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ABSTRACT 

The isentropic/vortex coordinate version of semigeostrophic theory is developed 

on the ,B-plane and on the sphere. In both cases this approach results in a simple 

mathematical form in which the horizontal ageostrophic velocities are implicit and 

the entire dynamics reduce to a predictive equation for the potential pseudodensity 

and an invertibility relation. Linearized versions of both theories lead to a gener­

alized Charney-Stern theorem for barotropic/baroclinic instability and to Rossby 

wave solutions with a meridional structure which for the ,B-plane case is different 

from that in quasi-geostrophic theory and for the spherical case is different from 

spherical harmonics. In both cases the equator represents a singular point, so that 

a more accurate term for the spherical theory is hemispheric theory. 

By applying Hamilton's principle to a Lagrangian which approximates the wind 

by the geostrophic wind and to which a coordinate transformation has been applied, 

it is shown how an entire class of approximate balanced models can be generated 

which differ only in the way in which the balance conditions together with the 

horizontal coordinate transformations are defined. The equations of motion for 

the long wave approximation are derived from a Lagrangian which neglects the 

meridional wind. These models share an essential characteristic - they all conserve 

total energy and potential vorticity. 

A limitation inherent in semigeostrophic theory involves the geostrophic mo­

mentum approximation. It neglects curvature vorticity compared to shear vortic­

ity and assumes geostrophic balance, which breaks down on the equator. In an 

attempt to move towards a globally balanced theory a two dimensional zonally 

symmetric model in gradient wind balance is used to study the Hadley cell and 

the conditions which are created by heating alone and which are favorable for the 

barotropic/baroclinic instability described by the Charney-Stern theorem. 
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Chapter 1 

INTRODUCTION 

The set of primitive equations has been successfully used in numerical weather predic­

tion for a number of years. The primitive equations are derived from the Euler equations of 

compressible fluid motion with only one filtering approximation, the assumption of hydro­

static balance, in addition to the traditional approximation (Phillips, 1966) for a shallow 

atmosphere on a sphere. Thus the primitive equations have a wide spectrum of allow­

able solutions ranging from the horizontally propagating Lamb waves to gravity modes 

to the slow rotational modes. Only the slow modes are of importance for the dynamical 

evolution of the larger scale flow with which numerical weather prediction is concerned. 

Therefore, the prediction models currently used are working "harder" than needed by 

predicting modes of atmospheric motions which are not necessary for the development of 

the large scale flow. More importantly the analysis of observations with which the time 

integrations are started must be balanced so as not to produce spurious accelerations. 

This last process is called initialization. Richardson (1922), who was the first to try his 

hand at numerical forecasting and who used the set of primitive equations, failed partially 

on account of improper initialization. Aside from practicalities associated with numerical 

weather prediction it is essential to be able to treat the slow modes of atmospheric mo­

tions separately for physical interpretations and understanding of the underlying physical 

principles without the complexities the full primitive equation set brings with it. 

Rossby (1939) introduced the first approximate dynamical model of large scale flow, 

the barotropic vorticity model. It assumes that the vertical component of vorticity is con­

served in two dimensional horizontal motion on a ,a-plane. This was later generalized to 

the sphere by Haurwitz (1940). Ertel (1942) proved the fundamental conservation princi­

ple that potential vorticity, P, in a stratified, adiabatic, frictionless fluid is conserved. The 
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assumption of hydrostatic balance was not required in his proof. The question remained as 

to how to simplify the primitive equations while maintaining this conservation principle. 

Charney (1948) introduced the widely used and deservedly celebrated quasi-geostrophic 

system using scale analysis. The classical quasi-geostrophic system (as developed by Char­

ney and Stern, 1962) provided the necessary theory for understanding baroclinic instability 

and other midlatitude large scale processes. This system of equations is balanced in that 

they can neither describe sound waves nor gravity waves. The quasi-geostrophic equations 

are energy conserving and possess a potential vorticity principle which is different from 

Ertel's. The advecting wind is horizontal and geostrophic, the static stability is horizon­

tally uniform and the nonlinear stretching and twisting of vorticity is neglected. Thus, 

the quasi-geostrophic system can neither describe areas of large vorticity (compared to 

the Coriolis parameter) nor areas of rapidly changing static stability; however, the system 

has been used with a fair measure of success in situations where its assumptions seem to 

be violated. 

Eliassen (1948) proposed approximating momentum in the primitive equations by 

geostrophic momentum, the so called geostrophic momentum approximation. Note that 

in contrast to quasi-geostrophic theory the advecting wind contains both geostrophic 

and ageostrophic components; the only difference from the primitive equation momen­

tum equations is that what is being advected is geostrophic wind. This is analogous to 

the hydrostatic approximation in which the vertical component of momentum is neglected 

but vertical advection is retained. These equations are balanced, are energy conserving 

and have a potential vorticity principle. The definitions of energy and potential vortic­

ity are analogous to the corresponding definitions for the primitive equations except that 

wherever the wind appears it is replaced by its geostrophic value. A drawback of the 

system is that it contains two prognostic equations which are not independent, and the 

ageostrophic wind is only implied. The system first blossomed out with the definition of 

the coordinate transformations of semigeostrophic theory - the geostrophic coordinates. 

In geostrophic coordinates the horizontal ageostrophic advection becomes implicit, regions 

of high vorticity are stretched, regions of low vorticity are shrunk, and potential vorticity 



3 

takes on the role of static stability in the quasi-geostrophic system. The semigeostrophic 

equations as given by Hoskins (1975) and Hoskins and Draghici (1977) are almost as simple 

as the quasi-geostrophic equationi, but are not limited by their restrictive assumptions and 

therefore apply to more general physical situations where large shear vorticity and nonuni­

form static stability are present, Le., such as in fronts, jets, occluding baroclinic waves, 

etc. The two dimensional version of semigeostrophic theory with a height independent 

deformation field (Hoskins, 1971; Hoskins and Bretherton, 1972) simulates quite realisti­

cally both surface (uniform potential vorticity assumed) and upper level (discontinuous 

potential vorticity assumed) frontogenesis. The three dimensional theory with a uniform 

potential vorticity jet has produced unstable baroclinic waves evolving into the nonlinear 

regime with fronts and an occluding warm sector (Hoskins, 1976; Hoskins and West, 1979; 

Hoskins and Heckley, 1980). A nonuniform potential vorticity jet produces more realistic 

upper tropospheric frontogenesis (Heckley and Hoskins, 1982). Schubert (1985) proposed 

a computationally more convenient form of tqree dimensional semigeostrophic theory, the 

"geopotential tendency" form, which allows time integrations of non-Boussinesq, nonuni· 

form potential vorticity flows to be performed almost as easily as for the Boussinesq, 

uniform potential vorticity case. More recently, Schubert et ale (1989) developed what 

may be the most elegant and concise version of semigeostrophic theory - that version 

which makes simultaneous use of geostrophic and isentropic coordinates. With these co­

ordinates, semigeostrophic theory reduces to two equations: a predictive equation for the 

potential pseudo density (or inverse potential vorticity) and a diagnostic equation (or in· 

vertibility principle) whose solution yields the balanced wind and mass fields from the 

potential pseudodensity. In vortex and isentropic coordinates the divergent part of the 

circulation remains entirely implicit. In simple situations the prognostic equation can be 

solved analytically offering valuable physical insight. 

Two limitations of semigeostrophic theory are that it does not include a variable Cori­

olis parameter and that it proves inadequate in physical situations where the curvature 

vorticity is as large as the shear vorticity. This work is concerned with mending the first 

of the two limitations. An attempt is made to offer suggestions for direction of future 
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work in mending the second, which would not be semigeostrophic theory since it would 

not include the geostrophic momentum approximation; rather it would be some different 

and more general approximation to momentum with more general balance equations. A 

two dimensional (axisymmetric) balanced theory for highly curved flows is the well known 

set of Eliassen's (1952) balanced vortex equations. Schubert and Hack (1983) derived a 

simpler version of it for studying tropical cyclones on an I-plane by introducing a coordi­

nate transformation (potential radius) which results in similar simplifications as does the 

transformation to geostrophic coordinates in semigeostrophic theory, Le., the stretching of 

high vorticity regions and potential vorticity taking on the role of static stability. Schubert 

and Alworth (1987) derived the version of this model in isentropic coordinates. Similar 

to semigeostrophic theory, using potential temperature as the vertical coordinate reduces 

the theory to two equations - a predictive equation for the potential pseudodensity (or 

inverse potential vorticity) and a diagnostic equation (or invertibility principle) whose 

solution yields the balanced wind and mass fields from the potential pseudodensity. In 

potential radius and isentropic coordinates the divergent part of the circulation remains 

entirely implicit. By neglecting friction and assuming a simple midtropospheric heating, 

Schubert and Alworth (1987) solved the prognostic equation analytically and inverted the 

potential pseudodensity field to produce quite a realistic vortex at around five days. The 

value of their study lies not least in the fact that it describes the evolution of potential 

vorticity induced by a tropical heat source (Haynes and McIntyre, 1987). More recently, 

Hack et ale (1989) have generalized the two dimensional I-plane theory of Schubert and 

Hack (1983) to the sphere, to study the low latitude zonally symmetric circulation or the 

Hadley cell. An isentropic coordinate version of this model is derived in the present study 

(chapter 6). Closely related to the balanced vortex models is the long wave approxima­

tion model developed by Gill (1980) and later extended (Heckley and Gill, 1984; Gill and 

Phlips, 1986; Stevens et al., 1989). The most general form of this model is as presented 

in Stevens et ale (1989); it is derived in the present work by applying Hamilton's prin­

ciple to a Lagrangian which neglects the meridional wind (section 4.3). Consequently, 

the meridional wind neither enters the definition of kinetic energy nor potential vorticity 
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which have exactly the same form as for the balanced vortex model on the sphere (section 

6.1). In this way the long wave approximation model is two dimensional. However, it is 

not zonally symmetric and in that way it is three dimensional. 

In figure 1.1 an attempt is made to summarize and clarify the discussion above. It 

shows what McWilliams and Ghent (1980) called intermediate models, or those whose 

accuracy lies somewhere between the quasi-geostrophic equations and the primitive equa­

tions. Obviously the figure is not completely comprehensive; it shows only some of the 

models considered to be of major importance in the development and generalization of 

balanced theory. The column on the left indicates two dimensional models, the one on the 

right three dimensional models. As you go up the page in this figure the models become 

more general. We start at the bottom with quasi-geostrophic theory and end on top with 

the primitive equations. The balanced models become more general as you go up the page 

in two ways. First, the earth's geometry is better represented, progressing from I-plane 

to ,B-plane to the full spherical representation. Secondly, the assumed balance becomes 

more general as we go from geostrophic balance to gradient wind balance. Each box in 

the figure indicates a particular intermediate model. The first line in the box indicates the 

type of balance, the second its application and the third when and where it first appeared. 

Globally valid three dimensional balanced theory, represented by the top right-hand side 

box, has not yet been discovered. In particular the diagram shows that the present work 

fills two boxes, the semigeostrophic theory on the ,B-plane and the semigeostrophic the­

ory on the sphere. The methodology in deriving those two models was that of Salmon 

(1983, 1985, 1988). We started by writing out the Lagrangian of the system, made analyt­

ical approximations to it while conserving its symmetries and transformed the horizontal 

coordinates to almost canonical form. The resulting momentum equations, derived by 

Hamilton's principle, are almost canonical. This method is powerful in two respects. By 

conserving the symmetries in the Lagrangian we are guaranteed by Noether's theorem 

that the corresponding conservation laws are maintained and the coordinate transforma­

tion which is so important in semigeostrophic theory, arises quite naturally as exactly 

that one which renders the momentum equations almost canonical. Shutts (1988) has 



Two dimensions 

Balanced vortex on the sphere, 
Hadley cell, 
Hack et al. (1989). 
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Primitive equations 

Three dimensions 

Globally balanced theory on the sphere, 
any balanced flow, 
as yet undiscovered. 

