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ABSTRACT 

 

 

APPLICATIONS OF INERTIAL MEASUREMENT UNITS IN MONITORING 

 

 REHABILITATION PROGRESS OF ARM IN STROKE SURVIVORS 

 

 

Constraint Induced Movement Therapy (CIMT) has been clinically proven to be 

effective in restoring functional abilities of the affected arm among stroke survivors. 

Current CIMT delivery method lacks a robust technique to monitor rehabilitation 

progress, which results in increasing costs of stroke related health care. Recent advances 

in the design and manufacturing of Micro Electro Mechanical System (MEMS) inertial 

sensors have enabled tracking human motions reliably and accurately. This thesis 

presents three algorithms that enable monitoring of arm movements during CIMT by 

means of MEMS inertial sensors. 

The first algorithm quantifies the affected arm usage during CIMT. This 

algorithm filters the arm movement data, sampled during activities of daily life (ADL), 

by applying a threshold to determine the duration of affected arm movements. When an 

activity is performed multiple times, this algorithm counts the number of repetitions 

performed. Current technique uses a touch/proximity sensor and a motor activity log 

maintained by the patient to determine CIMT duration. Affected arm motion is a direct 

indicator of CIMT session and hence this algorithm tracks rehabilitation progress more 

accurately. Actual patients‟ affected arm movement data analysis shows that the 

algorithm does activity detection with an average accuracy of >90%. 
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Second of the three algorithms, tracking stroke rehabilitation of affected arm 

through histogram of distance traversed, evaluates an objective metric to assess 

rehabilitation progress. The objective metric can be used to compare different stroke 

patients based on their functional ability in affected arm. The algorithm calculates the 

histogram by evaluating distances traversed over a fixed duration window. The impact of 

this window on algorithm‟s performance is analyzed. The algorithm has better temporal 

resolution when compared with another standard objective test, box and block test (BBT). 

The algorithm calculates linearly weighted area under the histogram as a score to rank 

various patients as per their rehabilitation progress. The algorithm has better performance 

for patients with chronic stroke and certain degree of functional ability. 

Lastly, Kalman filter based motion tracking algorithm is presented that tracks 

linear motions in 2D, such that only one axis can experience motion at any given time. 

The algorithm has high (>95%) accuracy. Data representing linear human arm motion 

along a single axis is generated to analyze and determine optimal parameters of Kalman 

filter. Cross-axis sensitivity of the accelerometer limits the performance of the algorithm 

over longer durations. A method to identify the 1D components of 2D motion is 

developed and cross-axis effects are removed to improve the performance of motion 

tracking algorithm. 
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Chapter 1  

Introduction 

Each year about 795,000 people suffer a new or recurrent stroke in the United States [3], 

which results in direct and indirect health care costs totaling $73.7 billion [3]. Over 137,000 of 

these people die making stroke the third leading cause of death. About 5.7 million U.S. stroke 

survivors are alive today, many of them with permanent stroke-related disabilities
 
[2]. Partial 

paralysis (medically known as hemiparesis) is one of the most common effects of stroke that 

survivors have to live with. Up to 85% of the stroke survivors experience partial paralysis, 

resulting in impairment of an upper extremity immediately after stroke, and between 55% and 

75% of survivors continue to experience upper extremity functional limitations [52] that are 

associated with diminished health-related quality of life [29], even after 3 to 6 months [20]. 

To improve the quality of life it is imperative that the survivor undergo rehabilitation 

therapy to regain partial use of their paralyzed limb. Currently, there are various rehabilitation 

techniques available for stroke survivors. Neurodevelopment techniques, therapeutic techniques 

such as repetitive task specific training, sensorimotor training with robotic devices, constraint-

induced movement therapy, and virtual reality therapy are some of the examples of rehabilitation 

techniques currently being used. The physiological mechanisms, through which these therapies 

result in a beneficial improvement in limb function, are not well understood. However, these 

therapies have been shown to be effective in patients
 
[10].  

Most of these therapies are carried out under the supervision of a trained staff within a 

laboratory environment. Most of them rely on the subjective evaluation of the effectiveness of the 

therapy by the same trained staff. To improve the efficiency with which these therapies are 

delivered as well as to improve the overall therapy by finding its efficacy objectively, researchers 
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have started to look at various methods by which they can monitor the improvement in the 

affected limb objectively. Computer software, sensors, and robots are some of the means being 

used to achieve this purpose. 

The advances in the electronic sensing in general and micro-electro mechanical systems 

(MEMS) technology in particular have enabled a new era of compact, accurate, power efficient, 

and wearable sensors which can be attached to various parts of human body to measure quantities 

of interest. In past few years, there has been considerable research
 
[1], [44], [24], [26] validating 

the use of MEMS based inertial sensors such as accelerometer, gyroscope, and magnetometer to 

monitor the therapy outcome objectively. 

1.1 Motivation 

Constraint induced movement therapy (CIMT) has been shown to be effective in arm 

rehabilitation of stroke survivors in controlled studies. The therapy is based on carrying out 

repetitive movements involving activities of daily life (ADL) using the affected arm. To track 

rehabilitation progress the therapy relies on behavioral contract with the participant, which 

requires the participants to keep track of their affected arm use. Based on these records and some 

functional test(s) rehabilitation progress is assessed. This form of administering the therapy is not 

efficient as the assessment is highly subjective. The therapy needs to be administered for some 

minimum time (from few weeks to months) for the assessment to be reliable. Thus, there is an 

opportunity to make this therapy more efficient and MEMS sensors lend themselves well for this 

purpose. An objective method to track rehabilitation progress will make CIMT more robust. Part 

of the inefficiency associated with CIMT is the lack of an accurate and robust method to monitor 

rehabilitation progress remotely. With advances in manufacturing of MEMS devices, constructing 

a wearable device utilizing MEMS sensors has become easier. With such wearable sensor device, 

a therapist can monitor the rehabilitation progress while the patient is not under his direct 

supervision. This will reduce the number of visits to therapist‟s clinic and effectively reducing 

stroke related health care costs. 
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1.2 Contributions 

Over past few years, there has been a consistent effort to make CIMT more efficient. In 

CIMT, the affected arm use is encouraged by constraining the unaffected arm with the help of a 

glove (mitt) or a sling. Currently, wearing a constraint on unaffected arm is assumed to represent 

the affected arm use, which may not necessarily be true all the time. The log maintained by the 

participant and/or by some touch-based electronic sensor without any signal processing has been 

used to establish this relation. 

The thesis presents an algorithm implemented using a MEMS three-dimensional (3D) 

accelerometer that can identify the intervals when the affected arm is being used. The algorithm is 

verified in controlled studies involving a set of activities done inside the laboratory. Thus, this 

method gives an accurate measure of when the affected arm is being used rather than just telling 

us whether the constraint is worn or not. 

The greater goal of this work is to come up with some objective measure/metric, which 

can reflect the rehabilitation progress. The thesis proposes two solutions in this regard. The first 

solution involves calculating the histogram of distances covered during a pre-defined interval and 

using it to evaluate the objective metric for tracking rehabilitation progress of stroke-affected 

arm. The affected arm movements are intermittent as opposed to the fluent movements done with 

the unaffected arm. Affected arm movements take longer times to finish as compared with those 

of unaffected arm. Thus, the histogram of distances covered by the affected arm will be 

dominated by small distances while as that of unaffected arm will be dominated by large 

distances. As the participant progresses in the rehabilitation program his histogram profile for 

affected arm tend towards that of unaffected arm. The thesis presents performance metrics for this 

approach and compares them with those that are being used currently. 

The second solution for tracking the rehabilitation progress is to track the affected arm 

motion in 2D using inertial measurement unit (IMU), under the constraint that at any point of 

time only one axis can experience motion. A typical IMU has accelerometers, gyroscopes and/or 
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magnetometers. Sensor fusion and Kalman filtering form the core of the motion-tracking 

algorithm. With motion-tracking algorithm, there is no need to calculate a performance metric as 

the movement itself tells the therapist everything to assess rehabilitation progress. 

1.3 Outline 

Rest of the thesis is organized as follows. Chapter 2 discusses CIMT in detail and 

describes the MEMS sensors with a primary focus on common sources of errors affecting these 

sensors. Chapter 3 reviews the current work related to improving efficiency of CIMT using 

sensor technology and describes the problem statement for the thesis. Chapter 4 presents the 

algorithm that finds the interval of activity using 3D accelerometers. Chapter 5 discusses tracking 

rehabilitation progress by calculating the histogram of distances covered in a pre-defined time 

interval. Chapter 6 presents the motion tracking solution to the problem. Chapter 7 concludes 

with summary and future work. The appendix offers the source code of all algorithms 

implemented in MATLAB environment. 
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Chapter 2  

Background Information 

This chapter introduces two of the most important concepts this thesis is based upon. It is 

crucial that the reader understands these concepts, as they will be referred throughout the thesis 

quite often. The first subsection introduces the reader to CIMT with all the necessary medical 

background information. The second subsection introduces the MEMS sensors in general and 

common sources of error that affect their performance, in particular. 

2.1 Constraint Induced Movement Therapy (CIMT)  

The EXCITE clinical trial [52] proved the efficacy of CIMT for stroke rehabilitation and 

is the primary source of information given in this section. Traditional methods for stroke 

rehabilitation, such as neurodevelopment techniques [6], have not shown to be effective enough 

in controlled studies. However, recent approaches involving repetitive training of paretic 

(paralyzed) arm on task-oriented activities, has been shown to be effective among stroke 

survivors with some functional ability in their paretic arm [5], [8].  

One such approach involves intense functionally oriented task practice of the affected 

(paralyzed) arm while restraining the unaffected arm with the use of a special kind of mitt (glove) 

or putting unaffected arm in a sling. This approach encourages use of the affected arm in ADLs
 

[40]. This approach is thought to help overcome what Taub [38] first described in a deafferented 

monkey model as “learned nonuse” of the affected upper arm. It has shown substantial evidence 

of being effective with individuals having long-term stroke disabilities (>1 year after the 

occurrence of stroke). This treatment, without supervised task practice, is referred to as “forced 

use” and has been applied to long-term [51], [45], [33] and subacute [21] stroke patients.  
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CIMT involves ipsilesional limb restraint with training of affected arm use conducted by 

a clinician. This training is based on shaping (adaptive task practice) and repetitive task practice 

principles [50], [41], [30]. Each day, participants receive training for up to 6 hours a day. Shaping 

is based on the principles of behavioral training [P, Q] that can also be described in terms of 

motor learning derived from adaptive or part-task practice [R, S]. Standard task practice is less 

structured (i.e., repetition of tasks is not considered as individual discrete activities), and involves 

functional activities performed continuously for a period of 15 to 20 minutes (e.g., eating and 

writing) as anyone would do in daily life. 

While the participants are in the research laboratory, they wear the restraining mitt 

consistently. To enhance mitt use outside of the laboratory, behavioral techniques described in 

detail in [49], [27] are employed. Behavioral contract, caregiver contract, mitt compliance device, 

and daily schedule are some of the techniques that have been used earlier. After each in-lab 

therapy session, patients are encouraged to practice two to three tasks daily at home. The therapy 

performed outside the lab is monitored regularly via a physical sensor and timer placed in the mitt 

and by a log of activities maintained by the participant („home diary‟). When patient activity log 

reports do not match with outputs from the mitt monitoring device, the discrepancy is pointed out 

to patients and they are asked to adhere to the protocol as accurately as possible. 

2.2 MEMS Inertial Sensors (MIS)   

Oliver J. Woodman‟s technical report on inertial navigation [53] introduces MEMS 

sensors and common error sources affecting their performance. This section is based on that 

introduction. For a thorough and detailed understanding of MEMS sensors and inertial navigation 

systems, we recommend the reader to read that technical report. 

Inertial sensors measure the inertial quantities of an object, which can help us understand 

the motion of the object. Some of the examples are accelerometers measuring linear acceleration, 

gyroscopes measuring angles (and hence the orientation in 3D), and rate gyroscopes measuring 

the angular velocity. Until recently, majority of these sensors were based on mechanical systems 
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thus were very accurate and reliable as compared with any other technology. However, these 

mechanical sensors were too bulky to be worn for human motion tracking. Recent advances in the 

construction of MEMS devices have made it possible to manufacture small and light inertial 

navigation systems. These devices offer ruggedness and low-cost that has widened the range of 

possible applications to include areas such as human and animal motion capture [53]. Advantages 

of MEMS sensors include [42]:  

• small size 

• low weight 

• rugged construction 

• low power consumption 

• short start-up time 

• inexpensive to produce (in high volumes)  

• high reliability 

• low maintenance 

• compatible with operations in hostile environments 

However, the main disadvantage of MEMS sensors is that they are not as accurate as 

those manufactured using traditional techniques, although the performance of MEMS sensors is 

improving rapidly.  

2.2.1 Linear Accelerometers  

Accelerometers can be broadly classified in two classes – mechanical and solid state 

device. A mechanical accelerometer consists of a mass (m) suspended by springs, as shown in 

Figure 2.1. The displacement of the mass is measured using a displacement pick-off, giving a 

signal that is proportional to the force (F) acting on the mass in the direction of the input axis. 

Newton‟s second law of motion, F = ma, is then used to calculate the acceleration acting on the 

device. 
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Solid-state accelerometers can be divided into various sub-groups, including surface 

acoustic wave (SAW), vibratory, silicon, and quartz devices. MEMS based accelerometers are of 

two types – either the mechanical type or those that measure the change in frequency of a 

vibrating element caused by a change of tension, as in SAW accelerometers, shown in Fig. 2.2. 

 

Fig. 2.1 Mechanical Accelerometer [53]  

The majority of inaccuracies in the MEMS accelerometers arise because of its 

manufacturing technique. Some of these error sources are inherent for any silicon device while 

some of them are typical of MEMS devices. Another issue limiting applicability of MEMS 

accelerometers is that most applications of accelerometers involve calculating the parameters of 

motion such as position, velocity, and orientation from acceleration measurements. This is 

achieved by single/double integration of the accelerometer output. However, this results in 

inaccuracies due to the accumulation of errors. 
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Fig. 2.2 Surface Acoustic Wave Accelerometer [53] 

2.2.1.1 Constant Bias 

The bias of an accelerometer is the offset of its output signal from the true value, in m/s
2
. 

The bias is dependent on battery supply variations. Usually, this value stays same over an 

extended duration. A constant bias error of ε, when double integrated, causes an error in position, 

which grows quadratically with time. The accumulated error in position is 

         
  

 
                                                                           (2.1) 

where t is the time of integration [53]. 

2.2.1.2 Thermo-Mechanical White Noise / Velocity Random Walk 

All semiconductor integrated circuits experience temperature dependent white noise. As 

MEMS devices are manufactured using similar technology and they have mechanical moving 

parts, thermo-mechanical white noise corrupts the sensor output. On integrating, this white noise 

will produce a random walk in velocity. A random walk is defined as a process consisting of a 

series of steps, in which the direction and size of each step is randomly determined. To find out 

the effect, on the calculated position, of the white noise on accelerometer output we need to 

double integrate the samples from accelerometer output. The analysis presented in [53] follows 

next. Let Ni be the i-th random variable in the white noise sequence, with E(Ni) = E(N) = 0 and 
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Var(Ni) = Var(N) = σ
2
. The result of double integrating the white noise signal ε(t) over a time 

span t = n∙δt is 

                     
 
     

   
 

 
               

 
                          (2.2) 

where n is the number of samples received from the device during the period and δt is the time 

between successive samples. The expected error in position is 

            
 

 
                   

 
                                    (2.3) 

and the variance is  

              

 

 

               
 

   

        

  
               

 
       

 
        

 
                                                                         (2.4) 

under the assumption that δt is small, which is usually valid for modern MEMS accelerometers. 

This analysis shows that accelerometer white noise creates a second order random walk in 

position, with zero mean and a standard deviation 

         
 
    

  

 
                                                             (2.5) 

2.2.1.3 Flicker Noise / Bias Stability 

Flicker noise in MEMS accelerometers causes the bias to wander over time. This noise is 

caused by electronics and in other components susceptible to random flickering. Flicker noise has 

1/f spectrum, the effects of which are usually observed at low frequencies in electronic 

components. At high frequencies this noise is overshadowed by white noise. Such fluctuations are 

usually modeled as bias random walk. Flicker noise creates a second order random walk in 

velocity where uncertainty grows proportionally to t
3/2

, and a third order random walk in position 

which grows proportionally to t
5/2

 [53]. In reality, bias fluctuations do not really behave as a 
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random walk. If they did, then the uncertainty in the bias of a device would grow without bound 

as the time span increase. In practice, the bias is constrained to be within some range. Therefore, 

the random walk model is only a good approximation to the true process for short periods [53]. 

2.2.1.4 Temperature Effects 

Temperature changes cause fluctuations in the bias of output signal. The relationship 

between bias and temperature depends on the specific device; however, it is often highly 

nonlinear [53]. If the sensor board contains a temperature sensor then it is possible to apply 

corrections to the output signals in order to compensate for temperature dependent effects. 

2.2.1.5 Calibration Errors 

Calibration errors (errors in scale factors, alignments and output linearities) appear as 

bias errors that are only visible whilst the device is undergoing acceleration. 

2.2.1.6 Summary 

Table 2.1 summarizes the error sources presented in this section. The relative importance 

of each error source depends on the specific device being used. In case of accelerometers, the 

errors have significant impact on the accuracy and reliability of the performance as these errors 

get accumulated in the double integration process.  

Table 2.1 Summary of Accelerometer Error Sources [53] 
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2.2.2 Gyroscopes 

Gyroscopes are also available in almost all categories as that of accelerometers. Two of 

those common types with impressive accuracy are mechanical and optical gyroscopes. A 

mechanical gyroscope consists of a spinning wheel mounted on two gimbals, which allow it to 

rotate in all three axes Fig. 2.3. The fallout from the conservation of angular momentum is that 

the spinning wheel resists changes in orientation. Hence, when a mechanical gyroscope is 

subjected to a rotation the wheel will remain at a constant global orientation and the angles 

between adjacent gimbals will change. To measure the orientation of the device, the angles 

between adjacent gimbals can be read using angle pick-offs. Note that a conventional gyroscope 

measures orientation. In contrast, nearly all modern gyroscopes (including the optical and MEMS 

types) are rate-gyros, which measure angular velocity. 

 

Fig. 2.3 A conventional mechanical Gyroscope [53] 

A fiber optic gyroscope (FOG) uses the interference of light to measure angular velocity. 

A FOG consists of a large coil of optical fiber. To measure rotation two light beams are fired into 

the coil in opposite directions. If the sensor is undergoing a rotation then the beam travelling in 

the direction of rotation will experience a longer path to the other end of the fiber than the beam 
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travelling against the rotation, as illustrated in Figure 2.4. This is known as the Sagnac effect. 

When the beams exit the fiber they are combined. The phase shift introduced due to the Sagnac 

effect causes the beams to interfere, resulting in a combined beam whose intensity depends on the 

angular velocity. Therefore, it is possible to measure the angular velocity by measuring the 

intensity of the combined beam.  

Unlike mechanical gyroscopes, optical gyros contain no moving parts and require only a 

few seconds to start-up. The accuracy of an optical gyro is largely dependent on the length of the 

light transmission path (larger is better), which is constrained by the size of the device. 

 

Fig. 2.4 The Sagnac effect. The dashed line is the path taken by the beam travelling in the direction of 

rotation. The solid line is the beam travelling against the rotation. θ is the angle through which the 

gyro turns whilst the beams are in flight [53]. 

Due to large part counts, parts with high-precision tolerances and intricate assembly 

techniques make mechanical and optical gyroscopes expensive. On the contrary, MEMS 

gyroscopes have low part counts (as low as three parts) and are cheap to manufacture. MEMS 

gyroscopes make use of the Coriolis effect [47], which states that in a frame of reference rotating 

at angular velocity ω, a mass m moving with velocity v experiences a force 

                                                                  (2.6) 
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MEMS gyroscopes use vibrating elements of different geometries, e.g., vibrating wheel 

and tuning fork, to measure the Coriolis effect. The simplest geometry consists of a single mass 

that is driven to vibrate along a drive axis, as shown in Fig. 2.5. When the gyroscope rotates, a 

secondary vibration is induced along the perpendicular sense axis due to the Coriolis force. The 

angular velocity is calculated by measuring this secondary rotation. 

 

Fig. 2.5 A vibrating mass gyroscope [53] 

Similar to MEMS accelerometers, performance of MEMS gyroscopes is also affected by 

error sources. The only difference being that in case of gyroscope, the parameters of motion of 

interest are the angles, which are obtained by the single integration of gyroscope output signals. It 

might seem like the effect of gyroscope error is not as severe as that of accelerometer‟s output 

error as they are integrated only once while as those from accelerometer are integrated twice. 

However, when the gyroscopes are used in navigation systems or motion tracking applications 

along with the accelerometers, then the gyroscope errors are the most dominant ones because 

gyroscope is used to calculate the orientation matrix, which is then used to transform the 

accelerometer outputs. Thus, it is imperative to learn about the error sources in gyroscope and 

their effect on its accuracy/reliability. 
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2.2.2.1 Constant Bias 

The bias of a rate gyro is the average output from the gyroscope when it is not 

undergoing any rotation (i.e., the offset of the output from the true value), in °/h. A constant bias 

error of ε, when integrated, causes an angular error which grows linearly with time  

 (t) = ε∙t                                                                  (2.7) 

The constant bias error of a rate gyro can be estimated by taking a long-term average of 

the gyroscope‟s output while it is not undergoing any rotation. Once the bias is known, it can be 

compensated by subtraction [53]. 

2.2.2.2 Thermo-Mechanical White Noise / Angle Random Walk 

The gyroscope output is perturbed by a white noise sequence, which on integration 

produces a random walk error in the angle output. We can analyze the effect of this white noise 

sequence on the error in calculated angle by following the analysis given in accelerometer‟s case. 

Let Ni be the i-th random variable in the white noise sequence, with E(Ni) = E(N) = 0 and Var(Ni) 

= Var(N) = σ
2
. The result of integrating the white noise signal ε(t) over a time span t = n∙δt is 

       
 

 
      

 
                                                       (2.8) 

The error in angle generated as a result of white noise in gyroscope‟s output has mean 

and variance as given below 

         
 

 

              

           
 

 
                                                     (2.9) 

Hence, the noise introduces a zero-mean random walk error into the integrated signal, whose 

standard deviation grows proportionally to the square root of time: 

                                                                   (2.10) 

It is common for manufacturers to specify noise using an angle random walk (ARW) 

measurement (units °/  ). Other measurements used to specify noise are power spectral density 
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(units       /Hz) and FFT noise density (units °/h/   ). It is possible to convert between the 

various different noise specifications using the equations 

          
               

  
                                             (2.11) 

          
            

  
                                                 (2.12) 

For more information about angle random walk and noise specifications see [37]. 

