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Abstract

Study of Collective Beam Effects in Energy Recovery Linac Driven Free

Electron Lasers

Collective beam effects such as coherent synchrotron radiation (CSR) and longitudinal

space charge (LSC) can degrade the quality of high-energy electron beams used for applica-

tions such as free-electron lasers (FELs). The advent of energy recovery linac (ERL)-based

FELs brings exciting possibilities for very high-average current FELs that can operate with

greater efficiency. However, due to the structure of ERLs, they may be even more suscepti-

ble to CSR. It is therefore necessary that these collective beam effects be well understood if

future ERL-based designs are to be successful.

The Jefferson Laboratory ERL driven IR FEL provides an ideal test-bed for looking at

how CSR impacts the electron beam. Due to its novel design we can easily test how CSR’s

impact on the beam varies as a function of compression within the machine. In this work we

will look at measurements of both average energy loss and energy spectrum fragmentation as

a function of bunch compression. These results are compared to particle tracking simulations

including a 1D CSR model and, in general, good agreement is seen between simulation and

measurement. Of particular interest is fragmentation of the energy spectrum that is observed

due to CSR and LSC. We will also show how this fragmentation develops and how it can

be mitigated through use of the sextupoles in the JLab FEL. Finally, a more complete 2D

model is used to simulate CSR-beam interaction. Due to the parameters of the experiment

it is expected that a 2D CSR model would yield different results than the 1D CSR model.

However, excellent agreement is seen between the two CSR model results.
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CHAPTER 1

Introduction

Particle accelerators have made possible invaluable advances in a wide variety of fields,

both in the basic and applied sciences [1]. Electron-based particle accelerator light sources,

both synchrotrons and free electron lasers (FELs), are capable of providing high-brightness

light, including ultraviolet and x-ray radiation. These light sources are used for research by

a broad community of scientists in different fields, [2] and demand is such that there are

now dozens of light source facilities around the world. The design of the next generation of

free electron lasers looks to focus on increase of bunch repetition rate (higher average power)

and providing more undulator lines for users to meet this growing demand [3]. An energy

recovery linac (ERL) [4] based FEL can provide for both of these requirements due to its

very efficient operation at high average power and a design that can accommodate multiple

undulator lines [5]. There are also plans to use ERLs for a proposed electron-ion collider [6]

that would require extremely high power electron beams. While demand for the capabilities

of ERLs is increasing these proposed accelerators do not come without significant challenges

that will need to be addressed.

One of these is the issue of collective beam effects, that may degrade beam quality during

transport, and decrease performance of free-electron laser (FEL) sources, in particular. In

this work we will primarily examine the impact of coherent synchrotron radiation (CSR)

on the properties of the electron bunch. Because CSR strongly effects short bunches, like

those used for FELs, and scales quadratically with the number of particles in the bunch,

PCSR ∝ N2, it is vital that CSR is accounted for and properly managed in the design of

any FEL. A very high peak beam current is desirable for increasing FEL efficiency, this
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translates into producing very short bunches. This is normally done through compression

of the bunch in a dipole-based chicane structure. This very short bunch length also can

greatly increase coherent emission of the bunch within the dipoles, and this effect, unless

understood and controlled, will degrade the energy spread and projected emittance of the

bunch. This may be a particular issue for ERLs. This is due to the need for many more

dipoles to provide recirculation back to the linac entrance. It is critical, then, that we have

a good understanding of how to model CSR effects in simulation and how to mitigate the

impact of CSR in the accelerator if we wish to use ERLs as a base for future FELs and light

sources in general.

Improvement in simulation of CSR is essential for use these design studies of future

machines, to provide understanding of CSR’s impact on beam quality. However, beyond

this, new simulation tools are also vital to expanding our understanding of the underlying

physics. This is well demonstrated in the work of Ryne et al. [7], who have used their

massively parallel Lienard-Wiechert solver code to show CSR-induced microbunching is quite

sensitive to vertical beam size. This is a surprising result, given the normal assumption that

the beam will be more sensitive to size in the horizontal bending plane. Such results show the

need for further study of CSR in simulation beyond the typical, 1D projected CSR model.

For the proposed Medium Energy Electron-Ion Collider (MEIC) at Jefferson Laboratory

a high-energy (55 MeV) ERL-based electron cooling ring is required to cool the ion beam

[8]. Simulation studies [9] have shown that CSR-induced microbunching may cause excessive

rise in the electron bunch energy spread if left unchecked. Considerable effort has now been

put into the study of how CSR-induced microbunching may be expected to grow in the

recirculation structures of ERLs [10]. Such studies face additional challenges, such as that

of transient CSR effects, which must be accounted for, as they may remain quite important
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in the microbunching growth process [11]. The importance of CSR transient effects will also

be seen in the work presented here, where CSR remains significant in the drifts downstream

of the bending dipoles. Providing improved measurements of these transient effects will be

important to ensuring the success of future ERL projects such as MEIC.

The Jefferson Laboratory (JLab) ERL driven FEL [12] has beamlines that provide very

high average power lasing in both the IR and UV. As an operational ERL based FEL the

impact of CSR has already played into the design of this accelerator [13] in many aspects,

and this makes the accelerator an excellent testbed for studying how CSR will impact future

ERLs such as in MEIC. The JLab FEL is ideal for the continued study of CSR due to several

novel aspects of its design, and a collaboration has been built up focused on studying the

collective effects. This study encompasses all steps of the research process from theory and

simulation through to experimental studies.

For this work we used the JLab FEL to perform an experiment focused on the study of

how the total CSR emission within the accelerator varies as a function of the compression

point and how, in turn, CSR impacts key parameters of the beam. Experimental observations

are made and compared to several different models used to simulate the conditions of the

experiment. From these results we also draw several important conclusions about how to

best manage the impact of collective forces on the beam and improve the ERL and FEL

performance.

The general theory of CSR and the 1D model most frequently used to calculate the CSR

field are described in Chapter 2, along with the theory of transverse and longitudinal space

charge forces. In Chapter 3 the critical components of the JLab FEL are summarized and

the key longitudinal dynamics of the machine and the compression system are detailed. We

then describe the exact setup of the experiment that was performed on the JLab FEL. The
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results of the experiment are shown in Chapter 4. Those results are discussed and compared

against theory and simulation, a number of key conclusions are drawn about how to mitigate

the negative impacts of CSR and longitudinal space charge. Finally, in Chapter 5 we include

the results from 2D CSR simulations. These simulations use a more complete model of CSR

and show general agreement, but also several distinct anomalies, not predicted by the more

common 1D CSR model. As discussed previously such findings highlight how essential it is

to continue to push the bounds of research into CSR in both simulation and experiment.
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CHAPTER 2

Collective Beam Effects

While space-charge forces on the beam can often be ignored for an ultra-relativistic

electron beam (with γ ≫ 1), some collective effects still remain extremely important for

electron beams in free-electron lasers, even at very high energies. This should come as

no surprise as the FEL itself arises from the collective action of the electrons in a bunch.

By creating a bunch that will be suitable for lasing we are necessarily setting it up to be

susceptible to collective effects throughout the whole accelerator. Indeed, these problems,

such as CSR and microbunching are desirable within the confines of the undulator. In this

regard we are somewhat victims of our own success, we have succeeded admirably in creating

an electron bunch that will lase within the FEL, but must keep it from manifesting such

behavior during the initial transport lest the bunch’s desirable properties be corrupted.

In this section we will discuss the physical origin of coherent synchrotron radiation and

examine its impact upon the electron beam to show why it can degrade FEL performance.

We will then look at space charge forces, in particular longitudinal space charge, which will

be seen to be a major driver of energy spectrum fragmentation.

2.1. Coherent Synchrotron Radiation

The term synchrotron radiation is generally used to refer to radiation emitted by charged

particles that have been deflected by a magnetic field. The very first idea of synchrotron

radiation arose from the independent work of Alfred Lienard in 1898 [14] and then Emil

Wiechert [15] in 1900 from their application of the idea of retarded potentials. The first

experimental confirmation of synchrotron radiation came from John Blewett who predicted

and measured the orbit reduction due to the energy loss in the G.E. Research Lab 100 MeV
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betatron [16]. Actual observation of synchrotron radiation finally came in 1947 from the G.E.

70 MeV synchrotron which had clear vacuum chamber sections allowing for synchrotron

radiation in the visible spectrum to be observed. Not long after this Julian Schwinger

published his thorough work on the properties of synchrotron radiation and made special

note of the possible coherence of lower harmonics [17].

To describe the theory of synchrotron radiation we begin with the Lienard-Wiechert

potentials

φ (t) =
e

4πǫ0

1

(1− n̂ (t′) · β (t′)) r(t′)
(1)

A (t) =
µ0e

4π

v(t′)

(1− n̂(t′) · β (t′)) r(t′)
(2)

which describe the scalar and vector potential (φ and A respectively) experienced by an

observer located at a point P at time t due to a moving charge with an instantaneous

velocity β(t′) (illustrated in Fig. 2.1). At time t′ the particle and observer are separated

by a distance r(t′) along the unit vector n̂(t′). Because of the propagation of the potential

at the speed of light c there is a relationship between the observation time t and the earlier

time t′ at which the potential was emitted from the charge, t′ = t − r(t′)/c. Because the

signal propagates at c there is a causal restriction that r(t′) < c |t− t′| for the potential to

be observed at P, else there will not be sufficient time for it to have reached the observation

point.

From the retarded potentials (Eqs. 1 and 2) we can calculate the fields from the usual

expressions E = −∇φ− ∂A
∂t

and B = ∇×A, giving the following result for the electric and

magnetic fields E(t) and B(t)
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Figure 2.1. A particle on some arbitrary trajectory with instantaneous ve-
locity β(t′) at time t′. The fields from the particle are observed at a point P
at some later time t′. The unit vector n(t′) points from the particle to P and
the vector between the particle and P is r(t′).

E(t) =
e

4πǫ0

{

(n− β)

γ2 (1− n · β)3 r2
+

n× ((n− β)× β̇)

c (1− n · β)3 r

}

retarded

,(3)

B(t) =
nretarded ×E

c
.(4)

The first term in Eq. 3 is referred to as the Coulomb field and has a γ−2 dependence. This

will also be seen in calculations of the space charge field later. The second term will only be

nonzero when the charge is accelerating, due to the presence of β̇. It is this term that gives

rise to synchrotron radiation.

2.1.1. Temporal Coherence. In the previous section, synchrotron radiation was con-

sidered mostly from the standpoint of a single particle. However, in an accelerator, or most

physical systems, there will be numerous electrons all radiating simultaneously over a broad
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Figure 2.2. A qualitative illustration of incoherent and coherent radiation
produced from a group of electrons. Above, for short-wavelength radiation,
all electrons emit at vastly different, random phases leading to incoherence.
Below, for long-wavelength radiation, the relative phase differences are small
and the radiation is coherent.

spectrum of wavelengths. Because the electrons are randomly distributed in space the phase

differences at a chosen wavelength between all the electrons will be random. The observed

power will scale linearly with the number of electrons. However, since synchrotron radiation

is a broad-spectrum effect it is possible to have wavelengths produced that are much longer

than the bunch length. In this case, the contribution from all the electrons may effectively

be in phase, leading to temporal coherence of the radiation. These two cases are illustrated

qualitatively in Fig. 2.2

This process can be described in a more quantitative fashion [18] beginning with the

emission for the ith electron in a bunch
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Ei ∝ ei(ωt+φi)(5)

with frequency ω and a phase given by φi = 2πzi/λ described in terms of the relative distance

from the center of the bunch zi. The radiation power is then given by summing over the

square of the contributions for all electrons of the bunch

P ∝
N
∑

i=0

N
∑

j=0

e−i(ωt+φi)ei(ωt+φj) = N +
N
∑

i 6=j

ei(φi−φj)(6)

the first term is the incoherent power which scales linearly with particle number. The

second term will average to zero if the phases φi,j are random and uncorrelated unless the

radiation wavelength is large. For a specified, symmetric longitudinal density function λ(z)

the radiated power can then be written as

P (k) = p(k)

(

N +N(N − 1)

∣

∣

∣

∣

∫ ∞

−∞

λ(z)e−ikz

∣

∣

∣

∣

2
)

,(7)

where the integral is the so-called form factor that represents the dependence on the electron

distribution. As will be seen this dependence on the electron distribution will play a large

role in how CSR impacts the bunch. Since there are normally on the order of 108 electrons

in a bunch the quadratic term for coherent radiation will be quite significant.

2.1.2. Modeling 1D CSR. While it is certainly possible to use Eq. 3 to directly com-

pute the fields for a collection of charges this effort is highly inefficient. The calculation will

scale quadratically with the number of particles, and there is also a significant strain placed
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on memory resources as it is important to store particle and field history at retarded times

for the calculation. In the most widely used approximation for calculating CSR fields in a

simulation without resorting to this direct, cumbersome calculation the electron distribution

is projected onto a line tangent to its curved trajectory within the dipole field. Reducing

the number of dimensions will reduce the complexity but introduces a singular term to the

field due to the Coulomb field on the line. By subtracting out this term a simple closed form

approximation can be derived for the CSR-induced energy loss along the length of the bunch.

It is also assumed that the beam has γ ≫ 1 and that the Coulomb field is smaller than the

radiation field. The energy loss per particle per unit distance as a function of position within

the bunch s for particles orbiting on a circle is then found to be

(

dE(s)
cdt

)

coh,steady

= − 2e2

3
1

3R
2

3

∫ s

−∞

ds′

(s− s′)
1

3

dλ(s′)

ds′
,(8)

where R is the bending radius of the dipole field. The dependence of the energy loss on

the derivative of the longitudinal charge distribution dλ(s)/ds indicates that while particles

along the tail of the bunch lose energy, the overtaking of particles at the head of the bunch

by radiation generated from the tail of the bunch will cause some particles at the head to

gain energy instead. However, the overall change in average energy for the bunch will be

negative. The shape of the field for a bunch with a Gaussian distribution, as predicted by

Eq. 8, is shown in Fig. 2.3.

In an actual accelerator the particles travel not on full circular trajectories but on arc

segments inside dipole fields. To account for this, a transient term [19] must be introduced

to the description of CSR-induced energy loss. This is because there is an overtaking length
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Figure 2.3. The CSR field from Eq. 2.4 for a 135 pC Gaussian bunch with
rms length of 167 fs traveling through a uniform magnetic field on a radius of
curvature of 1.2 m. This matches the conditions within the dipoles of the BC1
chicane of the JLab FEL. The Gaussian distribution is overlayed. The head
of the bunch is located at s > 0.

Lovertaking =
(

24σzR
2
) 1

3 .(9)

At the beginning of the dipole, radiation from the tail of the bunch will not yet have been

able to catch up to the head. As the bunch travels farther into the dipole, radiation from

farther back in the bunch will be able to overtake the whole bunch. At a distance Lovertaking,

radiation from the tail will fully overtake the head. The CSR field, including this transient

effect, is given by
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(

dE(s, φ)
d(ct)

)

Coh,total

= − 2e2

3
1

3R
2

3

{

(

Rφ3

24

)− 1

3

[

λ

(

s− Rφ3

24

)

− λ

(

s− Rφ3

6

)]

+

∫ s

s−Rφ3

24

ds′

(s− s′)
1

3

dλ(s′)

ds′

}

,(10)

where the first term in square brackets accounts for the transient field that will grow at the

beginning of the magnet before slipping by the bunch. As this transient term declines farther

into the magnet the steady-state field given by the integral will come to dominate. In both

terms the slippage length

Lslippage(φ) =
Rφ3

24
.(11)

features very prominently. The slippage length accounts for the path length difference be-

tween the path of the particles and the radiation (Fig. 2.4). As the angular distance into the

magnet φ grows and if the length of the magnet Rφm ≫ Lslippage, then the transient term in

Eq. 10 will die out and the energy loss will be restored to Eq. 8.

