
PLANNING WATER REUSE: 
DEVELOPMENT OF REUSE THEORY 

AND THE INPUT ·OUTPUT MODEL 
VOL. II: APPLICATION 

by 

Darrel Klooz 
David W. Hendricks 

. September 1980 

Completion Report No. 115 



Planning Water Reuse--Development of Reuse Theory 
and the Input-Output Model 

Volume II: Application of the Input-Output Water Balance Model 

Completion Report 
OWRT Project No. 78-270450-145 

by 

Darrel Klooz 
David W. Hendricks 

Department of Civil Engineering 
Colorado State University 

submitted to 

Office of Water Research and Technology 
U.S. Department of the Interior 

Washington, D.C. 20240 

September 1980 

The work upon which this report is based was supported (in part) by 
funds provided by the United States Department of the Interior, Office 
of Water Research and Technology, as authorized by the Water Resources 
Research Act of 1978. 

Contents of this publication do not necessarily reflect the views and 
policies of the Office of Water Research and Technology, U.S. Department 
of the Interior, nor does mention of trade names or commercial products 
constitute their endorsement or recommendation for use by the U.S. 
government. 

Colorado Water Resources Research Institute 
Colorado State University 

Fort Collins, Colorado 
Norman A. ~vans, Director 





Chapter 

I 

II 

III 

IV 

TABLE OF CONTENTS 

INTRODUCTION 

1.1 Purpose of Investigation and Project Goals 
1 . 2 Approach . . . . . . • . . . . . . . . . 

REVIEW OF THE INPUT-OUTPUT PRINCIPLES AND THE 
CONCEPT OF WATER REUSE • • • • • • • • • • 

2.1 
2.2 

Principles of Input-Output Modeling • 
Water Reuse • • • • • • • • • • • . 

1 

1 
2 

3 

3 
8 

2.2.l Reuse Definitions 8 
2. 2. 2 Reuse Line Diagrams . . • • 12 
2.2.3 The Mechanics of Development "New" 

Water by Water Reuse • . • . . • . . 14 
2.2.4 Water Reuse in Existing Applications 

of the Input-Output Model • . • • . 18 

2.3 Why Input-Output Modeling for Reuse Analysis? 

ADAPTION OF THE INPUT-OUTPUT MODEL TO WATER 
REUSE SYSTEMS • • • • 

3.1 Methodology 

3.l.l Scheme I. . ••. 
3. l. 2 Scheme II • • . • . • • • 
3.l.3 Summary of the Methodology . 

3.2 Data Requirements ••••.••• 

Trlli CACHE LA POUDRE RIVER REUSE MODEL 

4 .I The Area of Investigation • . • • • • 
4.2 Fundamental Model Assumptions •••. 
4.3 The Elements of the Models •••••••• 

21 

26 

26 

32 
35 
35 

38 

43 

43 
51 
53 

4.3.l Entry Components • • . • • • • 53 

4.4 

4.3.2 Internal Components~ Use Systems • 55 
4.3.3 Exit Components • • • . 59 
4. 3. 4 Return Flow Components • 60 

The 1979 Reuse Models • • • • 

4.4.l The l9?9 Reuse Model- Scheme I 
4.4.2 The l9?9 Reuse Model- Scheme II . 

iii 

60 

60 
63 



"No higher quality water, unless there is a surplus of 

it, should be used for a purpose that can tolerate a 

lower grade." 

UN Economic and Social Council 
1958 

ii 



Table 

3-1 

,. 
4-1 

4-2 

4-3 

4-4 

LIST OF TABLES 

Data Requirement for the Input-Output Model 
of the Cache la Poudre River Basin Water 
System . • . . . . . • . . . . . . . 

Projected Water Demands of the Municipal Sector 
for the Year 2020 . . . . • . . . • • . . • . 

Projected Water Demands of the Industrial Sector 
for the Year 2020 • . • . . . • . . . 

Project Water Demands of the Agricultural Sectpr 
for the Year 2020 . . . . . • . • . . . 

Projected Water Inputs into the Cache la Poudre 
River Basin for the Year 2020 . , . • . . . . . . 

v 

41 

67 

69 

70 

71 



Chapter 

v 

4.5 The 2020 Reuse Model 

4.5.l Municipal Sector • •• 
4.5.2 Industrial Sector .••. 
4.5.3 Agricultural Sector 
4.5.4 Hydrological Conditions3 Water Entries 

4.6 The 2020 Reuse Matrix "Drought" • 
4.7 Disclosures of the Reuse Models 

4.7.l The l979 Models 
4.7.2 The 2020 Reuse Model. 

CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusions •• 
5.2 Recommendations 

REFERENCES , 

APPENDICES • 

APPENDIX A: WATER BALANCE DIAGRAMS FOR THE 
YEAR 1979 • • • • • • • • 

APPENDIX B: DOCUMENTATION OF DATA .•.•• 

iv 

Page 

66 

66 •' 

66 
66 
68 

68 
75 

75 
76 

79 

79 
80 

82 

84 

85 
134 



Figure 

4-5 

4-6 

4-7 

The 1979 Reuse Model - Scheme II . • • . 

The 2020 Reuse MOdel Drought Conditions 

The 2020 Reuse Model Drought Conditions 

vii 

Page 

65 

72 

73 



Figure 

2-1 

2-2 

2-3 

2-4 

2-5 

2-6 

2-7 

2-8 

2-9 

3-1 

3-2 

3-3 

LIST OF FIGURES 

Line Diagram of the 1970 Water Transfers in the 
Aggregated Cache la Poudre Basin Water System . 

Aggregated Matrix Representation of the Input­
Output Model of the Cache la Poudre Basin Water 
System . . . . . . . . . . . . . . . . . , 

Input-Output Model for the South Platte River 
Basin Water Resources System. Magnetic Board Mat-
rix Display • • . . , . . . . . . . • 

The Hierarchical Structure of the Various Reuse 
Forms as Defined by Turner . . • . 

Basic Line Diagrams Depicting a Sequential Reuse 
System and a Recycle Reuse System . . . . . 

Line Diagram for the Defined Reuse Forms in 
the South Platte River Basin . . . . . . . 

Schematic Displaying the Principles of "Creating" 
Additional Water by Recycle Reuse . . . . . . . . 

Bengoechea's (1979) Schematic to Represent Sequen­
tial Reuse on the Input-Output Matrix . . . . . 

Schematic to Depict the Position of the Input­
Output Matrix in the Systems Analysis Process . 

Areas of Occurrence of the Various Reuse Forms on 
the Reuse Input-Output Matrix . • . . . . · 

Principle of the "Dummy" Transfer Component 

Factors Related to the Supply and Demand of Water 
Resources System . • . . . 

4-1 The Area of Investigation: The Cache la Poudre 

4-2 

4-3 

4-4 

River Basin 

Schematic of the Cache la Poudre River Basin 

Map of Existing Canal and Reservoir System in the 
Cache la Poudre Valley 

The 1979 Reuse Model - Scheme I • 

vi 

6 

7 

9 

11 

13 

15 

16 

20 

24 

29 

33 

40 

44 

47 

48 

61 



CHAPTER I 

INTRODUCTION 

1.1 Purpose of Investigation and Project Goals 

Today many water resources systems are considered to be in an 

"apex-state" relative to the utilization of their waters. Because of 

still continuously increasing water demands in such systems, water reuse 

may become an attractive alternative to augment their water supplies. 

The methodology for planning and evaluation of water reuse in these 

normally complex systems is developed in Volume I. In Volume II, the 

input-output water balance model is developed and applied as a water 

reuse planning tool. 

In water supply planning the identification of the important system 

components has to be done in a manner such that the decision makers in 

society are able to perceive the system sufficiently to have a sound 

basis for making feasible decisions. If water reuse is a proposed 

alternative, the concept must be presented in an easily understandable 

way to the prospective users in order to minimize possible user opposi­

tion. An engineering-planning tool is needed to represent and visualize 

a water resources system for documentation and alternative development. 

The input-output model is ideally suited for this purpose. 

The input-output concept was originally introduced by Leontief 

(1951) into the economic theory. The present work succeeds other adop­

tions by DeHaan (1976), Hendricks et al. (1977), Reitano (1978), and 

Bengoechea (1979), which mainly focus on the water transfers between 

the individual system components, i.e., the physical pathways of 

distributing water to the various users. 
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The objective of this research is to adapt the method of input­

output modeling to water reuse planning. This is done by demonstration 

using an actual case study. The potential of the modified input-output 

model is explored as a tool for water reuse engineering. 

1.2 Approach 

The theoretical part of this investigation reviews first the input­

output model as a medium for systems analysis and highlights the prin­

ciples of input-output modeling. Subsequently, the different forms of 

water reuse are identified. A rationale is sought to justify the adap­

tion of the input-output model to water reuse planning. The theoretical 

part elucidates also all the necessary changes in the modeling approach 

vis-a-vis past applications of the input-output model for water transfer 

models. 

This part is followed by a practical demonstration of the developed 

methodology on an actual case study. This case study uses the Cache la 

Poudre River drainage in Northern Colorado. Two models are constructed: 

one for the year 1979 for documentary purposes and the other for the 

year 2020 under assumed drought conditions to document the planning 

potential of the input-output model. The final chapter addresses the 

emerging conclusions and recommends further developments of the 

methodology. 
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CHAPTER II 

REVIElll OF THE INPUT-OUTPUT PRINCIPLES AND 

THE CONCEPT OF WATER REUSE 

2.1 Principles of Input-Output Modeling 

When Wassily Leontief introduced the input-output model in the early 

1930's, he had in mind the depiction of the u.s. economy involving the 

relationships and interactions of different industries. By using the 

input-output model as a conceptualization of the quite complex economic 

system to identify the system's structure, he was able to explore and 

quantify the interactions of the individual industries of the system. 

When applying the principles of input-output analysis to water 

resources systems, so called "internal components" take over the roles 

played by the various industries in Leontief's model. These internal 

components represent the selected features of the water resources system, 

whose relationships and interactions have to be investigated. These 

features can be water conveying facilities, such as rivers, canals, 

ditches; water storage facilities, such as lakes, groundwater reservoirs 

and surface reservoirs; and water use systems, such as municipal water 

supplies, industries, and agriculture. 

In addition to the internal components, the set of system components 

is completed by the so called "entry components" and "exit components." 

Through the entry components, water enters the water resources system 

under consideration; and through the exit components, the water leaves it. 

If we consider the system components under the aspect of "origins" and 

"destinations," then the entry components are only origins insofar as 

they do not receive water from the investigated system. The internal 

components can be considered as both "origins" and "destinations," 

3 
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because the water enters and leaves such components within the system. 

Finally, the exit components are the destinations of water, which leaves 

the system, The purpose of the input-ouput model is to assemble the 

individual system components in such a manner as to visualize the exis-

ting and potential relationships, i.e., the water flows between these 

components. The model uses a matrix format to represent the structural 

and functional characteristics of the water resources system.* 

Reitano (1978) describes the construction of the input~output 

matrix as follows: 

"The rows of the matrix consist of the 'origin components' 
only, i.e., entry components and internal components. The 
columns of the matrix consist of 'destination components' 
only, i.e,, internal components and exit components. The 
presence of a datum at the intersection between any row 
and column, i.e., the existence of a matrix element at 
that intersection, indicates an interaction related to 
flow from the row-correspondent system component to the 
column-correspondent system component." 

In current applications of the input-output model to water resources 

systems, these data always represent the units of water transferred 

from the "origin component" to the "destination component." The bottom 

row of the matrix consists of the input totals for each respective 

system component, which serves as a destination, while the far right 

column consists of the output totals for each respective system compo-

nent, which serves as an origin. Further columns of totals of various 

sorts can be used, relating to specific interesting subsets of water 

exchanges. The input totals in the matrix will coincide with the output 

totals for all internal components, therefore assuring an overall water 

balance for the system. 

*The structural characteristics depict the type of features which have 
to be considered. The functional characteristics point to the inter­
action of these features, 
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Figures 2-1 and 2-2 give a simplified graphical depiction of an 

input-output model in the matrix format for a water resources system, 

whose interactions between the system components are given by a line 

diagram. Such a matrix displays, in an easy to grasp fashion, the 

overall picture of the water resources system on one hand. On the other 

hand, it enables the investigator or decision maker to go into detail 

and explore the interrelationships between individual system components. 

Not only are existing interactions displayed by the data in the indi­

vidual matrix cells, but also all possible, nonexisting relationships 

are visually displayed, An important attribute of the input-output 

model is also that each interaction is more accurately defined by its 

quantity in the matrix cell. 

At this point, it is obvious that the resolution brought by the 

input-output model depends on the selection of the system components, 

which have to represent the water resources system. The system, with 

its numerous features, has to be aggregated into a manageable number 

of system components, which give a characteristic picture of the system. 

The first step in abstracting a water resources system into a 

system which fits into the input-output analysis scheme, is to select 

a time frame and to define the system boundaries. All water activities 

overlapping these system boundaries have to be considered either as 

system entries or system exits. The next step is to identify, within a 

level of desired resolution, all components comprising the water 

resources system. These system components may be aggregated into sectors, 

for example, "transbasin diversion sector," "storage sector," "municipal 

sector," "industrial sector," and "agricultural sector." TI1e inclusion 
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of a specific system component into the model depends upon the purpose 

of the whole input-output model and on the component's importance for 

that purpose. 

To illustrate the above outlined prjnciples of water resources 

analysis by an input-output model, Figure 2-3 gives an example of a 

comprehensive analysis for the South Platte River Basin water resources 

system. The actual display of the matrix is on an eight foot by eight 

foot metallic board with color-coded magnetic strips. 

The matrix is a format to visualize the results of an input-output 

analysis suitable for display in various forms depending upon the sophis-

tication required by the user. It can be constructed graphically as a 

simple form. It can be displayed on a magnetic board as it was done by 

members of the Environmental Engineering Program at Colorado State 

University for the South Platte River system, the Cache la Poudre system, 

and for the water system of the City of Fort Collins. A sophisticated 

method is to computerize the display enabling the user to implement 

changes in the matrix immediately. 

2.2 Water Reuse 

2.2.l Reuse definitions. This section provides the basic knowledge 

needed to explore the potential of the input-output matrix as a tool to 

plan and display water reuse in a water resources system. This knowledge 

will be developed by studying the water reuse systems in the South Platte 

River Basin in Colorado. Water reuse is broadly defined in Volume I as: 

"A series of two or more uses that occur due to the acts of 
man in which a portion of the water originating from the 
first use and then used a second time has not passed through 
an unconfined gaseous state between uses." 



Figure 2-3. 