2.2.2.3 Flicker Noise / Bias Stability 

Flicker noise also affects the gyroscope output making the bias of gyroscope output 

wander over time. Bias fluctuations that arise due to flicker noise are usually modeled as a 

random walk. A bias stability measurement describes how the bias of a device may change over a 

specified period, typically around 100 seconds, in fixed conditions (usually including constant 

temperature). Bias stability is usually specified as a 1σ value with units °/h, or °/s for less 

accurate devices. Over time, this property creates a random walk in the gyro bias, whose standard 

deviation grows proportionally to the square root of time. For this reason bias stability is 

occasionally specified by a bias random walk measurement  

          
       

     
                                                     (2.13) 

where t is the period over which bias stability is defined. If we assume the bias random walk 

model, then the result of integrating the bias fluctuations is a second-order random walk in angle 

[53]. 

2.2.2.4 Temperature Effects 

Temperature fluctuations due to changes in the environment and sensor self-heating 

induce movement in the bias. Note that such movements are not included in bias stability 

measurements, which are carried out under fixed temperature conditions. The relationship 

between bias and temperature is often highly nonlinear for MEMS sensors. 
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2.2.2.5 Calibration Errors 

Errors in the scale factors, alignments, and linearities of the gyros are collectively termed 

as calibration errors. They come into play only when the device is under (rotational) motion. Such 

errors lead to the accumulation of additional drift in the integrated signal, the magnitude of which 

is proportional to the rate and duration of the motions [11]. 

2.2.2.6 Summary 

For MEMS gyroscopes, angle random walk (noise) errors and uncorrected bias errors 

either due to uncompensated temperature fluctuations or an error in the initial bias estimation, are 

usually the most important sources of error. Angle random walk can be used as a lower bound for 

uncertainty in the orientation obtained from integrating a rate-gyroscope‟s signal. Table 2.2 

summarizes the different error sources present in MEMS gyroscope‟s output and their effect on 

its performance. 

Table 2.2 Summary of Gyro Error Sources [53] 
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Chapter 3 

Problem Statement 

In recent years, research interest in the area of telemonitoring for health and wellness 

purposes has increased with the advances in sensor technologies. Considerable amount of work 

has been done concerning remote health monitoring for elderly and disabled persons. IMUs have 

been widely used for monitoring the mobility and posture with some work done on motion 

tracking using IMUs. This chapter reviews the earlier work that influenced the work presented in 

this thesis. 

We can categorize the systems developed so far in two broad categories –  

 Systems that use inertial sensors as secondary sensors to improve/enhance the 

functionality of primary sensor 

 Systems that use inertial sensors as primary sensors.  

References [36] and [17] belong to the first category where in RFID sensors are used as 

primary sensors to identify/classify ADLs. ADLs involving interaction with the physical and 

social environment such as using telephone, doing laundry, preparing food, and housekeeping are 

known as Instrumental ADLs (IADL). In identifying ADLs using RFID sensors, various objects 

are tagged with RFID sensors and a RFID reader glove is worn to carry out ADLs. In cases where 

RFID tag reading cannot identify the ADL accurately, accelerometer data is used to identify 

ADLs. This is achieved by calculating various features of the accelerometer data such as mean, 

variance, energy, spectral entropy, FFT coefficients etc. and using either Naïve Bayes or Hidden 

Markov Models (HMMs) or Joint Boosting algorithms for activity classification. 

References [28], [25], [44], and [32] belong to the second category where in IMUs serve 

as the primary sensor. [28] uses a 2D accelerometer and a gyroscope orthogonal to the 
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accelerometers, attached to the chest, to monitor physical activities and postural transitions in 

elderly. The wavelet transform, in conjunction with a kinematics model, detects transitions 

among different postures like standing, sitting and lying as well as walking periods during daily 

life with an accuracy of about 99%.  

Luinge et al. [25] use a chest mounted 3D accelerometer to determine the trunk and 

pelvis inclination during the functional 3D activity of stacking crates. They start out with a 

detailed model for the sensor signal based on assumptions concerning the frequency content of 

the acceleration of the movement that is measured, the knowledge that the magnitude of the 

gravity is 1g and taking into account a fluctuating sensor offset. A complementary extended 

Kalman filter is used to estimate the various components of the sensor output, which are then 

used to calculate inclination. The root-mean square error in inclination estimate is found out to be 

2° using an optical position tracking system. 

Uswatte et. al. [44] used a 2D accelerometer mounted on each wrist to identify the period 

and duration of movement in both arms. This was achieved using a „threshold filter‟ (low pass 

filter). The outcome of the study was the ratio of impaired-to-unimpaired arm threshold filtered 

data and its correlation with 2 real-world measures of arm use - the MAL (motor activity log) and 

AAUT (Actual Amount of Use Test). The ratio summary output was verified against another real-

world measure of overall physical activity, the stroke impact scale (SIS). 

Patel et al. [32] is another example of inertial sensors being used in CIMT for stroke 

rehabilitation. Here, the authors use multiple accelerometers on fingers, palm of the hand, 

forearm, upper arm of the affected side and one more on sternum to analyze a movement and its 

components such as reaching, manipulation, release/return etc. Data features are extracted and 

selected so as to maximize the separation among classes associated with different clinical scores. 

The movements were classified based on these features using Random Forest to estimate clinical 

score of each movement. This process was carried out for a subset of motor tasks used in 

measuring Functional Ability Scale (FAS) and all the estimated clinical scores were combined 
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through a linear equation to calculate FAS. This approach validates usage of accelerometer data 

for calculating FAS score reliably. 

With advances in manufacturing technology of MEMS devices, their accuracy has started 

improving along with reduction in size and power consumption. This has given rise to a new era 

of wearable computing and other exciting opportunities in virtual reality. Various medical 

applications have benefitted from these emerging technologies. People have started using inertial 

sensors for motion tacking purposes. Guillemaud et. al. [12] describes a motion capture device for 

the purposes of activity classification or monitoring. The IMU consisted of a 3D accelerometer 

and 3D magnetometer. Data from these sensors was fused to estimate the body orientation. This 

method works fine for tracking slow movements but tracking fast movement becomes difficult 

without gyroscope signal giving rise to very large orientation errors. Sabatini et. al. [34] presents 

a model for quaternion-based strap-down integration for application to gait analysis. It uses an 

IMU consisting a 3D accelerometer and 3D gyroscope. The model is validated with simulations 

based on synthetic trajectories that had been derived from the author‟s earlier work on foot 

inertial sensing. 

Torres et al. present a mathematical algorithm for 3D tracking using IMU in [43]. Their 

IMU consists of 3D accelerometers, 3D gyroscopes and 3D magnetometers. They use Kalman 

filter based sensor fusion for tracking purposes. Without proper model for the sensor signal, the 

algorithm fails to track position not only in 3D but also in 2D due to the drift present in MEMS 

sensor outputs. Bachmann presents a real time human limb tracking virtual reality application 

using 3D accelerometer, 3D gyroscope and 3D magnetometer in [4]. Accelerometer and 

magnetometer are used to track low frequency components of the motion while as gyroscope is 

used to track high frequency components of the motion. A quaternion-based Kalman filter allows 

continuous correction for drift and tracking of the movement through all orientations. 
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3.1 Problem Statement 

As explained in Section 2.1, current form of CIMT uses a mitt and a touch sensor on 

wrist along with motor activity log maintained by patient to monitor affected arm usage 

indirectly. This method is not efficient and prone to errors. This inefficiency translates into longer 

time for recovering from disabilities and more visits to therapist. This increases the cost of stroke 

related health care. Thus, there is a need to develop cost-effective and reliable technique, which 

can monitor affected arm use accurately. This will reduce the number of visits to therapist and 

accurate detection of arm use will make CIMT more effective resulting in reduction of total time 

to recover functional abilities in stroke-affected arm. 

Although, accurately sensing the affected arm movement will be a significant 

improvement over the technique being followed currently, the affected arm movement by itself 

does not give much information about rehabilitation progress. The objective tests such as BBT 

that are being used to assess the rehabilitation progress require manual intervention, which again 

introduces inefficiency. Advances in MEMS sensor technology have made wearable sensor 

systems a reality. This thesis will investigate a wearable sensor based technique, which can 

objectively assess the rehabilitation progress with minimal user intervention. 

Thus, the combination of solutions to both issues described thus far will enable therapists 

to track rehabilitation progress remotely. 

It is clear, from the literature review presented earlier in this chapter, that inertial sensors 

have the potential to track human motions but their performance is limited by the error sources. 

These error sources in MEMS sensors arise due to limitations of manufacturing process. With 

advances in manufacturing technology of MEMS sensors, performance of MEMS sensors has 

been improving. A human arm motion tracking system based on MEMS sensors will enable 

therapists to observe the affected arm motion as it was performed in real life. This ability will 

negate any need of an objective metric to track rehabilitation progress. This thesis will investigate 

development of such motion tracking system based entirely on MEMS sensors. Taking note of 
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the issues plaguing the applicability of inertial sensors in reliable and accurate human motion 

tracking, as discussed earlier, this thesis will start exploring the solution space with minimum 

complexities such as 1D motion with no orientation change. Then, the thesis will build upon 1D 

solution to determine its usability for 2D motions. Various error sources limiting the performance 

of motion tracking algorithm and methods that can correct those error sources will also need to be 

investigated. 

With all of the above solutions, we will be a step closer to a rehabilitation therapy with 

minimum manual intervention and more accurate objective performance metrics. Designing a 

wearable sensor system will enable us to analyze the arm motions on-board. An efficient data 

processing algorithm can help make this data analysis in real time providing invaluable real time 

feedback to the patient. 
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Chapter 4 

Quantifying Impaired Arm Usage 

As described in Chapter 2, the current state of stroke rehabilitation therapy (CIMT) 

administration has some critical inefficiencies/inaccuracies associated. Improvements in MEMS 

inertial sensors (MIS) have enabled us to sense human motions more reliably. MIS based 

technology prevents subjective and error prone aspects of CIMT. Therefore, the improvement 

deliverable by MIS based technology is invaluable. 

The primary source of inaccuracy within CIMT lies in determining the duration the 

patient underwent CIMT. Therapists have used this duration as a direct indication of effectiveness 

of CIMT, especially when patient is not under direct observation. When patient is away, 

therapists cannot take manual observations. Therefore, they rely on duration as an indicator of 

effectiveness though there is no definite method available to measure that duration. Currently, 

most therapists use a constraining mitt (glove) on unaffected arm with touch/proximity sensor 

embedded in it. Whenever patient wears the mitt, touch/proximity sensor will indicate so with 

change in its output. As unaffected arm is constrained, therapists assume that patient is using 

affected arm and hence a CIMT session is underway. If someone wears the constraining glove but 

does not move the affected arm then therapist would not know it from touch/proximity sensor 

reading and this introduces inefficiency in the CIMT. In addition, if someone wears the 

constraining glove but uses the affected arm just 20% of the time the glove was on, the sensor 

output will not be able to quantify the affected arm usage, introducing inaccuracy in the CIMT. 

This chapter describes a new approach towards identifying CIMT periods using MEMS 

inertial sensors. The first section describes the sensor used for this purpose. Second section 

presents an algorithm to find out the durations when the affected arm is in use. We extend this 
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algorithm further to calculate the activity count in the case when repetitions of a single activity 

are performed. We summarize the contributions of this chapter in the last section. 

4.1 WiTilt v2.5 

This chapter uses a 3D accelerometer sensor board (now discontinued) from Sparkfun 

electronics. The product name for this board is WiTilt v2.5. It has a Freescale MMA7260Q triple 

axis accelerometer and a class 1 Bluetooth link for robust communications. Some other features 

of the WiTilt v2.5 are - adjustable sensor range from 1.5g to 6g, output in raw ADC or calculated 

gravity format, adjustable output frequency from a minimum of 10Hz to a maximum of 610Hz in 

selected modes of operation. Figure 4.1 below shows the sensor board against a U.S. quarter 

dollar coin.  

 

Fig. 4.1 Sensor Board - WiTilt v2.5 

Using Lithium-ion battery and some support materials the sensor board was assembled 

into a wearable device as shown in Fig. 4.2. 
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Fig. 4.2 The Wearable Device used in this work 

The three principal axes of the sensor can be clearly seen marked in bottom right corner 

of the sensor board. The Y-axis is oriented along the length of forearm while as X-axis is 

perpendicular to the forearm length. Z-axis is oriented such that it goes into the plane of the paper 

(image). 

The output of any axis of an accelerometer is –  

                                                                      (4.1) 

where, z – Accelerometer axis output, 

g – Acceleration due to gravity, 

  – Angle made by the particular axis of accelerometer with vertical axis of g 

a – Linear acceleration in the direction of accelerometer‟s axis  

o – Offset present in the accelerometer axis 

w – Measurement noise 

a represents the component of linear acceleration present along the concerned axis of 

accelerometer when a motion is being performed. The offset in accelerometer output, o is a very 

low frequency signal, and we can assume it constant for in-lab sessions of CIMT, which usually 

will not be longer than an hour. The measurement noise term w represents the white noise present 
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in the sensor output due to thermo-mechanical vibrations as well as quantization noise of ADC 

on-board. Though accelerometer output responds to motions in each axis, because of 

measurement noise w, the output will not be stationary when there is no motion. 

4.2 Impaired Arm Usage  

To improve upon the touch/proximity sensor based method for finding impaired arm use 

during a CIMT session, we need to find the durations when the impaired arm is -“actually” being 

used rather than the total time of CIMT session. 

4.2.1 Converting data to ‘g’-scale 

WiTilt has a 10-bit ADC on board giving a range of 0 to 1023 counts on all „g‟ ranges. In 

this work, the sensor was set up with a ±2g range. Thus, to convert raw ADC output into „g‟-

scale, data requires centering on 512 and scaling according to the „g‟ range selected. For ±2g 

range, the centered data is scaled (divided) by 256 to get the sensor output in „g‟-scale. 

4.2.2 Threshold 

As described earlier, the accelerometer output changes in response to the motions carried 

out in the direction of any of its sensitive axes. Nevertheless, when there is no motion, 

accelerometer output might still show some variations due to the measurement noise w. Thus, to 

identify durations when the impaired arm is not in use, we should find the durations of no signal 

variations after we remove the noise w. We can characterize noise w by various ways. One 

approach is to find the statistical parameters of the noise component by keeping the sensor 

stationary for about 30 minutes and sampling the data at minimum of 10Hz. We considered two 

parameters to characterize the noise w – standard deviation and peak amplitude. Both of these 

values are used to threshold the accelerometer signal variations among consecutive samples. If 

the signal change between two samples is less than the parameter under consideration, then that 

signal change is considered to be due to measurement noise w and not due to the actual 

movement of impaired arm. We attribute remaining all signal variations to the impaired arm 
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movement. Thus, we can identify the periods of activity and inactivity from observing the 

accelerometer output signal of a particular axis. 

The impaired arm movements of stroke survivors are not very smooth as they lack fine 

motor skills. Unintended jerks are characteristic of stroke affected arm movements. Thus, 

choosing peak amplitude as threshold parameter over the standard deviation helps improve the 

accuracy of this method. However, this reliance on presence of unintended jerks will make this 

method unusable for someone carrying out smooth movements (or not exhibiting unintended 

jerks). In the case of smooth movements, the signal change between consecutive samples might 

be well below the threshold and over time the signal will change sufficiently but this algorithm 

will not be able to identify this change. 

The data collected for an activity of throwing a ball illustrates the algorithm. Figure 4.3 

shows the „g‟-scale converted raw data along with mean of the data for individual axis. As can be 

seen from the Fig. 4.3, the activity is essentially carried out in XY plane with a minimal 

movement along Z direction. 

4.2.3 Calculating the arm usage 

As the arm moves in 3D space, at least one of the accelerometer axes will experience the 

motion. Whenever a sample represents impaired arm motion, we increment a counter. To 

calculate the total impaired arm usage, we normalize the activity period over the complete 

observation period.  
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Fig. 4.3 Raw Data in ‘g’-scale with it mean along 3 axes 

We also have counters for each of the three axes. This information provides an insight 

into the impaired arm usage along the three axes of accelerometer whose alignment with respect 

to the affected arm does not change.  

Figure 4.4 shows the data after it‟s subjected to a threshold of 0.022g. The samples that 

are above the threshold from previous sample are marked as „1‟ indicating detection of activity 

while as all other samples are marked „0‟ indicating no activity. 

The work presented in this chapter is coded into a command line operated - menu driven 

software, that runs on any Microsoft Windows® machine as a standalone program. The software 

has the facility of storing the results of each processed data file into a text file. Table 4.1 shows 

the results calculated by this algorithm for the above data file. 
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Fig. 4.4 Activity Markers along 3 axes after threshold filtering raw data 

Table 4.1 Result of Impaired Arm Usage Algorithm 

Usage_X Usage_Y Usage_Z Usage 

58.741% 42.191% 0.2331% 68.765% 

J. C. Lötters et. al. present another approach of determining activity periods using 3D 

accelerometers in [23]. They make use of the fact that when under no motion the vector sum of 

accelerations experienced by three axes of accelerometer equates to 1g. Thus, to determine 

activity durations they apply threshold to the rectified vector sum of accelerometer output. 

Although, this method serves the purpose, our algorithm gives out more information than just 

activity periods. As we detect activities individually in each axis and calculate the total arm 

usage, a physician gets to know the rehabilitation progress in each axis as well as the overall 

therapy progress from these values.  

4.2.4 Counting Activities 

We improved the way CIMT is delivered and the rehabilitation progress is monitored by 

improving the accuracy of detecting impaired arm use. We will go even further to get more 

meaningful information using 3D accelerometer. In CIMT, a stroke survivor is encouraged to use 

his affected arm more than the unaffected one. In addition, for people with severe stroke and for 
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those who are in early stages of rehabilitation, the easier movements are not ADLs but rather 

some basic arm movements usually done repetitively. For this scenario, we present an algorithm 

to find the number of repetitions done using 3D accelerometer signal.  

For this purpose, we consider the signal associated with the impaired arm movement with 

some basic repetitious movement. This is necessary to avoid any drift in the average value of the 

signal due to orientation change. Data is converted into a stream of „1‟s and „-1‟s by comparing 

them with respect to the average value. Values higher than the average value will get mapped to 

„1‟ and values lower than the average value will get mapped to „-1‟. Whenever the signal changes 

its mapped value, the activity counts increment. Figure 4.5 shows the results obtained using this 

method. 

As seen in the Fig. 4.5, this method does not perform well and overestimates the activity 

count. The primary reason behind this degraded performance is measurement noise. The 

algorithm compares the signal value directly with its average without considering the effect of w. 

In addition, the algorithm assumes that starting and final position of the impaired arm remains 

same to ensure the data average is midway between the two extremes that any activity might 

experience. The algorithm‟s inability to distinguish among signal changes due to activity and 

those due to noise, limits its performance. One way to improve the algorithm‟s performance will 

be using some threshold. The threshold should be large enough to reject the noise but should be 

small enough to detect the activities. Thus, a modified algorithm is presented to calculate activity 

count. 
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Fig. 4.5 Activity count measurement output along 3 axes 

In the second algorithm, weighted moving average is calculated over a window of m 

samples on either side of the sample. The value of parameter m depends on the activities being 

carried out. Too large value of m will merge multiple activities while as too small value of „m‟ 

will overestimate the activity count. This moving average is subtracted from the raw data to get 

high frequency content of the data centered about zero. The high frequency contents will also 

have high frequency part of the measurement noise. We remove the measurement noise by 

threshold filtering high frequency contents using the peak amplitude of noise. All the samples 

with values less than the peak amplitude of measurement noise are forced to zero. 

To determine the activity count from the noise removed high frequency content of data, 

we search for „dead (no-motion) periods‟. A dead period is defined as the period where 

consecutive samples with value 0 exceed or equal to a user parameter dead. These periods 

represent durations when there was no movement. Remaining intervals are noted as activity 

intervals and thus we not only find the activity count but also the duration of each activity. 

Results obtained after processing the data file considered in Fig. 4.5, are shown in Fig.4.6 through 

Fig. 4.8. Figure 4.6 shows raw data along with output of moving average filter with m=5. Figure 
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4.7 shows result obtained after subtracting moving average filter output from the raw data. The 

output of noise removal step is shown in Fig. 4.8. 

 

Fig. 4.6 Raw data and moving average filter output with m=5 

As can be seen from Fig. 4.6 – Fig. 4.8, the second algorithm does a better job of 

removing noise and isolating activities. With m=5 and dead=10, this algorithm gives out number 

of activities carried out as 7 instead of original number of 8. This error is caused by the noisy 

signal observed in X axis between activity 2 and 3 (around sample number 100). Making dead=9 

gives us equivalent number of activities as 8. For dead=8 the algorithm overestimates the activity 

number to 9. 

The activity of throwing a ball usually has rapid changes in acceleration values as 

compared with a typical ADL. Thus, another activity of putting plastic chips in a checker box was 

carried out. Figure 4.9 shows the raw data and moving average filter output for this particular 

trial. As can be seen in Fig. 4.9, the acceleration values do not change that rapidly. However, 

even for this kind of data the algorithm presented in this section correctly identifies the number of 

activities performed. 
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Fig. 4.7 Subtraction of moving average from raw data 

 

Fig. 4.8 Noise removal output 

Thus, identifying individual activity still depends on the selection of „dead‟ parameter 

value. The dependence of dead on the activity performed by patients and the movement 

characteristics of the subject under consideration need to be investigated. Also, low pass filtering 

noise removed data of Fig. 4.8, might lead us to a more robust algorithm and much better results. 
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Please refer appendix A.1 for the source code of first activity detection method and 

appendix A.2 for the source code of second activity detection algorithm. 

 

Fig. 4.9 Raw data and moving average filter output with m=5 for checker box ADL 

4.3 Summary 

This chapter presented an algorithm to determine impaired arm usage in a CIMT session. 

The algorithm makes CIMT more efficient and helps remove some inaccuracies associated with 

subjective observation of impaired arm usage. It gives more information regarding the impaired 

arm usage along the three axes of accelerometer, which might be used to improve CIMT in 

general. An algorithm for finding the activity count using 3D accelerometer is also presented. The 

next chapter will delve into a novel approach to track rehabilitation progress in CIMT by using 

3D inertial sensors. 
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Chapter 5 

Tracking Rehabilitation Progress through Histogram of Distance Traversed 

In Chapter 4, we developed an algorithm to determine periods of affected arm usage. The 

algorithm improved the efficiency of identifying affected arm use as compared with current touch 

sensor based methodology and provided us with an objective method enhancing the way CIMT is 

delivered. Another inefficiency associated with the current form of CIMT is the lack of an 

automated process to determine rehabilitation progress objectively. This chapter looks at 

developing such an objective test with minimal user intervention with the intention of improving 

the accuracy, efficiency, and efficacy of CIMT. The primary goal in developing this new 

objective test is to develop it such that there will be minimum user intervention to carry out this 

test. This will enable us to use this test for remote monitoring of stroke rehabilitation.  

