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ABSTRACT 
 
 
 

SAMPLING STRATEGIES 

FOR FOREST AERIAL DETECTION SURVEY IN COLORADO  
 
 
 

Aerial detection survey (ADS) has been commonly employed in forest surveys in the 

United States for detecting forest damage and monitoring forest health. In Colorado, ADS by 

USDA Forest Service has conducted annual 100% census of government forested land for more 

than 20 years with the goal of achieving information about forest damage due to different causal 

agents and disorders. Sketchmapping has been commonly employed in ADS with the goal of 

detecting and documenting on maps mortality, defoliation and other visible forest change from 

aircraft. At medium and large scale, sketchmapping is a suitable technique for forest monitoring 

that provides valuable information in forest health. This dissertation deals with data of forest area 

damaged by five causal agents mountain pine beetle, spruce beetle, western spruce budworm, pin 

engraver, and Douglas fir beetle and two disorders subalpine fir mortality and sudden aspen 

decline. The combined areas damaged by all causes were also considered. Data were 

downloaded from ADS in Colorado from 1994 to 2013 as polygon shapefiles with associated 

information such as causal agents or disorders, area damaged, and type of forest. The goal of my 

dissertation was to identify an appropriate sampling strategies to archive good estimates of total 

area damaged, to decrease survey cost, and to increase safety by reducing the amount of flights. 

To approach this goal, four sample designs for estimating total area damaged caused by various 

causal agent were evaluated: simple random sampling, stratified random sampling, probability 

proportional to size, and non-alignment systematic sampling. A GIS layer of 150 transects 
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covering Colorado‟s forestlands was developed and represented the sample unit for my study. 

Each transect was 3.2 km wide and 625 km long and was numbered from 1 to 150 from south to 

north. Each sample design was evaluated using eight sample sizes (10, 15, 20, 25,30, 35, 50, and 

70) and applied to the seven damages and the combined damaged area. The statistical properties 

were evaluated to determine the optimal sample design for estimating area damaged caused by 

different causal agents. The spatio-temporal characteristics of area damaged that influence 

precision and accuracy of estimate were considered. Most of the damaged forest areas by single 

causal agents and disorders showed aggregated spatial patterns; whereas the combined damaged 

areas were uniformly distributed across the landscape. A loss plus cost function was employed to 

determine the optimal sample size for each sample design and analyzed for the cost advantage of 

alternative sample designs. We found that stratified random sampling was the most optimal 

sample design by producing the highest percentage of unbiased estimates of total area damaged 

and the smallest variances. The next best sampling designs were simple random sampling and 

probability proportional to size. The non-alignment systematic sampling was the worst for 

estimating total area damaged both for individual causal agents and disorders and all causal 

agents combined. The optimal sample size varied by sample design and causal agents and 

disorders as well as the level of confidence. Optimal sample size increased with increasing 

variability in the population and as the desired level of confidence increased. Larger samples 

were required to simultaneously provide estimates for multiple causal agents and disorder with 

reasonable levels of precision when compared to a single causal agent. Stratified random 

sampling was the most cost effective when compared with other sample designs. For example, 

the cost advantage of stratified sampling over random sampling for estimating the damage from 

subalpine-fir mortality was $85,000 per year. In contrast, PPS sampling had a cost disadvantage 



 

 iv 

of -$13,000 per year when compared with simple random sampling and -$95,000 per year when 

compared with stratified sampling for estimating the total damage from all causal agents 

combined at the 0.95 level of confidence. 
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CHAPTER 1 

AERIAL SURVEY APPLY IN NATURAL RESOURCES MANAGEMENT 

 
 
 

Aerial survey has been well known as one common method of collecting data from using 

aerial equipment such aircraft, balloon, helicopter, unmanned aerial vehicles (UAVs), etc. It is 

helpful as an overview detection survey method that can provide information on many things not 

visible from the ground. Aerial survey has been widely applied in the mine industry, 

archaeology, land survey, forest health and wildlife monitoring, and many other fields. 

 

Aerial survey in wildlife management 

 
Aerial survey has been used in wildlife management for about 60 years (Caughley and 

Sinclair 1994). The most advantageous and impressive gain from aerial survey is providing an 

overview from a landscape perspective with 100% census. (Caughley 1977), Pollock and 

Kendall (1987), Walter and Hone (2003) suggested that aerial surveys are the only practical way 

for estimating wildlife animal population sizes and monitoring population growth rates over 

large areas (Pollock and Kendall 1987, Walter and Hone 2003). Sampling design plays an 

important role in aerial survey. Four types of sampling units widely used in aerial survey for 

wildlife animals are the line transect, line intercept, quadrat or block, and strip (Jolly 1981).  

The line transect is widely used for detecting and estimating population size (Esseen et 

al. 2006), which is a plotless technique for sampling wildlife populations and basically described 

as transect lines randomly selected from main observer(s) travel line (Anderson et al. 1993). 

Group size of animals and their distance from a transect line are recorded. This technique was 

developed for surveying spread distributed populations (Buckland et al. 2001). A “good” line 



 

 2 

transect survey, according to Thomas et al. (2007) is one that: randomly lays out transects, 

stratified if density is known to vary on a large scale, has an equal probability of being surveyed 

within a stratum in each location, produces an even distribution of transects throughout each 

stratum, and gives maximum efficiency per unit. 

The line intercept is a standard sampling unit for estimating areas. This technique uses 

straight line, whose length intercepting selected categories of land use is recorded. Line intercept 

is suitable for assessing changes in plant species cover for most forest and rangeland 

communities (Caratti 2006), especially communities with shrub cover greater than 1m. Cover is 

recorded as the number of meter intercepted by each species along a transect, then percentage of 

cover is calculated by dividing the number of meter intercepted by each species by the total 

length of the transect (Caratti 2006). In aerial survey, during flight a fixed point is used as an 

imaginary line from which the length can be measured from distinguishable point on a map 

(Jolly 1981).  

The strip sample is defined by its width and length. This sample unit is commonly 

employed for estimating size of bird and large animal population (University of Toronto 2002). 

Animals within the strip are recorded along with GIS and/or GPS. With aerial survey, strip width 

calibration is essential and strongly influences the sample errors. Many research papers report 

using strip sample surveys, however, mention is seldom made about how to determine the width 

of the strip (Jolly 1981).   

The quadrat or block is a unit of probability sampling. According to Norton-Griffiths 

(1978), the distinction between quadrat and block is its shape, where a quadrat refers to a square 

or rectangle area and block refers to an irregularly shaped area. In most situations, the area of 

each quadrat must be known at least approximately (Jolly 1981). Blocks are also known as a 
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cluster in which the population being sampled is divided into groups (clusters) with as much 

variability as possible within each group (Scheaffer et al. 2006). In aerial survey, a block is 

commonly defined as a larger area than commonly used for ground survey for convenience 

conducting survey flight pathways. From cost effective point of view, cluster (block) sampling is 

more appropriate than simple random sampling or stratified random sampling in case a list of 

elements is not available or large dispersion of elements (Scheaffer et al. 2006).  

Many factors such cost of survey, navigation, boundary effects, and sample errors 

influence the selection of an appropriate sample unit. Based on these factors, line transect 

sampling has usually been considered as the best choice, and quadrat sampling less favorable, 

but still preferable (Caughley 1977). In this regard, Chase (2007) used a Cessna single engine 

plane to estimate population size and distribution of large animals along Caprivi River Systems 

in Namibia. To provide 100% coverage a transect with a width of 500m was used. Flight 

transects were systematically flown along generally east/west axes at a speed of 100 knots. 

Wildlife only within the transect was counted and recorded using GPS and existing digital maps. 

Results showed that wildlife numbers were highest bordering conservation areas: in wetlands 

hippos occurred in the largest numbers (1,269); in woodlands buffalos occurred in the highest 

numbers (5,951); numbers of wildlife recorded from aerial survey in September 2007 was 79% 

higher than that in August 2004 (Chase 2007). Similarly, a census was published by Tanzania 

Wildlife Research Institute in 2013 reported using aerial survey to estimate population of large 

animals in Tanzania (Tanzania Wildlife Research Institute 2013). The line transect sample 

technique was employed by covering all critical interested areas with 5 and 10 km spacing 

between transects depending on the topography. Animals were counted within a strip width of 

150m on either side of the aircraft (300m wide per transect) at a speed of 180 kilometer per hour.  



 

 4 

In British Columbia, Zimmerman et al. (2002) used stratified random block sample 

design to estimate the population size of caribou and moose within four caribou herd areas and 

determine population compositions of the two species within these areas (Zimmerman et al. 

2002). Previously (2000), transect sampling did not work well to count the total number of 

animals because animals were hiding in forested areas. With stratified random block sample 

design, each study area was divided into square grids of 25km2 sample units using a weighted 

stratified random block sample strategy. The weights varied by species. For caribou (Rangifer 

tarandus) census, weights were based on percentage composition of Pine Lichen Winter Range 

(primarily low-elevation lodgepole pine (Pinus contorta) forests) and High Elevation Winter 

Range (primarily alpine and subalpine areas). For moose (Alces alces) census, weights were 

based on the percentage composition of Moose Winter Range preference classes (Zimmerman et 

al. 2002). Flight speed varied from 60 to 80 kilometer per hour and height-above-ground ranged 

from 50 to 200m. All animals observed were recorded with GPS and GIS to determine whether 

they were inside or outside the boundaries. The results suggested that the estimated precision 

from aerial survey was still influenced by sighting caribou when they are in forested habitats. 

This issue of hidden animals could be overcome by using marked animals survey method 

combined with the stratified random block sample design. The variance of estimate population 

size would be improved with larger sample sizes. Stratified random block sample design had an 

advantage to count caribou, which cluster together in groups. Another study in Alaska conducted 

by Evans et al. (1966) used aerial quadrat sampling method to estimate moose population size. 

The areas of interest were stratified into units of high, medium and low moose density based on 

current observations. Sampling units of 1 square mile in area were surveyed from the air. Results 

suggested that sampling protocol was useful to estimate moose population with reasonable cost 
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(Evans et al. 1966), especially in areas where access is limited. However, the total cost of the 

survey was not provided. 

Helicopter aerial surveys with strip-count, mark-recapture and line transect techniques 

were conducted in the Australia Alps to estimate abundance and population density of wild 

horses (Equus caballus) (Walter and Hone 2003). Details of the mark-recapture aspect of the 

aerial survey were not clearly described. The horse population estimates using the strip-counts 

method were strongly dependent on strip width. Strips over 200m in width gave estimates that 

had a significant negative bias. The precision of strip estimate for individual animals was better 

than that for groups with lower coefficient of variation (CV). Estimated population from aerial 

survey using mark-recapture estimate technique gave 3 to 5 times greater precision than the 0-

200m width strip estimates. By comparing these techniques, the results suggested that with 

surveys using strip, mark-recapture analyses or line transect, the effect of wide strip width should 

be examined for each specific object because it directly affects accuracy of the estimates. Aerial 

surveys using the line-transect system is what was recommended to monitor trends in wild horse 

abundance in the Australia Alps (Walter and Hone 2003).  

In Selous-Niassa (Tanzania), a large wildlife census was conducted in the dry season of 

2009 using aerial survey (Tanzania Wildlife Research Institute 2009). This survey applied 

systematic reconnaissance flights with 2.5 km width of transects oriented East to West. Global 

Positioning System (GPS) was used to record the starting and end points of each transect on the 

accompanied flight map. Each transect was divided into 30 sub-units for geo-referencing 

purposes within the survey area. Two observers on the plane, the front seat observer recorded the 

radar altimeter reading at the start of each sub-unit and GPS geo-referenced information on 

vegetation cover, fire and surface water presence for each sub-unit. The rear seat observer 
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recorded all wildlife observed within counting strips defined by streamers fitted to the wing 

struts on either side of the aircraft. Observation data were transcribed onto data sheets after each 

flight (Tanzania Wildlife Research Institute 2009). The results showed that diversity of wildlife 

species observed increased from 6 (in 2006) to 15 (in 2009). Elephants were the most numerous 

species (4,577± 1,126SE) followed by buffaloes (4,095±2.116SE) and others species such as 

sable antelope, roan antelope, hippo, zebra, baboon, etc. Report of this census also suggested that 

the survey should be conducted in the wet season as well to minimize missing of some species 

that are present only in the dry season.  

Monitoring seabird population in marine systems with aerial strip-transects is an easily 

designed and low cost survey method, especially in a large scale survey (Certain and Bretagnolle 

2008). A study on the bias of aerial strip-transects was conducted in the Bay of Biscay using 

100.000km2 of the French Atlantic coast, in the Northeast Atlantic Ocean (Certain and 

Bretagnolle 2008).  Data from a survey of the entire seabird community between October 2001 

and March 2002 were used to determine and compare whether the aerial strip-transect survey 

method produced temporal (i.e. variations of detection probability during the survey) or distance-

based (i.e. variations of detection probability across the strip) bias. Results indicated that only 

temporal bias was attributable to sun glare while no distance bias was detected in a strip of 150 

m width and the effect of distance up to 230m was very weak (Certain and Bretagnolle 2008). 

This suggested that there was no need to add distance bias analysis to survey protocol using line-

transect method for monitoring seabird population. In another study, Ridgway (2010) employed 

line transect distance sampling to estimate density of double-crested cormorants (Phalacrocorax 

auritus) along the coastal areas of Georgian Bay and the North Channel on Lake Huron. This 

research found that even though the probability of detection of cormorants varied based on 
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different factors (e.g. season, group size, and location) and was often below 0.5 cormorants per 

km2, distance sampling was useful for monitoring distribution and abundance the birds. Data 

from aerial survey in 2004 lead to estimate range from a peak of 2.3 cormorants per km2 (95% 

CI = 1.72-3.03) in late July to 1.2 cormorants per km2 (95% CI = 0.78-1.70) in late August 

(Ridgway 2010) .  

In fishery science, aerial surveys have been widely applied to survey large marine species 

such whales, dolphins and manatees (Rowat et al. 2009, Alves et al. 2013). Alves et al. (2013) 

employed aerial survey to analyze the distribution of manatees, dolphins and sea turtles in the 

northeastern coast of Brazil. Using strip transects with a zigzag pattern covering 4026km, 36 

sightings of manatees (41 individuals), 28 of dolphins (78 individuals) and 256 of sea turtles 

(286 individuals) were recorded. The study indicated a positive correlation between sea turtles 

and manatees. The researchers also found the number of manatees in marine protected area 

(MPAs) was significant higher than that in non-protected areas while dolphins and sea turtles 

were mostly observed in coral reefs areas (Alves et al. 2013). 

In applying aerial survey for wildlife census, sample sizes have been considered in some 

studies. In his study on estimating elephant abundance, Walsh et al. (2001) found that increasing 

sample size was needed when aerial survey intensity increased (Walsh et al. 2001). With the 

monitoring of large wildlife mammals using aerial survey, sample size is important variable that 

directly affects the estimate of population size. Clumped distributions and low population 

densities may lead to outliers that reduce the precision of an estimate. In their study on elephant 

population in Africa, Ferreira and Aarde (2009) used an incremented sample size method that 

ranged from 5% to 100% coverage of the total study area by increasing the number of transects 

in a survey. The results showed that the accuracy and precision of estimates increased with 
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survey intensity and it depended on the population density and the distribution (clumped or 

random). To reduce the effects of clumped distribution on the precision of population estimate, 

survey intensities were suggested from 50 to 70% of a study area (Ferreira and Aarde 2009).  

Aerial survey in forest health management 

In the United States, aerial surveys have been used to monitor and report on the health of 

ecosystems by the nation Forest Health Monitoring (FHM) program since the late 1990s 

(Johnson and Ross 2008). As a part of remote sensing, aerial survey gives the connectivity 

between spatial patterns of landscape ecosystems and their ecological process by providing 

spatio-temporal information. Aerial photography and aerial sketch-mapping provide valuable 

information of forest health at medium to large-scale images (McConnell and Avila 2004).  

McConnell et al. (2000) mentioned that flight path (pattern) is one of the most important 

factors that affect accuracy and cost of the survey. Flight patterns can be a contour (ridge contour, 

drainage contour) or parallel-line pattern (McConnell et al. 2000) (Figure 1.1). According to Klein 

et al. (1983) the parallel pattern is generally used in flat terrain such in the southeast United States 

or only in mountainous for cursory information surveys (McConnell et al. 2000).  

Magnussen et al. (2012) recommended that aerial surveys provide valuable information 

on the scale and severity of defoliation and mortality caused by forest insects. The link of aerial 

survey data and severity of insect defoliation to tree ring series of radial growth was mentioned 

and employed to estimate losses of growth due to defoliation damage. In this research, the losses 

of radial growth from 1930 to 2005 caused by insect defoliation were estimated at 10% on 

average (Magnussen and Alfaro 2012). This approach was potentially useful for estimating the 

forest growth effects from their symptoms of damage by defoliating insects or diseases. Aerial 

surveys can be used as the first step of a multi-tiered process of detection, monitoring, and 
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evaluation, utilizing other remote sensing and ground sampling techniques to gather additional 

data on significant forest events or change (Heller and Wear 1969, Wulder et al. 2006, Johnson 

and Ross 2008). Measurement of error is a concern in all surveys (Lohr 2010). Minimizing errors 

that make biased estimates is a statistical objective and has been widely studied. The study on 

error of aerial survey in forest of Rocky Mountain in 2005 showed that when a spatial tolerance 

increased from 0m to 500m, the accuracy achieved was between 37% to 69%, respectively 

(Johnson and Ross 2008). This accuracy was better than what would be expected from the 

chance assignment of randomly drawn polygons to randomly selected pest categories. Aerial 

censuses have been faced with inaccurate problems caused by the observer missing a significant 

number of damage areas on the transects. Sight ability is affected by many factors that would 

influence bias such strip width, altitude, and speed of flying (Pollock and Kendall 1987, Marsh 

and D.F.Sinclair 1989). Inverse relationships occur between sight ability and speed of aircraft as 

well as width of the strip transect (Caughley 1974). Methods of eliminating errors from aerial 

survey by refining techniques have been discussed and rejected without technical support. An 

alternative strategy, known as linear regression method of correcting for bias, had been 

suggested for correcting the estimates based on measurement of bias. Seven steps of conducting 

aerial survey for collecting data of animal population have been suggested by Caughley (1974) 

following his study in Zambia, Kenya, Uganda to estimate wildlife animals (Caughley 1974): (1) 

divide the survey area into strata according to thickness of cover, (2) draw transects on a map 

and randomly assign to each treatments, (3) conduct survey and record information, (4) calculate 

the spatial regression of apparent density on strip width, speed, and altitude separately for each 

stratum, (5) estimate number of strata using the intercept constant, (6) sum the estimate of each 

stratum to get estimate of total, and (7) calculate a standard error for both each stratum and total.  
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The other popular technique that can use experts‟ skills to draw maps during flying is 

known as aerial sketch-mapping. It is also known as “real time photo interpretation” (Johnson 

and Ross 2008) based on its transfer time and technique. This technique has been commonly 

used in the United States, Zambia, Kenya and Uganda to estimate the extent and severity of 

forests damaged by insects and diseases (Caughley 1974, McConnell and Avila 2004). Aerial 

sketch-mapping is considered the most efficient and economical method of detecting and 

appraising recognizable pest damage over large remote forest areas (McConnell et al. 2000). 

Time of conducting survey is the main advantage of aerial sketch-mapping surveys because it 

provides a simple and quick method for detecting and recording forest damage on a map at large 

area in only a few days (McConnell and Avila 2004). By this method, the areal extent of 

damaged forests can be transferred to existing maps as polygons that are characterized by its 

size, shape, and location. These polygons might be coded with additional information such as 

type of forest, causal agent, and so on. From the scale of purposes of survey, aerial sketch-

mapping would be divided into two types: the overview survey and the event-specific survey in 

which the overview (known as general) survey is the most common (McConnell et al. 2000). In 

forest inventory, the general survey is known as landscape-level survey in which large areas are 

covered. It is also a good method of surveying forest changes over time. The precision of 

overview survey varies depending on scale of map used for sketch-map. A larger scale map 

produces more precision survey outputs but increasing cost and time than smaller scale ones. In 

the United States, the standard scale for Forest Health Protection overview survey is 1:10,000 

and 1:24,000 which is used by USGS (McConnell et al. 2000). The event-specific survey is used 

for specific interested events such a damage area by unique biological agent. This type of survey 

is commonly used following overview survey by employing larger scale maps (e.g. 1:24,000 

scale) to assess abiotic damage such fires, hurricanes, floods, etc. 
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Figure 1.1. Ridge Contour flight pattern (top left) and Drainage Contour flight pattern (top 
right). Parallel flight path for single aerial (bottom left) observer and two aerial observers 
(bottom right). Dashed line indicates viewing distance for each observer (Modified from 
McConnell et al. (2000) and USDA Forest Service in applying for study site – forestland of 
Colorado). Flight path and number of observer in aerial overview survey are often 
corresponding and varies depending on terrain in which steep mountainous terrain only one 
observer, otherwise two commonly used. 
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Aerial sketch-map surveys have historically been undertaken annually in the western 

United States in order to locate areas of forest pest activity since the 1940s (Johnson and Ross 

2008). The application of remotely sensed data (e.g. photographs, satellite images) for the 

detection and mapping of mountain pine beetle infestations has been ongoing since the early 

1960s (Wulder et al. 2006). To identify insect and disease activity, the observer looks for 

characteristic signatures to distinguish the tree species and the type of damage that has occurred. 

Characteristics that observers use to determine the host tree species include the shape of the 

tree‟s crown, slope position, elevation and aspect. Variation in the color of the tree‟s foliage 

indicates the presence and type of insect or disease activity. These visual signatures can be 

implemented both manually (e.g. sketch-mapping) or computerized (e.g. analyzing spectrum of 

different reflection bands from remote sensing photographs). Woodall et al. (2009) compared 

aerial surveys with field inventories of forest health for oak forests in the northern United States 

and found that aerial damage surveys were weakly correlated with indicators of oak forest 

sustainability (e.g. oak seedling and saplings) but highly correlated with over-story attributes, 

such as tree mortality and standing dead. He also found that the highest correlations between the 

aerial damage surveys and oak mortality were found when the time between the aerial survey 

and subsequent forest inventory was 4-6 years later (Woodall et al. 2009).  

The United States Department of Agriculture‟s Forest Service (USDA FS) has the Forest 

Health Monitoring Program (FHM) and is responsible for monitoring forest health of the US 

(Bechtold et al. 2007) in which aerial sketch-mapping technique has been used for monitoring of 

forest health (Steinman 2004). This technique relies on expert who can detect damage in the 

form of tree defoliation, mortality, and damage as associated with the occurrence of damaging 

insects, diseases, wind throw, and other biotic and abiotic forest disturbance (Conkling et al. 
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2005). The aerial observer is the key to a successful sketch map operation. Because it is created 

while flying with high speed in an aircraft and observing damage, sketch-mapping is an acquired 

and difficult skill (Johnson and Wittwer 2008). In the southeastern and northeastern United 

States, aerial surveys vary from 150m to 1525m above the sea level, while in the far West the 

flight altitudes vary from 1220m to 2745m or sometime higher. Flying at high speeds, often 

ranging from 115 kilometer per hour to 145 kilometer per hour, it is hard for observers to capture 

all area damaged. Johnson and Ross (2008) stated that the minimum damage area that can be 

drawn as a polygon by sketch-mapping technique is 0.4 ha while if very small infestation (e.g. 

less than 10 trees in a group) is designated as a dot (McConnell et al. 2000). Traditionally, 

sketch-maps of forest damage were drawn on paper-based maps. Recently, experts can use 

automated digital sketch-mapping system developed by the USDA Forest Service‟s Forest 

Health Technology Enterprise Team (FHTET) (Johnson and Wittwer 2008). Klein et al (1983) 

recommended that collecting data from aerial sketch-mapping should be regarded more as an art 

than an exact science (B.C. Ministry of Forests and Service 2000, Johnson and Wittwer 2008). 

Aerial sketch-mapping is still considered a low-cost remote sensing method that provides 

landscape level overview of forest conditions (e.g. USDA had spent $5million annual for doing 

forest aerial survey or roughly $0.25 per ha (USDA Forest Service 2004) or $3,000 per million 

acres (McConnell and Avila 2004). The accuracy of aerial sketch-mapping would be enhanced 

by combining with aerial photographs, especially in area of extensive pest damage (B.C. 

Ministry of Forests and Service 2000).  

As previous mentioned, many remote sensing methods could be applied in forest 

inventories. Determining what alternative techniques should be used for forest inventories should 

consider its simplicity, cost and effectiveness (McConnell and Avila 2004) (Table 1.1). 
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Depending on specific survey purposes, each method has its advantages and disadvantages, a 

trade-off among these characteristics lead to a suitable method such a sketch-mapping, which has 

a bright future for conducting forest overview surveys with improving technology and combining 

good ground-checked information (McConnell 1999, McConnell et al. 2000). This technique has 

been an applicable method and widely used by the US Forest Service because it offers a simple, 

inexpensive and quick alternative to record forest pest infestation across a landscape.  

 
Table 1.1 Cost, quality and scope features comparison of some remote sensing methods and their 
ability to detect, recognize, and identify forest pest damage (McConnell and Avila 2004). 
 

