we need

some background. We want to use ideas from abstract algebra and algebraic ge-

ometry to solve these systems of equations. Here we will discuss some preliminary

ideas like polynomial systems, polynomial rings, ideals and varieties, and homo-

topy continuation. The last will be our motivation for preconditioning. We will

discuss difficulties that arise using homotopy continuation and how we hope to

remove them.

2.1 Ideas from Algebra

We start with some notation. We will be working over the field of complex

numbers C. This field is convenient because it is infinite and algebraically closed.

It contains the real numbers R as a subset and allows us to find the solutions we

are looking for. From algebra we have that this is a ring since every field is a ring

with special properties, specifically it is commutative with identity and has no zero

divisors. The usual notation for a general field is k but for our purposes we will

always work over C. For more information on rings and fields see [5]. We now

want to consider a polynomial ring.

4

Definition 2.1.1. A polynomial ring R is a ring adjoined by a set of variables

x1, . . . , xn,

R = C[x1, . . . , xn].

This new ring R is the set of all polynomials of finite degree with coefficients in

C. We are assuming here that the reader has a working knowledge of polynomials

from elementary algebra.

Definition 2.1.2. A polynomial system is a set of polynomials {f1, . . . , fs}

such that for i = 1 . . . s we have fi ∈ C[x1, . . . , xn].

We want to put this idea into the context of abstract algebra. Namely, we

want to use the ideal generated by our polynomial system.

Definition 2.1.3. We say that a subset I ⊂ R = C[x1, . . . , xn] is an ideal of R if

1. I 6= ∅

2. I is closed under subraction and multiplication

3. rI = {ra | a ∈ I} ⊆ I for all r ∈ R

For brevity we only use the definition under left multiplication of ring elements.

Since we are working with a field for our base ring, we have a commutative ring

and the definition is equivalent. Now we want to think about how we can generate

an ideal. By the Hilbert Basis Theorem, any ideal of a polynomial ring over a field

is finitely generated [5]. We can thus create an ideal I of our polynomial ring R by

considering the ideal generated by our system of polynomials. From [4] we know

that this will satisfy our criteria for an ideal.

5

Definition 2.1.4. Consider a system of polynomials f1, . . . , fs in C[x1, . . . , xn].

The ideal generated by f1, . . . , fs is the set of all polynomial combinations of

f1, . . . , fs with elements of C[x1, . . . , xn]. Namely,

< f1, . . . , fs > = {
∑s

i=1 gifi : g1, . . . , gs ∈ C[x1, . . . , xn]}.

With this definition, we have an ideal formed by our system. We want to find

a way to “divide” two ideals. This idea will accordingly be called a quotient ideal

or, from the notation, a colon ideal.

Definition 2.1.5. Consider I and J ideals of R = C[x1, . . . , xn].

Then the quotient ideal I : J is the set

{f ∈ C[x1, . . . , xn] : fg ∈ I for all g ∈ J}

We can show that this is in fact an ideal [4]. This idea can be extended to

include a single polynomial. If I is an ideal in our ring R and f is a polynomial

in R, we can take the ideal quotient I : < f >. We make the notation simple by

dropping the <> notation, as in I : f . The question that remains is, how much

can we quotient out using these ideals? Is there a point where we can’t divide out

any more? We can consider the ideal (I : f) : f . If we iterate this process, will it

terminate? A proposition from [4] allows us a first step to show this is true.

Proposition 2.1.1. If I and J are ideals in C[x1, . . . , xn] then I ⊂ I : J

Proof:

Since I is an ideal, then for all f ∈ I, fg ∈ I for all g ∈ C[x1, . . . , xn]. Then

certainly fg ∈ I for all g ∈ J . Thus I ⊂ I : J

�

6

Since we have shown that I ⊂ I : f we have by the same argument,

I : f ⊂ (I : f) : f

For notation sake, we will refer to (I : f) : f as I : f 2. Now we can build an

ascending chain of quotient ideals

I ⊂ I : f ⊂ I : f 2 ⊂ I : f 3 ⊂ . . .

By the ascending chain condition [5, 4], we have that this must terminate.

Specifically this means that there exists some ` such that for all m ≥ ` we have

I : fm = I : fm+1. This leads us to our next and crucial definition.

Definition 2.1.6. Consider an ideal I ⊂ C[x1, . . . , xn] and f ∈ C[x1, . . . , xn].

Then the saturation of I with respect to f , denoted I : f∞ , is

I : f∞ = {h ∈ C[x1, . . . , xn] such that fmh ∈ I for some m > 0}

This definition will allow us to find a stopping criterion for our algorithm. It

is an easy exercise to show that I : f∞ is an ideal and since there must exist ` such

that I : f ` = I : f `+1 = I : f `+2 = . . . we have that I : f ` = I : f∞.