9 

Input-Output Model for the South Platte River 
Basin Water Resources System. Magnetic Board 
Matrix Display (Hendricks et al., 1977) 
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Further, the different water reuse forms were defined in Volume I as 

they exist in the Western United States. The following water reuse 

forms are defined: unplanned reuse, planned reuse, sequential reuse, 

recycle reuse, and potable reuse. To provide compatability and to 

further implement their use, the definitions, as worked out in Volume I, 

are used in this study. Hence, each term is defined as follows: 

Unplanned Reuse: Unplanned reuse occurs when water, after a 

first use, is discharged to either a surface or groundwater 

body and the water is subsequently captured and put to use by 

a second or subsequent user without coordination or plann-ing 

between the first and second or subsequent users. 

Planned Reuse: Planned reuse is a deliberate second or 

repetitive use of water by the same or another user that 

involves planning to coordinate the transfer of water between 

the first and second or subsequent users. 

Sequential Reuse: Sequential reuse occurs when effluent is 

discharged into a body of water or watercourse by the first 

user, often diluted by natural forces and then withdrawn, 

treated (if necessary), and used again for a different 

purpose. 

Successive Reuse: Successive reuse is a subsequent use (of 

foreign water) by the water importer for a different purpose. 

Potable Reuse: Potable reuse is the reuse of wastewater 

effluent after special treatment for domestic purposes 

including human consumption. 

The hierarchical structure of the above defined reuse forms is 

presented in Figure 2-4. It is evident that the highest level, i.e., 



11 

Succes-
Potable sive 

Reuse Reuse IV LEVEL 

Sequential Reuse Recycle Reuse III LEVEL 

Unplanned 
Planned Reuse Reuse II LEVEL 

Water Reuse I LEVEL 

Figure 2-4. The Hierarchical Structure of the Various 
Reuse Forms as Defined by Turner (1981) 
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Level IV, is not completely defined. The higher foms 

of reuse on Level IV originate out of special cases in the South Platte 

River Basin. Studying further literature about water reuse, it seems 

that Turner's definitions cover all practiced forms of water reuse. 

Although it should be mentioned that the nomenclature designating reuse 

forms is unfortunately inconsistent in the literature. Therefore, the 

reader has to check each author's definitions care~1lly. 

2,2.2 Reuse Zine diagrams. In the following, the six defined 

water reuse forms will be displayed by means of line diagrams which 

are pointing out the characteristics of each reuse. Two basic line dia­

grams are sufficient to display every possible system of water reuse. 

The proposed line diagrams are different insofar as the first one is 

designed to describe reuse systems in which the first and subsequent 

use systems are different; the second is suited to display "recycle"­

type systems, in which first and subsequent use systems are the same. 

The main symbols of each diagram are: 

--The square fields indicating the use systems 

--The arrow indicating the transfer activity 

"Transfer activity" is defined as the mode of moving the water from one 

use system to another. In includes: 

--The planning degree involved in water reuse 

--The treatment degree of the transferred water 

Figure 2-5 shows the two basic line diagrams. The degree of plan­

ning and treatment is indicated by the number of horizontal lines 

representing the transfer activity arrow: 

one line 

two lines 

unplanned reuse 

planned reuse 
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Sequential Reuse System 

First Use 
System 

I 
Transfer 
Activity 

~ 
I 

I 
\Jj 

.......... Second Use 
/ System ···············> 

' System Boundary 

Recycle Reuse System 

·······~ 
.......... ., 

I 
Transfer 
Activity 

First Use 
System 
--

Second Use 
System 

IT\ 

I 
\ll 

•• 0 ...... ................... > 

' System Boundary 

Figure 2-5. Basic Line Diagrams Depicting a Sequential Reuse 
System and a Recycle Reuse System 
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~==~three lines-- planned reuse with special treat­
ment of the water to match specific 
reuse needs 

The dashed arrow coming into the reuse system represents the water 

addition (makeup water) or water release (blowdown) during the transfer 

activity to or from the reused water, The water addition can be water 

to replace consumptively used water or water added during dilution in 

a natural waterbody. The dotted lines visualize the water input into 

the reuse system to the first use system and the output of the system 

following the subsequent use. In Figure 2-6 the two line diagrams are 

applied to the six defined reuse forms. It can be seen that the recycle 

reuse is, in general, the more mature planned water reuse form than 

the sequential reuse. Recycle reuse permits to squeeze the maximal 

amount of water out of the system. 

2.2.3 The mechanics of developing 'new" water by water reuse. The 

more the water requirements in a use system surpass the natural water 

supply, the more the added cost for formal planned reuse is becoming 

competitive with the added cost of other means of water augmentation. 

The mechanism of creating "new" water in terms of water reuse is basi-

cally: running each unit of water through several use entities before 

discharging the unit of water outside of the water use system. Hence, 

by using the water more than once in the water resources system, the 

total available water volume is augmented and "new" water is created. 

The mechanism is visualized in Figure 2-7 with a simplified flowsheet 

for recycled water reuse. By utilizing Volume A of makeup water as a 

supply, a total volume of (A + V) of water can be made available for 

use in the system. The necessary Volume A will be minimized by reducing 

the Losses L and the Blowdown B for the use system under consideration. 



Unplanned Sequential 
Reuse 

Planned Sequential 
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First Use 
System 

First Use 
System 

Planned Recycled 
Reuse ·············~ 

Potable and Successive 
Reuse . ~ . . . . ""4 

... Second Use 
'I' "' System 

........ ;:> 

I 

...... Second Use 

f 
, 

System 
·······> 

First and . .. . . . . . " .. 
Second Use 1---

System 

"' 

First and 
Second Use . . . .. • 0 ••• 

1--- ·> 
System 

Figure 2-6. Line Diagram for the Defined Reuse Forms in 
the South Platte River Basin 
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Water Use, 

Contaminant 
Addition, Y 
(g/hr) 

Makeup Water,----~~---,------~~--------~-------,----------~ 
A (m3 /hr) 
Concentration, 
C (g/m3) 

Recycle Water 
V (m3 /hr) 

Concentration, 
VR-D (g/m3) 
-v-

Removal of 
Contaminants, 
D (g/hr) 

Concentration, 
VR-D+AC (g/m3) 

A+V 

TREAT-
MENT 

I------t 

Water Losses, 
L (m3/hr) 

Slowdown Effluent, 
B, (m3 /hr) 
Concentration, R 
(g/m3) 

Figure 2-7, Schematic displaying the principles of "creating" 
additional water by recycle reuse. By utilizing 
Volume A of makeup water as a supply, a total volume 
of (A+V) of water can be made available for use in 
the system. The necessary Volume A will be minimized 
by reducing the Losses L and the Slowdown B for the 
use system under consideration. 
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As a consequence of this maximization, the water circulating in the use 

entity will have the maximal permissible concentration in terms of con-

taminants which are important for the considered water use. 

To describe the degree of reuse in a water resources system, De Haan 

(1976) defines the wateP Peuse index, which is the total utilized water 

divided by the original water input into the system. The maximal attain-

able value for the water reuse index is either determined by the consump-

tion of the water or interms of total contaminants. The water consumption, 

as defined by Turner (1981), is the transformation of water from its 

liquid form into its unconfined gaseous state (i.e., evaporation). The 

consumption is mostly influenced by the climate and by the water reuse 

form. In the United States, for instance, consumptive losses based on 

climate conditions vary between 20 and 60 percent for municipal water 

supply systems. Considering the water reuse form, the recycle water 

reuse may have the tendency to increase water consumption, for instance, 

in cooling systems of power plants where a greater portion of water is 

evaporated in recycle systems than in once-through systems. 

With the exception of hydropower generation, which is a boundary 

case as a water use system because it involves practically no water 

consumption, each use of water in a system loads the water successively 

with physical, chemical, and/or biological contamination degrading the 

water to a point where it becomes unsuitable for any further use. 

Physical contamination is mainly caused by temperature changes or 

radioactivity. Principal chemical contaminations are due to: 

--Increase in the dissolved minerals content 

+ - • --Increase in NH4 and N03 concentrat1ons 

--Increase in the heavy metals content 

--Increase in TOC 
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Normally, the dissolved minerals content by chemical contamination is 

the limiting factor of the water reuse index. Biological deterioration 

is caused by bacteriological and virological contamination. 

In general, the contamination and not the consumption of water is 

limiting the water reuse index in real water resources systems indirectly 

by the costs to reduce the contamination to an acceptable level. Although, 

the theoretical case exists where the water is reused under extensive 

treatment until it is totally consumed. In a normal case, the treatment 

costs per unit of water increase superproportional to an increase in the 

water reuse index. Further, reuse system inherent limitations to the 

reuse index are imposed by legal constraints; requiring for instance the 

--consideration of water rights of downstream users, 

--provision of a minimal streamflow within the water resources 

systems, 'and 

--provision of a minimal streamflow out of the water resources 

system. 

2.2.4 Water Reuse in Existing Applications of the Input-Output 

Model. In the applications of the input-output model during recent 

years by Hendricks and DeHaan (1973), Bengoechea (1979), Reitano and 

Hendricks (1978), and Hendricks and Morel-Seytoux (1978) to identify 

the water use systems in the South Platte River Basin, naturally water 

reuse is also involved because of the inherent water scarcity~in the 

described river basin. In these research studies, the flow of the water 

through the system is displayed giving information about the origin 

and the uses of the water units. 
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No case exists where there is an application of the input-output 

model with the goal to elucidate the different reuse forms in the system. 

In the application of these models, there is only sometimes a faint dis­

tinction between primary water uses and secondary water uses; making it 

difficult to trace the existing water reuses. Bengoechea (1979) gives, 

with a schematic depiction in Figure 2-8, an approach on how to identify 

sequential water reuse in an input-output matrix. 

These previous state-of-the-art input-output models for water resources 

systems do not permit an easy reuse quantification. There is no way to 

recognize on the input-output matrix, how many times the water is 

recycled through a specific component because the rate of consumption 

in each cycle is not displayed by the internal component. Also, the 

qualitative, economic, and normative aspects of a certain reuse form 

cannot be assessed using the input-output models developed to date. 

In the input-output model for the entire South Platte River Basin 

by Hendricks (1978), attempts were made to identify reuse forms. Some 

cells were marked based on color differentiations with "intended water 

reuse" and "industrial-municipal water transfer- no reuse." The 

"intended reuse" as displayed on the matrix would be a sequential reuse. 

To determine the content of these reuses, the user of the model must 

consult the accompanying report, which makes the gathering of this 

information quite cumbersome. Confusion may arise using the above 

system because not all reuse forms are identified making the assessment 

of the total reuse potential difficult. 

Bengoechea (1979) introduces into his model of the Fort Collins' 

water system, the differentiation between "reusable water" and "non­

reusable water." The terms "reusable" and "nonreusable water." 
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respectively, are introduced into his model in a fallacious sense. 

Bengoechea means by "nonreusable water" only water which is not available 

for recycle reuse due to legal constraints, but the water can be used 

for sequential reuse. 

2.3 Why Input-Output Modeling for Reuse Analysis? 

When applying systems analysis to a real water resources system, 

the selection of the suitable approach depends upon the purpose of the 

analysis and the characteristic features of the water system. Today, 

all water systems are developed to a certain degree. Therefore, it is 

now normally impossible to plan and develop a water resources system 

from nothing. Existing uses and earlier decisions about the structure 

of the system have to be considered as more or less flexible constraints 

in the planning process, As Hall and Dracup (1970) point out, water 

resources systems are in their very nature historically, politically, 

legally, physically, productively, technically, and economically. These 

properties can be expressed by physical, sociological, biological, 

economical, political, legal, geological, and agricultural parameters, 

some of which are quantifiable and some of which are not. Many of these 

complex water resources systems are evolved from tradition in an 

unplanned manner, This evolution guaranteed in very rare cases the 

development of an optimal system. Therefore, further planning and 

development has to begin from a basis provided by a nonoptimal system, 

which already bars the way to an overall optimal water resources 

development. 

To further develop such water resources systems by a computerized 

decision process, all nonmathematical and nonquantifiable parameters 

have to be postulated to be nonexistent or must be substituted. This 
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can lead to fallacious results. Applying such an approach and describing 

the system only from a mathematically graspable point of view, much 

better water resources systems can be designed and built than the 

political and social realities would permit. 

Based on the, not always easily to perceive, characteristics of 

water resources systems, decision makers often tended in the past to 

evaluate development alternatives based on intuitive preferences, which 

are functions of the decision maker's political and social background. 

It can be concluded, therefore, that optimization methods are not 

necessarily the core of system approaches to engineer water resources 

systems. Modeling and evaluation are often more important tools although 

they are less satisfactory or less available to the purist explanations 

than optimization approaches, which are mathematically elegant and 

tractable. 

Input-output modeling for reuse analysis is an approach to simu-

late and evaluate the best practicable water reuse schemes in water 

resources systems having already a high degree of development. By 

using the input-output model, a complex system can be visualized in a 

simple and relatively cheap way. It is very suitable for policy level 

planning because changes in the policy can be demonstrated with ease 

by implementing them in the matrix. It can support the bargaining 

process to reach a decision as outlined by March and Simon (1966) : 

"When a number of persons are participating in a decision 
making process and these individuals have the same opera­
tional goals, differences in opinion about the course of 
action will be resolved by predominantly analytic processes, 
i.e., by the analysis of the expected consequences of action 
for realization of the shared goals. When either of the 
postulated conditions is absent from the situation, when 
goals are not shared, or when the shared goals are not opera­
tional and the operational subgoals are not shared, the 
decision will be reached by predominantly bargaining processes." 
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In other words, the matrix supports the exploration of the "indifference 

bands" of all parties. The analysis assumes that all solutions which are 

acceptable for everyone come close to an overall socially, but not mathe­

matically, "optimal" solution because of the complexity of the system. 

It follows that the goal of the whole procedure is not an overall optimal 

solution, but highest agreement among all parties. Only this agreement 

will guarantee a proper functioning of the implemented system in the 

future. 

The matrix display can consider the hierarchical relationships in 

the objective sets and the compatibility within sets of objectives 

through water mass balances, water quality requirements, etc. In 

addition, the input-output model can support the process in which first 

vaguely expressed goals and objectives are becoming crystallized as 

alternatives are put forth on the matrix and their impacts on the sys­

tem are better perceived. 

The analysis of water resources systems is not only a step-by-step 

process, but rather it is a dynamic process, which after a start up 

period has work proceeding concurrently on several tasks. The results 

and assessments of each stage of analysis are continually being fed 

back to alter or refine ongoing work or other tasks, These feedbacks 

are easily implemented and displayed on the input-output matrix. 

Figure 2-9 shows the place of the input-output matrix in the whole 

systems analysis process of a water resources system involving water 

reuse. 