This chapter first explains the functional tests used in current form of CIMT. Then the 

discussion focuses on the development of accelerometer based functional test. It is then followed 

by analysis of performance of two parameters namely – the window width and temporal 

resolution. Results from patient trials and their analysis follow next. The application of this 

algorithm to classify/differentiate patients based on their rehabilitation progress is discussed in 

next section. We conclude by summarizing the work done in this chapter. 

5.1 Review of CIMT Progress Tracking 

As described in Chapter 2, disability experienced by stroke survivors is a result of learned 

non-use. References [51], [50], [31], and [39] verify the usefulness of rehabilitation therapy 

methods such as CIMT. For tracking rehabilitation progress of the stroke survivors, multiple 

clinically proven tests are available such as MAL, FAS, Box and Block Test (BBT) etc. These 

tests offer a realistic view of the effectiveness of the therapy and hence are used by therapists to 
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administer the therapy more effectively. Thus, these tests form a critical part of the rehabilitation 

therapy and thus need to be accurate. Most of these tests are categorized as subjective or 

objective. Tests like MAL, which is a questionnaire/interview based test, fall under the subjective 

category because these tests rely on a person‟s opinion about the progress. On the other hand, 

tests like FAS and BBT fall under objective category as they try to measure the motor/functional 

ability of the affected arm and compare that functional ability against non-affected arm through 

well thought out experiments. Thus, objective tests represent rehabilitation progress more 

accurately than subjective tests. 

The work presented here has been done in collaboration with the NeuroRehabilitation 

Research Laboratory (NRRL) at Colorado State University‟s Department of Occupational 

Therapy. NRRL uses BBT as one of the functional tests to evaluate CIMT and stroke 

rehabilitation progress in general. The next section discusses the BBT in detail. 

5.1.1 Box and Block Test (BBT) 

BBT is an outcome designed to measure functional changes in reach, grasp, and release 

when using the more-affected arm to transport blocks
 
[14]. Image in Fig. 5.1 shows the typical 

setup to measure BBT performance of right hand. To measure the performance, subject is asked 

to move blocks from one section to other in prescribed time (1 minute). The same task is then 

repeated for the other hand. The number of blocks moved by each hand is the outcome of the test. 

The number of blocks moved by non-affected arm serves as a reference and those moved by the 

affected arm are compared against it. As rehabilitation progresses, it is expected that affected arm 

will tend to perform as good as the non-affected arm; implying functional abilities of affected arm 

are being restored. 
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Fig. 5.1 Box and Block Test [14] 

This test requires minimal human intervention/interaction. The only interaction required 

is monitoring of elapsed time. Nevertheless, it requires the wooden blocks and the box setup to 

carry out the test. With this understanding of BBT, we will develop a MIS based functional test 

that will track the rehabilitation progress objectively. 

5.2 Histogram of Distance Traversed Method 

BBT is a time constrained performance test where in affected arm‟s performance is 

judged based on unaffected arm‟s performance in a given time. To develop an objective 

performance based test using accelerometer, we should calculate some numerical quantity from 

accelerometer output, representative of the performance of arm movements. We will use this 

numerical measure to determine the effectiveness of rehabilitation therapy. 

As described in Section 4.1 earlier, the accelerometer output is the sum of gravity and 

linear acceleration due to arm motion with some additive noise (Equation 4.1). Thus, 

accelerometer output is linearly dependent on the arm motion. As the acceleration is second 
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derivative of displacement with respect to time, integrating acceleration twice with respect to time 

will give us displacement. However, during repetitive tasks, displacement, being a vector 

quantity, can never be larger than the range of human arm movements and thus may not be of any 

use for tracking rehabilitation progress using repetitive activities. Instead, we can consider only 

the magnitude of acceleration values and calculate a scalar quantity that will be representative of 

the movements carried out.  

BBT is a time-constrained test and monitoring of elapsed time requires some manual 

intervention. To get rid of this intervention, the accelerometer-based test will be insensitive to 

time spent on activities. Instead, accelerometer test will be based on some functional objectives to 

be completed with no regards to time spent on achieving those objectives. To account for the 

variation in time spent on accomplishing those functional objectives, we will normalize the scalar 

quantity by total time spent. Thus, this normalized scalar value will be used to judge effectiveness 

of rehabilitation therapy. 

In the case of repeating activities, we can never guarantee that the interval between any 

two repetitions is same. Thus, these varying „no-activity‟ periods will not contribute to the scalar 

quantity but will affect the normalized answer. Thus, instead of considering all repetitions at once 

for analyzing the performance, we will split the data into fixed width windows (based on number 

of samples and effectively time).  

5.2.1 Effect of Window Width  

Window width should be chosen such that it has at least one complete repetition of the 

activity along with some non-activity period. We need this constraint as too small of a window 

width will give us windows with either no motion or part of the motion. In this case, the 

accumulated distances will not go beyond some maximum value as human arm motion has limits 

on its acceleration profile. If window width is too small, this maximum value of accumulated 

distance will be too low (and thus with very less resolution) making it hard to get meaningful 

information. Making window width too large is as good as analyzing all of the data at one go 
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which will make accumulated distance grow without any bound and thus making it hard to get 

meaningful information from the results. 

The procedure explained above is discussed with a single axis in mind. Nevertheless, 

during ADL, it is hard to constrain arm movements to only a single axis. Assuming the generic 

case of arm movement in 3D, this procedure will be extended to take into considerations 

movements along 3 axes of accelerometer. This is achieved by applying above procedure to each 

axis individually. The final equivalent 3D performance metric will be calculated by taking square 

root of addition of squares of distances traversed in individual axes. 

A trial is designed to observe the effects of varying window widths. The trial consisted of 

an activity repeated multiple times. The trial is conducted each day for a period of 8 days for both 

the unaffected and affected arm. Another trial is carried out with non-patient participation to see 

how the algorithm works on non-patient data set. Then, the data from these trials is processed 

using the algorithm explained above with window widths of 1s, 5s, and 10s each. Minimum 

window width of 1s is chosen in accordance to criterions explained earlier, namely minimum 

width to be greater than the time required to perform at least one repetition. Figures 5.2 to 5.4 

show the histograms of distance covered in three cases under consideration. 

Figure 5.2 shows normalized histogram of distance covered with a window width of 1s. 

The figure plots eight traces for affected arm data with each trace representing individual days. 

Figure 5.2 also plots an average normalized histogram of distance traversed by unaffected arm for 

8 days. As can be seen, in Fig. 5.2, with window width of 1s the maximum distance covered is 

too small and very low distances are more frequent. In addition, over a period of 8 days there is 

no significant change in affected arm‟s performance compared to unaffected arm average 

performance. We are expecting the change in affected arm‟s performance as the clinical staff at 

NRRL has observed/documented that change using other functional tests over the same period. 

The results shown in Fig. 5.2 are so because with smaller window widths accumulated distance 
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depends largely on noise in accelerometer. Thus, for such small window widths the algorithm 

does not perform satisfactorily. 

 

Fig. 5.2 Normalized Histogram of Distance Covered with width = 1s 

Figure 5.3 shows the comparison of affected and unaffected arm performance over a 

period of 8 days with a window width of 5s. This figure illustrates that with a window width of 5s 

we can see incremental improvement in each day‟s performance. The unaffected arm average 

performance for 8 days is significant over the available range. It stands out from the affected arm 

traces. From the unaffected arm average performance, we infer that non-affected arm will cover 

large distances more often as compared with affected arm. Thus, we will focus on the frequency 

of large distances to track rehabilitation progress. 
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Fig. 5.3 Normalized Histogram of Distance Covered with width = 5s 

Figure 5.4 shows the same comparison as in Fig. 5.3 but with a window width of 10s. 

This figure tells us the maximum value of distance covered over a window period is bounded. 

This upper bound will be determined by the maximum rate at which subjects can repeat the 

activities. Thus, for the subject of this trial, distance accumulated over a window of 10s is close to 

120 and all other higher distances are too sporadic to be considered for analysis. This study is 

applicable to those people who are chronic stroke survivors and have some functional ability (like 

movement of elbow, stretching of fingers) in their affected arm. Maybe later on, once the subject 

has recovered some abilities partially a wider window width of 10s or more will be more useful. 

However, as of now, window width of 5s is the most promising choice.  
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Fig. 5.4 Normalized Histogram of Distance Covered with width = 10s 

Figures 5.2 through 5.4 represent a single subject‟s data. Data from other 2 subjects‟ 

trials also shows similar behavior as seen in Fig. 5.2 to Fig. 5.4 respectively. This reinforces our 

choice of window width of 5s being generic for the class of subjects under consideration. The 

results obtained from remaining two subjects‟ data trials can be found in Appendix B.1. 

5.2.2 Performance Metric Observability/Resolution 

Current version of CIMT uses subjective performance tracking methods, which suffer 

from very low temporal resolution. These methods take longer to notice any change in 

performance metric making the whole CIMT inefficient and slow. This in turn results in rising 

cost of health care for stroke patients. With accelerometers, we will develop an objective 

performance tracking method with low temporal resolution (i.e. it will be able to notice changes 

in performance metric sooner than current available methods). 

Figure 5.5 shows zoomed-in view of Fig. 5.3. From this figure, we can see that over a 

period of 8 days the overall trend of movement of histogram of distance covered by affected arm 

is towards the average histogram of distance traversed by unaffected arm over the same period. 

But, this progression is not monotonous enough causing day 5 to be the worst for higher distance 
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values (instead of day 1) and day 6 & 7 to the best for higher distances (instead of day 8). These 

inter-day variations are attributed to changes in physical and/or psychological state (fatigue) of 

subjects. 

 

Fig. 5.5 Zoomed-in version of Fig. 5.3 

To remove the effect of inter-day variations and emphasize the overall improvement, 

average histograms of distance covered over a period of some consecutive days are plotted. 

Figures 5.6 and Fig. 5.7 show 2-day average histograms and 4-day average histograms 

respectively. As shown in Fig. 5.6, with 2-day average histograms, we get rid of most of the 

variations and initial 2-day period turns out to be the worst in performance at higher distances 

while as last 2-day period turns out to be the best. Two 2-day plots in the middle are dominated 

by considerable noise and we do not see any clear indication of incremental improvement among 

those two. 
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Fig. 5.6 2-day Average Histograms of Distance Covered by Affected Arm 

As can be seen from Fig. 5.7, with 4-day average histograms, we see some remarkable 

improvement at low distance values but at high distance values, it is not that remarkable.  

Thus, to observe gross performance improvement average histogram over some 

consecutive days should be looked at. This new performance metric obtained using accelerometer 

data does show better temporal resolution. In addition, this resolution can be tweaked around to 

compensate noise (day-to-day variations). 

5.3 Histogram of Distance Traversed Based Comparison 

To verify the algorithm described in earlier section, limited clinical trial was carried with 

the help from NRRL staff members. The number of subjects available limited this clinical trial. 

The trial consisted of five subjects with chronic stroke and each one having differing movement 

capability in their affected arm. 
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Fig. 5.7 4-day Average Histograms of Distance Covered by Affected Arm 

Each subject participating in this trial completed MAL and BBT tests. As mentioned 

earlier, MAL is a subjective test while as BBT is an objective test developed at NRRL, CSU. 

After these tests, subjects completed four activities with repetition. The activities were designed 

such that two of them are considered to be uniaxial, one is considered to be biaxial while as the 

remaining one is considered to be 3D activity. Fourth activity is a more realistic representation of 

general ADL. 

First activity („activity 1‟) consisted of sliding in 10 small gunny bags placed at some 

predefined distance (about one foot). This activity is designed to be predominantly along Y-axis 

of 3D accelerometer. Second one („activity 2‟) consisted of filling in an empty egg crate of 12 

eggs with woolen/cotton balls. This activity is representative of 3D ADL and involves fine motor 

skills along with gross motor skills. The proposed algorithm is designed for gross motor skills 

only and will not be of much help for analyzing fine motor skills. Third activity („activity 3‟) 

consisted of lifting an empty plastic cup 10 times as if working out bicep muscles. This activity is 

designed to be dominantly along X and Y-axis of 3D accelerometer. This activity is a 2D activity. 

The last activity („activity 4‟) consisted of sliding out 10 shower curtain rings from the shower 
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curtain bar. This activity is designed to be along either X or Z-axis of 3D accelerometer 

depending on each individual‟s convenience during the activity. Table 5.1 summarizes the 

activities used in data trials along with their characteristics. 

Table 5.1 Summary of Activities used in 8-day trial 

Activity Motor Skills Dimensionality Description 

activity 1 Gross 1D (Y) Slide in 10 gunny bags 

activity 2 Fine 3D Fill in egg crate with cotton balls 

activity 3 Gross 2D (X and Y) Lifting an empty plastic cup 

activity 4 Gross 1D (X or Z) Sliding out curtain rings from shower curtain bar 

Table 5.2 shows the outcomes of MAL and BBT tests arranged in descending order of 

BBT scores.  

Table 5.2 Scores of MAL and BBT 

Subject BBT Score MAL Score (For completed items) 

Subject 2 45 4.33 

Subject 4 19 2.79 

Subject 3 17 3.07 

Subject 5 11 2.64 

Subject 1 3 2.19 

As expected, BBT and MAL score based performance metrics do not agree with each 

other because of some obvious differences between their methodologies as described earlier. For 

histogram algorithm‟s verification purposes, we should only consider BBT test scores as it is an 

objective test. 

Figure 5.8 shows the histogram of distance traversed by all subjects for activity 1. From 

this histogram we conclude that subject 1 is the best performing, followed by subject 2, subject 3, 

and subject 4. Subject 5 appears to be the worst performing of all. The histogram is plotted from a 

minimum distance of 60 cm to a maximum distance of 120 cm. Maximum distance of 120 cm 

was decided based on earlier trials of 3 subjects where it was found that any subject would rarely 

cover more than 120 cm in selected window width of 5 seconds. Minimum distance of 60 cm is 

chosen, as we do not want to look at low distance histograms. 
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Fig. 5.8 Histogram of Distance Traversed by all subjects for activity 1 

Observing Fig. 5.8, we can see that subject 1 covers higher distance more often than any 

other subject and hence is ranked first. Subject 5 covers maximum distance least frequently than 

any other subject and thus, subject 5 has the worst performance. Similar procedure is followed for 

all other activities and each subject‟s performance was ranked based on histogram method. All 

results are compiled into a table and arranged by BBT score ranks. 

Column 7 in the Table 5.3 gives the average rank over all 4 activities by histogram 

method while as column 8 gives the average rank over 3 activities, which are performed either in 

1D or 2D (i.e. activity 1, activity 3 and activity 4), based on histogram method. 

Table 5.3 Histogram based comparison summary 

Participant 
BBT 

Rank 

activity 

1 

activity 

2 

activity 

3 

activity 

4 

Average 

(4 

activities) 

Average (3 

uniaxial 

activities) 

Subject 2 1 (45) 2 2 1 2 1.75 1.67 

Subject 4 2 (19) 4 5 2 3 3.5 3 

Subject 3 3 (17) 3 3 5 4 3.75 4 

Subject 5 4 (11) 5 4 4 5 4.5 4.67 

Subject 1 5 (03) 1 1 3 1 1.5 1.67 

The unexpected result from the Table 5.3 is, disagreement between BBT and histogram 

method over subject 1‟s performance. To check what might have gone wrong, subject 1‟s 
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videotaped trial was reviewed in collaboration with NRRL staff. Video review concluded that 

though subject 1 has had chronic stroke, the subject had a severe stroke resulting in very high 

motor deficits. Thus, the subject lacks even basic gross movements and experiences frequent 

involuntary sudden movements also known as „jerks‟. The magnitude of acceleration of these 

involuntary movements is close to that of normal ADLs. Only difference between jerks and 

ADLs is the time duration for which they last. Jerks are short time phenomenon while as ADLs 

last longer. The current version of algorithm cannot differentiate among these two as it considers 

amplitude of accelerations only and not the duration.  

On discarding subject 1 data, histogram method based ranking for each individual 

activity varies greatly. This implies that each subject cannot perform each activity with same 

proficiency. Columns 7 and 8 of Table 5.3 should be looked at as comprehensive rank for all 4 

activities and all but 3D activities respectively, using histogram method. Again, if we discard 

subject 1, then these comprehensive rankings follow the same order as BBT score based rankings 

(sans subject 1). 

This method of visually observing histogram to rank subjects‟ performance is tedious and 

will be prone to observational errors of the ranker, as we start comparing more subjects. Thus, 

there is a need to have a numeric value as the output of histogram algorithm so that it would be 

easier for the therapist/physician to comprehend/assess the rehabilitation progress. The area under 

the histogram curve can be used as an indicator to compare performances. Though normal area 

calculation might seem promising, it might not be the best method, as it does not differentiate 

among different distances. The ideal candidate to get this numerical quantity should assign more 

importance to higher distances over lower distances as higher distance traversal is a good 

indicator of better functional ability. This can be achieved by assigning different weights to 

different distances.  

Observing all of the histograms presented so far, we infer following - as distance 

traversed increases, the frequency with which that distance can be traversed decreases. Thus, the 
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weighting function should increase weights as distance traversed goes on increasing. The rate of 

increase in weights needs to be determined. The ideal weighting scheme should be such that, it 

maintains the product of weighted distance traversed and its normalized frequency a constant. 

This ensures that area contributed by each segment of the histogram plot is same and when any 

subject who is able to traverse more distance than other subjects will have more total area under 

the histogram as compared with others. 

Generally, the histogram decays exponentially as distance traversed increases. We can 

assume the tail of exponential decay to be linear for larger distances and thus assign weights that 

increase linearly as distance traversed goes on increasing. As we are interested in larger distances 

only, we will ignore all distances below 60cm for this area calculation method. Distance of 60cm 

is assigned a weight of 0, 61cm gets a weight of 1, 62cm gets a weight of 2, so on and so forth. 

Such linearly weighted area calculation is done on 5 subject data presented earlier. Each subject‟s 

performance is ranked according to this weighted area under the histogram and the results are 

presented in Table 5.4. 

Table 5.4 Linearly Weighted Area under Histogram based comparison summary 

Participant 
BBT 

Rank 

activity 

1 

activity 

2 

activity 

3 

activity 

4 

Average 

(4) 

Average (3 

activities 

except 3D 

activity) 

Subject 2 1 1 2 1 1 1.25 1 

Subject 4 2 4 5 2 3 3.5 3 

Subject 3 3 3 3 4 4 3.5 3.67 

Subject 5 4 5 4 5 5 4.75 5 

Subject 1 5 2 1 3 2 2 2.33 

Table 5.4 shows that linearly weighted area calculation method gives different 

performances for all subjects for each activity. Average performance for 3 activities designed 

along the principal axes of 3D accelerometer is in agreement with BBT rank if subject 1‟s data is 

ignored. However, when average performance over all activities is concerned this method fails to 

differentiate among 2
nd

 and 3
rd

 ranked subjects i.e. subject 4 and subject 3 respectively. These 

results are obtained under the assumption of linear weighting. The inconsistency of results 
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suggests that linear weighting might not be the best (or the most accurate) weighting scheme and 

other schemes need to be investigated. 

Source code for the histogram of distance traversed algorithm is given in appendix A.2. 

The source code for calculating weighted area under the histogram curve is given in appendix 

A.3. 

5.4 Summary 

This chapter has introduced a novel algorithm to assess rehabilitation performance using 

3D accelerometer. The algorithm uses statistics generated from accelerometer data within fixed 

time duration. The algorithm‟s resolution is obtained from consecutive 8-day trials for three 

subjects. The algorithm shows noticeable improvements in performance over a period of 8-day 

when two consecutive day‟s data is analyzed together. The algorithm‟s performance for single 

day analysis is limited by its susceptibility to sensor noise. Thus, the algorithm is extended to 

work on multiple days‟ data. This extension is more robust and accurate when compared with 

single day analysis algorithm. The algorithm is used to differentiate different stroke survivors 

based on their functional ability of affected arm. We also present a method to automate this 

algorithm to get rid of observational errors that might arise. The proposed method is based on 

weighted area calculation. Data analysis presented in this chapter leads us to conclude that linear 

weighting scheme works well for 1D and 2D activities. 
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Chapter 6 

Tracking Arm Motion Using IMU 

Using the algorithm to detect affected arm use, a method to determine the number of 

times a particular activity is repeated during a CIMT lab session was developed and presented in 

Chapter 4. Chapter 5 took the developments in Chapter 4 a step further by presenting a novel 

algorithm to track rehabilitation performance using 3D accelerometer. The algorithm presented in 

Chapter 5 uses statistical properties of data generated by 3D accelerometer during a specified 

time window to calculate an objective metric to assess rehabilitation progress. The analysis of 

resolution of Chapter 5 algorithm proved that the objective metric developed is more responsive 

than BBT scores. These objective metrics are necessary to observe rehabilitation progress as there 

is no method available to monitor arm movements remotely. However, recent advances in MEMS 

sensors enable us to design a wearable sensory system, which can track human motions reliably. 

With availability of such a system, therapists would be able to track affected arm motions 

remotely and recreate it whenever necessary to observe performance improvement over time. 

This chapter will present a Kalman filter based motion tracking system that can track linear 

motions performed along the primary sensing axes of 3D accelerometer. The algorithm that will 

be presented in this chapter assumes that there will not be any change in the orientation of the 

sensor and the linear motion will happen along any one of the primary axes at any point of time. 

Even with these assumptions, we will show that this algorithm will be useful in tracking stroke 

rehabilitation progress. A motion tracking system based exclusively on IMUs for human arm 

motion tracking purposes is the primary contribution of this chapter. 

The rest of the chapter is organized as follows. Section 6.1 discusses the motivation 

behind this work followed by literature review of IMU bases motion tracking systems in Section 
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6.2. Section 6.3 presents an overview of the sensor used in this chapter followed by a brief 

discussion on sensor calibration. Section 6.4 discusses the simplified case of 1D motion-tracking 

algorithm. Section 6.5 presents the Kalman filter, which forms the core part of motion tracking 

algorithm. For the analysis of Kalman filter and determination of its optimal parameters, Section 

6.6 presents a human arm motion simulator. Section 6.7 analyzes the Kalman filter and 

documents the impact of its parameters on the algorithm‟s performance. As mentioned earlier this 

algorithm is designed for linear motions in 2D. A discrete band pass filter is presented in Section 

6.8 to minimize the impact of orientation change, which is a result of rotational motion, on 

algorithm‟s performance. Section 6.9 documents the results from sensor field trials consisting 

various representative set of motions from simple 1D motions to complex 2D motions. Section 

6.10 presents an analysis of cross-axis sensitivity, which limits the algorithm‟s performance in 

complex 2D motions. Section 6.11 presents a method to identify components of 2D motion and to 

remove effects of cross-axis sensitivity to improve the algorithm‟s performance. Section 6.12 

discusses applications of this algorithm for stroke rehabilitation in general and CIMT in particular 

followed by the concluding remarks summarizing the contributions of this chapter. 