Remote 
sensing 
method 

Costs per 
million 
acres 

Accuracy/Quality 

Scope 
Sensor capabilities to Detection, 
Recognition and Identification of 

forest pest 

Quality 
imagery pixel 
size (meter) 

Damage 
area 

(acres) 

MODIS $2,000 Low spatial 
250/500 

200 Large area 
analysis 

Detect and recognize objects if 
they occur over very large area, 
no identification of trees 

LANDSAT $3,000 Low-med 
spatial 10/30 

5 Large area 
analysis 

Detect and recognize objects if 
they occur over very large area, 
no identification of trees 

SPOT $35,000 Medium 
spatial 

2.5/10 or 20 

2.5 Med-large 
area 
analysis 

Detect and recognize objects if 
they occur over very large area, 
no identification of individual 
dead trees 

Quick 
Bird 

$292,000 High spatial 
0.6/2.4 

<1 Small-Med 
area 
analysis 

Detect and recognize and 
identification individual dead 
trees, but low spectral resolution 

Ikonos $270,000 High spatial 
¼ 

<1 Small-Med 
area 
analysis 

Detect and recognize and 
identification individual dead 
trees (10 meters tree crown 
diameter) 

Sketch-
mapping 

$3,000 Depend on 
map scale 

Point Small-
Large area 
analysis 

Detect and recognize and 
identification group or 
individual dead trees, but no 
spectral resolution 
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CHAPTER 2: FOREST MORTALITY  

AND DAMAGE BY INSECTS AND DISEASES IN COLORADO 

 
 
 

Introduction 

 

The 9,308,000 ha of forests in Colorado are dominated primarily by spruce-fir, ponderosa 

pine (Pinus ponderosa Laws.), lodgepole pine (Pinus contorta Dougl.), aspen (Populus 

tremuloides Michx) and pinion-juniper (Thompson et al. 2010). These forests provide wildlife 

habitat, improve water and air quality, mediate negative effects of climate change, and offer 

many other services and resources. Only about 18% (118,000,000 m3) of annual growth on the 

stump is sold (USDA Forest Service 2011b). Most of the forests are used for conservation, water 

production, grazing, and recreation. In recent years, forests in Colorado have been subjected to a 

variety of agents that impact the health of the forests. These agents include human activity, fires, 

invasive exotic fungi and plant species, climate change, and insects and fungi that cause growth 

loss and mortality. 

A number of damage causing insects and fungi occur in Colorado. Most insects and fungi 

are native and most of the time are found at endemic levels. However, five of the most important 

insects species that can develop into serious outbreaks include mountain pine beetle 

(Dendroctonus ponderosae Hopkins), spruce beetle (Dendroctonus rufipennis (Kirby)), piñon ips 

beetle (Ips confusus (Leconte)), western spruce budworm (Choristoneura occidentalis Freeman), 

and western balsam bark beetle (Dryocoetes confusus Swaine). Important forest diseases include 

dwarf mistletoe (Arceuthobium spp.) and armillaria root rot (Armillaria sp) (CSFS 2014a). A 

recent report on the condition of Colorado‟s state forest (2011) estimated that 11.33 billion m3 of 
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growth loss per year was caused by dwarf mistletoe, of which 2.83 billion m3 was associated 

with ponderosa pine (Wahl 2006). Many researchers report that these forest insects and diseases 

usually do not just individually impact trees but in many cases interact to cause damage (Hagle et 

al. 2003). For example, a tree will be weakened first by dwarf mistletoe, then various insects 

such as the mountain pine beetle can overcome the defenses of these weakened trees and kill 

them instead of attacking healthy trees. Similarly, about 62% to 75% of ponderosa pines on the 

Colorado‟s Front Range and the Black Hills of South Dakota were attacked by mountain pine 

beetles were also infected by root disease (USDA Forest Service 2011a). In this chapter, five 

agents and two disorders that damage forests are discussed, including the mountain pine beetle 

(Dendroctonus ponderosae Hopkins) (MPB), Douglas-fir beetle (Dendroctonus pseudotsugae 

Hopkins) (DFB), spruce beetle (Dendroctonus rufipennis Kirby) (SB), sudden aspen decline 

(Populus tremuloides) (SAD), subalpine fir (Abies lasiocarpa var arizonica (Merriam)) mortality 

(SUB), western spruce budworm (Choristoneura occidentalis Freeman) (WSB), and pine 

engraver (Ips pini (Say) (PE).  

* Mountain pine beetle 

The mountain pine beetle is the most important forest insect in Colorado and can kill 

millions of trees during large outbreaks. Weather and host stand conditions are considered the 

two most dominant factors influencing the severity of MPB outbreaks (Safranyik et al. 2010). In 

northern Colorado and southern Wyoming, more than 607,000 ha of forests were affected by 

MPB during the drought period from the late 1990s to the early 2000s (USDA Forest Service 

2015). Dense stands with large-diameter trees are more vulnerable to attack by the MPB 

(Romme et al. 1986, Gibson et al. 2009, Coops et al. 2012). In the Rocky Mountains, MPB 

infestation of lodgepole pine gradually increased from 1996 peaked in 2009 and collapsed by  
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2014. Lodgepole pine (Pinus contorta) forest mortality mainly occur in a cluster pattern 

(Chapman et al. 2012). Many authors report that an MPB infestation trend is hard to predict even 

though its host‟s spatial pattern is known (Safranyik et al. 2010, Chapman et al. 2012). The 

expansion of the beetle‟s population is affected by many unpredictable factors such as climate 

and weather.  

* Engraver beetle 

Eleven species of Ips beetle (Ips spp.) also known as engraver beetle, occur in Colorado 

(Cranshaw et al. 2012). Of these Ips pini (Say) and Ips emarginatus are the most common. The 

pine engraver beetle‟s common hosts are ponderosa pine, lodgepole pine, and Jeffrey pines, 

while Ips emarginatusis is common in ponderosa pine, white, and Jeffrey pines. A few Ips beetle 

species attack spruce. Ips confusus is considered to be a single-host species because it mostly 

kills piñon trees and is rarely found on other pines (Cranshaw et al. 2012). There are many 

factors that influence pine engraver infestation such tree diameter, sunlight intensity, and 

precipitation (Hayes et al. 2008). In this regard, the pine engravers tend to attack trees with a 

large diameter. It was reported that even though infestation was found on trees with 5 cm dbh, 

fewer such trees were attacked when compared with trees with a diameter greater than 10 cm 

(Steed and Wagner 2004, DeGomez and Young 2015). Thatcher (1960) estimated that about 3.7 

million m3 of timber in the Southern United States was lost annually to a pine engravers 

infestation (Thatcher 1960) while Barker (1972) reported about 1.2 million m3 was damaged 

annually in Florida alone (Baker 1972). Ips beetles are not considered as aggressive as other bark 

beetles (mountain pine beetle, spruce beetle, Douglas fir beetle) (Livingston 2010). The tops of 

large-diameter trees may be killed and entire trees are killed when beetle populations are high. 

On infested trees, red-orange boring dust is easily seen (Hagle et al. 2003). Ips beetles have 
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appeared commonly in Colorado‟s forests but reports on the location and amount of damage 

incurred are rare in the literature.  

* Spruce beetle 

Spruce beetle can cause 1% to 99% mortality in stands of trees with a diameter larger 

than 25.4 cm (Schmid and Frye 1977). Thus, large diameter spruce trees have relatively high 

chance of being killed than smaller-diameter trees. (Baker and Kemperman 1974, Schmid and 

Frye 1977, Hart et al. 2015). The stand structure of spruce-fir forests can be significantly 

modified by spruce beetle by reducing the average tree diameter, height, and stand density 

(Hagle et al. 2003). Damage caused by the spruce beetle was noted during the mid-1890s, when 

10% to 25% of the mature spruce forest on the White River National Forest, and 25% to 40% of 

the spruce on the Grand Mesa National Park were killed (Schmid and Frye 1977, Hart et al. 

2015). Later, in the 1940s and 1950s, these regions again had extensive outbreaks that killed 

about 50% of the spruce trees, equivalent to 23 million m3 (Massey and Wygant 1954). The 

estimate of annual mortality attributed to the spruce beetles through the 1960s was 

approximately 2 to 3 million m3 (Schmid and Frye 1977, Hart et al. 2015). The most recent 

report of areas in Colorado infested by spruce beetles was 196,200 ha in 2014, an increase of 

35,200 ha over that observed in 2013 (CSFS 2014a).  

* Douglas fir beetle 

Douglas fir beetle kills Douglas fir trees, while inoculating affected trees with pathogenic 

blue stain fungi (Hagle et al. 2003, Furniss 2014b) which is similar to many other bark beetles. 

Trees that are injured by fire scorch, defoliation, wind, or root disease are more susceptible to 

attack (Withrow et al. 2013). Stand condition and weather, stand density, tree age, and 

precipitation are strong factors that influence Douglas-fir beetle activity (McMillin and Allen 
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2000). This beetle normally kills small groups of trees (Schmitz and Gibson 1996), and trees 

with diameter greater than 17.1 cm are relatively more susceptible to attack, while trees with < 

13.5 cm dbh are resistant or otherwise survived outbreaks (Furniss 2014a). Devastating 

outbreaks occurred in western Oregon and Washington from 1950 through 1969. One outbreak, 

for example was 2 to 4 years long and 17,462,000 m3 of timber were lost. Other notable 

outbreaks killed 1,888,000 m3 of timber in California (1966) and 257,211 m3 of Douglas fir in 

Idaho (1970-1973) (Schmitz and Gibson 1996). Significant mortality by Douglas fir beetle 

infestation were reported by Forest Health Management (1999) in Wyoming, where the basal 

area was reduced by 40% to 70%, tree diameter decreased by 8% to 40%, and the Douglas fir 

component of the overstory decreased by more than 15%. Additionally, conifer seedling 

regeneration increased about four-fold; 90% was Douglas-fir and there was a three-fold increase 

of understory vegetation, which suggest that even though the Douglas fir beetle causes a 

significant short-term impact, the long-term successional pattern have probably not changed 

(McMillin and Allen 2000).  In Colorado, about 13,760 ha of tree mortality due to this beetle was 

reported in 2014 compared with 17,400 ha in 2013 (CSFS 2014a).  

* Subalpine fir mortality 

Subalpine fir mortality is sometimes known as subalpine fir decline. Some research 

reports describe this conditions primarily caused by a combination of armillaria root disease and 

western balsam bark beetle (Williams et al. 1986). Other conditions/or disturbances associated 

with fir mortality include stem decay, drought, balsam woolly aphid, and many wood-rotting 

fungi that cause heart, trunk, butt, or root rots such as brown stringy rot, red heart rot, red ring 

rot, shoestring rot, brown cubical rot, white spongy root rot, and white pocket rot (Uchytil 1991). 

Subalpine fir is susceptible to decay and the amount of decay increases with a tree‟s age (Bier et 
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al. 1948). Subalpine fir decay was present in trees less than 80 years old but decay did not 

become extensive, while trees greater than 120 years old had a higher probability of having 

significant amount of decay (Hinds et al. 1960). Stereum sanguinolentum (Alb. & Schwein.) and 

Echinodontium tinctorium (Ellis & Everh.) were considered to be responsible for 87% of the 

total decay, of which Stereum sanguinolentum (Alb. & Schwein.) was the primary decay fungus 

and alone accounted for 47% of the total (Hinds et al. 1960). Other causal agents that can cause 

decay include heart-rot fungus (Echinodontium tinctorium (Ellis & Everh.)), Coniophora 

carebella (Pers.), Polyporus tomentosus Fr., and others. In the Rocky Mountains, Bigler et al. 

(2007) reported on the effects of drought on subalpine forest mortality concluding that large 

interspecific differences in drought-related mortality occurred with fir having the strongest 

effect, followed by spruce and pine. The effect of changing climate on tree mortality has the 

potential to bring about large-scale changes in the subalpine forests of the Rocky Mountains 

(Bigler et al. 2007).  

* Sudden aspen decline 

Sudden aspen decline (SAD) refers to a complex disease that occur at landscape scales in 

aspen stands, which are predisposed by drought and damaged or killed by Cytospora canker, 

wood borers and other insects (Worrall et al. 2008, Marchetti et al. 2011). In 2008, aerial survey 

observers located over 220,000 ha (17% of the aspen cover type) with 45% of that area classified 

as “severely damage.” From 2000 to 2010, about 535,000 ha of aspen forest were impacted by 

SAD in the Southern Rocky Mountains eco-region, of which 492,000 ha occurred in Colorado 

(Worrall et al. 2014). Several reports which testing the correlation between the severity of SAD 

and stand condition as well as site index concluded that the severity of SAD was weakly related 

to basal area (Fairweather et al. 2007), stem slenderness, and site index (Worrall et al. 2010). 
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Age of the overstory was unrelated to severity of crown loss, while slope position and elevation 

were strongly related (Fairweather et al. 2007) through their indirect effects. In a survey of areas 

outside of the SAD dominated areas, Dudley et al. (2015) found that damage  and mortality were 

highest at low elevations and deep slope, where temperature is high and precipitation is low 

(Dudley et al. 2015). Drought and climate change, especially hot weather, have been considered 

to be important factors that accelerate dieback of aspen trees (Worrall et al. 2008, Rehfeldt et al. 

2009, USDA Forest Service 2011c).  

* Western spruce budworm 

Western spruce budworm is the most widely distributed and destructive defoliator of 

coniferous forests in Western North America (Fellin and Dewey 1992). The most common host 

species of WSB are Douglas fir (Pseudotsuga menziesi (Mirb.) Franco), grand fir (Abies grandis 

(Doug. ex D. Don) Lindl.), white fir (Abies concolor (Cord. and Glend.) Lindl. ex Hildebr.), 

subalpine fir (Abies lasiocarpa (Hook.) Nutt.), corkbark fir (Abies lasiocarpa var. arizonica 

(Merriam) Lemm.), blue spruce (Picea pungens Engelm.), Engelmann spruce (Picea 

engelmannii Parry ex Engelm.), white spruce (Picea glauca (Moench) Voss), and western larch 

(Larix occidentalis Nutt.). The stand structure and age of Douglas fir are considered accelerating 

factors of outbreaks (Hadley and Veblen 1993). Records suggest that there are no typical patterns 

or trends for WSB epidemics. However, Williams and Liebhold (2000), suggest that spruce 

budworm outbreaks produce cluster patterns that expand along an east-west direction (Williams 

and Liebhold 2000). Ryerson et al. (2003) used tree-ring analysis to identify at least 14 outbreaks 

of western spruce budworm during the past 350 years in the San Juan Mountains of Colorado 

with intervals of time between outbreaks of 25, 37, and 83 years (Ryerson et al. 2003). In 

Colorado, an epidemic of WSB was recorded starting in 1949 and persisting for more than 30 
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years, damaging 2,430,000 ha  in the Northern Rocky Mountains (Fellin and Dewey 1992). In 

this region, damage ranged from 18,210 ha (1993) to about 1,983,000 ha (1958) (Blackford 

2010). In Colorado, WSB defoliated approximately 72,000 ha in 2014 compared with 63,000 ha 

in 2013, 88,000 ha in 2012, and 62,000 ha in 2011 (CSFS 2014a). Most outbreaks in Colorado 

last for a few years and subsided naturally. 

 

The main objective of this research project was to characterize the temporal and spatial 

distribution of area damaged by the five damage agents and two disorders based on aerial survey 

data from 1994 to 2013. Our specific questions addressed in this chapter were: (1) how did the 

amount of area damaged vary by forest type and (2) what was the pattern of damage and how did 

it change over temporally and spatially? These questions were addressed with individual agents 

and disorders and total overall damage. We expected that knowing the spatial and temporal 

characteristics of each causal agent would be helpful and contribute to understanding the 

relationship among causal agents and their hosts. We also expected that knowledge of the 

dynamics of damage dispersion might improve forest inventory and monitoring efforts. 

 
 

Material and Methods 

 
Study site  

 About 9,308,000 ha of the state of Colorado are covered by forest (Thompson et al. 

2010), consisting of a variety of tree species that have been placed into nine different forest 

types: 1) aspen, 2) piñon-juniper, 3) spruce-fir, 4) mixed conifer, 5) oak shrublands, 6) ponderosa 

pine, 7) lodgepole pine, 8) montane riparian, and 9) plains (agroforestry) (CSFS 2014b). Our 

analysis was focused on the western part of Colorado in the Rocky Mountains (37-410 N, 102 – 
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1090 W) where mostly are mountainous and covered by forestlands. Most of this area is 

administered by Region 2 of the United States Department of Agriculture (USDA) Forest 

Service. 

 

GIS data  

Digital maps and related data for area damaged by forest type and causal agent from 1994 

to 2013 were obtained from the annual aerial survey of the USDA Forest Service, Forest Health 

Protection (FHP) by downloading from (http://www.fs.usda.gov/detail/r2/forest-

grasslandhealth/?cid=fsbdev3_041629).  

 A GIS layer representing 155 parallel transects (3.2 km wide and 625 km long) was 

developed that covered the western part of the state. These transects were oriented from east to 

west and numbered from 1 to 155 from south to north. This GIS layer was overlaid on GIS layer 

of forest cover area of Colorado. Five transects did not contain any forestlands and were 

eliminated from further analysis. Transects were then overlaid on the layers of forest damaged 

and/or infested to obtain estimates of the amount of damaged on each transect. This was repeated 

for each of the 20 years in this study. Data were used for the analyses as describe below. 

 
Spatial distribution tests 

Spatial statistics tests (Reich and Davis 2011) were employed to test spatial 

autocorrelation (Moran‟s I test) and spatial distribution (runs test – test for non-randomness) of 

area damaged on individual transects. These tests were run in R version 2.5.12 using an RSpatial 

package for quantitative spatial statistics (Reich 2011). 

Moran‟s I (Moran 1950) was used to test for spatial autocorrelation of the total area 

damaged by the various causal agents  and disorders by year. Moran‟s I is defined as: 
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   ∑ ∑      ∑ ∑     ሺ    ̅ሻ(    ̅) ∑ ሺ    ̅ሻ                                      [2.1] 

where I is Moran‟s I; N is the number of transects indexed by i and j; Xi is the area of damage on 

the ith transect; and wij is the element of a spatial weights matrix. If Moran‟s I is negative, this 

indicates the damage follows a cyclic pattern. If Moran‟s I is positive, this would indicate 

clustering of damage on adjacent transects, while a zero value would suggest damage is spatially 

independent among transects.  

A runs test was used to test for non-randomness (Bradley 1968). A run is defined as a 

series of ones or a series of zeros. The number of runs is defined as the number of both zeros and 

ones. The number of sequential ones or zeros defines the length of the run (Penn State Science 

2015). The run test is based on the assumption that the number of runs follows a binomial 

distribution. A Z-statistic was used to test the null hypothesis of spatial independence:  

                                                                       [2.2] 

where Robs is the observed number of runs; Rexp is the expected number of runs; and SR is the 

standard deviation of the number of runs. The values of Rexp and SR were defined as:                                                                      [2.3] 

    √     ሺ           ሻሺ     ሻሺ       ሻ                           [2.4] 

 
where n1 and n2 denote the number of zeros and ones in the series, respectively.  

The null hypothesis is rejected if |Z| > Z1-α/2 = 1.96. Significant negative Z values indicate 

that damage on the transects resembles an aggregated (clustering) spatial pattern, while 

significant positive Z values indicate a uniform distribution of damage.  
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Severity classification 

Four different levels of severity were defined according to percentage of area damaged: 

(1) light (1-10%); (2) moderate (11-30%); (3) severe (31-49%); and (4) very severe (50%). This 

classification was applied to each causal agent on the individual transects and years. The 

percentage of damage was calculated as the ratio of area damaged by each agent to the total 

amount of area damaged.  

 

Results  

 
Area damaged across forest types 

Three forest types (aspen, mixed conifer, and western spruce-fir) (USDA Forest Service 

2005), were impacted by the seven damage agents and disorders. The amount of area damaged 

per year of the three forest types generally increased from 1994 to 2007 (Table 2.1). The 

cumulative area damaged in mixed conifer was the largest (9,372,702 ha), followed by western 

spruce-fir forests (4,136,203 ha), and aspen forests (1,223,394 ha). Two different trends among 

forest types were observed in the period 1994 to 2013. A similar trend was found in the period 

from 1994 to 2007, when damage in all three forest types gradually increased. Another trend of 

area damaged in western spruce-fir forest was a fluctuation in amount which differed from the 

decreasing trend of the other two forest types from 2008 to 2013 (Figure 2.1). The total amount 

of area damaged in the mixed conifer forest peaked at 1,614,382 ha in 2007 and then dropped to 

219,468 ha in 2013. The area damaged in aspen forests was mostly concentrated in the years 

2005 to 2011. The trend in amount of damaged aspen was very similar to that of mixed conifer in 

the same period, which quickly increased from 17,707 ha (2005) to a peak at 349,746 ha in 2008, 

then gradually decreased to 19,411 ha in 2012 (Fig. 2.1). The trend of area damaged in western 



 

 26 

spruce-fir increased from 1994 to 2013, with the highest amount occurring in 2013 (388,437 ha). 

The size of the area damaged in a given year ranged from less than 25,000 ha in aspen forests to 

less than 80,000 ha in western spruce fir forests to highly variable in the mixed confer forests (0 - 

200,000 ha). Most areas of damage were concentrated at smaller size but varied by forest type.  

 

 
Figure 2.1. Temporal distribution of area damaged for three main forest types on Colorado 
forests from 1994 to 2013. Data based on USDA Forest Service annual aerial detection survey. 
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Table 2.1. Yearly combined area damaged in the three forest types mountain pine beetle, 
Douglas fir beetle, spruce beetle, sudden aspen decline, western spruce budworm, subalpine fir 
mortality, pine engraver, and others. Data were extracted from annual aerial detection survey 
from 1994 to 2013 by US Forest Service. 
 

Year 
Area damaged (ha) 

Mixed conifer Aspen Western spruce-fir 

1994 12021 - 650 

1995 16126 877 4696 

1996 42769 5492 115944 

1997 26681 7907 29994 

1998 164411 4445 123377 

1999 190286 5066 73185 

2000 114843 3410 138174 

2001 130627 12788 174850 

2002 340098 13291 230203 

2003 312081 5275 363792 

2004 476279 9986 192856 

2005 502168 17707 347379 

2006 572615 77951 263456 

2007 1614382 194268 281392 

2008 1322380 349747 267083 

2009 1239250 295690 207688 

2010 877999 121002 296332 

2011 842041 42991 289704 

2012 356175 19412 347011 

2013 219468 36088 388437 

Total 9,372,702 1,223,394 4,136,203 
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From a spatial or landscape scale, the area damaged associated with the three forest types 

had different starting points and expansion trends. The GIS layers of yearly area damaged 

showed that the area damaged in western spruce-fir forest type started expanding in 1996 

followed by that in mixed conifer (1997) and aspen (2006), suggesting factors other than the 

hosts influenced the expansion of the infestations of which long-term drought during the period 

from 1990s to 2000s (USDA Forest Service 2015) would be played an important role. Spatial 

distribution of the cumulative amount of area damaged from 1994 to 2013 in the three forest 

types showed that mixed conifer damage was concentrated in the north and south of the state 

(Fig. 2.2). The very large area damaged were found in mixed conifer forests suddenly dropped in 

the far north of the state part would suggest the lack of abundant host trees after outbreak. Such 

an outbreak occurred in 2012 where beetles killed nearly all of the mature lodgepole pine trees in 

northern Colorado and southern Wyoming (USDA Forest Service 2015). Very few damaged 

areas were found in the central part of the state. The total amounts of area damaged were widely 

spread in the western part for aspen and throughout the entire state for western spruce-fir. 

Overall, northern part Colorado had the largest area damaged (8.1 million ha), followed by the 

southern (4 million ha) and central (2.6 million ha) parts of the state (Table 2.2). In most years, 

the areas damaged in the major forest types had a clustered distribution. Very few years were 

found where total area damaged was either random or of a uniform distribution.  
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Figure 2.2. Spatial distribution of cumulative area damaged (1994-2013) of the three major forest 
types in Colorado based on aerial detection survey data. Sample transects were generated with 
3.2 km wide x 625 km long covered the state‟s forestlands which oriented from east to west. 

 

 
 
 
 
Table 2.2. Regional spatial distribution of the cumulative area damaged (ha) for the three major 
forest types (1994 to 2013). Damage was caused of all causal agents and disorders combined. 
Data were based on USDA Forest Service annual aerial detection survey. 

 

Region Aspen Mixed-conifers Western spruce-fir Total 

Southern 309,470 2,248,319 1,411,978 3,969,767 

Central 489,138 1,194,213 971,239 2,654,590 

Northern 424,786 5,930,170 1,752,987 8,107,943 
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Area damaged by causal agent 

Spatio-temporal distribution of area damaged 

Cumulative area damaged by region varied among causal agent (Table 2.3). The largest 

area damaged was found in the northern part of Colorado (160,320 ha), followed by the southern 

(70,309 ha) and central (48,763 ha) parts. WSB was the most destructive causal agent in the 

south, while SUB and MPB were the most destructive in the central and north parts of state, 

respectively. The contribution of all five causal agents and two disorders combined by region 

increased from a total area damaged of 62.0% in the south to 74.9% in the central region and 

98.0% in the north.  