During the systems analysis, the objectives translate the desired 

futures into operational terms by stating the conditions to be met in 

designing a satisfactory solution. The desired futures can be displayed 
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on the matrix and then different solutions can be worked out by 

rearranging the matrix. The merits of each solution can be judged 

with ease by the deciding parties because of the visible and clear 

display of the conditions. 

Also of great value is th~ input-output model during the stage of 

decision implementation. It can contribute to a better understanding 

between system analyst and future users of the water resources system 

because the matrix displays the future and can point to necessary courses 

of action. The model allows an early introduction of the ultimate user 

into the decision making process. The matrix is a medium to maintain 

the communication throughout the project, which is of crucial impor­

tance for a smooth implementation of the decisions. 



CHAPTER III 

ADAPTION OF THE INPUT-OUTPUT MODEL 

TO WATER REUSE SYSTEMS 

3,1 Methodology 

The purpose of the analysis and the character of the decision 

maker served by this analysis provide the basis for developing approaches 

to model and analyze water reuse. The input-output model has to facili­

tate the planning and deciding tasks for the decision maker. Many 

decision makers, who are determining the final execution of proposed 

water use schemes, are political authorities with little or no special 

knowledge of the problems related to the different modes of water use. 

Therefore, the decision supporting input-output model, has to be pre­

pared in such a fashion as to spark the decision maker's interest to 

explore the matrix and with it the system. The input-output matrix 

must provide a display which needs little indoctrination to understand 

its main features. Thus, the most important characteristics of the new 

reuse model has to be "appealing," "easily readable," "easily understand­

able," and "simple to construct." This paragraph proposes a way for such 

an input-output model to be developed from the existing input-output 

analyses, which mainly provided water transaction tables in the past. 

The new proposed reuse matrix focuses only on existing and future 

water use systems considering the water transfer systems of secondary 

importance. This is the prominent difference to the past applications 

of the input-output matrix, which have considered a water resources system 

as a whole, i.e., the water transactions considered were not only the 

ones with beneficial use but also the ones which are solely water 

transfers. One may object that the existing water transfer systems are 

26 
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of great importance for a water resources system, because of the already 

done capital expenditures to develop them and because existing and from 

tradition evolved patterns, for example, the agricultural distribution 

systems, are difficult to change. On the other hand, it seems that such 

difficulties decrease in magnitude when a resource starts to get scarce. 

Under such circumstances, people begin to become more flexible towards 

more radical changes and unconventional solutions in their existing 

environment, which also includes the water resources system. Therefore, 

it is appropriate to suggest to neglect the transfer system as a first 

approximation because water reuse planning starts to become serious only 

when water is becoming scarce and the higher unit costs of reuse water 

become competitive. 

The "conventional" input-output matix involving water transfer 

and water storage systems as internal components is easily modified 

to a "reuse" matrix displaying only the relevant use systems. The 

modification consists primarily of the removal or nonintroduction of 

transfer and storage components. This new "reuse" matrix prossesses 

interesting features as can be seen in Figure 3-1. Each input from 

any given internal component, which is per definition a use system, 

can be traced to its uses or its exits. The disposition of 1vater from 

each output can then be traced to other uses as it is changed to an 

input and the cycle repeated. The internal components must be selected 

in such a way that any given output can be followed to is next use 

without entering a common carrier or transit mechanism such as a river 

or a stream. This requirement poses some difficulties to fulfill, 

when the output of a use system is difficult to localize in a water 

resources system. This is the case with agricultural return flows, which 
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enter streams as nonpoint sources and which are difficult to assign to 

a specific subsequent use system, The problem will be addressed again 

and solved later in this text. 

The schematic of the input-output matrix in Figure 3-1 can be used 

to demonstrate the inherent adaptability of the input-output model to 

water reuse. Water enters the model on the left through the "entry" 

sector entitled "C." Entry "C" could be native precipitation, carry­

over storage, or a foreign water import. The entry "C" is picked up 

by an internal component "2" and transferred. The internal component 

"2" is a first use system. After the internal component "2" has used 

the water, internal component "4, '' another use system which can, for 

example, be a municipality or a power plant, pickes the water up and 

uses it also, which has to be a form of water reuse. Return flows from 

"4" can then be an input to another internal component "7" such as irri­

gated agriculture. After use by "7," the water leaves the basin through 

exit "Z." At this point, it is important to mention that the arrange­

ment of the internal components on the input-output matrix from the 

entry components down to the exit components has to be representative 

of the natural flow pattern in the considered river basin. All waters 

as shown in Figure 3-1 must enter through the primary water supply cells. 

Once water has been put into the model, it must be transferred between 

the various use sectors. Each internal component for the input is 

exactly the same as the internal component for the output, The hori­

zontal "4" is identical to the vertical "4." Therefore, any entry in the 

cross-hatched diagonal is a recycle reuse entry. An entry in this diag­

onal indicates a transfer of water within the same component. A variety 

of methods can be introduced in addition to the matrix to determine the 

type of recycling, number of cycles, and other pertinent information. 
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Transfers that occur below the cross-hatched diagonal in Figure 3-1 

are likely to be planned sequential reuses, The transferred water must 

be pumped back up to the "upstream" user because of the layout of the 

matrix. Any pumping upstream indicates an intentional reuse system 

that involves capital expenditures for construction. The importance of 

constructing the model in accord with the natural flow pattern in the 

basin is illustrated by this point. 

Transfers from components below the recycle reuse diagonal to com­

ponents above the diagonal can be either planned or unplanned sequential 

reuses, These "cross-diagonal" transfers indicate a downstream transfer 

of water that follows the natural flow pattern of the basin. Hence, it 

cannot be decided if the reuse is intentional or just by chance because 

pumping is not necessarily involved. Transfers to the exit sector can 

be viewed as potentially reusable water, Tranfers of such water to 

use systems could be made further upstream, in the matrix more to the 

right, or captured at the exit point and pumped back to beneficial 

uses. In a total reuse system, the only exits would be to the atmos­

phere by consumptive use or to some other nonreusable location such as 

deep aquifer storage for toxic wastes. 

Of importance in constructing the matrix is the aggregation 

of the water resources system and the selection of the internal com­

ponents. The approach to aggregate the system remains essentially 

the same as for the developing of the input-output water transaction 

tables. Enough characteristic internal components have to be defined 

to be able to give an accurate picture of the modeled system and to 

grasp the relationships, which are ruling the system, On the other 
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hand, the number of internal components should be kept on the absolute 

minimum for a small and easily tractable matrix display, 

The internal components, which have to be use systems, are chosen 

to represent the main water users in the water resources system. Minor 

water consumers can be lumped together in single internal components. 

The definition of "main" and "minor" is given by the required resolution 

of the model. The crudest reuse model with the least resolution would 

be based on a division of the water resources system in just the three 

use system sectors "municipal use systems," "industrial use systems," 

and "agricultural use systems." 

The definition of a use system is of importance for the purpose of 

modeling water reuse: "A use system is a man-made or man-influenced 

system, which utilizes water for a beneficial purpose," In all water 

resources systems, certain use systems exist Whose outputs are not clear 

to locate, for example, in the case of agricultural return flows enter-

ing a stream as nonpoint sources. The modeling of such systems requires 

the introduction of a "dummy" transfer component in addition to the inter­

nal components representing the use systems. To illustrate this principle, 

the case of agricultural return flows is used to illustrate this dummy 

transfer component, 

All outputs from agricultural systems, which would enter a stream 

as a diffuse source, are considered to be inputs to the dummy transfer 

component appropriately called "return flow" in this case. Use systems, 

which are using water from streams fed by agricultural return flows or 

groundwater pumped from exploiting aquifers supplied by infiltration 

of irrigation water, are therefore getting their share of agricultural 

return flows from the dummy transfer component "return flow." Their 

share of agricultural return flows cannot be explicitly assigned to a 
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specific agricultural use system in the function of an "origin." 

Figure 3-2 illustrates these principles in a simplified form. Usually 

it is necessary to introduce only dummy transfer components for the 

agricultural return flows into the matrix. Return flows from the 

municipal and industrial sector are normally easy to locate and to 

assign to subsequent users, The location of the dummy transfer com­

ponent in the matrix is preferably at the beginning of the internal 

components, i.e., towards the left of the matrix, to prevent the 

disruption of the display as exposed by Figure 3-1. 

To elucidate the reuse practices in the existing water resources 

system or to plan future reuse by an input-output matrix, using use 

systems as internal components, two schemes are proposed. Each of 

these schemes displays the practiced or proposed reuse focusing on 

special characteristics of the investigated water use area. In general, 

these characteristics could be: 

--the quality of the water, which is transferred to the internal 

component, 

--the reuseability of the transferred water units, considering 

legal or other normative constraints, or 

--the form of applied reuse based on the definitions of the 

various reuse forms. 

J,l,Z Scheme I. This scheme has the different reuse forms and 

the legal reusability of the water units as a theme. The different 

water reuse forms are shown by underlying the data in the individual 

matrix cells with different colors according to the following distinc­

tions: 
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In the example, the use system "Irrigator" is or1g1n 
for water to the "Dummy'' transfer co:r.1.ponent "Return 
Flow" because agricultural return flows are nonpoint 
sources, and to an "Exit" component due to evaporation. 

The use system "G W Ptnnper" pumping from an aquifer, 
which is supplied by agricultural return flows, is 
destination for water from the component "Return Flow." 
The return flows of "G W Pumper" themselves go partially 
back to the dununy transfer component "Return Flow." 
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DESIGNATION 

Recycle reuse 

Sequential reuse 

Water at least partially available 
for sequential and recycle reuse 

Water not available for recycle 
reuse (water available only for 
sequential reuse) 

High quality primary water 

Nonprirnary unused water 

To further enhance the understanding of the displayed system, a report 

can be prepared. This report could contain line diagrams giving 

additional information concerning the occurring reuses in the system. 

In this scheme, the blue colors point to unused, normally high quality 

waters which can be used with only little treatment. The reddish 

colors, orange and red, indicate that these water units are used at 

least twice in the water system, Hence, they have gone through a 

reuse cycle at least once. These colors also imply that the water 

quality has to be checked for further reuse considerations. The 

greenish colors are restricted to the exit and dummy transfer columns, 

identifying the water units going out of the water resources system, 

which are under certain circumstances reusable .. 

These colors enable the decision maker to immediately see how the 

water is distributed and where reuse happens. They also show who gets 

high quality water and if this distribution is optimal from a standpoint 

of efficient water use, The concept behind Scheme I considers, in 

addition, the legal aspects of water reuse in the investigated river 

basin in such a way that it displays the reuse possibilities in the light 
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of legal constraints. Water which can only be sequentially reused is 

clearly identified by the light green color. 

If the use system columns could be grouped according to decreasing 

water quality requirements from the left to the right, without disturb­

ing the spatial succession of the internal components along the river 

too much, then an eventual potential for water exchange could be made 

more visible. High quality water showing up in a far right-hand column 

would indicate a "waste" of good water for use with low quality require­

ments. If this rearrangement of user components is impossible, the 

lables for the different sector components could be colored according 

to their specific water quality requirements. 

The labels designating the internal components may be 

colored according to the sector they are belonging to. For instance, 

COLOR SECTOR 

Light Blue Municipal 

Orange Industrial 

Brown Agricultural 

This color coding facilitates the identification of specific use systems 

because the individual use systems are no longer aggregated into sectors 

as in the water transaction tables of past input-output analyses. 

J. Z.2 Scheme II. Scheme II focuses mainly on the quality of 

the transferred water units. Based on the observation that the input-

output matrix already contains a differentiation into various forms 

(see also Figure 3-1), colors are used to display the quality degree 

of the transferred water between two use systems. Colors are also used 

to show the limits for water reuse for each internal component based 
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on a chosen contaminant parameter. For this purpose, the designation 

of each internal component on top of the "destination" columns is put 

on a label with the color of the maximal allowable contaminant concen-

tration. Using such a display, the matrix shows where "gaps" are 

between existing contaminant levels and maximal allowable contaminant 

levels, pointing towards potential reuse locations in the system. 

ln addition, this approach gives also a display of the exchange 

potential for water with lower quality against high quality water. In 

general terms, it can be said that the theoretical maximal reuse poten-

tial in a river basin is utilized when every cell with a datum has the 

same color as the label of the corresponding internal destination 

component. Sometimes it is possible that a cell indicates a water 

quality which is worse than the allowable one accorr1inz to the color 

coding of the receiving destination. This is tolerable if appropria-

ate dilution of the lower quality water with high quality water in the 

destination system is assured. The dilution can be assessed by com-

paring the data of the cell displaying low quality water with the total 

input to the destination system. 

To make the quality differentiation, the following colors are pro-

posed to be used: 

Blue---:>~ Green ----.,;).~Yellow ---~• Red 

Dest------------------------~Worst 

Smallest contamination 
concentration ) Largest 

This color code follows a scheme proposed by Liebmann (1969), who dis-

played the water quality of European waterbodies with color differentia-

tions. Blue is the color for the lowest contaminant level range, i.e., 
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for high quality water. This color normally arouses in people feelings 

towards something "good." The worst or highest contaminant concentration 

is identified by r.ed. The intermediate concentration ranges are shown 

by green and yellow, 

As a first contaminant parameter making reuse considerations, it 

seems appealing to use the salinity or dissolved solids content (TDS). 

During each use cycle, the salinity of a water unit is increased. Its 

removal is only possible with very expensive treatment processes, 

normally not applied in water resources systems. 

Appendix B gives the "maximal allowable salinity levels for 

beneficial uses in mg/1 TDS," which have to be used to assign the 

colors to the labels of the internal components. The following list 

proposes ranges of contaminant concentrations based on TDS and the 

corresponding colors for the individual water transfers: 

CONTAMINANT CONCENTRATION 
COLOR RANGES 

Blue 0 to 600 mg/1 TDS 

Green 600 to 1,500 mg/1 TDS 

Yellow 1,500 to 3,000 mg/1 TDS 

Red > 3,000 mg/1 TDS 

Scheme II should also be accompanied by line diagrams to give 

a more enhanced insight into the considered reuse systems. 
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3.l.3 Summary of the Methodol~. The following gives a step­

by-step summary of the methodology of constructing a water reuse input­

output model: 

(I) Determination of the purpose of the model. 

(2) Definition of the boundaries of the investigated water 

resources system. 

(3) Decision about the time frame of the model. 

(4) Select entry components, internal components, and exit 

components. 

(5) Select display scheme and color coding. 

(6) Compile data. 

(7) Display data. 

(8) Check mass balances of matrix. 

(9) Hiphlieht reuse systems by Une diagram. 

(10) Use the model to analyze reuse opportunities. 

3.2 Data Requirements 

The necessary data and information to construct a meaningful water 

reuse input-output model is determined by the chosen resolution and the 

selected components for the matrix. In a water resources system, the 

information needed is always of physical and of nonphysical nature. 