Now that we are able to put our system into the language of abstract algebra,

our next goal is to relate this to the inherent geometry of the system. Since we

want to find the solution to our polynomial system, this means that we want to

solve all of the polynomials simultaneously. This is equivalent to finding the set

of values at which all of the polynomials evaluate to zero. We will call upon a

definition from geometry to describe this set of values. Here, again, we will follow

the notation of [4].

7

Definition 2.1.7. The variety of an ideal I = < f1, . . . , fs > ⊂ R is the set of

points (a1, . . . , an) ∈ Cn such that fi(a1, . . . , an) = 0 for i = 1, . . . , s

V (I) = V (f1, . . . , fs) = {(a1, . . . , an) ∈ Cn | fi(a1, . . . , an) = 0 for i = 1, . . . , s}

This language of algebraic geometry allows us to redefine our solution set. We

can now say, for a system of equations F = {f1, . . . , fs}, the set of zeros is the

variety V (F). This of course corresponds to the solution set. For the purposes of

this thesis we will only consider varieties whose dimension is 0. This means we

will only consider polynomial systems whose solution set is a finite set of points in

Cn. For varieties of positive dimension, there is still more work to be done.

2.2 Homogeneous Systems

In this section we consider the algebraic and geometric constructs of the last

section with a new twist. We will introduce the idea of working with homogeneous

systems.

Definition 2.2.1. A polynomial f ∈ C[x1, . . . , xn] is homogeneous if all mono-

mials of f have the same degree.

This definition can be taken one step further. Instead of just having a poly-

nomial that is already homogeneous, we want to take an arbitrary polynomial and

make it homogeneous. This will be accomplished by taking the individual mono-

mials and increasing their degrees until they match the degree of the polynomial.

8

Definition 2.2.2. Consider a polynomial f ∈ C[x1, . . . , xn] of degree d with

f =
∑N

j=1 cjx̄
αj

with x̄ the set x1 · . . . · xn, αj = (αj,1, . . . , αj,n) the vector of powers of x̄ and the

coefficients cj ∈ C. We can homogenize f by multiplying each monomial of f by

the appropriate power of x0, called the homogenizing variable.

fh =
∑N

j=1 cjx̄
αjx

d−|αj |
0 with fh ∈ C[x0, . . . , xn]

This new homogeneous polynomial lives in a slightly larger polynomial ring,

C[x0, . . . , xn]. With this in hand, we want to build an ideal that is also homoge-

neous. This begs the question: Can we homogenize an ideal of polynomials? The

answer is yes. Unfortunately, this is not as simple as homogenizing each of the

generators.

Definition 2.2.3. Consider an ideal I ⊂ C[x1, . . . , xn] . The homogeneous

ideal Ih is the ideal generated by the homogenization of all f ∈ I,

Ih = < fh | f ∈ I >

While we always have that < fh1 , . . . , f
h
s > ⊂ Ih for I = < f1, . . . , fs >, we

can have strict containment. However, another characterization of a homogeneous

ideal allows us to realize a homogeneous basis.

Definition 2.2.4. Consider Ih ⊂ C[x0, . . . , xn], then Ih is a homogeneous ideal

if

Ih = < g1, . . . , gr > where the gi are homogeneous polynomials

9

Informally, our homogenizing variable x0 plays the role of ∞. Now, if we

were to solve the system of equations using homotopy continuation, paths that

go off to ∞ correspond to solutions where x0 = 0. If we then use saturation to

remove the x0 parts from our homogeneous system during preconditioning, the

undesirable paths will be removed. We can consider the ideal generated by x0 and

use the quotient ideal just as we did in the previous section. For example if Ih

is a homogeneous ideal in C[x0, . . . , xn] then we can consider the ideal Ih : x0.

Following the notation from the last section, the saturation of Ih with respect to

x0 will be denoted Ih : x∞0 .

2.3 Homotopy Continuation

In this section, we consider our main tool for solving polynomial equations.

It is good to note that this method is not limited to only solutions of polynomial

systems. There may , however, be further complications that arise when using this

method to solve other types of equations. Homotopy continuation is well behaved

for polynomial systems and this is where our interests lie.

We start by considering a map f : Cn → Cn. We can implicitly assume that

f is a system of polynomials in the polynomial ring R = C[x1, . . . , xn]. If we then

choose some g : Cn → Cn that is easy to solve, we can build a homotopy between

the two polynomial systems.

Definition 2.3.1. A homotopy is a map H that morphs f to g continously over

a time interval t ∈ [0, 1]

H : C× [0, 1]→ C

f 7−→ g

10

The homotopy itself is easy to build. We just consider H(t) = (1− t)f +γtg. This

says that at time t = 0 we have f and at time t = 1 we have g, almost. There are

a couple of caveats here to discuss. One is that when we actually compute these

homotopies, we start at time t = 1 and work backwards to time t = 0. In this way

we are able to start from our simpler g and work back to the f that we want to

solve. The second is the γ that mysteriously showed up in the homotopy. This is

known as the γ trick [11]. We choose a random γ ∈ C and multiply this by our

simple g. This allows for a probability one guarantee that our paths with not cross

and, since it is a coefficient, it does not affect the roots of g.