The spatio-temporal distribution of area damaged caused by single causal agents and 

disorders had a strong relationship with the spatio-temporal distribution of relevant damaged 

forest types. In mixed conifer forests, the area damaged caused by MPB were found in almost 

every transect from south to north in the period 1996 to 2005. From 2004 to 2013, MPB 

distribution shifted to the north with no area damaged in the southern and central parts of the 

state. Area damaged caused by MPB gradually increased from south - central to northern part of 

the state (Fig. 2.3). A very similar trend of spatial distribution of cumulative area damaged was 

seen in mixed conifer forests (Fig. 2.2), indicating that MPB was the trend-leader for distribution 

of area damaged in those forests. Even though the area damaged by MPB had a decreasing trend 

from 2011 to 2013, its contribution (in percentage) to the total amount of damage caused by all 

agents combined still increased (Fig. 2.3), indicating that in the same period area damaged 

caused by the other causal agents combined decreased faster than those caused by MPB.  
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Table 2.3. Regional spatial distribution of the cumulative area damaged by causal agents and 
disorders over 20-year period from 1994 to 2013. Each region consisted of 50 transects. Area 
damaged (ha) was calculated as average area damaged  within each region while average 
percentage was generated by dividing area damaged caused by each agent by the total area 
damaged caused by all agents combined. Data were based on USDA Forest Service annual aerial 
detection survey 
 

Causal agents and 
disorders 

South Central North 

(ha) (%) (ha) (%) (ha) (%) 

Mountain pine beetle 2,950 2.7 14,674 22.2 116,405 69.9 

Douglas –fir beetle 2,350 2.2 2,293 3.9 389 0.3 

Spruce beetle 19,020 16.3 1,981 2.9 5,008 2.8 

Pine engraver 1,284 1.3 542 0.9 410 0.3 

Western spruce budworm 31,303 27.6 3,709 4.3 392 0.3 

Sudden aspen decline 4,469 3.7 7,857 13.8 7,819 4.9 

Subalpine fir mortality 8,933 8.1 17,708 26.9 29,896 19.6 

Total 70,309 62.0 48,763 74.9 160,320 98.0 
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Figure 2.3. Spatial distribution of cumulative area with mountain pine beetle (MPB) damage in 
20 years (1994 to 2013) compared with total amount of damaged by all causal agents and 
disorders combined. Data were based on USDA Forest Service annual aerial detection survey. 
Transects were numbered from south to north of the state with 3.2km wide x 625 km long. 

 

 

The distribution of area damaged by DFB slowly shifted from the central region to the 

south, but was mostly concentrated in the central part of the state. The different trends of total 

damage in mixed conifer forests (Fig. 2.2) and total damage caused by DFB (Fig. 2.4) suggest 

that DFB did not have the strong impact on the mixed conifer forest type. The maximum 

contribution of area damaged by DFB to the total amount was 17.4%, located in the central part 

of the state (Fig. 2.4).  

In contrast, WSB mostly infested mixed conifer forests (Table 2.6), while a small area 

damaged by WSB was found in western spruce-fir forests (Table 2.8). Area damaged by WSB 

had a clustered distribution and was concentrated in the southern part of the state (Fig. 2.4).  
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Figure 2.4. Spatial distribution of cumulative area with damage in 20 years (1994-2013) caused 
by Douglas fir beetle (above) and western spruce budworm (below) compared with total amount 
of damage by all causal agents and disorders combined. Data were based on USDA Forest 
Service annual aerial detection survey. Transects were numbered from south to north of the state 
with 3.2km wide x 625 km long. 
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SB and SUB were the main damage agents in the western spruce-fir forests (Table 2.8). 

The damage caused by SUB was concentrated in the central part of the state (Fig. 2.5), while 

area damaged by SB were distributed throughout entire western part of the state. SB with fewer 

area damaged tended to spread from north to south, especially from 2001 to 2013. SUB area 

damaged appeared in most transects, with the largest area damaged concentrated in the central 

part of the state (116,760 ha) during the period 2007 to 2013, followed by the northern part 

(105,776 ha) in the early period 1996 to 2006. SUB‟s trend of area damaged moved from south 

to north in the first period (1995-2004), then spread to the entire state. The largest contribution of 

damage caused by SB to the total amount of damage from all causal agents and disorders 

combined was 41.2%, in the southern part of the state (Fig. 2.5).  

 
SAD affected only aspen forests (Table 2.7). It was found in most areas in the state, 

especially from 2005 to 2011, but the largest area damaged was concentrated in the central part 

of the state (Fig. 2.6). The yearly distribution of area damaged by SAD would suggest its damage 

cycle was about eight years; it started expanding from the central portion to the entire state from 

2004 to 2011. By orientation from east to west, it was found that the cumulative area damaged in 

aspen forests concentrated in the western parts.  

 
PE contributed a minor amount to the total amount of damage caused by all causal agents 

and disorders combined as well as the total amount of area damaged in mixed conifer forests 

(Table 2.6). The distribution of PE area damaged distribution had no obvious trend, but the 

largest cumulative of area damaged was generally concentrated in the southern part of the state 

and gradually decreased toward in the north part of the state (Fig. 2.6).  
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Figure 2.5. Spatial distribution of cumulative area with damage in 20 years (1994-2013) caused 
by subalpine fir mortality (above) and spruce beetle (below) in comparison with total area 
damaged caused by all causal agents and disorders combined. Data were based on USDA Forest 
Service annual aerial detection survey. Transects were numbered from south to north of the state 
with 3.2km wide x 625 km long. 
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Figure 2.6. Spatial distribution of cumulative area with damage in 20 years (1994-2013) caused 
by sudden aspen decline (above) and pine engraver (below) in comparison with total amount of 
area damaged by all causal agents and disorders combined. Data were based on USDA Forest 
Service annual aerial detection survey. Transects were numbered from south to north of the state 
with 3.2km wide x 625 km long. 
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The total amount of area damaged by all causal agents and disorders  gradually increased 

from 1994 to 2009, mostly concentrated from 2007 to 2013, reached a peak in 2010 with 

1,297,797 ha, then gradually decreased to 660,000 ha in 2013 (Fig. 2.7). This trend was very 

similar to the trend of area damaged by MPB suggesting MPB was the main damage agent and 

had the strong impact on the total amount of damage in the state.  

 

 
 
Figure 2.7. Temporal distribution of the total amount of area damaged caused by different eight 
causal agents and disorders from USDA Forest Service aerial survey data 1994 to 2013. Data 
came from the sum of area damaged in all transects for each year. Name of each causal agent as 
the following: Comb. – all causal agents and disorders combined; MPB- mountain pine beetle; 
DFB – Douglas fir beetle; SB – spruce beetle; PE – pine engraver; WSB – western spruce 
budworm; SUB – subalpine fir mortality; SAD – sudden aspen decline. 

 

 
Spatial autocorrelation of area damaged  

The amount of damage on individual transects showed significant positive spatial 

autocorrelation that varied by time and causal agent. Moran‟s I was used to measure the degree 

of spatial autocorrelation of the area damaged on adjacent transects for individual causal agents 
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and disorders over time. The degree of spatial autocorrelation varied from a low of -0.02 to a 

high of 0.95. For example, in 1997 both SB and PE showed no spatial autocorrelation in the 

amount of damage on an individual transect. As the infestation of SB increased over time, 

Moran‟s I increased to 0.93 in 2012, while the Moran‟s I for PE varied from 0.19 to 0.78. Other 

causal agents and disorders such as Comb., MPB, SUB and WSB showed an increasing trend in 

the degree of spatial autocorrelation over time, while the other causal agents had patterns similar 

to that observed for PE. 

The frequency distribution of Moran‟s I of cumulative area damaged over a 20-year 

period is given Table 2.4. Most area damaged had more than 75% of Moran‟s I statistics greater 

than 0.85 except for the area damaged by DFB, PE, and SAD. The measure of spatial 

autocorrelations varied by causal agent and time. Area damaged caused by MPB, SB, and WSB 

had a similar overall trend of Moran‟s I that increased from 1994 to 2013, suggesting that these 

area damaged tended to cluster over time. Area damaged caused by DFB and SUB had positive 

Moran‟s I also, but were trendless. PE and SAD had weaker spatial autocorrelations with smaller 

Moran‟s I, suggesting a more scattered spatial distribution than the area damaged caused by 

MPB, SB, and WSB. Area damaged caused by SB, PE, and WSB each had one year with a 

Moran‟s I approaching zero (-.01, -.02, and -.01, respectively), indicating in those years the area 

damaged were independent among transects (Table 2.4), thus would be hard to determine 

severity using “hot spot” techniques and it would be difficult to suggest a sample size by which 

to achieve a desired boundary on the error of estimation for the individual causal agents and 

disorders. 

 According to Assuncao and Reis (1999) the spatial correlation of a significant Moran‟s I 

test implies that close areas tend to have similar risks that produce cluster of similar values 
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(Assuncao and Reis 1999). In this study, as mentioned above most the tests of spatial 

autocorrelation for area damaged varied by causal agents and disorders had significant positive 

Moran‟s I indicated strong spatial relationship between adjacent transects. Thus the higher 

probability of finding area damaged would be found next existing area damaged, therefore would 

be useful for predicting area damaged at specific small landscape scale. These properties also 

suggest the area damaged tend to be cluster distribution making a cyclic or periodical patterns on 

landscape scale. The Moran‟s I of area damaged caused by PE was quite consistent smallest over 

20 years (0.42 on average) and fluctuation indicated the periodic outbreaks of PE over time. 

Based on PE‟s spatial autocorrelation properties accompany with its spatio-temporal distribution 

over time, one would believe that currently PE is not serious damage causal agent throughout the 

state. Other considered causal agents and disorders such Comb., MPB, SUB, and WSB with 

general increasing Moran‟s I over time would need to pay more attention.  

 
 
Tests of non-randomness  

The area damaged by individual causal agents and disorders had a cluster distribution in 

almost every year while area damaged by all causal agents and disorders combined (Comb.) had 

a more uniform patterns over the 20 year period (Appendix A2). These findings were very 

similar to the results of spatial autocorrelation tests suggesting that in each single year, one could 

find area damaged by a single agent or disorder in specific locations because of the clustering, 

while the area damaged by all causal agents and disorders combined could be found throughout 

the state. These findings also suggested that the precision of estimates would be strongly 

influenced when using different sample designs.  
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Table 2.4. Distribution of Moran‟s I for spatial autocorrelation of area damaged on individual 
transects over 20 year period (1994-2013). Moran‟s I ranges from -1 to +1 with negative value 
indicates the damage following a cyclic pattern. If Moran‟s I is positive spatial this would 
indicates clustering of damage on adjacent transects, while a value zero would suggest damage is 
spatially independent among transects. 
 

Causal agents & disorders Min 1st Quartile Median Mean 3rd Quartile Max 

Mountain pine beetle 0.476 0.780 0.887 0.831 0.940 0.954 

Douglas fir beetle 0.518 0.620 0.689 0.684 0.770 0.818 

Spruce beetle -0.010 0.619 0.878 0.717 0.913 0.930 

Pine engraver -0.020 0.286 0.409 0.424 0.520 0.783 

Western spruce budworm -0.008 0.772 0.847 0.753 0.892 0.950 

Sudden aspen decline 0.195 0.502 0.602 0.560 0.659 0.728 

Subalpine fir mortality 0.391 0.769 0.814 0.785 0.852 0.900 

Combined 0.679 0.802 0.890 0.861 0.924 0.956 

 

 

Severity of damage  

Four causal agents, MPB, DFB, PE, and WSB infested mixed conifer forests (Table 2.6) 

with different levels of severity. MPB was the most destructive insect, causing an average of 

38.4% of the total area damaged. The highest percentages of area damaged by MPB were found 

in 2010 (80%, equivalent 706,118 ha) and 2011 (91.0%, equivalent 766,625 ha). The other 

causal agents and disorders covered large percentages of area, with 42.3% on average (Table 

2.6). The area damaged by DFB was the highest in 1994 at 65.2% and then sank to small 

portions in the following years. After reaching their peaks, the size of the area of damage caused 

by MPB and DFB both dropped. In contrast, WSB infested mixed conifer forests with small 
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percentages in the first 18 years but become more significant in the last two years. PE was 

consistently considered a minor infestation causal agent (Table 2.6).   

 
Most of the years, SAD was the main agent that affected aspen forests. The area damaged 

by SAD increased from 1994 to 2008 then decreased, following the decreasing trend of total 

amount of aspen area damaged. The average area damaged caused by SAD was 55.7% of the 

total amount of area damaged, mostly damaged in the two periods from 1995 to 2001 and from 

2005 to 2011 (Table 2.7). In 2012 and 2013, damaged aspen forest areas were not large since 

SAD represented a very small percentage of aspen forest damage (Table 2.7). 

 
Three causal agents, WSB, SB, and SUB, infested western spruce-fir forests (Table 2.8). 

SB and SUB were the main causal agents and disorders of which SB was the most important in 

1995 (83.5%). In the first period (1996-2008), SUB played an important role in damaging the 

western spruce-fir forest and accounted for 60.5% of the area damaged. There was an increasing 

role for SB in the following years. In 1997 and in the final four years (2010-2013), SB and SUB 

were the only causal agents and disorders noted in western spruce-fir damage (Table 2.8).  

 
Three different levels of severity from “light” to “very severe” were classified for the 

seven causal agents and disorders based on what percent of the total cumulative amount of area 

damaged the agent caused (Table 2.5). Only MPB was a very severe damage agent (with 64.7% 

on average of total amount of damage). SUB, SB and WSB were moderate, while the three 

remaining causal agents and disorders (SAD, DFB, PE) accounted for light damage. These 

findings suggest that MPB was the most destructive agent, following by SUB, WSB and SB. 

However, for each single year the levels of severity varied from “light” to “very severe” 

depending causal agents and disorders. 
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Table 2.5. Severity class as defined by average percentage of cumulative area damaged in 20 
years (1994-2013) by different causal agents and disorders. Data were calculated from average of 
total area damaged by each causal agent divided by total area damaged caused by all causal 
agents and disorders combined. Table also provides information on the average area damaged in 
each class in this period (1994-2013). Classification of severity based on: 1-10%: light; 11-30%: 
Moderate; 31-49%: Severe; 50%: Very severe. 
 

Causal agent and disorder Percentage Area of damaged (ha) Severity class 

Mountain pine beetle 64.7 335,125 Very Severe 

Subalpine fir mortality 27.3 141,344 Moderate 

Western spruce budworm 17.1 88,509 Moderate 

Spruce beetle 12.6 65,022 Moderate 

Sudden aspen decline 9.7 50,386 Light 

Douglas-fir beetle 2.4 12,579 Light 

Pine engraver 1.1 5,590 Light 
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Table 2.6. Area damaged in mixed conifer forest by year based on aerial detection data, by main damage agents: mountain pine beetle 
(MPB), Douglas fir beetle (DFB), pine engraver (PE), western spruce budworm (WSB). The “others” damage agent including all 
causal agents and disorders which were out of seven considered causal agents and disorders.  

Year 
Area  of Mixed Conifer Damage 

Total (ha) MPB (ha) % DFB (ha) % PE (ha) % WSB (ha) % Others (ha) % 

1994 12021 1542 12.8 7836 65.2 - 0.0 1 0.0 2563 21.3 

1995 16128 2828 17.5 756 4.7 - 0.0 - 0.0 12522 77.6 

1996 42769 5275 12.3 8119 19.0 26 0.0 10506 24.6 18812 44.0 

1997 26681 12835 48.1 1432 5.4 - 0.0 193 0.7 12168 46.0 

1998 164411 42363 25.8 5312 3.2 114 0.0 8910 5.4 107683 66.0 

1999 190286 49423 26.0 2385 1.3 22 0.0 16616 8.7 121812 64.0 

2000 114843 56389 49.1 4973 4.3 8 0.0 8230 7.2 45189 39.4 

2001 130627 60948 46.7 3724 2.9 - 0.0 14347 11.0 51560 39.5 

2002 340098 83982 24.7 5778 1.7 8 0.0 50461 15.0 199843 58.7 

2003 312081 92073 29.5 18863 6.0 49487 15.9 8107 2.6 143499 46.0 

2004 476279 173284 36.4 16460 3.5 1845 0.4 4249 0.9 280400 59.0 

2005 502168 198487 39.5 13604 2.7 2590 0.5 26343 5.3 261101 52.0 

2006 572615 267776 46.8 9409 1.6 5637 1.0 37349 6.5 252394 44.1 

2007 1614382 395341 24.5 17999 1.1 1623 0.1 156857 9.7 1042538 64.6 

2008 1322380 462100 34.9 11010 0.8 877 0.0 61897 4.7 786459 59.5 

2009 1239250 416666 33.6 9099 0.7 2074 0.2 154363 12.5 657012 53.0 

2010 877999 706118 80.4 19256 2.2 2942 0.3 142481 16.2 7119 0.8 

2011 842041 766626 91.0 12711 1.5 2327 0.3 58172 6.9 2112 0.3 

2012 356175 191614 53.8 13504 3.8 425 0.1 147709 41.5 2866 0.8 

2013 219468 74289 33.9 22575 10.3 2425 1.1 95774 43.6 24359 11.1 
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Table 2.7. Area damaged in aspen forest by year in Colorado based on aerial detection survey 1994-2013 by main damage agent: 
sudden aspen decline (SAD). The “others” damage agent including all causal agents and disorders which were out of seven considered 
causal agents and disorders. 

Year 
Area Aspen Damage 

Total (ha) SAD (ha) % Others (ha) % 

1995 877 829 94.5 48 5.5 

1996 5492 4101 74.7 1392 25.3 

1997 7907 7907 100.0 0 0.0 

1998 4445 3782 85.1 663 14.9 

1999 5066 2790 55.1 2276 44.9 

2000 3410 1614 47.3 1796 52.7 

2001 12789 6299 49.3 6490 50.8 

2002 13291 3170 23.9 10121 76.2 

2003 5275 1685 31.9 3590 68.1 

2004 9986 3269 32.7 6717 67.3 

2005 17707 10864 61.4 6844 38.7 

2006 77951 54993 70.6 22957 29.5 

2007 194268 133163 68.6 61106 31.5 

2008 349747 217879 62.3 131868 37.7 

2009 295690 138278 46.8 157412 53.2 

2010 121002 103931 85.9 17071 14.1 

2011 42991 24938 58.0 18053 42.0 

2012 19412 1720 8.9 17692 91.1 

2013 36089 528 1.5 35559 98.5 
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Table 2.8. Area damaged in western spruce-fir forest by year in Colorado based on aerial detection survey 1994-2013, by main 
damage agent: western spruce budworm (WSB), spruce beetle (SB), and subalpine fir mortality (SUB). The “others” damage agent 
including all causal agents and disorders which were out of seven considered causal agents and disorders. 
 

Year 
Area Western Spruce-fir Damage 

Total (ha) WSB (ha) % SB (ha) % SUB (ha) % Others (ha) % 

1994 650 650 100.0 

1995 4696 3919 83.5 133 2.8 560 11.9 

1996 115944 83 0.1 75470 65.1 40391 34.8 

1997 29994 27 0.1 29967 99.9 0 0.0 

1998 123377 327 0.3 89550 72.6 33500 27.2 

1999 73185 126 0.2 52882 72.3 20177 27.6 

2000 138174 3701 2.7 928 0.7 83908 60.7 49634 35.9 

2001 174850 3577 2.1 104714 59.9 66558 38.1 

2002 230203 1132 0.5 21105 9.2 123719 53.7 84238 36.6 

2003 363792 3187 0.9 28693 7.9 195034 53.6 136868 37.6 

2004 192856 3897 2.0 20957 10.9 98318 51.0 69672 36.1 

2005 347379 46402 13.4 166895 48.0 134069 38.6 

2006 263456 26107 9.9 143081 54.3 94258 35.8 

2007 281392 37501 13.3 125811 44.7 118067 42.0 

2008 267083 24849 9.3 133674 50.1 108550 40.6 

2009 207688 45210 21.8 73187 35.2 89269 43.0 

2010 296332 141352 47.7 154980 52.3 0 0.0 

2011 289668 188210 65.0 101458 35.0 0 0.0 

2012 346969 219084 63.1 127885 36.9 0 0.0 

2013 388437 
  

288110 74.2 100327 25.8 0 0.0 
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Discussion 

The amount of area damaged varied by forest type overall and by the type of damage. We 

found that the seven causal agents and disorders in this study mostly had a strong relationship 

with the location of their host plants, which was expressed by their contribution (in percentage) 

to the total amount of area damaged of each relevant forest type. Some damage agents that 

attacked trees in only one forest type, such sudden aspen decline were a dominant damage in that 

forest type. Other damage agents like western spruce budworm damaged trees in both mixed 

conifer forest and western spruce fir forest type so were not always the most dominate damage.  

Host availability is a major influence on distribution and severity, as pointed out in Lundquist 

and Reich‟s (2014) study of spatial patterns of dispersal behavior of forest insects across 

landscapes affected by host availability, population levels, mate-finding, and local density. 

Boyden et al. (2005) and Romme et al. (2006) also agreed that the high concentration of trees in 

each forest type should cause clump distributions of area damaged (Boyden et al. 2005, Romme 

et al. 2006, Paul Dunham 2008). In Colorado, a large variability of area damage was found in all 

three forest types. This suggests that the variability in area damaged is an important factor to 

consider when conducting sampling for forest inventory and monitoring since there is a need of a 

large sample size to get good estimates with low measures of error. These characteristics of 

distribution of area damaged should be incorporated in planning when doing inventory, especially 

in applying systematic sampling for estimating total amount of area damaged of interest. Without 

considering distribution of damage, one could under- or overestimate parameters. 

Our findings that the patterns of damage were primarily clustered by individual causes 

but not so with total area of damage were expected based on host condition, distribution and pest 

biology. Previous reports on forest insects‟ infestation and infestation expansion characteristics 
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note that damage was clustered (Romme et al. 1986, Shore and Safranyik 1992, Hagle et al. 

2003, Romme et al. 2006). In general, the direction and spread rate of a beetle infestation are 

hard to predict since there are many predisposing factors that we did not consider. However, this 

study confirms that forest insects and diseases usually spread to adjacent trees, resulting in 

cluster distributions of area damaged, which agrees with Williams and Liebhold (2000) 

(Williams and Liebhold 2000). Blackford (2010) stated that no typical patterns or trends were 

found in western spruce budworm epidemics (Blackford 2010). However, based on a landscape 

level and using long-term data, this study found that western spruce budworm was mostly 

concentrated in the southern part of the state, with severity decreasing from south to north.  

The temporal change in the amount of damaged areas varied by forest type and agent 

involved and environmental factors involved. For example, the damage in aspen forests peaked 

in 2008 and was mostly concentrated from 2005 to 2011. These findings agreed with the 

previous reports by Chapman et al., (2012) and Safranyik et al., (2010) who mentioned the 

predisposing influence of long-term drought on forest insects and diseases infestation. Long-term 

drought affects trees both directly and indirectly. Directly, long-term drought slows trees growth 

and causes injury, dieback of the tree‟s crown or death. Indirectly, long-term drought weakens 

trees defense systems that make them more susceptible to insect pests and diseases. In Colorado, 

short-term droughts (3-month duration) covered as much as 80% of the state, while long-term 

droughts (2-4 years) have reached to about 70% of the state (McKee et al. 2000). These drought 

regime effects in aspen were also reported in strong relationship with elevation where lower 

elevations resulted in higher temperature and lower precipitation (Dudley et al. 2015). The 

decreasing trends of area damage in three forest types in the last few years of the study, also 

suggested the effects of stand condition such tree age, tree density, and tree diameter on insects 
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and disease outbreaks such it mentioned by Romme et al., (1986, 2006). This trend resulted from 

decreasing numbers of host trees available after and reduced tree density and large diameter after 

outbreaks. 

Summary 

In studying insects and diseases at the landscape level, spatial and temporal patterns are 

important indicators and spatial analysis is becoming a common tool for landscape ecology 

(Lundquist 2005). The largest area damaged were found in the north following by the south and 

central parts of the state. Moran‟s I and non-randomness tests indicated that most area damaged 

by single causal agents and disorders and by forest types had strong positive spatial 

autocorrelation and a clustered distribution in every year from 1994 to 2013, while area damaged 

caused by all causal agents and disorders combined were mostly distributed as uniform patterns.  