Long wave approximation, 
equatorial flow, 
Gill (1980); Stevens et al. (1989) 

Balanced vortex on the I-plane, 
tropical cyclones, 
Eliassen (1952); Schubert and Hack (1983). 

I-plane, 2-D semigeostrophic theory, 
fron togenesis, 
Hoskins and Bretherton (1972). 

hemispherical semigeo·strophic theory, 
hemispheric flows, 
present work (chapter 3). 

,B-plane semigeostrophic theory, 
baroclinic waves, 
present work (chapter 2). 

Planetary semigeostrophic theory, 
zonally elongated planetary scale flow, 
Shutts (1988). 

I-plane, 3-D semigeostrophic theory, 
baroclinic processes, 
Hoskins (1975); Hoskins and Draghici (1977). 

\Quasi-geostrophic equationsl 

Figure 1.1: Development of the intermediate models considered to be of major importance 
in the theory of balanced flows. Each box represents a model and the higher it is on the 
diagram the more general it is. Listed in each box is the type of balance employed, the 
weather phenomena studied, and where and when the model was developed. 
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derived a three dimensional geostrophically balanced model using the Hamiltonian frame­

work slightly differently. However, the validity of his model is somewhat restricted since 

the kinetic energy equation neglects the component of the geostrophic wind parallel to the 

earth's axis of rotation. 

Chapter 2 introduces semigeostrophic theory on the ,a-plane and chapter 3 introduces 

it on the sphere in vortex and isentropic coordinates. The development is very similar in 

both cases. As in the I-plane case using those coordinates (Schubert et al., 1989), the 

dynamics reduce to one prognostic equation in potential pseudo density (which is related 

to the inverse potential vorticity) and an invertibility principle. vVe show how the con­

servation principles of the primitive equations carryover to these approximate equations 

and consider the linear dynamics. 

Chapter 4 addresses Hamilton's principle, the method used to arrive at the generalized 

geostrophic momentum approximation and the accompanying coordinate transformations 

of chapter 3. It is shown how an entire class of approximate models can be generated 

which differ only in the way in which the balance condition together with the horizontal 

coordinate transformations are defined. These models share an essential characteristic -

they all conserve total energy and potential vorticity. Finally, the equations of the long 

wave approximation model are derived. 

Chapter 5 proves the Charney-Stern theorem for both semigeostrophic systems. The 

proof is more general than the original proof of Charney and Stern (1962). 

Chapter 6 discusses balanced models in the top line of the diagram in figure 1.1, i.e., 

models more general than the semigeostrophic and long wave approximation models. In 

particular, we derive the isentropic coordinate version of the theory developed by Hack et 

ale (1989). It is then used to study the evolution of potential vorticity on isentropic surfaces 

and the breakdown of the ITCZ. Finally, we offer some speculations on the direction of 

and the framework for future work on deriving a three dimensional globally valid balanced 

theory. This two dimensional theory would be a special case of the full three dimensional 

theory. 

Chapter 7 contains some concluding remarks. 



Chapter 2 

SEMIGEOSTROPHIC THEORY ON THE ,B-PLANE 

Here we explore the use of the geometric approximation of the ,B-plane within the 

realm of semigeostrophic theory. The Coriolis parameter is approximated by a linear 

function, such that 

f(y) ::: fo + ,By. (2.1) 

If ,B ::: 0 we have the usual f-plane approximation; if fo ::: 0 we are on the equatorial 

,B-plane; if both fo and ,B are non-zero we are on the midlatitude ,B-plane. 

Salmon (1985) extended semigeostrophic theory to a variable Coriolis parameter in 

Cartesian coordinates. However, his equation set was for a shallow water system and 

although his set can be considered closed it was not in a form convenient for computa­

tions or physi~al interpretations. In this chapter the isentropic/vortex coordinate version 

of semigeostrophic theory is developed on the ,B-plane. This approach results in a simple 

mathematical form where the ageostrophic wind is entirely implicit. The complete dynam­

ics reduce to a form reminiscent of nondivergent barotropic dynamics - the prognostic 

equation becomes an equation predicting the potential pseudodensity and a diagnostic 

equation where a Laplacian-like operator is inverted. 

The following section of the chapter reviews the primitive equations on a ,B-plane 

and their conservation relations. The next section defines the geostrophic momentum 

approximation generalized to the ,B-plane; conservation relations are derived and compared 

to the primitive equations results. Coordinate transformations are defined so as to make 

the ageostrophic wind implicit. This results in one very simple prognostic equation. Next 

the invertibility principle is derived for this system. Finally the linear dynamics of the 

system are considered. 
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2.1 The primitive equations 

Using potential temperature as the vertical coordinate, the primitive equations on 

the ,B-plane can be written 
Du aM 
Dt - f(y) v + ax = F, (2.2) 

Dv aM 
Dt + f (y) 11, + ay = G, (2.3) 

aM 
a8 = 11, (2.4) 

Du (au av aiJ) 
Dt + u ax + 8y + 88 = 0, (2.5) 

where 11, and v are the zonal and meridional components of the velocity, F and G the 

components of the frictional force per unit mass, IT = cp (p/Poo)K. the Exner function, 

M = 8IT + gz the Montgomery potential, u = -ap/a8 the pseudo density, and 

the total derivative. 

D 8 a a ·a - = - + 11,- + v- + 8-
Dt at 8x 8y a8 

2.1.1 Conservation relations 

The kinetic energy equation can be derived by combining (2.2) and (2.3) to get 

DI( 8M 8M 
-+u-+v- = uF+vG, 
Dt 8x 8y 

(2.6) 

(2.7) 

where K == !( 11,2 + v2
) is the kinetic energy per unit mass. Combining (2.7) with the 

continuity equation (2.5) gives 

8(uK) a(uuK) a(uvI() 8(uiJI() 8M aM _ (F G) 
at + ax + ay + 08 + uu ax + uv ay - u 11, + v . (2.8) 

Using the continuity and hydrostatic equations the kinetic energy equation can be written 

8 .. 8 ( ) a ( ) 8 ( . 8p ) 8t(uli)+ ax uu(K +<1» + 8y uv(I( +<1» + 88 u8(K +<1»-<1> 8t = u(uF+vG-aw), 

(2.9) 

where w = Dp/ Dt. 
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For deriving the thermodynamic energy equation, multiply (2.5) by cpT to obt,ain 

o 0 00· ot (ucpT) + ox (uucpT) + oy (uvcpT) + a8 (u8cpT) = u( Q + aw), (2.10) 

where Q = no. Adding (2.9) and (2.10) we obtain the total energy equation 

= u(uF + vG + Q). (2.11a) 

Before integrating (2.11a), we adopt an idea which has proved useful in such contexts as the 

definition of available potential energy (Lorenz, 1955), the analysis of baroclinic instability 

(Bretherton, 1966; Hoskins e,t al., 1985; Hsu, 1988), and the finite amplitude Eliassen­

Palm theorem (Andrews, 1983). The idea involves what happens when an isentropic 

surface intersects the earth's surface. We can regard such an isentrope as continuing just 

under the earth's surface with a pressure equal to the surface pressure. At any horizontal 

position where two distinct isentropic surfaces run just under the earth's surface (and 

hence have the same pressure), there is no mass trapped between them, so that Cf = 0 

there. Let us regard the bottom isentropic surface 8B as the largest value of 8 which 

remains everywhere below the earth's surface. Assuming the top boundary 8T is both an 

isentropic and isobaric surface and assuming no topography and vanishing iJ at the top 

and bottom, we can integrate (2.11a) over the entire atmosphere to obtain 

! jjj(I( + cpT)udxdyd8 = jjj(uF + vG + Q)udxdyd8. (2.11b) 

The equation for the absolute isentropic vorticity ( can be derived from (2.2) and 

(2.3). It takes the form 

D( (OU OV) (a a). aG 0 F 
- +( -+ - = ~- +11- 8+ -'--, Dt ox oy ox oy ax ay (2.12) 

where 

(2.13) 

Equation (2.12) can be written in the alternative flux form 

a(CfP) 8 (uup - ~iJ - G) 0 (VCf P - l]iJ -+- F) 
at + ax + ay = 0, (2.14) 
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where P = (/(1 is the Rossby-Ertel potential vorticity. The equivalence of (2.12) and 

(2.14) follows easily from the fact that 

The significance of (2.14) has recently been discussed by McIntyre (1987) and Haynes 

and McIntyre (1987), who emphasize the fact that for the primitive equations in the 

isentropic coordinate the flux form (2.14) leads directly to the notion that even when 

mass is crossing isentropic surfaces the potential vorticity flux is exactly isentropic (Le., 

this flux is along the isentropic surface). Thus, the Haynes-McIntyre theorem states that 

even with diabatic heating and frictional forces "there can be no net transport of Rossby-

Ertel potential vorticity across any isentropic surface" and that "potential vorticity can 

neither be created nor destroyed within a layer bounded by two isentropic surfaces". In 

this sense, an isentropic surface is impermeable to potential vorticity, and the potential 

vorticity in a layer between two isentropic surfaces is indestructible as long as the layer 

does not meet a boundary such as the earth's surface. Creation or destruction of potential 

vortici ty wi thin this layer can only occur at the ground. 

We can now eliminate the horizontal divergence between (2.5) and (2.12) to obtain 

the potential vorticity equation, 

DP = .!. [~80 + 17 00 + (80 + oG _ OF] . 
Dt (j 8x 8y 88 ox oy 

(2.15) 

In the absence of friction and heating the potential vorticity P is conserved. Alternatively, 

we can derive an equation involving the inverse potential vorticity. 

where 

(1* = (1 fey) 
( 

(2.16) 

(2.17) 

is the potential pseudo density. The potential pseudodensity on an I-plane was discussed 

by Schubert et ale (1989). In that case the right hand side of (2.16) vanishes so that (]'* 

is the pseudodensity the fluid element would acquire if ( were changed to the constant f 
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under a frictionless and adiabatic rearrangement process. In this case of a variable Coriolis 

parameter we have a ,B-term to contend with. However, in the semigeostrophic system 

with the appropriate coordinate transformations, the geostrophic potential pseudodensity 

equation takes on a very simple form. In fact as we shall see from the simplicity of (2.43) 0'; 
seems to be a more convenient variable than the more commonly used potential vorticity. 

2.2 The semigeostrophic equations on the ,B-plane 

As approximations to the isentropic coordinate version of the primitive equations on 

the ,B-plane let us consider 

Du ( ) 8kl Dt - J(Y)v + ,B(y - Y)Vg + 8x = F, 

Dv ( ) 8M Dt + J(Y)u + ,B(y - Y)ug + 8y = G, 

where (ug , vg ) are the geostrophic wind components, given by 

and Y is defined by 

( aM Bkl) 
(J(Y)Vg, - J(Y)ug) = ax' 8y , 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

Note that (2.18) and (2.19) revert to the primitive equations if ug, Vg and Yare replaced 

by. u, v and y, and to the J-plane geostrophic momentum approximation when j3 = 0 

(Eliassen, 1948; Hoskins, 1975). Now the definition of the geostrophic wind involves eval­

uating the Coriolis term at the transformed latitude, Y. The,B terms in (2.18)-(2.19) can 

be regarded as corrections for the fact that J is taken at Y rather than y. The generalized 

geostrophic momentum approximation preserves important conservation principles of the 

primitive equations. Additionally, an accompanying coordinate transformation will lead 

to a simple prognostic equation. 

