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ABSTRACT

DISENTANGLE MODEL DIFFERENCES AND FLUCTUATION EFFECTS IN DPD

SIMULATIONS OF DIBLOCK COPOLYMERS

In the widely used dissipative particle dynamics (DPD) simulations,1 polymers are commonly

modeled as discrete Gaussian chains interacting with soft, finite-range repulsions. In the

original DPD simulations of microphase separation of diblock copolymer melts by Groot

and Madden,2 the simulation results were compared and found to be consistent with the

phase diagram for the “standard model” of continuous Gaussian chains with Dirac δ-function

interactions obtained from self-consistent field (SCF) calculations. Since SCF theory is a

mean-field theory neglecting system fluctuations/correlations while DPD simulations fully

incorporate such effects, the model differences are mixed with the fluctuation/correlation

effects in their comparison. Here we report the SCF phase diagram for exactly the same

model system as used in DPD simulations. Comparing our phase diagram with that for the

standard model highlights the effects of chain discretization and finite-range interactions,

while comparing our phase diagram with DPD simulation results unambiguously (without

any parameter-fitting) reveal the effects of system fluctuations/correlations neglected in the

SCF theory.
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1 INTRODUCTION

Dissipative particle dynamics (DPD) is a coarse-grained dynamic simulation technique,

which has been widely used in the literature since proposed by Hoogerbrugge and Koelman

about 20 years ago.1 In dimensional form, the total force acting on particle i in this method

consists of three parts: Fi =
∑

j ̸=i

(
FC

ij + FD
ij + FR

ij

)
, where βσFC

ij = aij(1 − rij/σ)r̂ij

for rij < σ and 0 otherwise is the conservative force applied by particle j on i, with

β ≡ 1/kBT , kB being the Boltzmann constant, T the thermodynamic temperature, σ

the cut-off radius, aij ≥ 0 a dimensionless number controlling the interaction strength,

rij ≡ |rij|, rij ≡ ri − rj, ri denoting the spatial position of particle i, and r̂ij ≡ rij/rij;

βσFD
ij = −γωD(rij)

[
r̂ij·

√
βm(vi − vj)

]
r̂ij is the dissipative (or drag) force, with γ ≥ 0

being a dimensionless number controlling its strength, ωD(rij) ≥ 0 a dimensionless weight

function, m the particle mass (assumed to be the same for all particles), and vi the

velocity of particle i; and βσFR
ij = αωR(rij)ξij r̂ij is the random force, with α ≥ 0 being a

dimensionless number controlling its strength, ωR(rij) ≥ 0 a dimensionless weight function,

and ξij a random number with zero mean and unit variance. One attractive feature of

DPD simulation is that it conserves the momentum and thus gives the correct long-term

hydrodynamic behavior of the system.1

In this work, however, we focus on the thermodynamic behavior. Espanol and War-

ren showed that, if αωR(rij) =
√
2γωD(rij), the Hamiltonian (or potential) for the

conservative force βHC then completely determines the system thermodynamics,4 which

means that such DPD simulations can in principle (1) sample the full spectrum of fluc-

1



tuations/correlations of the system, and (2) give the same thermodynamic properties as

Monte Carlo (MC) simulations using βHC ; the latter idea was indeed explored by Smit and

co-workers.5,6 We note that, as another attractive feature of DPD simulation, its βHC is

soft (i.e., allows complete particle overlapping). Using soft potentials is the basic idea of

the so-called fast Monte Carlo (FMC) simulations,7–9 which have recently attracted great

interest especially in the study of polymeric systems.10–15

In particular, Groot and Madden first performed DPD simulations to study the mi-

crophase separation of linear diblock copolymer (DBC) A-B melts, and compared their

results with those from the self-consistent field (SCF) calculations of Matsen and Bates;16

after taking into account the fluctuation effects based on the theory of Fredrickson and

Helfand (FH),17 they found “quantitative match for the locations of the phase transi-

tions”.2,18 Similar work was done by Chen et al.,3 whose DPD results are consistent

with and complementary to those of Groot and Madden. There are, however, several

important differences between the DPD and SCF studies: First, the DPD simulations use a

compressible system of discrete Gaussian chains (DGC) each of N = 10 segments interacting

with a finite-range (DPD) potential, while the SCF calculations use the “standard” model,

i.e., an incompressible system of continuous Gaussian chains (CGC) interacting with

the Dirac δ-function potential. The system compressibility, chain discretization, and

interaction range can all change the phase boundaries quantitatively. Second, SCF theory

is a mean-field theory neglecting the system fluctuations/correlations. While such effects

were taken into account by Groot and Madden based on FH theory, this theory is based

on the Hartree analysis by Brazovskii19 and the Ohta-Kawasaki effective Hamiltonian20 for
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the “standard” model. The Hartree analysis is rigorously accurate only for the invariant

degree of polymerization N̄ ≡ (nR3
e,0/V ) & 1010,17 where n denotes the number of chains in

volume V and Re,0 the root-mean-square end-to-end distance of an ideal chain. As shown

in Sec. 2.2.2 below, however, N̄ ≈ 28 and 77 in the DPD simulations, which do not justify

the use of FH theory. Furthermore, the fitting of aij to the Flory-Huggins χ parameter

characterizing the A-B repulsion in the “standard” model and the use of FH theory by

Groot and Madden are not rigorous, as discussed in detail in Sec. 3.2.1.

Third, DPD is a dynamic simulation technique while SCF is an equilibrium approach, which

means that the structure in DPD simulations could be kinetically trapped. Indeed, no well-

ordered, spatially periodic structure was found in several cases of the DPD simulations,2,3, 18

as discussed in detail in Sec. 3.4. Fourth, a fixed-size box of (20σ)3 with the periodic

boundary conditions applied in all directions was used in the DPD simulations, which limits

the allowed periods of the ordered structures,21 but the SCF calculations minimize the

system free energy by finding the bulk period of each ordered structure. While this is not

a severe problem for the 1D lamellar structure due to the relatively large box size, it may

be the main reason for obtaining the micellar phase in the DPD simulations2,3, 18 instead

of the cylindrical phase predicted by SCF calculations. Last, Groot and Madden used

binary blends of DBC with different compositions (volume fractions of the A-block in the

copolymer) f to sample intermediate f -values that are not integer multiples of 0.1,2,18 but

the SCF calculations are for pure DBC systems. Comparisons between the DPD simulations

and the SCF calculations of the “standard” model mix all these differences together; the

meaning of “quantitative match” between the two is therefore not clear.
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In this work, we perform both SCF calculations and FMC simulations in a canonical

ensemble based on exactly the same model DBC system as used in the DPD simulations

(i.e., βHC including the bonding potential)2,3). In particular, in addition to the cubic

box of (20σ)3, our FMC simulations are also performed in variable-length boxes to find

the bulk period of lamellar and cylindrical structures. Comparing our SCF results with

those for the “standard” model therefore unambiguously reveals the effects of model

differences (i.e., the system compressibility, chain discretization, and interaction range),

and comparing our SCF and FMC results reveals, without any parameter-fitting, the effects

of system fluctuations/correlations neglected in the SCF theory. Furthermore, comparing

our fixed-box FMC results with the DPD results unambiguously identifies the kinetically

trapped structures in the latter, and comparing our SCF (or FMC) results in both fixed-

and variable-length boxes unambiguously reveals the effects of fixed vs. bulk periods. For

simplicity, we only consider systems of pure DBC in this work.
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2 MODEL AND METHODS

The discrete Gaussian chain (DGC) model is first introduced in Sec. 2.1 for a single ho-

mopolymer chain. In Sec. 2.2.2, this model will be extended to a system of many chains

using the DPD potential. We give a brief description of MC simulations done by Jing Zong

in our research group. In Sec. 2.4 we derive field theory from a particle model for homopoly-

mers. Finally in Sec. 2.5, we develop the SCFT for diblock copolymers using the DPD

model.