An example of the CSR field (sometimes called the CSR wake), including the transient

effects in Eq. 10, is shown in Fig. 2.5. As the bunch travels farther into the magnet the

transient portion of the field moves ahead of the bunch while the stead-state field grows,

eventually recovering the same form as in Eq. 8.

2.1.2.1. Impact of CSR on Beam Quality. The first impact of CSR on the beam is to

raise the energy spread of the bunch. Because the longitudinal field applied from CSR will

not be uniform along the length of the bunch (see Fig. 2.3) the energy spread of different
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Figure 2.4. Within a magnetic field radiation produced by a particle at the
tail of the bunch by a particle s′ at a position P ′ within the magnet may catch
up to the head of the bunch s at some later time at the position P . This is
due to the bunch being constrained traveling on the arc of length l = Rφm

between P ′ and P while the radiation travels on the chord ~n between the two
points.

longitudinal slices along the bunch will now vary. The impact of CSR to the energy spread

of the bunch may be calculated in the steady-state approximation [19] as

σδ,CSR = 0.2459
reQL

eγR
2

3σ
4

3

z

.(12)

Where re is the classical electron radius, e is the elementary charge, Q is the total bunch

charge, γ is the relativistic factor, σz is the rms bunch length, and L and R are the dipole

length and radius.
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Figure 2.5. The CSR field from Eq. 2.4 for a 135 pC Gaussian bunch with
rms length of 167 fs traveling through a uniform magnetic field on a radius
of curvature of 1.2 m. This matches the conditions within the dipoles of the
BC1 chicane of the JLab FEL. The CSR wake is shown at various distances
into the magnet. As the bunch travels into the maget the transient term of
the field slips ahead of the bunch while the steady state term grows stronger.
A Gaussian distribution is overlayed. The tail of the bunch is at s < 0 and
the head is at s > 0.

For particles moving in a dipole (see Fig. 2.6(a)) the horizontal position (see Appendix

B for a discussion of accelerator coordinate conventions) without emission will be a super-

position of the betatron and dispersive motion of the particle, x(s) = xβ(s) + xη(s). The

dispersive motion is given in terms of the local dispersion as xη(s) = ηx(s)δ. At the point

of emission ∆x = 0, that is there will be no change in transverse coordinates of the particle
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(a) (b)

Figure 2.6. Shown in (a) for a particle on a reference dispersive trajectory
xη within a dipole at the point of emission ∆xβ,emis = ∆xη,emis. The result is
a new dispersive trajectory given by xη,emis(s) = xη +∆xη,emis. The resulting
effect on the emittance is shown in (b) where different longitudinal slices now
have varying betatron functions, increasing the projected emittance.

and ∆xβ,emis = ∆xη,emis. This results in the particle following a new dispersive trajectory

xη,emis(s) = xη +∆xη,emis. Since this new trajectory ∆xη,emis = ηx∆pCSR/p depends on the

energy lost by the particle to CSR and this energy loss varies with longitudinal position,

different longitudinal slices will now follow new trajectories through the dipole. While the

emittance of individual slices may be preserved the overall effect is that the different slices

will no longer align in the bending plane and the projected emittance will be increased, as

illustrated in Fig. 2.6(b).

The impact on the projected emittance may be quantified [20], for a single, averaged

CSR kick, through the change to the beam matrix given by

ǫf ≈






det







ǫ0βx + η2xσ
2
δ,CSR −ǫ0αx + ηxη

′
xσ

2
δ,CSR

−ǫ0αx + ηxη
′
xσ

2
δ,CSR ǫ0γx + η′2xσ

2
δ,CSR













1

2

.(13)
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Where γx = 1+α2
x

βx
, σδ,CSR is given by Eq. 12, and η′x is the dispersive dependence of x′. This

result may be summarized as

ǫf = ǫ0

√

1 +
H

ǫ0
σ2
δ,CSR(14)

Where the parameter H contains the initial horizontal motion parameters and takes the

form

H ≡ η2 + (βη′ + αη)2

β
(15)

Assuming that the bunch becomes fully compressed only at the end of the third dipole of

the chicane and that most of the contribution to the CSR induced emittance growth comes

from the final dipole the energy spread increase and emittance growth may be estimated

using Eqs. 12 and 14. Example values for the beam and lattice conditions, taken from

simulations, are given in Table. 2.1 . The result is an energy spread increase from CSR of

σδ,CSR = 5.2× 10−4 and a growth to the projected emittance of ǫf/ǫ0 = 1.25.

2.1.2.2. Limitations of the 1D Model. In the projected 1-D CSR model the CSR wake is

calculated based on the charge distribution projected on a line tangent to the central path of

the bunch. It is assumed that the bunch shape will not change significantly on the scale of

the overtaking length. Two particles can then be causally linked using the slippage length,

Eq. 11, based on the difference between the path on the arc followed by the electrons and

a chord connecting the ends of that path. However, as illustrated in Fig. 2.7 when two

particles have a large horizontal separation the true distance between them may be much
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Table 2.1. Bunch properties and beamline parameters at entrance of the
fourth dipole for the JLab bunch compression chicane. Values were obtained
from simulations of the beamline. (Note that the geometric emittance is given
here.)

Parameter (Units) Value

Q (pC) 135
γ 264
σz (fs) 150
ǫ0 (µm) 0.1355
L (m) 0.424
R (m) 1.2
β (m) 5
α 0.35
η (m) -0.065
η′ 0.35

greater than that predicted based on the 1D projection approximation. This calculation will,

in general, need to account for the total transverse displacement of the particle. However,

this effect is particularly significant due to the possibility of a large spread of the bunch in

the bending plane of the chicane from dispersion. The vertical extent of the bunch normally

remains well constrained.

The validity of the projected approximation can be estimated [21] from the condition

σx

(

1

σzR2

) 1

3

≪ 1,(16)

where σx and σz are the rms horizontal and longitudinal bunch sizes and R is the bending

radius of the dipole. Since violation of this linear condition may lead to significantly more

particles being causally connected, this effect would suggest that the impact of CSR will

be over-estimated in the 1D model as compared to reality. However, the 1D model has in

general shown good comparisons to experimental data, and especially in short-wavelength
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Figure 2.7. Radiation emitted by a particle at s’ in the tail of the bunch
at a position P’ in the dipole will catch up to a particle at s at the head of
the bunch at a later point P. The blue line shows the path assumed by the
projected model while the red shows the true path that must be followed by
the radiation for two particles with large horizontal separation.

FELs where both the emittance and energy spreads tend to be very small, the condition

from Eq. 16 holds well. We will explore this issue in more detail in a later chapter.

2.2. Transverse Space Charge

For high-energy electron beams, with γ ≫ 1, the transverse space charge forces can often

be ignored. The reason for this is the cancellation of the transverse space charge forces in

the beam in the ultra-relativistic approximation. To see this consider the simple model of a

long cylinder of uniform charge λ and radius R; the electric fields will be
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Er =
λ

2πǫ0r
r > R(17)

Er =
λ

2πǫ0R2
r r ≤ R(18)

and the magnetic field will be given by

Bφ =
µ0λβc

2πr
r > R(19)

Bφ =
µ0λβc

2πR2
r r ≤ R(20)

The force on particles within the beam will then be given by the Lorentz force F =

eE + e (v ×B) = (eEr − eβcBφ) r̂ for a beam propagating along only the z axis at speed β.

Substituting in the relevant expressions from Eqs. 17 and 19

F =
eλ

2πR2
r

(

1

ǫ0
− µ0β

2c2
)

=
eλ

2πǫ0γ2R2
rr̂(21)

Thus the electric and magnetic fields for the beam will scale with 1/γ2 leading to full

cancellation in the limit β → 1. For this reason the transverse space charge field of the beam

can often be neglected in particle tracking for high energy electron beams.

2.3. Longitudinal Space Charge

Longitudinal space charge forces will show the same γ−2 scaling as previously shown

for transverse space charge [18]; however, under certain circumstances these forces may still

become appreciable. For a cold, low-emittance electron beam, fluctuations in the longitudinal
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charge density can lead to relatively large deviations in the local charge concentration along

the beam. This density modulation leads to an appreciable buildup of the longitudinal space

charge (LSC) forces along the beam. The LSC force in a modulated beam has been identified

as one of the primary drivers of the microbunching instability [22]. While microbunching is

not a concern in the work shown here, we will show later that LSC forces can still significantly

impact the beam. This effect is most important in the coasting beam downstream of the

compression section (arc or chicane). When the bunch is highly compressed the integrated

effect of the force from LSC along the 10’s of meters of drift space where the beam remains

unperturbed longitudinally can still lead to a significant effect in the energy spectrum of the

beam that is observed in experiment and simulation.

The LSC model used in elegant is based on a free-space 1D approximation [22] that

gives the impedance as

ZLSC(k) =
iZ0

πkr2b

[

1− krb
γ

K1

(

krb
γ

)

)]

,(22)

where Z0 ≈ 377Ω is the impedance of free-space, rb is the average beam radius, γ is the

Lorentz factor, and k = 2π/λ is the wavenumber. A comparison between the LSC impedance

per meter in Eq. 22 and the CSR impedance (based on Eq. 8) is shown, for a Gaussian

charge distribution with rms width of 150 fs, in Fig 2.8. It is significant to observe that the

absolute value of the CSR impedance is much greater than that of the CSR in the spectral

region for a Gaussian bunch. However, the reason that LSC can still remain significant to

the bunch’s development is that CSR will exist only in the dipoles and then quickly die off.

The LSC force will remain constant as long as the bunch remains compressed which can be
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Figure 2.8. Impedances for LSC (red) and CSR (blue) as a function of λ−1

with the spectrum of a Gaussian bunch with rms length 150 fs overlayed
(green).

over a distance of as much as 40 m. This means that the integrated impact of LSC can be

much more significant than CSR, depending on the length of the beamline.
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CHAPTER 3

Experimental Setup

3.1. The Jefferson Laboratory Energy Recovery Linac Driven Free

Electron Laser

The Jefferson Laboratory energy recovery linac (ERL) free-electron laser (FEL) (Fig. 3.1)

is designed to provide high average-power light in the 1-14 µm range from the IR undulator

line [23] and 250 - 1000 nm from the UV line [24].

The electron beam is produced in a DC photocathode injector and accelerated to 9-10

MeV before being passed to the linac. The linac uses superconducting rf (SRF) cavities,

housed in three cryomodules for acceleration of the beam up to 100-160 MeV. After passing

through the undulator, where the FEL light is produced, the beam is then recirculated

back to the linac with a 180 degree offset from the accelerating phase. This allows for the

recapture of a significant fraction of the beam energy, greatly increasing machine efficiency.

This energy recovery process makes operation of a very high average-power accelerator,

much more palatable in terms of operational costs, but does increase the complexity of the

accelerator. The payoff is quite significant though, the JLab IR FEL has produced a record

operational output of 14.3 kW average power at 1.6 µm [23].

Of particular relevance for this work are the additional complications with respect to lon-

gitudinal beam dynamics that must be dealt with. Careful management of the longitudinal

phase space is required for the FEL process and for energy recovery. There will be a large in-

crease in the fractional energy-spread both from the FEL and from the deceleration process.

This can lead to great difficulty in controlling the beam and can lead to undesirable loss of

the beam if not dealt with. To prevent this it is necessary to properly shape the higher-order
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Figure 3.1. Layout of the FEL at Jefferson Laboratory. The IR FEL system,
shown in black, was used for these measurements. The grey is the UV line
and was not used in this experiment.

moments of the beam through use of sextupoles and magnets in the second recirculation arc

[25]. This same mechanism of momentum compaction 1 control also allows for a very easily

controllable knob over CSR emission in various regions of the machine. As will be shown,

manipulation of the first-order momentum compaction can be used to control the region of

the beamline where the bunch length is at a minimum (and produces the greatest levels of

CSR). This allows for a novel experiment examining CSR under a much wider array of beam

dynamics conditions than in previous experiments on other facilities [26–28].

3.2. Basic Principle of FEL Operation

In passing through the fields of an undulator magnet electrons will perform an oscillatory

motion due to alternating dipole fields of the undulator. This will cause the bunch to radiate

around a wavelength λL determined by

λL =
λu

2γ2

(

1 +
K2

2

)

,(23)

1In this work we will refer to R56 as the momentum compaction of a transfer line as opposed to the commonly

used definition for circular accelerators of α =
dL/L
dp/p for momentum compaction, a global property of such

accelerators.
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where λu is the undulator period, γ is the Lorentz factor given by γ = E/mec
2, and K is

defined as

K =
eBuλu

2πmec
,(24)

in terms of the charge of the electron e, the undulator magnetic field Bu, and the undulator

period λu.

The JLab FEL uses an FEL oscillator configuration. For an FEL oscillator there is a

short undulator set along an optical cavity. On either end of the cavity are two mirrors, one

of which will ideally provide total reflection, while the other will be partially transmitting

to out-couple the FEL light. When electron bunches first pass through the cavity they will

radiate incoherently. However, if the pulses of radiation are synchronized with the passage

of subsequent bunches the radiation power will grow and the electron bunch will begin to

microbunch on the scale of λL. This will lead to coherent emission scaling quadratically with

particle number N2. This process is illustrated in in Fig. 3.2. The growth in the power of

the light is then a function of the number of passes, n, and the power out-coupled from the

FEL is given by

Pout = P0 (1 + gss − α)n ,(25)

where P0 is the input power in the cavity, α is losses do to absorption and transmission

of the mirrors, and gss is the small-signal gain factor which may be estimated [29] from
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Figure 3.2. Electrons follow an oscillatory path (green) through the dipole
fields of the undulator. As bunching occurs on the scale of λL the power in the
optical pulse grows exponentially due to the coherent emission of the electrons
(shown above in blue).

gss = 2
N3

uK̂
2
uλ

2
uIpeak

γ3σ2
rIA

.(26)

Where Nu is the number of periods in the undulator, Ipeak is the peak current of the electron

bunch, σr is the transverse dimension of the bunch, and IA is the Alfven current, defined as

IA = mec
3/e. The parameter K̂u is defined to be

K̂u = K

(

J0

(

K2

4 + 2K2

)

− J1

(

K2

4 + 2K2

))

.(27)

Where J0 and J1 are Bessel functions of the first kind. If the small-signal gain factor is

larger than the losses, gss > α, the power in the optical cavity will grow with each pass,

up until the cavity saturates. If we wish to maximize power gain through the undulator

the small-signal gain should be maximized. This makes it desirable to keep σr small and
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consequently the transverse emittances ǫx,y should also be small. Likewise, Ipeak should be

large. We emphasize these two conditions because the need for a high peak current is what

necessitates a compression chicane, leading to CSR, which in turn will spoil the emittance

ǫx. If the FEL is to function efficiently CSR effects must be carefully controlled.

3.3. Accelerator Components

In this section we will provide an overview of the core components of the JLab FEL with

a focus on the magnetic optics used to provide longitudinal manipulation and compression

of the beam. We will then describe the experiment setup used to measure the impact of

CSR on the beam as function of the maximum compression point in the beamline.

3.3.1. The Injector. The injector for the JLab FEL is a 325-kV DC GaAs photocath-

ode gun. It can provide up to 10 mA of current from bunches with charges between 60-135

pC at a repetition rate of 75 MHz [30]. Use of a DC gun is necessary for efficient CW oper-

ation, but does raise issues with space charge as the beam cannot be as rapidly accelerated

[31]. Bunches are generated with a length of approximately 13.5 ps. A 1.497-GHz buncher

cavity is use to compress the bunch down to around 5 ps before being passed to the booster

which consists of two 5-cell SRF cavities that provide acceleration up to an energy of 9-10

MeV. The bunch length is further reduced during this acceleration down to 2.5-3.5 ps.