Now we have a continuous morphing from g to f and for all solutions xi of g

there exists a path from t = 1 to t = 0 ending at either a solution of f or at ∞.

The next step for us is to track each path such that we end at the solutions for

which we are searching.

2.3.1 Predictor and Corrector

To track these paths, we call upon what are known as predictor/corrector

methods. We start at t = 1 with Euler’s method to take a step along the tangent

line of the path. This moves us “forward” (we are actually moving backwards from

1 to 0), but the tangent direction might take us away from the path. So, we must

correct back. Here we freeze t and employ Newton’s method from calculus in order

to bring us back to the path. We iterate this process of predicting and correcting

until we have tracked the path back to the solution at t = 0. One question is, how

far along the tangent should we step before we correct back? Another question

is, with how much precision should we follow these paths? These questions relate

directly to the condition number of the path at a particular point. This number

11

will give us an idea as to how our path is proceeding [11]. As t approaches zero,

this also will provide a way to tell if a particular path is moving off to ∞.

Definition 2.3.2. Consider F a system of polynomials and x̂ a possible solution

for F . We can consider the jacobian matrix, J , of our system F evaluated at our

point x̂, Jx̂(F). The condition number at x̂ is the ratio of the largest singular

value of the jacobian matrix to the smallest.

With the condition number in hand, we begin to see how much precision we

might need and how far we might be able to step. Such measures are already

built into our favorite solver Bertini [2] in the form of adaptive multiprecision

and adaptive step length. These, however, are technical considerations beyond the

scope of this paper.

What this condition number does for us is to give a measure for how close

we are to the nearest singular matrix. If the condition number is very large, this

means that the value is very near a singular matrix and we need more precision.

If the condition number is close to one, the value is not near a singular matrix

and therefore easier to track. When solutions at ∞ are singular, they can cause

many computational problems. One is that as we approach t = 0, we get condition

numbers that are very high, thus more precision is needed. Using anything more

that the lowest precision in a program like Bertini is very expensive. This ill-

conditioning of singular infinite paths means that they cause a lack of efficiency.

Even if infinite paths are not singular, they can cause problems. For instance, there

is the matter of when to truncate such infinite paths. That is, how long should

we track these paths before we decide that they are infinite. If we do not follow

them long enough, we may end up truncating a solution that was not infinite. If

12

we follow for too long, we will end up wasting computing power and time on a lost

pursuit.

2.3.2 Square Systems

One last consideration that has been thus far overlooked is that when using

homotopy continuation methods, we assume the system is square. That is, the

number of equations matches the number of variables. In general, polynomial

systems are not square. In practice, polynomial systems are actually far from

square. This is not a problem as we are able to square any system with a very

simple method. Consider a system of N equations in k variables

F =



f1(x1, . . . , xk)

f2(x1, . . . , xk)

...

fN(x1, . . . , xk)

with N > k. Then we wish to build a system F̂ that is a k × k system with the

same set of zeros as F . We accomplish this by taking linear combinations of the

fi’s. This looks like

F̂ =



f̂1 = α1,1f1 + . . .+ α1,NfN

f̂2 = α2,1f1 + . . .+ α2,NfN

...

f̂k = αk,1f1 + . . .+ αk,NfN

13

where the αi,j are random coefficients in C. How can we guarantee that we still

get the same zeros? There is one theorem of Bertini that allows this squaring. For

simplicity we will keep the current notation.

Theorem 2.3.1. (Bertini) Solutions of F are still solutions of F̂ .

Proof:

If a value x̄ is a solution to F , then f1(x̄) = f2(x̄) = . . . = fN(x̄) = 0. Since each f̂i

is a linear combination of the fj’s, we have that f̂1(x̄) = f̂2(x̄) = . . . = f̂k(x̄) = 0.

Thus each solution of F is a solution of F̂ .

�

NOTE: Bertini’s theorem actually says more than this. This piece is all that is

necessary for our purposes.

On the other hand, we may end up with solutions to F̂ that are not solutions

to F . These solutions may lead off to ∞ or they may lead to what are called

Bertini junk points. The infinite paths, as we have shown, are difficult to track.

The Bertini junk points are computationally much less expensive. They are not

infinite and it is an easy test to see that they are not solutions to F and discard

them. It will be our goal in preconditioning to remove the infinite paths, possibly

at the expense of creating more paths that lead to Bertini junk points. Most

importantly, any polynomial system with the number of equations greater than

the number of variables can be made square. Now, we have the tools to use

homotopy continuation methods.