2.2.1 Conservation relations 

Derivation of the kinetic energy equation proceeds along exactly the same lines as for 

the primitive equations. Combining (2.18) and (2.19) and now defining 

_ 1 (2 2) I( = 2' Ug + Vg (2.22) 



13 

we obtain (2.7). Thus, (2.11) is valid even when the generalized geostrophic momentum 

approximation has been made provided K is defined as in (2.22). 

The equation for the absolute isentropic geostrophic vorticity (g can be derived from 

(2.18) and (2.19). It takes the form 

D(g (aU, fJv) (fJ fJ) . 
Dt + (g ox + oy - eg ax + "'g fJy fJ 

= ~ [OX F + oY G]- i. [OX F + oY G] , 
8x oy 8y oy ox ox 

(2.23) 

where 

(
8{X, Y) 8(X, Y) o{X, Y)) 

(eg, 11g,(g) = f(Y) o{y,fJ)' 8{fJ,x) , 8{x,y) . (2.24) 

with X defined below in (2.27). Equation (2.23) can be written in the potential vorticity 

form 

(2.25) 

where Pg = (g/(7 is the geostrophic Rossby-Ertel potential vorticity. The equivalence of 

(2.23) and (2.25) follow easily from the identity 

Equation (2.25) is the semigeostrophic equivalent of equation (2.14). From the above we 

conclude that the primitive equation result of Haynes and McIntyre also holds when we 

make the geostrophic momentum approximation. 

We can now eliminate the horizontal divergence between (2.5) and (2.23) to obtain 

(2.26) 

This is an equation for the geostrophic potential pseudodensity. The coordinate trans­

formation in the next subsection will greatly simplify this equation in that it makes the 

ageostrophic advection totally implicit. 
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2.2.2 Coordinate transfor'mation 

Hoskins and Draghici (1977) first pointed out the duality between the use of 

geostrophic coordinates in the horizontal and the isentropic coordinate in the vertical. 

This duality has been further discussed by Gill {1981} and Heckley and Hoskins (1982). 

The combined use of geostrophic and isentropic coordinates has been discussed theoreti-

cally by McWilliams and Gent (1980) and has found application in the two dimensional 

upper tropospheric frontogenesis study of Buzzi et all (1981) and the two dimensional 

response to squall lines study of Schubert et all (1989). Similar to the J-plane study of 

Schubert et all (1989), we are concerned with the simultaneous use of vortex coordinates 

- which on the I-plane are the geostrophic coordinates - and isentropic coordinates, 

because it will lead to an elegant version of the geostrophic potential pseudo density equa-

tion. Thus, let us introduce the vortex coordinates jY and Y which are in fact Salmon's 

generalized geostrophic coordinates 

(2.27) 

Derivatives in (x, y, 9, t) space are then related to derivatives in (X, Y, 0, T) space by 

a ax a ay a a 
= at ax + at ay + aT' at (2.28) 

a ax 8 8Y a 
= --+--

ax ax ajY 8x ay' (2.29) 

a ax 8 ay a 
= BY 8X + 8y 8Y' oy 

(2.30) 

a ax a ay a a 
= 8i 8X + 89 8Y + 80' 89 

(2.31 ) 

since T = t and 0 = 9. Inverting (2.29) and (2.30) to obtain 

8(X,Y) 8 8Y a BY B 
a(x,y) ax = 8y 8x - 8x By 

(2.32) 



8(X,Y) 8 
8(x,y) 8Y 
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and applying (2.28), (2.31), (2.32) and (2.33) to the Bernoulli function 

. 
M- = M + ~ ( u; + v;) , 

it can be shown that 

(2.33) 

(2.34) 

(
8M 8M 8M 8M) _ (aM- 8M- _ j3(u; + v;) aM· 8M*) (2.35) 
8x ' ay , 88 '8t - ax' ay f(Y) , 80 'aT . 

We can also use (2.32) and (2.33) in (2.34), along with (2.24), to obtain 

(2.36) 

which shows that a /80 is actually the derivative along the vorticity vector and thus the 

name "vortex coordinates" for (X, Y). Note that (2.36) leads to considerable simplifi-

cations. Combining the vorticity and continuity equations one obtains the geostrophic 

potential vorticity equation, 

(2.37) 

where Pg = (g/O" 

The transformation relations (2.28)-(2.31) also imply that the operator (2.6) can be 

written as 

D 8 DX a DY a . a 
Dt = aT + Dt ax + Dt 8Y + 0 80' (2.38) 

Writing (2.26) in terms of 0'; where we define the geostrophic potential pseudo density as 

(2.39) 

and using (2.37) we get 

0'; [8G 8F] 
+ fey) ax - 8Y = o. (2.40) 
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Using (2.18), (2.19) , (2.20), (2.27) and (2.35) it can easily be shown that 

f(Y) DY = 8M* _ F. 
Dt 8X ' 

(2.41) 

DX 8M* 
-f(Y) Dt = 8Y - G. (2.42) 

A major ad van tage of the transformation from (x, y, (J, t) space to (X, Y, e, T) space is 

the change from advection by (u, v) to advection by (DX/ Dt, DY / Dt) given in (2.41) and 

(2.42). The total time derivative does not contain any ageostrophic advection, thus (2.40), 

the geostrophic potential pseudodensity equation, does not contain any ageostrophic ad-

vection. 

Using the canonical momentum equations (2.41) and (2.42) we can now write the 

geostrophic potential pseudo density equation (2.40) in flux form as 

(2.43) 

The horizontal flux terms can be written in the Jacobian form 

8u; 8 (M*, (0';/ f(Y))) ~ ( u; G) 
8T + 8(X,Y) + 8X f(Y) 

(2.44) 

which serves as the fundamental predictive equation of the model. 

2.2.3 Invertibility principle 

The geostrophic potential pseudodensity u; is a combination of the mass field u and 

the geostrophic wind field 8(X, Y)/8(x,y). However, since u is related to M* through 

hydrostatic balance and 8(X, Y)/8(x, y) is related to M* through (2.24) and geostrophic 

balance, u; depends only on M*. Thus, everything can be obtained from u; if we can 

somehow invert it to obtain M*. The relation between M* and u; is derived as follows. 

From the definition of u; we have 

(2.45) 
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~here r = dIT/dp = KIT/p. Using (2.24) thls last equation can be written 

8(x, y, IT) + rO'* = O. 
8(X, Y, a) 

(2.46) 

U sing the geostrophic, hydrostatic and coordinate transformation relations, we can express 

x, y and IT in terms of M* as 

(2.47) 

where we have used the shorthand notation j2 = f(Y)(2f(Y) - f(y» and f = feY). 

Substituting (2.47) into (2.46), we obtain 

(2.48a) 

Mia 

which expresses the invertibility principle in terms of the determinant of a Hessian-type 

matrix. Shutts and Cullen (1987) have discussed in detail the relation of hydrodynamic 

stability and the positive definiteness of such matrices. The upper boundary is assumed 

to be an isentropic and isobaric surface with potential temperature aT and pressure PT, 

thus the upper boundary condition for (2.48a) is simply 

Me = II(n) at a = eT. (2.48b) 

Since we are neglecting the effects of topography and assuming that the lower boundary 

is the constant height surface z = 0 and the isentropic surface e = eB, then M = eIT at 

e = eB. Written in terms of M*, this lower boundary condition becomes 

The lateral boundary conditions depend on the particular application, but typically might 

consist of a zonally periodic midlatitude region with Vg = 0 on the southern and northern 

boundaries (or Vg -+ 0 as Y -+ 00). In any event, for a given 0';, we can regard (2.48) as 
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a nonlinear second order problem in M*. Note that rand j both depend on M*. The 

mathematical problem (2.48) is a generalization of the J-plane case discussed by Schubert 

et ale (1989). In particular, when J is assumed to be a constant, (2.48) reduces to their 

(2.14), while if we further assume that B/BY = 0, the middle elements of the first and third 

rows and the first and third columns vanish, in which case (2.48) reduces to their (3.2). 

An efficient multigrid solver for the two-dimensional J-plane case has been developed by 

Fulton (1989). 

Equations (2.44) and (2.48) form a closed system for the prediction of 0'; and the 

diagnosis of ]v! * . Since the problem of isentropes intersecting the earth's surface has been 

addressed by adopting the massless region approach outlined in section 2.1.1, the system 

(2.44) and (2.48) can in principle handle surface frontogenesis. Since 0' = 0 in the massless 

region, 0'; = 0 there also. Thus, the prediction of a; by (2.44) includes predicting the 

movement of the 0'; = 0 region. This procedure is consistent with Bretherton's (1966) 

notion that "any flow with potential temperature variations over a horizontal rigid plane 

boundary may be considered equivalent to a flow without such variations, but with a 

concentration of potential vorticity very close to the boundary". We have simply replaced 

Bretherton's thin sheet of infinite potential vorticity with a thin sheet of zero potential 

pseudodensity and chosen to predict the evolution of the entire 0'; field (including this 

zero potential pseudodensity region) with (2.44). Of course, such a procedure has impli­

cations for the numerical methods used to solve (2.44) and (2.48) since we must cope with 

discontinuities in 0';. However, workable schemes do exist. For example, recently Arakawa 

and Hsu (see Chapter V of Hsu, 1988), in the context of solving (2.5) in a primitive equa­

tion model, have proposed a finite difference scheme which has very small dissipation and 

computational dispersion and which guarantees positive definiteness. 

2.2.4 Linear dynamics 

For simplicity let us consider adiabatic, frictionless flow for the near Boussinesq case 

in which r is set equal to the constant ro, where ro = R/PB. Then, linearizing about a 

basic state of rest with ao = (PB - PT)/(fJT - fJB), the potential pseudo density equation 
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(2.44) becomes 

f2(y)~ (0'; - 0'0) = {JaM* , 
8T 0'0 8X 

while the invertibility relation (2.48a) becomes 

Eliminating 0'; between (2.49) and (2.50) we obtain 

8 {82M* 2 8 ( 1 8M*) f2(y) 82M*} aM* 
8T aX2- + f (Y) ay f2(y) 8Y + rouo 802 + (J 8X = o. 

Subtracting the basic state M, where M* = M + M we obtain 

with the vertical boundary conditions ((2.48b) and linearized (2.48c)) 

8M =0 
80 

8M 
o 80 -M = 0 

at 0= 0T, 

at 

(2.49) 

(2.50) 

(2.51) 

(2.52a) 

(2.52b) 

(2.52c) 

Let us assume that we are on a midlatitude ~~plane in the northern hemisphere and that 

it is infinite in the positive direction (northward) and reaches Yo in the negative direction 

(southward). We impose the following conditions 

M = 0 when Y = Yo, (2.52d) 

M -+ 0 as Y -+ 00, (2.52e) 

where Yo > - fo/~, which simply means that the ~-plane does not cross the equator. Note 

that f2(y) = 0, which corresponds to the equator, represents a singular point for (2.52). 

Thus, there can be no waves travelling across the equator. In appendix A, vertical, zonal 

and meridional transforms are defined to solve (2.52). An explanation for this particular 

choice of meridional limits can be found therein. For now, let us simply remark that 

the development for the vertical and zonal transforms is identical to the one for standard 

quasi-geostrophic ~-plane theory (Lindzen, 1967). The meridional transform is different. 

In quasi-geostrophic ~-plane theory the three f2(y) factors in (2.52) are replaced by the 
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constant fJ, which results in a trigonometric variation of M in the meridional direction. 

By contrast, the solutions of (2.52) are of the form 

(2.53a) 

where L~a) are the generalized Laguerre polynomials (Magnus et al., 1966, pages 239-

249), a = ±3/2, Y = (f3cl)-1/2(fo + f3Y), and I is the index of the vertical mode. The 

linearized lower boundary condition (2.52c) is satisfied if the constants Cl are the solutions 

of the transcendental equation Cl1(rOO'o)1/28B tan [cI1(foO'o)1/2(8T - 8B)] = 1. The La­

guerre polynomials can be expressed in terms of Hermite polynomials which makes (2.53a) 

somewhat less compact. The dispersion relation associated with the solution is 

13m 
II = m2 + *( 4n + 2a + 2) . 