3.3.2. The Accelerator. The beam from the injector is then merged onto the axis

of the accelerator transport line. Acceleration is then provided via three sets of SRF cavity

cryomodules with each cryomodule housing 8 accelerating cavities. Two of these cryomod-

ules, the first and third, use standard 5-cell CEBAF superconducting-rf (SRF) cavities that

operate at 1.497 GHz and can provide a 5 MV/m gradient. The second cryomodule is based
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on an upgraded 7-cell design [32], still at 1.497 GHz, but with a maximum accelerating gra-

dient of 20 MV/m. These three sets of cryomodules allow for a maximum final beam energy

of 160 MeV.

Acceleration within the cavities is provided by a longitudinal electric field that has a

sinusoidally varying structure. For the approximation of a thin RF cavity, the energy gained

by a particle with a longitudinal position z defined so that a particle for which z = 0 arrives

exactly at the synchronous phase φ0 and entering with some initial energy E0 is given by

E(z) = E0 + Erfcos(kz + φ0),(28)

where Erf is the energy gain through the cavity, k = 2π
λ

is the wavenumber. By running

the beam off crest, that is φ0 6= 0, a time energy-correlation will be imparted to the bunch

by the spatially varying electric field in the cavity. The nominal operating condition is to

run the beam at a phase φ = −10◦ off of the crest (illustrated in Fig. 3.3). This is called

the rising-rf side due to the positive slope here. For acceleration on the opposite side of the

crest, at φ = +10◦ we have falling-rf acceleration. Running off crest will impart of positive

time-energy correlation onto the beam for proper compression. Positioned between each of

the cryomodules is a set of quadrupole triplets for providing transverse focusing of the beam.

3.3.3. Magnetic Compression Chicanes. As was discussed previously it is desirable

to provide a beam with high peak current to the FEL; however, due to space charge forces it

is necessary to keep the bunch length long at the injector. One must therefore compress the

electron bunch somewhere along the beam transport system prior to passage through the

fields of the FEL undulator. Because the beam is ultra-relativistic it is not possible to use
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Figure 3.3. A bunch accelerated on the rf-wave at phase φ0 < 0, or on the
rising-side. The head is at negative z coordinates with respect to the middle
of the bunch while the tail is at positive z coordinates with respect to the
middle.

velocity differences for compression. Instead, shortening of the bunch is normally achieved

through a magnetic chicane structure, composed of four dipoles, as shown in Fig. 3.4.

For the chicane to work the bunch must first have a linear correlation between energy

and longitudinal position. This can be achieved by passing the bunch off-crest through

the linac. If we take the energy gain of particle at position z within the bunch to be

E(z)linac = E0+Erfcos(kz+φ0) and assume that kz ≪ 1 then the linear chirp h is given by

h ≡ dE(0)

Edz
= − Erfksin(φ0)

E0 + Erfcos(φ0)
(29)
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Figure 3.4. Schematic of a bunch compression system starting with a bunch
passed off-crest through the linac before passing through a four-dipole chicane
with legs of length L.

For particles entering the chicane there will be a deflection dependent on the particle

momentum δ = p−p0
p0

taken relative to the reference momentum p0. Particles with δ < 0 will

be bent at an angle θ− > θ0 i.e. greater than that for the central design path and will take

a longer path, falling back towards the center of the bunch. Meanwhile, particles for which

δ > 0 will experience a bending angle θ+ < θ0 and follow a shorter path, catching up to the

center of the bunch. In a dipole field the particle on the design energy will be bent at an

angle θ0 = eBl/p0. If each leg of the chicane has projected length L the induced path length

difference for a particle bent through an angle θ(δ) will be

∆S =
L

cos(θ)
− L

cos(θ0)
(30)

We can expand Eq. 30, assuming both angles are small, resulting in

∆S ≈ L

1− θ2

2

− L

1− θ2
0

2

≈ L(
θ2

2
− θ20

2
)(31)
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In general the bending angle will vary with momentum like θ/θ0 = p0/p leading to the

relationship between energy deviation and bend angle of

θ =
θ0

1 + δ
(32)

If this is substituted into Eq. 31 and expanded for 1/(1 + δ)2 we arrive at the final change

in total path length through the (now accounting for both legs)

∆S = −2Lδθ20(33)

Or in terms of the R56 matrix element (see Appendix A for description of the transport

matrix notation).

R56 ≡
∆S

δ
= −2Lθ20(34)

There are, of course, higher-order terms in the path length difference that have been neglected

in this analysis that become very important in reality. As will be discussed later, the second-

order dependence in δ of the path length can exacerbate the curvature imposed by the rf wave

and so create a strongly non-linear compression condition that will increase the minimum

bunch length and create a very asymmetric current distribution with a long tail, harming

the FEL efficiency. As will be shown later this non-linearity, when not corrected, can play

an important role in the CSR interaction with the beam.
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There are two chicanes in the JLab ERL IR line (see Fig. 3.1). The optical cavity chicane

(BC1), which will normally provide final compression for the beam before the undulator, and

serves to separate the electron beam from the optical beam at the end of the optical cavity

of the FEL. After the FEL there is a second chicane, the THz suppression chicane (BC2).

This serves to decompress the bunch before it enters the second recirculation arc. For short

bunches entering the first dipole of the second arc there will be emission of CSR, at THz

wavelengths (0.1 - 1 mm), which will cause undesirable heating of the FEL optics downstream

of the point. By introducing BC2, to over-compress the bunch, this CSR radiation will be

greatly reduced, improving FEL performance and reducing the need to shutdown the machine

periodically for cooling.

3.3.4. The Bates Bend. The recirculation arcs A1 and A2 (3.1) are laid out in what is

known as the Bates design [33]. A schematic of the design is shown in Fig. 3.5. The design

can be thought of as essentially a standard four-dipole chicane that has been split in half and

bent around 180 degrees. Also included in addition to the dipole magnets are quadrupoles

and sextupoles for control of the first and second order transfer matrix components. This

design allows for achromatic and isochronous transport of the beam for recirculation, and

also possesses sufficient acceptance to accommodate the large energy spread after the FEL

process [34].

This design also has another useful characteristic for an FEL, namely, that through

manipulation of the quadrupoles, the important R56, or momentum compaction, component

of the transfer matrix of the arc can easily be changed over a wide range of values, both

positive and negative. The second-order T566 term may also be controlled through the use of

the sextupoles in the arc. For both cases the same basic principle is used. Dipoles are used to

generate a dispersive region where a particle’s trajectory is energy dependent. Quadrupoles
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and sextupoles are positioned in this region to induce energy dependent transverse kicks to

the particle according to ∆x′(x) = −Ax and ∆x′(x) = −Bx2 where the x-position depends

on the dispersion η, that is xη = ηδ.

From the transfer matrix (see Appendix A) for a dipole, Eq. 35, we can see that R52 =

−ρ(1 − cos(θ)), the term which correlates longitudinal position z to a particles horizontal

momentum x′. From this the particle pathlength now has a dependence upon the horizontal

kick imparted by the quadrupoles and sextupoles and it is possible to change the bunch

length purely through manipulation of the quadrupoles and sextupoles. For the 180◦ bend

θ = π and the path length difference will be ∆z(δ) = −2ρ∆x′. It should also be noted that

the second Bates bend includes a matching set of octupole magnets [35] to provide third-

order correction necessary for managing the energy spread of the beam during the energy

recovery process [36]. However, there are currently no octupoles installed in the first Bates

bend, and the octupoles in the second bend were not necessary for this experiment as the

beam was dumped before recovery.

Figure 3.5. Schematic of the Bates bend design used in the recirculation arc.
Dipoles are represented as trapezoids and in the case of the 180 degree bend
by half a donut shape, quadrupoles as ovals, and sextupoles as diamonds.
Trajectories for kicked particles are illustrated by the black and red lines,
showing the path dependence through the 180 deg bend.
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3.3.5. Compression with Nonlinear Effects. We have already described previ-

ously how to manipulate the bunch length to first order using the magnetic compression

chicanes and Bates arcs. However, there are also nonlinear effects present, due to the higher-

order terms of the sinusoidal rf-wave and nonlinearities which will always be present in the

dipoles. To this end we take the longitudinal transport equations through second order in

the accelerator to describe how maximum compression may be achieved through correction

of the second-order nonlinearity. For longitudinal transport (z, δ) through the linac we have

zl = z0,(36)

δl = δ0 +Rlinac
65 z0 + T linac

655 z20 .(37)

Here the subscript ’0’ indicates the particle coordinates at the linac entrance, ’l’ for the linac

exit, and ’w’ for the wiggler entrance. If we neglect any impedance effects on the beam

through the rest of the accelerator the longitudinal transport equations up to the undulator

are given by:
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zw = zl +Rund
56 δl + T und

566 δ
2
l ,(38)

δw = δl.(39)

By substituting Eqs. 36 and 37 into Eq. 38 we find the final longitudinal transport solution

at the undulator

(40) zw = (1 +Rlinac
65 Rund

56 )zl + (Rund
56 T linac

655 + T und
566 R

linac
65

2
)z2l .

Where we have kept up to the quadratic terms in zl. Since we only have quadrupole and

sextupole magnets in the first arc we cannot manipulate any terms past the second order.

Our goal here is to minimize the bunch length, which is equivalent to ensuring that zw = 0

at the undulator for any initial longitudinal particle position z1. From Eq. 40 we can see

that the conditions for the linear and quadratic terms respectively are then

Rund
56 = − 1

Rlinac
65

,(41)

T und
566 = −Rund

56 T linac
655

Rlinac
65

2 .(42)

It is more suitable to cast these conditions in terms of the settings of the linac by using

the rf energy gain of the bunch in the linac: Elinac = E0 + Erfcos(kz + φ0) where k is the

wavenumber of the rf and φ0 is the central accelerating phase of the bunch. Expanding Elinac

34



out to second order for small values of z and putting the energy in terms of δlinac ≡ Elinac−Ec

Ec

where Ec is the central design energy of the linac

(43) δlinac ≈
E0 + Erfcos(φ0)− Ec

Ec

− Erf

Ec

ksin(φ0)z −
Erfk

2cos(φ0)

2Ec

z2.

We can now see that in the linac Rlinac
65 = −kErfcos(φ0) and T linac

655 =
k2Erf cos(φ0)

2
. Subusti-

tuting these terms from Eq. 43 into Eqs. 41 and 42 we find a more useful description for

achieving maximum bunch current for the FEL

Rund
56 =

Ec

kErfcos(φ0)
,(44)

T und
566 = − E2

c cos(φ0)

2E2
rfksin

3(φ0)
.(45)

This result matches with the original design specifications [37]. The condition derived here

will also be seen to be important for correctly describing CSR energy-loss in the beam, as

well as correcting CSR-induced fragmentation of the bunch.

3.4. Description of the Experiment

The primary goal of our experiment on the JLab FEL system was to examine the impact

of CSR on the beam as a function of compression. While similar experiments have been

described before [28, 38] these previous experiments were limited to adjusting compression by

varying the chirp on the beam through adjustment of the accelerating phase. The JLab FEL

system is more flexible in that regard and manipulation of the longitudinal phase space can

be achieved not only by varying the RF phase (as in Eq. 44) but also through manipulation
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Table 3.1. Nominal beam parameters for the experiment and relevant char-
acteristics of the machine.

Symbol Description Value
E0 Injection energy [MeV] 10
Ef Final energy [MeV] 135
- Charge per bunch [pC] 135
σ0 Bunch length after injector [ps] 3.3
σf Bunch length at max compression [fs] 150
h Energy-position correlation (chirp) [m−1] ∓5
- RF phase [degrees] ±10
- RF frequency [GHz] 1.497
RBC1

56 Optical cavity chicane R56 [cm] -52
RBC2

56 THz suppression chicane R56 [cm] -4.6
RA1

56 Bates arcs R56 [cm] -7.5 to 85

of quadrupoles in the recirculation arc. This allows for a much broader exploration of the

parameter space and for the opportunity to produce multiple compression points outside of

the longitudinally dispersive regions while at the same time removing the impact on energy

spread that comes with adjustment of the accelerating phase. Furthermore, the parameters

of the beam, namely, the larger transverse emittance mean that conditions in the compression

sections of the accelerator are much farther into the region where 2-D CSR effects are believed

to be important allowing for a more closer examination of the approximations made in the

theories and dependent simulations.

During the experiment the FEL remained off and the beam was not fully recirculated

for energy recovery, but was instead dumped at the tune-up dump shown in Fig. 3.1. A full

description of relevant machine parameters during the experiment are given in Table. 3.1.

3.4.1. Energy Loss Measurements. To perform these measurements the quadrupoles

labelled MQT2F07, MQT2F08, MQT2F09, and MQT2F10 in A1, shown in Fig. 3.6, were

scanned to adjust the total R56 in the machine. To maintain achromaticity the quadrupole

settings across the arc must be mirrored. That is K
(07)
1 = K

(10)
1 and K

(08)
1 = K

(09)
1 where the

superscript for the quadrupoles strengths K1 denotes the quadrupole in Fig. 3.6. The second
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Figure 3.6. Layout of the first arc (A1) section of the JLab FEL. Dipoles
are represented by gray trapezoids, quadrupoles are blue ovals, and sextupoles
are shown as green diamonds. Two beam position monitors are represented
by vertical red lines.

condition that must be maintained is that K
(08)
1 /K

(07)
1 = −7 to keep the horizontal, angular

dispersion η′x ≈ 0 at the midpoint of the bend, and allow horizontal dispersion ηx to go to

zero at the end of the arc. By the first condition this must also hold for the quadrupoles on

the second half of the arc.

As the momentum compaction in the arc, RA1
56 = −2ρ∆x′, is changed by adjustment of

the horizontal kick ∆x′, through manipulation of the quadrupoles in the arc, the bunch can

be made to to compress at different positions along the beamline. This change in compres-

sion position can then be observed by watching the CSR-induced energy loss of the bunch.

The energy loss is monitored through the use of beam position monitors (BPMs) placed in

dispersive regions of the beamline. In these regions the coupling of x to δ will cause the

centroid of the beam to shift as a function of offset from the central design energy of the
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accelerator. We use an interesting feature of the Bates bend to help us with this measure-

ment. The first order beam optics through the 180◦ dipole of the Bates bend produces a

point-to-point image in the horizontal plane (see Appendix B for a description of the stan-

dard accelerator coordinate system)with a magnification of −1. This can be seen by again

looking at Eq. 35, the transfer matrix for a dipole. For a bend angle of 180◦ the dipole

matrix components R12 = R21 = 0 providing point-to-point imaging and R11 = R22 = −1

providing the -1 magnification. If one averages the beam position at the entrance and exit

of the bend then any betatron motion is canceled and the result is directly proportional to

the beam energy and not to beam steering errors upstream of the measurement.

Jitter in timing system, and phases and voltages in the rf, however, can throw off this

measurement. This jitter will cause changes in the average bunch energy and thus change the

central path of the beam through the machine. Consequently, this will induce shot-to-shot

variation in the BPM measurements. To adjust for the jitter another set of measurements

are taken using BPMs in the first arc (IPM2F07 and IPM2F09 in Fig. 3.6), that are similarly

averaged together. The beam will not have yet compressed at this point, and will have no

energy loss to CSR, thus this measurement serves as a baseline (see Fig. 3.7(a) and (b)).

A second measurement is then taken using the BPMs in the second arc. Due to CSR

energy losses accrued upstream from this position the average bunch energy will have changed

by the time the bunch reaches this position. The shift in the bunch centroid position will

then be a function of this energy loss from CSR, allowing for a measurement of CSR-induced

energy loss. The BPM data from the second arc is shown in Fig. 3.7(c) and (d).

