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ABSTRACT Large Effect

Robotic joint failures are directly characterized and meas­
ured in joint space. A locking failure, for example, is one for which
a joint cannot move, and it gives an error equal to the desired
value minus the locked value. This article extends the joint-space
characterization to Euclidean space by measuring a failure's ef­
fect there. The approach is based on a primitive measure of point
error that can be defined to be distance or path length. It is
used to form comprehensive measures through weighted integra­
tion over Euclidean-space regions. For kinematically redundant
manipulators, minimizing the measures can be used to induce fail­
ure tolerance by either reducing the likelihood of collision-induced
damage before a failure or reducing end-effector error after a fail­
ure. Examples for both cases are given.

I. INTRODUCTION

Some examples of robotic joint-failure types are
locking, where the joint cannot move [1, 2, 3]; free
swinging, where actuator torque is lost [4]; and calibra­
tion, where the joint value has an offset. These failures
all eventually express themselves through joint position
error. Errors may involve multiple joints (as, for ex­
ample, when a hydraulic system loses pressure). But it
is typical-and will be assumed for this work-that a
failure-induced error is isolated to one joint. This joint
error is an imprecise measure of the effect of the failure,
however, even for the same joint on the same manipu­
lator, as is illustrated in Fig. 1.

This article will address the effect offailure-induced
joint position error in Euclidean space. There is no
one natural way to measure the kinematic aspects of
rigid-body motions with a scalar [5]. However, physical
objects do allow a focusing of motion to form scalar
measures (an example of which is the "volume of a swept
volume" [6], among others [7]), and this concept will be
used here. The idea will be to first define a measure
of the motion of a point after a joint failure-a simpler
task-and then extend it to find the motion of an object
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Fig. 1. A manipulator in two configurations before and after a
joint-one error of ~. The upper-left robot experiences extensive
arm and end-effector displacement, while the lower-right robot
experiences significantly less. This article will present methods to
measure and reduce these kinematic effects that transcend joint
error. (The error shown here would correspond to that caused by
a loss of joint-one actuator torque.)

by integrating a weighting of the point measure squared
over the object. The object measure will be extended to
a manipulator-wide measure by incorporating multiple
objects in multiple frames.

The measures will in general be functions of the
joint variables, and a primary goal of this work is to
enable reduction of the measures in kinematically re­
dundant manipulators using self motion. The aim is
to achieve a degree of failure tolerance by either best
configuring a manipulator in anticipation of a failure or
reconfiguring it for failure recovery. Failure tolerance is
especially important for manipulators used in hazardous
or remote environments [8, 9, 10], and kinematically re­
dundant manipulators have been proposed for use there
[2, 11, 12].
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Cd;-l
Fig. 3. To find the distance error of the tip of r caused by an
error in joint i, fi'-l is defined as the perpendicular vector from
line coinciding with the axis of joint i to the tip of r.

III. OBJECT ERROR

(2)

(1)

(3)

i ::; k, joint i rotational;
i ::; k, joint i prismatic;
i > k.

<P(iii) = 2(1- COS(iii»'

or Euclidean distance, using

Examples showing when each of these is applicable will
be given in Section V. In the ensuing text, however,
<p( .) will be used in the general sense and not restricted
to either of these values.

The scalar 11:;:;-111 can be found through

This general form allows ei to be defined as either path
length assuming stationary healthy joints, using

where Pl-+k is the vector from the origin of D-H frame
f to D-H frame k. This equation is in coordinate-free
form and can be calculated in any frame.

Different points on the manipulator (typically)
move different distances after a failure, and a region-or
object-rigidly attached to one D-H frame will be used
here to expand the primitive measure. This object may
comprise several disjoint sets. The point error squared
times a weighting function will be integrated over the
object to find the object-based measure.

Let Ok be the object rigidly attached to frame k,
and let Pk(r,t) be a possibly time-varying weighting
function for which there exists some (preferably small)
integer N» such that it can be decomposed as follows:

Methods for using functions to resolve redundancy
include the augmented-Jacobian technique [13, 14] for
tracking a desired value, the extended-Jacobian tech­
nique [15] for tracking critical points, and the gradient­
projection method [16, 17] for tracking extrema. These
methods all require knowledge of the function's gradi­
ent, and for this purpose, methods will be given for
calculating the gradients of the measures.