Data of physical nature are: 

--precipitation data 

--streamflows 

--evaporation data 

--water diversions 

--seepage losses 

--consumptive uses 
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Nonphysical data are: 

--legal constraints as the inhibition of recycled reuse by law 

--constraints imposed by tradition 

--normative constraints 

If a status quo has to be analyzed, these categories of physical and non-

physical information have to be gathered by investigating the existing 

water resources system. In the case of analyzing a possible future 

system, a scenario has to be assumed and from this scenario the neces-

sary data must be derived. The scenario providing the data basis can 

be defined as follows: 

"A scenario is the resulting situation based on a scenario 
assumption set, which is a particular combination of assumed 
interactions of water users and predicted factors influencing 
the water demand and the water supply patterns." 

It is evident that using scenarios, the future cannot be predicted, 

but it enables the investigator to explore the response of the water 

resources system to certain combinations of events. 

Figure 3-3 points out the factors related to supply and demand 

of water in a water resources system and shows that the scenario 

assumption set gives the boundary condition for the situation to be 

modeled, Table 3-1, adapted from Reitano (1978), enumerates the 

necessary information to grasp a "total" water resources system. 

During the process of data gathering, the obtained information 

has to be cross-checked and sometimes adjusted to eliminate existing 

disagreements among them. The reason is that a lot of the organizations 

compiling and supplying data about a water resources system work quite 

independently of each other without comparing their data. Often also 

the data collected by these organizations may be erroneous either 

because of lack of proper measuring devices or methods or because the 
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Table 3-1. Data Requirement for the Input-Output ~del 
of the Cache 1a Poudre River Basin Water 
System (~eitano, 1978) 

Sector Required Information 
--

Precipitation over the basin; aquifer depletion; reservoir depletion; 
Entries out of basin aquifer inflows; sugar beet water; imports through trans-

mountain diversions; im~orts throuoh irriQation ditches. 
Diverted amounts to \'later treatment plants; \'later treatment plant back-
wash water uses; amounts distributed to the various users or to distri~J-
tion systems by the water treatment plants; amounts distributed by the 
water distribution systems to municipalities and industries; muni c i pa 1 

Nunicipal and other domestic return flows to sewer systems, sewage treatment pl ar;~s, 
Sector aquifer and atmosphere; infiltrations into sewer systems; amounts 

delivered by the sewer systems to the wastewater treatment plants; amollnt~ 

discharged by the wastewater treatment plants into rivers, aquifer, lakes 
or evaporated. 

Industrial 
~mounts supplied to each industry by municipal water distribution syster:s; 
amounts diverted from the river; amounts pumped from aquifer; amounts of 

Sector ~ater entering or leaving the industry together with the raw water or 
the products; amounts discharged to aquifer, to river, to 1~a s te1·1a ter 
treatment facilities and to urban sewer systems; consumptive uses. 
Diversions from each reach or tributary to agricultural ditches, water 

Cache La Poudre treatment plants, industries; amounts flowing into reservoirs and lakes; 
Reaches and ~unicipal and industrial discharges; agricultural ditch discharges; river 
Tributaries flo\'IS at each reach extremity and at tributary confluences; surface basin 

runoff; groundwater runoff. 
otal precipitation over each type of land; evaporation; evapotranspi ra-

Agriculture ~ector ion; surface runoff to the river or its tributaries, reservoirs and 
and Other Lands akes; aquifer infiltration; groundwater irrigation, surface 1·1ater 

ird9ation. --
~quifer infiltrations frol'l lands, ditches, canals, lakes and t·eservoirs; 
~mounts discharged by se\'1age treatment plants and rural septic tanks; 
total aquifer depletion or volumes received to storaae; groundwater 

Reservoi t·s runoff to the river reaches and tributaries; aquifer agriculture with-

and Lakes ~ra1~als; aquifet· dowestic 1~ithdra1·1als; river floi'/S to reservoit·s and la'.;es 
~nlet floi'IS to reservoir and lakes; transbasin diversion infloi'IS; Flunici-
pal discharges to reservoirs and 1 akes; reservoir stored and released 
mounts; reservoir and lake infiltrations into aquifer; reservoit· 
eleases to river, to irrigation ditches or to other reservoirs; 
eservoir municiDal diversions. ---

Ditches and Diverted amounts; ac::ui;::·2r infiltrations; evaporation losses; releases 
Cana 1 s to other ditches an.:: cJn,lls or to reservoirs; amounts released to 

irrigation; amounts released to other river basins. 
Evaporation from urban and rural domestic uses; industry consumptive use; 
evaporation from wastewater treatment plants; reservoir evaporation; 
ditch and canal evaporation; row land evaporation; agriculture evapo-
transpiration; amounts put in reservoir and groundwater storage; ground-

Exits 1ater flows to other basins; irrigation deliveries to other basins; out of 
basin deliveries by the Cache La Poudre water distribution systews and 
1ater treatment plant~; Cache La Poudre discharge into South Platte 
River. 
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data are manipulated to fit certain institutionally imposed patterns. 

These inconsistencies among data available from "outside institutions" 

have to be related to the accuracy of the data, which have to be assumed 

or estimated by the investigator, as for example, the amount of agri­

cultural return flows. An accuracy in the matrix beyond one acre-foot 

is normally not justified in the model by the limited accuracy of the 

hasic data. A further complication in compiling the necessary informa­

tion is the difference between the water year as used as a basis for 

hydrological information and the "calendar year" used by domestic 

water supplies and industries. In general, this problem can be resolved 

by assuming the calendar year of the municipal and industrial sector 

to be equivalent to the water year without introducing a significant 

error. 



CHAPTER IV 

THE CACHE LA POUDRE RIVER REUSE MODEL 

This chapter will apply the input-output reuse concept to the 

Cache la Poudre River Basin, It will demonstrate the principles of 

reuse modeling of a water resources system, which are outlined theoreti­

cally in the preceeding chapter on a practical example. 

4.1 The Area of Investigation 

The Cache la Poudre Basin is located in north central Colorado 

within the South Platte River watershed. The physical, human, legal, 

and administrative dimensions of the Cache la Poudre drainage have 

been outlined by several authors: Evans (1971); Skogerboe, Radosevich, 

and Vlachos (1973); Gerlek (1977); Reitano (1978); and are summarized 

in the following. 

The Cache la Poudre River is a fourth order tributary of the 

Mississippi River, draining an area of 1,800 square miles. It origi­

nates near the Continental Divide at about 12,000 feet elevation, 

approximately 35 miles west of Fort Collins, drains a part of the 

eastern slopes of the Rocky Mountains and merges with the South Platte 

River about four miles east of Greeley. 

Figure 4 .. 1 gives a depict ion of the Cache la Poudre •.mtershed 

and the insert shows the relationship of the considered drainage to 

the superior river system. Over 50 percent of the drainage area of 

the Cache la Poudre River are mountainous, while the rest is made 

up by rolling plains. These plains provide the agricultural portion 

of the Poudre Valley. The two main towns, Fort Collins and Greeley, 

are located in the plains along the river. 
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The climate in the river basin can generally be characterized by 

low annual precipitation, a high rate of evaporation, low humidity, 

an abundance of sunshine, and a wide range of temperatures. The mean 

annual precipitation at Fort Collins is 14,19 inches and at Greeley, 

12.51 inches. The maximum monthly precipitation usually occurs in May, 

while the minimum occurs in January, The mean annual temperature 

of Fort Collins is 48.1°F and 48.3°F in Greeley with the monthly aver­

ages varying between 23°F and 73°F. 

The precipitation allows dry farming in the Poudre Valley although 

most successful farmers rely on irrigation. The growing season in the 

plains of the Valley is about 175 to 185 days, Which is sufficient to 

raise most temperate zone crops, such as corn, sugar beets, potatoes, 

alfalfa, etc. 

Today a man controlled regime is imposed on the Cache la Poudre 

River flows, which are altered in time and space by using storage 

reservoirs and a complicated system of ditches and canals. Before the 

influence of man on the Cache la Poudre hydrology, the flows in the 

river were determined by the runoff from melting snow and from perennial 

snowfields in the mountains and by precipitation. Very little virgin 

water accrues to the flow of the Cache la Poudre River after it leaves 

the mountains. The tributaries, Boxelder Creek and Fossil Creek, drain 

the lower plains area. They are intermittent and contribute very little 

surface flow to the Cache la Poudre River. 

A great portion of the precipitation falling on the plains seeps 

directly into the aquifer underlying the valley in form of alluvia. 

This aquifer also provides the hydraulic connection to the surface 

streams for the return flows of agricultural irrigation. 
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Figure 4-2 shows a schematic of the Cache la Poudre Basin with 

the major man-made changes to improve the water supply in the Poudre 

Valley. The major elements in the man-altered system are the storage 

reservoirs and the transbasin diversions, the latter importing water from 

the Western Slope of the Rocky Mountains to the Cache la Poudre drainage. 

The aggregated capacity of all the reservoirs is approximately 350,000 

acre-feet. The largest project for water importation is the USBR Big 

Thompson Project, which includes a major reservoir, the Horsetooh Reser­

voir (151,700 acre-feet), in the Poudre drainage. All the storage reser­

voirs in the plains are interconnected with a canal and ditch system, 

which is shown in Figure 4-3, to supply the waters to the various users. 

This resulting system of water resources development and the 

associated uses completely dominate the natural system. In the upper 

reaches of the main stem, the streamflows are affected during the 

summer months by reservoir releases. In the plains reaches, the water 

diversions and returns dominate the streamflow patterns. The population 

served by this water resource system is both rural and municipal. The 

towns in the area experience at the moment a tremendous growth with the 

need for transfers of former agriculturally used water to municipalities. 

The two major towns of Fort Collins and Greeley are part of a rapidly 

expanding suburban growth area, contained in the "urban triangle" 

Port Collins-Loveland-Greeley. The population of this triangle, which 

is superimposed to a great part on the Poudre Valley, is expected to 

increase to more than 400,000 people by the year 2020 (Skogerboe, 

Radosevich, and Vlachos, 1973). 

Major industries in the Poudre Valley, some with a need for large 

amounts of water, are Eastman Kodak in Windsor, Hewlett-Packard and 
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and Woodward Governor in Fort Collins, the Great Western Sugar Beet 

Processing Plant in Greeley, and several fish hatcheries along the Poudre 

River near Rustic and Bellevue. The irrigated agriculture, the most 

attractive form of farming in the Poudre Valley is limited by the 

available water for irrigation. Nonirrigated lands are used for dry 

farming. 

The distribution of the available native Cache la Poudre water in 

the valley is primarily ruled by water laws, based on the appropriation 

doctrine. The five main concepts of this doctrine are outlined in the 

following: 

(1) The principle "first in time, first in right" is applied 

when a water deficit at a certain time occurs. It imposes 

an order among the users, calling for a water allocation 

based on priority in time of the individual water rights. 

(2) The water in question must be the subject of a diversion. 

Although, instream uses of water have been established 

as legitimate with respect to water rights in recent 

years. 

(3) A beneficial use must be made of the water appropriated. 

The definition of beneficial use includes also the 

storage for a future beneficial use. 

(4) A valid appropriation of water is a right in real property. 

This right implies the right of a minimal streamflow at the 

point of diversion, to insure the fulfillment of the 

appropriation. 

(5) The appropriative right in water must exist for a definite 

amount, called the duty of water, normally expressed in 

cubic feet per second. 
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The appropriation doctrine, which is anchored also in the Colorado 

Constitution, applies to surface waters and to groundwaters, An approp­

riative right gives only the right to use the water beneficially and 

not to possess it for an indefinite time. Therefore, surplus water 

not consumptively lost during the use must be returned to the stream. 

Once a tributary water returns back to the stream, it is public again 

and can be recaptured by the original user only with another appropri­

ation. It is obvious, under the existing law, that recycled reuse by 

a use system is only possible with two or more appropriations of native 

Cache la Poudre water. Appropriative water rights can be river direct 

flow rights over a certain amount of water per time unit for diversion. 

They can also be a reservoir decree, which permits the filling of a 

reservoir once each yeaF. The total storage decrees in the Poudre 

Valley amounts to approximately 200,000 acre-feet. 

The vehicle for administering the water rights in Colorado is 

provided by the Office of State Engineer, which controls the water 

attribution by means of water divisions and water districts. The 

Cache la Poudre Basin forms practically the Water District No. 3 which 

itself belongs to the Colorado Water Division No. 1. The daily water 

allocations are made by the water commissioners of the individual 

water districts. 

Imported waters to the Cache la Poudre Basin are administered 

within the framework of interstate compacts and litigations. There 

are two basically different kinds of imported or "foreign" waters. 

One type is water imported through the Wilson Ditch, the Laramie-Poudre 

Tunnel, the Skyline Ditch, the Cameron Pass Ditch, the Michigan Ditch, 

and the Grand River Ditch. These waters are available for direct recycle 
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reuse in a use system, a significant difference to native Cache la Poudre 

water. Water imported through the USBR Big Thompson Project and 

administered by the Northern Colorado Water Conservancy District is 

not directly available for recycle reuse without another appropriation. 

Irrigation companies divert, with a few exceptions, the water for 

agricultural purposes. Reitano (1978) states that these "company 

ownerships of water removes the restriction that a water right is 

appurtenant to a specific tract of land and allows the water to be 

moved between several parcels of land." Exchanges of water in the 

Poudre Valley may evolve from exchanges of water between stockholders 

within one irrigation company, from water exchanges between companies, 

and from exchanges of USBR Big Thompson Project water. Such exchanges 

are legitimized by law as long as the water rights of others are not 

injured. This constraint normally prevents the relocation of a point 

of diversion along the river. 

4,2 Fundamental Model Assumptions 

As outlined in Section 3.1, Methodology, the first steps in con­

structing an input-output model is to determine the purpose of the 

analysis, to define the system boundaries, and to decide the time frame 

for the model. The goals of this investigation are to develop and 

exemplify a methodology of reuse modeling with the input-output 

approach. Therefore, the purpose of the practical model is to demon­

strate the developed methodology for documentation of the status quo 

and for assessing possible future situations in a water resources 

system. This goal is slightly different to an actual case of systems 

analysis, which has to assume that the methodology of the chosen 

analysis approach is valid, 
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The system boundary of the water resources system "Cache la Poudre 

River Basin" is assumed to coincide with the boundary of the water-

shed of the Cache la Poudre River with a few exceptions. It is supposed, 

for the purpose of this investigation, that all of the lands irrigated 

by the Larimer County Canal, the Pierce Lateral, the Larimer and Weld 

Canal, the Greeley Canal No. 2, and the Ogilvy Ditch should belong to 

the system. Some of these lands are situated outside of the Poudre 

River watershed, but the water supply for the irrigation is totally 

dependent on the distribution of the waters flowing down the Poudre 

River. The Horsetooth Reservoir, as a part of the USBR Big Thompson 

Project, is considered to be outside of the Cache la Poudre River system. 