(2.53b) 

Thus, the midlatitude quasi-geostrophic and semigeostrophic Rossby wave solutions differ 

essentially only in meridional structure. 



Chapter 3 

SEMIGEOSTROPHIC THEORY ON THE HEMISPHERE 

Our final extension of the isentropic/vortex coordinate version of semigeostrophic 

theory is to spherical geometry. The basic theoretical structure is the same as for the f­

plane study of Schubert et ale (1989) and for the ,a-plane study in the previous chapter. As 

before this approach results in a simple mathematical form for the prognostic equation (0'; 

or the geostrophic potential pseudodensity equation), where the ageostrophic velocities are 

entirely implicit, and an invertibility relation for obtaining the potential field (M*) from 

(1;. Thus, the complete dynamics reduce to a form reminiscent of nondivergent barotropic 

dynamics; the prognostic equation having become an equation predicting the geostrophic 

potential pseudo density with an invertibility principle where a Laplacian-like operator has 

to be inverted. This dynamical structure has been successfully used to study the evolution 

of potential vorticity and wind in tropical cyclones (Schubert and Alworth, 1989) and it 

will be used in chapter 6 to study a Hadley cell problem. This general approach is probably 

the simplest way to look at all types of balanced flows. 

It should be emphasized that semigeostrophic theory on the sphere is essentially a 

hemispheric theory since it cannot handle crossequatorial flow. The extension of semi­

geostrophic theory from the ,a-plane makes the study of extensive baroclinic waves more 

realistic not to mention the benefits to stratospheric studies. Matsuno (1970 and 1971) 

used quasi-geostrophic theory on a hemisphere to study stratospheric sudden warmings. 

Semigeostrophic theory is more suitable to study that problem since it allows for vari­

able static stability; however the mathematical problem of solution is quite similar. The 

study by Hoskins et ale (1977) of energy dispersion in a barotropic atmosphere showed 

clearly that for phenomena of a scale somewhat less than planetary, even when the local 
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dynamics are well represented on a 13-plane, latitudinal tilts and the propaga~ion of en­

ergy are strongly influenced by a variation in 13. Moreover, realistic zonal flows did not 

produce much response in the other hemisphere. Thus, it is speculated that the present 

semigeostrophic theory will prove to be quite useful. 

As in the previous chapter the fundamental prognostic variable is the potential pseu­

dodensity, which is closely related to the potential vorticity and gives an instantaneous 

view of the total balanced mass and windfields. The power of analyzing potential vorticity 

on isentropic surfaces has been well documented by Hoskins et al. (1985) who state that 

"it is found that time sequences of isentropic potential vorticity and surface potential tem­

perature charts - which succinctly summarize the combined effects of vorticity advection, 

thermal advection, and vertical motion field - lead to a very clear and complete picture 

of the dynamics". However, the emphasis of their study was different from the present 

one. Their study was concerned with the diagnosis of data in terms of potential vorticity 

rather tha~ with using it as a concept for modelling. For their purposes it was quite suffi­

cient to present the invertibility principle in physical coordinates, since it is no harder to 

solve in those coordinates than in the geostrophic ones. They did not concern themselves 

with a prognostic equation and how it might best be presented. The real importance of 

geostrophic coordinates is revealed when we need to predict. Then it becomes imperative 

to get rid of the ageostrophic advection because otherwise we are forced to solve diagnostic 

equations (equivalent to the w equation in quasi-geostrophic theory) for each component 

of the ageostrophic wind. 

The first section of this chapter will present the primitive equations on the sphere 

and derive their conservation principles. The next section introduces the generalized 

geostrophic momentum approximation along with the conditions for geostrophic balance. 

The corresponding conservation principles are derived for the approximate momentum 

equations. The true power of the methodology is revealed with the coordinate transfor­

mation which makes the ageostrophic circulation completely implicit. Next, the invert­

ibility principle is derived. Finally, the linear dynamics of the approximate system are 

considered. 
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3.1 The primitive equations 

Using potential temperature as the vertical coordinate, the quasi-static primitive 

equations with the "traditional approximation" (Phillips, 1966) can be written 

Du. uvsin</> 8M 
cos</> Dt - 2n SIn </> v cos </> - a + ao>.. = Fcos</>, (3.1) 

Dv. u2 sin</> 8M 
cos </> Dt + 2n SIn ¢ u cos </> + a + cos </> ao</> = G cos </>, (3.2) 

8M 
08 = II, (3.3) 

DO' (8U 8( v cos </> ) 88) 0 
-+0' + +- = , 
Dt a cos </>0>" a cos </>8</> 88 

(3.4) 

where u and v are the zonal and meridional components of the velocity, F and G the 

components of the frictional force per unit mass, II = cp (p/Poo)'" the Exner function, 

M = 8ll + gz the Montgomery potential, 0' = -8p/88 the pseudo density, and 

D 8 8 8·0 
- = -+u +v-+8-
Dt at a cos ¢a>.. a8</> 88 

(3.5) 

the total derivative. 

3.1.1 Conservation relations 

The zonal momentum equation, (3.1), can be written in terms of absolute angular 

momentum as 

D( 2) fh\1 Dt ucos<p+ancos ¢ +ao>..=Fcos</>. (3.6) 

In the absence of external torques the absolute angular momentum per unit mass, u cos ¢+ 

an cos2 </>, is conserved. 

The kinetic energy equation can be derived by combining (3.1) and (3.2) to get 

DK 8lv! ok! 
Dt + u acos</>o>" + v ao</> = uF + vG, (3.7) 

where K == !( u2 + v2 ) is the kinetic energy per unit mass. Combining (3.7) with the 

continuity equation (3.4) gives 

8(O'J() 8(O'uK) 8(O'v cos ¢J() 8(CT8I() olv! 8lvl _ (F G) 
8t + a cos <p8>" + a cos ¢o¢ + 88 + O'U a cos </>0>" + O'v ao</> - 0' U + V • 

(3.8) 
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Using the continuity and hydrostatic equations the kinetic energy equation can be written 

8 ( uK) 8 (O'u( K + gz)) 8( uv cos ¢( K + gz)) 8 (uO( I( + 9 z) ) 8 ( 8p ) ----:.-....:.. + + + - - gz-
8t a cos ¢8 A a cos ¢8</> 88 a8 8t 

= u ( uP + vG - aw) , (3.9) 

where w = Dpj Dt. 

For deriving the thermodynamic energy equation, multiply (3.4) by cpT to obtain 

.?. ( T) a ( O'ucpT) a ( uv cos ¢cpT) ~ ( iJ T) _ (Q ) 
8t O'cp + a cos ¢aA + a cos ¢84> + 88 u cp - u + aw , (3.10) 

where Q = TIO. Adding (3.9) and (3.10) we obtain the total energy equation 

a ( . ap) + a8 u(}(I( + kf) - 4> at = u( uP + vG + Q). (3.lla) 

The lower boundary will be regarded in the same way as it was in the previous chapter. 

This way of viewing isentropes crossing the earth's surface has proved useful for the def­

inition of available potential energy (Lorenz, 1955), the analysis of baroclinic instability 

(Bretherton, 1966; Hoskins et ai., 1985; Hsu, 1988), and the finite amplitude Eliassen­

Palm theorem (Andrews, 1983). An isentrope crossing the surface of the earth is assumed 

to continue just under the earth's surface with a pressure equal to the surface pressure. At 

any horizontal position where two distinct isentropic surfaces run just under the earth's 

surface (and hence have the same pressure), there is no mass trapped between them, so 

that u = 0 there. The bottom isentropic surface (}B is the largest value of () which remains 

everywhere below the earth's surface. We can integrate (3.l1a) over the entire atmosphere 

to obtain 

where we have assumed that the top boundary 8T is both an isentropic and isobaric 

surface, there is no topography with a vanishing iJ at the top and bottom. 
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The equation for the absolute isentropic vorticity ( can be derived from (3.1) and 

(3.2). It's form is 

D( I' (au 8( v cos <jJ)) (c a 8 ) 0 aG 8(F cos <jJ) 
Dt + ':t a cos <jJo),. + a cos <jJo<jJ = ~ a cos ¢o),. + 'fJ a8<jJ + a cos <jJ8),. - a cos <jJ8<jJ , 

(3.12) 

where 

( 
ov ou. ov o( u cos <jJ) ) 

(e, 17, () = - 88' 08' 2n SIn <jJ + a cos <jJo),. - a cos <jJo<jJ . (3.13) 

Equation (3.12) can also be written in the flux form 

8(O'P) 0 (uO'P - eO - G) 8 ( VO' P - 1]0 + F) cos ¢) 
~ + a cos 4>0),. + a cos 4>04> = 0, 

(3.14) 

where P = (/0' is the potential vorticity. The equivalence of (3.12) and (3.14) follows 

easily from the fact that the curl of the vector vorticity vanishes, or 

8~ + 0(17 cos 4» + o( = O. 
a cos ¢o),. a cos 4>o¢ 88 

The relation expressed in (3.14) is the spherical equivalent of the ,a-plane result in (2.14), 

the Haynes-McIntyre theorem. Thus, even in the face of diabatic effects the total potential 

vorticity between two isentropic surfaces does not change, it is simply redistributed so that 

a deficiency in one area is met with a surplus in another one bounded by the same isentropic 

surfaces. This idea seems to be closely related to the idea of a reference state in Hoskins 

et ale (1985), the existence of which was one of the three conditions for inversion of the 

potential vorticity field to obtain the complete flow field. It may be more correct to think 

of the reference state as expressing the mass distribution of potential vorticity rather than 

the mass distribution of potential temperature which obviously changes when diabatic 

effects are included. A case in point, Schubert and Alworth (1987) solved the invertibility 

principle and proved the uniqueness of their solution when heating played the major role 

in forcing the flow. In the next section, we shall show that the Haynes-lvIclntyre theorem 

is valid for the semigeostrophic equations on the sphere. 

The potential vorticity equation is derived by eliminating the horizontal divergence 

between (3.4) and (3.12) to obtain 

DP = .!. [e 88 + 17 88 + ,08 + 8G _ o(F cos 4»] . 
Dt 0' a cos 4>8)" a 84> 08 a cos <jJo),. a cos 4>04> 

(3.15) 
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In the absence of friction and heating the potential vorticity P is conserved. Defining the 

potential pseudodensity as u* = 2n sin 4> u I' we can just as easily derive an equation for 

u* since u* = 2f2 sin 4>1 P. The potential pseudo density equation takes the form 

Du* u* [(c fJ () ~ fJ ) iJ fJG o(F cos 4»] 
-D-t + -, ~ a cos 4>0 A + TJ-ao-4> + ~-fJ8 + a cos 4>0 A - -a":'-co-s-4>-o4>~ 

u* D 
= 2f2 sin 4> Dt 2f2 sin 4>. (3.16) 

The physical meaning of u* on the J-plane and on the .a-plane was discussed in Schubert et 

ale (1989) and in the previous chapter, respectively. Here it must suffice to say that in the 

semigeostrophic system on the sphere with the appropriate coordinate transformations the 

geostrophic potential pseudodensity equation takes on a very simple form. Indeed, (3.45) 

is so simple that 0'; seems to be a more natural variable than the more commonly used 

potential vorticity. 