From this we arrive at the final result by now subtracting out the baseline measurement

shown in 3.7(a) and (b) from the energy loss data in (c) and (d) respectively. This result is

shown in Fig. 3.8.
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Figure 3.7. Plots of beam centroid position as function of integrated
quadrupole field (in units of Gauss) in A1, where (a) and (b) are the BPM
readings in the middle of A1 for falling-rf and rising-rf acceleration respectively
and (c) and (d) are the BPM readings in the middle of A2 for falling-rf and
rising-rf acceleration respectively.

We have already discussed that one novel factor for performing CSR studies on the JLab

ERL is the wide range of compression dynamics which are possible in the machine. Here we

now see this action. For Fig. 3.8(a), the falling side (for an accelerating phase φ = +10◦),

we can resolve two distinct compression points along the beamline. We will later see that

there is an additional compression point that is missing in this data due to the sextupole

settings. In Fig. 3.8(b), the rising side (for an accelerating phase φ = −10◦), we observe

two compression points. Here we are limited by the scan range, which is much smaller than
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Figure 3.8. Plots of beam centroid position with the baseline reading sub-
tracted from the energy loss data. The data for falling-rf acceleration is shown
in (a) and the rising-rf acceleration data is shown in (b).

that used for the falling side. However, we observe the compression point after both BC1

and BC2 (Fig. 3.1), which is missing from the falling side.

To understand where each feature of these plots arise it is helpful to review how the

bunch rotates in the longitudinal phase space as a function of the R56 settings. To help

illustrate the complicated longitudinal dynamics of the JLab FEL we will use plots like the

one shown in Fig. 3.9. Here the beamline is illustrated along the bottom of the plot. The

linac sections are presented as an oscillating line, the quadrupole magnets as tall, vertical

lines, finally the dipoles are the short rectangles. The compression of the bunch given by

C = (1+hR56)
−1 is plotted along the beamline. Finally, centered around the representation

of the beamline elements is a plot of the sign of the chirp, h, sgn(h) = 〈sδ〉/ |〈sδ〉|. The

significance of sgn(h) being that whenever the chirp switches sign from positive to negative

the bunch passes through full compression. In this plot sgn(h) = +1 is represented by the

blue line being above the beamline representation while sgn(h) = −1 is below.

For the falling side case, which has a negatively chirped bunch, the first Bates arc (A1

in Fig. 3.1) has a large negative R56 contribution from the second dipole that dramatically
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Figure 3.9. Example plot showing the beamline elements along the bottom
in black, with the compression of the bunch (defined as Compression = (1 +
hR56)

−1 ) in red, and the sign of the chirp, h, plotted in blue.

increases the bunch length, but will keep the same sign for the chirp. As the bunch traverses

the 180 degree dipole, it is rapidly over-compressed, reversing the initial orientation of the

head at high energy and tail at low energy so that at the dipole exit the head is at low energy

and the tail is at high. This is shown in Fig. 3.10 with the middle of the 180 degree dipole at

30 m. After this rapid parasitic compression, the remainder of the transport to the second

arc will then compress the bunch, with the location of the shortest bunch length depending

on the RA1
56 setpoint of the first arc.

If the R56 in the first arc is large and positive (e.g., RA1
56 ∼ 1 m), the downstream chicanes

do not have adequately large negative momentum compaction to fully compress the bunch;

instead, it is fully compressed only when it reaches the second dipole of the second arc, where

the large negative R56 contribution from that dipole can serve to reduce the bunch length.
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As in the first arc, the 180 degree dipole then reverses the sign of the chirp, introducing yet

another parasitic compression, see Fig. 3.10(A).

As the R56 of the first arc is reduced from large positive values, the compression point

moves upstream through the machine. At RA1
56 ∼ 0.75 m the bunch is fully compressed at

the end of the THz chicane, as in Fig. 3.10(B); further reduction to ∼ 0.7 m moves the point

to the end of the optical cavity chicane just upstream of the undulator. In this case with

full compression at the end of the chicane, the bunch undergoes two parasitic compressions.

The initial cross-over is, as described above, in the arc; the second cross-over is in the third

dipole of the chicane, where the bunch must be slightly over-compressed which will insure the

bunch is fully compressed after traversing the final dipole, which provides a small positive

contribution to the momentum compaction. This scenario is shown in Fig. 3.10(C).

Further reduction of the first Bates arc R56 moves the compression point upstream as

shown in Fig. 3.10(D). When RA1
56 = 0.2 m, the bunch is fully compressed at the end of the

Bates arc itself, Fig. 3.10(E). As the momentum compaction is lowered past zero the bunch

will fail to compress (except for parasitically) at any point, Fig. 3.10(F). This covers the

three possible compression points achievable in a non-dispersed region upstream of A2 when

the bunch is accelerated at 10 degrees past the crest of the RF waveform. For RA1
56 = 0.75

m the beam is compressed following the THz chicane; for 0.7 m it is compressed between

the optical cavity chicane, through the undulator, and up to the THz chicane; for 0.2 m it is

compressed between the first Bates arc and the optical cavity chicane. All other values result

only in rapid parasitic compressions at locations where the beam is transversely dispersed.

For acceleration on the rising-rf side the three key compression points, at the end of

A1, the end of BC1, and the end of BC2 (the first and second chicanes in Fig. 3.1), will

remain unchanged. However, dynamics in A1 will differ considerably. A bunch with positive
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(a) (b) (c)

(d) (e) (f)

Figure 3.10. For falling rf acceleration the compression ratio (red) and the normalized sign of the chirp (blue) are
plotted along the beamline. Shown in (A) - (C) are the undercompressed, fully compressed, and overcompressed
cases for BC1 compression. The same are represented in (D) -(F) for compression in the first arc. Parasitic
compressions can be observed when the sign of the chirp (blue) changes, then changes back in a single dipole.
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chirp will undergo a rapid compression as it traverses the large R56 contributed by the second

dipole of the first Bates arc, and change the sign of the chirp. A second parasitic compression

then soon follows as the bunch moves through the (large positive momentum compaction of

the) 180 degree dipole and the head and tail are again reversed, restoring the initial positive

chirp. The ensuing dynamics then, as before, depend on the momentumcompaction setpoint

of the Bates arc. If RA1
56 is large and positive, the bunch is, again, fully recompressed

only when it reaches the second dipole in the downstream Bates arc. As the momentum

compaction is reduced, the compression point again moves forward, with the bunch being

fully compressed between the THz-suppression chicane and the second arc when RA1
56 ∼ 0.35

m, in Fig. 3.11(A). Further reduction to RA1
56 = 0.3 m puts the machine into the nominal

lasing configuration, with the bunch fully compressed ( Fig. 3.10(B)) between the optical

cavity and THz chicane with the undulator. As above, an additional parasitic compression,

the third of such, occurs in the third dipole of the optical cavity chicane when the bunch is

brought to full compression in this region.

Further reduction moves the compression point upstream through the optical cavity chi-

cane Fig. 3.11(C). The beam will only reach full compression in the arc-to-chicane nondis-

persed transport for R56 = −0.2 m. However, in the experiment the momentum compaction

was not swept that far. It is of interest to note, however, that though the notional design

dynamics of this system generate bunch compression using a positive chirp, there is actually

one fewer parasitic compression when the system is operated with acceleration on the falling

side of the RF waveform. This suggests that non-standard operation with a negative chirp

may actually provide superior performance [39].
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(a) (b) (c)

Figure 3.11. For rising rf acceleration the compression ratio (red) and the normalized sign of the chirp (blue) are
plotted along the beamline. Shown in (A) - (C) are the undercompressed, fully compressed, and overcompressed
cases for BC1 compression. Parasitic compressions can be observed when the sign of the chirp (blue) changes,
then changes back in a single dipole.
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3.4.2. Energy Spectrum Measurement. A synchrotron light monitor (SLM) was

operated in the second recirculation arc, A2 in Fig. 3.1, during measurement on the falling-

rf side. At this position the beam is transversely dispersed, coupling the transverse position

to energy. Particle position is determined by x(s) = xβ(s) + η(s)δ, where xβ is the betatron

component of the position. By minimizing the betatron function βx the position x(s) will be

dominated by the dispersion η ≡ dx/dδ. As the beam radiates in the dipole the measurement

from the synchrotron light monitor will provide a picture of the beam’s energy spectrum.

While measurement of the CSR energy losses with the BPMs provides a picture of how

the bunch changes on average as a function of compression it is also vital to gain some

understanding of what is happening within the bunch. Because the CSR field varies along

the bunch, and is itself a function of the bunch’s longitudinal density it is essential that we

be able to see more than just the averaged properties of the bunch. By taking a measurement

of the energy spectrum as a function of compression we gain better insight, albeit indirectly,

into how the CSR wake is impacting different longitudinal slices of the bunch, and how to

minimize this impact.

An example of the output from the SLM is shown in Fig. 3.12. Because CSR energy

loss is not uniform over the length of the beam it is possible for the energy spectrum to

’fragment’ and develop several peaks and valleys, seen in comparing Fig. 3.12(A) to (B).

LSC also appears to strongly enhance this effect, as will be shown later. Monitoring for

this effect provides a method for checking for possible microbunching. With the multiple

longitudinally dispersive regions present in the JLab FEL such fragmentation in energy could

possibly be converted to density fragmentation.
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(a) (b)

Figure 3.12. Examples of the beam distribution from the synchrotron light
monitor operated in A2. Plots to the left and below the center image show
the projection of the y and x distributions respectively. The x-distribution
corresponds directly to the energy spectrum of the beam. Shown in (A) is
an example of the spectrum for an uncompressed bunch. Shown in (B) is the
spectrum of a bunch that has compressed at the end of BC1.
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CHAPTER 4

Analysis with a 1-D CSR Model

4.1. Modeling Collective Effects

The longitudinal dynamics of the beam and CSR-beam interaction represent a compli-

cated system. To ensure we fully understand the results of our experiment it is necessary

that we be able to represent the experiment in simulation in a manner that will capture

these aspects. There exist a wide variety of codes for the simulation of accelerators. These

employ a number of different techniques to ensure that the physics is correctly captured in

different regimes. For our simulation we choose to employ the code elegant [40]. elegant is

a macroparticle tracking code that provides single particle tracking through a large variety

of included field element types. This tracking can be performed via transfer matrices, up

to second order in most element types; canonical integrators, up to fourth-order are also

available for dipoles, quadrupoles, and sextupoles. However, elegant does not, in general,

model the collective interaction of the bunch. It does, though, include specialized elements

for tracking beams with CSR and longitudinal space charge (LSC) effects included, utilizing

one-dimensional approximations of both these collective effects. Coherent synchrotron radi-

ation modeling is available in elegant in dipoles and in drift sections immediately following

a dipole. The 1D model of Saldin et al. [19], discussed in Chapter 2 is used. The calculation

of LSC forces is available with rf cavities and drifts. A 1D model [41], also discussed in

Chapter 2, is used to calculate the LSC force on the beam within these elements.

In this chapter we will first detail the setup of the elegant simulations and calibration

of the measurement results. Comparisons between simulation and measurement are shown
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and explanations of a number of key features of the experiemntal results are discussed with

the aid of the simulations.

4.2. Controlling Numerical Noise

While the CSR wake may be readily computed using the method outlined in Chapter

2 this calculation requires both a numeric derivative and integration. In elegant the wake

is computed by binning the longitudinal distribution, smoothing the resulting histogram

with a fast-Fourier transform convolution utilizing a Savitzky-Golay filter [42], and then

taking the derivative of this distribution and subsequently integrating. Care must therefore

be taken during this process to ensure that the result does not overly suffer from noise.

Furthermore, due to the fact that each particle can loose or gain energy from the CSR wake

proper modeling requires that we split the dipole into a number of slices. At the end of each

slice a fourth-order canonical integration is used to calculate the kick on the beam due to

the dipole fields, and following this the energy change from the CSR wake is applied. This

gives a number of parameters for the simulation that must be carefully checked to ensure

proper convergence of the results. For this reason we first look at varying the macro-particle

count in the simulation, the number of bins used in the histogram, and the number of dipole

kicks.

The macroparticle count is set at the start of a simulation when elegant is used to create

a beam. Since we begin our simulations with a bunch starting at the linac entrance, without

the benefit of an injector simulation that can properly handle the space-charge forces in that

region, we must use an idealized bunch distribution. We choose to use a beam with Gaussian

distributions in the transverse planes and a top-hat distribution in the longitudinal plane.

Our main concern here is guaranteeing that the bunch will contain sufficient particles such
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that binning for the CSR calculation will not be overly subject to noise. As figures of merit

to check for convergence we examine both 〈δ〉 the average fractional deviation of the beam

energy at the end of the beamline and the horizontal emittance ǫx. The parameter 〈δ〉 is

one of the primary measured quantities of our experiment, while for ǫx we expect it to be

strongly impacted by CSR. As the CSR wake reaches convergence the projected emittance

growth should also converge. Surprisingly, we see in Fig. 4.1 that there is little discernible

convergence for 〈δ〉 over greater than two order of magnitude variation in particle number.

For ǫx the situation is slightly better but there is still not strict convergence even out to 5

million particles. The main constraint then for choosing particle number for our simulations

is runtime. To keep simulation times for a full run to around twenty-four hours we settle for

200,000 macroparticles.

(a) (b)

Figure 4.1. Scan over the number of particles in the simulation. Shown in
(A) is 〈δ〉 as a function of the number of particles and in (B) δǫx, the fractional
deviation of the emittance as a function of the number of particles.

In elegant CSR can only be produced within dipoles. As previously discussed, part

of the process for calculating the CSR field requires that the longitudinal distribution be

binned prior to taking the derivative. It is important to make sure than a sufficient number
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of bins is being used to guarantee convergence of the calculation or else the CSR field will

again suffer from noise and its contribution may be severely underestimated. To test the

effect of binning we vary the number of bins used in taking the histogram of the longitudinal

density from 100 - 1000 and run our simulation with the quadrupoles of A1 set for maximum

compression after BC1.

(a) (b)

Figure 4.2. Scan over the number of bins used in each dipole to calculate
the shape of the CSR wake. Shown in (A) is 〈δ〉 as a function of the number
of bins and in (B) δǫx, the fractional deviation of the emittance as a function
of the number of bins.

In Fig. 4.2 we see that the energy loss 〈δ〉 and transverse emittance ǫx converge as bin

number is increased. However, past 300 bins there is a relatively small change. Due to the

increased time required for computation as bin number is raised we choose to use 300 bins

per dipole kick for the CSR calculation.

For the so-called CSRDRIFT element in elegant the initial wake is taken from the

output of the dipole immediately upstream of the drift. The calculated CSR energy change

is then applied to the beam at regular increments. The step size for these increments must

also then be checked for good convergence. Shown in Fig. 4.3 are the energy loss 〈δ〉 and
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(a) (b)

Figure 4.3. Scan over the step size interval at which the CSR wake calcu-
lation is performed in CSRDrift elements. Shown in (A) is 〈δ〉 as a function
of the step size and in (B) δǫx, the fractional deviation of the emittance as a
function of the step size.

transverse emittance ǫx as a function of step size for the CSRDRIFT beamline elements.

The convergence for step size is not as rapid but we note that the difference even between

the largest and smallest step size is a few thousandths. For the step size we settle on a value

of 0.01 m as a reasonable trade-off between computational effort and numerical convergence.

It is not necessary to test for convergence of bin number for the CSRDRIFT calculation as

the bin number is determined by the upstream dipole, and thus was accounted for in our

previous test of binning.