6.1 Motivation 

Motion tracking has been a very well researched topic with the advancement of 

aeronautical field for military and civilian applications. Over the past decade or so, human motion 

tracking has gained interest among many researchers due to its perceived applications in 

recreation, athletic training, and consumer electronics.  

Very recently, human motion tracking is being considered for some medical applications 

such as healthy ageing, recovery and rehabilitation from disabilities, and telemonitoring via 

ambulatory systems. These systems can be classified according to the position of the sensors and 

sources, or according to the motion-tracking techniques, e.g. electromagnetic position and 

orientation trackers, acoustic position and orientation trackers, mechanical position and 

orientation trackers, electrostatic position and orientation trackers, and video and electro-optical 
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tracking systems [55]. Zhou et. al. [56] suggests following classification for human motion 

tracking systems and reviews them in detail –  

 non-vision based systems (e.g. MT9, G-link, MotionStar, InterSense, Polhemus, 

HASDMS-1 and glove-based devices),  

 vision-based tracking systems with markers (e.g. Qualisys, VICON, PeakMotus, CODA, 

ReActor2, ELITE bitomech and APAS),  

 vision based tracking systems without markers and robotic-guided tracking systems (e.g. 

Cozens, MANUS, MIME, ARM Guide and robotic arms etc.). 

All of the above mentioned systems still pose some challenges for their use in 

rehabilitation methods. Some of these systems require specially configured instruments such as 

robots, cameras and software associated with them. This limits the use of such systems to a 

location where these resources are available. Some of the above systems require a set of skills 

from the user, such as some medical knowledge of human motion and some technical knowledge 

about sensors, to operate. Therefore, need a watchful eye of a lab staff/technician. Some of these 

systems restrict the motions that can be carried out by the subject. Such restrictive systems will 

produce biased results. VICON system uses set of cameras along with passive markers on 

subject‟s body to track subject‟s motion. Most of these systems are not portable - restricting their 

use within a limited space either at a physician‟s lab or at subject‟s home. Almost all of these 

systems are costly hence preventing a wide adoption among the health professionals. 

The current state of CIMT requires subjects to come to a physician‟s lab to undergo 

therapy session. Physician monitors these sessions subjectively to track rehabilitation progress. 

This method of CIMT delivery not only increases the cost of rehabilitation but also gets limited 

by a physician‟s availability, making it harder to deliver CIMT to subjects living beyond some 

distance. Consequently, the average time for rehabilitation increases, putting economic burden on 

subjects. Though physician recommends subjects to practice the therapy while in their homes, 
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there is no method, which enables physician to monitor whether the therapy is being practiced or 

not, and if it is being practiced, how effective it has been. 

IMUs offer a compelling solution to issues mentioned thus far. With advances in 

technology, MEMS sensors‟ performance improves whilst their cost reduces. MEMS sensors 

become smaller and lighter. Most of these MEMS sensors can communicate wirelessly and run 

off batteries. These are some of the characteristics that make IMUs ideal for portability. Thus, we 

need to develop a method/algorithm, which enables us to track arm motion using IMU. 

Developing this technology with off-the-shelf IMU units has a number of economical advantages. 

We can reduce the cost of the system significantly by giving all subjects a tracking system of 

their own and then physician can monitor all of them remotely. 

6.2 Related Work 

Over the last decade, there has been significant amount of research done in the field of 

human motion tracking using IMUs. Majority of that work has gone into understanding and 

modeling the MEMS sensors and characterizing them for noise analysis. After that, the focus 

moved to utilizing these sensors for estimating changes in orientation, caused by either intended 

or unintended rotational motion. So far, very few researchers have dived into the complex 

problem of tracking human motion using IMUs. Majority of those who explored this area did so 

for human gait analysis. Very few have explored the area of tracking human arm motion using 

IMUs. The aptly titled survey of motion tracking technologies presented by Welch and Foxlin 

[46], accurately describes the current state of this field of study – highly fragmented approaches 

and tailor-made solutions incorporating wide array of technologies, designed according to 

application domain under considerations. 

 Veltink et. al. [AC, AL] presented a thorough analysis of accelerometer error sources 

and modeled them to determine the gravity component acting on each axis. Kalman filter was 

used to predict and filter out the noise present in accelerometer output. Such noise corrected 

accelerometer output is then used to determine the orientation of the body the IMU is attached to. 
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For this work, it was assumed that all changes in accelerometer‟s output are solely due to changes 

in orientation and there was no linear motion associated with that change. This is very well 

justified assumption that makes the technique more accurate. However, we cannot use the same 

assumption for motion tracking purposes. 

Najafi et. al. [28] proposed a method to monitor physical activities in elderly using an 

IMU attached to the subject‟s chest. Authors considered various postures in this study such as 

sitting, standing, rolling in/out of bed and physical activity of walking. Authors used discrete 

Wavelet transform as a signal-processing tool along with a simple kinematics model that ties 

various postural transitions to IMU signals. It was proved that this method is as good as optical 

motion tracking. The placement of sensor on chest has some implicit advantages as the axes of 

accelerometer stay fixed all the time with respect to the torso and human torso has less degree of 

freedom as compared to human arm. In addition, the orientation changes in torso are directly 

associated to postural transitions. This study neglected linear motion of any kind, as well. 

Sabatini [34] presents a method for gait analysis using inertial sensors. The method uses 

quaternion based attitude determination using gyroscope signals. Then, accelerometer outputs are 

gravity compensated and double integrated to calculate distance. The sensors‟ noise sources are 

modeled and the errors are estimated using spherical linear interpolation (SLERP) technique. A 

simulator is developed to verify all of the above techniques. Although, this study presents a 

robust method for motion tracking, it lacks results from an actual sensor and field trial. 

Torres et. al. [43] presents a motion-tracking algorithm using an IMU comprising of 3D 

accelerometers, 3D gyroscopes and magnetometer. The authors provide a thorough and in-depth 

solution for tracking motion in an Earth reference frame. They use magnetometer to determine 

true north and gyroscopes are used to determine orientation with respect to Earth reference frame. 

Once the orientation is determined, it is used to correct accelerometer output for gravity 

components and calculate position using Kalman filter as a data fusion tool. The algorithm fails to 

deliver primarily because of lack of sensor noise modeling. Gyroscopes and accelerometers are 
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accurate over a short period and start accumulating errors when integrated over long periods 

while as magnetometers are stable over longer period and are affected by environmental factors 

such as presence of metallic objects over a short period. This study does not model these and 

other possible error sources such as scale factors and bias, and hence the algorithm starts 

accumulating noise and produces error, which increases with time. 

Thus, as described in this section, human motion tracking using IMU is still being 

investigated. A complete solution for 3D motion tracking using IMU still eludes us. This chapter 

will explore a solution involving Kalman filter. Considering the complexities associated with 3D 

motion tracking, this thesis will propose a solution for 1D motion tracking and will explore the 

possibility of extending it for 2D tracking purposes. 

6.3 Atomic 6DOF 

This part of the thesis uses the „Atomic 6 Degrees of Freedom‟ IMU unit from SparkFun 

[16]. It‟s a stripped down IMU designed for a good performance at lower price. This unit consists 

of 3D accelerometer and three 1D gyroscopes aligned with each axis of accelerometer. It has 

Atmel ATMega328 microcontroller running at 10MHz with six dedicated 10-bit ADC channels 

reading the sensors. It runs wirelessly on XBee protocol at a baud rate of 115200bps. Its 

dimensions of 47mm x 37mm x 25mm make it an ideal candidate for portable applications. Fig. 

6.1 shows the Atomic 6DOF unit pictured with XBee radio mounted on it. 
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Fig. 6.1 Atomic 6DOF with XBee radio  

The product datasheet [15] mentions that the gyroscopes have a resolution of 

0.977°/s/tick where one tick is one ADC count. The accelerometers‟ sensitivity can be adjusted 

through firmware to one of the following values – 1.5g, 2g, 4g, and 6g. Accordingly, the 

accelerometer‟s resolution takes on following values respectively - 0.00403g/tick, 0.00537g/tick, 

0.0107g/tick and 0.0161g/tick. During ADLs, human arm experiences accelerations in the range 

of about 0.2g – 0.3g. Thus, to improve the accuracy of results obtained, a sensitivity of 1.5g with 

maximum resolution is selected for this study. The unit samples data at a rate of 100Hz. 

For motion tracking purposes, we want the absolute values of accelerations. Atomic 

6DOF gives out raw ADC counts as its output. Thus, the accelerometer needs to be calibrated 

before being used for motion tracking purposes. The calibration of accelerometer is achieved by 

subjecting it to known acceleration values and mapping its ADC output to those known 

acceleration values. To subject accelerometer to known accelerations, the unit is mounted on a 

5cm sine bar with its X-axis aligned along the length of sine bar and Y-axis aligned along the 

breadth of sine bar. With an inclination of θ, the X-axis experiences g∙sin(θ) while as Z-axis is 

subjected to g∙cos(θ). Enough samples are collected for a given inclination so that the results 
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obtained are statistically stable. Table 6.1 shows the results obtained for X-axis while as Table 6.2 

shows the results obtained for Z-axis. 

Table 6.1 Atomic 6DOF Calibration for X-axis 

θ 

(Degree) 
Samples 

Average 

(ADC 

Count) 

Standard 

deviation 

(ADC 

Count) 

Acceleration 

(m/s
2
) 

ADC Count 

for 1g 

Resolution 

(m/s
2
) 

0 2244 482.94 1.904 0 - - 

5 2423 462.18 1.919 0.854 238.210 0.041 

10 2233 440.35 1.930 1.702 245.235 0.039 

15 2270 419.41 1.912 2.538 245.461 0.040 

20 2266 399.68 1.896 3.354 243.443 0.040 

25 2443 379.19 1.899 4.144 245.483 0.040 

30 2595 360.29 1.902 4.903 245.294 0.040 

35 2227 342.42 1.885 5.624 244.992 0.040 

40 2308 325.50 1.912 6.303 244.925 0.040 

44 2573 312.80 1.919 6.812 244.918 0.040 

ADC counts (ticks) required to get 1g signal in a particular axis is derived by correlating 

changes in sensor‟s ADC count output to the changes in actual acceleration for each θ. One other 

thing that we can observe from the Tables 6.1 and 6.2 is that for an inclination of 5°, the signal to 

noise ratio in sensor output is not good and thus the result that is obtained for that inclination does 

not agree well with other inclinations. 

As can be observed from the Tables 6.1 and 6.2, for all axes the accelerometer has the 

specified resolution of 0.004g/tick. In addition, from the average value of each axis for all 

different θ, we can map different ADC counts to actual acceleration. This calibrates the 

accelerometer of Atomic 6DOF enabling us to use it for the purposes of human motion tracking. 

For this calibration and all future calculations, the value of g is assumed to be 9.80665 m/s
2
. One 

key observation we can make from the Tables 6.1 and 6.2 is that all axes of accelerometer have a 
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standard deviation of about 2 ADC counts in their output. This is nothing but the measurement 

noise of MEMS sensors. Converting this measurement noise to SI units, we get a standard 

deviation of about 0.0804 m/s
2
 or equivalently 8.04 cm/s

2
. Usually during ADL the distances 

covered are of the order of few tens of centimeters. This much measurement noise level will be a 

limiting factor on the long term performance and accuracy of the system developed using this 

accelerometer, if not taken care of properly. For short term performance and accuracy there will 

not be a huge impact as the signal to noise ratio during an activity period will be very high. 

Table 6.2 Atomic 6DOF Calibration for Y-axis 

θ 

(Degree) 
Samples 

Average 

(ADC Count) 

Standard 

deviation 

(ADC Count) 

Actual acc 

(m/s
2
) 

ADC 

Count for 

1g 

Resolution 

(m/s
2
) 

0 2244 798.279 1.734 9.806 - - 

5 2423 796.956 1.702 9.769 347.723 0.028 

10 2233 794.627 1.750 9.657 240.385 0.040 

15 2270 789.759 1.734 9.472 250.067 0.039 

20 2266 783.556 1.685 9.215 244.138 0.040 

25 2443 774.895 1.729 8.887 249.585 0.039 

30 2595 764.877 1.721 8.492 249.318 0.039 

35 2227 753.199 1.700 8.033 249.270 0.039 

40 2308 739.801 1.720 7.512 249.954 0.039 

44 2573 728.427 1.683 7.054 248.884 0.039 

 

6.4 Motion Tracking in 1D 

As described in Section 6.2 earlier, Torres et. al. [43] presented a motion-tracking 

algorithm involving an IMU consisting of accelerometers, gyroscopes and magnetometers. Fig. 

6.2 shows the algorithm flowchart given in [43]. 
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Fig. 6.2 Motion tracking algorithm flowchart presented in [43] 

The algorithm uses Kalman filter to calculate orientation matrix. After the orientation 

matrix is calculated, the accelerometer outputs are compensated for orientation changes to obtain 

the component associated with linear motion. In 3D motion tracking, orientation estimation is the 

most critical component as any errors in orientation estimation are propagated much faster and 

result in significant errors in the outcome. Thus, to evaluate applicability and accuracy of 

accelerometers for motion tracking purposes, it is imperative to remove all the complexities of 

orientation changes and just considering pure linear motions. With this constraint in place, a 

method for tracking motion in 1D will be presented along with an extension, which will allow us 

to explore whether the method can be used as is for 2D motions (with no orientation change). 

The sensor used in [43] has 3D accelerometer, 3D gyroscope, and 3D magnetometer. 

These sensors have all of their orthogonal axes aligned to each other and they form the sensor‟s 

frame of reference. Magnetometer measures the earth magnetic field on three orthogonal axes of 
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sensor‟s reference frame. With these sensors, it is possible to track motion in a fixed frame of 

reference such as Earth‟s fixed frame. Earth‟s fixed frame of reference is defined by X-axis being 

parallel to Earth‟s surface and pointing toward Earth‟s magnetic north, Z-axis parallel to the 

gravity vector and hence perpendicular to Earth‟s surface and Y-axis orthogonal to both X and Z 

axes such that they form a right handed co-ordinate frame [43]. Magnetometer is the primary link 

between Earth‟s fixed frame and sensor‟s frame of reference. As the sensor measures all 

quantities with respect to its frame of reference, an orientation matrix is needed to transpose 

measured quantities back into Earth‟s fixed frame of reference for tracking purposes. Atomic 

6DOF IMU that we use in this section does not have a magnetometer and thus it cannot track the 

motion with Earth‟s fixed frame of reference. Instead, all the tracking that can be achieved using 

Atomic 6DOF will be with reference to sensor‟s frame of reference at the start of motion 

tracking. Considering short-term accuracy of gyroscopes and long-term stability of 

accelerometers and that in typical ADL, the ratio of duration of arm motion to the duration of no 

motion is always small; we can either enable or disable arm motion tracking depending on 

whether the arm is being moved actually or not. Then after each period of inactivity, motion 

tracking can start tracking the motion with reference to IMU‟s orientation at that instant and we 

do not have to worry about Earth‟s fixed frame of reference. The development of 1D motion-

tracking algorithm is based on the assumption of no orientation change and hence this issue of 

changing frames of reference will not matter in 1D motion-tracking scenario. 

6.5 Kalman Filter for Motion Tracking 

In 1960, Rudolf E. Kálmán introduced his systematic approach to linear filtering based 

on the method of least squares [18]. Soon after its introduction, it became popular among 

engineers as it performed much better than most other techniques and it was easy to implement on 

digital computer. Its usage proliferated beyond engineering into diverse areas such as economics, 

vehicle navigation, weather prediction and many more. Along with performance improvements 

and ease of implementation, Kalman filter also had an advantage of analytical elegance [54] as 
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the filter design relied on the complete systematic analysis of the problem at hand. Kalman 

filtering has contributed immensely to the field of motion tracking in general. Kalman filter lends 

itself quite well for sensor data fusion. Thus, we will use Kalman filter for motion tracking 

purposes. 

Kalman filter‟s ease of implementation for digital computers is an effect of its recursive 

nature. The recursive nature of Kalman filter implies that only the estimated state from previous 

time step and current measurement are needed to calculate current state estimate. Generally, a 

Kalman filter describes the system dynamics with following two fundamental equations – 

                                                                 (6.1) 

                                                                  (6.2) 

where Xk is the estimated state of the system at time step k. Fk is called as state transition matrix 

which relates estimated state from previous time step k-1 to that of current time step k. Bk is 

control input matrix which transforms the control vector uk into state. wk is the process noise 

which is modeled as a zero mean multivariate normal distribution with covariance Qk. zk is the 

observed measurement at time step k which is related to system state Xk by measurement matrix 

Hk. vk is the process noise which is modeled as a zero mean multivariate normal distribution with 

covariance Rk. Thus, wk and vk are represented as – 

                                                                     (6.3) 

                                                                              (6.4) 

All matrices that have a subscript can change each time step, but that is not a required 

condition for all systems and Kalman filter allows them to be constant for a system. 

The kinematic equations for 1D motion in discrete time domain are – 

                                                                             (6.5) 

                                                                             (6.6) 
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where sk denotes the position of the object being tracked at time step k, vk denotes its velocity at 

time step k, and ak denotes its acceleration at time step k. These quantities sufficiently describe 

the motion of the object at any time and thus they would form the state vector for motion tracking 

algorithm. Thus, we have – 

    

  
  
  
                                                                         (6.7) 

                                                                         (6.8) 

We know that during ADLs, non-motion period is longer than the motion period. When 

there is motion, the change in accelerometer output depends on not only the activity but also the 

initial orientation of the arm. There is no statistical model available for modeling human arm 

accelerations during ADLs. To relate acceleration for two consecutive time steps we model 

acceleration as first order autoregressive (AR) process. Based on this assumption and equations 

(6.5) and (6.6) we get – 

    
    
    
   

                                                                (6.9) 

α is AR parameter and we would find its value using a simulator. For the problem at 

hand, there is no control input vector available. Therefore, we neglect uk and Bk from Kalman 

filter equation (6.1). 

Equations (6.7), (6.8), and (6.9) represent the Kalman filter model for 1D motion tracking 

case. For 2D motion tracking case, these equations change as follows – 

   

 
 
 
 
 
 
   
   
   
   
   
    

 
 
 
 
 

                                                                     (6.10) 

    
   
   

   
   

                                                      (6.11) 
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                                                 (6.12) 

For 2D motion tracking case, we have represented all state variables for both X-axis and 

Y-axis. The axis name in subscript for all variables indicates this fact. For Fk, we have used αx 

and αy as two different AR parameters just to take care of the case if different AR models exist for 

both axes. Nevertheless, for our analysis purposes we will assume both X and Y-axis have same 

AR model and thus we replace αx and αy by α. 

6.6 Human Arm 1D Motion Simulator 

We need to determine the parameters of Kalman filter discussed in earlier section that 

will work best for this study‟s purposes. We need to evaluate the filter‟s performance as well. To 

do this, we will need to simulate the human arm motion data and pass this controlled input to the 

filter and analyze the filter performance. 

We can decompose any ADL into two primary phases – reaching movement and object 

manipulation movement. Reaching movements require gross motor skills while as object 

manipulation movements require fine motor skills. As we plan to construct a wearable device 

with IMU that is to be worn on the wrist, we will be unable to sense fine motor skills reliably. 

Thus, for motion tracking purposes we will focus on reaching movements (such as „activity 1‟ 

and „activity 4‟ introduced in Chapter 4). 

With advancement of robotics, considerable work has been done to understand and 

analyze human motions. Human arm motion research has benefitted from this phenomenon. In 

general, human arm motion is a feedback based control system. Human brain processes the 

information obtained by various sources to plan and modify the trajectory of the motion. Many 

people have presented various models for human arm‟s motion control and trajectory planning. 

Hersch et. al. [13] have presented a modified VITE model [7] which relates the acceleration, 
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velocity and position of human arm during a reaching movement with that of target position. 

However, with IMUs, we cannot get any kind of feedback related to either the arm position or the 

target position and thus we cannot make use of this equation. For our purposes, we need a simpler 

model that concerns only with arm‟s position, velocity, and acceleration. 

Experimental observations in [19] of planar human arm reaching movements indicated 

that humans tend to generate straight-line path and uni-modal bell shaped arm velocity profiles. 

Our brain achieves this by completing an underlying objective of achieving smoothest possible 

motion. Technically, smoothest movement corresponds to minimizing jerk (rate of change of 

acceleration) experienced by the arm. This particular model of human arm motion is called as 

„minimum jerk theory‟. This theory guarantees that the velocity profile generated by minimizing 

the jerk is always bell shaped. Based on this theory as well as some observations relating to 

reaching movements from 6DOF, we created a simulator to generate velocity, acceleration and 

position signals. 

The simulator takes in sampling frequency, duration of activity, and amplitude of velocity 

as parameters. Based on these parameters it generates a bell shaped velocity profile. From this 

velocity signal, it calculates the acceleration and distance signals. The simulator generates 

velocities for both X-axis and Y-axis. Therefore, we can use this simulator not only for 1D 

motion-tracking model but also for 2D motion tracking model. For 2D motion tracking purposes, 

we have a top-level wrapper file encompassing the simulator. This wrapper file takes in the 

quadrant in which the user wants to simulate 2D rectangular track, sampling frequency and time 

duration for tracing one segment of the rectangle. Wrapper file calculates rest of the parameters 

and passes them on to simulator. 

For a sampling frequency of 100Hz, first quadrant, a segment duration of 3 seconds the 

simulator generates the velocity profile in X-axis as shown in Fig. 6.3. Figure 6.4 shows the 

acceleration in X-axis generated by the simulator. Lastly, Fig. 6.5 shows the rectangular track 

generated by the simulator. 
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Fig. 6.3 Velocity generated by simulator in X-axis 

 

Fig. 6.4 Acceleration derived from velocity in X-axis of Fig. 6.3 

 



67 

 

 

Fig. 6.5 Simulated test track 

Appendix A.4 has the code for simulator and its wrapper file. 

6.7 Analyzing Kalman Filter Performance 

In Section 6.5, we presented the Kalman filter model for 1D motion tracking and 

extended it so that we can track 2D motion. To analyze Kalman filter‟s performance and to 

determine optimal values of its parameters for the best performance possible from the filter, we 

will use the simulator discussed in Section 6.6. For performance analysis of Kalman filter, we 

will simulate the arm motion and combine an additive noise representing the measurement noise 

expected in sensor output. We will then compare the filter‟s output with the values generated by 

simulator to see how well the filter filters out additive noise. 

6.7.1 Stationary (Non-Motion) Case 

When there is no motion, the accelerometer output will be constant with additive 

measurement noise. The orientation of the accelerometer determines this constant value. 
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Neglecting orientation, the accelerometer output will effectively be zero with measurement noise. 

Thus, to simulate this non-motion case, we generate a constant signal of value 0 and add 

measurement noise to it. 

For Kalman filter, α will be set to 1, as we know that the acceleration is a constant signal. 

As there is no motion, there will not be any uncertainty about state variables namely position, 

velocity, and acceleration. Therefore, we will keep Qk at 0. 