3.2 The semigeostrophic equations on the sphere 

As approximations to the primitive equations (3.1) and (3.2) let us consider 

cos cf> ~~g - 2f! [sin cf> v cos 4> + (sin 4> - sin cf> ) Vg cos cf> 1 

UgVg sin <P 8M F .;r,. - + - = cos':t:.", 
a a8A 

(3.17) 

cos 4> ~: + 2f! [sin cf> U cos cf> + (sin 4> - sin cf» ug cos 4>] 

u~ sin <P cos 4> 8M 
+ <P + cos <P 8A.. = G cos 4>, 

a cos a 0/ 
(3.18) 

where (ug , vg ) is the geostrophic wind on the sphere, given by 

cos¢> . 8M 
ug --:T:2n SIn <P + 8A.. = 0, cos':t:." a 0/ 

(3.19) 

- 2f! sin cf> cos cf> Vg + ~:! = 0, (3.20) 

and where <P is defined as 

a (sin ¢> - sin <p) 2fl sin <P = ug cos <P. (3.21) 
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Comparing the approximate momentum equations (3.17) and (3.18) to the momen­

tum equations of the primitive equations set (3.1) and (3.2) reveals several interesting 

differences. Approximating momentum by the geostrophic momentum involves making 

selecti ve changes to the latitude as well as changing (u, v) to (ug , vg ) everywhere except 

in the "Coriolis term". The latter now splits into two terms which can be interpreted as 

coming from the linear expansion of sin 4> around sin ~. The transformed latitude also 

enters our definition of the geostrophic wind (ug , Vg) in (3.19) and (3.20). The geostrophic 

momentum approximation generalized to the sphere maintains important conservation 

principles of the primitive equations. In addition, an accompanying coordinate transfor-

mation will lead to a simple prognostic equation. 

3.2.1 Conservation relations 

Writing (3.17) in terms of approximate angular momentum gives 

D ( 2) oM Dt af!cos ~ + ao,x = Fcos~. (3.22) 

This is equivalent to 

D ( (sin <p + sin ~ ) 2) aM 
Dt UgCOS~ 2sin~ + a!1cos 4> + ao,x = Fcos~, (3.23) 

which makes apparent the approximation to the angular momentum in (3.6) and shows 

that ~ is closely related to an approximate angular momentum coordinate. 

Derivation of the kinetic energy equation proceeds along exactly the same lines as for 

the primitive equations. Combining (3.17) and (3.18) and now defining 

_ 1 (2 2) K = 2 Ug + Vg (3.24) 

we obtain (3.7). Thus, (3.11a) and (3.l1b) are valid with the generalized geostrophic 

momentum approximation provided K is defined as in (3.24). 

The equation for the absolute isentropic geostrophic vorticity (g can be derived from 

(3.17) and (3.18). We can write 
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D(g (( ou 'O(vcOS4») (c 0 0 ) fJ' -+ + - ~. +17-Dt 9 a cos 4>0). a cos 4>04>' 9 a cos 4>0). 9 ao4> 

o [OA 8~] 0 [OA o~ ] = acos4>o). 84> Fcos ~ + 84> G - a cos 4>04> 0). Fcos ~ + 0). G , (3.25) 

where the geostrophic vorticity vector is 

. (O(A,sin~) 8(A,sin~) o(A,sin ~)) 
(eg/(acos4», (1]gcos4»/a, (g) = 2nSln~ o(sin4>,fJ)' o(fJ,).) 'o().,sin4» , 

(3.26) 

with A defined below in (3.29). Equation (3.25) can be written in the potential vorticity 

form 

o(O'Pg) 8 ( . oA 8~ ) 
ot + a cos 4>0). uO'Pg - egfJ - o</J F cos ~ - 04> G 

o ( . oA o~ ) + a cos </Jo</J (vO' Pg - 1]gfJ) cos </J + OA F cos ~ + OA G = 0, (3.27) 

where Pg = (g/O' is the geostrophic Rossby-Ertel potential vorticity. Again, the equiva­

lence of (3.25) and (3.27) follow easily from the fact that 

8eg + 8(1]g cos</J) + o(g = o. 
a cos </Jo). a cos </Jo</J on 

Equation (3.27) is the semigeostrophic equivalence of equation (3.14) and we conclude 

that the primitive equation result of Haynes and McIntyre is maintained when we make 

the geostrophic momentum approximation generalized to the sphere. 

Eliminating the horizontal divergence between (3.4) and (3.25), we obtain a form of 

the geostrophic potential pseudodensity equation 

( 0' / (g) [O( F cos ~ ) OG] 
= 2nsin~ a8sin~ - acos~aA . 

(3.28) 

When we make the coordinate transformation this equation simplifies greatly. 
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. 3.2.2 Coordinate transformation 

The duality between the use of geostrophic coordinates in the horizontal and the 

isentropic coordinate in the vertical is well known. Hoskins and Draghici (1977), Gill 

(1981), Heckley and Hoskins (1982) all discussed it. The purpose of the coordinate trans­

formation here is the same as before: to make the ageostrophic circulation completely 

implicit. Combining vortex coordinates, which are just two of the Clebsch potentials of 

the wind field, with the isentropic coordinate produces the desired result. Again this will 

lead to an elegant version of the geostrophic potential pseudodensi ty equation. Thus, let 

us introduce the vortex coordinates 

( 
';r,. a ) ( Vg • ug cos 4) 0 ) A, SIn 'J.' , 0 ,T = ..\ + 211 . q; 4) , SIn q., - 211' q;' ,t . a SIn COS a SIn 

(3.29) 

Derivatives in (A,q."O,t) space are then related to derivatives in (A,iP,8,T) space by 

0 8A 0 oiP 0 0 
= 8t8A +8t8iP + 8T' 8t 

8 8A 8 8it! 8 
= 8..\ 8A + 8..\ 84)' 8..\ 

8 8A a 8iP {) 
= oq., 8A + 8q., 8iP ' oq., 

{) 8A 0 8ib 8 8 
= {)O {)A + 80 8ib + 88' 80 

Inverting (3.31) and (3.32) to obtain 

{)(A,iP) ~ 
8 (..\,¢) 8A 

and applying (3.30), (3.33), (3.34) and (3.35) to the Bernoulli function 

(3.30) 

(3.31) 

(3.32) 

(3.33) 

(3.34) 

(3.35) 

(3.36) 
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it can be shown that 

(
8M 8M 8M) = (8M. 8M· 8M*) 
8). , 80 ' lJt 8A ' 80 '8T ' 

(3.37) 

8M = cos¢> [8M* _ u~ + v~ (cos
2 

<p - sin
2 ~)] • 

8¢> cos q; 8q; sin ~ cos q; 

We can also use (3.34) and (3.35) in (3.36), along with (3.26), to obtain 

(3.38) 

which shows that (A, q;) are vortex coordinates. Note that (3.38) leads to a consider­

able simplification. Combining the vorticity and continuity equations one obtains the 

geostrophic potential vorticity equation, 

D Pg _ p ao _ Pg ( BG _ 8( F cos ill)) 
Dt g Be - 2!l sin cP a cos cp8A ao sin <P ' 

(3.39) 

where Pg = (g/O" 

The transformation relations (3.30)-(3.33) also imply that the operator (3.5) can be 

written as 
D 0 DA 0 D<p 0 . a 
Dt = aT + Dt aA + Dt a<p + 0 80 . (3.40) 

Writing (3.28) in terms of (1; where we define the geostrophic potential pseudodensity as 

(3.41) 

and using (3.39) we get 

80'; DA 8(1; Dsin <p . a ((1;) a (. *) 
8T + Dt 8A + Dt SIn <P osin ~ sin <P + 8e O(1g 

0'; [ 8G _ a( F cos q; )] _ 0 
+ 2!l sin <P a cos <PoA a8 sin <P -. 

(3.42) 

Using (3.17), (3.18) , (3.19), (3.20), (3.29) and (3.37) it can easily be shown that 

. D sin <P 8M* 
2!la SIn q; Dt = aaA - F cos q;, (3.43) 

. DA 8M* G 
2naSln<p-

D 
= - 8 . cP +~. 

t a SIn cos 'J." 
(3.44) 
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A major advantage of the transformation from ().., </>, 8, t) space to (A, 4.>, 0, T) space is 

the change from advection by (u, v) to advection by (DA/ Dt, D~ / Dt) given in (3.43) and 

(3.44). The total time derivative does not contain any ageostrophic advection, thus (3.42), 

the potential pseudodensity equation, does not contain any ageostrophic advection. It is 

all implicit in the coordinate transformation. 

Using the canonical momentum equations (3.43) and (3.44) we can now write the 

geostrophic potential pseudodensity equation (3.42) in flux form as 

(3.45) 

The horizontal flux terms can be written in the Jacobian form 

8(1; 1 8 ( M*, ((1; / sin <P ) ) 1 0 ( (1; ) 
8T + 2na2 o(A,sin4.» + 2naoA sin<P (G/cosiJ!) 

(3.46) 

which serves as the fundamental predictive equation of the model. 

3.2.3 Invertibility principle 

The geostrophic potential pseudodensity (1;, the fundamental variable of the model, 

is a combination of the mass field (7 and the geostrophic wind field (g. However, all the 

balanced fields can be obtained from (1; since it depends only on M* as can be seen from 

the fact that (1 is related to M* through hydrostatic balance and (g is related to M* 

through geostrophic balance. What is needed is to invert (7; to obtain M* from which 

the balanced mass and wind fields follow. The relation between M* and (7; is derived as 

follows. From the definition of (7; we have 

2n sin 4.> 8II r * - 0 
(g 00 + (1g - , 

where r = dII/dp = K.II/p. Using (3.26) this last equation can be written 

8()..,sin </>, II) r * - 0 
8(A,sin iJ!, 0) + (1g - • 

(3.47) 

(3.48) 
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Using the geostrophic «3.19) and (3.20), hydrostatic (3.3), and coordinate transformation 

relations ((3.29) and (3.37)), we can express ~, sin 4> and II in terms of M- as 

~ = A - a-2 cos-2 <P 1-2 M;", (3.49) 

sin 4> = sin <P - a-2 cos2 <P j-2 [M~n~ - a-2 cos-2 <P (I cos <P )sin~/-3 (M;"?] , (3.50) 

IT = Me. (3.51) 

The two functions 1 and j2 are introduced so as to allow us to write the invertibility 

relation in a more compact form. They are defined as follows 

f = 2f2 sin <P, 

j2 = (2f2 sin <p)2 + 2f2 sin <p (2f2 sin q; - 2f2 sin 4» cos-2 q;. 

(3.52) 

(3.53) 

Thus, 1 is the Coriolis parameter at the latitude <P, whereas j2 is a certain combination 

of the Coriolis parameter at two latitudes, one of which depends on the other coordinates. 

Substituting (3.49)-(3.51) into (3.48), we obtain 

cos-
2 ~ MAA - f 2a2 j2 (cos2 ~ j-2(lrf:m.. - (a cos ~)-2(f C08 ~)IiD+f-3 MA2») A MeA 

f2 (cos-
2 ~ f- 2 k/A).in+ j2 (cos2 ~j-2(M:m. - (a cos ~)-2(f cos ~)ain+f-3lrfA2») .in. - j 2a2 Me•in• 

cos-
2 

t.MA8 j2(cos2 ~j-2(M:m.. - (acos~)-2(fcos t)lin.f-3MA2») 8 Mee 

(3.54a) 

which expresses the invertibility principle in terms of the determinant of a Hessian-type 

matrix. The upper boundary is an isentropic and isobaric surface with potential temper­

ature E>T and pressure PT. Thus, the upper boundary condition for (3.54a) is 

Me = II(PT) at E> = E>T. (3.54b) 

Neglecting the effects of topography and assuming that the lower boundary is the constant 

height surface z = 0 and the isentropic surface E> = E> B, we get that M = E> IT at E> = E> B. 