4.3. Measurement Calibration

The final step to be made before a full comparison between simulation and measurement

may be made is to calibrate the raw data from the experiment. The energy loss measurements

were taken based upon centroid position of the beam in the horizontal plane. This must

be calibrated to energy loss based on the dispersion at the BPM positions. Second, the

energy loss is varied in the experiment as a function of the momentum compaction along the
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beamline, which is manipulated through control of the quadrupoles in the A1 arc. We must,

therefore, also convert the quadrupoles settings to the more useful measure of momentum

compaction in the A1 arc.

To calibrate the energy loss measurement from the BPMs we first find the dispersion at

the BPMs, defined as ηx(s) = dx(s)
dδ

. This value will vary slightly with the setting of the

quadrupoles in the arc. This variation may be found from a tracking simulation of the arc

as there was no direct measurement taken. Shown in Fig. 4.4 is the dispersion as a function

of the trim quadrupole MQT2F08. The position of the bunch centroid will then be based

on 〈x〉BPM = ηx 〈δ〉 + xoffset. Where xoffset is some static offset in the centroid position

of the bunch. To estimate the offset in the centroid position we use the measurement of

〈x〉BPM at the maximum and minimum quadrupole strengths, where the bunch should be

long and losing little energy to CSR and thus be on its nominal trajectory (δ ≈ 0). These two

measurements are averaged together and subtracted from the data, to remove any offset, and

allow comparison to the simulation where the ideal particle will follow a perfectly centered

trajectory.

Finally, we change the independent variable of the measurements from the integrated

field strength of quadrupoles MQT2F08 to the total momentum compaction of A1, which

is varying as a function of quadrupole strength. The relationship between the two, found

from prior tests of the machine, is MT ≡ R56/BQuad = −0.0005 ± 0.0001 m/G [43]. By

design the nominal offset in the arc, when the quadrupoles are at zero field, is RA10
56 =

20 m. The linear relationship RA1
56 (B08) = MTB08 + RA10

56 , where B08 is the integrated

field in quadrupole MQT2F08 can be used to calibrate the quadrupole field strength to the

momentum compaction of the A1 arc. However, there are two issues with this conversion.

First, the error in the phase transfer function measurement (≈ 20%) is not insignificant.
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Figure 4.4. Dispersion calculated at the arc BPMs as a function of the
MQT2F08 quadupole strength.

Secondly, we do not know the true starting longitudinal beam distribution as will be discussed

in Sec. 4.4. To determine the calibration for our experiment, then, we add in an empirically

determined offset to the slope, within the bounds of the measurement error, to match the

measurement and simulation.

4.4. Determining Initial Beam Conditions

Ideally the beam is accelerated on crest through the injector and will arrive at the linac

with no time-energy correlation. However, as we do not have a measurement of the distri-

bution from the injector we must assume that this will not be perfectly true. Thus it is

important to examine how the results of the experiment would vary with small changes to

the chirp. It should be expected that a non-zero chirp at the linac entrance will lead to a

small shift in the chirp at the exit and a subsequent change in the momentum compaction

needed for full bunch compression. Scans over the accelerating phase and chirp at the linac
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Figure 4.5. Comparison of energy loss for acceleration on the falling-rf side
for various initial bunch lengths at the linac entrance.

entrance were performed. The minimum difference between the RA1
56 for experiment and

simulation where maximum energy loss occurred along the entire beamline was found to be

for a chirp of 1 m−1 and linac phase of 102◦.

There is also the issue of what the initial bunch length from the injector was during the

experiment. This was not directly measured during the course of the experiment and will,

of course, have significant impact upon the results. For example, with a Gaussian bunch,

energy loss due to CSR will scale as ∆ECSR ∝ σ
4

3

s . Due to the bunch length not being fully

known, the simulations shown will be run using an initial bunch length of 3.3 ps, as this is

the normal operating condition for the injector. A scan over several initial bunch lengths

(Fig. 4.5) shows that the magnitude of energy loss is of course altered with initial bunch

length but the shape of the energy loss curve remains mostly unaltered.
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4.5. Simulation Results

Now that we have tested numerical convergence, determined appropriate initial conditions

for the beam, and completed machine calibration we may now turn to studying the full

results of the experiment. Here we will now compare the experimental data against our

model of the accelerator implemented in elegant. This modeling will help to illuminate

several important lessons from the experiment, namely, the role of the sextupoles in CSR

emission and its impact back onto the bunch energy distribution, and the role of CSR in

drifts after dipoles in impacting the energy distribution. Additional simulations will also

show how LSC may contribute strongly to observed fragmentation of the longitudinal phase

space and the role of nonlinearities in exacerbating this effect.

4.5.1. Rising rf Acceleration. As previously described the normal operating condi-

tion for the accelerator is to accelerate the beam on the rising side of the rf wave in the linac.

This will impart a chirp h > 0 to the beam. For a phase φ = −10◦ (before the crest) the

chirp will be 5 m−1. The naturally positive momentum compaction of the A1 arc is enhanced

through the quadrupoles to RA1
56 = 0.3 m and combined with the BC1 chicane momentume

compaction of RBC1
56 = −0.52 to provide full compression following that last dipole of BC1

and immediately before the wiggler. For this section of the experiment the quadrupoles in

A1 were scanned around this point, varying the momentum compaction, and the energy loss

from CSR was measured using the BPMs in A2 as outlined before.

There are two distinct dips observable in the experimental data shown in Fig. 4.6.

The first occurs for RA1
56 ≈ 0.34 m, which corresponds to full compression after BC1. The

compression point is slightly higher than the nominal value because of the small negative

chirp on the beam entering the linac, decreasing the overall chirp of the bunch. The second
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Figure 4.6. Fractional energy deviation of the beam as a function of the first
arc momentum compaction RA1

56 for acceleration on the rising side of the rf.
The experimental data is shown with the diamond symbols. The simulation
is shown with sextupoles off in black and the sextupoles on in red.

compression point occurs at RA1
56 ≈ 0.38 m. This is due to BC2, the THz-suppression

chicane, which has RBC2
56 = −0.046. If sufficient positive momentum compaction is generated

in A1 the bunch does not get compressed fully by BC1 but does fully compress at the

end of BC2. It is important to note that two different sets of simulations were run for

comparison to this data. For one, the sextupole magnets in the A1 arc were completely

turned off, while in the second the sextupoles were configured to fulfill the linearization

condition R56T655+
(

TA1
566 + TBC1

566

)

R2
65 = 0 derived in Chapter 3. Here R56, R65, and T655 are
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the total quantities from the linac entrance up to the end of BC1. The value of TBC1
566 is fixed

for the chicane at 0.85 m. The value for the sextupoles to meet TA1
566 is then determined by

a simplex optimization routine in elegant. As can be observed in Fig. 4.6 the sextupoles

clearly play a strong role in the measurement. Comparing the two simulation cases we can

see that not only is CSR emission greatly enhanced with the sextupoles but without them it

is not possible to see both compression points. That CSR output is greatly increased with

use of the sextupoles is not surprising. The purpose of the sextupoles is to correct for the

non-linear terms from the sinusoidal curvature of the rf field and the non-linear transport

properties of the chicanes and arcs. With this correction implemented the bunch length

drops from σt = 412 fs to σt = 121 fs after BC1, at full compression, explaining the greater

energy loss. The linearization is also necessary for resolving the full-compression point for

both chicanes. The mechanism behind this will be demonstrated further on.

4.5.2. Falling rf Acceleration. We now turn to the second half of the experiment,

on the falling-rf side. We note here that, unless otherwise stated, all further comparisons

to simulation will be for the falling-rf measurement, as it was more complete of the two

measurements. On the falling side of the rf φ = +10◦ there is a chirp imparted to the beam

of h = −5m−1. This is an abnormal running condition for most FELs as it gives the incorrect

sign on the chirp (h < 0) for achieving compression in a standard four-dipole chicane (with

R56 > 0). However, with the ability to provide both negative and positive momentum

compaction using the Bates bend, compression can still be achieved after the chicanes. If

(ΣR56)und = RA1
56 + RBC1

56 = 0.2 the bunch will fully compress after the BC1 chicane for a

bunch exiting the linac with chirp h = −5 m−1, or if (ΣR56)A2 = RA1
56 + RBC1

56 + RBC1
56 = 0.2

the bunch will fully compress after BC2. For this portion of the experiment the quadrupoles
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Figure 4.7. Fractional energy deviation of the beam as a function of the first
arc momentum compaction RA1

56 for acceleration on the falling side of the rf.
The experimental data is shown with the diamond symbols. The simulation
is shown with sextupoles off in black and the sextupoles on in red.

were scanned over a much larger range of values that allowed for full compression to be

observed after A1 in addition to downstream of BC1 and BC2.

Shown in Fig. 4.7 is the experimental data overlaid with simulated results. On the left-

hand side the compression point at the end of A1 can be seen for RA1
56 = 0.2 m. Because

of the negative chirp the arc must now provide large positive momentum compaction to

over-rotate the bunch if compression is to be achieved in the chicanes. Thus, at around

RA1
56 = 0.7 m we see the compression point for BC1 in the experimental data (RBC1

56 = 0.52).
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For this operating condition the sextupoles in A1 were not correctly set and it is not possible

to resolve the compression point for BC2. This is also confirmed in the simulation, however,

with the sextupoles on, in simulation, the two dips are able to be resolved.

(a) (b)

Figure 4.8. Fractional energy deviation as a function of position along the
beamline. In (A) the result for full compression at the end of the first arc is
shown. In (B) full compression is achieved at the end of the first chicane.

It is interesting to examine why there is much less observed energy loss for arc compression

as opposed to chicane compression. We see from simulation that this result arises not from

a difference in the compressed bunch length, but from the differing downstream features in

each case. The fully compressed bunch length at the end of A1, without use of sextupole

correction, is σA1
t = 415 fs and at the end of BC1 σBC1

t = 428 fs. So it is clear that the

bunch length after the arc is in fact slightly shorter than that at the end of the chicane, but

this does not fully account for the difference. To resolve this discrepancy we examine the

energy loss along the beamline for each case. When the bunch becomes fully compressed

after the arc (4.8(A)), it will enter the BC1 chicane, which has a much larger momentum

compaction strength. The bunch will grow by a factor of 4 within the first dipole alone. This

may be contrasted with the case of compression after BC1, in Fig. 4.8(B) where the bunch
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decompresses only slightly within BC2 due to the weaker momentum compaction. Here the

bunch length will only double as is passes through the entire chicane. Due to the σ
− 4

3

t scaling

of CSR power, the bunch will only give up significant energy in the first dipole of BC1 due

to the rapid decompression, while in BC2 the bunch may continue to emit significant CSR

through all four dipoles.

4.5.3. Sextupole Linearization. As seen in both experiment and simulation the sex-

tupoles play a large role in the CSR energy loss experienced by the electron beam. As has

previously been mentioned, it can be seen that when the sextupoles are used to provide lin-

earization of the longitudinal phase space there can be a large enhancement to CSR emission.

It is also seen that the sextupoles allow for the observation of a compression point in the

BC2 chicane. The enhancement to CSR obviously arises from the decrease in bunch length

that comes with linearization (as was discussed in Section. 3.3.5). The bunch length with

and without second-order correction may be calculated from the respective equations.

σf =

√

(σ0 (1 +R56h))
2 + (R56σδ)

2(46)

σf =

√

((1 +R56h) σ0 + (R56k + T566h2) σ2
0)

2
+ (R56σδ)

2(47)

Using Eqs. 46 and 47 we may calculate the compressed bunch length without and with

the second-order correction. These give a result of σBC1
t = 461 fs without correction. With

the sextupoles used to provide the second-order compression the bunch length is reduced to

σBC1
t = 114 fs. These values compare well to the simulation with respective bunch lengths

of σBC1
t = 428 fs and σBC1

t = 121 fs. It was previously shown that the bunch length can be

61



minimized through cancellation of the z(δ) terms in the longitudinal transfer function. The

condition that must be fulfilled for the cancellation of the second-order term is given by

R2
65T566 +R56T655 = 0(48)

Under normal operating conditions it is desirable to minimize the bunch length at the

entrance to the undulator. Therefore, the sextupoles must be configured such as to remove

any longitudinal phase space curvature immediately following the BC1 chicane. The only

contributions to the R65 and T655 terms will come from the linac. For the R56 term we

must account for the momentum compaction of A1 and BC1. Likewise, there will also be

a fixed contribution to T566 from BC1. This leaves just the free parameter of TA1
566 which

can be adjusted to fulfill Eq. 48. This is accomplished with a simplex optimization routine

built into elegant to adjust the strengths of the sextupoles in A1. With the condition that

the strengths be mirrored across the arc, that is MSSF2F06 = MSF2F10 and MSF2F07 =

MSF2F09. Because the sextupoles were not adjusted in each step in the experiment, to

account for the change in RA1
56 , we optimize only to a single setting, that achieves maximum

compression in the drift after BC1.

The impact of the sextupoles on the longitudinal phase space immediately before the BC1

chicane can be seen in Fig. 4.9. The difference between the non-linearized and linearized

bunch at the exit of BC1 is then shown in Fig. 4.10. From Fig. 4.9 it can be seen how slight

the curvature and necessary correction are. This can be contrasted to the result downstream

of BC1 in Fig. 4.10(B) showing how extreme the curvature can become if not corrected. This

arises mainly from the non-linear terms of the chicane amplifying the curvature induced by

the rf field. It can also be seen, with the sextupole correction enacted, there now exists a
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Figure 4.9. Comparison of a bunch with sextupoles off (black) and on (red).
The longitudinal phase space immediately before the BC1 chicane is shown.

third-order distortion, a U5666 term, that presents itself. Correcting for this would require

the use of octupole magnets which are not in place in the beamline except for in the A2 arc

region.

It is interesting to examine how the energy loss along the beamline varies with the use

of second-order correction and how this, in turn, interacts with the momentum compaction

setting of the machine. In the condition that achieves maximum compression after BC1 it

can be seen (Fig. 4.11) that the locations of energy loss for the two cases differs considerably.

The corrected case shows that 85% of the energy is lost between BC1 and BC2, in contrast

to the uncorrected case where the energy loss is split between BC1 and BC2 (45% and 41%

respectively).

This result may seem somewhat surprising, but it is more easily understood by examining

how the longitudinal phase space looks in-between BC1 and BC2. In the case where the
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(a)

(b)

Figure 4.10. Comparison of a bunch with sextupoles off (black) and on (red).
The longitudinal phase space immediately after BC1 is shown in (A), and (B)
is the current distribution(histogram of (A)) at the end of BC1.
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Figure 4.11. Energy loss as a function of position along the beamline at
maximum compression after BC1 for sextupoles turned off (black) and on
(red).

sextupoles remain off, as in Fig. 4.12(A), it can now be seen that because of the non-

linearity the linear chirp will, of course, vary along the bunch. Because of this there exists

a small region that will further compress in BC2. Leading to the observed split in energy

loss between the chicanes. However, when the non-linearity is corrected the sense of linear

chirp remains intact along the entire bunch. Indeed, for the fully compressed bunch we see

that it is fully upright in phase space. Thus the entire bunch continues to rotate in the same

fashion, and we immediately decompress within BC2, leading to the CSR emission greatly

decreasing.