2.1 DISCRETE GAUSSIAN CHAIN MODEL

The DGC model is a type of bead-and-spring model in which the coarse-grained particles

along a polymer chain are treated as beads that are jointed by “spring potentials”. Assuming

all N bonds of a DGC chain are equal, the bonding potential energy of a single ideal (only

short-ranged interactions) homopolymer chain can be given as

βub =
3

2a2

N∑
s=1

|bs| (1)

where bs = Rs −Rs−1 is the bond vector between particle s− 1 and s, and a = |bs| is the

effective bond length. The single chain partition function is then given by

Z = V

(∫
dR exp

{
−βub

})N

(2)

One means by which the statistical properties of chain models can be studied is through

inspection of the normalized reduced probability distribution function, p0(r, s). p0(r, s) is
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the probability density that a polymer chain consisting of s + 1 particles has its end, s,

at position r.22 Typically, we make an initial guess of the probability density for the end

position of a chain with one particle fewer, p0(r, s − 1). This guess allows us to build

up a chain consisting of s + 1 particles by adding a particle and a bond to the s-particle

chain. There is an additional probability associated with the addition and bonding of a new

particle called the bond transition probability, Φ(bs;Rs−1). This probability is associated

with orientation of the added bond. In particular, it represents the probability density that

the added bond connecting particles s and s− 1 has a value of bs if particle s− 1 is located

at position Rs−1.
22 Once the bond transition probability is known for a specific model, we

can determine p0(r, s) by

p0(r, s) =

∫
dbsΦ(bs;Rs−1)p0(Rs−1, s− 1) (3)

This equation is known as a Chapman-Kolmogorov equation (CKE) in the theory of stochas-

tic processes. Note that Eq. (3) is a three-dimensional convolution integral that can be solved

by Fourier transform. The normalized bond “transition” probability for the DGC model is

Φ(bs;Rs−1) = Φ(bs) =
exp[−βub]∫
dbs exp[−βub]

=

(
3

2πa2

)d/2

exp

(
3|bs|2

2a2

)
(4)

which signifies the Gaussian distribution of bond displacements.22 bs denotes the bond

vector of the sth and (s − 1)th segments. The convenience of the DGC model arises from

carrying out analytical calculations that are made possible by the Gaussian description of

segments at both the level of a coarse-grained bond and the level of the end-to-end vector.22
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In contrast to the ”standard model”, DBCs are modeled by a continuous Gaussian chain

(CGC) where the location of each segment on the polymer chain backbone is parameterized

by a contour variable s that increases from 0 to 1. The bonded potential energy βub of the

CGC can be written as a functional of the space curve r(s) that defines the configuration of

the polymer, and is given as

βub[r] =
3

2a2

∫ N

0

ds

[
dr(s)

ds

]2
(5)

The CGC model is the continuum limit of the DGC model corresponding to N → ∞.

2.2 DISSIPATIVE PARTICLE DYNAMICS

2.2.1 MONOMERIC FLUIDS

Before developing a field theory model for diblocks, we must first determine the potentials

used in the particle-based DPD model in order to make an exact comparison to study

system fluctuations. Dissipative particle dynamics is a type of particle based mesoscopic

simulation method in which atoms of a polymer melt are grouped into particles. These

particles act as centers of mass whose motion is governed by certain collision rules. The

particles are modeled as bead-and-spring type soft spheres.23 Hoogerbrugge and Koelman1

first introduced DPD and defined three forces that particles experience in DPD simulations:

a soft repulsive interaction force FC called the conservative force, a dissipative or friction

force FD, and a random force FR. The random force defines the random collisions with

solvent molecules and the dissipative force results from the drag of the polymer chain. The
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dissipative and random forces need to satisfy a specific relationship to preserve the statistical

mechanics of the system in the canonical ensemble (N,V,T).4 The model system used in

Ref. [2] gives the conservative force as

βσFC
ij =


aij

(
1− rij

σ

)
r̂ij if rij < σ

0 otherwise

(6)

where i, j are particle indices, aij is the maximum repulsion between particles i and j,

β = 1/kBT , σ is cutoff radius, rij = ri − rj, rij = |rij|, and r̂ij = rij/rij. The dissipative

and random forces are given by

FD
ij = −γwD(rij)r̂ij · (vi − vj)r̂ij, FR

ij = αwR(rij)ζij r̂ij, (7)

where wD and wR are weight functions that are zero for r > rc, ζij(t) is a random variable

with zero mean and unit variance.2 Espanol and Warren4 showed that if the dissipative and

random forces satisfy the following relations,


wD(rij) = [wR(rij)]

2

γ = βα2/2

the Hamiltonian (or potential) for the conservative force completely determines the thermo-

dynamics of the system. The above relations along with their respective forces act as the

thermostat of the system corresponding to the canonical ensemble. The reader is referred to

Refs.[1, 2, 4, 23] for detailed derivation and explanation of DPD simulations.
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2.2.2 DIBLOCK COPOLYMERS

The remaining focus is on the conservative potential for compressible diblock copolymer

melts, first used by Groot and Madden in 1998.2 The model system used in Ref. [2] consists

of n DBC chains, each having NA segments of type A followed by NB segments of B. In

Ref. [2], the volume fraction of the A block in the copolymer is given as f ≡ NA/N with

N ≡ NA +NB = 10. To describe chain connectivity, Groot and Madden2 define the bonded

force as a Harmonic spring potential given as

βσFS
ij =

−4rij
σ

(8)

between two connected segments i and j, where σ denotes the cut-off radius (set to 1 in

Ref. [2]), FS
ij is the force acting by segment j on i, and rij ≡ ri − rj where ri is the spatial

position of segment i.