Written in terms of M*, this lower boundary condition becomes 
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.0Me - M* + ~a-2 r 2 [cos-2 11! MA2 

+COS2 cp (Msin~ + 2 sin-1 cP cos-2 cP (SMe - M* + a-2,-2 tan2 cP MA2)) 2] = 0 

For lateral boundary conditions we note that symmetry at the poles requires 

aM* ~ -- = 0 at cP = ±-8cp 2' 

(3.54c) 

(3.54d) 

and we simply have cyclic boundary conditions in A. For a given 0';, we can regard (3.54) 

as a nonlinear second order problem in !v! * . Note that rand j both depend on ]vI·. 

Equations (3.45) and (3.54) form a closed system for the prediction of 0'; and the 

diagnosis of M*. The problem of isentropes intersecting the earth's surface has been ad­

dressed by adopting the massless region approach outlined in section 3.1.1 and in the pre-

vious chapter. Since 0' = 0 in the massless region, 0'; = 0 there also. This discontinuity in 

0'; on an isentropic surface puts strict requirements both on the numerical procedure used 

to solve the invertibility relation (3.54) and also, and more importantly, on the procedure 

for predicting 0'; using (3.45) since one might expect a ripple effect from the discontinuity. 

However, a problem similar to this one has been solved by Arakawa and Hsu. For solving 

(3.4) in a primitive equation model they proposed a finite difference scheme which has very 

small dissipation and computational dispersion and which guarantees positive definiteness 

(see Chapter V of Hsu, 1988). This picture of the lower boundary which is consistent with 

that of Bretherton (1966) seems to be more useful than that of Eliassen and Raustein 

(1968, 1970) who had to make predictions at imaginary underground gridpoints. 

3.2.4 Linear dynamics 

Consider adiabatic, frictionless flow for the near Boussinesq case in which r is set 

equal to the constant ro, where ro = R/PB' Then, linearizing about a basic state of rest 

with 0'0 = (PB - PT)/(ST - SB), the potential pseudodensity,equation (3.45) becomes 

2n 2 • 2 if... ~ (0'; - 0'0) _ oAf* 
Ha SIn 'J:" 8T 0'0 - oA ' (3.55) 
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while the invertibility relation (3.54a) becomes 

{)2M* {) {( costP )2 {)M* } 
{)A 2 + (2afl sin tP cos tP? {) sin tP 2an sin tP 8 sin tP 

(2aflsintPcostP)2{)2M* (2(\.;r,. ;r,.)2(0';-0'0)_0 + !lD.2 + au SIn 'J.' cos 'J.' - • 
~~ va ~ 

Eliminating 0'; between (3.55) and (3.56) we obtain 

a {82M* .2 {) {cos2 tP {)M*} (2fl sin tP)2 {)2M*} 
aT a2 cos2 tP 8A 2 + SIn tP a{) sin tP sin 2 tP a{) sin tP + r 00'0 802 

+ 2fl 8lY[* = o. 
a aoA 

(3.56) 

(3.57) 

Let us compare the horizontal part of (3.57) to the linearized barotropic vorticity equation 

(Longuet-Higgins, 1964) 

(3.58) 

where 1/1 is the streamfunction. The primary difference between the two is in the merid-

iona! part; the wave solutions to (3.58) can propagate freely, but (3.57) has a singular 

point on the equator so that now there can be no wave propagation across the equator. 

The meridional structure equation that results from (3.57) is somewhat related to the 

differential equation for associated Legendre functions. Attempts to solve it analytically 

have been unsuccessful. Matsuno (1970, 1971) obtained the same meridional structure 

equation in his hemispheric studies of the stratosphere. 



Chapter 4 

DERIVATION OF THE EQUATIONS OF MOTION FROM HAMILTON'S 

PRINCIPLE 

Hamiltonian mechanics have been widely and successfully used in classical and quan­

tum mechanics for decades (Goldstein, 1980; Lanczos, 1970; Merzenbacher, 1970). Only 

relatively recently have these powerful principles found application in fluid mechanics 

(Salmon, 1988, and references therein) with quite promising results. The power of the 

Hamiltonian method arises from several of its properties. First, Hamilton's principle is a 

very succinct statement of dynamics. One need only make approximations to one func­

tional, the Lagrangian, from which the approximate dynamical equations can be derived 

by Hamilton's principle. Secondly, conservation principles correspond to symmetries in 

the Hamiltonian by Noether's theorem. This has two important advantages. Conserva­

tive quantities can readily be identified by examining the symmetries in the Hamiltonian, 

and when making approximations to the Hamiltonian, not disturbing symmetries of its 

original form will guarantee the existence of conservation principles, albeit of an approx­

imate form. Thirdly, Hamiltonian mechanics are coordinate independent and in fact the 

Hamiltonian method suggests transfonnations to coordinates where the mathematics of 

the problem are the simplest. 

There are two primary schools of thought on how to present Hamilton's principle 

for a perfect fluid. The first corresponds to variational methods in particle physics, i.e. 

the positions and momenta of marked fluid particles are varied at fixed times (Eckart, 

1960; Salmon, 1983, 1985). This is the approach used here. The second (Lin, 1963; 

Seliger and Whitham, 1968) involves variations at fixed locations and times of entropy 

and four scalar potentials (the Clebsch potentials (Lamb, 1932, page 248)), two of which 
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are exactly the vortex coordinates. The fluid velocity can be written in terms of the four 

potentials and entropy (see (6.50)). This approach is more Eulerian-like and physical 

interpretation of the Lagrangian structure is not as straightforward. In fact the simplicity 

of the dynamical description of perfect fluids in terms of Eulerian variables seems to 

have delayed the acceptance of the Hamiltonian view in fluid mechanics, which has its 

natural representation in Lagrangian coordinates. Van Saarloos (1981) proved that the 

two representations are related by a canonical transformation, the particle representation 

being more general than it need be. 

To briefly review the basic concepts of Hamiltonian mechanics, let's consider a con­

servative system of N discrete particles. The Lagrangian of this system is 

L (q,q) = ~ ~miqi' qi - V(qI,···,··· ,qN), (4.1) 
t 

where mi is the mass of particle i and qi( T) is its location at time T. V is the potential 

energy of the system. The action integral is the time integral of the Lagrangian, 

f LdT. (4.2) 

The dynamical equations can be derived from Hamilton's principle which states that 

'T2 

o f LdT = 0, (4.3) 
7'1 

where 0 corresponds to independent variations of qi( T) and oqi( Tl) = oqi( T2) = O. Defining 

the conjugate momenta 

(4.4) 

the extended form of Hamilton's principle corresponds to independent variations of qi, Pi 

which are again zero at Tl, T2 and 

L(p, q) = L Pi . cii - H(p, q). 
i 

( 4.5) 

H(p, q) is the Hamiltonian which in most cases of physical interest is to be identified with 

the total energy. From (4.3) we get the two canonical equations, 

(4.6) 
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Salmon (1985) demonstrated how Hamilton's principle could be used to derive ap­

proximate equations of motion for a shallow water system. He considered the adiabatic, 

frictionless case and approximated the velocity u, v (or equivalently the momenta per unit 

mass) by the geostrophic velocity ug , Vg which is directly related to the mass field. Preserv­

ing symmetries in the Hamiltonian secured the conservation principles. Transformation to 

canonical coordinates made the mathematics of the problem simpler. He showed that for 

a constant Coriolis parameter the approximate equations and the new coordinates were 

equivalent to semigeostrophic theory. Here, there were semigeostrophic equations for the 

shallow water system with a variable Coriolis parameter, i.e. f = f(x, y). In this chap­

ter Salmon's work will be extended to the three dimensional case on the sphere. Still, 

only conservative forces are allowed. Diabatic forcing and friction can be included after 

Hamilton's principle has been applied. 

In the first section of this chapter the primitive equations are derived from Hamilton's 

principle and conservation relations are derived from symmetries in the Hamiltonian. In 

the second section approximations are made to the Lagrangian and a whole spectrum of 

approximate momentum equations result, each characterized by a certain balance condi-

tion of the approximate wind and a certain coordinate transformation in the horizontal. 

Symmetries in the Hamiltonian are preserved and the conservation principles are thereby 

protected. The whole dynamics reduce to a prognostic equation for the generic potential 

pseudodensity and a generic invertibility principle. Finally a particular balanced model is 

specified. The last section of the chapter derives the equations of motion corresponding 

to the long wave approximation from a Lagrangian which neglects the meridional wind. 

The corresponding conservation relations are examined. 

4.1 Derivation of the primitive equations from Hamilton's principle 

Using potential temperature as the vertical coordinate, the quasi-static, frictionless, 

primitive equations with the "traditional approximation" (Phillips, 1966) can be written 

Du. uv sin 4> 8M 
cos 4> Dt - 2!1 SIn 4> v COS 4> - a + a8)" = 0, (4.7) 
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Dv. u2 sin4> 8M 
cos 4> Dt + 2fl SIn 4> u COS 4> + a + cos 4> a84> = 0, (4.8) 

8M 
88 = IT, (4.9) 

Du (8U 8( v cos 4» an) 0 
Dt + u a cos ¢l8>. + a cos 4>84> + 88 = , 

( 4.10) 

where U and v are the zonal and meridional components of the velocity, II = cp (p/PooY' the 

Exner function, M = 81I + gz the Montgomery potential, u = -8p180 the pseudodensity, 

and 
D a 8 8·8 - = -+U +v-+8-
Dt at a cos 4>8>' a84> 80 

(4.11 ) 

the total derivative. 

4.1.1 Conservation of mass - the continuity equation 

Let the longitude, latitude, and potential temperature of marked fluid parcels be 

denoted by A(..\o, 4>0, 80, T), 4>( AO, 4>0, 0o, T), O( >'0,4>0,00, T) where AO, 4>0, 00 are the labelling 

coordinates and T is time. The labelling coordinates can be thought of as the initial 

positions, and since these remain fixed following a parcel, we can interpret a I aT as the 

total time derivative or the derivative following the motion. The conservation of mass 

principle can be expressed by u cos 4>dAd4>d8 = 0'0 cos 4>0 dAod4>odOo, or 

Uo 8 (A, sin 4>, 8) -= , u 8 (AO, sin 4>0, (0) 
( 4.12) 

where Uo can be interpreted as the constant initial pseudodensity. Alternatively, conser­

vation of mass can be expressed in terms of density p in the z coordinate system, 

Po 8 (>., sin 4>, z) -= , 
P 8 (>'0, sin 4>0, zo) 

( 4.13) 

where Po is the constant initial density and the labelling coordinates are AO, 4>0, zoo 

To derive the familiar form of the continuity equation we take 81 OT of (4.12) to obtain 

Uo 8u 8(A,sin4>,8) O(A,¢COS4>,O) o(A,sin 4>, 8) _ 0 
u2 8T + 8( AO, sin 4>0,(0 ) + a( AO, sin 4>0, 80) + a( AO, sin 4>0, (0 ) - , 

where A = 8A18T, etc. The second term in (4.14) can be written 

8(A,sin</>,8) _ 8(A,sin</>,8) 8(>.,sin</>,8) _ (j08~ 
8(>'0, sin 4>0, (0 ) - 8(A, sin </>,8) 8( >'0, sin 4>0,80) - u 8A' 

( 4.14) 

(4.15) 
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wi th similar expressions for the third and fourth t~rms in (4.14). U sing these we can 

rewrite (4.14) as 

8(7 (8).. 8(~cos¢) 88) _ 0 
8T + (7 8 ~ + cos ¢8¢ + 80 - . ( 4.16) 

Defining u = a cos 4>).. and v = a¢ in the usual fashion, (4.16) can be written in the more 

familiar form (4.10). 