Fig. 2. A manipulator before and after a failure of the first
joint. The joint error ih induces motion of point r (a point on
the hand in this case). Two possible measures ei of this motion
are shown: path length assuming stationary healthy joints and
Euclidean distance.

II. POINT ERROR

The foundation of the measures will be established
here by defining a primitive measure of the error of a
point.

Let an n-degree-of-freedom manipulator with joint
variables q have a failure at joint i, with an error in
the failed joint variable of iii (i.e., iii equals the actual
value of qi, entry i of q, minus its desired value). The
error ifi may be a function of q (this generality allows
different failure modes to be addressed). Let point r
lie at the tip of vector r in Denavit-Hartenberg (D-H)
frame k, 1 ::; k ::; n. The point so chosen is completely
general-any location in any frame. Then the point
error ei will represent a measure of point r's motion
caused by iii. Two possible values, path length assum­
ing stationary healthy joints and Euclidean distance are
shown in Fig. 2.

Let :;:;-1 be the perpendicular vector from the line
passing through Zi-1, the a-axis of D-H frame i-I, to
the tip of r, as shown in Fig. 3. Then in its general form,
the point error is defined using a static, nonnegative
function <p(.) as follows:
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(8)

(9)

(12)

(11)

(10)

Nk

mnk(t) = LP~,i(t)im~k;
i=1

where R is the cross-product matrix for r; i.e., Rv =
r x v for all v. The definitions in (8), (9), and (10)
are analogous to the rigid-body inertial parameters of
mass, first moment of inertia, and second moment of
inertia, respectively. They allow mnk = Ink Pkdwk,

hnk = In Pkrdwk, and Ink = In PkRTRdwk to be
I I

k • k
ca cu ated through the followmg on-line summations:

(5)

Fig. 4. To find the object error for object Ok rigidly attached to
D-H frame k, the weighted point error squared is integrated over
the object.

Nk

Pk(r, t) = L P~,i(i)Pk,i(t).
i=1

This decomposition will simplify the measure's calcula­
tion.

With this, the object-based measure 0i is es­
tablished by integrating the product of Pk(i, t) and
[ei(i, qi)F over Ok:

(6)

B. Calculating o; for Prismatic Joint i

Substituting (1) for joint i prismatic into (6) gives

This used in (7) allows calculation of (6) with no on-line
integration. Equation (14) can be efficiently calculated
in frame k.

Using these values with the identity IIrx zi_111 2 =
Zi-1 . RTRzi_1, (4) allows Ink PkllTi_1112dwk to be ex­
pressed in coordinate-free form as

(14)

(13)
Nk

Ink(t) = L P~,i(t) iI~k'
i=1

Ink PkllTi_111 2dwk = mnk IIPi-1-+k x zi_111 2+
2Zi-1 x (Pi-1-+k x ii-I)· hnk + Zi_1 ·Inkii-1.

0i(Ok, qi,q, t) = 1 Pk (i, t)[ei(i, qi,q)]2dwk,
nk

where dWk is a differential volume, area, or distance ele­
ment when Ok is a solid, surface, or curve, respectively.
This concept is illustrated in Fig. 4 for a solid Ok. When
e, is Euclidean distance, (6) corresponds to the object
norm of Kazerounian and Rastegar [18].

Equation (6) is in general a computationally ex­
pensive calculation that cannot be performed on line.
This integration has been identified as a drawback of
Kazerounian and Rastegar's method [7, 19]. However,
it will be shown below that for the given assumptions
there exists a set of integrations independent of the joint
variables that can be performed only once, and the re­
sults used in lieu of integrating [Pk(i, t)e;] each time
step. When Nk is sufficiently small, this will allow real­
time calculation.

A. Calculating o; for Rotational Joint i

Using (1) for joint i rotational, (6) gives
with mnk calculated using (11).

i ~ k
i » k, (15)

where <Pi = <p(qi). Thus the problem becomes one of
finding In PkIITi_1112dwk. This can be done efficiently
by first cafculating the following quantities off line:

o; = <Pi Ink PkIlTi_111 2dwk,
0,

i<k
i » k,

(7) C. Finding the Gradient

For use in reducing 0i, its gradient will typically be
used. The gradient is formed from the partial deriva­
tives with respect to the joint variables, and methods
for calculating these are presented here.
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C.1 Joint i Rotational