 

Fig. 6.6 Ideal (Black), Simulated (Blue) and Filtered (Red) acceleration values for stationary case 

with Rk = 0.075524. Pink trace marks the standard deviation of additive noise (Rk) 

Figure 6.6 shows the ideal (black trace), simulated (blue trace), and filtered (red trace) 

acceleration values. As described earlier, additive measurement noise, representative of noise 

observed in Atomic 6DOF, corrupts ideal values to produce simulated values. The measurement 

noise is characterized by keeping Atomic 6DOF stationary for more than 10 minutes (i.e. more 

than 60,000 samples). The standard deviation obtained from this data is used as Rk for the 

simulation. Figure 6.7 shows the error in Kalman filter estimates as compared with ideal values. 

As can be seen in Fig. 6.7, the filter takes about 60 samples or so before settling down to value of 

0. When we start off, the error in filter is high but soon that error reduces sharply and we start 

seeing accurate filtered output. Figure 6.8 depicts the covariance in X-axis acceleration values. 
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Fig. 6.7 Error in acceleration estimates  

 

Fig. 6.8 Covariance of X-axis acceleration  

As discussed in [54], covariance of state variables is one of the robust indicators of 

stability and validity of Kalman filter model for the problem at hand. If the filter is modeled 

properly, this covariance should decrease as more samples start coming in and finally settle down 

to low value and stay there for the remaining time. In Fig. 6.8, we do see same behavior, which 

validates accuracy of our model. 
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6.7.2 Dynamic (Motion) Case 

During any motion, the acceleration will change to produce a bell shaped velocity profile. 

Depending on the direction of motion, the acceleration profile changes. Without any definitive 

model available to describe this acceleration profile as an AR process, we need to find optimal 

value of α that will enable us to track the acceleration. 

Figure 6.9 shows the ideal, simulated, and filtered acceleration values when there exists 

some motion. For the purpose of Fig. 6.9, we set α to be 0.7 and Qk to be zero. Figure 6.10 shows 

the error in estimating acceleration values for the dynamic case. It is evident that filter is 

estimating acceleration value to be zero all the time and thus error in estimate is almost the same 

signal as that of ideal values. We tried different values of α to find out that no matter what value α 

has; we cannot track acceleration until Qk is zero. 

 

Fig. 6.9 Ideal (Black), Simulated (Blue), and Filtered (Red) acceleration values for dynamic case with 

Rk = 0.075524, α = 0.7, and Qk = 0 
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Fig. 6.11 Ideal (Black), Simulated (Blue), and Filtered (Red) acceleration values for dynamic case 

with Rk = 0.0790, α = 1, and Qk = 0.0001 

 

 

Fig. 6.10 Error in estimating acceleration values for dynamic case with Rk = 0.075524,  α = 0.7,  and 

Qk= 0 
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Fig. 6.12 Ideal (Black), Simulated (Blue), and Filtered (Red) acceleration values for dynamic case 

with Rk = 0.0790, α = 1, and Qk = 0.001 

 

 

Fig. 6.13 Ideal (Black), Simulated (Blue), and Filtered (Red) acceleration values for dynamic case 

with Rk = 0.0790, α = 1, and Qk = 0.01 

As described in earlier sections, we know that there will not be much uncertainty in 

determining state variables because we assume that changes in acceleration are just because of 

motion and nothing else. Thus, Qk should be close to zero. To track the acceleration due to 
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motion, we do not want Qk to be zero. Thus, we sweep through a range of values to determine 

optimal Qk for motion tracking purposes. 

Figures 6.11 through 6.13 show the ideal, simulated, and filtered acceleration values for a 

reaching movement with α set to 1 and Qk varying from 0.0001, 0.001 to 0.01 respectively. For 

lower Qk of 0.0001 we can see that the filter filters out most of the noise. However, the filter 

output lags the actual signal. In addition, it estimates signal amplitude lower than ideal. In the 

case of Qk of 0.001 [Fig. 6.12], the filter does not filter all of the noise. However, it not only 

reduces the lag between estimates and the ideal signal but also tracks the ideal signal‟s amplitude 

closely. For Qk of 0.01 [Fig. 6.13], the filter does not filter most of the noise. Thus, filter output in 

this scenario follows its input quite closely.  

 

Fig. 6.14 Error in estimating acceleration values for dynamic case with Rk=0.079, α=1, and Qk=0.0001 
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Fig. 6.15 Error in estimating acceleration values for dynamic case with Rk=0.079, α=1, and Qk=0.001 

 

 

Fig. 6.16 Error in estimating acceleration values for dynamic case with Rk=0.079, α=1, and Qk=0.01 

Figures 6.14 through 6.16 show how change in Qk affects the error in estimating 

acceleration for the Kalman filter. As Qk increases, the standard deviation of error in estimating 
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acceleration increases. Put in other way, as Qk increases, the Kalman filter settles to a higher 

covariance value. 

Considering Fig. 6.11 through Fig. 6.16, we determine that Qk = 0.001 is the optimal 

value that gives good acceleration estimates with sufficient noise filtering and acceptable noise in 

filtered output. With value of Qk determined, now we will present how the changes in α impact 

the Kalman filter performance. 

6.7.2.2 Effect of α 

The primary objective of this section is to find out if there exists some α which can 

improve Kalman filter performance for Qk = 0.001. To determine value of α, we will vary α 

keeping Qk constant. Value of α is changed from 0.1 to 1.5 to observe its impact on noise filtering 

and reducing standard deviation of error in estimating acceleration. 

 

Fig. 6.17 Ideal (Black), Simulated (Blue), and Filtered (Red) acceleration values for dynamic case 

with Rk = 0.0790, α = 0.1, and Qk = 0.001 
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Fig. 6.18 Ideal (Black), Simulated (Blue), and Filtered (Red) acceleration values for dynamic case 

with Rk = 0.0790, α = 0.5, and Qk = 0.001 

 

 

Fig. 6.19 Ideal (Black), Simulated (Blue), and Filtered (Red) acceleration values for dynamic case 

with Rk = 0.0790, α = 1, and Qk = 0.001 

 



77 

 

 

Fig. 6.20 Ideal (Black), Simulated (Blue), and Filtered (Red) acceleration values for dynamic case 

with Rk = 0.0790, α = 1.5, and Qk = 0.001 

As can be seen from Fig. 6.17 through Fig. 6.20, changes in α scale the filter estimate 

proportionately. When α is less than 1, the Kalman filter underestimates the samples while as 

when α is greater than 1, the filter overestimates the samples. In summary, whenever α is not 1, 

the filter performance degrades.  

Thus, we choose α = 1 and Qk = 0.001 as our parameters of choice to be used with sensor 

data. Appendix A.5 gives the source code used for analyzing Kalman filter‟s performance. 

6.8 Removing Effects of Orientation 

The motion-tracking algorithm proposed in this chapter is applicable for 1D and 2D 

motions with no orientation change. The Kalman filter developed earlier assumes that the 

accelerometer output changes purely because of linear motion. Nevertheless, in practice, it is 

extremely hard for us to perform any arm movement strictly in any one direction and more 

difficult to do so without any change in orientation. Thus, this section develops a method, which 

can eliminate orientation changes observed in human arm motions. 
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Figure 6.21 shows the sensor output for a reaching movement and its frequency 

spectrum. The activity performed for this trial involved stretching out the arm in X-axis of the 

sensor and then pulling it back in after some time. In Fig. 6.21, we can clearly see three different 

signal levels when there is no activity. The levels are marked red in top trace of Fig. 6.21. These 

changes in no activity signal output is an effect of changes in orientation. The bottom trace of Fig. 

6.21 depicts the frequency spectrum of sensor output. From the frequency spectrum, it is clear 

that the most dominant component in the frequency spectrum is not present at 0 Hz but at a 

frequency marginally higher. This shift in dominant component of frequency spectrum is again 

because of orientation change. 

 

Thus, to remove effects of orientation change, the low frequency components around 0 

Hz must be filtered out. The Atomic 6DOF sensor samples at 100 Hz allowing us to observe any 

frequency from 0 Hz to 50 Hz. However, human arm motions are limited to about 10 Hz for 

athletic performance and about 5 Hz for ADL performance. Thus, by removing all frequency 

 

Fig. 6.21 (Top) Sensor output for a reaching movement, (Bottom) Frequency spectrum 
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components above 5 Hz we will minimize the measurement noise that is observed at higher 

frequencies. These requirements led us to develop a band pass filter. 

 

Fig. 6.22 (Top) Frequency response of the band passes filter, (Bottom) Phase response of the band 

pass filter 

 

Fig. 6.23 (Top) Sensor output for a reaching movement, (Bottom) Band pass filtered sensor output 

Top of Fig. 6.22 gives the frequency response of the band pass filter designed for filtering 

orientation changes while as the bottom section displays the phase response of the same band 
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pass filter. Figure 6.23 shows the raw sensor output and band pass filtered sensor output. As can 

be seen from Fig. 6.23, the raw sensor output and band pass filter outputs are not aligned in time 

domain. This is so because the band pass filter designed has a processing delay of about 900 

samples or so. However, it is evident that the band pass filter does perform as per our 

expectations and we see all no activity signal levels being the same. 

The development of band pass filter in this section has enabled us to transform a motion 

corrupted by orientation changes to a motion without any orientation changes. This will enable us 

to apply our algorithm with actual sensor output irrespective of whether orientation change, 

voluntary or involuntary, was present in the data or not. 

6.9 Sensor Trials 

After establishing the validity and usefulness of the motion-tracking algorithm through 

simulations, we will start using this algorithm with Atomic 6DOF data and analyze its 

performance. 

6.9.1 1D Trials 

As we started developing this algorithm for 1D case, we will use it for 1D motion 

tracking first. The 1D motion of stretching out the arm is sampled by Atomic 6DOF. The motion 

is performed along the Y-axis of accelerometer with no intentional change in sensor‟s orientation. 

The actual distance traversed for this motion was 40cm. 
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Fig. 6.24 (Top) Sensor output in X-axis for Y-axis reaching movement, (Bottom) Band pass filtered 

sensor output of X-axis 

Figures 6.24 and 6.25 show the raw sensor output in both X and Y-axis in the top section 

and the output of band pass filter for these axes in bottom section. It is clear from Fig. 6.24 and 

Fig. 6.25 that the sensor output is corrupted by measurement noise but band pass filter smoothens 

the sensor output and we see the signal representing activity in Y-axis. The other interesting 

observation is that although the activity was performed along Y-axis, X-axis showed significant 

signal variation. This suggests that there is some other source of error that has not been modeled 

yet that affects the non-dominant axis of motion. This error source is called as cross-axis 

sensitivity of the accelerometer and arises primarily due to inaccuracies of manufacturing 

process. Section 6.10 discusses cross-axis sensitivity in detail.  Nevertheless, as we know this 

activity was done along Y-axis we can completely ignore X-axis data and apply 1D motion-

tracking algorithm. 
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Fig. 6.25 (Top) Sensor output in Y-axis for Y-axis reaching movement, (Bottom) Band pass filtered 

sensor output of Y-axis 

The output of 1D motion-tracking algorithm is shown in Fig. 6.26. The algorithm 

estimates a distance of about 32 cm for an actual distance of 40 cm, giving an error of 20%. To 

understand the error sources affecting the algorithm‟s performance we enable 2D motion 

tracking. 

Figure 6.27 shows the output of the algorithm when 2D tracking is enabled. There are 

two observations to be made from Fig. 6.27. First, although the motion performed was purely 1D 

along Y-axis, X-axis also got affected. This resulted in some motion along X-axis in algorithm‟s 

output. However, this error in X-axis will not affect distance tracked along Y-axis and will be 

neglected for this section. Secondly, the underlying motion for Fig. 6.24 and Fig. 6.25 was 

stretching out the arm. This motion was monotonous in the direction along Y-axis without any 

change in direction. However, the algorithm output suggests that there was reversal in direction of 

motion. On close analysis of data, we concluded that the bias present in band-pass filtered data 

caused this direction change. We expect to see our data without any bias after band-pass filtering. 

However, as described in Chapter 2, some very low frequency phenomena affect the bias of any 
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MEMS device. In addition, the band-pass filter that we use has a high pass transition band from 

0.07 Hz to 0.2 Hz. All frequencies from 0.2 Hz onwards until 4.5 Hz are passed as is by the filter. 

 

Fig. 6.26 Algorithm output when only Y-axis motion is tracked by ignoring X-axis 

To maintain information related to actual activity we have to keep the pass-band corner 

frequency so low. Thus, to overcome this issue and improve the performance of our algorithm, 

we need to get rid of this bias. 
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Fig. 6.27 Algorithm output when motion in both X and Y-axis is tracked 

 6.9.2 Bias Correction 

To correct the bias that limits algorithm‟s performance, we need to find out the average 

of the data and subtract it from the data. This method is applied to both axes and the algorithm 

processes this bias corrected data. Figure 6.28 shows the algorithm‟s output after bias correction 

is applied. 

After bias correction, the algorithm gives out a distance of 43 cm along Y-axis effectively 

reducing the error from 20% to 7.5%. The remainder error of 7.5% is dependent on the duration 

for which we run the algorithm. This error is systematic because of the way this algorithm is 

implemented. When there is no motion, theoretically the sensor output will always be zero. 
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Fig. 6.28 Algorithm output when motion in both X and Y-axis is tracked after applying bias 

correction 

However, we do see some measurement noise around zero in sensor output 

corresponding to no activity duration. In addition, with Qk ≠ 0, Kalman filter cannot remove this 

noise completely and hence we get non-zero sensor output for no activity duration. This non-zero 

acceleration accumulates over time introducing error in our distance estimates. Constraining the 

duration over which acceleration is integrated will result in additional performance improvement 

for the algorithm. 

6.9.3 2D Trials 

To analyze algorithm‟s performance, three categories of 2D motions are performed 

multiple times. Although, we present one typical case from each category, the analysis is 

consistently valid for all the tests in each category. 
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6.9.3.1 Diagonal Track 

The diagonal track motion is achieved by performing a 1D motion along a line making an 

angle of about 45° each with negative X-axis and positive Y-axis. The distance traversed along 

the straight line was 60 cm. Thus, the distance traversed along X and Y-axis of Atomic 6DOF 

will be about 42 cm. 

 

Fig. 6.29 (Top) Sensor output in X-axis for diagonal track, (Bottom) Band pass filtered sensor output 

of X-axis 

Figures 6.29 and 6.30 show the sensor output in X and Y-axis for diagonal motion as well 

as the output of band-pass filter. Figure 6.31 shows the output of the algorithm with 2D motion 

tracking enabled. The final distance tracked by the algorithm is 44cm in X-axis and 47cm in Y-

axis. The maximum error in this case is just above 10%. 
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Fig. 6.30 (Top) Sensor output in Y-axis for diagonal track, (Bottom) Band pass filtered sensor output 

of Y-axis 

 

Fig. 6.31 Algorithm output for tracking diagonal motion 
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6.9.3.2 L-shaped Track 

In 1D trial section, we observed that when the motion was performed along Y-axis, it 

affected the X-axis as well. To see if this effect also exists from X-axis to Y-axis we designed an  

 

Fig. 6.32 (Top) Sensor output in X-axis for L-shaped track, (Bottom) Band pass filtered sensor 

output of X-axis 

 

Fig. 6.33 (Top) Sensor output in Y-axis for L-shaped track, (Bottom) Band pass filtered sensor 

output of Y-axis  

L-shape track. In addition, this track enables us to see how our algorithm responds to change in 

direction of motion. 
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Fig. 6.34 Algorithm output for L-shaped track 

The sensor output in X and Y-axis and the response of band-pass filter are shown in Fig. 

6.32 and Fig. 6.33. Figure 6.34 shows the track estimated by the algorithm. From Fig. 6.34 it is 

clear that cross-axis effect is applicable to both axes. Considering the final position tracked by the 

algorithm, the error is once again about 10% or so. However, if we consider the shape of track 

then we have significant error along Y-axis, as maximum distance along both axes in this trial 

was 40cm. The cross-axis effect degrades the performance significantly. The X-axis motion starts 

after sample 2600 in band-pass filter output. After that sample, the Y-axis should have been 

stationary with just measurement noise. However, from Fig. 6.33 it is clear that Y-axis signal 

varies significantly and thus it keeps on accumulating more distance than actually travelled. Even 
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with this cross-axis effect the algorithm is able to respond to change in direction of motion and 

gives us a track that is a good approximate of the original track. 

6.9.3.3 Rectangular Track 

The primary objective for testing our algorithm with rectangular track is to observe the 

effect of integration interval on final output. The rectangular track presented in this section is 

obtained by tracing the perimeter of an A4 size (21 cm X 30 cm) paper. 

 

Fig. 6.35 (Top) Sensor output in X-axis for rectangular track, (Bottom) Band pass filtered sensor 

output of X-axis 
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Fig. 6.36 (Top) Sensor output in Y-axis for rectangular track, (Bottom) Band pass filtered sensor 

output of Y-axis 

Figures 6.35 and 6.36 show the sensor output and band-pass filter output for X and Y-

axis in the case of rectangular track motion. Even in this case, we observe cross-axis effect in 

both of the axes. The long integration duration combined with cross-axis effect breaks the 

algorithm for rectangular tracking purposes. The algorithm‟s output track does not match the 

actual track either in shape or in distance. 

To substantiate our claim that the primary source of error is the cross-axis effect, we 

disabled 2D tracking and tracked each side of rectangle as an individual 1D motion. 
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Fig. 6.37 Algorithm output for rectangular track 

Figure 6.38 shows the output of these four 1D motions representing each side of the 

rectangle. For each segment, we restart the algorithm and that is why we see all of those four 

tracks starting from origin. The final distances tracked for each segment are in agreement with 

expected values with about 12% error in the output. Thus, this validates our claim that cross-axis 

effects degrade the algorithm performance, eventually making it ineffective for 2D motion 

tracking purposes. 
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Fig. 6.38 Algorithm output in the case when each side of rectangle is tracked as 1D motion 

6.10 Cross-axis Sensitivity 

The cross-axis effect, which we have observed in earlier section, is characteristics of 

MEMS accelerometers. For MEMS accelerometers, the output created by forces in orthogonal 

axis is not equal to zero [22]. This phenomenon is called as cross coupling, which is measured by 

transverse sensitivity. Transverse sensitivity is defined as the ratio of the output caused by 

acceleration orthogonal to the primary sensitivity axis divided by the basic sensitivity in the 

primary direction. Cross-axis sensitivity is primarily caused by two factors – 

 Inherent microstructure 

 Inaccuracies in fabrication process, package orientation, and misalignment 
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End user cannot correct any of the above factors and only manufacturer can control these 

error sources. An end user can only model these error sources and minimize their impact on 

outcome. 

Cross-axis sensitivity is critical for all applications involving linear motion sensing using 

accelerometers. As the majority of the work done on accelerometers relates to sensing and 

quantifying rotational motion, very few people have studied cross-axis sensitivity. To get an 

insight into cross-axis sensitivity, we present our preliminary analysis based on our observations 

from Atomic 6DOF trials. 

 

Fig. 6.39 (Top) Band-pass filtered X-axis for first segment of rectangular track, (Bottom) Band-pass 

filtered Y-axis for first segment of rectangular track 
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Fig. 6.40 (Top) FFT of X-axis for first segment of rectangular track, (Bottom) FFT of Y-axis for first 

segment of rectangular track 

Figure 6.39 shows the band-pass filtered X and Y-axis representing the first segment of 

rectangular track when X-axis is the primary axis of motion. From Fig. 6.39 we observe that high 

frequency „sinusoidal ringing‟ present in X-axis gets translated to an equivalent „sinusoidal 

ringing‟ in Y-axis. The ringing in Y-axis is centered on zero while as the ringing in X-axis is 

overriding a slow frequency component. Figure 6.40 shows the FFTs of both X and Y-axis data 

shown in Fig. 6.39. Figure 6.40 reinforces our observations. The frequency components in Y-axis 

match exactly to those seen in X-axis with exception of most dominant low frequency 

component. From Fig. 6.39 and Fig. 6.40 we conclude that cross-axis sensitivity effects align in 

both time and frequency domain. 

Still, we will need more information regarding cross-axis sensitivity so that we can model 

and correct it. We will need to investigate the relationship of frequencies with cross-axis 

sensitivity as well as the effect of amplitude of primary axis signal, among other things. In 

addition, we need to investigate how cross-axis sensitivity will change when the force applied is 

oblique to each axis. This information will enable us to evolve our algorithm to track „true‟ 2D 

motions. 
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6.11 Tracking 2D Motions as Dependent 1D Motions 

The results presented so far emphasize the usefulness of the motion-tracking algorithm 

developed in this chapter for 1D motion. Although, this algorithm has been tracking motion, it 

has done so with a consistent error of about 10% or so. However, as discussed earlier majority of 

this error is systematic in the sense that it depends on the duration for which the accelerometer 

signals is integrated. Thus, if we limit this integration duration exactly to motion duration, we will 

track the motion more accurately. In addition, we now understand that this algorithm falls short to 

track motion in 2D, which is when more than one axis is associated with a motion. Thus, if 2D 

motions are performed in a way such that at any point of time only one axis will have the motion 

associated with it, we can apply this algorithm to those individual motion durations and piece 

them together to determine the final track. In this section, we present a method, which identifies 

those individual motion durations to generate the final track. 

The method takes band-pass filtered sensor signals as its input. First, this signal is 

centered on zero by subtracting the average value from each sample. Then, we smooth this signal 

using moving average filtering method. Parameter half_win determines the window used for 

moving average filtering purpose. Similar to the algorithm presented in Chapter 4, based on the 

value of thres we mark possible activity candidates. All sample values greater (smaller) than 

+thres (-thres) are marked +1 (-1). 

Figure 6.41 shows the DC balanced and moving average filtered output of band-pass 

filter data. The red trace shows the possible activity durations. The selection of thres is a tradeoff 

between removing all noise and finding all activity samples. The primary purpose of smoothing 

band-pass filtered data is to get rid of local maxima caused by the „sinusoidal ringing‟ due to 

cross-axis sensitivity. To smooth this ringing effectively, the window used for moving average 

should be wide enough to minimize this ringing. 
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Fig. 6.41 Zero Centered moving average of Band-pass filter output (blue) with initial activity 

candidates (red) for X-axis (Top) and Y-axis (Bottom) 

As it is extremely hard to determine accurate value of thres, we will have some spurious 

noise spikes marked as possible activity candidates. An activity usually lasts sufficiently long 

enough so that we expect to see a minimum number of samples above thres. If any of the possible 

activity candidates have less than short number of samples above thres, then that is highly likely 

to be a spurious activity candidate due to noise. We remove such spurious candidates by checking 

their time duration. 