4.1.2 Hydrostatic and horizontal momentum equations 

The quasi-static, adiabatic and frictionless equations of motion can now be derived 

from Hamilton's principle 

5 J Ldr = 0, ( 4.17) 

where 

(4.18) 

is the Lagrangian, 

( 4.19) 

is the Hamiltonian, and E( 0,0) the internal energy per unit mass, which is a func­

tion of specific volume, 0, and the entropy. The fJ stands for independent variations 

6>", fJ</>, 6z, 6>.., 6¢ in the three dimensional fluid particle locations and in the horizontal 

particle velocities. The latter two variations yield>" = a>../8r and ¢ = 8¢/fJr. The 

variation 8z yields 

J Iff [(BE) 8(>..,sin¢,8z) 1 
dT JJJ ao e 00 8(>"0, sin 4>0, zo) + g8z Po cos ¢o d>"od¢odzo = O. (4.20) 

From thermodynamics we have p = - (8E/fJo)e, so that integration by parts allows (4.20) 

to be written 

J fff [ 8(~,sin</>,p) 1 
d~ JJJ fJz 00 8(>"0, sin ¢o, zo) + 9 Po cos </>0 d>"od¢odzo = O. 

Using (4.13) and noting that 8z is arbitrary, we obtain the hydrostatic equation 

8p 
0- +g = O. 

8z 

(4.21 ) 

( 4.22) 



40 

The variation SA yields 

J fff [ (.) 8SA (8E) 8(SA,sin</>,z) ] 
dT III a

2 
cos

2 
</> A + n 8T - 8a 9 ao oe AO, sin </>0, zo) Po cos </>0 dAOd</>odzo = o. 

(4.23) 

Using integration by parts this can be written 

J f f f {O [2 2 ( . )] 8(p, sin </>, z) } d 
dT III cA OT a cos </> A + n + ao 8(AO, sin </>0, zo) Po cos </>0 dAod</>o Zo = O. 

( 4.24) 

Using (4.13) in the last term and noting that OA is arbitrary, we obtain 

~ [2 2 ...+.. (\ 0)] 8(p, sin </>, z) = 0 
O a cos '+' A + .l (, + a 8( , . ,+.) • 

T A,~n,+"z 

( 4.25) 

Since 

o(p,sin</>,z) o(p,sin</>,z)8(A,sin</>,0) [(8p ) 8z (8z) 8p ] 80 
a 8( A, sin </>, z) = a 8( A, sin </>, 0) 8( A, sin </>, z) = O! 8A 9 80 - 8A 8 80 8z 

( 8p ) (8z) 8M = O! 8A 8 + 9 8A 9 = OA ' 

we can rewrite (4.25) as 

8 [ 2 (. )] 8M 8T a cos </> A + n + a8 A = 0, ( 4.26) 

which is the absolute angular momentum equation. Similarly, the variation o</> yields 

8¢ ( .) . 8M 
a 8T + 2n + A sin </>a cos </> A + ao</> = O. ( 4.27) 

Equations (4.26) and (4.27) can also be written in the more familiar Eulerian forms (4.7) 

and (4.8). 

4.1.3 Conservation relations 

By Noether's theorem conservation relations can be found by considering symmetries 

in the Lagrangian, or equivalently, in the Hamiltonian of the dynamical system. If the 

Lagrangian does not explicitly contain a generalized coordinate then the corresponding 

canonical momentum is conserved, be it linear momentum in the case of translation along 

a coordinate axis, or angular momentum in the case of rotation by a coordinate angle 
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about an axis. The term symmetry is used since the lack of explicit dependence of the La­

grangian on the coordinate implies that the system can be translated along the coordinate 

axis in question (translational symmetry) or rotated about the coordinate angle in ques­

tion (rotational symmetry) without affecting the action integral and hence the dynamics. 

Energy conservation corresponds to invariance of the Lagrangian or the Hamiltonian with 

respect to translation in time. 

Noether's theorem is, however, considerably more comprehensive and powerful than 

indicated above since it applies equally well to dependent variables or field quantities. 

Thus, every parameter associated with infinitesimal transformations which leave the ac­

tion integral (4.2) invariant leads to a conservation law. Note that the theorem involves 

continuous transformations and it assumes form-invariance of the Lagrangian, i.e., it as-

sumes that the Lagrangian has the same functional form in terms of the transformed 

variables as it had in terms of the original ones. 

Examining the Hamiltonian (4.19) we see that if Q is independent of A, which by 

(4.13) implies that the flow is zonally symmetric, then we find that angular momentum 

is conserved, which is exactly what is expressed in (4.26) for zonally symmetric flow. 

Similarly, since (4.19) does not contain an explicit time dependence the total energy (which 

is just the Hamiltonian) is conserved. 

Salmon (1982, 1983, 1988) has shown that potential vorticity conservation corre­

sponds to the symmetry property of the labelling coordinates entering the Lagrangian 

only through the Jacobian (4.12). Let us now adopt the fJ coordinate system, i.e., the 

labelling coordinates are AO, ¢o, fJo. For adiabatic flow, fJ (AO, ¢o, fJo, r) == 00. Consider 

variations in the labels which leave the Jacobian unchanged, i.e., 

6 (8(Ao, sin ¢o,fJo)) == o. 
8 (A,sin ¢, fJ) 

( 4.28) 

We assume that 680 = 0 so that fluid particles are relabelled within isentropic surfaces. 

Equation (4.28) then becomes 

8 (6Ao, sin ¢o, 80) a (AO, sin ¢o, 80) a (AO, 6 sin ¢o, 80) a (AO, sin ¢o, 80) _ 0 
8 (AO, sin ¢o, 80) a (A, sin 4>,8) + a (AO' sin ¢o, 80) a (A, sin ¢, 8) - , 

( 4.29) 
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or 

(
a8>"0 + a (8cf>0 COScf>o)) !!.... = O. 
8>"0 cos cf>oacf>o ' 0'0 

Thus, 8>"0 and 8cf>0 must be related by 

881/J 
8>"0 cos cf>o = - 8cf>o ' 

88'ljJ 
8 cf>o cos cf>o = 8 >"0 ' 

where 8'ljJ is arbitrary. From (4.17) we then have 

where the Lagrangian is expressed in the 8-coordinate system. Using 

8 (a)..) = _ 8)" a8)"0 _ a>.. 884>0 
aT 8)..0 aT 84>0 aT 

8 (84)) = _ 84> 88>"0 _ a4> 884>0 
aT a)..o 8T 84>0 8T 

in (4.32) and integrating by parts in time, we obtain 

i dT JJi {CAO! [C052 ~ (,\ Hl) ::0 + ¢ :tal 
+C1>o! [C052 ~ ( ,\ + n) :~ +¢ :!l } <70 cos 1>odAod1>odIJ0 = O. 

( 4.30) 

( 4.31) 

( 4.33) 

( 4.34) 

( 4.35) 

Using (4.31), integrating by parts with respect to )..0 and 4>0, and recalling that 8'1j; is 

arbitrary, we obtain from (4.35) 

( 4.36) 

Using C 4.12), this can be written 

o {O'o [a4> a ( 2' )]} OT -; cos 4>8>" - cos cf>a4> cos 4>().. + !l) = 0, ( 4.37) 

or 

!2{0'0 [2!l sin 4> + av _ aCUCOS4»l} = 0, 
Dt 0' a cos 4>8)" a cos 4>84> 

( 4.38) 

which is the Rossby-Ertel potential vorticity equation on the sphere. 
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4.2 Derivation of the semigeostrophic equations on the sphere from Hamil­
ton's principle 

It has been shown in the previous section that the continuity equation is implicit in 

the Lagrangian coordinates and that the equations of motion and the hydrostatic equation 

can be derived from Hamilton's principle. This makes the principle an extremely succinct 

statement of dynamics. Also the conservation relations of the dynamieal system can easily 

be deduced from symmetry properties of its Lagrangian or Hamiltonian. A third property 

that will be further explored in this section concerns the fact that Hamiltonian methods 

are not restricted to a particular coordinate system. 

In this section we will derive a whole set of balanced models by approximating the 

horizontal wind (u, v) by a balanced wind (Ub, Vb) while at the same time defining a 

coordinate transformation which makes the Lagrangian attain a particularly simple form. 

In fact the new coordinates are almost canonical. Care is taken along the way not to 

disturb the important symmetry properties of the Hamiltonian. This approach allows us 

to derive the most general balanced models while preserving conservation properties of 

the original system and while casting the physics into their simplest mathematical form. 

The form is that of one very simple prognostic equation for the potential pseudodensity 

(4.68) and an invertibility relation (4.69) which allows us to diagnose the balanced wind 

field from the potential pseudodensity field. It is then a simple matter to include diabatic 

effects as in (4.70). Defining the balance to be the geostrophic balance of chapter 3 ((3.19) 

and (3.20)) and the coordinates to be the corresponding vortex coordinates (3.29) allows 

us to derive the equations of the geostrophic momentum approximation generalized to the 

sphere. 

4.2.1 The approximate Lagrangian 

Consider applying Hamilton's principle to the approximate Lagrangian 

(4.39) . 

where 

( 4.40) 
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is the approximate Lagrangian, 

is the approximate Hamiltonian, and 8 now stands for independent variations 8A, 8~ it 

the transformed fluid parcel locations. As for the transformed coordinates, A, <P, 0, T 

(0,T) = (8,t) and (A,eI» will be defined later in terms of (A,</» and (A, 4», which in tUrI 

will be related to the M field. The variations 8A and 8eI> now give 

(\ • <p a sin <P _ 8 H b 
2;)£ SIn a aT - a8A' 

. oA 8Hb 
-2nSln~a-8 = 8' cp' 

T a SIn 

where the notation on the right hand sides stands for functional derivatives. 

The above follows the same approach as did Salmon (1985). The coordinate transfor­

mation is defined exactly such that Lb takes the form (4.40) and the resulting momentum 

equations take the form (4.42) and (4.43). In section 4.2.3 it will be shown that the func­

tional derivatives of the approximate Hamiltonian are precisely equal to the corresponding 

partial derivatives of a potential function M* in which case the two momentum equations 

are almost canonical. They would be canonical if 2n sin cp were constant. 

4.2.2 Conservation relations 

The observations made in section 4.1.3 on the conservation of angular momentum 

in the zonally symmetric case, the conservation of total energy and the conservation of 

potential vorticity still apply since we were careful not to destroy any symmetries in 

the Hamiltonian when making the approximations. In this case the angular momentum 

corresponds to an cos2 <P and the kinetic energy corresponds to (u~ + vl)/2. For potential 

vorticity, as in section 4.1.3 we consider variations in the particle labels which leave the 

Jacobian (4.12) unchanged. From (4.39) we have 

J dT JJJ n cos
2 

oj! Ii (~~ ) 0"0 cos t/JodAodt/JodfJo = O. ( 4.44) 

Using 

8 (OA) = _ 8A 88Ao _ 8A 88</>0 
8T oAo 8T 8</>0 aT 

( 4.45) 
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in (4.44) and integrating by parts in time, we obtain 

i dr iff {6AO :r [n cos
2 

4! :~] H¢o :r [n cos
2 

4! :!]} (To cos ¢OdAOd¢od80 = O. 