When joint i is rotational and i > k, from (7) o; = 0
and therefore

(22)
n

Oi =L Oi(Ok).
k=i

For all k, 1 :::; k :::; n, let Ok be the object rigidly
attached to D-H frame k, with Pk(r, t) the weighting
function for Ok. Then integrating the weighting of e;
over all the regions is equivalent to summing n single­
object-based measures. Using o; = 0 for i > k, it be­
comes(16)

8
-8o; = 0,

qj

and when < k, taking the partial derivative of (7)
gIves

In finding a~j Ink Pk (r')llfi-l 11
2dwk, for i ;:::: j or k < i,

Ilfi-lll does not change as a function of qj and thus

a
aqj°i = rPi a~j Ink Pkllfi_111 2dwk+

[a~j rPi] Ink Pkllfi_111 2dwk. (17)

With this formulation, Oi could be found by repeated
application of (7) and (15). However, this can be an
inefficient approach if Oi is calculated for multiple values
of i. A procedure is given below that allows calculation
of Oi for all i, 1 :::; i :::; n, in order O(n) time once the ifi
are known.

(18)88. [ Pk(r')llfi_1112dwk = o.
qJ 1nk

This leaves only the case i < j :::; k. When joint j is
rotational, applying the product rule to (14) and us­
ing the fact that outboard, fixed-length vectors move
according to the rule a~j v= ij -1 X v, gives

A. Calculating Oi for Rotational Joint i

Using (7) in (22) and factoring out rPi gives

(23)

Now, ifI~k is defined as

88q . I" Pk(r')IITt_111 2 d wk =
J . .uk ...

2(((mnJi-1_k + hn k) x Zi-1)· ((Zj_1 X Pj-1_k) x Zi-1)+
Zi-1 x (Pi-1-k X Zi-d . Zj-1 x hn k - Zj-1 X Zi-1 . IOkZi-1).

(19)

When joint j is prismatic, only P;-I-k changes with qj,
d· t th 1 a - A ••accor mg 0 e ru e aqj Pi- l - k = Zj-I, giving

I~k = mnkPLkPe-k + pLkHnk + H~kPe-k + Ink,
(24)

where Pe_k is the cross-product matrix for Pe-k and
Hnk is the cross-product matrix for t«. and Ii is de­
fined as

a~j Ink Pk (r')lIfi-l 11 2dwk = _
2(ij_l x ii-I) . ((mnkPi-l_k + hnk) x ii-I).

(20)

n

Ii = L I~k'
k=e+l

then, using (14), (23) becomes

(25)

C.2 Joint i Prismatic

When joint i is prismatic, from (15),

i:::; k

i> k.

IV. MULTI-OBJECT ERROR

(21)

Oi = rPiii-l . Ii_Iii-I. (26)

The matrix Ii as defined through (24) and (25)
is analogous to the second moment of composite rigid­
body inertia [20]; it can be calculated through the fol­
lowing procedure: Let the net outboard interest be Ue,
calculated using

Section III presented a measure of joint error that
assigned a scalar to the movement of an object rigidly
attached to one frame. This was, however, restrictive.
If secondary damage caused by a moving manipulator
after a failure is of concern, for example, then the entire
arm should be taken into account. This section presents
a measure for this purpose and gives an efficient cal­
culation method. The measure is established through
a weighted integration of the point error squared over
multiple objects in multiple frames.

Ue = mnl + Ue+l; Un = mn n • (27)

And let hi be the outboard interest vector, calculated
using

- e - - - -he* = Re+l(he*+1 + hnl+1 + Ue+lPHI); h: =0, (28)

where for calculation hnl+1 and PHI are both expressed
in D-H frame £ + 1. Then Ii can be found through the
following recursion:
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I; =O. (30)

Each of (27), (28), and (29) with (30) can be calculated
in O(n) time.

B. Calculating 0i for Prismatic Joint i

When joint i is prismatic, Oi is given by

(31)

with Ui calculated using (27).

C. Finding the Gradient

The technique used to find the value of Oi in O(n)
time will be used here to establish a method for finding
the gradients. It will enable calculation of \7Oi for all i
in O(n 2 ) time once the values for iii and \7iii are known.