This mechanism, in fact, also provides the solution to one of the primary questions that

arises when looking at the experiment in the rising-rf versus the falling-rf data. That is

the appearance of an extra dip resolves in Fig. 4.6 but does not appear in Fig. 4.7. As

surmised before, this second dip corresponds to a the bunch fully compressing after BC2.
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(a)

(b)

Figure 4.12. The longitudinal phase space at the entrance (black) and exit
(red) of the BC2 chicane. Shown in (A) is the phase space with the sextupoles
turned off and in (B) with the sextupoles configured to provide linearization.
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However, we can now see why it is necessary that the sextupoles be correctly configured for

this to occur. Without the sextupoles, only a small fraction of the bunch will be compressed

within BC2. While, with the sextupoles set up correctly to linearize, the entire bunch will

be able to compress when the sense of chirp after BC1 is correct. Linearizing the bunch

is also useful in reducing intense CSR from the high particle density gradient that occurs

under nonlinear compression. As shown by Li [44] a bunch with the sharp current spike at

the head, indicative of nonlinear compression will produce a much stronger CSR wake as

compared to a Gaussian distribution even when the computed rms lengths are the same for

both. While the entire bunch energy loss may not be as large the impact on other bunch

properties can be significant. What will also be seen in the next section is that the sextupoles

not only have an impact on CSR intensity, but will have a large role to play in how the CSR

wake interacts with the bunch and influences the energy spectrum.

4.5.4. Energy Spectrum Measurement. During the measurements on the falling

side of the rf a synchrotron light monitor (SLM) was also being used to monitor the energy

spectrum at the center of the 180◦ bend in A2. This measurement shows how energy is being

redistributed through the bunch due to the CSR and LSC forces.

In Fig. 4.13 there is the distinctive formation of a ’spike’ and ’depletion region’ in the

energy spectrum. These structures are then seen to move, in a regular fashion, in position

along the spectrum. This occurs both when there is full compression at the end of BC1 as

well as at the end of A1. This movement of the ’spike’ from the high to the low side of

the energy spectrum proceeds as the bunch goes from under-compression through critical

compression and on to over-compression. Such an effect has been observed in measurements

at other facilities and even before during an earlier iteration of the JLab FEL [38][26][45].

It has been well understood that such fragmentation (also sometimes called filamentation)
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Figure 4.13. Measurements of the energy spectrum collected in the second
Bates arc (A2). The vertical axis is the population (arb. units) and the
horizontal axis is the energy (arb. units). As the compression is changed a
distinct spike and depletion region form and shift along the spectrum, shown
from (a) to (f) for the BC1 compression point and from (g) to (l) for the A1
compression point.

arises from the action of CSR and LSC forces on the beam. While, such effects have been

previously observed, there has not been a careful study conducted of the development of

fragmentation or what sensitivity it shows to changes in compression parameters. From the

data collected during this experiment we can actually perform such studies and draw several

significant conclusions about the formation of the fragmentation and about how it may be

reduced.

4.5.4.1. Development of the Spike. As seen in the measurement the movement of the

spike and trough move in a systematic fashion as the compression point in the machine is
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(a) (b)

Figure 4.14. (A) The longitudinal phase space of a compressed bunch after
BC1 is shown overlayed with the density distribution. (B) The density distri-
bution is shown together with the CSR wake at the end of the fourth dipole
in BC1. In both plots the head of the bunch occurs at t < 0.

being varied. It is clear that we should expect this phenomenon to have its origin in the

dynamics of the bunch compression. It is important to recall that during the collection

of the energy spectrum the sextupoles were not configured to properly suppress the bunch

curvature after compression. It is this fact that provides an answer to how this fragmentation

forms. As can be seen in Fig. 4.14 after compression at the end of BC1 the bunch has a

strong degree of curvature and so develops a very nonuniform charge density. This resembles

a spike at the head of the bunch with a long tail extending out from it. Because this spike

represents a significant fraction of the bunch charge the CSR wake will be strongly localized

to this area. Because of this a correlation is now drawn between particle energy and the

strongest region of energy loss, and this varies as a function of the A1 R56 setpoint.

It is also interesting to examine how the fragmentation develops along the length of

the beamline. As was previously shown, while the bulk of energy loss from CSR occurs

within the final dipoles of the chicane or arc there is still a non-negligible loss of energy

in the drift following the final dipole. This is due to the coasting beam and CSR wake
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continuing to propagate together and exchange energy. If we look, then, at how the energy

spectrum develops under the influence of CSR we see an interesting thing. The fragmentation

is almost non-existent when looking at the energy spectrum immediately after the final

dipole of BC1, as noted by the black line in Fig. 4.15. Instead, when we look at the

bunch again at the entrance to BC2 (the red line in Fig. 4.15) there is now a significant

degree of fragmentation that has formed. The wake in the drift will be much weaker than

that in the dipole, and the beam is no longer able to regenerate the wakefield and it will

Figure 4.15. Simulation of the energy spectrum as the beam progresses in
(a)-(f) from under-compressed to critically compressed to over-compressed. In
each plot the energy spectrum is examined at the end of BC1 (black), the
entrance to BC2 (red), and the middle of A2 (blue).
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dissipate ultimately. Nevertheless, the bunch is also no longer rotating in phase space, thus

the distribution the wakefield is acting on is stationary and there is a long period for the

interaction to occur. So even though the total energy loss is much less after the dipoles, from

the perspective of the energy spectrum what energy is lost and its impact on the bunch will

be much more severe. This fragmentation effect does not grow very much past the entrance

of BC2 as seen from the final energy spectrum at the measurement position in A2, shown

by the blue line in Fig. 4.15 due to the decompression of the bunch in BC2.

4.5.4.2. Movement of the Spike. We make the assumption that the bunch entering the

chicane is linearly chirped by some amount h where δ = hz, therefore the transfer function

through the chicane, to second order will be:

zf (δ) = z0 +R56δ + T566δ.(49)

Substituting in δ for the initial position z0

δ(h,R56, T566; zf ) = −(1 + hR56)

2hT566

± 1

2hT566

√

(1 + hR56)2 +
4T566

h2
zf .(50)

It can be seen from Eq. 50 that the inflection point of the parabola, formed by the

bunch, will shift in energy based upon −(1 + hR56)/2hT566. This term depends upon the

initial chirp which is held constant since the linac phase is not changed and due to the R56

and T566 settings of the lattice. Because these terms are changing during the experiment

the position of the inflection point, where the charge density spike is located, will shift up

or down in energy. As this shift occurs, there will be a corresponding shift in the region
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(a) (b) (c)

(d) (e) (f)

Figure 4.16. The longitudinal phase space overlayed with the energy spectrum at the beginning of BC2 (a)-(c)
and the beginning of BC1 (d)-(f). The horizontal line is the predicted point from Eq. 50.
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of the energy spectrum affected by the CSR wake. It is for this reason that we see, in the

experiment, this progression from high energy to low.

This also agrees well with simulation. When the inflection point from Eq. 50 is plotted

against the longitudinal phase space and energy spectrum (Fig. 4.16) there is a good match

to the development of the bunch shape in the phase space as well as the main region of

fragmentation which is centered around the predicted point.

4.5.4.3. Impact of the Sextupoles. Up to this point we have only considered the conditions

under which the experiment was performed. That is, with sextupoles not tuned correctly to

properly linearize bunch compression. We now look at what would happen in the case where

the sextupoles are properly set to fulfill this condition. If we consider what will happen to

the bunch in this case, we know that the charge density will be restored to a more uniform,

Gaussian profile and that the bunch length will be much shorter at maximum compression.

While the CSR wake will still be non-uniform along the bunch length the effect should be

expected to be less severe. Because the z-δ correlation will remain mostly linear there will

no longer be a significant correlation between the point of maximum field from the CSR

wake and average particle energy. This would lead to the conclusion that with proper use

of the sextupoles a condition can be achieved where the energy spectrum remains mostly

undisturbed, albeit the overall energy loss at maximum compression would be larger.

A comparison between the energy spectra contrasting the result for correctly tuned sex-

tupoles against the incorrectly tuned is shown in Fig. 4.17. Here the bunch is slightly

over-compressed. From this, it can be seen that correctly removing the non-linear compres-

sion can have the added advantage of also removing the energy fragmentation. Of course it

is already ideal to linearize the compression to reduce bunch length; however, this analysis
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Figure 4.17. Energy spectrum before BC2 for maximum compression be-
tween BC1 and BC2. The spectrum with sextupoles off is shown in black.
In red is the spectrum for full compression and sextupoles on. In blue the
sextupoles are on but the bunch is slightly over-compressed. The vertical axis
has been normalized.

demonstrates that for very short bunches it is necessary to correctly control curvature for

reasons beyond bunch length.

To make a more systematic study of the impact of the sextupoles on fragmentation we also

examine how variation in sextupole strength changes the energy spectrum again in simulation

in elegant. Unfortunately, experimental time on the JLab FEL was extremely limited, and

following our experiment the machine went into shutdown, removing any opportunity for

further experiments. To perform this simulation we step the sextupole strength from 0 to

300% of the nominal setting. The quadrupoles were set in all cases so as to provide maximum

compression at the end of BC1.
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(a) (b)

Figure 4.18. (A) Mountain range plot of the energy spectrum difference
from the baseline taken when the sextupoles are correctly set. The sextupole
strength is scaled from 0 to 300% of the correct setpoint for linearizing the
bunch. At the bottom left the sextupoles are completely off while at the
top right of the plot the sextupole strength has reach 300% of the correct
setpoint. (B) Baseline momentum distribution when sextupoles are set to
nominal strength.

The energy spectrum at 100% is taken as the baseline distribution (Fig. 4.18(B)), and we

subtract it out from the spectrum at each step. We also clip 10% of the bins on either end to

remove the impact of any edge effects. The resulting normalized spectra can be seen in Fig.

4.18(A). As the sextupole strength is varied the fragmentation forms and then dies off near

the optimal sextupole set strength; however, once the sextupole strength overshoots this

point the fragmentation tends to worsen significantly again. A quantitative description of

this same data is shown in Fig. 4.19 which shows the standard deviation (A) and maximum

deviation (B) of the spectra from the baseline. Both the standard deviation and maximum

deviation tend to grow together, showing the formation of several large spikes. This is to

be expected as the CSR impact is localized in position and there still exists a second-order

correlation between energy and position after BC1 when the sextupole correction is not used

or is set improperly.
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(a) (b)

Figure 4.19. The standard deviation (A) and the maximum deviation (B)
of the energy spectrum minus the baseline as the sextupoles are scaled from
0 to 300% of the correct sextupole setpoint for linearizing a bunch at full
compression after BC1. For both calculations the edges of the distribution are
excluded.

4.5.5. LSC Simulations. While transverse space charge forces are generally of lesser

importance in the ultra-relativistic regime there is still potential for longitudinal space charge

(LSC) forces to play a large role in beam physics for FEL drivers. In particular, when the

bunch is highly compressed the large concentration of charge can lead to a large, integrated

LSC force over a long transport section. As the beam coasts in the transport line, downstream

of compression, the LSC force will act on it causing energy modulation along the beam based,

in general, upon its 3-D distribution. However, as previously discussed we can employ an

approximation based upon a 1-D model of the beam to calculate the LSC impact. The

free-space 1-D LSC impedance per unit length [41] is then given in terms of the wavenumber

k = 2π/λ

ZLSC(k) =
iZ0

πkr2b

[

1− krb
γ

K1

(

krb
γ

)]

,(51)
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where Z0 is the impedance of free-space, rb is the bunch radius, and K1 is the modified

Bessel function of the first kind. It is important to note that in elegant this force is applied

in the supported beamline elements using a kick-drift-kick model. To ensure that this model

is accurate the space-charge oscillation period of the beam must be large in comparison to

the drift length. The space-charge oscillation period may be calculated [46] from

kSC =

[

4πk0
I0

γ3IA

|ZLSC(k0)|
Z0

] 1

2

(52)

Where I0 is the peak current of the bunch and IA ≈ 17kA is the Alfven current for elec-

trons. In the drift region between BC1 and BC2 the peak current is around 400A at peak

compression, the energy is E = 135 MeV = γmc20, and rb ≈ 0.5 mm on average. A plot of

the space charge oscillation period over a range of modulation wavelengths is shown in Fig.

4.20. From this we can see that even for extremely short wavelengths λ ≈ 1 µm the period

is much longer than the longest drift lengths L ≈ 20 m. Thus LSC forces will only result in

the buildup of energy modulation within the beam but longitudinal positions of the particles

will remain frozen along the drift.

4.5.5.1. Simulation Setup. As with the CSR simulation setup, close attention is paid

to make sure that the simulation parameters chosen will produce convergent results and

will not be overrun with numerical noise. Because the LSC force is calculated using the

1-D impedance, it is necessary to bin the longitudinal distribution so that it may be Fourier

transformed. Noise from this process must be carefully controlled or it may artificially induce

microbunching in the simulation [47]. Fortunately, we are primarily concerned with effects

on a much larger scale then typical microbunching wavelengths, and the process we wish

to examine does not start up from noise. Rather, energy fragmentation will lead to very
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Figure 4.20. The space charge oscillation period as a function modulation
wavelength (shown for typical beam parameters downstream of BC1).

long-wavelength density modulation of the bunch after passage through BC2 or in A2. To

control high frequency noise in the LSC calculation elegant uses a low-pass filter of the

form

F (f) =



































1, f < c1fN

f−c2fN
(c1−c2)fN

, c1fN ≤ f ≤ c2fN

0, f > c2fN

(53)

where fN is the Nyquist frequency and 0 < c1 < c2 < 1. Using 200 bins with c1 = 0.25 and

c2 = 0.3 will suppress wavelengths below 36 µm. Using this high bound for noise suppression

allows for use of fewer particles than might otherwise be required while still suppressing the

occurrence of artificially induced shot-noise microbunching [48]. An example is shown in Fig.

4.21 of the charge density distribution at the end of BC2 for a bunch near full compression

and with sextupoles improperly set. In general, good convergence and noise reduction is
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Figure 4.21. The longitudinal density distribution at the end of BC2 for
various macroparticle counts in Elegant with LSC enabled.

seen for macroparticle counts beyond 400K so for the LSC simulations shown we will use

500K macroparticles.

4.5.5.2. Simulation Results. Since longitudinal space charge force is nothing more than

the Coulomb force, we should expect that the inclusion of LSC now, in the simulation,

should not significantly impact the results of the energy loss measurement. The bunch, in

this instance, constitutes an isolated system and thus the space charge force acting within

the bunch should not change the total energy. The energy loss along the beamline with LSC

forces included in addition to CSR remains unchanged as shown in Fig. 4.22 when compared

to simulation with only CSR enabled. There is some very slight deviation observable between

the result with LSC on and off that can be seen which is due to the slight deformation of the

bunch during acceleration in the linac. It will be seen, however, that energy fragmentation is

further enhanced, which will lead to some density fragmentation when the bunch encounters

a non-zero R56 region. This does not lead to much increase in CSR emission though. This

is due to the fact that fragmentation always occurs when the bunch is most compressed,
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Figure 4.22. Simulated energy loss as a function of R56 setting in A1. The
simulation without LSC is shown in black and with LSC is shown in red. In
both cases CSR is enabled.

subsequently the bunch will decompress when additional momentum compaction is applied.

Thus, even though density fragmentation may still form, the individual fragments remain

quite long, on the order of picoseconds.

There is a significant enhancement in the energy fragmentation that occurs from the

introduction of LSC into the simulation, however. As is suggested in Fig. 4.23 the shifts

in particle energy that occur around the point of maximum field strength are equivalent or

greater for LSC as compared against CSR in the beamline between BC1 and BC2. While the

integrated contribution from LSC is quite significant the maximum force will be much less

than that from CSR. However, the LSC force will remain almost constant over this whole

distance until the bunch is decompressed in BC2. The force from CSR will quickly diminish

as the radiation intensity drops off with distance due to the increasing solid angle. We can
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Figure 4.23. Energy spectrum at the center of A2 for simulations with LSC
turned off (red) and on (black). CSR is enabled in both cases.

estimate the strength of CSR versus LSC to give a relative comparison of their impact.