Figure 6.42 shows the output obtained after removing spurious activity candidates. All 

the activity candidates that remain are wide enough to be a valid activity. However, some of these 

candidates have signal changes just because of cross-axis sensitivity. Presence of cross-axis 

sensitivity is easy to determine. If we have activity candidate overlapping in two axes then we 

know it is a case of cross-axis sensitivity. Within this overlapping region, the axis with the 

highest signal is termed as primary axis while as the other axis is ignored completely. 
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Fig. 6.42 Zero Centered moving average of Band-pass filter output (blue) with activity candidates 

after removing spurious candidates (red) for X-axis (Top) and Y-axis (Bottom) 

 

Fig. 6.43 Identified activity durations (Red) with zero centered moving average band-pass filter 

output (Blue) for X-axis (Top) and Y-axis (Bottom) 

Figure 6.43 shows the activity candidates remaining after taking into account cross-axis 

sensitivity effects. These activity candidates are confirmed as valid activities. To determine the 

duration of the entire activity, it is important to combine the positive and negative peak durations 

of each activity and consolidate them as a single activity. After finding all such continuous 

activity durations, we apply the 1D motion-tracking algorithm for each activity duration. Between 
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activities, we ignore all sensor data and assume there is no movement. We store the distances 

tracked during each activity and accumulate all of them together to generate the final track. 

Figure 6.44 shows the band-pass filter output with activity durations marked on it for both X and 

Y-axis. To track the actual motion, band-pass filter output is used as input for the motion-tracking 

algorithm rather than zero centered moving average filtered data. 

 

Fig. 6.44 Identified activity durations (Red) with band-pass filter output (Blue) for X-axis (Top) and 

Y-axis (Bottom) 

Figure 6.45 shows the final track generated by this method. Going by the shape of track 

this method generates a track that accurately matches the actual motion track. Comparing with the 

final distance achieved in actual motion to that generated by this method, the error in final 

distances is about 5%, which for all practical purposes is insignificant. If we compare total 

distance along all six 1D motions then the error reduces significantly. 
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Fig. 6.45 Final track generated by tracking six 1D motions in 2D 

Appendix A.6 has the source code for this method along with band-pass filter design and 

the motion-tracking algorithm. Appendix B.2 has supplementary results obtained from three more 

data files. From all of these figures, we conclude that the motion tracking algorithm developed in 

this chapter has very high accuracy and is robust for various range of motions. 

6.12 Application 

The motion-tracking algorithm presented in this chapter along with the method developed 

in Section 6.11 enable us to track any reaching movement. Two out of four activities from 

Chapter 5 belong to the category of reaching movements. Patients with severe stroke have 

minimal functional ability in their affected arms due to significant motor deficit. This reduced 

functional ability affects execution of ADLs and in turn patient‟s independence in daily life. 

Thus, stroke survivors need to regain these functional abilities to live the life the way they were 

living before stroke. 
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Figure 6.46 shows the video grab of patient trial for activity 1 of Chapter 5. This activity 

consists of pulling in a gunny bag on a flat surface. The yellow arrow shows the direction of 

motion. Thus, this activity is effectively performed in 1D and thus the algorithm presented in this 

chapter will track this activity without any issues. It is worth pointing out from Fig. 6.46 that the 

patient does not have fine motor skills and hence not able to grab the gunny bag. In addition, the 

wearable IMU that is on patient‟s wrist can only sense gross movement and will not be affected 

by patient‟s fine motor skills. 

 

Fig. 6.46 Video grab showing the activity of pulling in gunny bags (‘activity 1’ from Chapter 5) 

 

Fig. 6.47 Video grab showing the activity of sliding out shower rings (‘activity 4’ from Chapter 5) 

 



102 

 

Similarly, Fig. 6.47 shows the video grab of a patient trial for „activity 4‟ of Chapter 5. 

Again, we observe that this activity is performed in 1D as well and hence the algorithm presented 

here can track this motion as well. 

Thus, for patients with chronic stroke, gross motor skills are more critical (necessary) 

than the fine motor skills. This chapter provides a robust method that can track these gross motor 

skills (such as reaching movements) with high accuracy. The results generated by this algorithm 

will be a good source of feedback for both the patient and the therapist. Therapists can review the 

results generated by this method over a period to track the rehabilitation progress. The outcome 

from this algorithm is the actual distance traversed which is a true indicator of functional ability 

of the affected arm. Thus, even the patient himself can understand the results and try to improve 

his functional ability in affected arm. 

6.13 Summary 

We presented a motion-tracking algorithm employing basic Kalman filter. The 

accelerometer output is modeled as an AR process for Kalman filter design. Although, the filter 

was designed for 1D motions, we presented its extension for 2D motions with no orientation 

change. We developed a human arm motion simulator based on a simplified model of human arm 

motion. With help of this simulator, we analyzed Kalman filter performance and found optimal 

parameters that give accurate results. 

Actual arm motion is complex and has unintended orientation changes. In addition, 

sensor calibration errors corrupt the signal representing the motion. Thus, we developed signal 

processing based methods such as band-pass filter, bias correction that would filter all these non-

idealities from the sensor output. 

The performance of these filtering methods and motion-tracking algorithm is evaluated 

using actual sensor data representing various forms of activities ranging from simple 1D to 

complex 2D motions. We verified that the motion-tracking algorithm performs well for 1D 

motion. The performance of the motion-tracking algorithm for 2D motion is limited by cross-axis 
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sensitivity of accelerometer. We presented a preliminary analysis of cross-axis sensitivity of our 

sensor and analyzed its effect on the algorithm.  

Lastly, we presented a method that can identify the dominant axis for a motion under 

consideration at any point of time. This method assumes that at any point of time during a 

motion, only one axis will be dominant. With this assumption, the method breaks up a 2D motion 

into a set of 1D motion. With this approach, the performance of motion-tracking algorithm for 

such 2D activities improves dramatically. 
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Chapter 7 

Summary and Future Work 

With advances in manufacturing processes, performance of MIS has improved 

significantly. This has opened many opportunities in human motion tracking domain. Although, 

MIS have been used earlier for tracking orientation or linear motion or both, most of those efforts 

did not rely on MIS completely. They used other sensors along with MIS to improve performance 

of their systems. Those who used only MIS, were able to do so at the expense of high cost 

military grade sensors. The issue of cost and accuracy has prevented consumerization of MIS 

based systems. This thesis is a step towards developing a cheap and reliable MIS based 

technology and applying it in stroke rehabilitation. In this thesis, we develop three algorithms that 

will enable us to track the rehabilitation progress of stroke-affected arm. All of the three 

algorithms presented in this thesis are exclusively based on the off-the-shelf 3D IMUs, which 

makes it economical. Along with arm usage detection and counting number of activities 

performed, we have used IMU for developing an objective test that can not only track the 

rehabilitation progress but also compares and categorizes stroke-affected patients according to 

their functional ability in upper arm. The linear motion tracking algorithm presented in this thesis 

is novel as compared to earlier work, as no one has ever developed a human arm linear motion 

tracking solution exclusively based on IMUs. 

7.1 Summary 

CIMT is a standard stroke rehabilitation therapy that has been proven clinically effective. 

However, current method of administering CIMT relies on human observations and tracking 

therapy effectiveness is based on subjective and objective methods. Subjective methods are 

affected by manual observational errors while as the objective methods that are used currently 
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requires manual intervention and a special set up to carry out the test. These practices not only 

make current CIMT delivery inefficient but also are susceptible to human error. Thus, benefits of 

developing a technology that will perform these tasks automatically and objectively are 

invaluable. In this thesis we present three algorithms that improve the efficiency of CIMT 

delivery and in some cases impart the much needed accuracy to some parts of CIMT by getting 

rid of observational errors. 

The basic principle underlying CIMT is – by forcing use of affected arm for ADLs, 

functional ability in the affected arm will recovered. This requires monitoring affected arm use 

throughout the day to analyze and track the rehabilitation progress. In Chapter 4, we presented a 

method that exactly addresses this issue. Along with activity detection, the method counts the 

number of activities performed if the same activity is repeated multiple times. Although, highly 

complex and accurate methods to detect arm movements have been developed earlier, the method 

presented in Chapter 4 is computationally simple as well as accurate, which makes it easy to 

apply this method by embedding it on the wearable sensor board. The simplicity of this method 

makes it easy to run on a system with mediocre microcontroller. Lack of a need to have dedicated 

digital signal processing microprocessor translates into cost saving. The method presented in 

Chapter 4 gives not only overall arm usage but also the arm usage along each axis of the sensor. 

As the sensor‟s orientation is fixed with respect to arm, therapist can track rehabilitation progress 

along these individual axes and update the CIMT for better results. 

Chapter 5 presents a new objective measure to track rehabilitation progress. This measure 

has better temporal resolution when compared against existing measures. The measure identifies 

changes in functional ability of the affected arm over a period of two days. In addition, the 

measure is effective in classifying functional abilities of stroke patients. The method employed to 

calculate this objective measure utilizes accelerometer signal to calculate histogram of distance 

traversed in specific time duration. The measure is suitable for patients with chronic stroke who 

are midway through their rehabilitation therapy, that is, patients with certain degree of functional 
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ability in their affected arm. The effectiveness of the measure is verified using data from patient 

trials. 

One of the factors limiting effectiveness of CIMT and in effect lengthening the duration 

to complete recovery is the lack of ability to track rehabilitation progress when the patient is away 

from therapist. MIS based systems offer a compelling solution in this regard. The method 

presented in Chapter 5 provides this ability partially as it derives a quantity from the activity data 

and thus is an indirect indicator of the rehabilitation progress. However, the ability of tracking 

affected arm motion as it happens will be a direct measure of rehabilitation progress and will be 

more meaningful for the therapist. The algorithm presented in Chapter 6 does exactly the same, 

tracking affected arm motion as it happens. The algorithm utilizes Kalman filter for fusing data 

from multiple sensors. It uses digital signal processing techniques such as band-pass filtering, 

moving average filtering, and bias correction to correct for errors arising due to different error 

sources discussed in Chapter 2. The method works well for 1D and 2D motions under the 

assumption that there will be no orientation change during the motion and at any point of time, 

only one axis will be primary axis for the motion. The algorithm‟s performance for 2D motion 

tracking is limited primarily by cross-axis sensitivity of the accelerometer. A preliminary analysis 

of cross-axis sensitivity is presented. An extension of the algorithm to minimize the impact of 

cross-axis sensitivity follows this preliminary analysis. The performance of this algorithm is 

verified with both 1D and 2D motion trials. 

7.2 Future Work 

The work presented in this thesis gives an overview of some of the fundamental 

approaches that will lead to the development of a more comprehensive MIS based solution. This 

thesis has used the fraction of the potential that MIS based systems‟ have. The work presented in 

this thesis opens up a number of leads for research. These leads will eventually help us in 

realizing the complete potential of MIS based systems. This thesis dealt with accelerometer 

signals and ignored gyroscope signals. To realize the complete potential of MIS based systems, it 
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is imperative that not only accelerometer but also other available sensors‟ (such as gyroscope‟s 

and magnetometer‟s) signals should be used. This section discusses some of the future work that 

will enable us to realize the complete potential of MIS based systems. 

The algorithm developed in Chapter 4 and Chapter 5 has been shown to be effective. 

However, to influence CIMT administration and improve CIMT delivery, it is important that 

these methods be deployed for remote monitoring. Combining these both algorithms into a 

comprehensive algorithm will result in a method that can detect affected arm use, count the 

number of activities being performed and track the rehabilitation progress by evaluating 

histogram of distance traversed during a particular time window.  

A smartphone application might be the easiest and the quickest way we will be able to 

develop a complete remote monitoring system for tracking stroke rehabilitation of arm. With 

advances in wireless and cellular communications and emergence of smartphones, we have 

access to Internet connected portable computers. Current smartphones have enough computing 

power that running these algorithms on smartphones will be an easy task. A smartphone 

application not only will monitor rehabilitation progress and give instantaneous feedback to 

patient but also will keep a time record of all data sampled and send it to therapist for review and 

analysis purposes. This technology will also be beneficial in elderly monitoring systems. 

The motion tracking algorithm present in Chapter 6 is currently limited to a limited set of 

2D actions due to lack of a model representing cross-axis sensitivity of 3D accelerometers. For 

quicker deployment of motion tracking algorithm of Chapter 6, a network of multiple sensors 

along with minor tweaks to algorithms will be useful. This will be achieved by orienting multiple 

accelerometers in a way such that for any activity one of the axes of one of the accelerometers 

will always be dominant. Such an arrangement of multiple sensors will allow us to ignore cross-

axis sensitivity and still be able to track complex activities. 

An algorithm that tracks 3D motion completely with all orientation changes will solve 

almost all of the issues that limit CIMT‟s efficiency and efficacy currently. To achieve complete 
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3D motion tracking capability, the limitations of motion-tracking algorithm of Chapter 6 must be 

resolved. The motion-tracking algorithm‟s performance is limited by cross-axis sensitivity of 

accelerometer. This limitation arises because the process model that we use for Kalman filter or 

other DSP techniques does not take into account this error source. Thus, to enable complete 2D 

linear motion-tracking, it is necessary to analyze and model cross-axis sensitivity of the 

accelerometer. The algorithm assumes that there will not be any change in orientation. This 

assumption came into existence because there was a necessity to analyze accuracy of a motion 

tracking solution exclusively based on accelerometers. The next logical step to pursue will be to 

consider gyroscope signal and update the algorithm such that it will be able to track motion and 

orientation change. This can be done incrementally by considering one gyroscope at a time and 

progressing from complete 2D motion tracking to complete 3D motion tracking. 

Although optical motion tracking methods are more accurate and stable than MIS based 

systems, line of sight operation and bulky equipments limit their applications. On the other hand, 

MIS based systems are completely portable. Actually, these systems are an excellent candidate 

for wearable technology. 

Any future work that will be developed will need to be verified by performing clinical 

trials with stroke survivors. Some of the methods developed in this thesis are not applicable to 

patients who have had a severe stroke. All future methods need to validate their applicability to 

various classes of stroke survivors and a comprehensive method will be preferable over a method 

that is applicable to selective classes of stroke survivors. All future methods, either should not 

have any kind of interaction with the devices/setup used for monitoring the arm motion or should 

minimize this interaction to minimal amount. This will be encouraging for stroke survivors to 

embrace such a method. Stroke related disabilities are behavioral as much as they are 

physiological. Thus, future methods should give some feedback to stroke survivors regarding 

their arm movements. For effective use of technology in stroke rehabilitation, along with affected 
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arm movement we need to understand whether the movement is intentional or unintentional with 

specificity. Future systems might need to use an array of various sensors to achieve this objective. 

Although, the work presented in this thesis has been developed for stroke rehabilitation, it 

will be similarly applicable for elderly monitoring, other disability rehabilitation, and recreation. 

Thus, the work presented in this thesis takes us a step closer in realizing telerehabilitation 

and telemedicine in general. 
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Appendix A 

Source Code 

A.1 Arm Usage Calculation (Method 1) 

function quantify 
ch=0; 
FlagOpen=0; 
while(ch ~= 4) 
    fprintf('\n'); 
    disp(' --------------   Menu   -------------- '); 
    disp(' 1. Open New File'); 
    disp(' 2. Plot Data'); 
    disp(' 3. View Results'); 
    disp(' 4. Exit'); 
    ch=input(' Enter your choice (1/2/3/4) -: '); 
 

    if(ch==1) 
        if(FlagOpen ~= 0) 
            fclose('all'); 
        end 
        FlagOpen=1; 
        fprintf('\n'); 
        fid=input(' Enter the file name - : ','s'); 
        [X X_val Y Y_val Z Z_val]=textread(fid,'%s %f %s %f %s %f',-1,'delimiter','='); 
        raw_data=[X_val Y_val Z_val]; 
        a=size(raw_data); 
        avg=mean(raw_data); 
        if (avg(1,1)>10 && avg(1,2)>10 && avg(1,3)>10) 
            raw_data=raw_data/800; 
        end 
        avg=mean(raw_data); 
    end 
 

    if(ch==2) 
        if(FlagOpen==0) 
            fprintf('\n'); 
            disp(' ---------------------------------- '); 
            disp(' |   ERROR : NO FILE OPENED !!!   |'); 
            disp(' ---------------------------------- '); 
        else 
            figure(1); 
            subplot(3,1,1); 
            plot(raw_data(:,1)); 
            title(' Raw Data in X Dir ( in terms of ''g'') '); 
            subplot(3,1,2); 
            plot(raw_data(:,2)); 
            title(' Raw Data in Y Dir ( in terms of ''g'') '); 
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            subplot(3,1,3); 
            plot(raw_data(:,3)); 
            title(' Raw Data in Z Dir ( in terms of ''g'') '); 
        end 
 

    elseif(ch==3) 
        if(FlagOpen==0) 
            fprintf('\n'); 
            disp(' ---------------------------------- '); 
            disp(' |   ERROR : NO FILE OPENED !!!   |'); 
            disp(' ---------------------------------- '); 
        else 
            acti=zeros(1,4); 
            acti_count=zeros(1,4); 
            boolean=zeros(a); 
            thres=0.022; 
            flag=0; 
            flag1=0; 
            da(1,:)=0; 
            for i=1:a(1) 
                for j=1:3 
                    if ( raw_data(i,j)>avg(1,j) ) 
                        boolean(i,j)=1; 
                    else 
                        boolean(i,j)=-1; 
                    end 
                    if( i~=1 ) 
                        da(i,j)=raw_data(i,j)-raw_data(i-1,j); 
                        if (abs(da(i,j)) >thres) 
                            flag=1; 
                            acti(1,j)=acti(1,j)+1; 
                        end 
                    end 
                end 
                if (flag == 1) 
                    acti(1,4)=acti(1,4)+1; 
                    flag=0; 
                end 
            end 
            for i=2:a(1) 
                for j=1:3 
                    da_boolean(i,j)=boolean(i,j)-boolean(i-1,j); 
                    if (abs(da_boolean(i,j)) == 2 ) 
                        acti_count(1,j)=acti_count(1,j)+1; 
                        flag1=1; 
                    end 
                end 
                if( flag1==1 ) 
                    flag1=0; 
                    acti_count(1,4)=acti_count(1,4)+1; 
                end 
            end 
            acti=acti/a(1)*100; 
            fprintf('\n'); 
            fprintf('The observation period was %0.1f seconds.',(a(1)/10)); 
            fprintf('\n'); 
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            fprintf('\n'); 
            disp('Affected'); 
            disp('      Usage_X    Usage_Y      Usage_Z      % Usage'); 
            format('short','g'); 
            disp(acti); 
            fprintf('\n'); 
            disp('Writing the results to Result.txt .........'); 
            fid_op=fopen('Result.txt','at'); 
            fprintf(fid_op,'\n'); 
            

fprintf(fid_op,'%s\t%0.1f\t%0.2f\t%0.2f\t%0.2f\t%0.2f',fid,(a(1,1)/10),acti(1,1),acti(1,2),acti(1,3),acti(1,4));  
            fclose('all'); 
        end 
    end 
end 
clear all; 

 

A.2 Activity Count Calculation (Method 2) and Histogram of Distance Traversed 

% 
% Code to find out activity count  
% First part locates each activity individually and finds distance  

% measure 
% Second part does the same on Noise removed data 
% Third part finds the time based distance measure and plots histogram 
% 
 

clear all; 
ch=0; 
fid=input(' Enter the file name - : ','s'); 
[X X_val Y Y_val Z Z_val]=textread(fid,'%s %f %s %f %s %f',-1,'delimiter','='); 
 

raw_data=[X_val Y_val Z_val]; 
a=size(raw_data); 
avg=mean(raw_data); 
 

% The following conversion needs to be revisited for WiTilt v3.0 
if (avg(1,1)>10 && avg(1,2)>10 && avg(1,3)>10) 
    raw_data=raw_data/800; 
end 
 

avg=mean(raw_data); 
std_dev=std(raw_data,1,1); 
 

m=input(' Enter the number of points to sample for filter -:'); 
 

wt=1;  

 

mov_avg=zeros(a); 
mov_avg(1:m,:)=raw_data(1:m,:); 
mov_avg(a(1,1)-m+1:a(1,1),:)=raw_data(a(1,1)-m+1:a(1,1),:); 
 

mov_std=zeros(a); 
sharpen=zeros(a); 
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temp=zeros(2*m+1,a(1,2)); 
  
% Processing data using moving statistical measures 
for i=m+1:1:(a(1,1)-m) 
    temp=raw_data(i-m:i+m,:); 
    mov_avg(i,:)=sum(temp); 
    mov_avg(i,:)=(mov_avg(i,:)+(wt-1)*raw_data(i,:))/(2*m+wt); 
    mov_std(i,:)=std(temp); 
    for k=1:m 
        sharpen(i,:)=sharpen(i,:)-(raw_data(i+k,:)+raw_data(i-k,:)); 
    end 
    sharpen(i,:)=sharpen(i,:)+(2*m)*raw_data(i,:); 
end 
indirect_hpf=raw_data-mov_avg; 
  
figure(); 
subplot(3,1,1); 
hold on; 
plot(raw_data(:,1)); 
plot(mov_avg(:,1), 'r'); 
hold off; 
title(['X axis raw data & its Moving Average with m = ', int2str(m)]); 
subplot(3,1,2); 
hold on; 
plot(raw_data(:,2)); 
plot(mov_avg(:,2), 'r'); 
hold off; 
title(['Y axis raw data & its Moving Average with m = ', int2str(m)]); 
subplot(3,1,3); 
hold on; 
plot(raw_data(:,3)); 
plot(mov_avg(:,3), 'r'); 
hold off; 
title(['Z axis raw data & its Moving Average with m = ', int2str(m)]); 
  
% Removing static noise of the sensor 
% 0.09 is observed static sensor noise 
ind_hpf_nr=indirect_hpf; 
for j=1:3 
    for i=1:a(1,1) 
        if abs(indirect_hpf(i,j))<= 0.09 
            ind_hpf_nr(i,j)=0; 
        end 
    end 
end 
  
figure(); 
subplot(3,1,1); 
plot(indirect_hpf(:,1)); 
title('X axis data after subtracting moving average'); 
subplot(3,1,2); 
plot(indirect_hpf(:,2)); 
title('Y axis data after subtracting moving average'); 
subplot(3,1,3); 
plot(indirect_hpf(:,3)); 
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title('Z axis data after subtracting moving average'); 
  
figure(); 
subplot(3,1,1); 
plot(ind_hpf_nr(:,1)); 
title('X axis data after subtracting moving average & removing noise'); 
subplot(3,1,2); 
plot(ind_hpf_nr(:,2)); 
title('Y axis data after subtracting moving average & removing noise'); 
subplot(3,1,3); 
plot(ind_hpf_nr(:,3)); 
title('Z axis data after subtracting moving average & removing noise'); 
  