In terms of a potential, we arrive at the discrete Gaussian chain (DGC) model for

the chain connectivity; that is, adjacent segments on a chain are connected by Gaussian

springs with a bonding potential

βub
k,s =

3

2a2
(Rk,s+1 −Rk,s)

2 (9)

where β ≡ 1/kBT , a denotes the effective bond length, and Rk,s denotes the spatial position

of the sth segment on the kth chain. Comparing the above with the spring force βσFS
ij, we

find that σ/a = 2/
√
3 (i.e., Re,0 ≡

√
N − 1a = 3

√
3σ/2) is used in Ref. [2]. It can be easily

9



seen by comparing this potential with that given by Eq. (13) that the chains are indeed

modeled as DGCs. Thus the Hamiltonian of the bonded potential is written as

βHb =
3

2a2

n∑
k=1

N−1∑
s=1

(Rk,s+1 −Rk,s)
2 (10)

Note that Eq. (6), is actually the non-bonded force including forces between A-A, B-B, and

A-B segments. This force can be written in terms of two potentials: All segments regardless

of their type) interact with a pair potential

uκ(r) =
u0(r)

κρ0

where r denotes the distance between two segments, the pair potential βu0(r) =

(15/2πσ3)(1 − r/σ)2 for r < σ and 0 otherwise (note that the coefficient here is chosen

such that the DPD potential βu0(r) is normalized in 3D, i.e.,
∫
drβu0(r) = 1; in the limit

of σ → 0, βu0(r) then becomes the Dirac δ-function potential δ(r)), the average segmental

number density ρ0 ≡ nN/V with V being the system volume, and the generalized Helfand

compressibility24,25 κ ≥ 0 controls the interaction strength (κ = 0 corresponds to the hard-

sphere chains).

In addition, an A segment interacts with a B segment via a pair potential

uχ(r) = u0(r)χ/ρ0

with the generalized Flory-Huggins parameter χ ≥ 0 controlling the A-B repulsion strength.

Comparing these pair potentials with the conservative force given by Eq. (2) of Ref. [2] or

10



Eq. (6), we find that the maximum repulsion parameters used in Ref. [2] are given by


aAA = aBB = 15

πσ3
1

κρ0

aAB = 15
πσ3 (

1
κρ0

+ χ
κρ0

)

(11)

Their value of aAA = aBB = 75/ρ0σ
3 therefore corresponds to N/κ = 50π. In addition, the

two segmental densities, ρ0σ
3 = 3 and 5, used in Ref. [2] correspond to the invariant degree

of polymerization N̄ ≡ (nR3
e,0/V )2 ≈ 28 and 77, respectively. Their value of aAB = 40 used

at ρ0σ
3 = 3 corresponds to χN = 30π, and aAB = 21 used at ρ0σ

3 = 5 corresponds to

χN = 20π. The Hamiltonian for the non-bonded potentials can be written as a sum of the

different pair potentials given as

Hnb =
1

κρ0

∑
i∈A,j∈A,i<j

u0(rij) +
1

κρ0

∑
i∈B,j∈B,i<j

u0(rij) +

(
1

κρ0
+

χ

ρ0

) ∑
i∈A,j∈B

u0(rij) (12)

The total Hamiltonian for the conservative potential can be written as a sum of the bonded

and non-bonded potentials

HC = Hb +Hnb

We now have a complete effective mapping between Groot and Madden’s DPD model2 given

by Eq. (6) and Eq. (8) to our model defined by Eq. (10) and Eq. (12). After normalizing all

lengths by Re,0, we have totally six parameters: N , σ/a, f = NA/N , N/κ, χN , and N̄ . The

first two are model parameters characterizing the chain discretization and interaction range,

respectively, and the rest are physical parameters that can be mapped to an experimental

system. In particular, f denotes the volume fraction of the A block, κ the system compress-
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ibility, χ the A-B incompatibility, and N̄ the so-called invariant degree of polymerization

controlling the system fluctuations. It’s essentially the number of chains with which a single

chain interacts within its volume; when N̄ is large, a chain interacts with many other chains

and the system fluctuations are small.

2.3 FAST-OFF LATTICE MONTE CARLO SIMULATIONS

To study and quantify system fluctuations, the DPD model presented in Secs. 2.2.1, 2.2.2

was used to perform Fast-Off Lattice Monte Carlos (FOMC) simulations, and the results

were compared with the SCFT calculations for the same Hamiltonian without any parameter

fitting. FOMC is a particle based simulation technique where excluded-volume interactions

are modeled by “soft” repulsive potentials that allow particle overlapping.7 The main idea is

to prevent the use of hard repulsions, such as the commonly used Lennard-Jones potential,

to allow faster chain relaxation and better sampling to study equilibrium properties of

soft materials. And since polymers are typically modeled by soft potentials consisting

of volumeless segments with the excluded-volume interactions described by the Helfand

compressibility,7 FOMC provides an excellent tool to apply our DPD model to study the

effects of fluctuations in diblock copolymers.

We perform FOMC simulations of the above model system in a canonical ensemble

with trial moves of hopping,7 reptation,7 pivot,26 and box-length change (when a rect-

angular parallelepipedal simulation box with variable lengths is used). For pivot moves,

we randomly rotate the shorter portion of a randomly chosen chain around a segment,26
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instead of a bond as in the original pivot algorithm.27 Note that the highly efficient

pivot trial moves cannot be used in many-chain simulations with hard excluded-volume

interactions (e.g., the Lennard-Jones potential or the self- and mutual-avoiding walk

on a lattice) due to their extremely small acceptance rates;28 with soft potentials, how-

ever, we achieve acceptance rates of more than 50% here.26 More details are given in Ref. [26].

In simulations of periodic structures, the periodic boundary conditions limit the al-

lowed orientations of the structure and thus its period. For example, for lamellae with

a normal direction n in a simulation box with length Lj in the j(= x,y, z) direction,

Ljj·n = njL(n) must be satisfied, where nj is the number of periods contained in

the box along the j direction (which could be 0) and L the lamellar period; this gives

L(n) = 1
/√∑

j (nj/Lj)
2.21 For a fixed-length box as commonly used in canonical-ensemble

simulations, both the lamellar orientation and its period are therefore discretized (i.e., L

can hardly be L0).
21 To eliminate this problem for lamellar structures, we use box-length

change trial moves to generate, without loss of generality, the new box length along the x

direction as Lx,new = Lx,old exp(ξ), where Lx,old is the box length before the trial move and ξ

a random number uniformly distributed within (−ξmax, ξmax), and set the box lengths along

the other two directions to be the same (i.e., Ly = Lz), which are varied accordingly to keep

V constant. The spatial positions of all segments are then re-scaled in each direction.26 For

2D hexagonally packed cylindrical structures, where the restriction of a fixed-length box is

more severe,29 we use similar trial moves except keeping Ly =
√
3Lz. We have not performed

FOMC simulations of 3D periodic structures, where canonical-ensemble simulations at a

fixed V cannot be used to find the bulk period.
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Finally, to determine the order-disorder transition (ODT) of symmetric DBC, we use

replica-exchange30 at different χN (with acceptance rates of 50∼80%) to further improve

our sampling, a new order parameter characterizing the degree of positional order in

lamellae, and multiple histogram reweighting31 to accurately locate ODT according to the

equal-weight criterion.32 More details are given in Ref. [26].

All FMC simulations were performed by Jing Zong in our research group.

2.4 PARTICLES TO FIELDS: HOMOPOLYMERS

We will now extend our discussion to a system of many homopolymer chains in a spatially

varying chemical potential field ω(r) which acts on all s segments on k chains. Once the

particle to field transformation is understood for a system of homopolymer chains, the for-

malism can easily be applied to diblock copolymers. In a system of many chains, adjacent

segments on a chain modeled as DGCs interact with a bonding potential given as

βub =
3

2a2

n∑
k=1

N−1∑
s=1

(Rk,s+1 −Rk,s)
2 (13)

where Rk,s denotes the spatial position of the sth segment on the kth chain for N segments

and n chains. Note this equation differs only by the summations in comparison to the

single chain potential given by Eq. (1), and Rk,s+1 −Rk,s is the equivalent bond vector. All

14



non-bonded segments interact with a pair potential that we will define as

βunb(ri,j) =
1

2

nN∑
i=1

nN∑
j=1( ̸=i)

u0(rij) (14)

where ri,j = |rij|, |rij| = ri − rj, and u0(rij) is an arbitrary pair potential function. The

factor of (1/2) is a correction for the double counting of each particle pair twice.