The seven agents and disorders of forest damage appeared in Colorado forests in almost 

all years from 1994 to 2013. Mountain pine beetle, western spruce budworm, subalpine fir 

mortality, spruce beetle, sudden aspen decline, and Douglas fir beetle were considered as 

primary damage agents that contributed a noticable percentage to the total amount of area 

damaged in the state. Mountain pine beetle, subalpine fir mortality, spruce beetle and western 

spruce budworm were the most destructive agents and managers will need to be aware of and 

monitor them to prevent their development. Pine engraver was found in almost every year (exept 

2001) and every part of the state, but its contribution to total amount of damage area was minor 

(1.1% on average of cumulative area damaged). Thus, pine engraver‟s threat to forests in 

Colorado may not be a serious problem if climate conditions do not change. This agrees with 

Livingston (2010), who considered pine engraver as an always present but occasionally 

damaging beetle (Livingston 2010).  
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CHAPTER 3: OPTIMAL SAMPLE DESIGN FOR ESTIMATING FOREST DAMAGE  

AND MORTALITY FROM AERIAL DETECTION SURVEY 

 
 
 

Introduction 

Aerial detection survey (ADS) 

Aerial detection survey is a powerful tool for monitoring changing features in forested 

landscapes (Saeki 2005). Insect pests and tree pathogens are among the major drivers of these 

changes. The earliest flight to survey forest insect damage was made by J. M. Miller in 1925 

over the Sierra National Forest in California (McConnell et al. 2000). One of the first aerial 

surveys to detect and map forest damage to mountain pine beetle was conducted in the 1960s 

(Wulder et al. 2006). More recently, the Forest Health Protection branch of the USDA Forest 

Service routinely assesses forest health using aerial surveys (Johnson and Wittwer 2008). Aerial 

detection survey in forests, also known as aerial sketch-mapping,  involves using an aircraft with 

a trained observer(s) to systematically fly over a forested area to detect visible damage and/or 

mortality, and manually documenting observations to a map (McConnell et al. 2000, Johnson 

and Wittwer 2008). Initially, this technique involved paper maps, but with  advances in computer 

and touch-screen display technology this information is now  commonly recorded on digital 

maps (US Forest Service 2005). To do either paper or digital sketchmapping,1:100,000 maps 

with a standard projection and coordinate system are needed (US Forest Service 2005). These 

fundamental requirements are based on aerial sketch-mapping standards developed in 1997 

(McConnell et al. 2000).  

Forest health surveys use two types of aerial sketchmapping: 1) overview survey - to 

sketchmap all new forest change events during one flight, and 2) specific survey - to map 



 

 50 

primarily just one forest change event usually at the peak of activity (McConnell et al. 2000). 

During flights at high speed, often ranging from 115 kilometer per hour to 145 kilometers per 

hour at varying altitudes from 150m to 1525m above sea level (Johnson and Wittwer 2008), 

observers are asked to draw on maps area damaged as polygons where pest impact is 

characterized by size, shape, and location. These polygons might be coded with additional 

information such as type of forest, causal agent. At the flight speed, observers have about 20 

seconds to recognize, identify the cause, classify and record damage they see (Johnson and 

Wittwer 2008). Obviously, skills and visibility of trained observers affect the precision and 

accuracy of aerial detection survey data (Caughley 1974, McConnell 1999).  

The advantage of aerial survey over ground-based survey is that it provides an overview 

from a landscape perspective with 100% census. In addition, aerial survey offers a simple, 

inexpensive and quick alternative to record forest pest infestations on a map over other remote 

sensing techniques. However, timing of the survey, sun angle, appropriate altitude above ground 

level, speed of flight, and maps quality, and other factors affect the quality of sketchmaps, and 

ADS works well only with visible damages that can be seen from aircraft. The cost of sending 

observers up in an aircraft is becoming increasingly expensive (McConnell 1999), and, of course, 

safety is an increasingly dominant priority with the USDA Forest Service.   The desire to 

improve data quality, while maintaining safety standards, is a constant goal.  

 
Sample designs in aerial survey for natural resources management 

 
In statistics, sampling is concerned with the selection of a subset of individuals from a 

population to provide an estimate of the characteristics of the population as a whole. In most 

cases, it is the key to estimation of population parameters. Naturally, populations are often very 
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large and almost impossible to measure completely. Sampling in this case plays an important 

role. Getting good estimates of population parameters at minimum cost and time while 

maximizing the utility of data is one of the main objectives of survey sampling (Tokola and 

Shrestha 1999). Sample design is considered basic in sampling theory (Traat et al. 2004). 

Different sample designs have been employed depending on the objectives of the survey. The 

choice of a sample design also influences the size and shape of the sampling unit.  

Even though different sampling techniques could be applied to natural resources 

inventories for monitoring, some sample designs have been widely used in these approaches, 

such as simple random sampling (SRS) (Nusser et al. 1998, Gregoire and Valentine 2007, 

Theobald et al. 2007, Ståhl et al. 2010), stratified random sampling (STRA) (Smith 1981, 

Gregoire and Valentine 2007, Ståhl et al. 2010), probability proportional to size (PPS) (McGinn 

2004, Stevens and Olsen 2004, Gregoire and Valentine 2007), and so forth. In practice, each 

sampling method has some advantages and disadvantages depending on the population being 

sampled. With aerial survey for large animals, Caughley (1977) commented that systematic 

sampling could eliminate navigation problems associated with random sampling and would be 

the most efficient means of mapping the distribution of animals. But when money, manpower, or 

time is limited, stratified sampling is the most precise for estimating population sizes (Caughley 

1977).  

Legg and Nagy (2006), Field et al., (2007), and Lindenmayer and Likens (2009) 

reviewed some natural resource monitoring programs and found that many of them have been 

ineffective because of inadequate program support, poor planning, and lack of rigorous study 

design (Thompson et al. 2011). These studies also suggest that the challenges in developing a 

rigorous design include the need to maximize the spatial balance of a random sample of plots 
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while minimizing sampling effort; the need for sample sizes sufficient to detect change in 

heterogeneous or highly variable environments; and the long time periods required to detect 

change. A choice of inappropriate sample design would result in inadequate levels of accuracy 

(Taiti 1981). In his discussion about comparing several aerial sample designs, Smith (1981) 

concluded that stratified sample design would be best, while the choice between systematic and 

random sampling needs to be discussed. He also stated that there is no sample design that can 

claim to be superior in all, or even most, circumstances. The appropriate sample design(s) need 

to be suited to specific characteristics of the population surveyed and the objectives of the survey 

(Smith 1981).  In British Columbia, a stratified random block sample design was used to 

estimate the size of caribou (Rangifer tarandus) and moose (Alces alces) population size within 

four caribou herd areas known as the Finlay, Pink Mountain, Chase, and Wolverine herds and 

determine population compositions for each of the two species within these areas (Zimmerman et 

al. 2002). With stratified random block sample design, each study area was divided into square 

grids of 25km2 sample units and followed a weighted stratified random block sample strategy. 

The weights were varied based on species. For the caribou (Rangifer tarandus) census, weights 

were based on the percentage composition of Pine Lichen Winter Range (primarily low-elevation 

lodgepole pine (Pinus contota) forests) and High Elevation Winter Range (primarily alpine and 

subalpine areas). For the moose (Alces alces) census, weights were dependent on the percentage 

composition of Moose Winter Range preference classes (Zimmerman et al. 2002). Flight speeds 

varied from 60 to 80 kilometers per hour and height above ground ranged from 50 to 200m. All 

animals observed were recorded with help from GPS and GIS to determine whether they were 

inside or outside the boundaries. The results suggested that the estimated precision from aerial 

survey was still influenced by sighting caribou in forested habitats. This could be overcome by 
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using a marked animals survey method accompanied by a stratified random block sample design. 

The variance of estimated population size would be improved with larger sample sizes. Stratified 

random block sample design had an advantage in counting caribou, which cluster together in 

groups. Another study in Alaska conducted by Evans et al. (1966) used a quadrant sampling 

method in an aerial census to estimate moose population size. The areas of interest were 

stratified into units of high, medium, and low moose density based on current observations. 

Sampling units one square mile in area were surveyed from the air. Results suggested that 

sampling protocol was useful for estimating moose populations with a reasonable cost (Evans et 

al. 1966), especially in areas where access is limited. However, the total cost of the survey was 

not provided. 

A complete census (100%) has been commonly conducted in aerial detection surveys for 

monitoring wildlife and forest insects and diseases, such as in Colorado, over regions of interest. 

Every year from 1994 until the present, the Forest Health Monitoring (FHM) program and its 

partners have been conducting aerial surveys of the entire state of Colorado and recording the 

changes in area damaged of all forestlands. Until recently, it has been rare to find papers 

describing the use of sampling designs in aerial surveys for monitoring forest damage caused by 

various insects or diseases. In this study we proposed and evaluated four sample designs applied 

in aerial detection surveying for estimating area damaged in the forests of Colorado with the 

question was “what sample design(s) would be appropriate for estimating total area damaged?” 

The overall objective of this study was to determine the best sample design that can provide an 

estimation of total amount of area damaged that is similar to the current 100% coverage with 

fewer transects and therefore reducing cost, time, and the risks of flying.  
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Material and Methods 

 Study site 

The study was carried out in western Colorado which is dominated by forested lands 

covering about 9,308,000 ha (37 - 410N, 102 -1090 W) (Thompson et al. 2010). This region has a 

wide range of topography, soils and environmental conditions that influence the diversity of 

forest types found in this area. The landscape ranges from plains to high plateaus to steep 

mountains with deep canyons and sloping foothills (Bailey 1980). Major forest types found in 

this area include 1) aspen, 2) piñon-juniper, (3) spruce-fir, 4) mixed-conifer, 5) oak shrubland, 6) 

ponderosa pine, 7) lodgepole pine, 8) riparian, and 9) plains (agroforestry). 

 
GIS data 

A GIS layer dividing the state into 155 parallel transects (3.2 km wide and 625 km long) 

was developed to cover the study area. All transects were oriented east to west and numbered 

from 1 to 155, south to north.  

Two sources of GIS information were clipped with the state‟s forestland boundary and 

used to obtain the data used in this study. The first was a GIS layer of the major vegetation types 

of the state at a 30m spatial resolution. This information was used to create a binary surface 

indicating if a given raster cell was classified as being forested or non-forested. This layer was 

intersected with the GIS layer of transects to obtain estimates of the area of forested and non-

forested on each transect. Five of the transects did not contain any forest lands and were deleted 

leaving 150 transects. The second were GIS layers of causal agents and disorders obtained from 

aerial surveys of the state carried out from 1994 to 2013. These layers were intersected with the 

GIS layer of transects to obtain estimates of the area of damage caused by eight agents: spruce 

beetle (Dendroctonus rufipennis) (SB), mountain pine beetle (Dendroctonus ponderosae) 
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(MPB), Douglas-fir beetle (Dendroctonus pseudotsugae Hopkins) (DFB), western spruce 

budworm (Choristoneura occidentalis (Freeman))  (WSB), sudden aspen decline (SAD), 

subalpine fir mortality (Picea englmanii – Abies lasiocarpa) (SUB), pine engraver (Ips pini 

(Say)) (PE), and all causal agents and disorders combined (Comb.).  

 
Sample designs 

The statistical properties of four sample designs were evaluated in estimating the total 

amount of damage caused by various causal agents and disorders agents that occurred in the 

study area. The sample designing included: (1) simple random sampling (SRS), (2) probability 

proportional to the area of forests on the transect (PPS), (3) non-alignment systematic sampling  

(NALIGN), and (4) stratified random sampling (STRA) and are brief described below. 

 
Simple random sampling (SRS)  

Simple random sampling is the most basic sample design in which a sample of size n is 

drawn from a population of size N in such a way that every possible sample of size n has the 

same chance (probability) of being selected (Schreuder et al. 2004, Scheaffer et al. 2006, 

Mandallaz 2007). SRS is the simplest probability sampling technique and is considered best 

suited for situations where not much information is available regarding the population of interest 

(e.g., spatial extent and severity of the damage). In this study, eight sample sizes of n = 10, 15, 

20, 25, 30, 35, 50 and 70 transects were selected, without replacement. The total area damaged    

( ) associated with the various casual and disorders agents was estimated using the following 

formula. 

  ̂   ∑               [3.1] 

 

τ
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with estimated variance 

  ̂ሺ ̂ሻ    ቀ    ቁ ቀ   ቁ                    [3.2]  

 
and 0.95 bound on the error of estimation (B)   

        √ ̂ሺ ̂ሻ                                [3.3]   

 
where is the area damaged on the ith transect, is the sample variance, and N is the total 

number of transects in the population. 

 
Stratified random sampling (STRA) 

A stratified random sample is obtained by dividing populations into smaller groups called 

strata and then randomly selecting sample units from each stratum (Scheaffer et al. 2006). 

Stratified random sampling has three major advantages over simple random sampling. First, the 

variance associated with estimating the population total is usually more precise because the 

variability within strata is usually smaller than the overall population variance. Second, the cost 

of collecting and analyzing the data is often reduced. And third, separate estimates can be 

obtained for each individual stratum. In this study, the total number of transects covered by 

forestlands (150) was divided into five smaller, regularly spaced regions of equal size, and then a 

sample (ni = 2, 3, 4, 5, 6, 7, 10 and 14) chosen randomly without replacement from each stratum.  

Estimates of the total area damaged was obtained using the following equation  ̂       ∑  ̅                                          [3.4] 

with estimated variance  ሺ̂ ̂    ሻ  ∑    ቀ       ቁ                       [3.5] 

iy 2s
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and bound on the error of estimation 

    √ ̂ሺ ̂    ሻ                          [3.6] 

 
where L = 5 is the number of strata; Ni = 30 is the number of transects per stratum; ni is the 

sample size in stratum, i;  ̅  is the mean damage in stratum i; and     is the sample variance of 

stratum i.  

 
Probability proportional to size (PPS) 

 
Probability proportional to size (PPS) is a sampling technique for use with surveys in 

which the probability of selecting a sampling unit is proportional to some characteristic that is 

correlated to the variable of interest (McGinn 2004). PPS sampling will be more precise than 

SRS if the selection probabilities ( ) are correlated with the variable of interest ( ). In this 

design, the selection probabilities were based on the proportion of the transect classified as being 

forested; thus, more heavily forested transects had a higher probability of being selected than 

lightly forested transects. The use of sampling with replacement with PPS sampling has been 

widely adopted in sample surveys (Sirken 2001) but  in this study, the sampling procedure was 

changed so that the sample of transects was drawn without instead of with replacement. If the 

selection probabilities are known, an estimate of the population total is given by  

  ̂      ∑                                                  [3.7] 

with estimated variance 

 ̂ሺ ̂   ሻ    ሺ   ሻ ቀ    ቁ∑ ቀ      ̂   ቁ          [3.8] 

where N is population size and  n is sample size  

iπ iy
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The 0.95 bound on the error of estimation is given by 

    √ ̂ሺ ̂   ሻ                                          [3.9] 

  

The same eight  sample sizes used  with SRS were evaluated using this design. 

 

Non-aligned systematic sampling (NALIGN) 

As an alternative to systematic sampling, a non-aligned systematic sampling was 

employed. In this method, the state was divided into zones of equal size where the number of 

zones was equal to the sample size. A transect was then randomly selected from each zone. This 

design basically combines simple random sampling and systematic sampling because the sample 

transects are spread uniformly and independently throughout the state. Since there is not a 

minimum distance between sample transects, this design should capture the spatial variability in 

most populations. As with systematic sampling, non-aligned systematic sampling will be more 

precise than simple random sampling if the population elements are ordered (e.g. gradient). If the 

population elements are randomly distributed, non-aligned sampling should be equivalent to 

simple random sampling and less precise if the population elements exhibit a cyclic or periodic 

distribution. 

The estimation of the population total ( ̂      ሻ was calculated: 

  ̂       ∑                                                      [3.10] 

 
with estimated variance of the total population was given by: 

 

  ̂ሺ ̂      ሻ  ቀ    ቁ   ∑            [3.11] 



 

 59 

where N is the population size; n is the sample size; s2 is the sample variance; yi is the area 

damaged on the ith transect; and Ni is the number of transects in ith zone. If Ni is constant and 

divisible by 150, these equations are equivalent to the equations used for simple random 

sampling.  

 

Evaluating the Statistical Properties of the Sample Designs 

 
To evaluate the statistical properties of the four sample designs (D), each design 

associated with each year (20 years) and each causal agent was implemented M = 20,000 times 

for each of the eight sample sizes and the following statistics were computed: 

The grand total: 

  ̅̂    ∑  ̂                                          [3.12]  

The mean variance: 

  ̅ሺ ̅̂ ሻ    ∑  ̂    ሺ ̅̂  ሻ                               [3.13] 

and the variance of the total: 

  ̃ሺ ̅̂ ሻ  ∑ ሺ ̂    ̂̅ ሻ     ሺ   ሻ                                [3.14] 

If the sample design (D) provides an unbiased estimate of the population total, the grand 

total should equal the true population total (τ). Likewise, if the estimated variance is unbiased, 

the mean variance should equal the variance of the total, the latter of which is taken as the true 

variance. To evaluate each sample design associated with the different sample sizes (n=10, 15, 

20, 25, 30, 35, 50 and 70), the estimators of interest (bias, mean variance, coverage rate, and 

ratio of variances) were compared by year and then ranked based on their values. The average 
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ranking for all 20 years determined the best sample design. The bias was calculated as the 

difference between the estimated total and the population total. The smaller the bias, the more 

accurate the sample designs would be. A t-test was used to test the hypothesis that the sample 

designs produce unbiased estimates of the population total at the 0.05 level of confidence. 

To evaluate the variance estimates, the ratio of the mean variance to the variance of the 

total was calculated. According to Hevesi et al. (1992), the estimates of the variance were 

unbiased if the ratio of the variance fell within the interval [12√  ], where M is the number of 

simulations (Hevesi et al. 1992). With M=20,000, if this ratio falls within the range of 0.98 to 

1.02, this would indicate the variance estimates are unbiased. If the ratio is greater than 1.02, this 

would indicate an overestimation of the variance, while a ratio less than 0.98 would indicate an 

underestimation of the variance. To compare estimated variances, Monte Carlo methods were 

employed using a Friedman test. This method was conducted using SPSS version 15 (SPSS Inc 

2006)  to produce a 2 value. 

 

2       ሺ   ሻ∑       ሺ   ሻ                          [3.15] 

where: a is the number of sample designs (treatment); b is the sample size; and Ri is the sum of 

the rank for ith sample design. Under the null hypothesis of equal variances 2 ~ 2
(n-1). If the 

calculated 2 is greater than the critical value (2
crit) for a given sample size then the null 

hypothesis was rejected. 

The sample design efficiency coefficient (Deff) was calculated as an alternative to 

comparing different sample designs with respect to their variances. Sample design effect has 

been popularized by Kish (1965) and was defined by Cornfiel (1951) as the ratio of the variance 

of a statistic under simple random sampling without replacement to the variance of the statistic 
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under complex design with the same sample size (Park and Lee 2001)       ̂ ̂ሺ ሻ ̂ ̂ሺ   ሻ                                             [3.16] 

where  ̂ ̂ሺ ሻ is the variance of the statistic under complex design, and  ̂ ̂ሺ   ሻ is the variance of 

the statistic under simple random sampling. If Deff equals 1, both sample designs are equivalent; 

if Deff is greater than 1, the alternative sample design is less precise than SRS; otherwise, it is 

more precise than SRS. This coefficient (Deff) was used to rank sample designs with respect to 

estimated variance.  

The 95% confidence intervals were calculated assuming normality as follows.      ̂         √ ̂ ̂                                                [3.17] 

where CI is confidence interval;  ̂ is estimated total;  ̂ ̂ is estimated variance of the total that 

could be calculated by the previous equations. Coverage probabilities (coverage rates) were 

calculated as the proportion of confidence intervals that contained the true value. The actual 

coverage probability could either be less than or greater than the nominal coverage probability. 

The confidence interval is said to be “conservative” if the actual coverage probability is greater 

than the nominal coverage probability, otherwise, it is “anti-conservative” or “permissive” (Jiang 

et al. 2008). 

Results  

 

Normality  

Normality is an important assumption attached to estimates of the population mean and 

total in survey sampling. It follows from the Central Limit Theorem that for any population with 

mean μ and variance σ2, if the population is repeatedly sampled using the sample size, estimates 

of the population mean will be normally distributed with mean μ and variance σ2/n. 
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To test this assumption the frequency distribution of the 20,000 estimates of the total 

damage associated with the individual causal and disorders agents for each of the 20 years and 

four sample designs were usually inspected. 

Results of this process showed that the frequency distributions of estimates of the total 

damage were approximately normally distributed for the four sample designs. The frequency 

distribution approached normality with increasing sample size. Figure 3.1 provides an example 

of the frequency distribution for area damaged caused by sudden aspen decline.  The frequency 

distributions for the other causal agents and disorders showed a very similar trend. Hansen 

(1953) mentioned in his book about the important role of testing normality before generating 

further statistical properties, of which in practical problems of sampling from finite population 

very often that the initial population from which the sample is drawn is far from normal, and thus 

the assumption of a normal distribution may lead to grossly wrong impressions as to the 

precision of variance estimates (Hansen et al. 1953). The ability to assume normality simplifies 

the interpretation of the statistical properties of the four sample designs. 

Bias 

The majority of sample sizes evaluated for simple random sampling (SRS), non-alignmen 

systematic sampling (NALIGN) and stratified random sampling (STRA) produced unbiased 

estimates of the total area damaged, while probability proportional to size (PPS) estimates were 

biased. The percentage of unbiased estimates of the total area damaged produced by PPS 

decreased with increasing sample size irrespective of the causal agent (Fig. 3.2, Table 3.1). This 

result suggested that the selection probabilities () had a weak correlation to the variable of 

interest. These correlations were weaker with increasing variability in the population. The 

highest variability occurred when the area of damage was clustered throughout the landscape. 

iπ
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This clustering had a noticeable influence on the accuracy of the estimates. On average, PPS 

produced the smallest percentage of unbiased estimates of total area damaged when compared to 

other sample designs. 

 
The PPS sample design had the smallest percentage of unbiased estimate at 33.8% for 

MPB and the highest value of 70.6% for DFB. The remaining sample designs (SRS, NALIGN, 

STRA) produced more accurate estimates, with at least 91.3% (Comb.) of the estimates being 

unbiased (Table 3.1). Overall, the percentage of unbiased estimates varied around 95% 

depending on sample designs and causal agents and disorders, of which STRA occupied the 

highest spot (95.2%), followed by NALIGN (95.0%) and then SRS (94.3%). Average ranking of 

bias produced by the four sample designs associated with the five causal agents and two 

disorders showed that on average STRA had the highest ranking with respect to producing 

unbiased estimates of the total area damaged, while PPS had the lowest ranking in its ability to 

produce unbiased estimates (Table 3.2) 
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SRS 

 

PPS 

 

STRA 

 

NALIGN 

 
Figure 3.1. An example of the frequency distribution of 20,000 estimates of the total damage 
caused by sudden aspen decline (SAD) for the four sample designs and selected sample sizes. 
The x-axis is area damaged (ha), the y-axis is frequency.  
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Table 3.1. Percentage of unbiased estimate by sample design and causal agent. Percentages are 
averaged over eight sample sizes and 20-year time period from 1994 to 2013. 
 

Causal and disorders SRS1 PPS NALIGN STRA 

Mountain pine beetle 95.6 33.8 96.9 96.9 

Douglas-fir beetle 94.4 70.6 96.3 98.8 

Spruce beetle 94.7 39.5 92.1 96.1 

Pine engraver 95.6 53.7 94.9 92.7 

Sudden aspen decline 95.4 54.0 96.1 98.0 

Subalpine fir mortality 92.8 46.7 95.4 92.8 

Western spruce budworm 94.7 38.8 96.1 92.8 

Combined 91.3 36.3 92.5 93.8 

Avg. 94.3 46.7 95.0 95.2 

1. SRS-simple random sampling, PPS-probability proportional to size, NALIGN-nonalignment systematic sampling, 
STRA-stratified random sampling 
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Figure 3.2. Percentage of unbiased estimates of the total damage areas for individual causal 
agents and disorders as a function of sample size (8) and sample design (4). Percentages are 
averaged over the 20-year period from 1994 to 2013. MPB-mountain pine beetle, DFB- Douglas 
fir beetle, SB-spruce beetle, PE-pine engraver, SAD-sudden aspen decline, SUB-subalpine fir 
mortality, WSB-western spruce budworm, Comb.-all causal agents and disorders combined. 
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Estimated mean variance  

 
The estimated variance associated with estimating the total area damaged decreased with 

increasing sample size (Fig. 3.3). Similar trends were observed for all causal agents and 

disorders. The rate of decrease varied by sample design and causal agent. By ranking, STRA on 

the average always generated the smallest estimated variance for estimating the total area 

damaged by the seven different causal agents and disorders (except PE). This suggests that 

stratified random sampling provides the most precise estimates of the total area damaged by 

individual causal agents and disorders (except PE). On average, PPS had the smallest estimated 

variance of the total area damaged by PE. This suggests a strong correlation between the area 

damaged by PE and forest cover on the transects.  The NALIGN sample design that combines 

systematic and simple random sampling produced the least precise estimates of the total area 

damaged for most causal agents and disorders (Table 3.3). The SRS sample design was ranked 

number two performing slightly better than PPS in estimating the variance of the total area 

damage. 

 
Ratio of variance 

The ratio of the variances associated with the four sample designs varied by causal agents 

and disorders (Table 3.4). Simple random sampling and stratified random sampling designs had 

ratios of the variances for all causal agents and disorders that fell within the interval 0.980 to 

1.020, indicating unbiased estimates of the variance. The PPS sample design provided unbiased 

estimates of the variances for seven out of the eight causal agents and disorders. Average ratio of 

variance produced by PPS for area damaged caused by spruce beetle (0.974) fell below the lower 

critical value (0.980) indicating an under-estimation of the variance. NALIGN sampling, which 
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is basically a form of systematic sampling, produced a ratio of the variance greater than 1.02, 

indicating an over-estimation of the sample variance. This agreed with data in Table 3.3 where 

NALIGN had the worst ranking compared to other sample designs. These results suggested that 

SRS and STRA would be the most appropriate sampling designs for estimating the total area 

damaged. NALIGN was not considered a suitable sample design since it consistently over-

estimated the variance. 