USBR Big Thompson water will enter the model system through the Charles 

Hansen Outlet Canal, and the diversion to the Spring Canyon Water and 

Sanitation District. The schematic of the Cache la Poudre River 

Basin (Figure 4-2) contains all of the mentioned elements which are 

subject to modifications to accommodate the Poudre watershed to the 

system used in the model. To establish the model in time, two time 

frar1es have been chosen. To investigate the potential of the method-

olor:y to model water reuse for documentary purposes, the water year 1979 has 

been selected. Data obtained during the investigations for constructing 

the model, mainly concerning municipal and industrial water consumptions, 

which were based on the calendar year 1979, have been assumed to be 

valid also for the water year 1979 without introducing a significant 

error. 

To assess the planning potential of the developed approach, the 

year2020 under assumed drought conditions has been selected. The choice 

of such a time span into the future enabled the investigator to impose 
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a large water demand by municipal use systems on the river basin 

assuming a continuation of the tremendous growth of population into 

the next century. The year 2020 is also convenient because it allows 

comparison of the results of this model with the results of a South 

Platte River study done by Hendricks et al., (1977). Assumptions con­

cerning details during the workout of the matrix are explained in situ. 

4.3 The Elements of the Models 

In the Cache la Poudre River Basin the elements of a reuse model 

are determ:ined by the three sectors of use systems. These are the agri­

cultural use systems, the municipal use systems, and the industrial use 

systems. In addition to these sectors providing the internal components 

of the matrix, a great variety of transbasin diversions into the Poudre 

Valley necessitates the extensive introduction of entry components. 

The exit components are the conventional ones, Atmosphere, Storage, and 

Basin Outflow, which also appeared in previous applications of the 

input-output matrix, In the following the entry components, the 

internal components, and the exit components are enumerated and shortly 

described individually. 

4. 3. Z Entry Components, 

CLP, Native Flow: The "Cache la Poudre, native flow" component 

comprises all the runoff through the Poudre River streambed with­

out the return flows from use systems and without imported waters. 

These native flow waters, mainly spring runoff of the snowmelt, 

are of high quality and often called "primary" waters. 

Wilson Ditch: The Wilson Ditch imports water from the Laramie 

River Basin into the north fork pf the Cache la Poudre River. It 

is owned by the Divide Reservoir and Supply Company. 
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Laramie-Poudre Tunnel: This tunnel imports water from the Laramie 

River Basin into the Poudre drainage. It is owned two-thirds by 

the Water Supply and Storage Company and one-third by the Windsor 

Reservoir Company. 

Skyline Ditch: The Skyline Ditch imports water from the Laramie 

River Basin into the Poudre River, It is owned by the Water Supply 

and Storage Company, 

Cameron Pass Ditch: The Cameron Pass Ditch imports water from the 

North Platte River Basin into the Poudre drainage. It is owned 

by the Water Supply and Storage Company. 

Michigan Ditch: The Michigan Ditch imports water from the Colorado 

River Basin into the Cache la Poudre Basin. It is owned by the 

City of Fort Collins, 

Grand River Ditch: The Grand River Ditch imports water from the 

Colorado River Basin into the Cache la Poudre Basin. It is owned 

by the Water Supply and Storage Company. 

Colorado Big Thompson: The USBR Colorado Big Thompson Project 

imports water into the Poudre Drainage via the Charles Hansen 

Outlet Canal and the Dixon Feeder Canal, both draining the Horse­

tooth Reservoir. 

Big Thompson, Native Flow: The component "Big Thompson River, 

Native Flow" allows for accounting of the agricultural return 

flows from parts of the Louden Ditch, the Boomerang Lateral, 

and the Grapevine Lateral. These ditches are fed by native Big 

Thompson River water. 
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Groundwater: The groundwater component comprises water of the 

Poudre Valley aquifer, which has not infiltrated into the ground 

during the modeled time frame. 

Carry-Over Storage: This component accounts for inputs into the 

Cache la Poudre River from reservoir storage carried over from 

previous time periods, The amount carried over is determined by 

an analysis of the actual water volume in each reservoir at the 

beginning and at the end of the time period considered. 

Others: This component comprises all additional controllable 

water inputs into the Cache la Poudre River Basin not included in 

other entry components. 

One should note that the precipitation falling on the Poudre drainage 

is not included into the entry components as far as it is not running 

off through the Poudre River, This is due to the fact that the water 

input by precipitation, which does lead to runoff, is uncontrollable 

and therefore not redistributable. 

4.3.2 Internal Components, Use Systems. 

Municipal Sector 

Northern Colorado Water Association: The Northern Colorado Water 

Association serves about 500 domestic taps north of Fort Collins. 

The water is supplied by three groundwater wells. 

Fort Collins: The City of Fort Collins is supplied by water from 

the Cache la Poudre River and from the Horsetooth Reservoir. 

Fort Collins supplies water to water districts and minor indus­

tries. The City is the origin for an existing reuse scheme, pro­

viding its sewage treatment plant effluent for sequential agri­

cultural reuse via Fossil Creek Reservoir. A future reuse scheme 
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and water exchange will also supply the Rawhide Power Plant north 

of Fort Collins with treated wastewater for cooling purposes. 

Spring Canyon Water District: The Spring Canyon Water and 

Sanitation District west of Horsetooth Reservoir is directly 

supplied with Colorado-Big Thompson Project Water from the Charles 

Hansen Feeder Canal. 

West Fort CoUins Water District: The West Fort Collins Water 

District is supplied by treated water from the Poudre Valley 

Pipeline owned by the City of Fort Collins. It serves about 

750 domestic taps. 

East Larimer County Water District: This water district, east of 

Fort Collins, is supplied by the Soldier Canyon treatment plant 

using water from Horsetooth Reservoir. In 1979 it was partially 

supplied by the La Porte treatment plant owned by Fort Collins 

because of a temporary shutdown of the Soldier Canyon treatment 

plant. 

Fort Collins-Loveland Water District: This water district, 

between Fort Collins and Loveland, is supplied the same way as 

the East Larimer County Water District. 

North Weld County Water District: This water district, northeast 

of Fort Collins, is supplied the same way as the East Larimer 

County Water District. 

Windsor: The town of Windsor has been supplied until 1979 by the 

City of Greeley. From 1980 on this town is supplied by the Fort 

Collins-Loveland Water District. 

Rural Users: The component "rural users" consists of all domestic 

supplies not covered by the other municipal use systems. It also 

includes users who pump groundwater for domestic purposes. 
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GreeZey: Today, the City of Greeley is mainly supplied by Cache 

la Poudre River water, but the town is also able to treat Big 

Thompson native water or Colorado-Big Thompson Project water. 

The town supplies several water districts contained in the use 

system "rural users" and some major industries in the area. 

Industrial Sector 

~istic Fish Hatchery: The fish rearing unit in Rustic is supplied 

with Cache la Poudre River water. After use with neglectable consump­

tive losses, the water is returned to the river. 

BeZZevue Fish Hatchery: The fish hatchery at Bellevue pumps ground­

water for its supply. After use with neglectahle consumptive 

losses, the water is diverted to the Watson fish rearing unit. 

Watson Fish Hatchery: The Watson fish rearing unit is partially 

supplied by the outflow from the Bellevue Fish Hatchery and by 

Poudre River water. After use, all the water is returned to the 

river. 

Rawhide Power PZant: The Rawhide Power Plant, north of Fort 

Collins, will start its operation in the mid 1980's. By the year 

2020, all three projected power generating units are assumed to 

be operational. For the cooling water supply, an exchange-reuse 

agreement with Fort Collins, the Water Supply and Storage 

Company, and the Platte River Power Authority, which will be 

operating the power plant, has been enacted. 

Eastman Kodak: The Eastman Kodak manufacturing plant near Windsor 

is supplied by the City of Greeley. 

Monfort: The Monfort Meatpacking Plant in Greeley has been supplied 

by the City of Greeley. Towards the end of 1979, the plant stopped 

production. 
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Great Western Greeley: The Great Western Sugar Beet Processing 

Plant in Greeley is partially supplied by the City of Greeley 

and partially by Cache la Poudre River water. An additional water 

input to the factory is a significant humidity of the beets. 

Although there are additional major industries in the Cache la Poudre 

Basin, their impact on water consumption and water reuse is assumed not 

to be significant. 

Agricultural Sector 

To grasp the situation in the agricultural sector, the irrigation and 

canal companies are assumed to be valid representatives of the agri-

cultural areas to which they supply the water. Hence, instead of agri-

cultural lands, the irrigation companies are introduced as the use 

systems for this sector. This is advantageous, concerning possible 

redistribution of water insofar as the canal companies' stockholders 

are the owner of the water rights. A water right is never attributed 

to a specific agricultural area. The following agricultural use systems 

are introduced as internal components: 

North Poudre Irrigation Company 

Cache la Poudre Irrigation Company 

Pleasant Valley and Lake Canal Company 

Other Irrigation Companies above Fort Collins* 

WindSor Reservoir and Canal Company 

Water Supply and Storage Company 

Larimer and Weld Irrigation Company 

*This aggregated component consists of the companies for the Dixon Canal, 
the Arthur Ditch, the Larimer County Canal No. 2, the New Mercer Canal, 
Jackson Ditch, and for the Coy Canal. 
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Larimer County Underground Water Users Association 

Lake Canal Company 

Cache la Poudre Reservoir Company 

New Cache la Poudre Canal Company 

Greeley No. 3 Canal Company 

Other Irrigation Companies below Fort Collins* 

Weld County Underground Water Users Association 

Ogilvy Ditch Company 

The reader will notice that some of the irrigation companies are con-

sidered "above" Fort Collins and some "below," "Above" means the 

irrigation companies such as the North Poudre Irrigation Company, the 

Cache la Poudre Irrigation Company, the Pleasant Valley and Lake 

Canal Company, and the Other Irrigation Companies above Fort Collins, 

which supply lands situated at the same or higher elevations than the 

elevation of the City of Fort Collins. The rest of the irrigation 

companies are considered "below" Fort Collins even though currently 

they have points of diversion upstream from Fort Collins. These irriga-

tion companies are potential partners for water exchanges with the City 

of Fort Collins, by giving Fort Collins the right to use the irrigation 

companies' waterfirst and then return the water to these companies for 

sequential reuse. 

4.3.3 Exit Components, 

Atmosphere: Water input to this exit component is water lost by 

consumptive uses. 

This component consists of the companies for the Chaffee Ditch, the Boxelder 
Ditch, the Whitney Ditch, the B. H. Eaton Ditch, the Jones Ditch, and for the 
Boyd Ditch. 
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Storage: Water origin for this exit component is water diverted 

by the irrigation companies to reservoirs and carried over to 

future time periods. 

Basin Outflow: This component contains all streams of water leaving 

the Cache la Poudre Basin on the surface. Subsurface outflows 

through aquifers are neglected. 

4.3.4 Return FZow Component, Because of the occurrence of agri­

cultural return flows in the basin, the introduction of the dummy trans­

fer component "return flow" is necessary according to the outlined 

principles in Section 3.2. 

4.4 The 1979 Reuse Models 

The potential for documentation of the methodology to model water 

reuse with the input-output matrix is assessed by modeling the conditions 

of the water year 1979. Both Schemes I and II, as explained in Section 

3.1, have been adopted and the results displayed on a magnetic board. 

4.4.Z The Z9?9 Reuse Model- Scheme I. Scheme I is based mainly 

on the type of water uses and reuses in the water resources system. The 

display of this model is shown in Figure 4-4, and the documentation of 

the data is given by the water balance diagrams in Appendix A. In the 

display for the model Scheme I, the labels, which represent the use 

systems on both the output rows and the input columns, are color coded 

according to the sector they are belonging to. 

COLOR SECTOR 

Light Blue Municipal 

Orange Industrial 

Brown Agricultural 
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Figure 4-4. The 1979 Reuse MOdel - Scheme I 
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The dummy transfer component is the white on black label "return flow." 

The colors underlying the data for the water inputs to use systems are 

coded according to the form of water use and reuse, which they represent. 

Of the four colors provided by Scheme I for the various types of water 

uses and reuses, only three show up in the matrix for the 1979 conditions. 

The red color, indicating "recycle reuse," does not show up. This 

fact is understandable because this form of reuse is largely prevented 

by the existing water laws. 

The dark green color of the labels designating the inputs of Fort 

Collins, the Windsor Reservoir and Canal Company, the Water Supply and 

Storage Company, and Greeley to the component "return flow" indicates 

that portions of these return flows are theoretically available for 

recycle reuse. Which portions of these return flows are available 

will have to be decided by court for each specific case due to the fact 

that the existing water laws are not explicit about the problem. The 

light green color on the matrix shows the occurrence of sequential 

reusable water, 

The matrix modeled with Scheme I verifies the current reuse status 

in the Cache la Poudre River system, Sequential reuse, indicated by 

orange data labels, is mainly employed to irrigate lower portions of the 

Poudre Valley by diverting return flows to the Poudre River. 

Remarkable is the large portion of Cache la Poudre native flow 

water, i.e., high quality primary water, which has been used to irrigate 

lower areas of the Poudre Valley. This is due to the fact that the 

water year 1979 was extremely wet, therefore, more primary water was 

made available to downstream users. The amount of CLP native flow 

water diverted by all the irrigation companies below Fort Collins has 



63 

been 123,568 acre-feet. Some of this amount could be made available 

for future increased demands of the City of Fort Collins by exchange 

and water reuse agreements. Some of these waters would be first used 

by the City of Fort Collins and after treatment sequentially reused 

by the irrigation companies. Initial steps to such reuse schemes 

are already visible insofar as the effluents of the Fort Collins Sewage 

Treatment Plant No. 2 are directly released to the Fossil Creek Reser­

voir Inlet Canal owned by the North Poudre Irrigation Company for agri­

cultural reuse. 

Waters leaving the system in space or time are color coded if they 

have a use potential. The water inputs to storage aTe coded dark blue 

under the assumption that the reservoirs are filled in spring with high 

quality primary water. Waters leaving the basin are marked light 

green, indicating that they are available for reuse in the Cache la 

Poudre system, for instance, by pumping them back upstream. 

Additional information is given in the constructed models by the 

data marked with brackets in the matrix cell. The brackets indicate 

that the use system in the function of an origin acts only as a water 

transfer unit and not as an actual use system. 'The introduction of 

these data points to important interrelationships within the system. 