14

Chapter 3

DUAL SPACES AND H-BASES

In this chapter we will look at Dual Spaces and H-bases as a means to precon-

dition polynomial systems. These ideas will allow us to avoid the computational

problems that arise from the use of Gröbner Bases. Gröbner basis methods allow

for many computations symbolically but fail to stay stable when working with

numerical approximations. We will be able to use a similar idea in the form of

H-bases without the extra criteria that cause these problems. Specifically, H-bases

will not require a division algorithm involving the leading terms and leading coef-

ficients. This means that by working with numerical linear algebra, we can even

work with numerical approximations.

We will use the dual space of an ideal in order to find the Hilbert function of

the system. This will determine a first stopping criterion for our algorithm as it will

identify an H-basis. We do this by first homogenizing the ideal generated by our

system. At each step of this process, we are able to read off the Hilbert function in

the different degrees. When this stabilizes, we are able to move forward to the next

step. The H-basis will then be a new homogeneous system of polynomial equations

that admits the same affine variety. We can iterate this process to create each new

H-basis until we get the Hilbert function to stabilize to the Hilbert polynomial,

this will be our second stopping criterion. The H-basis represented at this step

will provide our preconditioned system. This new system will allow us to compute

the solutions to the system more efficiently by removing paths that go off to ∞.

15

At most we may get extra Bertini junk points. Otherwise this method has the

potential to create a preconditioned system that admits the exact number of paths.

We will start with some basic definitions from linear algebra in order to familiarize

ourselves with the notation.

3.1 Linear Algebra

The fundamental constructs that we will use for dual spaces and H-bases are

rooted in linear algebra. There are different ways of defining dual spaces. We

can follow [12] and define a dual space in terms of vector spaces. First, recall our

notation from Chapter 2. Let {f1, . . . , fs} be a system of polynomial equations with

fi ∈ C[x1, . . . , xn]. Again, we will consider I ⊂ C[x1, . . . , xn] the ideal generated

by our system, I = < f1, . . . , fs >.

Definition 3.1.1. The dual space V ∗ of a vector space V is the vector space of

all linear functionals L : V → C

This definition is very general and difficult to use for computations. We want

to find an equivalent definition that encodes all of this information in a more usable

form. We can encode the linear functionals into our computations by using the

Macaulay matrix. In order to do this, we must define the differential operators ∂α.

For α ∈ Zn≥0 we have |α| = α1 + . . . + αn and α! = α1!α2! · · ·αn! Now we say the

differential operator is

∂α =
1

α!

∂|α|

∂xα

For g ∈ C[x1, . . . , xn] and y ∈ Cn we have ∂α[y](g) = (∂αg)[y]. This says that the

differential operator evaluated at our y value and then applied to our polynomial

16

g is the same as applying the operator to g and then evaluating at y, [7]. Now we

can define our Macaulay matrix using this notation.

Definition 3.1.2. The Macaulay matrix Md(I) of degree d for an ideal I is

the matrix whose row entries are the functions f1 . . . fs of I and whose column

operators are the differential operators ∂α of degree d, i.e. |α| = d.

In other words mi,j = ∂αj
(fi).

This definition isn’t exactly precise. If the functions f1, . . . , fs are not all of degree

d we must first raise them to degree d. This entails multiplying the fi’s by all

monomials of degree equal to the difference of d and the degree of fi. In the end,

we may end up with many more functions in our rows.

Another definition of the degree d dual space of I is the space of differential

operators of degree d that vanish on I. If we have the space of differential operators

on I encoded into our Macaulay matrix, we need to look at the vectors that vanish

on I.

Definition 3.1.3. The null space N(A), of a matrix A, is the set of vectors

v ∈ Cn such that A · v = 0.

We are now able to use these ideas from linear algebra to give a better defintion

of the dual space of degree d of an ideal I. When we find the nullity of a matrix A,

we can find a basis for N(A). This will provide for us a C-basis of the dual space

called the dual basis.

Definition 3.1.4. The (Macaulay) dual space of an ideal I is the null space

of the Macaulay matrix N(Md(I)).

17

NOTE: This is not the most general definition for either the Macaulay matrix

or the dual space. This is, however, the most useful version for our algorithm.

From this dual space definition we can build a dual basis for the quotient ring

C[x0, . . . , xn]/I where I is the ideal generated by our system of equations.

3.2 Hilbert Function

We will now to relate this to the Hilbert function in order to give a stopping

criterion for finding a correct C-basis for our dual space. Following [3] we can define

the Hilbert function for a homogeneous system of equations. Since we are going to

homogenize our system, we can consider the homogeneous ideal Ih ⊂ C[x0, . . . , xn]

in n+ 1 variables.

Definition 3.2.1. If K is a finitely generated graded module over R = C[x0, . . . , xn]

then the Hilbert function HK(d) of degree d is defined to be the dimension of

the degree d homogeneous part Kd of K over C, HK(d) = dimCKd.