%% Plotting All Processed Data 
figure(); 
subplot(4,1,1); 
plot(raw_data(:,1)); 
title('Raw Data'); 
subplot(4,1,2); 
plot(mov_avg(:,1)); 
title('Moving Average Filtered Data'); 
subplot(4,1,3); 
plot(sharpen(:,1)); 
title('Moving High Pass Filtered Data'); 
subplot(4,1,4); 
plot(indirect_hpf(:,1)); 
title('Indirect High Pass Filtered Data'); 
figure(); 
subplot(4,1,1); 
plot(raw_data(:,2)); 
title('Raw Data'); 
subplot(4,1,2); 
plot(mov_avg(:,2)); 
title('Moving Average Filtered Data'); 
subplot(4,1,3); 
plot(sharpen(:,2)); 
title('Moving High Pass Filtered Data'); 
subplot(4,1,4); 
plot(indirect_hpf(:,2)); 
title('Indirect High Pass Filtered Data'); 
figure(); 
subplot(4,1,1); 
plot(raw_data(:,3)); 
title('Raw Data'); 
subplot(4,1,2); 
plot(mov_avg(:,3)); 
title('Moving Average Filtered Data'); 
subplot(4,1,3); 
plot(sharpen(:,3)); 
title('Moving High Pass Filtered Data'); 
subplot(4,1,4); 
plot(indirect_hpf(:,3)); 
title('Indirect High Pass Filtered Data'); 
  
%% Noise Removed Indirect HPF Analysis 
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acti_count=zeros(1,4); 
flag_b=zeros(a(1,1),4); 
temp=zeros(a(1,1),1); 
interval=zeros(1,2); 
 

for i=1:a(1,1) 
temp(i)=sqrt(ind_hpf_nr(i,1).^2+ind_hpf_nr(i,2).^2+ind_hpf_nr(i,3).^2); 
end 
 

ind_hpf_nr=[ind_hpf_nr temp]; 
dead=input(' Enter the no. of samples for dead period -: '); 
  
for j=1:4 
    i_prev=0;           % Previous non-zero 'i' 
    prev_i=0;           % Previous 'i' 
    cnt=0;              % Counter to count no. of consecutive zeroes 
    flagz=0; 
    for i=1:a(1,1) 
            if ind_hpf_nr(i,j) ~= 0 
                if(i_prev==0 || flagz==1) 
                    flagz=0; 
                    i_prev=i;      
                    acti_count(1,j)=acti_count(1,j)+1; 
                    flag_b(i,j)=1; 
                end 
            else 
                if (i-prev_i==1 && flagz==0) 
                    cnt=cnt+1; 
                else 
                    cnt=1; 
                end 
                prev_i=i; 
                if (cnt==dead && i_prev~=0) 
                    flagz=1; 
                    if (j==4) 
                        % array to store activity intervals 
                        interval=[interval; i_prev (i-9)]; 
                    end 
                end     
            end 
    end 
end 
  
disp(acti_count); 
  
%% Acc. Vel & Distance Calculation 
  
r=ind_hpf_nr; 
vel=zeros(a); 
vel3=zeros(a); 
vel4=zeros(a); 
dist1=zeros(a(1,1),4); 
dist2=zeros(a(1,1),4); 
dist3=zeros(a(1,1),4); 
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dist4=zeros(a(1,1),4); 
  
for i=2:acti_count(1,4)+1 
    for j=interval(i,1):interval(i,2) 
        for k=1:a(1,2) 
            if r(j,k)>r(j-1,k) 
                vel(j,k)=vel(j-1,k)+r(j,k); 
            else 
                vel(j,k)=vel(j-1,k)-r(j,k); 
            end 
        end 
    end 
end 
  
for i=2:acti_count(1,4)+1 
    for j=interval(i,1):interval(i,2) 
        for k=1:a(1,2) 
            dist1(j,k)=dist1(j-1,k)+(vel(j,k)+vel(j-1,k))/2; 
            dist2(j,k)=dist2(j-1,k)+vel(j-1,k); 
        end 
        dist1(j,4)=sqrt(dist1(j,1).^2+dist1(j,2).^2+dist1(j,3).^2); 
        dist2(j,4)=sqrt(dist2(j,1).^2+dist2(j,2).^2+dist2(j,3).^2); 
    end 
end 
  
% Time based ditance calcultaion  
win=50;     % Window width for time based activity factor measurement  
part=ceil(a(1,1)/win);      % No. of windows in a sample file 
for j=1:a(1,2) 
    for i=1:part 
        vel3((i-1)*win+1,j)=0; 
        vel4((i-1)*win+1,j)=0; 
        dist3((i-1)*win+1,j)=0; 
        dist4((i-1)*win+1,j)=0; 
        % Angle calculation here 
        angle((i-1)*win+1,j)=0;      
        for k=2:win 
            if ((i-1)*win+k)<=a(1,1) 
                if r((i-1)*win+k,j)>r((i-1)*win+k-1,j) 
                    vel3((i-1)*win+k,j)=vel3((i-1)*win+k-1,j)+r((i-1)*win+k,j); 
                else 
                    vel3((i-1)*win+k,j)=vel3((i-1)*win+k-1,j)-r((i-1)*win+k,j); 
                end 
                if raw_data((i-1)*win+k,j)>raw_data((i-1)*win+k-1,j) 
                    vel4((i-1)*win+k,j)=vel4((i-1)*win+k-1,j)+indirect_hpf((i-1)*win+k,j); 
                else 
                    vel4((i-1)*win+k,j)=vel4((i-1)*win+k-1,j)-indirect_hpf((i-1)*win+k,j); 
                end 
                dist3((i-1)*win+k,j)=dist3((i-1)*win+k-1,j)+vel3((i-1)*win+k-1,j); 
                dist4((i-1)*win+k,j)=dist4((i-1)*win+k-1,j)+vel4((i-1)*win+k-1,j); 
            else 
                break; 
            end 
        end 
    end 



122 

 

end 
  
dist3(:,4)=sqrt(dist3(:,1).^2+dist3(:,2).^2+dist3(:,3).^2); 
dist4(:,4)=sqrt(dist4(:,1).^2+dist4(:,2).^2+dist4(:,3).^2); 
  
figure(); 
subplot(3,1,1); 
plot(indirect_hpf(:,1)); 
title('X axis Indirect HPF'); 
subplot(3,1,2); 
plot(indirect_hpf(:,2)); 
title('Y axis Indirect HPF'); 
subplot(3,1,3); 
plot(indirect_hpf(:,3)); 
title('Z axis Indirect HPF'); 

  
A.3 Weighted Area of Histogram of Distance Traversed 

clear all; 
path = './Trial 8/'; 
file = {'sub', '_', 'act'}; 
type = {'.txt', '.xls'}; 
col = {'B2', 'C2', 'D2', 'E2', 'F2', 'G2', 'H2', 'I2', 'J2', 'K2','L2','M2','N2','O2','P2','Q2'}; 
max_dist = 120; 
act_in = 4; 
sub_in = 12; 
histo = zeros( max_dist+1, sub_in); 
hist_norm = zeros( max_dist+1, sub_in); 
temp = zeros( 1, max_dist+1); 
bins = [0:max_dist]'; 
m_in = 3; 
win_in = 5; 
f_sample = 83; 
t_sample = 1/f_sample; 
  
colors = [ 0.25, 0.25, 0.25; 0.25, 0.25, 0; 0.25, 0, 0.25; 0.4, 0.3, 0.6; 
           0, 0.25, 0.25; 0.5, 0.4, 0.2; 0.4, 0.1, 0.6; 0.75, 0.5, 0.4; 
           0.6, 0.8, 0.5; 0.75, 0.75, 0.75; 0, 0.75, 0.5; 0.5, 0.75, 0.8]; 
  
set(gcf,'DefaultAxesColorOrder', colors); 
  
% Zero 'g' values obtained from statistical analysis 
x_zero = 333; 
y_zero = 338; 
z_zero = 344; 
  
for acti = 2:act_in 
    s2 = strcat(path, file{1,3}, file{1,2}, int2str(acti), file{1,2}, int2str(m_in), file{1,2}, int2str(win_in), 

type{1,2}); 
    for sub = 1:sub_in 
        s1 = strcat(path, file{1,1}, int2str(sub), file{1,2}, file{1,3}, file{1,2}, int2str(acti), type{1,1}); 
        [a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,a11,a12] = textread(s1, '%d\t %d\t %d\t %d\t %d\t %d\t %d\t %d\t 

%d\t %d\t %d\t %d\t %*d'); 
        raw_data = [ a10, a11, a12]; 
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        a = size(raw_data); 
        avg = mean(raw_data);       
         
        % If the data has raw ADC values convert them to 'g' values 
        % by centering the data around zero  
        % and dividing by ADC count for '1g' 
        % For a range of -2g to +2g -> ADC(1g) = ADC(0g)/2 
        if (avg(1,1) > 10 && avg(1,2) > 10 && avg(1,3) > 10) 
            raw_data(:,1) = raw_data(:,1) - x_zero; 
            raw_data(:,2) = raw_data(:,2) - y_zero; 
            raw_data(:,3) = raw_data(:,3) - z_zero; 
            raw_data(:,1) = raw_data(:,1) / (x_zero/2); 
            raw_data(:,2) = raw_data(:,2) / (y_zero/2); 
            raw_data(:,3) = raw_data(:,3) / (z_zero/2); 
        end 
         
        avg = mean(raw_data); 
        std_dev = std(raw_data,1,1); 
                
        m = m_in;  
        m = m_in * f_sample; 
        wt = 1;  
        mov_avg = zeros(a); 
        mov_avg(1:m,:) = raw_data(1:m,:); 
        mov_avg(a(1,1)-m+1:a(1,1),:) = raw_data(a(1,1)-m+1:a(1,1),:); 
        mov_std = zeros(a); 
        temp = zeros( 2*m+1, a(1,2)); 
         
        % Processing data using moving statistical measures 
        for i = m+1:1:(a(1,1)-m) 
            temp = raw_data(i-m:i+m,:); 
            mov_avg(i,:) = sum(temp); 
            mov_avg(i,:) = (mov_avg(i,:)+(wt-1)*raw_data(i,:))/(2*m+wt); 
            mov_std(i,:) = std(temp); 
        end 
        indirect_hpf = raw_data - mov_avg; 
  
        % Removing static noise of the sensor 
        % 0.09 is observed static sensor noise 
        % Need to check for latest sensor 
        ind_hpf_nr = indirect_hpf; 
        for j = 1:3 
            for i = 1:a(1,1) 
                if abs(indirect_hpf(i,j)) <= 0.09 
                    ind_hpf_nr(i,j) = 0; 
                end 
            end 
        end 
  

         
        % Convert raw ADC values to 'g'  
        ind_hpf_nr = 9.80665 * ind_hpf_nr; 
         
        % Time based distance calcultaion 
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        % Calculating actual distance traversed in meters 
        % Achieved by multiplying by t_sample 
        r = ind_hpf_nr; 
        vel = zeros(a); 
        dist = zeros(a(1,1),4); 
        win_in = 5; 
        win = win_in * f_sample;     % Window width for time based activity factor measurement  
        part = ceil(a(1,1)/win);      % No. of windows in a sample file 
        for j = 1:a(1,2) 
            for i = 1:part 
                vel((i-1)*win+1,j) = 0; 
                dist((i-1)*win+1,j) = 0; 
                % Angle calculation here 
%                 angle((i-1)*win+1,j)=0;      
                for k = 2:win 
                    if ((i-1)*win+k) <= a(1,1) 
                        if raw_data((i-1)*win+k,j)>raw_data((i-1)*win+k-1,j) 
                            vel((i-1)*win+k,j) = vel((i-1)*win+k-1,j) + t_sample*indirect_hpf((i-1)*win+k,j); 
                        else 
                            vel((i-1)*win+k,j) = vel((i-1)*win+k-1,j) - t_sample*indirect_hpf((i-1)*win+k,j); 
                        end 
                        dist((i-1)*win+k,j) = dist((i-1)*win+k-1,j) + t_sample*vel((i-1)*win+k-1,j); 
                    else 
                        break; 
                    end 
                end 
            end 
        end 
         
        % Calculate equivalent distance in 'cm' 
        dist(:,4) = 100 * sqrt(dist(:,1).^2+dist(:,2).^2+dist(:,3).^2); 
        xlswrite(s2, dist(:,4), 'Equi_Distance(Window based)(cm)', col{1,sub}); 
        temp = hist( dist(:,4), bins); 
        histo(:,sub) = temp'; 
        hist_norm(:,sub) = 100 * (histo(:,sub)/(a(1,1))); 
    end 
     
    % Calculate the area under the normalized historgram curve 
    % as an observation based on which we would rank the  
    % performance of subjects 
    start_offset = 0.5*max_dist; 
    perf = zeros(1, sub_in); 
    for i = (start_offset + 1):max_dist 
        perf(1,:) = (i - start_offset)*hist_norm(i,:) + perf(1,:); 
    end 
    perf = perf'; 
  
    start_offset = 0.75*max_dist; 
    perf2 = zeros(1, sub_in); 
    for i = (start_offset + 1):max_dist 
        perf2(1,:) = (i - start_offset)*hist_norm(i,:) + perf2(1,:); 
    end 
    perf2 = perf2'; 
     
    % Plot composite Normalized Historgram of all subjects for comparison 
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    figure(); 
    title(['Performace Comparison for Activity ', int2str(acti)]); 
    xlabel('Distance Covered (cm)'); 
    ylabel('Normalized Histogram Count (%)'); 
    set(gca,'NextPlot','add'); 
    set(gcf,'DefaultAxesColorOrder',colors); 
    hold on; 
    plot(bins, hist_norm(:,1), '-rx'); 
    plot(bins, hist_norm(:,2), '-bo'); 
    plot(bins, hist_norm(:,3), '-ms'); 
    plot(bins, hist_norm(:,4), '-cd'); 
    plot(bins, hist_norm(:,5), '-kh'); 
    plot(bins, hist_norm(:,6), '-rp'); 
    plot(bins, hist_norm(:,7), '-b>'); 
    plot(bins, hist_norm(:,8), '-mv'); 
    plot(bins, hist_norm(:,9), '-c^'); 
    plot(bins, hist_norm(:,10), '-k<'); 
    plot(bins, hist_norm(:,11), '-mo'); 
    plot(bins, hist_norm(:,12), '-bs'); 
  
    for i=1:sub_in 
        legends{i} = strcat(file{1,1}, file{1,2}, int2str(i)); 
    end 
    h = legend(legends); 
%     h = legend('sub_1', 'sub_2', 'sub_3', 'sub_4', 'sub_5', 1); 
    set(h,'Interpreter','none'); 
    hold off; 
end 

         

 
A.4 Simulator 

A.4.1 Top Level File 

clear all; 
close all; 
clc; 
  
quadrant = 1; 
f_sample = 100; 
t        = 1/f_sample; 
g = 9.80665; 
tick = 0.00403; 
 
sim_track_leg1_end = 300; 
state = simulate_test_track(1, f_sample, sim_track_leg1_end/f_sample); 

 

A.4.2 Simulate Rectangular Track 

function state = simulate_test_track(quadrant, f_sample, t_end) 
  
if nargin ~= 3 
     error('Wrong number of input arguments...'); 
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     error('Need 3 arguments - quadrant, sampling frequency and duration of motion...'); 
end 
  
if (quadrant < 0 || quadrant > 4) 
    error('Quardrant value should be an interger from 1 to 4...'); 
end 
  
if ( quadrant == 1 || quadrant == 4) 
    xscale = 1; 
else 
    xscale = -1; 
end 
  
if ( quadrant == 1 || quadrant == 2) 
    yscale = 1; 
else 
    yscale = -1; 
end 
  
amp = 1.5/t_end; 
  
[ tmp_t, tmp_v] = gen_vel(amp*xscale, 0, 0.02, t_end-0.02, t_end, f_sample); 
t = tmp_t; 
vx = tmp_v; 
  
[ tmp_t, tmp_v] = gen_vel(0*yscale, 0, 0.02, t_end-0.02, t_end, f_sample); 
vy = tmp_v; 
  
[ tmp_t, tmp_v] = gen_vel(0*xscale, t_end, t_end+0.02, 2*t_end-0.02, 2*t_end, f_sample); 
t = [t; tmp_t]; 
vx = [vx; tmp_v]; 
  
[ tmp_t, tmp_v] = gen_vel(amp*yscale, t_end, t_end+0.02, 2*t_end-0.02, 2*t_end, f_sample); 
vy = [vy; tmp_v]; 
  
[ tmp_t, tmp_v] = gen_vel(-amp*xscale, 2*t_end, 2*t_end+0.02, 3*t_end-0.02, 3*t_end, f_sample); 
t = [t; tmp_t]; 
vx = [vx; tmp_v]; 
  
[ tmp_t, tmp_v] = gen_vel(0*yscale, 2*t_end, 2*t_end+0.02, 3*t_end-0.02, 3*t_end, f_sample); 
vy = [vy; tmp_v]; 
  
[ tmp_t, tmp_v] = gen_vel(0*xscale, 3*t_end, 3*t_end+0.02, 4*t_end-0.02, 4*t_end, f_sample); 
t = [t; tmp_t]; 
vx = [vx; tmp_v]; 
  
[ tmp_t, tmp_v] = gen_vel(-amp*yscale, 3*t_end, 3*t_end+0.02, 4*t_end-0.02, 4*t_end, f_sample); 
vy = [vy; tmp_v]; 
  
ax = calc_acc(vx, f_sample, 0); 
ay = calc_acc(vy, f_sample, 0); 
  
jx = calc_jerk(ax, f_sample, 0); 
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jy = calc_jerk(ay, f_sample, 0); 
  
sx = calc_dist(vx, f_sample, 0); 
sy = calc_dist(vy, f_sample, 0); 
%   
figure(); 
plot(vx, 'bx'); 
title('Velocity in X', 'FontSize', 14); 
xlabel('Sample', 'FontSize', 12); 
ylabel('Velocity (m/s)', 'FontSize', 12); 
  
figure(); 
plot(vy, 'bx'); 
title('Velocity in Y', 'FontSize', 14); 
xlabel('Sample', 'FontSize', 12); 
ylabel('Velocity (m/s)', 'FontSize', 12); 
  
figure(); 
plot(ax, 'b'); 
title('Acceleration in X', 'FontSize', 14); 
xlabel('Sample', 'FontSize', 12); 
ylabel('Acceleration (m/s^2)', 'FontSize', 12); 
  
figure(); 
plot(ay, 'b'); 
title('Acceleration in Y', 'FontSize', 14); 
xlabel('Sample', 'FontSize', 12); 
ylabel('Acceleration (m/s^2)', 'FontSize', 12); 
 
figure(); 
plot(sx, sy, 'x'); 
title('Simulated Track', 'FontSize', 14); 
xlabel('Distance (m)', 'FontSize', 12); 
ylabel('Distance (m)', 'FontSize', 12); 
  
th = zeros(size(vx)); 
w = zeros(size(vx)); 
  
state = [sx sy vx vy ax ay th w]'; 
  
end 

 

A.4.3 Velocity Generation 

function [t, vel] = gen_vel(peak, t_start, start_offset, end_offset, t_end, f_sample) 
  
t = t_start:1/f_sample:t_end; 
  
start_indx = ceil( (start_offset - t_start) * f_sample); 
end_indx = floor( (end_offset - t_start) * f_sample); 
  
mean = (end_offset + start_offset)/2; 
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std_dev = (end_offset - start_offset)/7; 
  
% Generate the bell shaped curve as velocity profile against time 
v = zeros(size(t)); 
  
if (peak ~= 0) 
    v(1:length(t)-1) = peak * exp( -0.5 * ( ( t(1:length(t)-1) - mean) / std_dev) .^ 2);     
end 
 
vel = v'; 
t = t'; 
end 

 

A.4.4 Acceleration Calculation 

function acc = calc_acc(vel, f_sample, init_val) 
  
acc(1) = init_val; 
for i = 2:length(vel) 
    acc(i) = ( vel(i) - vel(i-1) ) * f_sample; 
end; 
  
acc = acc'; 
end 

 

A.4.5 Jerk Calculation 

function jerk = calc_jerk(acc, f_sample, init_val) 
  
jerk(1) = init_val; 
for i = 2:length(acc) 
    jerk(i) = ( acc(i) - acc(i-1) ) * f_sample; 
end; 
  
jerk = jerk'; 
end 

 

A.4.6 Distance Calculation 

function dist = calc_dist(vel, f_sample, init_val) 
  
dist(1) = init_val; 
for i=2:length(vel) 
    dist(i) = vel(i)/f_sample + dist(i-1); 
end 
  
dist = dist'; 
end 
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A.5 Kalman Filter Analysis 

clear all; 
close all; 
clc; 
  
quadrant = 1; 
f_sample = 100; 
t        = 1/f_sample; 
g = 9.80665; 
tick = 0.00403; 
 
sim_track_leg1_end = 300; 
state = simulate_test_track(1, f_sample, sim_track_leg1_end/f_sample); 
 
t_end = length(state);  % Time till which Kalman filter will be ON 
Q_scale = 0.01; 
Q_val = 0.1; 
alpha = 1.0; 
  
% mux = zeros(6,1); Q = diag([0.00001, 0.00001, 0.001, 0.001, 0.1, 0.1]); 
mux = zeros(6,1);  
Q = Q_scale*diag([0.0, 0.0, 0.0, 0.0, Q_val, Q_val]); 
 
muy = mean(state(5:6,:)'); 
stdev = 2*tick*g; 
sigy = stdev; 
sigy1 = 1*sigy; 
R = diag([sigy1*sigy1, sigy1*sigy1]); 
  
const_acc = 0; 
X0 = zeros(6,1); 
 
P0 = 10*diag([0.1, 0.1, 0.1, 0.1, 0.1, 0.1]);%Q; 
  
X_pri = zeros(6,t_end); 
y     = zeros(2,t_end); 
X_pos = zeros(6,t_end); 
X_tru = state(1:6,1:t_end);  
z     = zeros(size(state(5:6, 1:t_end)));  
 
i=1; 
  
F0 = [1  0   t   0   0   0; 
      0  1   0   t   0   0; 
      0  0   1   0   t   0; 
      0  0   0   1   0   t; 
      0  0   0   0   alpha   0; 
      0  0   0   0   0   alpha]; 
  
H = [0  0   0   0   1   0; 
     0  0   0   0   0   1]; 
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F = F0; 
  
i = 1; 
% z(:,i)     = H*X0 + normrnd(muy, sigy); 
z(:,i)     = state(5:6,i) + normrnd(muy, sigy)'; 
X_pri(:,i) = F*X0; 
X_tru(:,i) = F*X0; 
P_pri      = F*P0*F' + Q; 
y(:,i)     = z(:,i) - H*X_pri(:,i); 
S          = H*P_pri*H' + R; 
K          = P_pri*H'*inv(S); 
X_pos(:,i) = X_pri(:,i) + K*y(:,i); 
P_pos      = ( eye(6) - K*H )*P_pri; 
  
figure(); 
plot(1,P_pos(5,5), 'r+'); 
hold on; 
  
for i = 2:t_end 
    z(:,i)     = H*X_tru(:,i) + normrnd(muy, sigy)'; 
    X_pri(:,i) = F*X_pos(:,i-1); 
    P_pri      = F*P_pos*F' + Q; 
    y(:,i)     = z(:,i) - H*X_pri(:,i); 
    S          = H*P_pri*H' + R; 
    K          = P_pri*H'*inv(S); 
    X_pos(:,i) = X_pri(:,i) + K*y(:,i); 
    P_pos      = ( eye(6) - K*H )*P_pri; 
    plot(i,P_pos(6,6), 'r+'); 
end 
  
hold off; 
title('Covariance in Y acceleration', 'FontSize', 14); 
xlabel('Samples', 'FontSize', 12); 
ylabel('Covariance Value', 'FontSize', 12); 
  
figure(); 
hold on; 
plot(X_pos(1,:),X_pos(2,:),'-or','Markersize',6); 
  