C.1 Joint i Rotational

From (26),

a, A.' [ a 1* ] , [ a A.]' 1*'n--0i = 'l'i Zi-1' n-- i-I Zi-1 + n--'I'i Zi-1' i_1 Zi-1,
vqj oss vqj

(32)
for &~jli-1 evaluated in frame i. When j :::; i, the lower
right-hand element of li_1 does not change in its own
frame as qj changes, and (32) gives

(33)

When j > i and joint j is rotational, &~j li_1 can be
found using the analogy with composite rigid-body in­
ertia (a formula for partial derivatives is given in [4]):

C.2 Joint i Prismatic

Independent of joint j type, when joint i is pris­
matic, from (31)

(36)

V. EXAMPLES

In this section, the Robotics Research Corpora­
tion K-1207i manipulator will be used as an example
arm. Its D-H parameters (based on the labeling scheme
of Paul [21]) are given in Table I, and the software
joint limits are given in Table II. This seven-degree­
of-freedom arm has one degree of redundancy for the
task of hand positioning and orienting. It is this extra
degree of freedom that will be used in the examples to
reduce the error measures.

link a (m) d (m) a (rad) () (rad)
1 -0.1016 0.0000 -1.5708 q1
2 0.1016 0.0000 1.5708 q2
3 -0.0857 0.5461 -1.5708 q3
4 0.0857 0.0000 1.5708 q4
5 -0.0591 0.5461 -1.5708 q5
6 0.0591 0.0000 1.5708 q6
7 0.0000 0.1778 0.0000 q7

TABLE I
D-H parameters for the RRC K-1207i.

joint upper limit lower limit
1 3.1410 -3.1410
2 -0.0543 -3.0510
3 0.0000 -6.2800
4 0.0000 -3.0510
5 6.2800 -6.2800
6 0.6100 -2.9670
7 6.2800 ~6.2800

TABLE II
Joint limits in radians for the RRC K-1207i.

&, 2A. (' , 1*' +&q.Oi = 'l'i Zi-1 X Zj-1' j_1Zi-1J _

(Zi-1 X P;-1-+j-1)' (hi-1 X (Zj-1 X zi-d-

ij-1 X (hi-1 X zi-d)) + [&:j¢J-i]Zi-1 . li_1 Zi-1'
(34)

Similarly, when j > i and joint j is prismatic,

& '
&qj °i = 2Uj¢Ji(p;-1-+j-1 X zi-d· (2j-1 X zi-d+

[&~j¢Ji]Zi-1 . Ii-IZi-1.
(35)

A. A Single-Object Example

In this section, an object rigidly attached to the
K-1207i's end effector will be used as On to measure the
effect of a calibration error. To focus on a calibration
error, iii will be fixed at a nonzero value. The object
will be L-shaped, formed by joining four cubes of edge
length 0.06 m. The top of the L-shaped object will lie
0.10 m from the end frame along the z-axis.
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For this object with Pn = 1 m-3 and Euclidean
distance used as a primitive (i.e., 4J(.) is given by (3)),
the hand was constrained to a pose given by the follow­
ing homogeneous transformation matrix relative to the
base frame:

Best
Case

Worst
Case

Joint Two
Ratio: 326

(37)
-0.25 ]
-0.60

o .
1

-1
o
o
o

o
1
o
o

Joint Four
Ratio: 14

Joint Five
Ratio: 159

Joint Three
Ratio: 4

Fig. 6. Under the constraint of hand pose given by (37), the
arm was placed in worst-case and best-case configurations for each
of joints two through five. (The configurations for joint five are
shown in Fig. 5.) Then an error of 0.1 radians was imposed on the
focus joint. The resulting error in the L-shaped object is shown
here. In each case, the black frame represents where the object
would be if there were no error. Given to the left of each set is
the ratio of the worst-case to best-case values of 0i. Some joint­
failure effects are more amenable to reconfiguration than others­
for joint two the error is reduced by a factor of 326, while for joint
three the error is reduced by only a factor of four.

of these joints, reconfiguring might allow a task to be
completed that would otherwise be impossible.

The cases for joints one and seven are not shown
in Fig. 6 because, for static iii, 01 and On are static
once the hand is fixed. This will be the case for any
manipulator where the focus is on a single object in the
last frame. The case for joint six is not shown because
06 here changes very little with reconfiguring.