The potential is first written in terms of microscopic particle density which is a sum

of Dirac δ-functions of the coordinates of each atom

ρ̂(r) =
n∑

k=1

N∑
s=1

δ(r−Rk,s) (15)

The non-bonded potential can be redefined as

βunb(ri,j) =
1

2

∫
dr

∫
dr′ρ̂(r)u0(|r− r′|)ρ̂(r′)− nN

2
u0(0) (16)

where the last term deducts the self-interactions. The configurational canonical-ensemble

partition function can we written as

Z = An
0

n∏
k=1

N∑
s=1

∫
dRk,s exp

[
−

n∑
k=1

N−1∑
s=1

βub
k,s −

1

2

∫
dr

∫
dr′ρ̂(r)u0(|r− r′|)ρ̂(r′)

]
(17)

where the constant A0 = exp
(
nN
2
βu0(0)

)
/n!. The definition of the delta functional, or the

Hubbard-Stratonovich transformations, is also used in the particle-to-field transformation

and is defined as
∫

Dρδ[ρ − ρ̂] = F [ρ̂] for any functional F [ρ]. An “infinite-dimensional”
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Dirac delta function is a delta functional δ[ρ − ρ̂] that vanishes for all positions r except

where the fields ρj(r) and ρ̂j(r) are equal. To transform the above particle model to a field

model, we make use of techniques related to the Hubbard-Stratonovich transformations in

which the interactions between polymer segments are decomposed and essentially replaced

by interactions between the segments and conjugate fields.22 This is done by inserting in

Eq. (17) the following identity

1 =

∫
DϕDω exp

(∫
drω(r)[ρ0ϕ(r)− ρ̂(r)]

)
(18)

where ϕ(r) is a normalized density field constrained to ρ̂(r)/ρ0 and ω(r) is a purely imaginary

conjugate field interacting with all segments that imposes the constraint. Inserting this

identity in Eq. (17) we obtain

Z = An
0

n∏
k=1

N∑
s=1

∫
DϕDω

∫
dRk,s exp(η)

η = −
n∑

k=1

N−1∑
s=1

βub
k,s −

1

2

∫
dr

∫
dr′ρ̂(r)u0(|r− r′|)ρ̂(r′) +

∫
drω(r)[ρ0ϕ(r)− ρ̂(r)] (19)

Some mathematical manipulations can be made to arrive at a more functional form. First,

the n particle position integrals can be factored and the integral is raised to the power n. We

further re-scale variables according to r/Re,0 → r (thus V/Rd
e,0 → V , where Re,0 =

√
N − 1a

and d is the number of dimensions in which calculations are performed), u0(|r− r′|)Rd
e,0 →

u0(|r− r′|), and Nω(r) → ω(r) . After some manipulations we obtain

Z =

∫
DϕDω exp{−nβfc[ϕ, ω]}
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with

βfc =
1

2V

∫
dr

∫
dr′ [ϕ(r)]u0(|r− r′|)ϕ(r′)− 1

V

∫
drω(r)ϕ(r)− lnQ[ω] (20)

where the Stirling approximation lnn! ≈ n lnn − n is used, a constant factor is

omitted in Z, and the single-chain partition function is defined as Q ≡
∏N

s=1

∫
dRs ·

exp
[
−
∑N−1

s=1 βub
s −

∑N
s=1 ω(Rs)/N

]/
G with G ≡

∏N
s=1

∫
dRs · exp

(
−
∑N−1

s=1 βub
s

)
.

The partition function can be rewritten in by recalling the definition of the normalized tran-

sition probability, Eq. (4). Furthermore, after applying the definition of the normalized

transition probability, the partition function can be further expressed by a functional known

as the chain propagator defined as

qs+1(r) = exp[−ω(r)]

∫
dr′Φ(|r− r′|)qs(r′) (21)

which is a Chapman-Kolmogorov equation analogous to the probability density given by

Eq. (3) for the particle case. The chain propagator can be built up recursively by starting

with the initial condition q0(r) = 1. The chain propagator, qs(r), is the statistical weight

for a chain of s + 1 beads to have its end at position r.22 The reason we are interested in

this functional for single chains is because once the mean-field (or SCFT) approximation is

applied, the problem of many chains reduces to that of a single noninteracting polymer chain

in external fields.
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2.5 DIBLOCK COPOLYMERS: SELF-CONSISTENT FIELD (SCF) THE-

ORY

Now that we have forms of potentials for DGC diblock copolymers, we can develop the field

theory as done for homopolymers in Section 2.2. We begin by identifying the configurational

canonical-ensemble partition function of the system as

Z =
n∏

k=1

N∑
s=1

∫
dRk,s · exp

{
−

n∑
k=1

N−1∑
s=1

βub
k,s − βHnb[ρ̂A, ρ̂B]

}
(22)

where we have written the non-bonded Hamiltonian in terms of microscopic densities of A and

B segments defined as ρ̂A(r) ≡
∑n

k=1

∑NA

s=1 δ(r−Rk,s) and ρ̂B(r) ≡
∑n

k=1

∑N
s=NA+1 δ(r−Rk,s),

respectively at spatial position r. The Hamiltonian due to non-bonded interactions is given

by

Hnb=
1

2κρ0

∫
drdr′ [ρ̂A(r) + ρ̂B(r)]u0(|r− r′|) [ρ̂A(r′) + ρ̂B(r

′)]− nN

2κρ0
u0(0)

+
χ

ρ0

∫
drdr′ρ̂A(r)u0(|r− r′|)ρ̂B(r′) (23)

Note that Eq. (23) is simply the summation of uκ(r) and uχ(r) over all segment pairs in

the system. We note that Eq. (23) is equivalent to Eq. (A4) in our previous work, Ref. [7].

Next, we can transform the above particle-based model to a field-based one following the

methodology in Section 2.2 by inserting in Eq. (22) the following identity.