This definition gives us a way now to relate the Macaulay dual space defined

in the last section to our ideal. Since this is a graded module over our ring, R, we

can consider the homogeneous part in degree d as a vector space over C, [3]. In

this way, we remember that we are working over graded modules but we consider

our spaces as vector spaces over a field. This allows us to use linear algebra and

numerical linear algebra.

Proposition 3.2.1. The Hilbert function in degree d of Ih, is equal to the dimen-

sion of the null space of the Macaulay matrix of Ih in degree d.

HIh(d) = dimCN(MdI
h)

18

Proof:

By definition of the Hilbert function in degree d of the homogeneous ideal

Ih, HIh(d) = dimC(C[x0, . . . , xn]d)− dimC(Ihd). From linear algebra we know that

the dimension of a dual vector space is equivalent to the dimension of the original

vector space as long as the vector space is finite-dimensional. The dimension in

C of Ih is the rank of the Macaulay matrix. By the rank-nullity theorem, we have

that the difference between the dimension of the whole space and the rank is the

null space of the Macaulay matrix, N(MdI
h).

�

3.3 H-bases

H-bases, first defined by Macaulay, give us a way to find usable bases for

our computations without the extra conditions of Gröbner bases. The primary

difference lies in the fact that H-bases do not require a division using leading terms

and leading coefficients. Instead, H-bases are only ordered by degree. Macaulay

called them H-bases for homogeneous [8, 9]. Once we have an H-basis, it will be

a homogeneous system that will correspond to the Hilbert function of our original

system. If we iterate this process until a stopping criterion, we create an H-basis

that corresponds to the Hilbert polynomial. Our first simple example of an H-basis

will just be the homogenized system, if it is not already homogeneous. We will use

the notation H0 for this H-basis. Each succesive H-basis will use similar notation.

First, we will need a definition of an H-Basis. We will follow the definition and

notation from [8].

19

Definition 3.3.1. Consider a system of polynomials F = {f1, . . . , fs} with

fi ∈ C [x1, . . . , xn]. Let G = {g1, . . . , gr} be a finite set of polynomials with

gi ∈ C [x1, . . . , xn] r {0}. We say G is an H-Basis for I = < f1, . . . , fs > if for

all p ∈ I, there exists h1, . . . , hr such that

p =
∑r

i=1 higi and (deg(hi) + deg(gi)) ≤ deg(p) for i = 1, . . . , r

Here we see that the criteria for an H-basis depends solely on the degree of the

polynomials. We are going to compute H-bases in a step by step process. We start

with H0 which is now our homogenized system. In order to get to H1 we consider

the Macauley matrix of our homogenized system. One question for our calculation

is, in what degree should we compute the Macaulay matrix? At each step, there

is a lower bound on this number.

The smallest degree in which we can compute the Macaulay matrix is the

largest degree of the fi’s. Consider d = max{deg(f) | f ∈ f1, . . . , fs}. We will

then start in degree d and compute the null space of the Macaulay matrix. We are

looking for the dimension of the null space to stabilize. Using this construction, we

are looking for the dimension of the null space to become constant. For different

constructions, we would look for the difference in the dimensions of the null space

to become constant. We compute the null space of the Macaulay matrix in degree

d+1, d+2, . . . until we reach degree k such that dimCN(MkI
h) = dimCN(Mk+1I

h).

At this point, we can work in degree k. Occasionally, this method will yield an

H-basis that does not work out in the end and we must instead use degree k + 1.

For a possible heuristic, it might be best to use k + 1 in every case, though this

may not give optimal performance. This phenomena will be demonstrated in the

chapter of examples and discussed in the conclusion.

20

From this null space computation, we obtain a dual basis in degree k. It is

here that we want to quotient out our ideal by the homogenizing variable x0. We

accomplish this by trimming our basis vectors to remove any monomials that do

not include x0. In the setup of the algorithm, this is accomplished by ordering the

monomials with a lexicographic ordering with x0 > x1 > . . . > xn. Once we have

trimmed the vectors, we can put the new trimmed vectors into a new matrix M̂

and take the null space of the transpose, N(M̂T). What remains is a new basis

for our ideal Ih. This new basis is in degree k − 1. This will be our H1, the next

H-basis. Taking the transpose of M̂ puts the equations into vectors and the null

space calculation removed one level of x0 components. This also has the effect of

moving back to our original space as the dual of the dual space V ∗ is the original

space, (V ∗)∗ = V .

Now that we have H1, the lowest degree that we may compute the Macaulay

matrix in is k − 1. If, indeed, degree k − 1 again yields an H-basis, we have cut

the degree of our system down again and our new system is in degree k − 2. This

corresponds to removing paths when using a total degree start system for homotopy

continuation. Now that we have our method for finding successive H-bases, the

next step is to find where to stop. At what point do we have a fully saturated

system?

Since we are working with zero dimensional systems, it is known that the

Hilbert polynomial is constant. Our second criterion is for the degree of the H-

bases to stabilize to a number. Once we have reached this point, we have fully

saturated with respect to the homogenizing variable. This means that we have

reached the Hilbert polynomial and the degree of the null space will be the exact

number of solutions. The final H-basis will represent our preconditioned system.