 

Coverage rate 

 
In general, all sample designs associated with the different sample sizes had coverage 

rates less than the nominal value of 0.95 for all causal agents and disorders evaluated. The 

coverage rates for all sample designs generally increased with increasing sample size 

independent of the causal agents and disorders. The rate of increase varied by year, causal agent, 

and sample design (Fig. 3.4). These results suggest that the four sample designs underestimated 

the level of confidence in the estimations despite having unbiased estimates of the sample 

variance. 
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Table 3.2. Average ranking of estimated bias for four sample designs associated with the eight 
causal agents and disorders. The smaller value, the higher rank was. The final rankings were 
based on averaging the individual ranking for each causal and disorders agents over the 20 years 
time period (1994-2013) 
 

Causal and disorders SRS1 PPS STRA NALIGN 

Mountain pine beetle 3 4 1 2 

Douglas-fir beetle 2 4 1 3 

Spruce beetle 3 4 1 2 

Pine engraver 3 1 4 2 

Sudden aspen decline 3 4 2 1 

Subalpine fir mortality 3 4 1 2 

Western spruce budworm 3 4 1 2 

Combined 3 4 1 2 

Average 2.88 3.63 1.50 2.00 

1. SRS-simple random sampling, PPS-probability proportional to size, NALIGN-nonalignment systematic sampling, 
STRA-stratified random sampling 
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Table 3.3. Average ranking of estimated mean variance for four sample designs associated with 
the eight causal agents and disorders. The smaller the value, the higher rank was. The final 
rankings were based on averaging the individual ranking for each causal and disorders agents 
over the 20 years time period (1994-2013) 
 

Causal and disorders SRS1 PPS STRA NALIGN 

Mountain pine beetle 3 2 1 4 

Douglas-fir beetle 2 3 1 4 

Spruce beetle 3 1 2 4 

Pine engraver 2 3 1 4 

Sudden aspen decline 2 4 1 3 

Subalpine fir mortality 3 2 1 4 

Western spruce budworm 2 3 1 4 

Combined 2 3 1 4 

Average 2.38 2.63 1.13 3.88 

1. SRS-simple random sampling, PPS-probability proportional to size, NALIGN-nonalignment systematic sampling, 
STRA-stratified random sampling 
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Table 3.4. Statistical distribution of ratio of the variance of four sample designs associated with the eight causal agents and disorders. 
If the ratio of the variance falls within the interval from 0.98 to 1.02, the estimated variance is unbiased. If the ratio of the variance is 
greater than 1.02, the estimated variance is overestimated, and underestimated if the ratio is less than 0.98. 
 
Causal 
and 
disorders1 

SRS2 PPS 

Min 1st Quartile Median Mean 3rd Quartile Max Min 1st Quartile Median Mean 3rd Quartile Max 

MPB 0.962 0.995 1.002 1.001 1.007 1.027 0.854 0.967 0.997 0.988 1.013 1.072 

DF 0.971 0.993 0.999 1.000 1.006 1.031 0.946 0.996 1.005 1.007 1.013 1.141 

SB 0.978 0.993 0.999 0.999 1.004 1.021 0.868 0.956 0.977 0.974 0.992 1.057 

PE 0.978 0.995 0.999 0.999 1.005 1.018 0.896 0.999 1.014 1.019 1.033 1.182 

SAD 0.973 0.993 0.999 1.000 1.006 1.023 0.912 0.981 0.994 0.995 1.008 1.097 

SUB 0.971 0.994 1.000 1.000 1.005 1.031 0.886 0.985 1.000 0.996 1.010 1.063 

WSB 0.971 0.993 0.999 1.000 1.008 1.035 0.908 0.978 0.994 0.999 1.008 1.198 

Comb. 0.972 0.996 1.001 1.001 1.007 1.030 0.891 0.976 0.993 0.991 1.010 1.096 

 NALIGN STRA 

MPB 1.074 2.013 4.078 6.040 9.147 25.014 0.968 0.995 1.002 1.001 1.008 1.038 

DF 1.095 1.474 1.741 2.079 2.156 10.442 0.974 0.995 1.001 1.002 1.009 1.032 

SB 0.441 1.546 2.760 3.461 4.469 13.867 0.976 0.993 1.000 1.000 1.006 1.026 

PE 0.572 1.114 1.300 1.654 1.739 8.176 0.973 0.994 1.000 1.000 1.006 1.023 

SAD 0.887 1.353 1.567 1.796 2.042 4.807 0.975 0.994 1.000 1.000 1.007 1.023 

SUB 0.657 1.953 2.747 3.422 4.078 24.964 0.972 0.993 1.000 1.000 1.007 1.023 

WSB 0.422 1.592 3.184 3.695 4.716 15.430 0.978 0.994 1.000 1.001 1.007 1.029 

Comb. 1.377 2.471 4.160 5.054 6.840 20.622 0.969 0.992 1.000 0.999 1.006 1.023 

1. MPB-mountain pine beetle, DFB- Douglas fir beetle, SB-spruce beetle, PE-pine engraver, SAD-sudden aspen decline, SUB-subalpine fir mortality, WSB-
western spruce budworm, Comb.-all causal agents and disorders combined. 
2. SRS-simple random sampling, PPS-probability proportional to size, NALIGN-nonalignment systematic sampling, STRA-stratified random sampling 
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Figure 3.3. An example of estimated mean variance of area damaged caused by the combination 
of all causal agents and disorders associated with four different sample designs and eight sample 
sizes. Data presented for the year 2013. Where SRS-simple random sampling, PPS-probability 
proportional to size, NALIGN-nonalignment systematic sampling, Stratified-stratified random 
sampling. 
 
 
 
 
 

 

Figure 3. 4. Coverage rates for estimating the total area damaged by mountain pine beetle using 
stratified random sampling for five selected years. Similar trends were observed for the other 
causal and disorders agents and sample designs. 
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Discussion 

 
As previous mention, the objective of this chapter was to determine the most appropriate 

sample design for estimating the total amount of area damaged caused by both single causal 

agents and disorders and multiple causal agents and disorders combined. Stratified random 

sampling was ranked number one in terms of producing unbiased and precise estimates of the 

total area damaged by all causal and disorders agents in each of the 20 years (1994-2013) 

evaluated in this study. This was followed by SRS, PPS and finally NALIGN. Since the 

NALIGN sample design consistently over-estimated the sample variance, it was not considered a 

viable sample design. While most sample designs produced unbiased estimates of the sample 

variance, coverage rates were less than the nominal rate of 0.95 especially when using smaller 

sample sizes. This suggests that the estimate of the total area damaged is more precise than they 

actually are. 

One of the advantages of ADS is that it produces complete coverage of the damage 

caused by various causal and disorders agents. In contrast, sampling transects only produces a 

partial picture of damage occurring on the landscape. For survey sampling to become a practical 

alternative to the current ADS, it is important to be able to fill in the gaps between the transects 

selected for measurement. One approach would be to use satellite imagery to fill in these gaps. 

Statistical model could be developed relating what is observed on the transects selected for 

measurement and the spectral properties of the satellite imagery. The fitted models could then be 

used to interpolate between transects. The feasibility of this approach was demonstrated by Reich 

et al. (Reich et al. 2013). In their study Landsat imagery was used to estimate the area damage by 

aspen leaf miner in Alaska by using information contained on individual flight lines. For this 

approach to be feasible, it is important that the damage caused by various causal agents and 
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disorders be visible on the satellite imagery. If the damage cause by various causal agents and 

disorders are not visible on the satellite imagery it could not be possible to produce estimates of 

damage for all causal agents and disorders observed on the transects selected for measurement. 

A second aspect of using survey sampling is how to sample overtime. With ADS it is 

simple process of subtracting one layer from another providing estimates of new damages 

continuing damage and areas were damage is no longer taking place. How this could be 

accomplished using survey sampling will depend on the objective of the survey. If the objective 

is to produce estimate in the current time period, the optimal approach is to select an independent 

sample in each time period. If the objective is to produce estimate of changes from one time 

period to the next, the optimal approach is to re-measure the same transects in each time period. 

If the objective is to produce estimate of change as well as current estimate, there is more 

flexibility in how the transects are selected for sampling. For example, one could use a form of 

double sampling. In this approach a subset of transects are selected for re-measurement and a 

new set of transects are selected for measurement, while keeping the sample size the same in 

each time period.  

More research will be required to make survey sampling feasible on an operational basis 

that would meet of the current users of ADS data. This study demonstrated the feasibility of 

using survey sampling to estimate the damage caused by various causal agents and disorders. As 

the cost and risk of flying increases more focus will be placed on the use of survey sampling as a 

viable alternative to 100% surveys. 

Summary  

 
Overall, we found that three out of four sampling designs, simple random sampling, 

probability proportional to size, and stratified random sampling, were acceptable for estimating 
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damaged forest areas in Colorado using aerial survey parallel transects. All these sampling 

designs produced more than 90% unbiased estimate of total area damaged. These percentages of 

producing unbiased differed with different causal agents and disorders.  

It is known that both efficient sample design of sample surveys and the evaluation of the 

precision of the estimates depend on a knowledge of the appropriate variances (and covariance or 

correlations) for the population from which the sample is drawn (Hansen et al. 1953). With 

respect to the smaller bias as well as smaller mean variance, the stratified random sampling 

design would be considered as the most appropriate for estimating total area damaged of forests 

in Colorado. In this study, most area damaged were clustered thus when using stratified random 

sampling we minimized variability within stratum while maximizing variability between each 

stratum resulting more precise estimates when comparing to other sampling designs. Because 

stratified random sampling provides more precise estimates than other sample designs, it 

suggested that using stratified random sampling would need fewer samples and therefore 

decreasing the cost and time. Following stratified random sampling, simple random sampling 

and probability proportional to size would be suggested. While stratified random sampling was 

the best sample design for estimating total area damaged of most causal agents and disorders, the 

convenience of employing simple random sampling and probability proportional to size to 

estimate total area damaged varied with different causal agents and disorders. These conclusions 

accompany the spatio-temporal distribution of area damaged caused by each individual causal 

agent, suggesting the strong effects of spatio-temporal distribution of area damaged on the 

potential of employing different sample designs.  
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CHAPTER 4: OPTIMAL SAMPLING STRATEGIES FOR AERIAL DETECTION SURVEYS 

USING ECONOMIC LOSS PLUS COST ANALYSIS 

 
 
 

Introduction 

 
Forests are damaged by biotic and abiotic disturbances of all kinds.  Because forests grow 

over large heterogeneous landscapes, assessing the presence, severity and/or distribution of these 

disturbances and the damage they cause can be difficult. Furthermore, roadways and other 

pathways of access to forested areas are commonly sparse, and thorough pest assessments can be 

difficult to make. Aerial detection surveys enable assessments of inaccessible areas at a 

reasonably low cost and can cover vast areas in a relatively short time.  According to a report in 

the 2009 Region 10 Forest Conditions Report (Lamb and Winton 2009), “no other method is 

currently available to detect subtle differences in vegetation damage signatures within a narrow 

time window at such low cost”. As a consequence, aerial detection surveys (ADS) are used 

throughout the continental United States to provide essential information on the occurrence of 

insect pests, diseases and other forest disturbance agents (Johnson and Wittwer 2008).  

Information collected includes the spatial extent of the damage, the causal agent, and in some 

cases the level of mortality or the severity of the damage. 

In Colorado, for example, ADS has been used to assess forest conditions since 1994 

using a digital format.  Colorado‟s forests have experienced significant changes over the past two 

decades (CSFS 2012), where “unprecedented mortality” in every major forest type “driven by 

poor resiliency to insects and diseases that have been exacerbated by warmer and drier weather 

conditions” (CSFS 2012). Major disturbance agents include: 
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 Mountain pine beetle: Until recently, the mountain pine beetle (Dendroctonus 

ponderosae) was the most widespread insect pest in the state. Approximately 1,380,000 ha of 

limber (Pinus flexlis), lodgepole (Pinus contorta) and ponderosa pine (Pinus ponderosa) forests 

have been impacted by this outbreak since it began in 1996. The epidemic reached a peak in 

2009 affecting 423,300 ha and then began to decline due to the lack of available host trees. In 

2013, only 39,700 ha of the mountain pine beetle mortality were mapped in Colorado‟s forests 

(CSFS 2013).  

 Spruce beetle: The spruce beetle (Dendroctonus rufipennis) was the most widespread 

insect pest of Colorado‟s forests with increasing trends since it was first noticed in 1995. In 

2012, active spruce beetle infestations were found on 132,000 ha and then increased to 161,000 

ha in 2013 (CSFS 2013).   

 Subalpine fir mortality: Subalpine fir decline occurs in the high-elevation spruce-fir 

(Picea englmanii – Abies lasiocarpa) forests across the state. Mortality is the result of attack by 

the western balsam bark beetle (Dryocoetes confusus). Attacks typically occur in trees infected 

and weakened by two species of fungi (Armillaria spp. and Heterobasidion parviporum) that 

attack the root systems of subalpine fir. A total of 72,000 ha of subalpine fir mortality were 

mapped in Colorado‟s forests in 2013 (CSFS 2013).   

 Sudden aspen decline: Beginning in approximately 2004, many mature aspen (Populus 

tremuloides) forests in Colorado suddenly died off. In Colorado, approximately 220,000 ha of 

dead and dying aspen were mapped during aerial forest health surveys in 2008 (CSFS 2011). 

Since 2008, progressively smaller areas of SAD have been mapped each year: 138,500 ha in 

2009; 77,000 ha in 2010; and only 18,600 ha in 2011. Several caterpillar species can defoliate 

aspen forests and can cause mortality with repeated episodes of defoliations. During outbreaks, 
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these caterpillars can cause complete defoliation, usually by mid to late June. In Colorado, two 

species of defoliating caterpillars can reach epidemic levels and cause widespread defoliation of 

aspen forests: western tent caterpillar (Malacosoma californicum) and large aspen tortix 

(Choristoneura conflictana). 

Infested acre estimates for the 4 disturbance agents in Colorado listed above are based on 

complete surveys of, presumably, 100% of the landscape.   Recently, the quality of aerial survey 

data have been questioned (Sapio 2012) as reports claim inflated infested acres, mistakenly low 

numbers of trees per acre (PA), uncertain spatial scales, and unclear damage trends due to „less 

than optimum‟ planning and data inconsistencies.  As a result, basic managerial questions cannot 

be answered, and survey results cannot be used to validate predictive pest and disease risk 

models (Sapio 2012). Furthermore, the Forest Service has recently intensified its effort for safety 

and “less time in the plane is equated with safety…”  (Sapio 2012)  As a consequence, the 

USDA Forest Service has focused a considerable energy on addressing these issues and 

improving aerial survey protocols. 

In contrast to Colorado, some locations are much too big to be covered completely in a 

single season. Alaska is one such state.  Alaska has around 51.4 million ha of forested area, of 

which approximately 13 million ha (or 25 %) are observed by aerial pest surveyors in any one 

year. Only infested areas actually seen by observers are reported, which leaves huge gaps of 

unsurveyed area between transects.  In a recent study, predictive statewide spatial models of the 

distribution of aspen leaf miner (Phyllocnistis populiella) was over 20 times more abundant than 

what was observed by aerial surveyors and reported in the annual Forest Conditions Report 

(Lundquist pers. com.).  Complete surveys like that conducted currently in Colorado may not be 

possible in the future. The question is how can ADS results be improved without increasing 
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flight time in an era of declining budgets and increasing sensitivity to safety?  In this study, we 

examine sampling strategies to optimize aerial surveys using a method borrowed from 

economics called the loss plus cost analysis. 

 
Loss plus cost analysis  

Sample size calculations are rarely performed for aerial detection surveys. This may be 

due to uncertainty as to the type of causal agents and disorders one might encounter and the 

variability in size and spatial distribution of the damage caused by the various causal agents and 

disorders. In most forest inventories, sample sizes are selected that either minimize the variance 

of the sample estimates assuming constraints on the total cost of the survey or by minimizing the 

cost assuming constraints on the variance (Angelis and Stamatellos 2004). As an alternative, one 

can consider the solution to the sample size problem as a multiple objective optimization 

problem where the cost and the variance are simultaneously minimized (Angelis and Stamatellos 

2004). This paper describes how economic loss functions plus the cost of the survey can be 

optimized to address these issues (Cochran 1977). The loss function places an economic value on 

the error associated with the survey. Increasing the sample size for a given sampling method will 

generally reduce the loss of information but at an increased cost. Selecting a sample size by 

managing the tradeoff between sampling cost and the cost of lost information can provide the 

minimum cost plus loss.  

Loss functions can take on several forms such as a quadratic loss, absolute loss, step loss 

and the generalized loss of which the quadratic and absolute losses are special cases (Leung and 

Spiring 2004). Hamilton (1979) used an absolute loss function to determine the optimal sample 

size for individual timber sales. He assumed that the loss was proportional to the absolute error 

in the forest inventory. In the example cited, a loss of $100 was incurred for every thousand 
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board-feet the survey estimate of the total volume differed from the mill scale. Blithe (1945) 

used a similar approach to provide estimates of the number of logs to scale in a timber sale. In 

this study the loss was proportional to the sampling error. Such an approach can be used for any 

method of sampling and estimation in which the loss function is inversely proportional to the 

sample size and the cost a linear function of the sample size (Cochran 1977) (Figure 4.1). 

 

Figure 4.1. The value of lost information and costs for aerial surveys (Adopted from Freeman III 
et al. 1973).  

 
 

In designing an aerial survey using this approach assume that there is only one agent 

causing damage on the landscape. Further assume that for a given sample design, the relationship 

between the sampling error and sample size is known and one can place dollar values on the loss 

of information based on the magnitude of the error associated with the survey. In Figure 4.1 this 

curve is labeled “Value Lost Information.” These dollar values can be interpreted as the 

willingness of the users to minimize the errors associated with the aerial survey to avoid making 

incorrect decisions based on incomplete information on the damage being attributed to the causal 

agent. Figure 4.1 also depicts the sampling cost ($C), which is a function of the sample size 
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associated with the aerial survey. Moving to the right along the horizontal axis represents 

increasing sample sizes and increasing costs of the aerial survey. Conversely, moving to the left, 

sample sizes decrease and the value of the information lost ($L) increases due to increasing 

sampling errors associated with the aerial survey. Another way to look at this is to consider the 

gain in information associated with the survey. The gain (G) in information associated with the 

aerial survey can be defined as the total value a 100% aerial survey minus the loss (G = C1 – L). 

If no survey is conducted (n = 0, the origin in Figure 4.1), the gain to the user will be zero, which 

is equivalent to a potential loss of C1 dollars of information. If a 100% survey is conducted (n = 

n1 in Figure 4.1), the loss will equal zero, and the user will gain by C1 dollars of information.  

The optimal sample size occurs where the total cost of the survey design is at a minimum, 

where the total cost of the survey design is defined as the vertical sum of the loss and sampling 

cost functions (C + L) (Freeman et al. 1973). The total cost of the survey design is depicted by 

the dashed line in Figure 4.1 and has its minimum at sample size n*. Thus, n* represent the 

optimal sample size that minimizes the value of lost information (L*) due to incomplete 

information and the cost of conducting the survey (C*). This point represents a cost savings of 

C1 - C* by reducing the sample size from n1 to n*, and a gain in value of the information equal to 

C1 – L*. 

To develop a framework to solve this problem there are several factors need to be taken 

into consideration. First is how much the government should invest in the aerial survey. Users of 

aerial detection survey information include land managers and forest health specialists from 

federal, state, and tribal agencies, private industry, and the public. Forest Health Protection, a 

part of the US Forest Service pays for the cost of the aerial surveys and does not charge the 

public or other state and federal agencies to access the data. Since the cost to the user is nothing, 
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the users of the aerial survey data will demand a 100% survey. On the other hand, the 

government should not be willing to spend more on the aerial survey than is necessary. Is a 

100% survey necessary given the costs and high risks associated with conducting aerial surveys, 

especially in mountainous and remote regions? A reasonable attitude by the government would 

be to agree to spend as much on the aerial survey to produce estimates of damage for various 

causal agents and disorders with an appropriate and acceptable bound on the error of estimation.  

Second, the number of causal agents and disorders and the spatial extent of the damage 

will also affect the solution. From the government‟s point of view large costs would be incurred 

if it was required to produce acceptable sampling errors for all causal agents and disorders. In 

this case the government might take the position that if the aerial survey produces an acceptable 

sampling error for estimating the total damage associated with all causal agents and disorders, 

the objective of the aerial survey has been met. However, this may not satisfy the users who 

might be interested in a particular causal agent. There may also be disagreement among users as 

to which causal agent should be used in designing the survey. A design that minimizes costs, for 

example, for one causal agent often is not the best design, or even adequate for other causal 

agents (Cochran 1977). Furthermore, since many management decisions are based on the 

outcome of the aerial surveys, reasonable accuracy for individual causal agents and disorders 

may be necessary. Therefore, in order to provide the most cost-efficient estimates it appears 

logical to assume that the problem must be solved for multiple causal agents and disorders.   

Third, the method used to collect the aerial survey data should also be considered. There 

are numerous sample designs and methods from which to choose and each has its merits. Two 

aspects of sampling that have been evaluated for use with low-level aerial surveys is random 

sampling and stratification. The choice is influenced by many factors, such as the objective of 
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the survey, the spatial variability and extent of the damage associated with the population to be 

sampled, the number of causal agents and disorders to be measured and the availability of 

auxiliary information (Cochran 1977). Both the government and users of the information may 

not have a preference for a particular sample design, as long as it maximizes the value of the 

information collected at minimum cost. Thus, it is important to be able to evaluate the cost 

advantage of using one sample design over that of another design. 

The purpose of this study is to 1) express the optimal sample size for aerial survey 

sampling in an economic framework, using the loss + cost approach, 2) calculate the cost savings 

of alternative sample designs (e.g., random sampling vs. stratification), and 3) demonstrate the 

use of an aggregated loss + cost function to select an optimal sample size that accounts for 

multiple objectives associated with multiple causal agents and disorders.  

 

Material and Method 

 
Sampling Frame 

Before an area can be surveyed it must be divided into sample units that are exhaustive 

and non-overlapping (Caughley 1977). The four main types of sampling units used in aerial 

surveys are strip samples, quadrats or blocks, line intercepts, and line transects. Caughley (1977) 

points out that the choice of a sample unit for use in an aerial survey will involve trade-offs 

between “…maximizing safety and conditions of visibility while trying to minimize flying time, 

navigational problems and observer and pilot fatigue.” There is general agreement in the 

literature that there are greater efficiency associated with using transects as sampling units when 

compared with quadrats (Caughley 1977).  

In this study a strip sample or transect was chosen as the basic sample unit. The western 

half of Colorado was divided into 155 transects with a width and length of 3.2 km and 625 km, 
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respectively. Transects were oriented east-west to take into consideration solar light conditions 

while flying in mountainous terrain. Five of the transects did not contain any forestlands and 

were eliminated leaving 150 transects. The transects were numbered from 1 to 150 from south to 

north. 

 
GIS Data 

Two sources of GIS information were used to obtain the data used in this study. The first 

was a GIS layer of the major vegetation types of the state at a 30 m spatial resolution obtained 

from the Colorado Division of Wildlife as part of the Gap Analysis Program  

 (http://ndis1.nrel.colostate.edu/cogap/cogaphome.html). The vegetation layer was used to create 

a binary raster layer indicating if a raster cell in the vegetation layer was classified as being 

forest or non-forest. This layer was intersected with the GIS layer of transects to obtain estimates 

of the area of forests and non-forests on each transect. Aerial Detection Survey (ADS) data were 

downloaded for the years 1994 to 2013 as GIS layers (http://www.fs.usda.gov/detail/r2/forest-

grasslandhealth/?cid=fsbdev3_041629). These layers were intersected with the GIS layer of 

transects to obtain estimates of the total area impacted by all forest pests and area impacted by 

four causal agents and disorders of importance to the state: spruce beetle, mountain pine beetle, 

aspen mortality and subalpine-fir mortality.  

 
Sample Designs 

There are numerous sampling designs and methods from which to choose and each has its 

merits. The choice is influenced by many factors, such as the objectives of the survey, properties 

of the population to be sampled (e.g., spatial patterns and intensity of the damage), the number 

and type of causal agents and disorders to be measured, and the availability of auxiliary 

http://ndis1.nrel.colostate.edu/cogap/cogaphome.html
http://www.fs.usda.gov/detail/r2/forest-grasslandhealth/?cid=fsbdev3_041629
http://www.fs.usda.gov/detail/r2/forest-grasslandhealth/?cid=fsbdev3_041629
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information. In this study the discussion will be limited to three sample designs, two of which 

have particular interest in low-level aerial surveys, simple random sampling and stratified 

random sampling. The third design, which is a variation of random sampling was sampling with 

probability proportional to size.  

 

Simple Random sampling.  