1 =
∏

j=A,B

∫
DϕjDωj exp

{∫
drωj(r) [ρ0ϕj(r)− ρ̂j(r)]

}
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where ϕA(r) and ϕB(r) are normalized segmental density (volume fraction) fields constrained

to ρ̂A(r)/ρ0 and ρ̂B(r)/ρ0, respectively, and ωA(r) and ωB(r) are (purely imaginary) conjugate

fields interacting with A and B segments, respectively, which impose the constraints. We

further re-scale variables according to r/Re,0 → r (thus V/Rd
e,0 → V , where Re,0 =

√
N − 1a

and d is the number of dimensions in which calculations are performed), u0(|r− r′|)Rd
e,0 →

u0(|r− r′|), and Nωj(r) → ωj(r) (j=A,B). After some manipulations we obtain

Z =

∫
DϕADωADϕBDωB exp{−nβfc[ϕA, ϕB, ωA, ωB]}

with

βfc =
χN

V

∫
drdr′ϕA(r)βu0(|r− r′|)ϕB(r

′)

+
N

2κV

∫
drdr′ [ϕA(r) + ϕB(r)] βu0(|r− r′|) [ϕA(r

′) + ϕB(r
′)]

− 1

V

∫
dr [ωA(r)ϕA(r) + ωB(r)ϕB(r)]− lnQ[ωA, ωB] (24)

where again the Stirling approximation is used, a constant factor is omit-

ted in Z, and the single-chain partition function is defined as Q ≡∏N
s=1

∑
Rs

· exp
[
−
∑N−1

s=1 βub
s −

∑NA

s=1 ωA(Rs)/N −
∑N

s=NA+1 ωB(Rs)/N
]/

G with

G ≡
∏N

s=1

∑
Rs

· exp
(
−
∑N−1

s=1 βub
s

)
= V

(
4π

√
π/6

/
3(N − 1)3/2

)N−1

. This field the-

ory is the starting point for analysis using the random-phase approximation,33 which closely

follows the Appendix 3 and 4 of our previous work7 and gives the mean-field order-disorder

transition of symmetric DBC, and derivation of the SCF equations given below.

The SCF equations are obtained from Eq. (24) by setting δβfc/δϕj(r) = δβfc/δωj(r) = 0,
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and can be written as

ω̂A(k) = βû0(k)

[
N

κ
ϕ̂A(k) +

(
N

κ
+ χN

)
ϕ̂B(k)

]
(25)

ω̂B(k) = βû0(k)

[
N

κ
ϕ̂B(k) +

(
N

κ
+ χN

)
ϕ̂A(k)

]
(26)

ϕA(r) =
exp[ωA(r)/N ]

Nq̂N(k = 0)/V

NA∑
s=1

qs(r)q
∗
N−s+1(r) (27)

ϕB(r) =
exp[ωB(r)/N ]

Nq̂N(k = 0)/V

N∑
s=NA+1

qs(r)q
∗
N−s+1(r) (28)

where we denote the Fourier transform of ωj(r), for example, by ω̂j(k) ≡
∫
dre−ik·rωj(r)

with k being the wave-vector, and k ≡ |k|. The chain propagator qs(r) corresponds to

the probability of finding a partial copolymer chain of s segments that starts from the

A-end (where s = 1) anywhere in the system and ends at r, and it satisfies the Chapman-

Kolmogorov equation (CKE)25

qs+1(r) =


exp[−ωA(r)/N ]

∫
dr′Φ(|r− r′|)qs(r′) for s = 1, . . . , NA − 1

exp[−ωB(r)/N ]
∫
dr′Φ(|r− r′|)qs(r′) for s = NA, . . . , N − 1

(29)

with the initial condition q1(r) = exp[−ωA(r)/N ], where Φ(r) = [3(N −

1)/2π]d/2 exp [−3(N − 1)r2/2] (note that chains propagate in 3D regardless of d). Similarly,

the propagator q∗t (r) corresponds to the probability of finding a partial copolymer chain of

t segments that starts from the B-end (where t ≡ N − s + 1 = 1) anywhere in the system
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and ends at r, and it satisfies the following CKE

q∗t+1(r) =


exp[−ωB(r)/N ]

∫
dr′Φ(|r− r′|)q∗t (r′) for t = 1, . . . , NB − 1

exp[−ωA(r)/N ]
∫
dr′Φ(|r− r′|)q∗t (r′) for t = NB, . . . , N − 1

(30)

with the initial condition q∗1(r) = exp[−ωB(r)/N ]. Once the SCF equations are solved, the

mean-field free energy per chain can be calculated as

βfc=− 1

V

∫
dk

(2π)3

{N

2κ

[
ϕ̂A(k) + ϕ̂B(k)

]
βû0(k)

[
ϕ̂A(−k) + ϕ̂B(−k)

]
+χNϕ̂A(k)βû0(k)ϕ̂B(−k)

}
− ln

q̂N(k = 0)

V
. (31)

The SCF equations are solved in real space with the periodic boundary conditions applied

in all directions. The convolutions in Eqs. (29) and (30) are evaluated via the fast Fourier

transforms,34 and Eqs. (25) and (26) are solved via either the Broyden method combined

with a globally convergent strategy35 in 1D or the Anderson mixing36 in 2D and 3D

with an error ε = max[abs(△ωA,△ωB)] ≤ 10−12. Our spatial discretization gives an

accuracy of at least 10−5 in the calculated βfc. We have only considered four ordered

morphologies in this work: lamellae (L) in 1D, hexagonally packed cylinders (C) in 2D,

and spheres arranged on a body-centered cubic lattice (S) and the double-gyroid (G)

in 3D. For each of these morphologies, βfc is minimized with respect to the calcula-

tion cell size to obtain its bulk period L0 at given χN . These minimized βfc, along with

that of the disordered phase (D), are then used to determine the phase boundaries at given f .

In the limit of N → ∞ at finite Re,0, DGC becomes the continuous Gaussian chain
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(CGC) model commonly used in polymer field theories. In addition, with σ = 0 and κ = 0,

our model recovers the “standard” one (i.e., incompressible DBC melts of CGC interacting

with the Dirac δ-function potential) used in polymer field theories, for which the SCF equa-

tions can be found in, for example, Ref. [37]. Incompressible melts corresponds to N/κ → ∞.

There are several differences between DPD simulations and SCFT calculations. First,

while DPD simulations include fluctuations and correlations, such effects are neglected by

the mean-field approximation in SCF calculations. Second, DPD is a dynamic simulation

technique while SCF is an equilibrium approach, which means that the morphology in

DPD simulations could be kinetically trapped. Third, Groot and Madden2 used a fixed-size

box with periodic boundary conditions, which limit the allowed periods of the ordered

structures, while SCF calculations can find the bulk period that minimizes the system

free energy. Finally, DPD simulations have to be done for finite-size systems, while SCF

calculations correspond to the thermodynamic limit. Thus comparisons between DPD

simulations using DGC with the DPD potentials and the standard SCFT model for DBCs,

as made by Groot and Madden, mix all these differences together.

In the results, comparisons of MC simulations SCF calculations using the same model are

presented to unambiguously reveal the fluctuation and correlation effects. Furthermore, the

SCF results of the standard model are compared with the DPD model to unambiguously

reveal the model differences.
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3 RESULTS AND DISCUSSION

For the DPD model system, unless specified otherwise, we use the same parameter values

as in the DPD simulations,2,3 i.e., N = 10, σ/Re,0 = 2/3
√
3, N/κ = 50π, χN = 30π (at

ρ0σ
3 = 3) and 20π (at ρ0σ

3 = 5).

3.1 SCF CASES AND ACCURACY

Table 1 shows the upper and lower limits of χN values, spatial discretization size, and free

energy accuracy for our SCF calculations for different volume fractions and phases. For the

1D, 2D, and 3D phases our spatial discretization of 256, 128, and 96 respectively gives an

accuracy of at least 10−5 in the calculated βfc. For the upper limit of χN values for the

different cases, the corresponding period l0 is also shown.