4.4.2 The l979 Reuse Model - Saheme II, The main difference to 

Scheme I is that the water quality of the used water is color coded 

according to the methods explained in Section 3.1. Therefore, the 

labels for the use systems on the input columns are no longer colored 

according to sector differentiations but according to minimal quality 

requirements measured in "total dissolved solids." In Scheme II, the 

position of the data and the water quality give an indication for reused 

water. 
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As in Scheme I, the large amount of high quality water used by 

the irrigation companies below Fort Collins, partially because of the 

hydrological conditions, shows up well (see Figure 4-5). Another fact, 

confirmed by the analysis of water quality measurements of supplies to 

rural domestic users, is the low quality of the water inputs to these 

users shown on the matrix. Out of the 5,000 acre-feet consumed by 

rural domestic users, 2,400 acre-feet are of very low quality (TDS is 

between 1,500 and 3,000 mg/1) indicated by the yellow color of the 

return flow input to "rural users." The increasing total dissolved 

solids content downstream of the Cache la Poudre River is indicated 

by the change of the data label color from green to yellow in the column 

and row for the transfer component "return flow." The water quality 

to the individual water transfers has been assigned using the information 

provided by Bluestein and Hendricks (1975). 

For both schemes, a water use index, w., has been defined to link 
1 

the total water uses in the Cache la Poudre Basin with the total water 

inputs into the water resources system. It is defined as: 

l:Ctotal uses) 
w i = ..,.L,..-(_ou_t-pu-t-to_t_a=-1-s_o_f_e_n_t_r_y __ c_o_m_p_o_n_e_n_t_s-:-) 

For the water year 1979, as displayed on the matrix, w. is: 
1 

= 577,354 acre-feet 
wi 577,319 acre-feet 

= 1.00 

The value of 1.00 for the water use index suggests that every water unit 

put into the Cache la Poudre system has been used exactly once. In 

reality, some reuse had to occur due to the fact that 160,762 acre-feet 
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• Figure 4-5. The 1979 Reuse Model - Scheme II 
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of the total input to the basin are leaving the system unused by the 

exit component "basin outflow," 

4.5 The 2020 Reuse Model 

The planning potential of the input-output reuse model is evaluated 

by defining a scenario for a set of conditions possibly ruling the water 

resources system of the Cache la Poudre in the future. The time frame 

has been chosen to be the water year 2020. The following scenario 

assumption set has been defined as boundary conditions for the 2020 

water demand projections. It is based on the data projected for the 

year 2020 in the study by Hendricks et al., (1977). 

4.5.Z MUnicipal Sector, To project the water demands of the 

municipal sector, the demand factor "population" is assumed to follow 

high series as outlined by Hendricks et al., (1977). The average per 

capita use is assumed to be 190 gallons per day. Ba~ed on these assump­

tions, the projected populations and water demands for the municipal 

use systems are given in Table 4-2. 

4.5.2 Industrial Sector, It is assumed that the water demands 

for the industrial sector remain stable on the niveau of the year 1979 

based on the following considerations: 

--The population growth in the Poudre River Basin is probably 

not tied to the development of heavy industries, 

--The Poudre Valley seems to be developing with further growth 

founded on technological industries, 

--These technological industries are likely to use municipal 

water. 

--Self-supplied industrial water demands remain constant based on 

a balance between increase in-house water demands and better 

water conservation, 
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Table 4-1. Projected Water Demands of the Hunicipal Sector for the 
Year 2020 

Use System Population Per Capita Use Water Demand in 2020 
gallons/day acre-feet/year 

Northern Colorado Water 
492b Association 2~312 190 

Fort Collins 160,000c 190 34,052 

Spring Canyon Water 498 190 106b 
District 

West Fort Collins Water 
611b District 2,871 190 

East Larimer County Water 
2,805b District 13,180 190 

Fort Collins-Loveland 
Water District 13,654 190 2,906a 

North Weld County Water 
3,478b District 16,342 190 

Windsor 3,1~5 190 665b 

Rural Users 38,844 190 8,267b 

Greeley 93,800 190 19,962 

aTotal water demand of Fort Collins-Loveland Water District including Windsor's 3,571 acre-feet/year, 

bWater demand projected by using the trend for "others transition" as defined in the study by 
Hendricks et al., (1977). The starting year for the projections is 1979. 

cProjected by the City of Fort Collins. 

0\ 
-...! 



68 

The projected Rawhide Power Plant will be an additional industrial water 

user in the year 2020, It is assumed to be fully built. The Monfort 

Meatpacking Plant, which has been shut down since the end of 1979, is 

assumed to remain closed. Table 4-3 gives the projected water demands 

for the industrial sector. 

4.5.3 Agricultural Sector. It is assumed that the decrease in irri­

gated acreage in the Poudre Valley follows the general trend given by 

Hendricks et al., (1977) for the South Platte River Basin, Between 1980 

and 2020, the decrease will be about ten percent due to urban enroach­

ment. The irrigation efficiency up to the year 2020 will remain constant 

to guarantee sufficient return flows for downstream appropriators. There­

fore, it can be assumed that the water demands by the agricultural sector 

decrease also by ten percent, Table 4-4 gives the projected water 

demands for the agricultural use systems. 

4. 5. 4 Hydrological Conditions, Water Entries, For the water year 

2020 drought conditions are assumed in the Cache la Poudre River Basin. 

It is assumed that the native flow of the Cache la Poudre is 158,060 acre­

feet for that year. This flow equals the average runoff per year during 

the 1953 through 1956 four-year drought period, 

Further, it is assumed that no carry-over storage is available. The 

inputs by the transbasin structures, exce:nt the USBR Big Thompson Project, 

should provide an average yield. In addition, it is assumed that Colorado 

Big Thompson Project water can be made available to cover occurring deficits. 

The Windy Gap Project, which is postulated today, is assumed not to be in 

operation. Table 4-5 lists all of the important water inputs to the basin. 

4,6 The 2020 Reuse Matrix "Drought" 

The 2020 reuse matrix as displayed in Figures 4-6 and 4-7 is based 

on Scheme I pointing to the various water use and reuse forms, which occur 
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Table4-2. Projected Water Demands of the Industrial Sector for the 
Year 2020 

Use System 

Rustic Fish Hatchery 

Bellevue Fish Hatchery 

Watson Fish Hatchery 

Rawhide Power Plant 

Eastman Kodak 

M:mfort 

Great Western of Greeley 

Water Demand in 2020 
acre-feet/year 

4,256 

1,452 

4,356 

12,600 

1,123 

(3 units of 4,200 acre-feet 
each) 

0 (closed since 1979) 

1' 777 

0\ 
\0 



Table 4-3. Project Water Demands of the Agricultural Sector for the 
Year 2020 

Water Demand in 2020 
Use System acre-feet/year 

North Poudre Irrigation Company 

Cache la Poudre Irrigation Company 

Pleasant Valley/Lake 

Other Irrigation Companies above Port Collins 

Windsor Reservoir and Canal Company 

Water Supply and Storage Company 

Larimer and Weld Irrigation Company 

Larimer County UWUA 

Lake Canal Company 

CLP Reservoir Company 

New Cache la Poudre 

Greeley No. 3 

Other Irrigation Companies below Port Collins 

Weld County UWUA 

Ogilvy Ditch 

85,824 

10,911 

11' 511 

18' 717 

31,547 

71,844 

82,035 

24,209 

10,452 

8,920 

32,027 

10,765 

24,852 

22,556 

15,267 

-..J 
0 



Table 4-4. Assumed 

Entry Component 

CLP, Native Flow 

Wilson Ditch 

Laramie-Poudre Tunnel 

Skyline Ditch 

Cameron Pass Ditch 

Michigan Ditch 

Grand River Ditch 

Colorado-Big Thompson 

Carry-Over Storage 

Water Inputs into the Cache la Poudre River Basin for 
for the Year 2020 for Drought Conditions 

Input in 2020 
acre-feet/year 

158,060 

2,383 

15,630 

1,707 

107 

4,800a 

21,513 

variable 

0 

aProjected average yield by the city of Fort Collins 
' 

-

-...J ,_. 



Figure 4-6. 
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The 2020 Reuse Model Drought Conditions 
Unbalanced matrix. Imports by the USBR 
Colorado Big Thompson Project on the 
same level as in the water year 1979. 
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Figure 4-7. The 2020 Reuse Model Drought Conditions 
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during the considered time frame. Figure 4-6 shows the situation likely 

to exist in the year 2020 if it is assumed that the agricultural sector 

owns rights for the same amount of Colorado-Big Thompson Project water 

as in the year 1979. Because of the assumption that the municipal and 

industrial sectors will have the financial and political power to assure 

enough primary water to meet the increased demands in the year 2020, some 

irrigation companies below Fort Collins (Windsor Reservoir Company, 

Water Supply and Storage Company, Larimer and Weld Irrigation Company, 

Lake Canal Company) are forced to cover an increased portion of their 

water needs by return flows of the Cache la Poudre River. This fact, 

in addition to the drought conditions, increases the demand for return 

flows drastically to 247,087 acre-feet for the water year 2020. This is 

an increase of 93,028 acre-feet compared to 1979. On the other hand, 

inputs to the component "return flow" based on the projected demands and the 

consumptive losses of the use system are projected to be totally only 

174,584 acre-feet. Therefore, a deficit of 72,503 acre-feet will exist 

between the input to the component "return flow" and the output needed 

from this component. This deficit, which has to be reduced to zero for 

a balanced input-output matrix, can be offset either by introducing more 

foreign water or by reducing the demands of the agricultural sector. 

This reduction would have to be more than the deficit because such a 

reduction would also lessen the available return flows from agriculture. 

Figure 4-7 shows a model in which imports of Colorado-Big Thompson Project 

water will be increased beyond the 1979 level to counter balance the 

deficit. 

Three reuse schemes, in addition to the sequential reuses of return 

flows from the "return flow" component by agriculture, will be in effect. 

They are the sequential reuse of water used first in the Bellevue Fish 
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Hatchery and second, in the Watson fish rearing unit; the sequential 

reuse of treated Fort Collins' wastewater by the North Poudre Irrigation 

Company; and the reuse and water exchange scheme between Fort Collins 

and the Rawhide Power Plant. 

To obtain, as for the 1979 model, an id,,a about how many times in 

the average a water unit will be used, the water use index, wi, for the 

balanced 2020 matrix is: 

= 572,083 acre-feet 
wi 374,004 acre-feet 

= 1.53 

4.7 Disclosures of the Reuse Models 

4.7.Z. The Z979 Models. Although the water year 1979 is con-

sidered to be a wet year, both matrices, Scheme I and Scheme II, make 

evident that the water is not distributed and used in an efficent way 

today. This is due to the fact that the water resources development in 

the basin has been evolving over the years in steps. There was never 

an attempt to "optimize" the overall system. 

The input-output reuse matrices for 1979 show that a big portion of 

high quality primary water is used for purposes requiring only a lower 

quality. Based on tradition, agriculture gets the high quality water 

and the municipal sector has to seek additional water either by improving 

foreign water import possibilities or by purchasing water rights. Fort 

Collins, for example, has been improving its Michigan Ditch and Joe 

Wright Reservoir system to "create" more foreign water. The arrangement 

of the use systems on the matrix points out that there is a potential 

for water exchanges between the agricultural sector and the municipal 

s~ctor. All agricultural use systems on the right side of the red line 

on the matrix, which receive primary, high quality water, could enter 
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an exchange agreement with the municipal use systems on the left side of 

the red line. Such agreements would allow the domestic suppliers to use 

first the primary water, which is today directly appropriated to these 

agricultural use systems. The return flows of the municipal use sector, 

including makeup water to offset domestic consumptive losses, would then 

be diverted for planned sequential reuse to irrigators below the domestic 

users. One drawback of such agreements is that certain parts of the agri­

cultural distribution system would have to be relocated. Also points of 

diversion would have to be changed, possibly involving legal struggles. 

The matrices point to the potential spots for such reuse agreements and 

designate the use systems involved, which would have to negotiate such 

an agreement. 

4.7.2 The 2020 Reuse ModeZ. The 2020 matrix displays a possible 

solution to cover the water needs of the municipal sector in the future. 

The primary water appropriated to agricultural use systems below Fort 

Collins is drastically reduced by increasing the use of return flows 

from the municipal sector. 

The model shows that a deficit in the system can only be avoided 

by importing more foreign water than in the year 1979. There is no 

possibility for a further increase of water reuse because the total 

basin outflow is practically neglectable in the model. This indicates 

that nearly all the inputs of water into the Cache la Poudre River 

Basin are consumptively used. The displayed solution arouses doubts 

concerning the water quality in such a highly managed water resources 

system. 

An interesting fact is that the sum of total uses in 1979 of 577,354 

acre-feet and in 2020 of 572,083 acre-feet is about the same, indicating 
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that the increase in water demands by municipalities is offset by the 

projected decrease in water needs by agriculture. On the other hand, 

it is also a signal that already today large deficits in the Cache la 

Poudre Basin can occur under severe drought conditions. Table 4-5 

compares the water demand and supply situation in the Cache la Poudre 

River Basin for the two modeled years. 
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Table 4-5. Water Demands, Water Supply and Demand Coverage 
for the Modeled Years 1979 and 2020 

Water Year 

Water Demands 

Municipal Sector 
Industrial Sector 
Agricultural Sector 

Total Demand 

Water Supply 

Native Water 
Foreign Water 

Total Supply 

Demand Coverage 

Municipal Sectors 

Primary Water 
Reused Water 

Industrial Sector 

Primary Water 
Reused Water 

Agricultural Sector 

Primary Water 
Reused Water 

1979 
(acre-feet) 

47,877a 
17,053 

512,424 

577,354 

470,888 
106,431 

577,319 

2020 
(acre-feet) 

84,082a 
25,664 

462,337 

572,083 

173,387 
200,617 

374,004 

(in percentage of the sector's water demand) 

93 
7 

75 
25 

70 
30 

95 
5 

40 
60 

46 
54 

aThis value includes the groundwater infiltration into the municipal 
sewer systems (5,292 acre-feet for 1979; 10,738 acre-feet for 2020). 



5.1 Conclusions 

CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 

The input-output model has a utility as a tool to analyze water 

reuse. Its usefulness stems from the ability to organize and collate 

large amounts of complex data into an organized and understandable format. 

The reuse input-output matrix is a further development of the water trans­

action tables of past applications of the input-output model. The 

methodology exposed in this work is suitable for developing concepts 

for improving water resources systems. It is particularly valuable 

for systems, in which water augmentation by means of reusing water is 

a valid alternative. 

The water reuse input-output model is well adapted for use in the 

three stages of documentation, planning, and implementation, which occur 

during the development of a water resources system. Documentation of 

existing situations is essential to assess the response of the con­

sidered system on actions taken in the past. The assessment of this 

response is needed to eliminate unfeasible alternatives, whtch are,pro­

posed for future developments. A reuse input-output model, which displays 

a status quo of the system is able to support such an assessment because 

of its attractive and comprehensive display of all important features. 