Assuming a steady-state 1-D CSR wake and assuming a Gaussian distribution

dECSR(z)

ds
= − 2e2N

31/3
√
2πR2/3σz

∫ z

−∞

d

dz′
e−

z′2

2σz
dz′

(z − z′)1/3
,(54)

gives a maximum energy change of 320 keV/m at the end of the final dipole of BC1. A

simple estimate can be made of the LSC force from the equation [49]

dELSC(z)

ds
= −2e

γ2

∂λ(z)

∂z
ln(

b

a
),(55)
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Figure 4.24. Comparison of total energy loss due CSR (red), LSC (blue),
and both LSC and CSR (white) accumulated between BC1 and BC2 at full
compression after BC1.

where b is the pipe radius and a is the beam radius and λ(z) is the linear charge density. This

gives a constant change of 8 keV/m along the beamline. However, because both CSR and LSC

forces are related to the derivative of the charge distribution they will have similar shaped

wakefields and should contribute to energy loss and gain in roughly the same longitudinal

regions. This leads to the large increase in energy fragmentation that can be seen in Fig.

4.23. The contributions from LSC and CSR may be separately quantified in elegant by

looking at the change in energy particle by particle. The result is shown in Fig. 4.24. The

LSC wake can be seen to impart fairly considerable energy gain to the head of the bunch,

while the minima of the CSR and LSC wake are situated quite closely together.
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It is also important to note that the LSC force contributes significantly to energy gain

of particles at the head of the bunch. This energy gain will also help to increase the level of

fragmentation as compared to the CSR-only result. The development of the fragmentation

with both LSC and CSR enabled can be seen in Fig. 4.25. The fragmentation develops and

moves along the energy distribution in much the same manner as before, though the relative

depth is more consistent with that observed in the experiment in Fig. 4.13, as opposed to

fragmentation with only CSR (as in Fig. 4.15). As before, fragmentation primarily develops

in the distance between BC1 and BC2 (about 20 m), in BC2 the bunch will decompress

causing LSC forces to be greatly reduced with the drop in peak current.

The same development is also observed along the 22-m length between A1 and BC1.

Here, even with both intervening chicanes before the final observation point there is no

significant further change in the energy spectrum after BC1, again due to decompression. It

is particularly interesting to note in this case, though, that the R56 of the chicanes will cause

transfer of the fragmentation from the energy spectrum into the longitudinal density profile

of the beam. The density distribution corresponding to the energy spectrum in Fig. 4.26(c) is

shown in Fig. 4.27. The modulation in the density that has formed is akin to microbunching,

and of course, has the same basic formation mechanism. The energy fragmentation from

CSR and LSC has caused lower energy electrons to shift ahead in position while higher

energy electrons fall back when the bunch passes through a region with non-zero momentum

compaction. The key difference from microbunching is that the density modulation does not

arise stochastically. The effective modulation wavelength in this case is also an appreciable

fraction of the bunch length. In the example the modulation wavelength is over 1500 µm,

much longer than the standard regime for microbunching of < 100 µm. Regardless, the

strong fields formed after compression can still be seen to produce undesirable effects on the
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(a) (b)

(c) (d)

(e) (f)

Figure 4.25. The energy spectrum of the bunch is shown at three positions:
the exit to BC1 (black), the entrance to BC2 (red), and the middle of A1 (blue).
Compression at the end of BC1 is varied from under-compressed through to
over-compressed in (A)-(F).
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beam and it is desirable to understand under what conditions we may minimize this strong

fragmentation effect, in particular from LSC.

4.5.5.3. Minimizing LSC Impact. It is quite clear from both the experimental data and

simulation that LSC can have a profound effect upon the longitudinal phase space of a highly

compressed electron bunch. Energy fragmentation is seen to be an issue after compression

and if multiple compression stages are desired in the accelerator this could possibly lead to

density fragmentation [50]. To gain a better understanding of how the charge distribution

impacts the magnitude of the LSC field we use Eq. 55 to calculate the induced field from

LSC along the bunch. For ease of calculation we start with a Gaussian distribution in the

longitudinal phase space that has an energy dependence described by δ(z) = hz + kz2. The

distribution in the longitudinal plane ρ(z, δ) is then

ρ0(z, δ) =
N

2πσzσδ

e
−

z2
0

2σz
−
(δ0−hz0−kz2

0)
2

2σδ(56)

Up to second order and ignoring radiative effects, when the bunch compresses in some

region the coordinates will be transformed to,

δ0 = δf(57)

z0 = zf −R56δ0 − T566δ
2
0(58)

The transformed distribution will then be
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(a) (b)

(c) (d)

(e) (f)

Figure 4.26. The energy spectrum of the bunch is shown at three positions:
the exit to A1 (black), the entrance to BC1 (red), and the middle of A1 (blue).
Compression at the end of BC1 is varied from under-compressed through to
over-compressed in (A)-(F)

86



Figure 4.27. The longitudinal charge distribution at the entrance to A2 for
a bunch compressed at the end of A1.

ρf (z, δ) =
N

2πσzσδ

e−
(zf−R56δf−T566δ

2

f)
2

2σz e
−

(

δf−h(zf−R56δf−T566δ
2

f)−k(zf−R56δf−T566δ
2

f)
2
)2

2σδ(59)

The projected charge distribution λ(z) =
∫∞

−∞
ρf (z, δ)dδ can then be used to find the

corresponding LSC field. Two results are examined in Fig. 4.28 using the parameters given

in Table. 4.1. In the first case the linear approximation is applied to the distribution and

transport, that is k = 0 and T566 = 0. This results in a purely Gaussian distribution both

before and after compression. By contrast, the more realistic situation is examined for

a bunch using typical parameters from the JLab FEL without second-order compensation

via the sextupoles. After compression, the Gaussian distribution has morphed to a highly

asymmetric distribution with a strong leading spike (as was seen in simulation under similar

conditions). The result is that the peak LSC field grows by a factor of 20 for the nonlinear

distribution as compared with the linear case.
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Table 4.1. Parameters used to calculate bunch profile and LSC fields for lin-
ear compression, nonlinear compression, and compression with T566 corrected
to linearize the bunch.

Type Q [pC] σz [mm] σδ h [m−1] [m−2] R56 [m] T566 [m]
Linear 135 3.2 5.00E-05 -5 0 0.21 0
Nonlinear 135 3.2 5.00E-05 -5 -450 0.21 -2.5
Corrected 135 3.2 5.00E-05 -5 -450 0.192 3.478

(a) (b)

Figure 4.28. (A) Longitudinal density for linear transport (red) and non-
linear transport (blue) and (B) the corresponding LSC fields calculated from
Eqs. 55 and 59.

The greatly increased LSC field is due to a very sharp gradient for the nonlinear bunch.

To correct for this we may, as before, apply sextupoles to counter the induced curvature.

By running the bunch slightly before full compression and setting T566 accordingly, we can

create a much more gently sloped bunch after compression with comparable peak current,

Fig. 4.29. Comparing the magnitude of the LSC field in Fig. 4.29 against that in Fig. 4.28

it can be seen that even though the peak current is comparable, the field has been reduced

by a factor of 5. In this way, similar to that for CSR, we may reduce the impact of LSC on

the longitudinal phase space, even for very high compression ratios.
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(a) (b)

Figure 4.29. (A) Longitudinal density for adjusted setting of T566 to linearize
transport (B) the corresponding LSC fields calculated from Eqs. 55 and 59.
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CHAPTER 5

2D CSR Simulations

While the CSR 1D-model representation provides a computationally efficient means to

include CSR into beam dynamics simulations, the conditions under which this model is valid

must be understood. Several studies [51–53] using a variety of codes to model CSR in 2D

(bending-plane and longitudinal motion) and 3D have shown, generally, that there are small

discrepancies between the 1D projected model and more accurate treatments. Unfortunately,

few experiments exist demonstrating good comparison between experimental data and the

1D and 2D models. One example performed on the LCLS [28], does compare the projected

model in IMPACT-Z [54], elegant and CSRtrack’s [55] 2D ’g to m’ method to experimental

results. However, the properties of the electron beam; namely, that it is long compared to

the transverse dimension and so effectively 1D in nature, suggest that good agreement is

expected, as was observed.

Though the discrepancy between 1D and 2D CSR models has not been seen to be es-

pecially large, it would still be expected to present on some level. It is thus important to

examine the lattice and beam conditions of the JLab FEL to determine whether the projected

model should be expected to hold. This validity is normally gaged using the Derbenev crite-

rion [21], a comparison of the beam transverse and longitudinal dimensions while in a dipole

magnet. This criterion is violated through large portions of the JLab FEL BC1 chicane. It

is therefore necessary and also interesting to compare the 1D results to a more comprehen-

sive CSR model. Here we will show results using CSRtrack’s 2D ’g to p’ model that uses

a pseudo-Green’s function approach with Gaussian sub-bunches [56]. As will be shown the

differences observed in the average properties of the bunch between the 1D model and 2D
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model are not significant. Our previous observations, both experimental and in simulation,

namely, the average energy loss and bunch fragmentation agree very well between the 1D

and 2D models. However, there are novel effects that can be observed in the 2D simulation

of the beam passing through the chicane region that seem to be related to transverse particle

motion. It is possible that such effects might be exploited to provide a direct observation of

2D CSR effects in an experiment.

5.1. The Derbenev Criterion

As previously discussed in Chapter 2 the projected 1D CSR model commonly used to

perform beam simulations including CSR effects should in theory suffer in accuracy the far-

ther the beam shape diverges from a line in the x-t plane. The geometric criterion employed

in determining whether the 1D projected model is valid is

σx

(

1

Rσ2
z

) 1

3

≪ 1,(60)

where σx is the beam size in the bending plane of the dipoles of the chicane, R is the bending

radius of the dipoles, and σz is the bunch length. For a bunch of length σz traveling through

some angle φ on an arc of radius R (shown in Fig. 5.1) the overtaking length is the distance

the bunch will travel along the arc before the radiation from the tail of the bunch reaches

the head.

For φ ≪ 1 this overtaking length will be approximately the line AB in Fig. 5.1 and will

be given in terms of R and σz as
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Figure 5.1. For radiation emitted from the tail of a bunch at some time t

AB ≈
(

24R2σz

) 1

3 .(61)

From this it is then easy to find BC in terms of the same parameters

BC ≈ 2
(

24Rσ2
z

) 1

3 .(62)

The expectation in the 1D CSR model that all particles should follow the central trajectory

then requires that

σx

BC
≪ 1.(63)

This requirement is sometimes referred to as the Derbenev criterion [21]; we will define
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κ ≡ σx

(

1

Rσ2
z

) 1

3

,(64)

as the Derbenev parameter. In theory κ should provide a measure of the divergence between

the 1D projection and a more complete 2D model, such as used in CSRtrack. In regions

such as the final dipoles of the chicane the beam will be dispersed in the bending plane

creating a larger apparent size σx, while the bunch length will have become quite short,

leading possibly to large values for κ. With the short bunch length, CSR production will be

maximized, creating a potentially troublesome situation where the 1D model could fail at a

position where the CSR effect is the most potent.

For the JLab BC1 chicane the parameter κ is plotted in Fig. 5.2 along the length of the

beamline using beam parameters from the elegant model. Three cases are shown based

on the bunch compression state at the end of chicane. The under-compressed bunch, that

is a bunch exiting the chicane with a positive chirp, and an R56 setting in the first arc of

RA1
56 = 0.695 m. The critically-compressed bunch, which is fully upright and has no chirp,

which will be for RA1
56 = 0.655 m. Finally the over-compressed bunch, which will exit the

chicane with a negative chirp, at RA1
56 = 0.614 m. The maximum value of κ occurs, as

expected, in the third dipole where dispersion is high and the bunch length is short. While

the bunch length can be even shorter in the fourth dipole the dispersion is trending to zero

at the end of the chicane due to its achromatic design, greatly reducing κ. The rollover

that is observed in the third dipole is due to the longitudinal dynamics of the bunch as it

undergoes compression. Here the over-compressed bunch will over-rotate in the third dipole,

passing through maximum compression and flipping the sign of its chirp before increasing in

length again. However, the critically compressed case also begins roll-over within the third
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Figure 5.2. The Derbenev parameter, defined in Eq. 64, is plotted as a
function of position within the BC1 chicane. Three cases are shown, under-
compressed in red, critically-compressed in blue, and over-compressed in green.

dipole. This is because the fourth dipole provides a small positive momentum compaction

term. Thus, for full compression the bunch will slightly over-compress in dipole three before

rolling back upright in the final dipole. We would expect, then, that if there is significant

deviation between the 1D and 2D simulations it would occur in and immediately after the

third dipole as this is both where κ reaches its maximum and where the integrated value of

the CSR effect will be at its highest local level.
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5.2. BC1 Chicane Model in CSRtrack

Because of the greatly increased computational effort for calculating the CSR field in 2D

we model in CSRtrack only the BC1 chicane. To be able to study the CSR in the drift a 4 m

drift space included beyond the end of the final dipole of the chicane to allow for continued

interaction between the co-propagating CSR and electron bunch. This drift is included in

both CSRtrack and elegant. After 4 m, the energy loss rate has fallen by a factor of 100

and should no longer by relevant.

Fig. 5.3 shows a comparison of the particle phase space at the end of the chicane, for

an over-compressed bunch, as computed by elegant and CSRtrack. Both simulations were

performed with CSR off. The match between the two models is excellent in the longitudinal

plane; however, as shown in 5.3 (a) and (b) the horizontal and vertical planes do not match

as well. This is due to the impact on particles by the fringe field of the dipole in CSRtrack.

The fringe fields are included in CSRtrack, but field parameters are not controllable.

Since only the chicane is modeled in CSRtrack the initial beam distribution at the BC1

entrance is taken from the full lattice simulation in elegant. The distribution at the chicane

entrance is then down-sampled to 25k macroparticles. The down-sampling is performed

randomly using the sddsprocess program. This distribution is then converted to the ASTRA

input format [57] which is accepted by CSRtrack. While the lower macroparticle count is

necessary to prevent prohibitively long run-times this random sampling does induce a level

of jitter into the bunch statistics. This jitter, while small, is particularly appreciable for

the energy loss measurement where the fractional energy difference between the elegant

distribution and the sample distribution used in CSRtrack can be almost 15% of the total

fractional energy loss from CSR along the chicane. Fortunately, in the ultra-relativistic

regime the CSR force is energy-independent as long as σz > R/cγ3 [19]. For the BC1
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(a) (b)

(c)

Figure 5.3. Comparison between CSRtrack and Elegant in blue and green
respectively with CSR calculations turned off in both simulations. Shown from
the top left going clockwise are the horizontal phase space (in the bending
plane), the vertical phase space, and the longitudinal phase space. For the
horizontal and veritcal planes the ellipse calculated from the Twiss parameters
of each bunch is shown.

chicane σz is at a minimum 150 fs while R/cγ3 is 0.2 fs, so this method should not perturb

the results. To remove this jitter from the data all energy loss values must be normalized by

the initial average energy of the bunch for that simulation step.
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5.3. Simulation Results and Analysis

Due to only including the BC1 chicane we are restricted to only making comparisons

between the simulated results and cannot make any direct comparison to measurement data.