21

The beauty of this is that we now have the exact number of solutions and a system

that is preconditioned. When solving this system with homotopy continuation, we

have fully removed all infinite paths.

3.4 Computational Method

ALGORITHM:

INPUT: A system of polynomials, F = {f1, . . . , fs} ⊂ C[x1, . . . , xn]

OUTPUT: A preconditioned homogeneous system {h1, . . . , hr} ⊂ C[x0, . . . , xn]

• Step 0: Homogenize system, F 7→ F h, this is H0

• Step 1: Let J = H0

• Loop 1: For i from 0 to ` such that dim(H`) = dim(H`+1) do

– Loop 2: For d from lowest degree (from above) to k such that

dimN(Mk(J)) = dimN(Mk+1(J))

∗ Step: Build Macaulay matrix Md(J) in degree d

∗ Step: Find a basis N̂ for the null space N(Md(J))

∗ Step: If dimension stabilizes, break out of Loop 2, else d→ d+ 1

∗ End for

– Step: Trim basis vectors and find the null space of M̂T , (M̂ is trimmed

matrix)

– Step: Convert to polynomials , this is Hi, and set J = Hi

– End for

22

Chapter 4

H-BASIS EXAMPLES

Through dual space computations, we can now produce H-bases. These H-

bases give defining equations for the solution set that cut away extraneous paths

to ∞. This chapter gives some examples of H-basis computations and the null

space criteria provided by the Hilbert function and the Hilbert polynomial.

4.1 Preliminary Examples

We begin this section with some examples which each have only one solution

[1]. We present a comparison to the most general root counts for systems as

described in chapter 1. This includes the total degree bound and the mixed volume

calculation where available.

4.1.1 Example 1

We consider the system:

f =


x2 − 9

xy + 3y − 1

By the total degree count, we have a possible 4 roots. The mixed volume calcuation

tells us that there are possibly two roots. With the H-basis calculation, we can

show that there is one unique root. We can also find the defining equations for

23

said unique root. Table 4.1 shows the progression of the H-basis computations in

different degrees. As the degree of the null space stabilizes, we move forward to

the next H-basis. The dimension of the null space that gives the correct value is

shown in blue. Sometimes a nullity stabilizes at a lower degree but does not give

the correct H-basis. This nullity is here denoted in red. A clear example of this is

shown in the table as H ′3, which does not work out correctly. This step came from

choosing the equations that came from degree 2 of H2 rather than degree 3. If we

instead choose degree 3, then the set labeled H3 gives a correct H-basis. Here this

misstep comes from the fact that the number of equations is not enough to have

unique solutions. This phenomenon of the red numbers will be discussed in the

final chapter and is the subject of future work.

H-basis degree 2 degree 3 degree 4
H1 null = 4 null = 4 null = 4

0 equations 3 equations 7 equations
H2 null = 3 null = 3 null = 3

1 equation 4 equations 8 equations
H ′3 null = 3 null = 4 null = 5

1 equation 3 equations 6 equations
H3 null = 2 null = 2 null = 2

2 equations 5 equations 9 equations
H4 null = 1 we get a unique solution

2 equations from this set of equations

Table 4.1: H-Basis steps

24

4.1.2 Example 2

Our next example is a little more complicated. We consider the system:

g =


x2 + 6xy + 4xz + 9y2 + 12yz + 4z2 − 9

4x2 + 10xy + 9xz − 6y2 − yz + 2z2 − 1

5x2 + 12xy + 9xz − 15x− 9y2 − 9yz + 9y − 2z2 + 3z − 1

Here both the total degree and the mixed volume calculations show a possible

eight roots. Due to the large number of differing monomials, the mixed volume

calculation does not cut down the number of possible roots. We will precondition

the system to produce only one path. This can be shown as we reach the Hilbert

polynomial. When we get to our last H-basis, as shown in Table 4.2, the dimension

of the null space is one. This removes the seven extraneous paths that go off to

∞.

H-basis degree 2 degree 3 degree 4
H1 null = 7 null = 8 null = 9

0 equations 6 equations 16 equations
H2 null = 4 null = 4 null = 4

2 equations 8 equations 18 equations
H ′3 null = 3 null = 4 null = 5

2 equations 7 equations 16 equations
H3 null = 2 null = 2 null = 2

3 equations 9 equations 19 equations
H4 null = 1 we get a unique solution

3 equations from this set of equations

Table 4.2: H-Basis steps

25

Here we have the correct null space dimension criterion shown in blue. If we again

take a misstep at H2 we end up with an incorrect H-basis. This is denoted H ′3 and

the wrong choice of nullity is again in red.