The final solution at the beeinning of the plannine stage is wide 

open. The input-output reuse model is a source of basic information 

to create water development alternatives. The model helps to identify 

the range of possible final solutions. The way the reuse matrix con­

ceptualizes the system provides a "blue print" (Bishop, 1975) for con­

structing analytica~ mathematical, or simulation models for the system. 

79 
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The matrix perfectly supports the evaluation of the alternatives by 

its ease of implementing and displaying the options. All changes on the 

matrix are immediately reflected throughout the entire system due to the 

mass balance requirements, which state that the sum of the inputs has 

to be equal to the sum of the outputs, The mass balance requirements 

guarantee also that the data for constructing the matrix are collected 

in a consistent manner. 

The reuse input-output matrix is alwasy predictive, stating "what 

will be" under certain conditions. It can never be prescriptive, telling 

the decision maker "what to do" under certain assumptions. 

By the models "macroview" of a water resources system, the analyst 

is enabled to recognize the presence of reuse potential. Subsequently, 

situations within the system with reuse potential can be "optimized" 

with more sophistication, but also more constrained means of systems 

analysis. 

The reuse matrix provides a forum for the decision maker to explore 

the opinions of other involved parties. Bruvold and Crook (1979) state: 

"Few voters are expert enough to develop and assess options, 
but they may well be able to understand the options and 
option analyses developed by the technical experts, when the 
information is presented in laymen's language." 

The reuse input-output model is a valid support for indoctrination during 

the stage of implementation of a chosen course of action. This support 

is based on the model's easily understandable way of depicting the pro-

jected futures. An understanding of the benefits of planned futures is 

essential to gain the promotion of all parties involved. This promotion 

helps to avoid the situation described by Okun (1975): 

"We are keen to make models of river basin systems in the United 
States; but these are exercises in futility because they cannot 
be implemented." 
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5.2 Reconunendations 

The present concepts of reuse modeling with the input-output matrix 

have to be refined in the direction of an "optimal" integration of the 

reuse model into the overall systems analysis process. The main focal 

point of further research must be an improvement of the understanding 

of the transition from the "macro" modeling of the water resources system 

with the input-output matrix to the more refined "micro" analysis of 

identified interesting aspects within the system. Requirements for an 

efficient transition will probably determine the choice of the use 

systems and the overall systems aggregation for the input-output model. 

Efforts should be directed to assess the impact of nonpoint return flows, 

for example, from agricultural irrigation on reuse schemes and on the 

reuse mode 1 • 
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APPENDIX A 

WATER BALANCE DIAGRAMS 

FOR THE YEAR 1979 
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New Cache 
la Poudre 

Watson Fish r 
Hatchery 
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b See Table B-1 
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WILSON DITCH 

North Poudre 
Irrigation Company 

A-2. WaterVolumes Originated from Wilson Ditch 



a 
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LARAMIE-POUDRE 

TUNNEL 

Windsor 
Reservoir Company 

Neutze (1980) 

Water Supply 
& Storage Company 

A-3. Water Volumes Originated from Laramie-Poudre Tunnel 
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SKYLINE DITCH 

No Water Imports in 1979 

A-4. Water Volumes Originated from Skyline Ditch 



a Neutze (1980) 
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CAMERON PASS 

DITCH 

Water Supply 
& Storage Company 

A-5. Water Volumes Originated from Cameron Pass Ditch 
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MICHIGAN DITCH 

I a I 1,763 a ! 32 

North Poudre ! 
Irrigation Company 

Neutze (1980) 

Fort 
Collins 

A-6. Water Volumes Originated from Michigan Ditch 



a Neutze (1980) 
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GRAND RIVER 

DITCH 

Water Supply 
& Storage Company 

A-7. Water Volumes Originated from Grand River Ditch 
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I I 
c 

I 

Lake Canal 
Company 

t 
2,176a 

I 
North Weld 
County 
WD 

~ 1, 529 
COLORADO-BIG 

2 388a .. 

North 
Poudre 
Irrig. Co. 

THOMPSON WATER 

~ 14,037 
a 

I r 
107a 

l 
ll277c 

FC-Loveland 
WD Windsor 

RC 

I 

r Spr1ng 
Canyon 

WD 

1,233c 

I 
5 ,!41 a 

Water Supply 
& Storage 

aSee Table B-1 
b 

Records Spring Canyon Water and Sanitation District 

cDannels (1980) 

dMass Balanced from City Records (Greeley, 1979) 

,.. 

Other Irrigation 
Companies Above 
Fort Collins 

East Larimer 
County Water 
District 

A-8. Water Volumes Originated from Colorado-Big Thompson Water 
Project 



94 

BIG THOMPSON 

NATIVE FLOW 

Other Irrigation Companies 
Below Fort Collins 

Greeley 

aWater Input to Louden Ditch, Boomerang Lateral, and Grapevine 
Ditch (Benson, 1980) 

bMass Balance from City Records (Greeley, 1980) 

A-9. Water Volumes Originated from Big Thompson, Native Flow 



Northern 
Colorado 
Water 
Associat 

< 
298b 

ion 

Bellevue Fish 
Hatchery 

t a 
l,i52 

95 

GROUNDWATER 

4 .'ss9c 

Fort 
Collins 

Monfort 
~ 

1 ~ 
' 

44e 

1 J00d 

·~ 
Rural 
Users 

703c 

aPatterson (1977) 
b Records of Northern Colorado Water Association 

cMass Balance 

dEstimated by Author 
e Merle Chapman (1980) 

A-10. Water Volumes Originated from Groundwater 

,. Greeley 



a 
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North Poudre 
Irrigation Company 

s!oa 
I 

CARRY-OVER 

STORAGE 

Other Irrigation 
Companies Above 

Fort Collins 

Other Irrigation 
Companies Below 

Fort Collins 

See Table B-1 

A-11. Water Volumes Originated from Carry-Over Storage 



Pleasant 
Valley/Lake 

ta 
1 1 

97 

North Poudre 
Irrigation Co. 

t 
2,957a 

Other 
Irrigation 
Companies 
Above Fort 
Collins 

.., 428a 
~ 

a 
OTHERS 

10,994_ 

a 

22
1
925a 

l 
Larimer-Weld 403 

! 
a 

Lake 
Canal 

10,114 
a 

! 
New Cache 
la Poudre 

Off-Stream Storage (Neutze, 1980) 

bBeet Humidity (Brenton, 1980) 

1J4b 

Great 
Western 

A-12. Water Volumes Originated from "Others" 

""7 

Water Supply 
& Storage 
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RETURN FLOW 

Documentation of Return Flow Data See 

Contributing and Receiving Components 

A-13. Water Balance of Return Flow 



Return 
Flow 

99 

Cache la Poudre 
Native Flow 

RUSTIC FISH 

HATCHERY 

Atmosphere 

I 
2,t78a 

Basin 
Outflow 

art is assumed that 50 percent of the total input are picked 
up as "return flow" further downstream and 50 percent leave 
the basin. 

b Neglectable 

cPatterson (1977) 

A-14. Water Balance of Rustic Fish Hatchery 



rl 

Carry-Over 
Storage 

l 

100 

Colorado- Big 
Thompson 

I 
14 037d r 2 2,957 1,763 M' ers 1C Oth higan Ditch 

Wilson 
Ditch 

329b 
... 

NORTH POUDRE 
16,95ld 

IRRIGATION COMPANY 

Fort 
Coll ins 

5,286e ... 
d 

52 999 CL T) 

I 11,394 

J 
Storage 

b I 

Return 
Flow 

I 

aSixty-seven percent Consumptive Loss Assumed 
b Neutze (1980) 

c:Mass Balanced 

dSee Table B-1 
e Treatment Plant Effluent (Fort Collins, 1979) 

A-15. Water Balance of North Poudre Irrigation Company 

Return Flow 

Native Flow 



a Patterson (1977) 
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Groundwater 

I 
1,452a 

' 

BELLEVUE FISH 

HATCHERY 

I 
1,452a 

WatsJ Fish 
Hatchery 

A-16. Water Balance of Bellevue Fish Hatchery 
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Bellevue 
Fish Hatchery 

CLP, Native 
Flow 

I c 1.r2 

z.178a 

~ 
Return 

Flow 

WATSON FISH 

HATCHERY 

!b 

l 
Atmosphere 

I 
2,904c 

' 

2 )78 a 

! 
Basin 

Outflow 

alt is assumed that 50 percent of the total input are picked up 
as "return flow" further downstream and 50 percent leave the 
basin. 

b 
Neglectable 

c 
Patterson (1977) 

A-17. Water Balance of Watson Fish Hatchery 
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CLP, 
Native Flow 

CACHE LA POUDRE 

IRRIGATION COMPANY 

Return Flow Atmosphere 

aSee Table B-1 

bSixty-seven percent Consumptive Loss Assumed 
c Mass Balanced 

A-18. Water Balance of Cache la Poudre Irrigation Company 



a 
See Table B-1 

104 

Others 

I 
171 a 

CLP, 
Native Flow 

I a 
12 '187 

PLEASANT VALLEY 

AND LAKE CANAL CO}WANY 

2~a 4.Lsb 
I 

8tl9c 

~ l Storage Atmosphere 

Return Flow 

bSixty-seven Percent Consumptive Loss Assumed 

cMass Balanced 

A-19. Water Balance of Pleasant Valley and Lake Canal Company 



Carry-Over 
Storage 

I 
1 'J29

3 

105 

Colorado­
Big Thompson 

I 
2,388a 

CLP, Native 
Flow 

I a 
11994 

Others 

OTHER IRRIGATION 

COMPANIES ABOVE 

FORT COLLINS 

a 
L_ 

1 •006 Return Flow 

I 
6,389b 

! 
I 

14,356c 

! 
Return Flow Atmosphere 

aSee Table B-1 

bSixty-seven Percent Consumptive Loss Assumed 
c . 
Mass Balanced 

A-20. Water Balance of Other Irrigation Companies Above Fort Collins 



106 

Groundwater 

NORTHERN COLORADO 

HATER ASSOCIATION 

I r 
Return Flow Atmosphere 

aRecords of Northern Colorado Water Association 

bThirty Percent Consumptive Loss Assumed 

cMass Balanced 

A-21. Water Balance of Northern Colorado Water Association 



East Lari­
mer Cty. 
Water Distr 

107 

Colorado- Michigan 
Big T Ditch 

Groundwater 

I 
4,589c 3,660a 

"' 
-~ ..v 

467f 

ict 
FORT COLLINS 

CLP, Native 
Flow 

I 
12, 272a 

'J 

8 235 
d 

/ 

West Ft. 
Collins 
Water Dis­
trict 

L_370f 5,286 
e 

t f I f 
484 579 

Fc-toveland 1 
Water District 

aSee Table B-1 

bNeutze (1980) 

North Weld 
County Water 
District 

cMass Ral:mced from City Records 

' 5,133g 

~ 
Atmosphere 

d36.5 Percent Consumptive Loss Assumed 

eTreatment Plant Effluent 
f Water Transfer 

gMass Balanced 

A-22. Water Balance of Fort Collins 

Return Flow 

North Poudre 
Irrigation Company 
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RAWHIDE POWER 

PLANT 

No Water Use in 1979 

A-23. Water Balance of Rawhide Power Plant 
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Colorado­
Big Thompson 

J -J 

SPRING CANYON 

WATER AND SANITATION 

DISTRICT 

Jc 
l 

Return Flow Atmosphere 

aThirty Percent Consumptive Loss Assumed 

bRecords Spring Canyon Water and Sanitation District 

cMass Balanced 

A-24. Water Balance of Spring Canyon Water and Sanitation 
District 
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Fort Collins 

WEST FORT COLLINS 

WATER DISTRICT 

I rb 
Return Flow 

aFort Collins (1979) 

bThirty Percent Consumptive Loss Assumed 

cMass Balanced 

A-25. Water Balance of West Fort Collins Water District 



Colorado­
Big Thompson 

I 
1

1
233a 

111 

Fort Collins 

EAST LARIMER 

COUNTY 

WATER DISTRICT 

Return Flow Atmosphere 

aDannels (1980) 

bThirty Percent Consumptive Loss Assumed 

cMass Balanced 

A-26. Water Balance of East Larimer County Water District 
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Colorado­
Big Thompson Fort Collins 

I 
1, 2 77a 

~ 

FORT COLLINS -

LOVELAND WATER 

DISTRICT 

I 
1,233b 

! 

J4a 
J, 

I 
528c 

J 
Return Flow Atmosphere 

aDannels (1980) 

bThirty Percent Consumptive Loss Assumed 

cMass Balanced 

A-27. Water Balance of Fort Collins-Loveland Water District 



a 

Colorado­
Big Thompson 

I 
1,529a 

113 

Fort Collins 

NORTH WELD 

COUNTY 

WATER DISTRICT 

l,l76b 

Return Flow 

Dannels (1980) 

Atmosphere 

bThirty Percent Consumptive Loss Assumed 

cMass Balanced 

A-28. Water Balance of North Weld County Water District 



i.;Jramie­
Poudre 
Tunnel 

aSee Table B-1 

bNeutze (1980) 

114 

CLP, Native 
Flow 

I 
32,24la .l 

WINDSOR RESERVOIR 

COMPANY 

9,~osd 

! 
Atmosphere 

Return Flow 

cSixty-seven Percent Consumptive Loss Assumed 

dMass Balanced 

A-29. Water Balance of Windsor Reservoir Company 

Colorado­
Big Thompson 



,. 