Table 1: The upper and lower limits of χN values, spatial discretization size m, and free energy accuracy
for our SCF calculations for different volume fractions and phases.

Phase χNmin χNmax l0(χNmax) m βfc accuracy

f=0.1
L 63.300 95.000 2.538 256 4.31× 10−07

C 50.100 82.000 1.988 128× 224 8.96× 10−06

S 47.700 80.000 2.212 96 3.39× 10−05

f=0.2
L 25.509 95.000 2.633 256
C 22.767 47.500 2.121 128× 224 4.40× 10−06

S 21.991 52.000 2.607 96 2.67× 10−06

f=0.3
L 15.713 95.000 2.645 256
C 15.119 45.000 2.380 128× 224
S 14.911 50.000 3.044 96

f=0.4
L 12.318 95.000 2.657 256
C 12.216 19.000 2.061 128× 224 1.24× 10−07

S 12.196 17.000 2.450 96
G 12.300 16.770 4.228 96 8.78× 10−06

f=0.5 L 11.427 95.000 2.662 256
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The phase boundaries for the multiple cases were calculated by fitting a third-order poly-

nomial to the free energy curves and determining the value of χN where the free energies

are equal. The spatial accuracy in βfc was determined by running simulations for constant

parameters and varying the spatial discretization, m. Fig 1 shows the accuracy relative to

m = 2048 for varying spatial discretization for the symmetric DBC (f = 0.5) case. At

m = 2048, the difference in free energy is on the order of the floating-point accuracy of

computers.
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Figure 1: Spatial accuracy in βfc relative to m = 2048 for symmetric DBC (f = 0.5). At m = 2048, the
difference in free energy is on the order of the floating-point accuracy of computers.
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3.2 SYMMETRIC DBC

3.2.1 ORDER-DISORDER TRANSITION (ODT)

For the results, we will first look at the order-disorder transition (ODT) of symmetric DBCs

(f = 0.5). Table 2 shows the mean-field ODT for various combinations of either continuous

Gaussian chains (CGC) or discrete Gaussian chains (DGC) with either the Dirac δ-function

repulsion or the DPD potential, βu0, thus highlighting the effects of chain discretization and

interaction range. With increasing interaction range σ, both the mean-field ODT χ∗
MFN

and the lamellar period L∗
0,MF/Re,0 in parenthesis increase. This is consistent with previous

work done by Wang.38 Since A-B repulsion becomes larger due to an increase in interaction

range of uχ(r), an increase in l0 results to restore the balance between the A-B repulsion

and chain stretching.38 The increase in χ∗N observed in experiments from the mean-field

result is not entirely due to fluctuations since small but finite interaction range is present

in real systems.38 With decreasing chain discretization N , however, χ∗
MFN decreases and

L∗
0,MF/Re,0 increases.

Table 2: Mean-field ODT χ∗
MFN and the corresponding bulk lamellar period L∗

0,MF of symmetric DBC for
four combinations of chain model with non-bonded interaction potential, obtained from RPA. The upper-left
corresponds to the “standard” model and the lower-right to the DPD model system.

χ∗
MFN(L∗

0,MF/Re,0) δ-function potential DPD-potential

CGC 10.495 (1.318) 12.134 (1.462)
DGC with N = 10 9.944 (1.345) 11.427 (1.495)

Looking at the standard model (CGC, δ) and the DPD model (DGC, βu0) in Table 2,

we notice that the mean-field ODT is not affected by the system compressibility. Based
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on previous work done by Wang,38 it was shown that although the increase in system

compressibility (i.e, decreasing N/κ) decreases both fc and l0, it has no effect on the

mean-field ODT. As the compressibility is increased (i.e., i N/κ), l0 decreases to account

for the reduction in A-B repulsion resulting from stronger segregation of the A and B

segments. Similarly, as the system becomes incompressible (N/κ → ∞), the segments

become hardspheres resulting in an increase in l0. We note in Fig. 2 the phase transition

from the disordered phase to the lamella phase is a second-order phase transition, and

it was shown by Wang38 that a finite compressibility still results in a second-order phase

transition.[EXPLAIN-need Matsen’s email for explanation on 2nd-order phase transition]
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Figure 2: Second-order phase transition for symmetric DBC (f = 0.5) from lamella to disordered shown by
comparing the free energy of the lamella βfL

c (L) in comparison to the free energy of the disordered phase
(D).
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Fig. 3 shows the lamellar period as a function of χN . Note that the period mono-

tonically increases with χ.
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Figure 3: The lamellar period l0 as a function of χN .

Table 3 shows the ODT χ∗N and the corresponding bulk lamellar period L∗
0 deter-

mined from our FOMC simulations of the DPD model system. We see that both χ∗N

and L∗
0 are significantly larger than the corresponding mean-field value due to the large

system fluctuations/correlations, which are expected for the small N̄ -values used in the

simulations. Another well-known effect of fluctuations on ODT of symmetric DBC is to

change it from a second-order phase transition predicted by the mean-field theory to a

first-order transition.17,26
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To compare their DPD simulations with the SCF results for the “standard” model,

Groot and Madden mapped the interaction parameters aAA = aBB and aAB in the simula-

tions to the Flory-Huggins χ parameter in the “standard” model (denoted by χe hereafter)

using the following relation valid for χe > 3:

χe =


(0.306± 0.003)(aAB − aAA) for ρ0σ

3 = 3 and 2 < N < 10

(0.689± 0.002)(aAB − aAA) for ρ0σ
3 = 5 and N = 1

. (32)

This relation was obtained by Groot and Warren via fitting the domain segregation

from canonical-ensemble DPD simulations of phase-separated symmetric mixtures of A

and B monomers (at ρ0σ
3 = 5) and homopolymers (at ρ0σ

3 = 3, where a value of 2

instead of 4 was used in the spring force given in Eq. (8)) to the corresponding prediction

of the Flory-Huggins theory,23 and its use by Groot and Madden clearly has no rigorous basis.

To account for the fluctuation effects neglected by the SCF calculations, Groot and

Madden further used an “effective” χ-parameter χe,f = χe/(1 + 3.91N̄−1/3) based on FH

theory,17 which gives χ∗/χ∗
MF − 1 = 3.91N̄−1/3. The values of χeN and χe,fN corresponding

to χ∗N determined from our FOMC simulations are also listed in Table 3; at both densities,

χe,fN is clearly different from the mean-field ODT for the “standard” model (i.e., 10.495).

As explained in Introduction, the small N̄ -values in the DPD simulations do not justify the

use of FH theory which is rigorously accurate only for N̄ ≥ 1010; our FOMC data in Table 3

give χ∗/χ∗
MF − 1 = 31.16N̄−0.63 if the power-law is assumed. Finally, we note that another

way to calculate χe,f used in Ref. [2] (see Eq. (13) there), which gives “a near quantitative
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match with the mean-field theory” as claimed by Groot and Madden,2 results in χe,fN ≈ 16

at both densities.

Table 3: ODT χ∗N and the corresponding bulk lamellar period L∗
0 of symmetric DBC for the DPD model at

given segmental number density ρ0σ
3, obtained from FOMC simulations. The corresponding values of the

invariant degree of polymerization N̄ , the Flory-Huggins parameter χe, and that corrected for the fluctuation
effects based on FH theory χe,f are also listed. See main text for more details.