4.2 Reimer 3

We consider the system

h =


−1 + 2x2 − 2y2 + 2z2

−1 + 2x3 − 2y3 + 2z3

−1 + 2x4 − 2y4 + 2z4

This system arises from a problem posed by Reimer [10]. Using a total degree

bound, the original system has 24 paths with 12 of them leading off to ∞.

H-basis degree 3 degree 4 degree 5 degree 6 degree 7
H1 N/A null = 20 null = 23 null = 24 null = 24

5 eqs 16 eqs 36 eqs 64 eqs
H2 N/A N/A null = 20 null = 20 null = 20

19 eqs 40 eqs 68 eqs
H3 N/A null = 16 null = 16 null = 16

7 eqs 21 eqs 42 eqs
H4 null = 13 null = 14 null = 14

2 eqs 9 eqs 23 eqs
H5 null = 11 null = 12 null = 12

2 eqs 9 eqs 23 eqs
H6 null = 11 null = 12

2 eqs 9 eqs

Table 4.3: Reimer 3

26

As shown in Table 4.3, the dimension of the null space of the Macaulay matrix is

24 when we start into H1. As the nullity stabilizes and we step through the bases,

we get the dimension of the null space down to 12 exactly. This H-basis then

produces 27 paths with 15 Bertini junk points and zero infinite paths. Through

the H-basis computations we have been able to remove all of the infinite paths and

we only added an additional three paths.

4.3 A Problem From Economics

Here we look at a problem arising from economics. We consider the system:

f =



x1x5 + x1x2x5 + x2x3x5 + x3x4x5 − 1

x2x5 + x1x3x5 + x2x4x5 − 2

x3x5 + x1x4x5 − 3

x4x5 − 4

x1 + x2 + x3 + x4 + 1

This system has a total degree count of 54 possible solutions. Of these 54

paths, only eight actually lead to solutions. The extra 46 paths are all going off

to ∞ when tracking using homotopy continuation. It is our goal to remove the 46

paths to ∞. The table shows that we are able to get the rank of the null space

lowered. This, corresponding to the Hilbert function in each degree, gives us the

bound on the number of possible solutions at each step. In the last step in the

table, the dimension of the null space is lowered to eight which is the exact number

of solutions. Our second criterion says that since the dimension of the null space

27

stabilizes here, we have reached saturation. This H-basis has 32 paths and the 24

extraneous paths are not infinite but instead are Bertini junk points.

H-basis degree 2 degree 3 degree 4 degree 5
H1 N/A null = 27 null = 40 null = 52

8 eqs 35 eqs 99 eqs
H2 N/A null = 21 null = 27 null = 33

12 eqs 46 eqs 116 eqs
H3 null = 9 null = 10 null = 10

1 eq 12 eqs 47 eqs
H ′4 null = 9 null = 10 null = 10

1 eq 12 eqs 47 eqs
H4 N/A null = 9 null = 9

13 eqs 48 eqs
H5 null = 8 null = 8 null = 8

1 eq 13 eqs 48 eqs

Table 4.4: H-Basis steps

It is worth mentioning that the mixed volume calculation for this system gives the

exact number of roots at eight. But, the time spent calculating the mixed volume

may outweigh the benefits of tracking only eight paths.

This particular example is a curiosity in that the dimension of the null space

in H1 doesn’t stabilize either to a single number or to a linear equation. The

difference between the dimension in null spaces seems to be quadratic. Degree

four was chosen because it represented a minimum for the parabola defined by

the quadratic change. The fact that the nullity didn’t stabilize is another future

consideration.

28

Chapter 5

CONCLUSION

While the ideas for dual spaces and H-bases have been around for quite a while,

only recently has there been any progress in using them to effectively compute

operations on ideals. With the computing power now available, and this method’s

natural parallel extension, these ideas are quickly becoming a viable tool for such

operations. Our goal is to use these methods to precondition our polynomial

systems for use in homotopy continuation methods. There are several methods for

reducing the number of paths and the time per path. Most of these are concerned

with building a good enough start system. This method works but may end up

being more computationally expensive if the start system is too difficult to solve

easily. What we have done is to cut down the original system so that we may

use the simplest start system, total degree, and still track fewer paths with none

of the paths being infinite. In the end this may produce more paths and we

must test for feasibility. There are a few questions still to be answered. How

many H-basis calculations should we do before the costs outweigh the benefit?

How can we streamline the calculations for maximum efficiency? Why does our

first stopping criterion occasionally give a false H-basis? How could we deal with

positive dimensional varieties?

29

5.1 Computation Time

The algorithm presented is not currently designed to be the most efficient

possible. This algorithm, instead, shows that we can completely cut out all of

the infinite paths for homotopy continuation. The method has the added bonus

that it can, under the right circumstances, cut down the total number of paths

to be tracked. In this way, we are tracking fewer paths and each path is less

computationally expensive. For medium to large problems, this method may be

particularly valuable. For small problems, it may be better not to precondition at

all as the difference in computation time is rarely better than seconds saved and

at times not at all.