Laramie­
Poudre 
Tunnel 

Colorado­
Big Thompson 

I 
5,84la 

Grand 
River 
Ditch 

115 

Others 

WATER SUPPLY 

AND 

STORAGE COMPANY 

Cameron 
Pass Ditch 

22
1
6b 

32,082a CLP, Native 
Flow 

5,20la 

~ 
22 646c 51~780d l Atmosphere 

Return Flow 

aSee Table B-1 

bNeutze (1980) 

Storage 

cSixty-seven Percent Consumptive Loss Assumed 

dMass Balanced 

A-30. Water Balance of Water Supply and Storage Company 



Colorado- b 20.670 ... Big , 
Thompson 

30,,004c 

J 

116 

CLP, Native 
Flow 

I 
47,327a 

~ 

LARIMER AND 

WELD CANAL 

COMPANY 

Return Flow Atmosphere 

aSee Table B-1 
b Neutze (1980) 

b 
L 22,925 

cSixty-seven Percent Consumptive Loss Assumed 

dMass Balanced 

A-31. Water Balance of Larimer and Weld Canal Company 

Others 
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Return Flow 

LARIMER COUNTY 

UNDERGROUNDWATER 

USERS ASSOCIATION 

I 
17,977c 

! 
Atmosphere 

alt is assumed that all of the groundwater pumped originates from 
return flows (Neutze, 1980). 

bSixty-seven Percent Consumptive Loss Assumed 

cMass Balanced 

A-32. Water Balance of Larimer County Undergroundwater Users 
Association 



Others 

I 
3,823c 

l 

118 

CLP, Native 
Flow 

I 
9,005b 

~ 

LAKE CANAL 

COMPANY 

Return Flow 

I 
7,762d 

t 
Atmosphere 

aSee Table B-1 

bNeutze (1980) 
c . p S1xty-seven ercent Consumptive Loss Assumed 
d Mass Balanced 

A-33. Water Balance of Lake Canal Company 

Colorado­
Big Thompson 



aSee Table B-1 

119 

Return Flow 

CACHE LA POUDRE 

RESERVOIR 

COMPANY 

I 
lt85b 

Return Flow 

Atmosphere 

4,~60d 
~ Storage 

bSixty-seven Percent Consumptive Loss Assumed 

cMass Balanced 

dNeutze (1980) 

A-34. Water Balance of Cache la Poudre Reservoir Company 
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Greeley 

WINDSOR 

I Tb 
Return Flow 

I 
12lc 

t 
Atmosphere 

a Greeley (1979) 

bThirty Percent Consumptive Loss Assumed 

cMass Balanced 

A-35. Water Balance of Windsor 
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Return Flow 

b CLP, 2,898a 
NEW CACHE LA 

POUDRE CANAL 

COMPANY 

10,114 Carry-Over 
Native Flow -

I 
12

1
080c 

I 
24,525d 

! 
Return Flow Atmosphere 

11 See Table B-1 

bNeutzc (1980) 

cSixty-seven Percent Consumptive Loss Assumed 
d Mass Balanced 

Storage 

A-36. Water Balance of New Cache la Poudre Canal Company 
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Return Flow 

GREELEY NO. 3 

CANAL COMPANY 

I 
3,937b 

l 
Return Flow 

a b See 'fa le B-1 

7 'J94 c 

t 
Atmosphere 

bSixty-seven Percent Consumptive Loss Assumed 

cMass Balanced 

A-37. Water Balance of Greeley No. 3 Canal Company 



Big T 
Native 
Flow 

b 
11_,485 ... -

aSee Table B-1 
b Benson (1980) 

cNeutze (1980) 

CLP, Native 
Flow 

123 

Return Flow 

I 
15, 904a 

l 
OTHER IRRIGATION 

COMPANIES BELOW 

FORT COLLINS 

I 

Ta 
Storage 

I 
18,56le 

~ Atmosphere 

dSixty-seven Percent Consumptive Loss Assumed 

eMass Balanced 

Carry-Over 
Storage 

A-38. Water Balance of Other Irrigation Companies Below 
Fort Collins 



124 

Greeley 

I 
1,123 

l 

EASTMAN KODAK 

Return Flow Atmosphere 

aGreeley (1979) 

bThirty Percent Consumptive Loss Assumed 

cMass Balanced 

A-39. Water Balance of Eastman Kodak 



Return 
Flow 

2 400...8 

3 ls7c 

125 

Groundwater 

I 
1,1ooa 

RURAL USERS 

l,J54d 

t 

b 
I"" 1,010 
~ Greeley 

'! 
Return Flow Atmosphere 

aEstimate, Based on Reitano (1979) 
b Greeley (1980) 

cThirty Percent Consumptive Loss Assumed 

~ass Balanced 

A-40. Water Balance of Rural Users 
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Return Flow 

I 
25 'looa 

WELD COUNTY 

UNDERGROUNDWATER 

USERS ASSOCIATION 

I 
16,7503 

~ 
Atmosphere 

ait is assumed that all of the groundwater pumped originates 
from return flows (Neutze, 1980). 

bSixty-seven Percent Consumptive Loss Assumed 

cMass Balanced 

A-41. Water Balance of Weld County Undergroundwater Users 
Association 
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Colorado­
Big T 

Big T 
Native Flow 

Michigan 
Ditch Groundwater 

I 
678b 

l -~ 
4 900c 7J3c 
'l CLP, 

Native 
Flow 

Great 
Western 
Sugar 

1 3,617a 

L 
212f 

GREELEY 

ld,38ld 40I3e 1 !z3e 
' 

~ 
Return Flow l l 

aSee Table B-1 

bNeutze (1980) 

cGreeley (1979) 

Windsor Eastman 
Kodak 

d36.5 Percent Consumptive Loss Assumed 

eWater Transfer (Greeley, 1979) 
f Brenton (1980) 

A-42. Water Balance of Greeley 

J 
880c 

1,30le 

1 1o1oe 
' 
~ 

Rural 
Users 

Return Flow 

Monfort 



Ground- 1,344a 
water 

128 

Return Flow 

I 
1,344a 

'J 

MONFORT 

I c 3,[89 
Return Flow 

b 1,301 
Greeley 

aChapman (1980); Fifty Percent of Groundwater Pumpage is Believed 
to be Return Flow 

b 
Greeley (1979) 

cThirty Percent Consumptive Loss Assumed 
d Mass Balanced 

A-43. Water Balance of Monfort Meatpacking Plant 



Greeley 

a Brenton (1980) 

129 

Others 

I 
154a 

~ 

GREAT WESTERN 

SUGAR BEET PROCESSING 

PLANT IN GREELEY 

I 
139a 

! 
Atmosphere 

~ 1 •411 a Return Flow 

A-44. Water Balance of Great Western Sugar Beet Processing 
Plant in Greeley 



a See Table B-1 

1,~96b 
~ 

130 

Return Flow 

I 
16,92la 

-l 

OGILVY DITCH 

COMPANY 

I c 11'137 
Return Flow Atmosphere 

bSixty-seven Percent Consumptive Loss Assumed 

cMass Balanced 

A-45. Water Balance of Ogilvy Ditch Company 
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ATMOSPHERE 

Documentation of Atmosphere Data 

See Contributing Components 

A-46. Documentation of Data for Atmosphere 



Pleasant 
Valley/ 
Lake 

North Poudre 
Irrigation Co. 

I 
11,394a 

132 

Windsor 
RC 

I 
25 004a 

STORAGE 

S,?Ola 4,160a 

I 
Water Supply 

& Storage 
CLP Reser­
voir Co. 

1,39la 

I 
Greeley 

a See Table B-1 

A-47. Hater Volumes Put to Storage 

Other Irrigation 
Companies Below 
Fort Collins 



a 

CLP, Native 
Flow 

I 
160,762a 

133 

Rustic Fish 
Hatchery 

2,l78b 

BASIN OUTFLOW 

2,178b 23,690a 

l 
Watson Fish 
Hatchery 

Return Flow 

Mass Balanced 

4,188c 

I 
Ogilvy 
Ditch 

bit is assumed that 50 Percent of the output of Rustic Fish 
Hatchery leaves the basin. 

cReturn Flows Occurring Outside of the Basin 

A-48. Water Volumes Leaving the Basin 
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APPENDIX B 

DOCUMENTATION OF DATA 



TABLE B-1. WATER DIVERSIO~S OF IRRIGATION CO~IPANIES IN TI-lE WATER YEAR 1979 

From CLP From Colorado b From To Storage To Consumptive a Return Flowd c Use System Native Flow Big Thompson From Others Storage Evaporation Return Flow Use 

~orth Poudre Irrigation 
Co:np::ny 52,999 \14,037 5, 849 22,237 11 ,394 7,163 25,266 51,299 

ll'indsor Reservoir Co. 32,241 107 2,617 -- 25,004 7,974 656 1,331 

Other Irrigation Com-
panics Above Ft. Collins 11,644 2,388 2,357 1,006 0 1,383 6,389 12,973 

Pleasant Valley and 
Lake Canal 12,587 -- 171 -- 21 259 4,118 8,360 

Water Supply and 
41,704 Storage Company 32,082 5,841 -- 5,201 5,802 22,646 45,978 

Cache la Poudre Irri-
gation Company 11,982 -- -- -- -- -- 3,954 8,028 

Larimer and l•;eld 
Irrieation Company 47,327 20,670 22,925 -- -- -- 30,004 60,918 

~ew Cache la Poudre 
Ditch Company 2,898 -- 10,114 23,593 -- -- 12,080 24,525 

Other Irrigation Com-
so panics Below Ft. Collins 105 11,485 15,904 329 991 8,654 17,570 

Lake Canal Company 9,005 2,176 403 -- -- -- 3,823 7,762 

CLP Reservoir Company -- -- -- 9,886 4,160 1,831 1,285 2,6](1 

Greeley No. 3 -- -- -- 11,931 -- -- 3,937 7, 99-1 

0.<; ilvy Ditch -- -- -- 16,921 -- -- 5,584 11,337 
--·-

All Values in Acre-Feet 

aEquals sum of diversions based on direct flo1v rights and reservoir leases. l'or diversions fror.1 the Cache la Poudre Ri\·er, dmmstream of the 
bLake Canal diversion, only water diverted to fill the ""SC''\·oir in sprbg anJ resc1·voir releases are considered. 
cOff-stream reservoir releases (including carry-over storage) and foreign 1\aters. 
dBased on an estimated average reservoir surface area in 1979. Sec Table B-2. 
squals ~urn o~ diversions based on direct flow rights minus diversions to fill reservoirs in spring for points of dh•ersion doh11Stream of the Lake 
,.anal d1Vers10n. 

Source: ~eut:e (1980) 

(.o.j 

l'l 



TABLE B-2. RESERVOIR CHARACTERISTICS 1979 

\ Initial 
Surface Evaporation Evaporation Safe Capacity Storage 

Reservoir/Lake Owner (acres) (feet) (acre-feet) (acre-feet) (acre-feet) 

Chambers Lake wssc 227 2.6 590 8,824 4,579 
Comanche Reservoir Greeley 41 2.6 107 2,256 0 
Long Draw Reservoir WSSC 332 2.6 863 10,519 7,224 
Barnes ~!eado1v Greeley 81 2.6 211 2,349 2,084 
Joe Wright Fort Collins 0 2.6 0 7,161 0 
Black Hollow wssc 377 3.5 1,320 7,486 3,409 
Terry Lake Larimer & Weld 395 3.5 1, 383 8,028 4,639 

Reservoir Co. 
Horsetooth USBR 1,389 3.5 4,862 151,752 22,250 
Halrigan North Poudre 135 2.6 351 6,428 465 
Claymore Lake Pleasant Valley 74 3.5 259 978 529 
Seaman Reservoir Greeley 101 2.6 263 5,008 1, 046 
Cobb Lake Windsor RC 568 3.5 1,988 22,300 3,535 
J\orth Poudre 5 North Poudre 305 3.5 1,068 7,217 2,828 
North Poudre 6 North Poudre 107 3.5 375 4,500 0 
Long Pond 1'\SSC 219 3.5 767 4,766 3,014 
Fossil Creek North Poudre 475 3.5 1,663 11,100 1,322 
Timnath Reservoir Cache la Poudre 523 3.5 1,831 10,070 4,482 

Reservoir Co. 
No. 8 Windsor RC 501 3.5 1,754 13,727 7,434 
Douglas Reservoir Windsor RC 457 3.5 1,600 8,834 5,337 
Windsor Reservoir Windsor RC 752 3.5 2,632 17,689 5,516 
Curtis Lake wssc 110 3.5 385 1,259 629 
North Poudre 2 North Poudre 208 3.5 728 3, 714 1,898 
North Poudre 3 North Poudre 41 3.5 144 2,760 0 
North Poudre 4 North Poudre 91 3.5 319 1,386 573 
North Poudre 15 North Poudre 241 3.5 844 5,517 1,284 
Clark's Lake North Poudre 145 3.5 508 871 568 
Indian Creek North Poudre 143 3.5 501 1,906 1,399 
Kluver Reservoir wssc 84 3.5 294 l, 231 751 
Rocky Ridge WSSC 196 3.5 68G 4,493 2,973 
li'SSC 3 1\SSC 181 3.5 634 4,888 2,256 
1\"SSC 4 KSSC 75 3.5 263 1,371 739 
Wood (Others Below) 160 3.5 560 2,608 1,474 
Park Creek North Poudre 189 3.5 662 7,320 2,051 
1\arren Lake Warren Lake Res. 123 3.5 431 2,089 277 

Source: Ncutze (1980) 

Final Volume 
Storage To Storage 

(acre-feet) (acre-feet) 

5,351 772 
0 --

7,923 699 
2,469 385 

0 --
4,459 1,050 
2, 710 --

103,084 80,834 
100 --
550 21 

2,052 1,006 
19,950 16,415 
2,828 --
2,580 2,580 
3,408 394 
2,165 843 
8,642 4,160 

10,499 3,065 
6,300 963 

10,077 4,561 
874 245 

1,483 --
0 --

955 382 
4,248 2,964 

548 --
1,906 507 

802 51 
3,283 310 
3,840 1,584 

835 96 
1,724 --
6,169 4,118 

606 329 

Volume 
From Storage 
(acre-feet) 

--
--
--
--
--
--

1,929 

--
365 
--
--
--
--
--
--
--
--

--
--
--
--
415 
--
--
--
20 

--
--
--
--
--

so 
--
--

~ 
VI 
(]\ 
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Table B-3. Maximal Tolerable Salinity Levels for Beneficial Uses 
in mg/1 TDS 

TDS Level 
Beneficial Use (mg/1) 

Domestic Raw Water Supply 300 

Groundwater Recharge (injection) 600 

Groundwater Recharge (land spread-
ing) 600-800 

Agricultural Irrigation 700-2100 

Landscape Irrigation 1200 

Livestock and Wildlife Watering 3000 

Power Plant and Industrial Cooling 
(once-through basis) 1000 

Recirculation Cooling 500-800 

Boiler Feed Water 200-700 

Food and Kindred Products Industry 500 

Paper and Allied Products Industry 250 

Chemical and Allied Products 
Industry 2500 

Petroleum and Allied Products 
Industry 1000 

Primary Metals Industry accepted as 
received 

(1500) 

Primary Contact Recreation 2000 

Secondary Contact Recreation 2000 

Cold Water Fishery 2000 

Warm Water Fishery 2000 

aEstimated by the author. 

Reference 

a 

a 

b 

b 

b 

b 

b 

b 

b 

b 

b 

b 

b 

c 

a 

a 

a 

a 

bCulp, Wesner, Culp, Water Reuse and Recycling, Volume II, Evaluation 
of Treatment Technology, US Department of the Interior, OWRT/RU-7912, 
April, 1979. 

cUnited States Environmental Protection Agency, Quality Criteria for 
Water, US Govt. Prntg. Office, Washington, D,C., July, 1976. 


	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	