This technique is also useful for addressing other
failure modes in manipulators with software or hard­
ware error checking. Error checking is commonly used
in robotic controllers to stop the arm when a joint devi­

ates excessively from its expected value, and the tech­
niques presented in this article allow enhancement of
this safety feature. If the excessive-error cutoff value

With this, the gradient projection technique was used
to find the worst-case and best-case configurations for
tolerating a joint-five failure. These are shown in Fig. 5.

Best
Case

Worst
Case

Fig. 5. Worst-case and best-case configurations of the ex­
ample manipulator for reducing the effect of joint-five error on
the L-shaped object under the constraint of end-effector posi­
tion/orientation given by (37). In the worst case, the line passing
through the axis of the fifth joint lies far from all points on the
object, and in the best case, the line passing through the axis of
the fifth joint actually passes through the object. The motion of
the object for these two configurations after a 0.1 radian error is
shown at the bottom of Fig, 6.

The potential error in the L-shaped object caused
by an error in joint five is greatly reduced by recon­
figuring. In fact, 05 for the best-case configuration of
Fig .. 5 is two orders of magnitude less than that of the
worst case. The errors in the object for these config­
urations caused by a 0.1 radian error in joint five are
shown along with the errors for joints two through four

in Fig. 6. The improvement for a focus on joints two
and five is especially substantial, but improvement is
evident in all cases. If calibration had been lost in one
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for the K-1207i were set to 0.1 radians, it is clear from
Fig. 6 that the L-shaped object would be less exposed
to collision-induced damage if the manipulator were op­
timally configured.

B. A Multi-Object, Free-Swinging-Failure Example

In the previous example, the joint error was as­
sumed fixed. This is not always the case, however, and
for this section's example, the joint failure is of the free­
swinging type, i.e., one where actuator torque is lost.
After a free-swinging failure, the arm moves under the
influence of gravity. If the failed joint .does not hit a
stop, it settles into a configuration with the center of
mass of the outboard links at its lowest point relative
to the gravitational field [4], and this motion is a func­
tion of configuration.

For this example, the point error is path length
assuming stationary healthy joints, with ¢(.) given by
(2). This choice is appropriate for reducing the like­
lihood of collision-induced damage after a failure, and
the stationary-healthy-joint assumption is an approxi­
mation for a slow-moving manipulator. (Manipulators
used in remote and hazardous environments are typi­
cally slow moving.) Additionally for this example, the
objects Ok are the CAD models of the K-1207i links
used to make the images of the robot for this article,
and the weighting function is p = 1 m-3 . The values
for the free-swinging joint error and its partial deriva­
tives are calculated using the techniques given in [4].

For the hand pose given by (37) and link masses
and centers of mass given in Table III, the best-case and
worst-case configurations for tolerating a free-swinging
failure of the first joint are shown in Fig. 7, both before
and after a failure. With 01 equal to 0.038, the motion
for the best-case configuration is kinematically equiva­
lent to translating a 1 m cube by 19 em. In contrast,
with 01 equal to 0.384, the motion for the worst-case
configuration is kinematically equivalent to translating
a 1 m cube by 62 em. It is clear from Fig. 7 that this
reduced motion corresponds to a reduced likelihood of
collision with the environment.

VI. SUMMARY

In this article, measures of joint failures were de­
fined using Euclidean-space objects rigidly attached to
a manipulator's links. The objects were used to expand
point-error-based measures by integrating a weighting
of the measures squared over the objects. Efficient ways
of calculating the measures were given, and for the pur­
pose of instilling fault tolerance in redundant manipula­
tors, ways to calculate the measures' gradients were also
presented. Examples showed how the measures could be

link mass (kg) Cx (m) cy (m) Cz (m)
1 19.051 0 0 -0.0030
2 9.299 0 0 0.3239
3 11.113 0 0 0.0064
4 5.897 0 0 0.3200
5 4.536 0 0 0.0127
6 2.381 0 0 0.1219
7 0.325 0 0 -0.0200

TABLE III
Masses and centers of mass for the RRC K-1207i.

used to prepare for a failure by reducing the likelihood
of a collision or compensate for a failure by reducing the
task error. Many of the reductions in collision likelihood
and task error were substantial.
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Fig. 7. Under the constraint of hand pose given by (37), the
arm was placed in worst-case and best-case configurations for a
free-swinging failure of the first joint. Configurations before and
after a failure are shown for both cases. The value of Ot for the
best-case is 0.038 and for the worst case is 0.384.
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