 
Simple random sampling (SRS) is the most basic sample design in which a sample of size 

n is drawn from a population of size N in such a way that every possible sample of size n has the 

same chance (probability) of being selected. The selected sample units are surveyed and the area 

and cause of the damage recorded. For a given causal agent an estimate of the total damage in 

the state is given by  ̂    ̅   ቀ  ∑       ቁ                                       [4.1] 

with estimated variance  ̂ሺ ̂ሻ    ቀ    ቁ                                                   [4.2] 

where  ̅ is the sample mean damage per transect and s2 is the sample variance among transects. 

 

Stratified random sampling (STRA) 

 
As an alternative to random sampling, the state was divided into L = 5 regions or strata of 

equal size (Ni = 30 transects) and a simple random sample of ni transects selected from each 

stratum. This form of stratification was selected to ensure sample units were distributed 

throughout the state and not necessarily to minimize the variability within the stratum. An 

estimate of the population total is given by:  ̂     ∑    ̅                                                               [4.3] 
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with estimated variance 

 ̂ሺ ̂    ሻ  ∑    ቀ       ቁ                                                      [4.4] 

 

Probability proportional to size (PPS)  

 
 
Probability proportional to size (PPS) sampling includes a number of sample selection 

methods in which the probability of selecting a sample unit is directly proportional to a size 

measure, X which is known for all sample units and is approximately proportional to the value 

associated with the variable of interest (McGin, 2004). The increase in precision of PPS 

sampling over SRS will depend on the strength of the correlation between the selection 

probabilities (  ) and the variable of interest (yi). In this design, the selection probabilities were 

based on the proportion of the transect classified as being forested, thus more heavily forested 

transects had a higher probability of being selected than lightly forested transects. The use of 

sampling with replacement with PPS sampling has been widely adopted in sample surveys 

(Sirken 2001).  In this study, the sampling procedure is changed so that the sample of transects 

was drawn without instead of with replacement (Sirken 2001). If the selection probabilities are 

known, an estimate of the population total is given by   

  ̂      ∑                                                                       [4.5] 

 
with estimated variance  

  ̂( ̂   )  ቀ    ቁ ∑ (      ̂   )      ሺ   ሻ .                                     [4.6] 
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Exponential-with-nugget variance function 

An exponential-with-nugget variance function was used to describe the influence of 

sample size on the estimated variance  

  ̃ሺ   ሻ  {                                                                                                          [4.7] 

 
where ı2 is the partial sill, δ2 is the nugget effect, δ2 + ı2 is the sill and 1/b is the effective range 

(Irvine et al. 2007). The sill consists of the nugget effect, if present, and the partial sill represents 

the variability in damage from a causal agent on individual transects. The nugget represents the 

discontinuity at the origin and is typically attributed to micro-scale effects or measurement 

errors. In this application the nugget may be thought of as the efficiency of the sample design for 

sample sizes near zero. By definition the ratio,        ⁄  gives the relative magnitude of this 

effect, and is referred to in the literature as the relative nugget effect. For example, if the relative 

nugget effect for a given variance function is say 0.75, then this would indicate that the 

underlying sample design is relatively highly efficient. The partial sill may be thought of as the 

variance of the sample design near the origin. The ratio          ⁄  can be defined as the 

relative partial sill of the sample design. The smaller this ratio the more efficient the sample 

design for sample sizes near zero. The range is the sample size at which the variance of the 

estimate levels off and begins to approaches zero. The effective range (1/b) is defined as the 

sample size beyond which the estimated variance is less than or equal to 5% of the sill: 0.05(δ2 + 

ı2). For the exponential-with–nugget variance function the effective range (ξ) is defined as 

(Irvine et al. 2007):        ቀ           ቁ                                                 [4.8] 
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Variance estimation 

To model the influence of sample size on the estimate of the variance, Monte Carlo 

procedures were used to simulate the three sample designs using eight samples of size: 10, 15, 

20, 25, 30, 35, 50 and 70 transects. In the stratified design, an even number of transects were 

allocated to each of the five strata.  Each sample size (n) – design (D) – causal agent (S) 

combination was simulated M = 20,000 times and the mean variance computed: 

  ̃ሺ ̂    ሻ    ∑  ̂ሺ ̂   ሻ                                                [4.9] 

 

Optimal sample size 

Let C = c1 * N equal the total amount of money the government is willing to spend on the 

aerial survey assuming a 100% survey, where c1 is the cost of an individual transect and N is the 

total number of transects in the state. Further assume that the loss (L) of information, expressed 

in dollars is proportional to the relative standard error of the survey: 

 
L = C * ሺ  ̂  ̂⁄ ሻ                                                                 [4.10] 

 

where   ̂  √ ̂ሺ ̂ሻ, is the standard error of the total damage on the transects, and  ̂ is an estimate 

of the total damage in the state. As the sample size, n, increases the standard error of the total 

will decrease, but not necessarily in accordance to the Central Limit Theorem especially for 

sample designs other than simple random sampling. So as an alternative we propose to use the 

exponential-with-nugget model to describe this relationship.  

  ̂ሺ ̂  ሻ                                                               [4.11] 
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where the parameters a = ı2 is partial sill and b are as previously defined. Taking the square root 

of both sides and then dividing by the estimated total we get: 

 √ ̂ሺ ̂  ሻ  ̂⁄  √  ̂                                                       [4.12] 

 
Simplifying, we see that the relative standard error (rse) has an exponential distribution. 

   ̂  ̂⁄                                                                     [4.13] 

 
where    √  ̂⁄  and b* = b/2.  

The loss function (L) then becomes 

 ሺ ሻ  {                                                                                                                        [4.14] 

 
Now define the cost of the survey to be c1 * n, where n is the sample size. The loss + cost 

function then becomes   ሺ ሻ                                                             [4.15] 

 
To estimate the optimal sample size (n*) that will minimize the loss + cost function we take the 

first derivative with respect to the sample size. Setting this equal to 0 and solving for the sample 

size we get:          ቀ        ቁ                                                             [4.16] 

 
Noting that C = c1 * N we get 

          ቀ       ቁ                                                            [4.17] 
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Incorporating the Level of Confidence in the Loss Function 

 Any survey takes a sample from the population of interest and then generalizes the results 

to the whole population. This invariably leads to a possibility of an error because the entire 

population was not surveyed. This is captured in statistics as the bound on the error of estimation 

or the margin of error. The larger the bound on the error of estimation, the less likely the results 

of the survey reflect the true population value. In statistics the bound on the error of estimation 

(B) is equal to half the length of the confidence interval: 

            ⁄   ̂.                                             [4.18] 

 
where t is a student-t value with n-1degrees of freedom, with significance level α. This means 

that as the desired level of confidence increases (that is as α becomes smaller), the larger the 

bound on the error of estimation becomes for the same set of data. The bound on the error of 

estimation for an individual survey will also depend to a large extent on the sample size. Larger 

sample sizes tend to give more precise estimates than estimates based on smaller sample sizes. 

The bound on the error of estimation will also depend on the variability of damage on the 

individual transects.  

 
 The bound on the error of estimation is usually expressed as an absolute number, but in 

some cases, may also be expressed relative to the sample mean or total. To take into 

consideration the level of confidence associated with the estimates from the aerial survey, the 

relative bound on the error of estimation can be defined as 

               ⁄ ሺ  ̂  ̂⁄ ሻ                                     [4.19] 
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The loss + cost function becomes 

                                                               [4.20] 

 
with optimal sample size: 

          ቀ        ቁ                                              [4.21] 

where t =          ⁄  . 

 

Cost Advantage of Alternative Sample Designs 

The cost advantage of one sample design over that of another sample design can be 

evaluated by subtracting the loss + cost (LC) functions associated with the different sample 

designs, D, evaluated at their respective optimal sample size,   :  
   (      )    ሺ      ሻ                                           [4.22] 

 
Positive values would indicate that sample design D2 with sample size     has a cost 

advantage over using a sample of size     with sample design D1. A negative value would 

indicate that sample design D2 with sample size     has a cost disadvantage over sample design 

D1 using a sample of size    .  
 

Loss + Cost Function for Multiple Causal Agents 

 
Consider that each causal agent represents an individual product with a unique set of 

users. In other words, the aerial surveys are designed for individual causal agents and disorders. 

If one can assume that the information provided by the aerial survey is a public good, in that 
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there is no limitation on who can access the information, and how they use the information. 

Under this scenario, the total loss function is obtained by the vertical sum of the individual loss 

functions for the various causal agents and disorders of interest (S).  

   ሺ   ሻ  ∑   ሺ    ሻ                                                [4.23] 

 

Results and Discussion 

 
Variation in transects 

The variability of damage caused by the various causal agents and disorders in a given 

transect is the determining factor in the feasibility of using aerial survey sampling. Taking 

Colorado as an example the amount of damage on a given transect varied of 0 to 200,000 ha 

depending on the causal agent and year of sampling. The coefficient of variation associated with 

the damage on an individual transect varied considerably from one year to the next and from one 

causal agent to the next and ranged from 0.7 to 12.0. Thus, it would be very difficult to provide 

general guidelines outlining the number of transects that need to be flown in order to achieve a 

desired bound on the error of estimation for the individual causal agents and disorders in any 

given year.  

Figure 4.2 displays the relationship between the coefficient of variation and Moran‟s I 

(Moran 1950), a measure of the spatial autocorrelation associated with the damage observed on 

the individual transects. The highest variability was observed when there was little to no spatial 

autocorrelation of damage among the transects. This variability decreased at an increasing rate as 

the spatial autocorrelation of damage on the transects increased. This suggests that causal agents 

and disorders that exhibit large contiguous patterns across the landscape are more efficiently 

estimated than causal agents and disorders that occur randomly on the landscape. 
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Fitting the Exponential-with-Nugget Variance Model 

The exponential-with-nugget variance model provided an exceptional fit for describing 

the relationship between the relative standard error associated with estimating the total amount of 

damage and sample size for all causal agents and disorders and sample designs evaluated over 

the 20 year time period. The three sample designs had a median FIT statistic of 0.997, where FIT 

is defined as the correlation between the observed and fitted values squared (Table 4.1). PPS 

sampling had the most consistent fit (range in FIT = 0.0013), followed by simple random 

sampling (range in FIT = 0.0139) and then stratified random sampling (range in FIT = 0.0184). 

Figure 4.3 provides an example of the fitted exponential-with-nugget variance models for 

estimating the relative sampling error associated with estimating the total amount of damage due 

to all causal agents and disorders for each of the 20 years using simple random sampling.    

The Effective Sample Size 

 
Except for two observations, simple random sampling had an effective sample size of 115 

transects (Figure 4.4, Table 4.2). This represents the sample size when the relative sampling error 

equals 5% of the coefficient of variation in the population. The relationship between the relative 

sampling errors and sample size closely followed what would be expected under the Central 

Limit Theorem which may explain the consistency in the estimates of the effective sample size. 

The relative sampling errors associated with stratified random sampling approached zero faster 

than simple random sampling with a median effective sample size of 106 transects (Figure 4.4, 

Table 4.2). Stratified random sampling had a minimum effective sample size of 16 transects and 

a maximum of 114 fight lines. The effective sample size for PPS sampling had characteristics 

similar to that of simple random sampling but exhibited more variability around the effective 

sample size of 115 transects (Figure 4.4, Table 4.2). This variability was due to the strength and 
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sign of the correlation between the amount of damage on the transects and the proportion of the 

transect that was forested. In general, the effective sample size was less than 115 transects when 

there was a strong positive correlation between the amount of damage and the proportion of 

forested lands on the transects; equaled 115 when there was no correlation, and greater than 115 

light lines when there was a negative correlation.   

 

Table 4.1.  FIT statistics of the fitted exponential-with-nugget variance models used to describe 
the relationship between the relative sampling error and sample size for estimating the area 
damaged by various causal agents and disorders in an aerial survey for the years 1994 to 2013 
for the three sample designs. Causal agents and disorders include mountain pine beetle, spruce 
beetle, aspen mortality, subalpine-fir mortality and all causal agents and disorders combined. The 
FIT statistic is defined as the correlation between the observed and predicted values squared. 
 

Sample 
Design 

Min 1st Quartile Median Mean 3rd Quartile Max 

Simple 
Random 

0.9833 0.9969 0.9969 0.9968 0.9970 0.9972 

Stratified 0.9788 0.9964 0.9970 0.9953 0.9970 0.9972 

PPS 0.9958 0.9965 0.9969 0.9968 0.9970 0.9971 
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Figure 4.2. Relationship between the coefficient of variation and Moran‟s I associated with the 
area of damage on individual transects for the years 1994 to 2013. and disorders include 
mountain pine beetle, spruce beetle, aspen mortality, subalpine-fir mortality and all causal agents 
and disorders combined. 
 

 

Figure 4.3. Example of the fitted variance-with-nugget model used to describe the relationship 
between the relative sampling error and sample size associated with estimating the total area of 
damage of all causal agents and disorders for the years 1994 to 2013. The points are the observed 
relative sampling errors for sample sizes, n=0, 10, 15, 20, 25, 30, 35, 50 and 70. 
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The Relative Partial Sill 

 
The relative partial sill, β of the exponential-with-nugget variance model provides an 

estimate of the relative sampling error for a sample size near the origin. The smaller this 

parameter the greater the initial influence the sample design has on the precision of the estimates. 

In the case of simple random sampling the relative partial sill ranged between 0.38 and 0.39 with 

one extreme value of 0.46 (Figure 4.5, Table 4.3). The trend in the relative partial sill is 

consistent with the trend observed for the effective sample size. Stratified random sampling had 

relative partial sills less than or equal to the median relative partial sill for simple random 

sampling (Figure 4.4, Table 4.3). The relative partial sills ranged from 0.33 to 0.39 with a 

median value of 0.36. There was one extreme value with a relative partial sill of 1 (not shown in 

Figure 4). The relative partial sill for PPS sampling had characteristics similar to that of simple 

random sampling but exhibited more variability around the relative partial sill of 0.39 (Figure 

4.5, Table 4.3). The relative partial sills ranged from 0.36 to 0.46 with a median value 0.40. The 

relationship between the relative partial sill and the correlation between the amount of damage 

on the transects and the proportion of forested lands on the transects was opposite of that 

observed for the effective sample size. PPS sampling was more effective in reducing the relative 

partial sill than simple random sampling when there was a positive correlation and less effective 

when there was a negative correlation.  

Loss + Cost Functions 

Optimal Sample Size For Different Levels of Confidence 

 
The optimal sample size that minimizes the loss + cost of estimating the total area of 

damage of all causal agents and disorders for the years 1994 to 2013 for different levels of 

confidence is summarized in Table 4.4. Sample sizes are based on the assumption of a simple 
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random sample of transects. Increasing variability in the population as measured by the 

coefficient of variation required a larger sample size to minimize the loss + cost function. The 

optimal sample size also increased as the desired level of confidence (t-statistic) associated with 

the outcome of the aerial survey increased (Table 4.4). Similar trends were observed for stratified 

random sampling (Table 4.5) and PPS sampling (Table 4.6). At the lower levels of confidence, 

there was little difference between the optimal sample sizes for simple random and stratified 

random sampling. This difference increased as the desired level of confidence increased. At the 

0.95 level of confidence stratified random sampling required 6 fewer transects than simple 

random sampling to minimize the loss + cost function, on the average. The optimal sample sizes 

for PPS sampling fluctuated around the optimal samples sizes for simple random sampling. 

Again the correlation between the amount of damage and the proportion of forested lands on the 

transects influenced whether the optimal sample size was larger or smaller than that for simple 

random sampling. 

Optimal Sample Size for Multiple Causal Agents 

 
Optimal sample size that minimizes the loss + cost of estimating the area of damage 

associated with four causal agents and disorders both individually and simultaneously for the 

years 1994 to 2013 at the 0.67 level of confidence (t=1) is presented in Table 4.7. Sample sizes 

are based on the assumption of a simple random sample of transects. Under this scenario aerial 

surveys are designed specifically for a given causal agent. If the user groups are willing to 

participate in a single aerial survey, it will require larger sample sizes at the 0.67 level of 

confidence than the individual causal agents and disorders at the 0.95 level of confidence to 

minimize the vertical sum of the individual loss functions plus the cost of the survey. Stratified 

random sampling (Table 4.8) required 11 fewer transects than simple random sampling while 
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PPS sampling (Table 4.9) required 5 additional transects on the average. The optimal sample size 

required to minimize the vertical sum of the individual loss functions + costs was 1.6 times 

larger than the largest sample size observed for an individual causal agent irrespective of the 

sample design.   

 

Table 4.2.  Distribution of the estimated effective sample size for three sample designs used to 
estimate the total area of damage using aerial survey for the years 1994 to 2013. Causal agents 
and disorders include mountain pine beetle, spruce beetle, aspen mortality, subalpine-fir 
mortality and all causal agents and disorders combined. The effective sample size is defined as 
the sample size that yields a relative sampling error equal to 0.05 * CV. 
 
Sample 

Design 
Min 1st Quartile Median Mean 3rd Quartile Max 

Simple 

Random 
87.7 115.1 115.3 115.4 115.6 152.9 

Stratified 16.0 89.8 105.4 93.6 109.9 113.9 

PPS 107.6 111.6 116.9 116.9 121.4 129.2 

 
 
Table 4.3.  Distribution of the estimated relative sampling error for sample sizes near zero for 
three sample designs used to estimate the total area of damage using aerial survey for the years 
1994 to 2013. Causal agents  and disorders include mountain pine beetle, spruce beetle, aspen 
mortality, subalpine-fir mortality and all causal agents and disorders combined. The relative 
sampling error for sample sizes near zero is defined as (1- δ2/CV), where δ2 is the nugget effect.  
 

Sample 
Design 

Min 1st Quartile Median Mean 3rd Quartile Max 

Simple 
Random 

0.3839 0.3905 0.3910 0.3917 0.3916 0.4610 

Stratified 0.3326 0.3504 0.3631 0.4114 0.3782 1.000 

PPS 0.3560 0.3765 0.3960 0.3998 0.4190 0.4613 
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Figure 4.4. The estimated effective sample size plotted against the coefficient of variation for 
three sample designs used to estimate the total area of damage using aerial survey for the years 
1994 to 2013. Causal agents and disorders include mountain pine beetle, spruce beetle, aspen 
mortality, subalpine-fir mortality and all causal agents and disorders combined. The effective 
sample size is defined as the sample size that yields a sampling error equal to 0.05 * CV. 
 
 

 
 

Figure 4.5. The estimated relative sampling error for sample sizes near zero plotted against the 
coefficient of variation for three sample designs used to estimate the total area of damage using 
aerial survey for the years 1994 to 2013. Causal agents and disorders include mountain pine 
beetle, spruce beetle, aspen mortality, subalpine-fir mortality and all causal agents and disorders 
combined. The relative sampling error for sample sizes near zero is defined as (1- δ2/CV), where 
δ2 is the nugget effect. 
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Table 4.4. Optimal sample size that minimizes the loss + cost of estimating the total area of 
damage of all causal agents and disorders for the years 1994 to 2013 for different levels of 
confidence. Sample sizes are based on the assumption of a simple random sample of transects 
(N=150 transects). 
 

Year CV† 
Level of Confidence 

t=1.0 (0.67) t=1.3 (0.80) t=1.6 (0.90) t=2.0 (0.95) 

1994 2.07 45 55 63 71 

1995 3.00 59 69 77 86 

1996 0.90 13 23 31 40 

1997 1.40 30 40 48 56 

1998 1.01 17 27 35 44 

1999 0.94 14 24 32 41 

2000 1.04 18 28 36 45 

2001 0.82 9 19 27 36 

2002 1.42 30 41 49 57 

2003 0.86 11 21 29 38 

2004 1.43 31 41 49 57 

2005 0.78 7 17 25 34 

2006 0.82 9 19 27 36 

2007 0.81 9 19 27 36 

2008 0.86 11 21 29 38 

2009 0.71 4 14 22 30 

2010 0.81 9 19 27 35 

2011 1.37 29 39 47 56 

2012 0.80 8 18 26 35 

2013 0.94 15 25 33 41 

Average  18 29 37 46 

†CV – coefficient of variation 
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Table 4.5. Optimal sample size that minimizes the loss + cost of estimating the total area of 
damage of all causal agents and disorders for the years 1994 to 2013 for different levels of 
confidence. Sample sizes are based on the assumption of a stratified random sample with an 
equal number of transects in each of L = 5 strata (N=150 transects). 
 

Year CV† 
Level of Confidence 

t=1.0 (0.67) t=1.3 (0.80) t=1.6 (0.90) t=2.0 (0.95) 

1994 2.07 42 52 59 67 

1995 3.00 55 65 72 80 

1996 0.90 12 21 29 37 

1997 1.40 27 37 44 52 

1998 1.01 16 25 32 40 

1999 0.94 14 23 31 39 

2000 1.04 17 26 33 41 

2001 0.82 8 18 25 33 

2002 1.42 28 38 45 54 

2003 0.86 14 21 26 32 

2004 1.43 27 34 40 47 

2005 0.78 7 16 22 30 

2006 0.82 13 20 25 30 

2007 0.81 17 22 27 31 

2008 0.86 19 21 22 24 

2009 0.71 20 23 25 27 

2010 0.81 13 19 24 30 

2011 1.37 26 32 38 43 

2012 0.80 7 16 24 29 

2013 0.94 14 22 28 33 

Average  19 28 34 40 
†CV – coefficient of variation 
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Table 4.6. Optimal sample size that minimizes the loss + cost of estimating the total area of 
damage of all causal agents and disorders for the years 1994 to 2013 for different levels of 
confidence. Sample sizes are based on the assumption of sampling with probability proportional 
the proportion of forested lands on each transect (N=150 transects). 
 

Year CV† 
Level of Confidence 

t=1.0 (0.67) t=1.3 (0.80) t=1.6 (0.90) t=2.0 (0.95) 

1994 2.07 43 53 60 69 

1995 3.00 57 66 74 82 

1996 0.90 13 23 31 40 

1997 1.40 27 38 46 55 

1998 1.01 15 24 32 40 

1999 0.94 13 23 30 38 

2000 1.04 17 27 35 43 

2001 0.82 9 18 26 34 

2002 1.42 31 41 49 58 

2003 0.86 13 24 32 41 

2004 1.43 29 38 45 54 

2005 0.78 7 18 26 34 

2006 0.82 9 19 27 36 

2007 0.81 12 23 32 42 

2008 0.86 13 24 32 42 

2009 0.71 6 17 26 36 

2010 0.81 12 23 32 42 

2011 1.37 33 44 53 63 

2012 0.80 10 22 30 40 

2013 0.94 16 27 36 45 

Average  20 30 38 47 
†CV – coefficient of variation 
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Table 4.7. Optimal sample size that minimizes the loss + cost of estimating the area of damage 
associated with four causal agents and disorders both individually and simultaneously for the 
years 1994 to 2013 at the 0.67 level of confidence (t=1). Sample sizes are based on the 
assumption of a simple random sample of transects (N=150 transects). 
 

Year 

Mountain Pine 
Beetle 

Spruce Beetle 
Subalpine-fir 

Mortality 
Aspen Mortality 

All 
Four 

Agents 

CV† n CV n CV n CV n n 

1994 2.52 52       52 

1995 2.59 53 2.26 48 5.19 80 5.30 81 121 

1996 2.26 48 4.06 71 1.29 27 1.93 42 103 

1997 1.81 40 10.01 105 2.49 52 2.30 49 124 

1998 1.37 29 3.52 65 1.29 27 1.72 38 96 

1999 1.09 20 4.88 78 1.39 29 2.94 58 106 

2000 1.16 22 3.81 68 1.29 27 5.62 83 111 

2001 1.11 21 2.44 51 1.39 30 2.23 48 92 

2002 0.99 16 2.90 58 1.27 26 3.80 68 101 

2003 1.22 24 2.83 57 1.22 25 3.31 63 99 

2004 1.60 35 2.48 52 1.21 24 2.15 46 93 

2005 1.44 31 2.90 58 0.92 13 1.41 30 89 

2006 1.47 32 2.10 45 0.83 10 0.94 15 81 

2007 1.57 34 2.93 57 0.88 12 0.91 13 83 

2008 1.45 31 3.02 59 0.95 15 0.70 3 86 

2009 1.44 31 3.63 66 0.91 3 0.67 2 91 

2010 1.51 33 2.03 44 0.86 13 0.81 9 80 

2011 2.17 46 1.80 39 0.99 17 1.42 31 88 

2012 2.18 47 1.84 40 1.05 18 3.95 70 101 

2013 2.90 58 1.58 34 1.13 22 2.73 55 98 

Average  36  58  25  42 95 
†CV – coefficient of variation 
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Table 4.8. Optimal sample size that minimizes the loss + cost of estimating the area of damage 
associated with four causal agents and disorders both individually and simultaneously for the 
years 1994 to 2013 at the 0.67 level of confidence (t=1). Sample sizes are based on the 
assumption of a stratified random sample with an equal number of transects in each of L = 5 
strata (N=150 transects). 
 