For the comparisons shown here the elegant model, used previously, is compared against

CSRtrack. CSRtrack can be run in both 1D and 2D CSR modes with the 1D mode using an

equivalent model to that employed by elegant. In the elegant simulations the quadrupole

strength of the A1 quadrupoles is scanned with shifts of 3.4 mm in RA1
56 . To limit the

computation time we choose to simulate intervals of 13.6 mm of momentum compaction

in CSRtrack. Since only the BC1 chicane is modeled, we constrain the scan to the region

around full compression at the end of BC1, from RA1
56 = 0.55 to 0.75 m. Fig. 5.4 shows

the comparison of energy loss versus momentum compaction in A1 for the 1D model in in

both CSRtrack and elegant and the 2D model in CSRtrack . All three cases show good

agreement. The 2D CSR model does have slightly higher energy loss on average, though the

level of discrepancy would be too small to be resolved experimentally. Notionally, it might

be expected that the total energy loss would be reduced in the 2D model as compared to

the 1D model due to the fact that in the 1D projection the electron separation distances

will tend to be underestimated. However, this is not seen in the result here, nor is it clearly

shown to be the case in other studies that show a mix of results [28, 58–61]. It is clear, then,

that the situation is somewhat more nuanced than this simple approach would suggest.

To gain a better understanding of where one sees a divergence between the 1D and 2D

models we first look at the level of compression at the end of the chicane. In Fig. 5.5

the bunch length at the end of the chicane is plotted for the three models, again as a

function of the A1 arc momentum compaction. The result shows that there is no difference
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Figure 5.4. The energy loss due to CSR in the BC1 chicane is plotted as a
function of RA1

56 , the momentum compaction, in the first arc. The black line
shows the result for Elegant, the red and blue symbols show the 1D and 2D
results from CSRtrack.

in compression between any of the models. This is reassuring and quickly removes from

consideration one of the more obvious sources of possible discrepancy between the models.

We next turn to looking at the average energy loss as a function of position in the chicane.

In the case of an under-compressed bunch, corresponding to RA1
56 = 0.695 m and shown in

Fig. 5.6, it is seen that the most significant deviation occurs in the drift space between the

third and fourth dipoles. Almost all bunch compression has completed by the end of the

third dipole so the bunch is very close to its minimum length, under these conditions, at this

point. The peculiarity shown in the 2D model in this drift region is that rather than the

rate of energy loss tapering off there is actually a clear increase in the rate of energy loss, as

the bunch approaches the entrance to the fourth dipole.
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Figure 5.5. The bunch length at the end of the BC1 chicane is plotted as a
function of RA1

56 , the momentum compaction, in the first arc. The black line
shows the result for Elegant, the red and blue symbols show the 1D and 2D
results from CSRtrack. Note that red and blue symbols are directly over top
of each other.

Much the same behavior is observed in the critically-compressed case (RA1
56 = 0.655 m,

shown in Fig. 5.7). Again, the only significant deviation occurs in the drift between the

final two dipoles, and again the rate of energy loss is observed to increase in the latter half

of the drift. This change in energy loss rate corresponds to a rotation of the bunch in the

horizontal phase space. The βx function is steadily decreasing in this drift and reaches a

minimum immediately before the entrance to the fourth dipole. In contrast, within the drift

downstream of the chicane βx is rapidly increasing corresponding to the more rapid dying-off

of energy loss in the 2D CSR simulation when compared to the 1D result. The effect of this

rotation is examined in more detail later.
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(a)

(b)

Figure 5.6. Shown in (a) is the energy loss as a function of position in the
BC1 chicane for RA1

56 = 0.695 m with the 1D and 2D CSRtrack results shown
in red and blue respectively and the 1D result from Elegant in black. The

rate of energy loss d〈p〉
〈pi〉ds

is shown in (b). The vertical black lines represent the

boundaries of the four dipoles.
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(a)

(b)

Figure 5.7. Shown in (a) is the energy loss as a function of position in the
BC1 chicane for RA1

56 = 0.655 m with the 1D and 2D CSRtrack results shown
in red and blue respectively and the 1D result from Elegant in black. The

rate of energy loss d〈p〉
〈pi〉ds

is shown in (b). The vertical black lines represent the

boundaries of the four dipoles.
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While the region of interest remains the same in the over-compressed case, with RA1
56 =

0.614 m, in Fig. 5.8, the effect that is observed is quite different. Here there is actually a

small, but significant, energy gain region starting out 0.15 m from the entrance to the final

dipole. This energy gain appears to be related to particle motion in the x-axis. Shown in

Fig. 5.9 is the bunch distribution in the x′-t plane. The particle coloring is based on particle

energy change between two successive simulation steps 0.1 m apart with the initial position

located 0.25 m from the edge of the fourth dipole. Regions of energy loss or gain are highly

clustered in x′-t. In general the region of maximum energy change occurs at the position

of peak current in t. For the critically compressed case (Fig. 5.9(a)) the bunch assumes a

sharply-peaked, Gaussian distribution with minimal tails. However, for the over-compressed

case (Fig. 5.9(b)) the current distribution is very asymmetric and peaks around 2 ps with

a long tail trailing behind. Whether particles in the band around the peak current gain or

lose energy seems to be determined by their movement in x. For critical-compression the

majority of the bunch is losing energy with only one small region showing significant energy

gain with those particles moving sharply towards the inside of the chicane. In the case of the

over-compressed bunch most of the tail is experiencing no change in energy. Particles gaining

energy are located at the head of the bunch and are all at positions x′ < 0.This correlation

between energy change and x′ might suggest that there could be a significant contribution

from horizontal CSR fields contributing a strong vxEx term to the energy change.

Ultimately, while significant differences appear when the electron beam evolution is ex-

amined along the chicane, the integrated result at the end of the chicane does not seem to

deviate substantially between the 1D and 2D models. On one hand, it is reassuring that the

computationally non-intensive 1D model seems to provide reliable results even when a key

assumption upon which it is built would seem to be violated for this experiment (see Fig.
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(a)

(b)

Figure 5.8. Shown in (a) is the energy loss as a function of position in the
BC1 chicane for RA1

56 = 0.612 m with the 1D and 2D CSRtrack results shown
in red and blue respectively and the 1D result from Elegant in black. The

rate of energy loss d〈p〉
〈pi〉ds

is shown in (b). The vertical black lines represent the

boundaries of the four dipoles.
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5.2). At the same time, it is unfortunate that we would seem to be denied an opportunity

to better validate the relatively unvetted 2D CSR models since we only have the data set

here. However, this study does suggest some hope in this regard. If the local properties

of the CSR energy loss within the bunch can be strongly influenced through manipulation

of the x-plane distribution of the bunch it may be possible to perform an experiment that

would expect to produce a measurable deviation between observed result and the expected

outcome within a 1D simulation. If such an experiment could be performed in this manner it

would certainly be quite novel, both for direct testing for a 2D CSR effect and for reliance on

manipulation of the transverse phase space to impact CSR interaction, rather than varying

bunch compression.

5.3.1. Energy Spectrum Fragmentation. One advantage to CSRtrack is that space

charge forces are automatically included when tracking with the 2D CSR model. This allows

for easy comparison to elegant and its 1D LSC model. The downside is that internally,

within CSRtrack, no distinction is made between forces from CSR and those from space

charge. Thus a direct comparison of the LSC field between the two simulations is not

possible at arbitrary points along the beamline. We can, however, compare the energy

spectrum at the end of each simulation to see how the combined CSR/LSC forces have

impacted it. Given that elegant’s 1D LSC model includes a number of assumptions about

beam properties and was originally implemented to study microbunching [46], and not as a

general space charge model, there exists some question about whether it is valid to use in

modeling our experiment.

The energy spectrum of the bunch at the end of the 4 m downstream drift is shown in

Fig. 5.10. The 1D CSR model in CSRtrack does not include any space charge forces and

shows only very small levels of fragmentation. However, we see that the 2D CSRtrack results
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(a)

(b)

Figure 5.9. Plots x′-t for (a)the critically-compressed bunch and (b) the
over-compressed bunch. The heat map is based upon energy change between
two successive steps in the simulation starting 0.25 m from the entrance to the
fourth dipole. (Note that in this plot t > 0 is the head of the bunch.)

match very well with result from elegant, which uses 1D models for both CSR and LSC.

This agreement suggests that the use of elegant is appropriate in this regime and validates

our previous work shown on the study of the energy spectrum fragmentation
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(a) (b)

(c)

Figure 5.10. The energy spectrum is plotted for the under-compressed,
critically-compressed, and over-compressed cases in (a), (b), and (c). The
1D CSRtrack result is shown in red, the 2D CSRtrack in blue, and 1D Elegant
in black.
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CHAPTER 6

Conclusion

In this work, we outlined the utility of electron-beam-based light sources and describe in

detail several important collective effects that can lead to a decrease in performance of these

systems, namely coherent synchrotron radiation (CSR) and longitudial space charge (LSC).

As a push continues to higher average power the energy recovery linac (ERL) is becoming a

very attractive option for a number of proposed facilities, both for light sources and particle

accelerators for nuclear physics. The impact of CSR and LSC on the electron beam has the

potential to damage the electron beam and may be particularly severe in ERLs due to the

large number of dipoles required as compared to a standard, single-pass linac. This makes

the study of CSR and other collective beam effects critical to the successful construction of

the next generation of light sources and other accelerators, such as the MEIC ERL cooling

ring.

We have shown the results from an experiment performed on the Jefferson Laboratory

(JLab) ERL driven FEL. The JLab FEL is capable of providing kilowatts of average power

in the IR spectrum. The capabilities of this FEL make it a world-class test-bed for studying

collective effects in an ERL. In our experiment we studied how CSR emission varies as

a function of compression point within the machine. The unique structure of the JLab

FEL with its control of momentum compaction using the recirculation arcs and multiple

chicanes makes this experiment particularly unique. With this structure we were able to

study multiple compression points on both sides of the acceleration rf wave. A comparison

of the data collected to simulations using elegant and the 1D CSR model of Saldin et al.

showed good agreement between experiment and simulation. This is the first time that such

107



experimental validation of the use of elegant to model CSR over such a broad range of

longitudinal dynamics has been shown. This work provides reassurance that the 1D CSR

model remains a useful tool for studying the design of recirculation arcs in future ERLs.

In addition, data was also collected of the energy spectrum of the beam as a function of

compression. From this data a ’fragmentation’ of the energy spectrum was observed. The

energy around which fragmentation is centered varies in a regular fashion based upon com-

pression point. Simulation in elegant showed that this fragmentation is, in part, the result

of CSR propagating into the drift space beyond the chicanes and arcs where it will continue

to interact with the beam. This result highlights the need to include accurate modeling of

CSR-beam interaction outside of dipoles, as there are still critical interactions outside of the

dispersive dipole regions. Also of importance, it was shown that the sextupoles, employed to

remove longitudinal curvature and improve compression also will compensate for this frag-

mentation effect, creating a more uniform energy spectrum. The energy fragmentation effect

has been observed at a number of accelerators previously but a complete explanation of how

to remove the effect has never been shown prior to this. While CSR in the drift space plays

into this fragmentation, simulation also showed that longitudinal space charge (LSC) can be

an even more dominant contributor to the fragmentation effect. Fortunately, removing the

sharp current spike that arises from non-linear compression can help to significantly alleviate

the contribution of LSC to fragmentation.

Finally, the results of 2D CSR simulations in CSRtrack were shown. These simulations

show, in general, good agreement between the 2D CSR model and the 1D model in both

CSRtrack and elegant. However, there were observed peculiarities in the rate of energy

change in the drift spaces following dipoles where the beam was strongly compressed. While

this effect does not seem to significantly alter the average properties of the beam, it may
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provide a mechanism by which to directly observe discrepancies between the 1D and 2D CSR

models using a carefully designed experiment. This would be significant in allowing a path

forward to directly test more complete 2D and 3D CSR models.

The work shown here demonstrates the importance of having a full understanding of

CSR, if future ERL-based accelerators are to be successful. A method of reducing the im-

pact of CSR on the electron bunch energy spectrum was demonstrated theoretically and in

simulation. However, ultimately this work should be tested directly in an actual ERL. An

experimental study on the impact to CSR of longitudinal phase space curvature manipula-

tions via sextupoles would provide a much greater understanding of the effects shown in this

work. In addition, while the 1D CSR model has proven a very effective tool the parameter

space within which it is applicable is still not understood. In order to have confidence in

future ERL designs it is necessary to more fully test for 2D and 3D CSR effects. Simula-

tions we have shown, with CSRtrack, suggest that an experiment focusing on imaging bunch

structure might be able to resolve discrepancies between the 1D and 2D CSR models. This

would provide more information about the bounds of the 1D CSR model. As we continue to

push the boundaries of technical progress in particle accelerators we must make sure that we

have an increasingly more precise understanding of all relevant effects on the beam. This will

only be achieved, ultimately, through continued experimental study to validate and refine

our theories and simulation.
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APPENDIX A

Transport Notation

Transport notation, originally developed by K.L. Brown [62], provides a formalism for

describing the motion of a particle beam as traverses a particle accelerator. The state of

each particle in the bunch may described in terms of the vector

(65) ~W =
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The transverse coordinates are x and y and the canonical transverse momentum is mea-

sured in terms of the particle’s divergence from the central path x′ = dx/ds. The longitudinal

coordinate along the central path is βct, and δ is the fractional momentum deviation p−p0/p0

where p0 is the reference momentum.

For linear transport through some arbitrary element of the accelerator the final coordinate

vector of a particle ~W (1) can be found through the transformation of the initial state ~W (0)

by
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(66) ~W (1) = A ~W (0) =







































R11 R12 R13 R14 R15 R16

R21 R22 R23 R24 R25 R26

R31 R32 R33 R34 R35 R36

R41 R42 R43 R44 R45 R46

R51 R52 R53 R54 R55 R56

R61 R62 R63 R64 R65 R66













































































x

x′

y

y′

βct

δ







































0

.

Where the matrix A is determined by the fields of the element. For a series of multiple

elements in sequence from A0 to Ai the final coordinates the exit of the ith element may be

found from

(67) ~W (1) = Ai...A2A1
~W (0)

This system may be extended to arbitrary order with the ith coordinate Wi(1) being

given by

Wi(1) =
6
∑

j=1

RijWj(0) +
6
∑

j=1

6
∑

k=1

TijkWj(0)Wk(0)+(68)

6
∑

j=1

6
∑

k=1

6
∑

l=1

UijklWj(0)Wk(0)Wl(0) + ...
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APPENDIX B

Accelerator Coordinate Conventions

In accelerator design it is typical to have some ’ideal’ path through the accelerator, such

a particle will, in general, be possessed of an energy we designate as the design energy of the

accelerator and follow a perfect path through the center of the beamline and all elements

comprising the accelerator. Because of this we are most concerned then with how the real

particles of the beam will behave as they deviate from this design path.

This leads to a system, as in Fig. B.1, where the particle moves on the curved, reference

trajectory with radius of curvature ρ0(s). The transverse axes are then always perpendicular

to this reference trajectory.

Figure B.1. The ideal reference trajectory through the accelerator along a
path s with radius of curvature ρ0(s) is shown. Particles in the bunch can
then be defined in terms of their deviation from the reference particle, given
as the vector δρ(s)
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While there are no strict constraints placed on the form of this reference trajectory,

because we are dealing with a physical system that has numerous design constraints it is

usual to think of the reference trajectory as being closed and lying in a the x-z plane. This

is important for our consideration in discussing CSR as the beam will be bent only in this

single plane, leading to significant dispersive effects only in x, and allowing us to neglect the

vertical particle motion (along the y-axis).

More formally this constitutes a Frenet-Serret coordinate system [18]. Where we define

the trajectory of a particle relative to the reference trajectory as

(69) ρ(s) = ρ0(s) + δρ(s).

The three unit vectors of this coordinate system are then

ẑ ≡ dρ0/ds

|dρ0/ds|
(70)

x̂ ≡ −ρ0(s)
dẑ

ds
(71)

ŷ ≡ ẑ × x̂.(72)

Based on this the particle’s deviation from the ideal particle on the reference trajectory in

Eq. 69 is then

(73) δρ(s) = xx̂+ yŷ + zẑ.
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