% figure(); 
plot(X_tru(1,:),X_tru(2,:),'-ok','Markersize',6); 
title('True State (Black) and Estimated State (Red)', 'FontSize', 14); 
xlabel(' Distance (m) ', 'FontSize', 12); 
ylabel(' Distance (m) ', 'FontSize', 12); 
  
figure(); 
plot(1:length(X_tru), z(2,:), '-ob'); 
hold on; 
plot(1:length(X_tru), X_tru(6,:), '-ok'); 
plot(1:length(X_tru), X_pos(6,:), '-xr'); 
plot(1:length(X_tru), sigy1, '-xg'); 
plot(1:length(X_tru), -sigy1, '-xg'); 
hold off; 
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title(['Ideal (Black), Measured (Blue) and Filtered (Red) Acceleration Values and Theoretical SD=' 

num2str(sigy), ', \alpha=', num2str(alpha), ' & Q_k=', num2str(Q_scale*Q_val)], 'FontSize', 14); 
xlabel('Number of Measurements', 'FontSize', 12); 
ylabel('Acceleration (m/s^2)', 'FontSize', 12); 
xlim([150 750]); 
  
figure(); 
plot(1:length(X_tru), X_tru(6,:)-X_pos(6,:), '-ok'); 
hold on; 
plot(1:length(X_tru), sqrt(P_pos(6,6)), '-xg'); 
plot(1:length(X_tru), -sqrt(P_pos(6,6)), '-xg'); 
hold off; 
title(['Error in estimate of Acceleration Values and Filter SD =' num2str(sqrt(P_pos(6,6))), ', \alpha=', 

num2str(alpha), ' & Q_k=', num2str(Q_scale*Q_val)], 'FontSize', 14); 
xlabel('Number of Measurements', 'FontSize', 12); 
ylabel('Error in Estimate of Acceleration (m/s^2)', 'FontSize', 12); 
 

A.6 2D Motion Tracking Algorithm 

clear all; 
close all; 
 

type = {'.txt', '.xls'}; 
files = {'clk_wave_top_rev', 'clk_wave_3phase', 'clk_wave_2period', 'clk_wave_1period_rh'}; 

  
g = 9.80665; 
tick = 0.0041; 
Fs = 100; 
T = 1/Fs; 
flp = 4.5;        % LPF cutoff freq 
fhp = 0.07;     % HPF cutoff freq 
lp_tb = 0.05;   % HPF transition band (as a % of fhp) 
hp_tb = 02;     % HPF transition band (as a % of flp) 
hp_pbr = 0.1;   % HPF Pass band ripple (dB) 
hp_sbr = -40;   % LPF Stop band ripple (dB) 
lp_pbr = 0.1;   % HPF Pass band ripple (dB) 
lp_sbr = -40;   % LPF Stop band ripple (dB) 
bp_pbr = 0.2;   % HPF Pass band ripple (dB) 
bp_sbr = -40;   % LPF Stop band ripple (dB) 
  
data_midpt = [0 483 476 550 512 512 512];  
  
start = [2800; 2500; 2500; 2400; 2100]; 
finish = [4400; 4000; 4000; 3600; 4200]; 
  
bias_corr = 1; 
mov_avg_d = 0; 
buf = 0; 
  
i=1; 
s1 = strcat(files{i}, type{1}); 
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[A cnt X_val Y_val Z_val p_val r_val y_val Z] = textread(s1, '%c %d %d %d %d %d %d %d %c', -

1,'delimiter','\t'); 
raw_data=[cnt X_val Y_val Z_val p_val r_val y_val]; 
raw_avg = mean(raw_data(:,2:7)); 
std_dev = std(raw_data(:,2:7),1,1); 
 

% Convert to SI units 
% raw_data(:,2:4) = raw_data(:,2:4) - data_midpt(1,2:4); 
raw_data(:,2) = raw_data(:,2) - data_midpt(1,2); 
raw_data(:,3) = raw_data(:,3) - data_midpt(1,3); 
raw_data(:,4) = raw_data(:,4) - data_midpt(1,4); 
raw_data(:,2:4) = raw_data(:,2:4) * g * tick; 
 

% FFT Calculation 

len = length(raw_data); 
NFFT = 2^nextpow2(len); % Next power of 2 from length of raw_data 
Xf = fft(raw_data(:,2),NFFT)/len; 
Yf = fft(raw_data(:,3),NFFT)/len; 
Zf = fft(raw_data(:,4),NFFT)/len; 
f = Fs/2*linspace(0,1,NFFT/2); 
figure(); 
subplot(2,1,1); 
plot(raw_data(:,2)); 
title(['Raw data for X-axis for file \', s1], 'FontSize', 14); 
xlabel('Sample', 'FontSize', 12); 
ylabel('m/s^2', 'FontSize', 12); 
subplot(2,1,2); 
plot(f,2*abs(Xf(1:NFFT/2)))  
title(['Single-Sided Amplitude Spectrum of X-axis of file \', s1], 'FontSize', 14); 
xlabel('Frequency (Hz)', 'FontSize', 12); 
ylabel('|X(f)|', 'FontSize', 12); 
figure(); 
subplot(2,1,1); 
plot(raw_data(:,3)); 
title(['Raw data for Y-axis for file \', s1], 'FontSize', 14); 
xlabel('Sample', 'FontSize', 12); 
ylabel('m/s^2', 'FontSize', 12); 
subplot(2,1,2); 
plot(f,2*abs(Yf(1:NFFT/2)))  
title(['Single-Sided Amplitude Spectrum of Y-axis of file \', s1], 'FontSize', 14); 
xlabel('Frequency (Hz)', 'FontSize', 12); 
ylabel('|X(f)|', 'FontSize', 12); 
 
f_bpf = [fhp fhp*(1 + hp_tb) flp flp*(1 + lp_tb)]; 
a_bpf = [0 1  0]; 
dev_bpf = [10^(bp_sbr/20) (10^(bp_pbr/20)-1)/(10^(bp_pbr/20)+1)  10^(bp_sbr/20)]; 
[n_bpf,f0_bpf,a0_bpf,w_bpf] = firpmord(f_bpf, a_bpf, dev_bpf, Fs); 
b_bpf = firpm(n_bpf, f0_bpf, a0_bpf, w_bpf); 
 

bpf_data = filter(b_bpf, 1, raw_data); 
  
%% Remove DC and apply moving average 
  
data_in = bpf_data(start(i):finish(i),:); 
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act_avg = mean(data_in(:,2:3)) 
if (bias_corr)     
    data_in(:,2) = data_in(:,2) - act_avg(1); 
    data_in(:,3) = data_in(:,3) - act_avg(2); 
end 
  
in_size = size(data_in); 
half_win_in = 3*0.05; 
half_win = floor(half_win_in * Fs); 
wt = 1;  

mov_avg = zeros(in_size); 
mov_avg(1:half_win,:) = data_in(1:half_win,:); 
mov_avg( in_size(1,1)-half_win+1:in_size(1,1), :) = data_in( in_size(1,1)-half_win+1:in_size(1,1), :); 
mov_std = zeros(in_size); 
temp = zeros( 2*half_win+1, in_size(1,2)); 
  
% Processing data using moving statistical measures 
for ind = half_win+1:1:(in_size(1,1)-half_win) 
    temp = data_in(ind-half_win:ind+half_win,:); 
    mov_avg(ind,:) = sum(temp); 
    mov_avg(ind,:) = (mov_avg(ind,:)+(wt-1)*data_in(ind,:))/(2*half_win+wt); 
    mov_std(ind,:) = std(temp); 
end 
  
%% Find samples above a threshold to determine 
%  possible activity period candidtates 
  
bool = zeros(in_size); 
thres = 0.2; 
  
for a=1:in_size(1,1) 
    for b=2:3 
        if (mov_avg(a,b) > thres) 
            bool(a,b) = 1; 
        end 
        if (mov_avg(a,b) < -thres) 
            bool(a,b) = -1; 
        end 
    end 
end 
  
%% Calculate the locations of change in bool values 
  
d_bool = zeros(in_size); 
  
for a=2:in_size(1,1) 
    d_bool(a,:) = bool(a,:) - bool(a-1,:); 
end 
  
figure(); 
subplot(2,1,1); 
plot(mov_avg(:,2)); 
hold on; 
plot(bool(:,2), 'r'); 
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hold off; 
title(['Moving average BPF & Bias corrected X-axis for file \', s1, ' and Window = 

',num2str(2*half_win+1)], 'FontSize', 14); 
xlabel('Sample', 'FontSize', 12); 
ylabel('m/s^2', 'FontSize', 12); 
subplot(2,1,2); 
plot(mov_avg(:,3)); 
hold on; 
plot(bool(:,3), 'r'); 
hold off; 
title(['Moving average BPF & Bias corrected Y-axis of file \', s1, ' and Window = 

',num2str(2*half_win+1)], 'FontSize', 14); 
xlabel('Sample', 'FontSize', 12); 
ylabel('m/s^2', 'FontSize', 12); 
  
%% Remove spurious activity candidates 
  
% Any activity candidate that's shorter than 'short' samples 
% should be ignored as we can not possibly have an activty 
% for just 'short' samples after expanding initial candidates 
integral = 0; 
st = 0; 
fin = 0; 
short = 20; 
  
for axis=2:3 
    for a=1:in_size(1,1) 
        if (d_bool(a,axis) ~= 0) 
            integral = integral + d_bool(a,axis); 
            if (integral ~= 0) 
                st = a; 
            else 
                fin = a; 
                if ( (fin-st) <= short) 
                    for ind=st:fin 
                        bool(ind,axis) = bool(st-1,axis); 
                    end 
                end 
            end 
        end 
    end 
end      
         
figure(); 
subplot(2,1,1); 
plot(mov_avg(:,2)); 
hold on; 
plot(bool(:,2), 'r'); 
hold off; 
title(['Moving average BPF & Bias corrected X-axis for file \', s1, ' and Window = 

',num2str(2*half_win+1)], 'FontSize', 14); 
xlabel('Sample', 'FontSize', 12); 
ylabel('m/s^2', 'FontSize', 12); 
subplot(2,1,2); 
plot(mov_avg(:,3)); 
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hold on; 
plot(bool(:,3), 'r'); 
hold off; 
title(['Moving average BPF & Bias corrected Y-axis of file \', s1, ' and Window = 

',num2str(2*half_win+1)], 'FontSize', 14); 
xlabel('Sample', 'FontSize', 12); 
ylabel('m/s^2', 'FontSize', 12); 
  
%% Remove the effects of cross-axis sensitivity 
  
% We know that at any point of time only one axis 
% will be active. So, if there is overlap of activity 
% then the axis with largest signal in that interval 
% will prevail and other axis should be ignored 
  
overlap = [0 0]; 
bool_sum = zeros(in_size(1,1)); 
  
for a=1:in_size(1,1) 
    bool_sum(a) = abs(bool(a,2)) + abs(bool(a,3)); 
end 
  
for a=1:in_size(1,1) 
    if (bool_sum(a) == 2 & bool_sum(a-1) ~= 2) 
        ovlp_st = a; 
    end 
    if (bool_sum(a) == 2 & bool_sum(a+1) ~= 2) 
        ovlp_fi = a; 
        overlap = [overlap; ovlp_st ovlp_fi]; 
    end 
end 
  
ovlp_vals = size(overlap); 
if (ovlp_vals(1,1) > 1) 
    for a=2:ovlp_vals(1,1) 
        x_max = max(abs(mov_avg(overlap(a,1):overlap(a,2),2))); 
        y_max = max(abs(mov_avg(overlap(a,1):overlap(a,2),3))); 
        if (x_max > y_max) 
            b = overlap(a,1) - 1; 
            while (bool(b,3) ~=0) 
                bool(b,3) = 0; 
                b = b-1; 
            end 
            for b=overlap(a,1):overlap(a,2) 
                bool(b,3) = 0; 
            end 
            b = overlap(a,2)+1; 
            while (bool(b,3) ~= 0) 
                bool(b,3) = 0; 
                b = b+1; 
            end 
        end 
        if (y_max > x_max) 
            b = overlap(a,1) - 1; 
            while (bool(b,2) ~=0) 
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                bool(b,2) = 0; 
                b = b-1; 
            end 
            for b=overlap(a,1):overlap(a,2) 
                bool(b,2) = 0; 
            end 
            b = overlap(a,2)+1; 
            while (bool(b,2) ~= 0) 
                bool(b,2) = 0; 
                b = b+1; 
            end 
        end 
    end 
end 
  
figure(); 
subplot(2,1,1); 
plot(mov_avg(:,2)); 
hold on; 
plot(bool(:,2), 'r'); 
% plot(d_bool(:,2), 'k'); 
hold off; 
title(['Moving average BPF & Bias corrected X-axis for file \', s1, ' and Window = 

',num2str(2*half_win+1)], 'FontSize', 14); 
xlabel('Sample', 'FontSize', 12); 
ylabel('m/s^2', 'FontSize', 12); 
subplot(2,1,2); 
plot(mov_avg(:,3)); 
hold on; 
plot(bool(:,3), 'r'); 
% plot(d_bool(:,3), 'k'); 
hold off; 
title(['Moving average BPF & Bias corrected Y-axis of file \', s1, ' and Window = 

',num2str(2*half_win+1)], 'FontSize', 14); 
xlabel('Sample', 'FontSize', 12); 
ylabel('m/s^2', 'FontSize', 12); 
  
%% Merge +ve and -ve half cycle of acceleration 
  
rest_period = 10; 
for axis=2:3 
    for a=2:in_size(1,1) 
        if (bool(a,axis) == 0 && bool(a-1,axis) ~= 0) 
            if (sum(abs(bool(a:a+rest_period,axis))) ~= 0) 
                ind = a; 
                while (bool(ind,axis) == 0) 
                    bool(ind,axis) = bool(a-1,axis); 
                    ind = ind + 1; 
                end 
                a = ind - 1; 
            end 
        end 
    end 
end 
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figure(); 
subplot(2,1,1); 
plot(mov_avg(:,2)); 
hold on; 
plot(bool(:,2), 'r'); 
% plot(d_bool(:,2), 'k'); 
hold off; 
title(['Moving average BPF & Bias corrected X-axis for file \', s1, ' and Window = 

',num2str(2*half_win+1)], 'FontSize', 14); 
xlabel('Sample', 'FontSize', 12); 
ylabel('m/s^2', 'FontSize', 12); 
subplot(2,1,2); 
plot(mov_avg(:,3)); 
hold on; 
plot(bool(:,3), 'r'); 
% plot(d_bool(:,3), 'k'); 
hold off; 
title(['Moving average BPF & Bias corrected Y-axis of file \', s1, ' and Window = 

',num2str(2*half_win+1)], 'FontSize', 14); 
xlabel('Sample', 'FontSize', 12); 
ylabel('m/s^2', 'FontSize', 12); 
  
figure(); 
subplot(2,1,1); 
plot(data_in(:,2)); 
hold on; 
plot(bool(:,2), 'r'); 
% plot(d_bool(:,2), 'k'); 
hold off; 
title(['Band pass filtered X-axis for file \', s1], 'FontSize', 14); 
xlabel('Sample', 'FontSize', 12); 
ylabel('m/s^2', 'FontSize', 12); 
subplot(2,1,2); 
plot(data_in(:,3)); 
hold on; 
plot(bool(:,3), 'r'); 
% plot(d_bool(:,3), 'k'); 
hold off; 
title(['Band pass filtered Y-axis of file \', s1], 'FontSize', 14); 
xlabel('Sample', 'FontSize', 12); 
ylabel('m/s^2', 'FontSize', 12); 
  
%% Create an array with each activity's details 
  
activity = [0 0 0 0]; 
  
for a=2:in_size(1,1) 
    if (bool(a,2) ~= 0 && bool(a,3) == 0) 
        if (bool(a,2) ~= 0 && bool(a-1,2) == 0) 
            act_st = a; 
            x_stat = 1; 
            y_stat = 0; 
        end 
        if (bool(a,2) ~= 0 && bool(a+1,2) == 0) 
            act_en = a; 
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            activity = [activity; act_st act_en x_stat y_stat]; 
        end 
    end 
    if (bool(a,3) ~= 0 && bool(a,2) == 0) 
        if (bool(a,3) ~= 0 && bool(a-1,3) == 0) 
            act_st = a; 
            x_stat = 0; 
            y_stat = 1; 
        end 
        if (bool(a,3) ~= 0 && bool(a+1,3) == 0) 
            act_en = a; 
            activity = [activity; act_st act_en x_stat y_stat]; 
        end 
    end 
end 
     

     
%% Kalman Filter setup 
  
F0 = [1  0   T   0   0   0; 
      0  1   0   T   0   0; 
      0  0   1   0   T   0; 
      0  0   0   1   0   T; 
      0  0   0   0   1   0; 
      0  0   0   0   0   1]; 
  
H = [0  0   0   0   1   0; 
     0  0   0   0   0   1]; 
  
%% Kalman filter to track the motion 
  
Q_scale = 0.01; 
Q_val = 0.1; 
F = F0; 
sigy_scale = 0.3; 
max_dist = 1.5; 
  
init_pos = [0 0]; 
  
dist = [0 0]; 
  
act_size = size(activity); 
  
if (buf) 
    headroom = half_win; 
else 
    headroom = 0; 
end 
  
if (mov_avg_d) 
    din = mov_avg; 
else 
    din = data_in; 
end 
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for k=2:act_size(1,1) 
    KF_in = din(activity(k,1) - headroom:activity(k,2) + headroom,:); 
    length(KF_in) 
     
    act_avg = mean(KF_in(:,2:3)) 
    if (bias_corr)     
        KF_in(:,2) = KF_in(:,2) - act_avg(1); 
        KF_in(:,3) = KF_in(:,3) - act_avg(2); 
    end 
  
    z = zeros(2,length(KF_in)); 
  
    trackX = activity(k,3); 
    if (trackX) 
        z(1,:) = KF_in(:,2)'; 
    end 
  
    trackY = activity(k,4); 
    if (trackY) 
        z(2,:) = KF_in(:,3)'; 
    end 
  
    % Time till which Kalman filter will be ON 
    t_end = length(KF_in); 
  
    Q = Q_scale*diag([0.0, 0.0, 0.0, 0.0, Q_val, Q_val]); 
  
    stdev = 2*tick*g; 
    sigy = stdev; 
    sigy1 = sigy_scale*sigy; 
    R = diag([sigy1*sigy1, sigy1*sigy1]); 
  
    X0 = zeros(6,1); 
    X0(5,1) = init_pos(k-1,1); 
    X0(6,1) = init_pos(k-1,2); 
  
    P0 = 1*diag([0.1, 0.1, 0.1, 0.1, 0.1, 0.1]);%Q; 
  
    X_pri = zeros(6,t_end); 
    y     = zeros(2,t_end); 
    X_pos = zeros(6,t_end); 
 
    iter=1; 
  
    X_pri(:,i) = F*X0; 
    P_pri      = F*P0*F' + Q; 
    y(:,i)     = z(:,i) - H*X_pri(:,i); 
    S          = H*P_pri*H' + R; 
    K          = P_pri*H'*inv(S); 
    X_pos(:,i) = X_pri(:,i) + K*y(:,i); 
    P_pos      = ( eye(6) - K*H )*P_pri; 
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    for iter = 2:t_end 
        X_pri(:,iter) = F*X_pos(:,iter-1); 
        P_pri         = F*P_pos*F' + Q; 
        y(:,iter)     = z(:,iter) - H*X_pri(:,iter); 
        S             = H*P_pri*H' + R; 
        K             = P_pri*H'*inv(S); 
        X_pos(:,iter) = X_pri(:,iter) + K*y(:,iter); 
        P_pos         = ( eye(6) - K*H )*P_pri; 
    end 
  
    init_pos = [init_pos; trackX*X_pos(1,t_end)+init_pos(k-1,1) trackY*X_pos(2,t_end)+init_pos(k-1,2)]; 
    dist = [dist; X_pos(1,:)'+ init_pos(k-1,1) X_pos(2,:)'+ init_pos(k-1,2)]; 
end 
 
figure(); 
plot(init_pos(:,1), init_pos(:,2)); 
title(['Final Track generated for file \', s1], 'FontSize', 14); 
xlabel('Distance (m)', 'FontSize', 12); 
ylabel('Distance (m)', 'FontSize', 12); 
xlim([-max_dist max_dist]); 
ylim([-max_dist max_dist]); 
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Appendix B 

Supplementary Results 

B.1 Chapter 5 

 

Fig. B.1 Normalized Histogram of Distance Covered with width = 1s for Subject 2 
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Fig. B.2 Normalized Histogram of Distance Covered with width = 5s for Subject 2 

 

Fig. B.3 Normalized Histogram of Distance Covered with width = 10s for Subject 2 
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Fig. B.4 Normalized Histogram of Distance Covered with width = 1s for Subject 3 

 

Fig. B.5 Normalized Histogram of Distance Covered with width = 5s for Subject 3 
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Fig. B.6 Normalized Histogram of Distance Covered with width = 10s for Subject 3 

B.2 Chapter 6 

 

Fig. B.7 Identified activity durations (Red) with band-pass filter output (Blue) for X-axis (Top) and 

Y-axis (Bottom) 
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Fig. B.8 Final track generated by tracking seven 1D motions in 2D 

 

Fig. B.9 Identified activity durations (Red) with band-pass filter output (Blue) for X-axis (Top) and 

Y-axis (Bottom) 
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Fig. B.10 Final track generated by tracking eight 1D motions in 2D 

 

Fig. B.11 Identified activity durations (Red) with band-pass filter output (Blue) for X-axis (Top) and 

Y-axis (Bottom) 
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Fig. B.12 Final track generated by tracking five 1D motions in 2D 
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ABBREVIATIONS 

 

AAUT   Actual Amount of Use Test 

ADC   Analog to Digital Converter 

ADL   Activities of Daily Living (Life) 

AR   Autoregressive process 

BBT   Box and Block Test 

CIMT   Constraint Induced Movement Therapy 

FAS   Functional Ability Scale 

IADL   Instrumental Activities of Daily Living (Life) 

IMU   Inertial Measurement Unit 

MAL   Motor Activity Log 

MEMS   Micro-electro mechanical system 

MIS   MEMS Inertial Sensors 

NRRL   NeuroRehabilitation Research Laboratory 

SAW   Surface Acoustic Wave 

SIS   Stroke Impact Scale 

 