Year 

Mountain Pine 
Beetle 

Spruce Beetle 
Subalpine-fir 

Mortality 
Aspen Mortality 

All 
Four 

Agents 

CV† n CV n CV n CV n n 

1994 2.52 47       47 

1995 2.59 51 2.26 40 5.19 77 5.30 78 114 

1996 2.26 48 4.06 70 1.29 24 1.93 41 100 

1997 1.81 38 10.01 105 2.49 48 2.30 47 121 

1998 1.37 26 3.52 64 1.29 25 1.72 36 88 

1999 1.09 18 4.88 77 1.39 26 2.94 53 98 

2000 1.16 20 3.81 66 1.29 25 5.62 82 105 

2001 1.11 20 2.44 49 1.39 26 2.23 46 85 

2002 0.99 16 2.90 49 1.27 24 3.80 66 93 

2003 1.22 22 2.83 48 1.22 25 3.31 62 86 

2004 1.60 30 2.48 45 1.21 22 2.15 43 77 

2005 1.44 27 2.90 54 0.92 13 1.41 28 80 

2006 1.47 27 2.10 41 0.83 10 0.94 12 62 

2007 1.57 23 2.93 54 0.88 11 0.91 13 71 

2008 1.45 21 3.02 53 0.95 13 0.70 3 68 

2009 1.44 20 3.63 62 0.91 13 0.67 1 75 

2010 1.51 23 2.03 40 0.86 10 0.81 8 61 

2011 2.17 31 1.80 38 0.99 15 1.42 29 68 

2012 2.18 28 1.84 37 1.05 17 3.95 66 84 

2013 2.90 50 1.58 30 1.13 19 2.73 54 87 

Average  30  54  24  41 84 
†CV – coefficient of variation 
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Table 4.9. Optimal sample size that minimizes the loss + cost of estimating the area of damage 
associated with four causal agents and disorders both individually and simultaneously for the 
years 1994 to 2013 at the 0.67 level of confidence (t=1). Sample sizes are based on the 
assumption of sampling with probability proportional the proportion of forested lands on each 
transect (N=150 transects). 
 

Year 

Mountain Pine 
Beetle 

Spruce Beetle 
Subalpine-fir 

Mortality 
Aspen Mortality 

All 
Four 

Agents 

CV† n CV n CV n CV n n 

1994 2.52 56       56 

1995 2.59 51 2.26 46 5.19 86 5.30 79 122 

1996 2.26 50 4.06 72 1.29 27 1.93 43 105 

1997 1.81 37 10.01 107 2.49 51 2.30 48 124 

1998 1.37 28 3.52 65 1.29 25 1.72 39 95 

1999 1.09 19 4.88 81 1.39 29 2.94 57 107 

2000 1.16 21 3.81 67 1.29 25 5.62 81 108 

2001 1.11 20 2.44 55 1.39 28 2.23 48 93 

2002 0.99 16 2.90 64 1.27 25 3.80 65 101 

2003 1.22 23 2.83 63 1.22 27 3.31 64 103 

2004 1.60 33 2.48 57 1.21 25 2.15 47 96 

2005 1.44 30 2.90 61 0.92 14 1.41 32 92 

2006 1.47 32 2.10 48 0.83 9 0.94 16 83 

2007 1.57 39 2.93 63 0.88 13 0.91 14 93 

2008 1.45 34 3.02 63 0.95 14 0.70 3 89 

2009 1.44 35 3.63 72 0.91 14 0.67 1 94 

2010 1.51 37 2.03 48 0.86 11 0.81 10 85 

2011 2.17 52 1.80 42 0.99 16 1.42 31 92 

2012 2.18 52 1.84 43 1.05 17 3.95 66 102 

2013 2.90 64 1.58 37 1.13 20 2.73 59 103 

Average  36  61  25  42 100 
†CV – coefficient of variation 
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Cost Advantage of Sample Designs 

 
Stratified random sampling had an $81,766 cost advantage over simple random sampling 

for estimating the total area of damage of all causal agents and disorders when averaged over the 

years 1994 to 2013 at the 0.95 level of confidence (Table 4.10). In general, the cost advantage of 

stratified random sampling over simple random sampling increased as the variability in the 

population increased. For example, the cost advantage of stratified sampling over random 

sampling for estimating the damage from subalpine-fir mortality was $85,318 (Table 4.11). The 

average coefficient of variation in the damage due to subalpine-fir mortality was 1.19 compared 

to an average coefficient of variation of 0.98 for the total damage due to all causal agents and 

disorders. In contrast, PPS sampling had a cost disadvantage of -$13,082 when compared with 

simple random sampling (Table 4.12) and -$94,848 when compared with stratified sampling 

(Table 4.13) for estimating the total damage from all causal agents and disorders at the 0.95 level 

of confidence. 
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Table 4.10. Cost advantage of stratified random sampling over simple random sampling for 
estimating the total area of damage of all causal agents and disorders for the years 1994 to 2013 
at the 0.95 level of confidence (t=2). 
 

Year CV† 

Simple 
Random 

Stratified Cost 
Advantage ($) 

n n 

1994 2.07 71 67 45,352 

1995 3.00 86 80 59,070 

1996 0.90 40 37 35,124 

1997 1.40 56 52 43,004 

1998 1.01 44 40 42,834 

1999 0.94 41 39 22,242 

2000 1.04 45 41 50,990 

2001 0.82 36 33 38,059 

2002 1.42 57 54 33,729 

2003 0.86 38 32 101,955 

2004 1.43 57 47 123,272 

2005 0.78 34 30 56,499 

2006 0.82 36 30 102,589 

2007 0.81 36 31 113,529 

2008 0.86 38 24 244,648 

2009 0.71 30 27 143,135 

2010 0.81 35 30 96,818 

2011 1.37 56 43 152,840 

2012 0.80 35 31 46,809 

2013 0.94 41 35 82,819 

Average  45 41 81,766 
  †CV – coefficient of variation 
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Table 4.11. Cost advantage of stratified random sampling over simple random sampling for 
estimating the area of damage associated with subalpine-fir mortality for the years 1994 to 2013 
at the 0.95 level of confidence (t=2). 
 

Year CV† 

Simple 
Random 

Stratified Cost 
Advantage ($) 

n n 

1994     

1995 5.19 107 103 40,990 

1996 1.29 53 47 70,652 

1997 2.49 79 72 66,773 

1998 1.29 53 41 154,954 

1999 1.39 56 44 145,427 

2000 1.29 53 41 159,737 

2001 1.39 56 44 152,341 

2002 1.27 53 47 61,786 

2003 1.22 51 39 165,985 

2004 1.21 51 41 126,063 

2005 0.92 40 38 23,489 

2006 0.83 36 31 76,149 

2007 0.88 39 37 20,308 

2008 0.95 41 37 47,596 

2009 0.91 38 39 47,667 

2010 0.86 40 35 56,864 

2011 0.99 43 38 63,415 

2012 1.05 45 40 66,844 

2013 1.13 48 42 73,999 

Average  49 46 85,318 

  †CV – coefficient of variation 
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Table 4.12. Cost advantage of PPS sampling over simple random sampling for estimating the 
total area of damage associated with all causal agents and disorders for the years 1994 to 2013 at 
the 0.95 level of confidence (t=2). 
 

Year CV† 

Simple 
Random 

PPS Cost 
Advantage ($) 

n n 

1994 2.07 71 69 26,281 

1995 3.00 86 82 37,134 

1996 0.90 40 40 -1,102 

1997 1.40 56 55 2,826 

1998 1.01 44 40 40,491 

1999 0.94 41 38 30,768 

2000 1.04 45 43 20,581 

2001 0.82 36 34 20,390 

2002 1.42 57 58 -7,040 

2003 0.86 38 41 -37,204 

2004 1.43 57 54 37,091 

2005 0.78 34 34 -5,257 

2006 0.82 36 36 -4,332 

2007 0.81 36 42 -67,555 

2008 0.86 38 42 -43,442 

2009 0.71 30 36 -63,103 

2010 0.81 35 42 -74,362 

2011 1.37 56 63 -73,511 

2012 0.80 35 40 -56,849 

2013 0.94 41 45 -43,440 

Average  46 47 -13,082 
  †CV – coefficient of variation 
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Table 4.13. Cost advantage of PPS over stratified random sampling for estimating the total area 
of damage associated with all causal agents and disorders for the years 1994 to 2013 at the 0.95 
level of confidence (t=2). 
 

Year CV† 
Stratified PPS Cost 

Advantage ($) n n 

1994 2.07 67 69 -19,072 

1995 3.00 80 82 -21,936 

1996 0.90 37 40 -36,226 

1997 1.40 52 55 -40,178 

1998 1.01 40 40 -2,343 

1999 0.94 39 38 8,526 

2000 1.04 41 43 -30,410 

2001 0.82 33 34 -17,669 

2002 1.42 54 58 -40,769 

2003 0.86 32 41 -139,159 

2004 1.43 47 54 -86,182 

2005 0.78 30 34 -61,756 

2006 0.82 30 36 -106,921 

2007 0.81 31 42 -181,083 

2008 0.86 24 42 -288,089 

2009 0.71 27 36 -206,237 

2010 0.81 30 42 -171,180 

2011 1.37 43 63 -226,352 

2012 0.80 31 40 -103,658 

2013 0.94 35 45 -126,259 

Average  41 47 -94,848 

  †CV – coefficient of variation 
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Summary 

 
In this study, we present a cost + loss method for determining the optimal sample size for 

aerial detection surveys. The method can be applied either to the single objective optimization 

problem (when there is only one variance function associated with a single causal agent) or to the 

multiple-objective optimization problem (when several variance functions associated with 

multiple causal agents and disorders have to be minimized simultaneously). The approach is 

demonstrated using aerial survey data from Colorado collected over a 20-year period for multiple 

causal agents and disorders and three sample designs. The results were particularly encouraging, 

since the approach appeared to find the optimal solutions that made statistical and economic 

sense. For example, stratified random sampling was more cost-efficient than probabilities 

proportional to size sampling which resulted in a savings of almost $95,000 per year for 

estimating total area damage caused by all causal agents and disorders combined. The optimal 

sample size increased as expected with increasing variability in the population and as the desired 

level of confidence increased. Finally, larger samples were required to simultaneously provide 

estimates for multiple causal agents and disorders with reasonable levels of precision when 

compared to a single causal agent. 

In the monitoring of forest health it is important to take into account that the amount of 

damage being attributed to a given causal agent and how this changes over time. Resource 

managers need reliable and timely information of these changes in order to make efficient 

decisions. In states like Alaska where 100% surveys are not economically feasible, sampling 

may be a cost-efficient alternative. However, a major drawback of aerial survey sampling is the 

lack of information between transects. As a consequence, the severity and distributions for many 

pests may be underestimated.  Assessments would be more realistic if the areas omitted during 
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the survey flights could be taken into consideration. Recent work in modeling the spatial 

distribution of insect pests and diseases using field observations, satellite imagery, and spatial 

statistics offers some promise for providing more complete cost-effective coverage of pest 

distributions (Reich et al. 2013). In this case, the aerial survey data could be combined with 

satellite images and other geo-referenced data into a multi-source inventory system. Under such 

a system, the cost and the variance functions can be quite complex and the use of the loss + cost 

methods seem to be a promising approach for evaluating the cost effectiveness of such an 

inventory system. The important thing with using the loss + cost approach is the fact that it can 

be easily applied to a large number of optimization problems encountered in natural resource 

sampling. 
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APPENDIX A – CHAPTER 2 
 
 
 

 
Figure A1a. Frequency distribution of 
accumulative area damaged of aspen forest 
in 20 years (1994-2013). The x-axis is 
damage area (ha), the y-axis is number of 
transect (transect). 

 
Figure A1b. Frequency distribution of 
accumulative area damaged of mixed 
conifer forest in 20 years (1994-2013).The 
x-axis is damage area (ha), the y-axis is 
number of transect (transect). 

 

 

 
Figure A1c. Frequency distribution of 
accumulative area damaged of western 
spruce-fir forest in 20 years (1994-2013). 
The x-axis is damage area (ha), the y-axis is 
number of transect (transect) 

 
Figure A2a. Moran‟s I distribution of area 
damaged on adjacent transects caused by 
seven single causal agents and disorders 
combined in 20 years (1994-2013). The x-
axis is Moran‟s I value, the y-axis is 
frequency. 
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Figure A2b. Moran‟s I distribution of area 
damaged on adjacent transects caused by 
DFB in 20 years (1994-2013). The x-axis is 
Moran‟s I value, the y-axis is frequency. 

 

 

 

 

Figure A2c. Moran‟s I distribution of area 
damaged on adjacent transects caused by SB 
in 20 years (1994-2013). The x-axis is 
Moran‟s I value, the y-axis is frequency. 

 
Figure A2d. Moran‟s I distribution of area 
damaged on adjacent transects caused by PE 
in 20 years (1994-2013). The x-axis is 
Moran‟s I value, the y-axis is frequency. 

 

 

 

 

 
Figure A2e. Moran‟s I distribution of area 
damaged on adjacent transects caused by 
WSB in 20 years (1994-2013). The x-axis is 
Moran‟s I value, the y-axis is frequency. 
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Figure A2f. Moran‟s I distribution of area 
damaged on adjacent transects caused by 
SAD in 20 years (1994-2013). The x-axis is 
Moran‟s I value, the y-axis is frequency. 

 

 
Figure A2g. Moran‟s I distribution of area 
damaged on adjacent transects caused by 
SUB in 20 years (1994-2013). The x-axis is 
Moran‟s I value, the y-axis is frequency. 

 

 

 

 

 

 

Figure A2h. Moran‟s I distribution of area 
damaged on adjacent transects caused by 
MPB in 20 years (1994-2013). The x-axis is 
Moran‟s I value, the y-axis is frequency 

Figure A3. Accumulative total area damaged 
of Aspen forest and its area damaged caused 
by SAD from 1994 to 2013
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Figure A4. Accumulative total area damaged 
of mixed conifer forest and its area damaged 
caused by MPB and WSB from 1994 to 
2013 

 

 
Figure A5. Accumulative total area damaged 
of western spruce-fir forest and its area 
damaged caused by SUB and SB from 1994 
to 2013 

 

 

 

 

 
Figure A6a. Distribution of accumulative 
area damaged of aspen forest from 1994 to 
2013 

 
Figure A6b. Distribution of accumulative 
area damaged of mixed conifer forest from 
1994 to 2013 
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Figure A6c. Distribution of accumulative area damaged of western spruce-fir forest from 1994 to 
2013 
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Figure A7. Yearly spatio-temporal distribution of area damaged caused by MPB. The x-axis is 
number of transect (flight line), the y-axis is damage area (thousand ha) 
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Figure A8. Yearly spatio-temporal distribution of area damaged caused by DFB. The x-axis is 
number of transect (flight line), the y-axis is damage area (thousand ha) 
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Figure A9. Yearly spatio-temporal distribution of area damaged caused by WSB. The x-axis is 
number of transect (flight line), the y-axis is damage area (thousand ha) 
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Figure A10. Yearly spatio-temporal distribution of area damaged caused by PE. The x-axis is 
number of transect (flight line), the y-axis is damage area (thousand ha) 
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Figure A11. Yearly spatio-temporal distribution of area damaged caused by SUB. The x-axis is 
number of transect (flight line), the y-axis is damage area (thousand ha) 
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Figure A12. Yearly spatio-temporal distribution of area damaged caused by SB. The x-axis is 
number of transect (flight line), the y-axis is damage area (thousand ha) 
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Figure A13. Yearly spatio-temporal distribution of area damaged caused by SAD. The x-axis is 
number of transect (flight line), the y-axis is damage area (thousand ha) 
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Table A1a. Test for non-randomness of area with damaged of Aspen forest type 

Year Zstat Spatial distribution Year Zstat Spatial distribution 

1994 - - 2004 -8.1948 Clustering 

1995 -5.672 Clustering 2005 -3.1458 Clustering 

1996 -5.8577 Clustering 2006 -11.1202 Clustering 

1997 -7.5025 Clustering 2007 -2.0053 Clustering 

1998 -8.0016 Clustering 2008 NaN Uniform 

1999 -5.5957 Clustering 2009 -8.6023 Clustering 

2000 -5.4995 Clustering 2010 -8.6023 Clustering 

2001 -2.3913 Clustering 2011 -7.1699 Clustering 

2002 -4.5298 Clustering 2012 -1.7901 Random 

2003 -3.7443 Clustering 2013 0 Random 
 
 
 
Table A1b. Test for non-randomness of area with damaged of mixed-conifers forest type 

Year Zstat Spatial distribution Year Zstat Spatial distribution 

1994 -12.1244 Clustering 2004 -4.284 Clustering 

1995 -7.6273 Clustering 2005 -9.6748 Clustering 

1996 -8.5324 Clustering 2006 -8.6023 Clustering 

1997 -2.2314 Clustering 2007 -8.6023 Clustering 

1998 -7.4851 Clustering 2008 NaN uniform 

1999 -8.4182 Clustering 2009 NaN uniform 

2000 -7.286 Clustering 2010 -8.6023 Clustering 

2001 -4.5258 Clustering 2011 -8.6023 Clustering 

2002 -7.7451 Clustering 2012 -8.6023 Clustering 

2003 -3.5563 Clustering 2013 -10.5474 Clustering 
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Table A1c. Test for non-randomness of area with damaged of western spruce-fir forest type 

Year Zstat Spatial distribution Year Zstat Spatial distribution 

1994 -7.6273 Clustering 2004 -4.284 Clustering 

1995 -8.5324 Clustering 2005 -9.6748 Clustering 

1996 -8.5324 Clustering 2006 -8.6023 Clustering 

1997 -2.2314 Clustering 2007 -8.6023 Clustering 

1998 -7.4851 Clustering 2008 NaN Uniform 

1999 -8.4182 Clustering 2009 NaN Uniform 

2000 -7.286 Clustering 2010 -8.6023 Clustering 

2001 -4.5258 Clustering 2011 -8.6023 Clustering 

2002 -7.7451 Clustering 2012 -8.6023 Clustering 

2003 -3.5563 Clustering 2013 -10.5474 Clustering 
 
 
 
 
Table A2a. Test for non-randomness of area with damaged caused by Douglas-fir beetle (DFB) 

Year Zstat Spatial distribution Year Zstat Spatial distribution 

1994 -10.3103 Clustering 2004 -5.9551 Clustering 

1995 -7.687 Clustering 2005 -7.7451 Clustering 

1996 -8.1194 Clustering 2006 -8.0989 Clustering 

1997 -7.8145 Clustering 2007 -6.9224 Clustering 

1998 -5.9265 Clustering 2008 -9.0731 Clustering 

1999 -5.5957 Clustering 2009 -7.1958 Clustering 

2000 -5.5915 Clustering 2010 -7.8984 Clustering 

2001 -4.5751 Clustering 2011 -8.6483 Clustering 

2002 -3.9936 Clustering 2012 -5.9551 Clustering 

2003 -5.3562 Clustering 2013 -5.8319 Clustering 
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Table A2b. Test for non-randomness of area with damaged caused by mountain pine beetle 
(MPB) 

Year Zstat Spatial distribution Year Zstat Spatial distribution 

1994 -11.328 Clustering 2004 -11.0543 Clustering 

1995 -10.4852 Clustering 2005 NaN Uniform 

1996 -2.0053 Clustering 2006 -6.5628 Clustering 

1997 -9.0202 Clustering 2007 -9.4474 Clustering 

1998 -9.5108 Clustering 2008 -4.5515 Clustering 

1999 -5.7634 Clustering 2009 -8.1194 Clustering 

2000 -8.4885 Clustering 2010 -8.9011 Clustering 

2001 -6.5628 Clustering 2011 -8.4955 Clustering 

2002 NaN Uniform 2012 -8.8315 Clustering 

2003 -4.1332 Clustering 2013 -6.319 Clustering 

 
 
 
 
Table A2c. Test for non-randomness of area with damaged caused by pine engraver (PE) 

Year Zstat Spatial distribution Year Zstat Spatial distribution 

1994 NaN Uniform 2004 -7.8768 Clustering 

1995 NaN Uniform 2005 -7.3149 Clustering 

1996 -4.8899 Clustering 2006 -6.9018 Clustering 

1997 0.2734 Random 2007 -7.0307 Clustering 

1998 -3.1823 Clustering 2008 -6.1124 Clustering 

1999 -3.1823 Clustering 2009 -6.364 Clustering 

2000 -6.3584 Clustering 2010 -7.0394 Clustering 

2001 NaN Uniform 2011 -5.4862 Clustering 

2002 -6.9679 Clustering 2012 -6.7638 Clustering 

2003 -7.4006 Clustering 2013 -7.1515 Clustering 
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Table A2d. Test for non-randomness of area with damaged caused by sudden aspen decline 
(SAD) 

Year Zstat Spatial distribution Year Zstat Spatial distribution 

1994 - - 2004 -6.2388 Clustering 

1995 -5.672 Clustering 2005 -4.3372 Clustering 

1996 -5.8577 Clustering 2006 -11.5579 Clustering 

1997 -7.5025 Clustering 2007 -2.0053 Clustering 

1998 -8.0016 Clustering 2008 NaN Uniform 

1999 -5.664 Clustering 2009 -8.6023 Clustering 

2000 -4.8828 Clustering 2010 -3.3885 Clustering 

2001 -3.9769 Clustering 2011 -6.1393 Clustering 

2002 -4.9366 Clustering 2012 -4.334 Clustering 

2003 -3.1379 Clustering 2013 -2.1329 Clustering 

 
 
 
 
Table A2e. Test for non-randomness of area with damaged caused by spruce beetle (SB) 

Year Zstat Spatial distribution Year Zstat Spatial distribution 

1994 - - 2004 -6.709 Clustering 

1995 -8.645 Clustering 2005 -6.456 Clustering 

1996 -3.635 Clustering 2006 -4.440 Clustering 

1997 -3.000 Clustering 2007 -5.493 Clustering 

1998 -4.215 Clustering 2008 -4.884 Clustering 

1999 -7.759 Clustering 2009 -5.796 Clustering 

2000 -8.109 Clustering 2010 -6.352 Clustering 

2001 -6.603 Clustering 2011 -4.484 Clustering 

2002 -7.773 Clustering 2012 -7.221 Clustering 

2003 -7.414 Clustering 2013 -6.732 Clustering 
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Table A2f. Test for non-randomness of area with damaged caused by Subalpine-fir mortality 
(SUB) 

Year Zstat Spatial distribution Year Zstat Spatial distribution 

1994 - - 2004 -9.675 Clustering 

1995 -5.960 Clustering 2005 -6.965 Clustering 

1996 -2.231 Clustering 2006 -8.602 Clustering 

1997 -7.485 Clustering 2007   NaN Uniform 

1998 -8.418 Clustering 2008 -10.547 Clustering 

1999 -7.286 Clustering 2009 -10.547 Clustering 

2000 -4.526 Clustering 2010 -8.602 Clustering 

2001 -7.644 Clustering 2011 -8.602 Clustering 

2002 -3.556 Clustering 2012 -10.547 Clustering 

2003 -4.284 Clustering 2013 -3.389 Clustering 

 
 
 
Table A2g. Test for non-randomness of area with damaged caused by (WSB) 

Year Zstat Spatial distribution Year Zstat Spatial distribution 

1994 0.116 Random 2004 -7.166 Clustering 

1995 - - 2005 -9.491 Clustering 

1996 -9.825 Clustering 2006 -10.228 Clustering 

1997 0.191 Random 2007 -10.485 Clustering 

1998 -10.901 Clustering 2008 -9.831 Clustering 

1999 -10.371 Clustering 2009 -8.204 Clustering 

2000 -7.894 Clustering 2010 -9.824 Clustering 

2001 -8.878 Clustering 2011 -10.764 Clustering 

2002 -7.772 Clustering 2012 -9.804 Clustering 

2003 -7.025 Clustering 2013 -10.764 Clustering 
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Table A3. Accumulative area damaged caused by seven causal agents and disorders overtime. 
Unit: ha 

Year 
Causal agents and disorders 

Comb. MPB DFB SB PE WSB SAD SUB 

1994 12269.17 1541.99 7836.58 0.00 0.00 1.56 0.00 0.00 

1995 12804.53 2827.62 755.91 3919.11 0.00 0.00 828.82 133.49 

1996 111426.29 5275.19 8118.81 83.20 25.73 10505.93 4100.57 75469.58 

1997 65466.33 12834.52 1431.94 27.02 0.09 193.16 7907.22 29966.77 

1998 199604.78 42363.27 5312.10 326.68 113.99 8910.46 3781.73 89549.53 

1999 149824.47 49422.95 2385.33 126.27 21.95 16616.37 2790.16 52881.59 

2000 174953.74 56389.13 4972.63 928.27 8.06 8230.79 1614.16 83907.66 

2001 212615.01 60947.86 3723.89 3576.55 0.00 14346.78 6298.74 104713.69 

2002 381727.10 83981.96 5777.49 21104.69 7.88 50461.29 3170.36 123719.18 

2003 764205.57 92072.88 18862.77 28693.08 49487.40 8107.35 1684.82 195034.48 

2004 605738.74 173284.23 16460.42 20956.58 1844.71 4249.15 3268.57 98317.91 

2005 528388.78 198487.46 13604.43 46402.24 2589.97 26342.94 10863.50 166894.54 

2006 560720.36 267776.50 9408.95 26107.18 5636.76 37348.96 54993.31 143080.76 

2007 896583.09 395341.39 17998.27 37500.54 1622.70 156856.68 133162.75 125810.98 

2008 928447.75 462100.36 11010.40 24848.92 877.44 61897.30 217878.71 133674.05 

2009 900327.89 416665.72 9099.75 45210.17 2074.00 154363.25 138278.03 73186.83 

2010 1297727.43 706118.32 19256.17 141352.00 2942.01 142480.88 103930.74 154979.59 

2011 1175107.76 766625.69 12710.53 188209.94 2327.22 58172.20 24937.74 101458.45 

2012 726564.14 191614.15 13503.54 219084.08 424.59 147709.47 1719.93 127884.66 

2013 660085.06 74289.85 22575.06 288211.48 2425.06 95773.95 528.44 100327.29 

where Comb. – all causal agents and disorders combined, MPB – mountain pine beetle, DFB – Douglas 
fir beetle, SB – spruce beetle, PE- pine engraver, WSB – western spruce budworm, SAD – sudden aspen 
decline, and SUB – subalpine fir mortality. 
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Table A4.  Spatial autocorrelation test using Moran‟s I for area damaged on adjacent transects 
for different damage agents over time 1994 to 2013. The Moran‟s I vary in range from -1 to +1. 
If Moran‟s I get is negative indicating that area damaged on adjacent transects were cyclic 
pattern. If Moran‟s I is positive spatial this would indicates clustering of damage on adjacent 
transects. A zero Moran‟s I would suggest damage is spatially independent among transects. 
 