A heuristic is being worked on as to when we should stop H-basis calculations.

If it is more cost effective, we may choose to stop the H-basis computations before

saturation. This means that there will be some paths left that are infinite. These

are represented as solutions where our homogenizing variable is zero, x0 = 0. These

can then be filtered out as non solutions. The cost-benefit ratio is not quite clear

yet but a useable criterion is our next step.

Another improvement to the algorithm comes in the form of reducing the sizes

of the Macaulay matrices. Zeng [13] provides this with the Closedness Subspace

Method. This method will allow us to define the Macaulay matrix using the exact

differential operators that are needed for each computation. Currently, we are

using a more general method that includes all differential operators of a particular

degree. It may be that some of these differential operators have no effect on

the calculation. Thus, the size of the Macaulay matrix can be reduced and the

efficiency of the null space computations increased.

30

5.2 Discussion

One obstacle in this algorithm is when we reach a false H-basis. This was

shown in several examples in Chapter 4. One explanation for this red number

phenomena was that the number of equations and the number of variables made

a single solution impossible. This certainly happened in 4.1.1 and 4.1.2. Clearly

two equations in four variables was not enough to carve out a single solution.

The misstep in 4.3, however, does not share this same characteristic. At the

misstep, the dimension of the null space stabilizes and following the algorithm

says that we should consider the 12 equations in degree three. Doing so leads to

false solutions. One possible explanation is that the trimming operation removes

too much information when the degree is minimal. It is an easy fix to just use the

next H-basis. The question remains: How do we detect such missteps? This is still

an open question.

Another obstacle comes in the form of an exact first stopping criterion. In

most examples, we know to stop because the dimension of the null space stabilizes

to a single number. In 4.1.2, the dimension of the null space does not stabilize

to a number, but instead to a linear function. This criterion is one for a slightly

different version of this algorithm but worked in this case. Again in example 4.3,

the dimension of the null space appears to be a quadratic function. Choosing the

minimum value gave a correct H-basis. Yet, there was no specific criterion for doing

this. At a later step in the algorithm, we are again faced with a linear function

rather than a constant. It seems as though the function is dropping by degrees

from quadratic to linear to constant. More research will need to be dedicated to

discovering the cause of this phenomenon.

31

5.3 Future Work

There are a number of places to take this research. Future work will mostly

be concerned with creating better efficiency for the algorithm. This will include

implementing the closedness subspace method and finding a reasonable heuristic

for stopping the H-basis computations. Another possible method for speed up

would be to use only the monomials involving the homogenizing variable to raise

the degree for the Macaulay matrix. In preliminary tests, this has shown valuable

speed up but further tests are necessary before this can be shown as viable.

Other research will include the case for positive dimensional varieties. Here

there is much more work to be done in order to find a reasonable stopping crite-

rion. Preliminary results from the twisted cubic give hope but not yet a definitive

method. There is also the concern for when the dimension of the null space does

not behave as expected. We hope to broaden our criterion for stabilization or find

the root of this occurence. Only further work will tell.

Acknowledgements

Thanks first and foremost to my advisor, Dan Bates. Further thanks go to

Jon Hauenstein for his guidance and to my wife Heather for her support. Also,

this work wouldn’t be possible without the support of the CSU Math Department.

32

Bibliography

[1] AMS-SIAM, Computing hilbert functions using dual spaces, Jan 2010.

[2] D. Bates, A.J. Sommese, C.W. Wampler, and J. Hauenstein,
Bertini, software for numerical algebraic geometry, Available at
http://www.nd.edu/ sommese/bertini/.

[3] D. Cox, J. Little, and D. O’Shea, Using algebraic geometry, Springer, 1998.

[4] , Ideals, varieties, and algorithms, third ed., Springer, 2007.

[5] D.S. Dummit and R.M. Foote, Abstract algebra, third ed., John Wiley & Sons,
Inc., 2004.

[6] D.R. Grayson and M.E. Stillman, Macaulay2, a software system for research
in algebraic geometry, Available at http://www.math.uiuc.edu/Macaulay2/.

[7] J. Hauenstein, Algebraic computations using macaulay dual space, 2010,
preprint.

[8] H.M. Möller and J. Sauer, H-bases for polynomial interpolation and system
solving, Advances in Computational Mathematics 12 (2000).

[9] H.M. Möller and T. Sauer, H-bases 1: The foundation, Vanderbilt University
Press, 1999.

[10] M. Reimer, Constructive theory of multivariate functions, (1990).

[11] A.J. Sommese and C.W. Wampler, The numerical solution of systems of poly-
nomials arising in engineering and science, World Scientific, 2005.

[12] H.J. Stetter, Numerical polynomial algebra, SIAM, 2004.

[13] Z. Zeng, The closedness subspace method for computing the multiplicity struc-
ture of a polynomial system, 2000.

33