ρ0σ
3 N̄ χ∗N χ∗

eN χ∗
e,fN L∗

0/Re,0

3 ≈ 28 55.08± 0.47 26.82± 0.82 11.70± 0.36 2.203± 0.001
5 ≈ 77 34.31± 0.82 22.57± 0.57 11.76± 0.30 2.053± 0.003

3.2.2 FLUCTUATION/CORRELATION EFFECTS ON LAMELLAE

Next, we examine the fluctuation/correlation effects on strongly segregated lamellae. Table 4

shows under the condition that ρ0σ
3 = 3(N̄ ≈ 28, χN = 30π) for the DPD model, our Monte

Carlo simulations give a smaller bulk period than predicted by the self-consistent field theory,

while Groot and Madden2 used a larger period.

Table 4: Bulk period obtained from MC, SCF and DPD.

ρ0σ
3 = 3(N̄ ≈ 28, χN = 30π)

L0/Re,0

MC 2.50± 0.01
SCF 2.658
DPD2 2.722

Fig. 4 compares the relative fraction of A segments within the lamellae obtained from our
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MC simulations and SCF calculations; we see that the simulations give a much larger A-B

interfacial width, due to the capillary-wave fluctuations of the interfaces that are neglected by

the SCF calculations. Fig. 5 compares the total polymer density profile in the lamellae. Since

0.0 0.5 1.0
0.0

0.5

1.0

 

 
A(x

) [
A(x

)
B(x

)]

x L0

 MC
 SCF

Figure 4: Comparisons of the ensemble-averaged profiles of the relative fraction of A segments in the direction
(denoted by x) perpendicular to the lamellar interfaces, ϕ̃A(x) ≡ ⟨ϕA(x)/[ϕA(x) + ϕB(x)]⟩ obtained from
our SCF calculations and FOMC simulations of the DPD model at χN = 30π (N̄ ≈ 28 in the simulations),
where the bulk lamellar period L0/Re,0 = 2.658 in the SCF calculations and 2.50 ± 0.01 in the FOMC
simulations.

the DPD model is compressible, we see large density oscillations near the A-B interfaces in

SCF calculations, which are strongly suppressed in MC simulations again due to the system

fluctuations.
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Figure 5: Comparisons of the ensemble-averaged profiles of the total segmental density in the x-direction,
ϕ(x) ≡ ⟨ϕA(x) + ϕB(x)⟩ obtained from our SCF calculations and FOMC simulations of the DPD model
at χN = 30π (N̄ ≈ 28 in the simulations), where the bulk lamellar period L0/Re,0 = 2.658 in the SCF
calculations and 2.50± 0.01 in the FOMC simulations.
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3.3 ASYMMETRIC DBC SCF RESULTS

For asymmetric DBC at A-block volume fraction of f = 0.4, Fig. 6 shows the free energy

per chain βfc of various ordered phases relative to that of the disordered phase obtained

from SCF calculations. We see that, with increasing χN , the stable phase having the lowest

βfc changes in the sequence of D→S→C→G→L; the stable regions of the order phases are

listed in Table 5. Note that we haven’t included hexagonally closely packed spheres and

the complicated Fddd phase in our calculations. This sequence is the same as found for the

“standard” model, but all the phase boundaries are shifted to higher χN compared to the

latter, as also shown in Table 5. We attribute this to the finite interaction range σ > 0 in the

DPD model, which is consistent with our RPA results on the mean-field ODT of symmetric

DBC shown in Table 2. That σ > 0 shifts the phase boundaries to higher χN is also found

by Matsen in his recent SCF calculations of incompressible DBC melts modeled as freely

jointed chains with a Gaussian non-bonded repulsive potential between A and B segments.38

Fig. 7 compares βfc of various phases obtained from our SCF calculations of the DPD

model at f = 0.3, where L is unstable. In addition, we have not been able to find G at all,

suggesting that it also be unstable. With increasing χN , the stable phase now changes in

the sequence of D→S→C. As in the f = 0.4 case above, this sequence is the same as found

for the “standard” model with all the phase boundaries shifted to higher χN as shown in

Table 5. The same is found at f = 0.2 in Fig. 8, as also shown in Table 5.

Finally, at f = 0.1, our SCF results shown in Fig. 9 and Table 5 indicate that S is the only
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Figure 6: Free energy per chain βfc of various ordered phases relative to the disordered phase obtained
from SCF calculations for asymmetric DBCs for f = 0.4. The sub plot shows βfc of various ordered phases
relative to the free energy per chain of the spheres βfS

c at higher χN .

stable ordered phase, again consistent with the “standard” model. Different from the above

cases, however, χN at the D/S transition is lower than that for the “standard” model. We

attribute this to the finite chain discretization N = 10 in the DPD model (i.e., only one

segment in the A-block), which is consistent with our RPA results on the mean-field ODT

of symmetric DBC shown in Table 2.
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Table 5

Stable regions in χN of various ordered phases obtained from the SCF calculations of the DPD and the
“standard” models; results for the latter model are provided by Mark Matsen. For each A-block volume
fraction in the copolymer f , the stable phase (having the lowest Helmholtz free energy per chain) is replaced
by that in a lower row at higher χN . The last column lists the χN -values at which the DPD simulations2,3

were performed; the morphology obtained from the DPD simulations is given in parentheses if it is different
from the SCF prediction. See main text for more details.

f Phase
SCF Results

Morphology Found in DPD Simulations
DPD model “standard” model

0.5 L >11.427 >10.495 20π, 30π

0.4

S >12.215 >11.231
C >12.324 >11.373
G >13.730 >12.786

L >15.933 >15.352

20.5± 0.2 (D)a, 41.1± 0.4 (“liquid rods”),
61.6± 0.6 (“random network”),
82.1± 0.8 (“like gyroid”),
30π, 102.7±1.0, 123.2±1.2

0.3
S >15.007 >13.917
C >15.970 >14.989 20π, 30π

0.2

S >22.373 >21.136

C >28.589 >27.740

41.1± 0.4 (D), 61.6± 0.6 (“micellar”),
20π (“micellar”), 82.1± 0.8 (“micellar”),
30π (“micellar”), 102.7± 1.0 (“long micellar”),
123.2± 1.2

0.1 S >47.181 >47.956 30π (D)

a Also found at f = 0.2.
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Figure 7: Free energy per chain βfc of various phases relative to the disordered phase obtained from our
SCF calculations of the DPD model at f = 0.3
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Figure 8: Free energy per chain βfc of various phases relative to the disordered phase obtained from our
SCF calculations of the DPD model at f = 0.2
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Figure 9: Free energy per chain βfc of various phases relative to the disordered phase obtained from our
SCF calculations of the DPD model at f = 0.1
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3.4 COMPARING MORPHOLOGIES IN SCF CALCULATIONS AND

DPD SIMULATIONS

Using a cubic box of (20σ)3, Groot and Madden performed DPD simulations at χN = 30π

(with ρ0σ
3 = 3) and 20π (with ρ0σ

3 = 5),2 and Chen et al. performed DPD simulations

at more χN -values (with ρ0σ
3 = 3).3 Table 5 also lists the morphologies obtained in

these DPD simulations; as the values of χeN instead of aij were reported in Ref. [3], their

χN -values have a small error bar due to the use of Eq. (32). In eleven of the totally 20

cases (f -χN combinations) studied, a morphology different from that predicted by the SCF

calculations was obtained, mostly at f = 0.4 and 0.2. We focus on these discrepancies in

the following.