Year 
Moran's I 

Comb. MPB DFB SB PE WSB SAD SUB 

1994 0.76 0.88 0.77 - - -0.01 - - 

1995 0.79 0.52 0.63 0.78 - - 0.36 0.39 

1996 0.74 0.48 0.73 0.06 0.21 0.79 0.53 0.79 

1997 0.68 0.63 0.52 -0.01 -0.02 -0.01 0.59 0.62 

1998 0.84 0.81 0.78 0.40 0.36 0.85 0.60 0.86 

1999 0.77 0.73 0.73 0.36 0.20 0.84 0.72 0.81 

2000 0.84 0.79 0.77 0.53 0.29 0.71 0.48 0.85 

2001 0.81 0.76 0.67 0.71 - 0.83 0.62 0.86 

2002 0.88 0.79 0.59 0.92 0.49 0.89 0.65 0.82 

2003 0.91 0.84 0.82 0.88 0.78 0.62 0.27 0.90 

2004 0.96 0.93 0.81 0.88 0.62 0.75 0.53 0.89 

2005 0.93 0.94 0.63 0.90 0.74 0.85 0.65 0.85 

2006 0.93 0.95 0.59 0.83 0.52 0.93 0.70 0.84 

2007 0.91 0.94 0.58 0.91 0.46 0.95 0.72 0.82 

2008 0.93 0.95 0.63 0.91 0.19 0.82 0.73 0.73 

2009 0.87 0.92 0.65 0.92 0.39 0.92 0.63 0.74 

2010 0.92 0.95 0.75 0.89 0.38 0.89 0.67 0.76 

2011 0.93 0.95 0.54 0.92 0.71 0.93 0.50 0.81 

2012 0.90 0.93 0.71 0.93 0.41 0.89 0.51 0.78 

2013 0.92 0.90 0.78 0.91 0.45 0.86 0.19 0.80 

Average 0.86 0.83 0.68 0.72 0.42 0.75 0.56 0.79 

where Comb. – all and disorders combined, MPB – mountain pine beetle, DFB – Douglas fir beetle, SB – 
spruce beetle, PE- pine engraver, WSB – western spruce budworm, SAD – sudden aspen decline, and 
SUB – subalpine fir mortality. 
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APPENDIX B - CHAPTER 3 
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Figure B1. An example of a spatial cyclic patterns distribution of area with damage caused by all 
causal agents and disorders combined. These distribution patterns resulted very large and 
unpredictable estimated variances when increasing sample sizes.The x-axis is number of transect 
(transect), the y-axis is damage area (ha) 
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SRS -  MPB 
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PPS – MPB 

 

 
Figure B2. An example of area damaged caused by MPB approached normality distribution with 
increasing sample size 
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Table B1. Average ranking of estimated bias for four sample designs associated with eight causal 
agents and disorders.  
 

Causal agent SRS PPS STRA NALIGN 

DFB 3 4 1 2 

MPB 2 4 1 3 

PE 3 4 1 2 

SAD 3 1 4 2 

SB 3 4 2 1 

SUB 3 4 1 2 

WSB 3 4 1 2 

Comb. 3 4 1 2 

Average 2.88 3.63 1.50 2.00 

 

 

 

Table B2. Largest estimated Bias of four sample designs associated with different causal agents 
and disorders and sample sizes in the year 1994 to 2013. 

Unit: % 

 MPB DF SB PE SAD SUB WSB Comb. 

SRS 1.13 1.17 1.29 3.23 2.49 7.47 4.60 0.55 

PPS 6.99 4.13 7.97 5.33 2.97 7.47 5.76 5.25 

NALIGN 0.59 0.85 2.04 2.49 1.38 0.84 2.86 0.66 

STRA 1.16 1.29 2.43 2.10 2.14 2.23 3.56 0.79 
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Table B3. Example of testing homogeneity of estimated mean variance among four sample 
designs associated with various sample sizes using Monte Carlo method with Friedman test. 
Outputs are test for sample size equal 10 for combination of all causal agents and disorders. 
STRA is the best with smallest estimated mean variance. 

 Ranks 

  
Mean 
Rank 

SRS10 2,95 

PPS10 2,25 

NALIGN10 3,75 

STRA10 1,05 

 

 

 Test Statistics(a) 

N 20 

Chi-Square 47,160 

df 3 

Asymp. Sig. ,000 

Monte 
Carlo Sig. 

Sig. ,000 

95% 
Confidence 
Interval 

Lower 
Bound 

,000 

Upper 
Bound 

,000 

a  Friedman Test 
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Table B4. Test of difference of estimated mean variance among four sample designs associated 
with different sample sizes in the year 1994 to 2013 using Friedman test index with significant 
level  = 0.05. The null hypothesis was all estimated mean variances are equal. All results show 
that estimated mean variances of four sample designs were significant different associated with 
various sample sizes. τf which, STRA‟s estimated mean variance is the smallest, except PE‟s 
one causal agent where PPS is the smallest. 
 

Causal agents 
and disorders 

Sample size 

10 15 20 25 30 35 50 70 

Comb. 2 47.16 49.32 38.76 47.46 47.46 37.98 42.54 37.20 

p-value .000 .000 .000 .000 .000 .000 .000 .000 

MPB 2 34/98 36.60 30.30 36.30 34.20 33.18 34.20 34.98 

p-value .000 .000 .000 .000 .000 .000 .000 .000 

DF 2 47.16 49.32 38.76 47.46 47.46 37.98 42.54 37.20 

p-value .000 .000 .000 .000 .000 .000 .000 .000 

SB 2 38.56 39.76 38.43 43.86 46.89 38.81 47.02 31.99 

p-value .000 .000 .000 .000 .000 .000 .000 .000 

PE* 2 21.35 26.01 14.51 23.82 27.85 17.40 24.74 23.89 

p-value .000 .000 .000 .000 .000 .000 .000 .000 

SAD 2 34.26 26.05 21.32 29.34 28.71 27.57 28.45 27.95 

p-value .000 .000 .000 .000 .000 .000 .000 .000 

SUB 2 41.08 41.08 39.95 41.08 41.08 39.00 38.94 35.97 

p-value .000 .000 .000 .000 .000 .000 .000 .000 

WSB 2 27.06 32.87 26.81 32.94 30.92 28.71 36.73 24.92 

p-value .000 .000 .000 .000 .000 .000 .000 .000 

 (*) Ranks of PPS were smallest 
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APPENDIX C – R CODES  
 
 
 

Hear are R codes example for generating interested statistical properties 
 
I. Simulation codes 

1. SRS 

`SRS.sim` <- 

function (data,n,k=1,M=20000)  

{ 

# Simple random sampling 

# 

# data - matrix of data 

# n - sample size 

# k - column of the variable to be sampled 

# M - number of simulations 

# 

###############################  

# 

data<-as.matrix(data) 

N<-nrow(data) 

stats<-matrix(0,nrow=M,ncol=2) 

y<-data[,k] 

mu<-mean(y) 

tau<-sum(y) 
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cr<-0 

tstat<-qt(0.975,n) 

for(i in 1:M) { 

yi<-sample(y,n) 

stats[i,1]<-N*mean(yi) 

stats[i,2]<-N*(N-n)*var(yi)/n 

z<-(stats[i,1]-tau)/sqrt(stats[i,2]) 

if( abs(z) < tstat) { 

  cr<-cr+1 

  } 

} 

cr<-cr/M 

cat("\n Simple Random Sampling \n") 

cat("\n Sample Statistics \n") 

cat("\n Number of Simulations = ", M) 

cat("\n Sample Total = ", mean(stats[,1])) 

cat("\n Mean Variance = ",mean(stats[,2])) 

cat("\n Variance of the Mean = ",var(stats[,1])) 

cat("\n Ratio of Variances = ",(mean(stats[,2])/var(stats[,1]))) 

cat("\n Coverage Rate = ",round(cr,4)) 

cat("\n") 

cat("\n Population Statistics") 

cat("\n Population Mean = ", mu) 
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cat("\n Population Total = ", tau) 

cat("\n Population Variance = ",var(y)) 

cat("\n") 

invisible(stats) 

} 

 

2. PPS 

`PPS.sim` <- 

function (data,n,kx,ky,M=20000)  

{ 

# Sampling with probability proportional to size (PPS) 

# 

# data - matrix of data 

# n - sample size 

# kx - column of the auxiliary variable used to calculated 

#      selection probabilities 

# ky - column of the variable to be sampled 

# M - number of simulations 

# 

###############################  

# 

data<-as.matrix(data) 

N<-nrow(data) 
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stats<-matrix(0,nrow=M,ncol=2) 

y<-data[,ky] 

x<-data[,kx] 

prob<-x/sum(x) 

indx<-seq(1,length(x)) 

mu<-mean(y) 

tau<-sum(y) 

cr<-0 

tstat<-qt(0.975,n) 

for(i in 1:M) { 

yi<-sample(indx,n,replace=FALSE,prob=prob) 

stats[i,1]<-mean(y[yi]/prob[yi]) 

stats[i,2]<-((N-n)/N)*var(y[yi]/prob[yi])/n 

z<-(stats[i,1]-tau)/sqrt(stats[i,2]) 

if( abs(z) < tstat) { 

  cr<-cr+1 

  } 

} 

cr<-cr/M 

cat("\n PPS Sampling \n") 

cat("\n Sample Statistics \n") 

cat("\n Number of Simulations = ", M) 

cat("\n Sample Total = ", mean(stats[,1])) 
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cat("\n Mean Variance = ",mean(stats[,2])) 

cat("\n Variance of the Mean = ",var(stats[,1])) 

cat("\n Ratio of Variances = ",(mean(stats[,2])/var(stats[,1])))  

cat("\n Coverage Rate = ",round(cr,4)) 

cat("\n") 

cat("\n Population Statistics") 

cat("\n Population Mean = ", mu) 

cat("\n Population Total = ", tau) 

cat("\n Population Variance = ",var(y)) 

cat("\n") 

invisible(stats) 

} 

 

3. STRA 

STRAT.sim <- 

function (data,n,k=1,strata=n,M=20000,file="",write=F,append=F)  

{ 

# Stratified Random Sampling 

# 

# data - matrix of data 

# n - sample size 

# k - column of the variable to be sampled 

# M - number of simulations 
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# strata - number of strata 

# file - fiepath and name to write sample statistics 

# write - write sample statistics to the 'file' 

# append - T = append statistics to an existing file; F = create a new file 

# 

###############################  

# 

data<-as.matrix(data) 

N<-nrow(data) 

stats<-matrix(0,nrow=M,ncol=3) 

y<-data[,k] 

mu<-mean(y) 

tau<-sum(y) 

cr<-0 

nobs<-floor(150/strata) 

ul<-seq(nobs,150,nobs) 

ni<-floor(n/strata) 

for(i in 1:M) { 

llim<-1 

ulim<-ul[1] 

m<-length(ul) 

for(j in 1:(m)) { 

smp<-seq(llim,ulim) 
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mi<-sample(smp,ni) 

yi<-data[mi,k] 

if(j == 1) { 

yi.s2<-var(yi) 

yi.mean<-mean(yi) 

} 

if(j > 1) { 

yi.mean<-c(yi.mean,mean(yi)) 

yi.s2<-c(yi.s2,var(yi)) 

} 

llim<-ulim+1 

ulim<-ul[j+1] 

} 

if(sum(yi.s2) != 0) { 

df<-(sum(yi.s2)^2/sum(yi.s2^2))*(ni-1) 

} 

else { 

df<-ni-1 

} 

df<-df*5 

tstat<-qt(0.975,df) 

stats[i,1]<-nobs*sum(yi.mean) 

stats[i,2]<-nobs^2*(nobs-ni)*sum(yi.s2/ni)/nobs 
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stats[i,3]<-ni*m 

z<-(stats[i,1]-tau)/sqrt(stats[i,2]) 

if(abs(z) < tstat) { 

  cr<-cr+1 

  } 

} 

cr<-cr/M 

output<-

cbind(M,mean(stats[,1]),mean(stats[,2]),var(stats[,1]),(mean(stats[,2])/var(stats[,1])),round(cr,4),

round(mean(stats[,3]),4),mu,tau,var(y)) 

cat("\n Stratified Random Sampling \n") 

cat("\n Sample Statistics \n") 

cat("\n Number of Simulations = ", M) 

cat("\n Sample Total = ", mean(stats[,1])) 

cat("\n Mean Variance = ",mean(stats[,2])) 

cat("\n Variance of the Mean = ",var(stats[,1])) 

cat("\n Ratio of Variances = ",(mean(stats[,2])/var(stats[,1]))) 

cat("\n Coverage Rate = ",round(cr,4)) 

cat("\n Average Sample Size = ",round(mean(stats[,3]),4)) 

cat("\n") 

cat("\n Population Statistics") 

cat("\n Population Mean = ", mu) 

cat("\n Population Total = ", tau) 
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cat("\n Population Variance = ",var(y)) 

cat("\n") 

if(write) { 

write.table(output,file=file,append=append,quote=F,row.names=F,col.names=F) 

} 

invisible(stats) 

} 

 

4. NALIGN 

NALIGN.sim <- 

function (data,n,k=1,M=20000,file="",write=F,append=F)  

{ 

# Non-aligned systematic sampling 

# 

# data - matrix of data 

# n - sample size 

# k - column of the variable to be sampled 

# M - number of simulations 

# strata - number of strata 

# file - fiepath and name to write sample statistics 

# write - write sample statistics to the 'file' 

# append - T = append statistics to an existing file; F = create a new file 

###############################  
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strata<-n 

data<-as.matrix(data) 

N<-nrow(data) 

Ni<-rep(0,n)mu=mean(aerial94[,6]) 

stats<-matrix(0,nrow=M,ncol=3) 

y<-data[,k] 

mu<-mean(y) 

tau<-sum(y) 

cr<-0 

ns<-floor(N/strata) 

ni<-1 

ul<-seq(ns,150,ns) 

L<-length(ul) 

if(L != n) { 

ul<-ul[1:n] 

ul[n]<-N 

} 

for(i in 1:M) { 

llim<-1 

ulim<-ul[1] 

for(j in 1:n) { 

smp<-seq(llim,ulim) 

Ni[j]<-length(smp) 
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mi<-sample(smp,ni) 

if(j == 1) mj<-mi 

if(j > 1) { 

mj<-c(mj,mi) 

} 

llim<-ulim+1 

ulim<-ul[j+1] 

} 

tstat<-qt(0.975,n) 

yi<-y[mj] 

stats[i,1]<-N*mean(yi) 

#stats[i,1]<-sum(yi*Ni) 

stats[i,2]<-N*(N-n)*var(yi)/n 

#stats[i,2]<-sum(Ni*(Ni-1))*var(yi) 

stats[i,3]<-n 

z<-(stats[i,1]-tau)/sqrt(stats[i,2]) 

if( abs(z) < tstat) { 

  cr<-cr+1 

  } 

} 

cr<-cr/M 
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output<-

cbind(M,mean(stats[,1]),mean(stats[,2]),var(stats[,1]),(mean(stats[,2])/var(stats[,1])),round(cr,4),

round(mean(stats[,3]),4),mu,tau,var(y)) 

cat("\n Non-Aligned Systematic Sampling \n") 

cat("\n Sample Statistics \n") 

cat("\n Number of Simulations = ", M) 

cat("\n Sample Total = ", mean(stats[,1])) 

cat("\n Mean Variance = ",mean(stats[,2])) 

cat("\n Variance of the Mean = ",var(stats[,1])) 

cat("\n Ratio of Variances = ",(mean(stats[,2])/var(stats[,1]))) 

cat("\n Coverage Rate = ",round(cr,4)) 

cat("\n Average Sample Size = ",round(mean(stats[,3]),4)) 

cat("\n") 

cat("\n Population Statistics") 

cat("\n Population Mean = ", mu) 

cat("\n Population Total = ", tau) 

cat("\n Population Variance = ",var(y)) 

cat("\n") 

if(write==T) { 

write.table(output,file=file,append=append,quote=F,row.names=F,col.names=F) 

} 

invisible(stats) 

} 
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II. Test for non-randomness (run tests) 

runs.test <- 

function (data,k=1)  

{ 

y<-unlist(data[,k]) 

n<-length(y) 

bin<-rep(0,n) 

bin[y>0]<-1 

n1<-sum(bin) 

n2<-n-n1 

r.exp<-(2*n1*n2)/(n1+n2)+1 

s2<-2*n1*n2*(2*n1*n2-n1-n2)/(n1+n2)^2/(n1+n2-1) 

#calculate number of runs 

id<-bin[1] 

r.obs<-1 

for(i in 2:n) { 

 if(id != bin[i]) { 

 r.obs<-r.obs+1 

 id<-bin[i] 

 } 

} 

z<-(r.obs-r.exp)/sqrt(s2) 

cat("\n") 
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cat("\n Sample size: ",n) 

cat("\n Number of 0's: ",n2) 

cat("\n Number of 1's: ",n1) 

cat("\n Observed number of runs: ",r.obs) 

cat("\n Expected number of runs: ",round(r.exp,4)) 

cat("\n Variance: ",round(s2,4)) 

cat("\n") 

cat("\n Test statistic: z = ",round(z,4)) 

cat("\n Critical Region: Reject Ho if |z| > 1.96") 

cat("\n Significant negative z values - nonrandom due to clustering") 

cat("\n Significant positive z values - nonrandom due to regular distribution") 

cat("\n NaN - nonrandom due to uniform distribution") 

cat("\n") 

} 

 

III. Test for spatial autocorrelation (Moran’s I test) 

The spatial wts matrix for use with Moran's I 

aerial.wt<-function(n) { 

w<-matrix(0,ncol=n,nrow=n) 

w[1,2]<-1 

w[n,n-1]<-1 

for(i in 2:(n-1)) { 

w[i,i-1]<-1 
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w[i,i+1]<-1 

} 

invisible(w) 

} 

## Creat matrix 1's and 0's with 150 rows and 150 collumns) 

matrix=aerial(150) 

 

IV. Fitting variance model 

An example using PPS for Douglas-fir beetle agent.. 

srs.dfb.var<-read.csv("C://projects//anh//srs-douglas-fir-beetle-var.csv",header=T) 

srs.dfb.var1<-srs.dfb.var[2:10,] 

srs.dfb.mean<-srs.dfb.var[1,2:21] 

n<-seq(0,150,2) 

yhat<-matrix(0,ncol=20,nrow=length(n)) 

n1<-srs.dfb.var1[2:9,1] 

for(k in 2:21) { 

i<-k-1 

y<-log(srs.dfb.var1[2:9,k]) 

srs.dfb.n<-as.data.frame(cbind("n"=n)) 

srs.dfb.dat<-as.data.frame(cbind("n"=n1,"y"=y)) 

jnk<-lm(y~n,data=srs.dfb.dat) 

#print(predict.lm(jnk,newdata=ndata)) 

yhat[,i]<-predict.lm(jnk,newdata=srs.dfb.n) 
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if(k ==2) { 

r2<-summary.lm(jnk)$r.squared 

a<-summary.lm(jnk)$coef[[1]] 

b<-summary.lm(jnk)$coef[[2]] 

} 

else { 

r2<-c(r2,summary.lm(jnk)$r.squared) 

a<-c(a,summary.lm(jnk)$coef[[1]]) 

b<-c(b,summary.lm(jnk)$coef[[2]]) 

} 

} 

y.max<-max(sqrt(exp(yhat[1,]))) 

plot(seq(0,150,2),sqrt(exp(yhat[,1])),type="n",xlab="Sample Size",ylab="Standard Error of the 

Mean",ylim=c(0,y.max)) 

for(i in 1:20) { 

lines(seq(0,150,2),sqrt(exp(yhat[,i])),lwd=2,col=i) 

points(srs.dfb.var1[2:7,1],sqrt(srs.dfb.var1[2:7,(i+1)]),col=i,pch=19) 

} 

r2.mean<-mean(r2) 

a.mean<-mean(a) 

b.mean<-mean(b) 

hist(r2,density=30,xlab="R-square",ylab="frequency",main="") 

abline(v=r2.mean,lwd=2) 
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hist(a,density=30,xlab="ln(s^2)",ylab="frequency",main="") 

abline(v=a.mean,lwd=2) 

hist(b,density=20,xlab="Slope",ylab="frequency",main="") 

abline(v=b.mean,lwd=2) 

for(i in 1:20) { 

if(i == 1) { 

se<-sqrt(exp(yhat[,i]))/srs.dfb.mean[,i] 

} 

else { 

se<-cbind(se,sqrt(exp(yhat[,i]))/srs.dfb.mean[,i]) 

} 
} 
y.max<-max(se[1,]) 

plot(seq(0,150,2),se[,1],type="n",ylim=c(0,y.max),xlab="Sample Size",ylab="Relative Standard 

Error of the Mean")  

for(i in 1:20) { 

lines(seq(0,150,2),se[,i],lwd=2) 

} 
truncated 

for(i in 1:20) { 

se1<-sqrt(exp(yhat[,i]))/srs.dfb.mean[,i] 

se1[se1>1]<-1 

if(i == 1) { 

se<-se1 

} 
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else { 
se<-cbind(se,se1) 

} 
} 
y.max<-max(se[1,]) 

plot(seq(0,150,2),se[,1],type="n",ylim=c(0,y.max),xlab="Sample Size",ylab="Relative Standard 

Error of the Mean")  

for(i in 1:20) { 

lines(seq(0,150,2),se[,i],lwd=2) 

} 

fit relse models 

n<-seq(0,150,2) 

yhat<-matrix(0,ncol=20,nrow=length(n)) 

for(k in 1:20) { 

y<-log(se[,k]) 

y.dat<-as.data.frame(cbind(y,n)) 

jnk<-lm(y~n,data=y.dat) 

yhat[,k]<-predict.lm(jnk) 

if(k ==1) { 

r2<-summary.lm(jnk)$r.squared 

a<-summary.lm(jnk)$coef[[1]] 

b<-summary.lm(jnk)$coef[[2]] 
} 
else { 

r2<-c(r2,summary.lm(jnk)$r.squared) 

a<-c(a,summary.lm(jnk)$coef[[1]]) 
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b<-c(b,summary.lm(jnk)$coef[[2]]) 

} 
} 
yhat.e<-exp(yhat) 

a.mean<-mean(a) 

b.mean<-mean(b) 

hist(a,density=30,xlab="ln(s^2)",ylab="frequency",main="") 

abline(v=a.mean,lwd=2) 

hist(b,density=20,xlab="Slope",ylab="frequency",main="") 

abline(v=b.mean,lwd=2) 

y.max<-max(yhat.e[1,]) 

plot(seq(0,150,2),yhat.e[,1],type="n",ylim=c(0,y.max),xlab="Sample Size",ylab="Relative 

Standard Error of the Mean")  

for(i in 1:19) { 

lines(seq(0,150,2),yhat.e[,i],lwd=2) 
} 
y.pred.1<-exp(ahat.1+bhat.1*n) 

y.pred.2<-exp(ahat.2+bhat.2*n) 

y.pred.3<-exp(ahat.3+bhat.3*n) 

y.pred.4<-exp(ahat.4+bhat.4*n) 

y.pred.5<-exp(ahat.5+bhat.5*n) 

 

groupings 

plot(seq(0,150,2),yhat.e[,1],type="n",ylim=c(0,y.max),xlab="Sample Size",ylab="Relative 

Standard Error of the Mean",main="dfb decline") 
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LIST OF ABBREVIATIONS 
 
 
 

SRS Simple Random Sampling 

PPS Probabilities Proportional to Size 

NALIGN Non-Alignment Systematics Sampling 

STRA Stratified Random Sampling 

 

MPB Mountain Pine Beetle 

DFB Douglas-Fir Beetle 

SB Spruce Beetle 

WSB Western Spruce Budworm 

SUB Subalpine Fir Mortality 

SAD Sudden Aspen Decline 

PE Pine Engraver 

Comb.  Combination of all causal agents and disorders 

including seven causal agents above and others 

 
 