As shown in Table 3, our FOMC simulations give χ∗N = 55.08 ± 0.47 for symmetric

DBC with ρ0σ
3 = 3; for asymmetric DBC, we expect the ODT to be at higher χN , which

means that the disordered phase found in the DPD simulations at f = 0.4 (χN = 20.5±0.2)

and 0.2 (χN = 41.1 ± 0.4)3 is due to the large system fluctuations neglected in the SCF

calculations. In the case of f = 0.1 (χN = 30π), where the ODT is unknown, mismatch

between the cubic simulation box and the bulk period of S could also lead to the disordered

phase found in the DPD simulations.2 On the other hand, the “liquid rods” morphology

found in the DPD simulations at f = 0.4 (χN = 41.1 ± 0.4)3 is questionable, as their

χN -value is even below our ODT for symmetric DBC.

The “random network” and “like gyroid” morphologies found in the DPD simula-
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tions at f = 0.4 (χN = 61.6 ± 0.6 and 82.1 ± 0.8, respectively)3 are interesting and may

correspond to G in the SCF calculations. Mismatch between the cubic simulation box and

the bulk period of G, however, needs to be considered, which strongly affects the observation

of G in fixed-box simulations.39

Finally, the “micellar” and “long micellar” morphologies found in most DPD simula-

tions at f = 0.22,3 may be due to the mismatch between the cubic simulation box and

the bulk period of C. As DPD is a dynamic simulation technique, these poorly ordered

morphologies could also be kinetically trapped.
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4 SUMMARY

Using soft potentials such as that for the conservative force in the dissipative particle

dynamics (DPD) simulations1,4 is the basic idea of the so-called fast Monte Carlo (FMC)

simulations,7–9 which in principle give the same thermodynamic properties as the DPD

simulations.4 In this work, we revisit the comparisons made by Groot and Madden2,18

and Chen et al.3 between their DPD simulations of the DPD model (i.e., a compressible

system of discrete Gaussian chains each of N = 10 segments interacting with a finite-range

(DPD) potential) and the self-consistent field (SCF) calculations of the “standard” model16

(i.e., an incompressible system of continuous Gaussian chains interacting with the Dirac

δ-function potential) for diblock copolymer (DBC) A-B melts, where the model differences

were mixed with the following differences between the two methods: (1) DPD simulations

sample the full spectrum of fluctuations/correlations of the system, which are neglected in

SCF calculations; (2) morphologies found in DPD simulations could be kinetically trapped,

while SCF is an equilibrium approach; (3) the DPD simulations2,3, 18 are performed in a

fixed-size box, which limits the allowed periods of the ordered structures,21 while the SCF

calculations16 find the bulk period of all ordered phases; and (4) binary blends of DBC

with different compositions (volume fractions of the A-block in the copolymer) f are used

in most of the simulations by Groot and Madden,2,18 while the SCF calculations16 are for

pure DBC systems.

We perform both SCF calculations and FMC simulations in a canonical ensemble

based on the DPD model; note that our FMC simulations performed in variable-size boxes
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can find the bulk period of lamellar and cylindrical structures. Comparing our SCF results

with those for the “standard” model therefore unambiguously reveals the effects of model

differences (i.e., the system compressibility, chain discretization N , and interaction range σ),

and comparing our SCF and FMC results reveals, without any parameter-fitting, the effects

of system fluctuations/correlations neglected in the SCF theory. Furthermore, comparing

our FMC results with the DPD results obtained in the same fixed-size box unambiguously

identifies the kinetically trapped structures in the latter, and comparing our SCF (or FMC)

results in both fixed- and variable-size boxes unambiguously reveals the effects of fixed

vs. bulk periods. For simplicity, we only consider systems of pure DBC and four ordered

morphologies in this work: lamellae, hexagonally packed cylinders, spheres arranged on a

body-centered cubic lattice, and the double-gyroid.

For symmetric DBC, the mean-field ODT χ∗
MFN and the corresponding bulk lamellar

period L∗
0,MF (as listed in Table 2) are not affected by the system compressibility N/κ37 and

the invariant degree of polymerization N̄ , where χ and κ are the generalized Flory-Huggins

interaction parameter and the generalized Helfand compressibility24,25 defined in the DPD

model (see Eq. (23)). Consistent with our previous work,7,37 we find that χ∗
MFN increases

with both increasing σ and increasing N , and L∗
0,MF increases with increasing σ but

decreasing N . On the other hand, the ODT χ∗N and the corresponding bulk lamellar

period L∗
0 determined from our FOMC simulations of the DPD model (as listed in Table 3)

are significantly larger than the corresponding mean-field value due to the large system fluc-

tuations/correlations expected for the small N̄ -values used in the simulations. Such small

N̄ -values do not justify the use of the fluctuation theory of Fredrickson and Helfand17 by

41



Groot and Madden, and the parameter-fitting (i.e., the use of Eq. (32)) in their comparisons

with the SCF results of the “standard” model also has no rigorous basis. Finally, consistent

with our previous work,40 for well-ordered lamellae we find that the capillary-wave fluctua-

tions at the A-B interfaces increase the interfacial width, and that the system fluctuations

greatly suppress the large depletion of the total segmental density at the A-B interfaces

as well as its oscillations in lamellar domains predicted by our SCF calculations. Sim-

ilar results are also found for well-ordered, hexagonally packed cylinders at f = 0.3 (and 0.7).

As summarized in Table 5, at all values of f (which are integer multiples of 0.1) our

SCF calculations of the DPD model give the same sequence of phase transitions with

varying χN as the “standard” model. All phase boundaries, however, are shifted to higher

χN due to σ > 0, except at f = 0.1 (and 0.9), where χN at the transition between the

disordered phase and the spheres arranged on a body-centered cubic lattice is lower due to

N = 10 in the DPD model. Finally, Table 5 also compares, without any parameter-fitting,

the morphologies obtained in the DPD simulations2,3 with the SCF predictions. In eleven of

the totally 20 cases (f -χN combinations) studied, a morphology different from the SCF pre-

diction was obtained due to the aforementioned differences (1)∼(3) between the two methods.

We emphasize that the goal of this work is not to invalidate the DPD model/method, but

to highlight the importance of quantitative and parameter-fitting-free comparisons among

different models/methods. In fact, with the numerical SCF calculations well-developed and

widely applied to various polymeric systems,22 it is of great interest to achieve quantitative

understanding of the fluctuation/correlation effects neglected by the SCF calculations. For
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this purpose, it is invaluable to develop particle-based models/methods such as DPD1,4 or

fast Monte Carlo simulations7–9 and field-based models/methods such as the field-theoretic

simulations.41 Direct comparisons between these simulations and SCF calculations based on

the same model system, thus without any parameter-fitting, can unambiguously quantify

the fluctuation/correlation effects in the system.12–14
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