( 4.46) 

This equation is equivalent to (4.35) for the unapproximated case. Using (4.31), integrating 

by parts with respect to Ao and 4>0, and recalling that 81j; is arbitrary, we obtain 

~ [a (f2cos
2 

<P,A,0)] = 0, 
aT a (Ao, 4>0, (Jo) 

( 4.47) 

which can also be written as 

~ [a (ncos2 <p,A,0) 8(A,<P,0) 8(A,sin¢,8) cos¢o] = O. 
8T a(A,<p,0) a(A,¢,O) a(Ao,sin¢o,Oo) cos¢ 

( 4.48) 

Using (4.12) for the last Jacobian and noting that the first Jacobian is 2f2 cos cP sin <P, we 

obtain 

~ [0'0 2f2 sin cP cos cP 8 (A, <P )] = 0, 
aT 0' cos ¢ a ( A, ¢ ) 

( 4.49) 

which is a statement of the conservation of the approximate potential vorticity Pb, defined 

as 

D _ .!.2n . ~8(A,sin<P) 
rb - (j H SIn 'J." a (A, sin ¢) . (4.50) 

4.2.3 The approximate potential pseudodensity equation and the invertibility 
principle 

We will now proceed to derive the two fundamental equations of the balanced model, 

the approximate potential pseudo density equation and the invertibility relation. Let us 

define the approximate potential pseudodensi ty 0'; as 

• _ (8(A,Sin<p»)-1 
(jb - 0' 8(A,sin¢) , (4.51) 

so that PbO'b = 2f2 sin CPo Using (4.12), (4.51) can be written as 

• ( a (A, sin <p) )-1 
(jb = 0'0 a (Ao, sin ¢o) . ( 4.52) 
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Taking 8/ 8T of (4.52) we obtain 

aO't [8(A,sin«p) ]-2 [8A 8 (8Sin«p) 8 (8A) 8sin«P 
-+0'0 - +- -8T 8( Ao, sin <Po) 8 Ao 8 sin 4>0 8T 8)..0 8T 8 sin <Po 

_ aA a (8 sin «P) _ 8 (8A) 8 sin «P] = O. (4.53) 
8 sin <Po 8)..0 8T 8 sin <Po 8T 8)..0 

Derivatives in (AO,sin<po,80,T) coordinates are related to derivatives in (A,sin«P,E>,T) 

coordinates by 

8 8 8A 8 8sin «P 8 
= 8T + 8T 8A + aT 8 sin «P ' 8T 

8 8A a 8 sin «P 8 
= 8)..0 aA + 8)..0 aAo 8sin «P' 

8 8A 8 8 sin «P 8 

asin <Po = 8sin<po 8A + asin4>o 8sin «p' 

Inverting (4.55) and (4.56) we obtain 

8 (A, si n «p) {:} 

{:} ()..o, sin 4>0) 8A 

8(A,sinq,) a 
o ()..o, sin <Po) a sin cP 

= 
asin cp a 
8 sin <1>0 a)..o 

{:} sin cP a 
8)..0 a sin <Po' 

aA a aA {:} 
= - asin<po 0)..0 + D)"o 8sin<po' 

( 4.54) 

( 4.55) 

( 4.56) 

( 4.57) 

( 4.58) 

Using (4.54), (4.57) and (4.58) in (4.53) we obtain the approximate potential pseudo density 

equation 

( 4.59) 

which is the fundamental prognostic equation of the model. We will now simplify it.' 

Let us turn to the approximate potential vorticity equation (4.49), which was derived 

in the last subsection. Using (4.12), (4.52) and (4.54) we can express it as 

8ab +2n ' .T..[OA a ( ab ) 8sin«P 8 ( at )] 0 - uSln':l" -- + = 
8T ' aT aA 2n sin cP OT 8sin «P 2n sin cP • 

( 4.60) 

Taking the difference between (4.59) and (4.60) we obtain 

o ( . 8A) 8 ( . 8 sin q,) 
aA 2f!sln«P OT + 8sin«P 2f!slnCP OT = 0, ( 4.61) 
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which implies that 

2n . .1i. osinq; oM* 
u SIn ".l" a aT = ao A ' ( 4.62) 

. aA aM* 
-2S1slnq;a-a = a' ~' 

T a SIn 
( 4.63) 

for some function M* related to M. The factor a, the earth's radius, in (4.62) and (4.63) 

is inserted for dimensional consistency. These are just the two momentum equations and 

they are almost canonical in form. In fact they can be further transformed so that they 

are canonical (Salmon, 1985), however (4.62) and (4.63) are already so simple that it is 

not worth the effort. Comparing (4.62) and (4.63) with (4.42) and (4.43) we note that 

and 

aHb _ aM­
aA - oA 

CHb aM* 
c sin ~ = a sin ~. 

( 4.64) 

( 4.65) 

Additionally, we will want the hydrostatic equation (4.9) to look the same in the trans-

formed coordinates and the time derivative of M* to maintain the same form as in physical 

space. Thus, we require 
aM aM-
Tt={)T' ( 4.66) 

aAt aM* 
ao = aE> • ( 4.67) 

Using (4.62) and (4.63) we can write (4.59) as 

( 4.68) 

which is the fundamental predictive equation of the model. 

Our final task is to find the invertibility relation, Le., the relation between M* and 

O'b. To do this we first note that (4.51) can be written 

a (A, sin 4» * 
(1 a (A, sin ~) = (1b· 

(4.69) 

Now we can substitute for A and 4> in terms of A,~, A and ~, where the latter two 

can in turn be expressed in terms of {)M/aA and 8M/a</> which can then be related to 
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horizontal derivatives of M* in capital space. Thus, (4.69) becomes a partial differential 

equation which allows us to diagnose M* from (16' The invertibility relation' (4.69) is 

the fundamental diagnostic equation of the model. Numerical integration of the model 

is performed entirely in (A, (), 0) space by predicting new values of (16 using (4.68) and 

by inverting (4.69) at each time step. The transformation of the results to (A, 4>,8) space 

need only be done when output maps are desired. 

We can regard (4.68) and (4.69) as the governing equations of the generic balanced 

model or as the equations for a class of approximate models. A particular member of 

this class results from a particular choice of balance conditions (Le., relations between 

A, (), A, ~ and A, 4>, 8M / 8A, 8M /84» and coordinate transformations (Le., relations be­

tween A,~, A, 4>, A, ~). In this sense (4.39)-(4.41) generates a class of approximations 

with the generic potential pseudo density equation (4.68) and the generic invertibility con­

dition (4.69). Note that (4.64)-(4.67) put restrictions and compatibility requirements on 

the definitions of M*, the balance conditions and the coordinate transformation. 

If heating is included an extra term is added to (4.68) corresponding to a flux of O'b 

across isentropic surfaces. Thus, with heating (4.68) becomes 

8(1b 8 ( O'b 8M* ) 8 ( (1* 8M*) 8 . -+- - + b +-(a*8) =0 (4.70) 8T 8A 2!1a2 sin <P 8 sin ~ 8 sin ~ 2!1a2 sin () 8A fJf) b , 

The invertibility principle can be written in terms of a three dimensional Jacobian. 

The hydrostatic equation (4.9) provides the link between the (1 and the M"" field. Thus, 

(4.69) becomes 

where r = dIT/dp = ",IT/p. 

8(>", sin 4>, II) r "" - 0 
8(A, sin~, 0) + (1b - , 

4.2.4 A particular balanced model 

(4.71 ) 

Let us now define the geostrophic wind on the sphere, (ug , vg ), in terms of M as 

follows 

- 211 sin <Ii cos <Ii Vg + :~ = 0, (4.72) 

. cos 4> 8M 
2nsln~u -- + - = o. 

9 cos ~ a84> 
(4.73) 
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The transformed coordinates are 

v 
A='\+ 9 , 

a2f! sin ~ cos ~ 

• "" '''/'' U 9 cos ~ 
SIn';i' = SIn,+, - 2()' ",,' a .)L SIn ';i' 

(4.74) 

(4.75) 

As before, (O, T) = (8,t). Derivatives in ()..,</>,8,t) space are related to derivatives in 

(A,~, 0, T) space by 

a aA a 8~ 8 8 
= at 8A + at 8<p + 8T' at (4.76) 

8 aA a 8~ a 
= a).. 8A + a).. a~' a).. (4.77) 

8 8A 8 8<p 8 
= fJ</> 8A + 8</> D<p , 8</> 

(4.78) 

a 8A 8 8<p a a 
= 88 8 A + fJ8 fJ4! + 8O' 8f) (4.79) 

Defining IvI· as 

( 4.80) 

it can be shown that (4.64)-(4.67) are valid. Now, 

8M· 8ug 8vg fJAf /J).. 8M 8e/> 
8A = ug 8A + Vg 8A + 8)" 8A + 8</> 8ip' 

8M· 8ug aVg 8M 8)" 8M 8e/> 
8~ = ug 8~ + Vg a~ + a).. fJ~ + 8</> 8<p' 

Differentiating (4.74) and (4.75) with respect to A and ip, and using (4.72) and (4.73) we 

can derive the balance conditions in transformed space. They can be expressed as 

8lvI· 
- 2f! sin ip cos ip Vg + afJA = 0, ( 4.81) 

u2 + v2 ( cos2 <p - sin2 ip) 8M· 
2f! sin ~ ug - 9 g. ~ ip + a"" = 0, aSIn cos a ';i' 

( 4.82) 

or 
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(
8M 8M 8M) = (8M* 8M* 8M*) 
8A ' {)8 ' fJt {)A ' 80 '8T ' 

{)M = cos</> [8M* _ u; + v; (COS
2 q, - sin

2 q,)] . 
8</> cos cp {)q, sin q, cos q, 

( 4.83) 

We can now derive in physical space the momentum equations with the geostrophic mo~ 

mentum approximation. Taking the total time derivative of (4.75), using (4.62) and (4.72) 

gives us the geostrophic zonal momentum equation, 

cos 41 ~~g - 211 [sin 41 17 cos 4> + (sin 4> - sin 41) 17g cos 41] 

UgVg sin cP 8At _ 0 
a + a8"\ - , ( 4.84) 

which is an approximation to (4.7) in section 4.1. Similarly, the total time derivative of 

(4.74), using (4.62), (4.63), (4.81), and (4.74) gives the geostrophic meridional momentum 

equation, 

cos 4> n;: + 211 [sin 41 U cos 41 + (sin 4> - sin 41) Ug cos 4>] 

u; sin cP cos </> 8M 
+ ;r,. + cos <P 8,1.. = 0, a cos 'l' a If' 

( 4.85) 

which is an approximation to (4.8) in section 4.1. The approximate momentum equations 

(4.84) and (4.85) are identical to the geostrophic momentum approximation equations 

generalized to the sphere (3.17) and (3.18) which were introduced in chapter 3. Thus, the 

same comments as to their nature apply here as before. 

4.3 Derivation of the equations of motion for the long wave approximation 

The long wave approximation was proposed in the remarkable paper by Gill, (1980) in 

the context of a simple barotropic, linear model on the equatorial ,8-plane. In this theory 

the zonal wind is balanced, the meridional wind remains unbalanced, but the meridional 

acceleration is neglected, hence the meridional wind does not enter in the definitions of 

the conservative properties resulting in a filtered theory. The linear dynamics include the 

Kelvin wave and Rossby waves whose dispersion relation is tangent to the unapproximated 

dispersion relation at the origin of a frequency-wavenumber graph, (hence the name, long 

wave approximation). 



51 

In this section the adiabatic, frictionless, nonlinear equations of motion correspond-

ing to the long wave approximation are derived by applying Hamilton's principle to a 

Larangian which neglects the meridional wind. The corresponding conservation relations 

are subsequently derived. 

4.3.1 The approximate Lagrangian 

Let us apply Hamilton's principle to the approximate Lagrangian 

( 4.86) 

where 

( 4.87) 

is the Lagrangian corresponding to the adiabatic, frictionless long wave approximation, 

( 4.88) 

the corresponding Hamiltonian, and E( a, B) the internal energy per unit mass, which is 

a function of the specific volume, a, and the entropy. Now, the 0 in (4.86) stands for 

independent variations 0>", 8</>, oz, 8~ in the three dimensional fluid particle locations and 

in the particle zonal velocity. Note that the meridional velocity is no longer included. 

It is neglected in the definition of the approximate Lagrangian and thus does not enter 

the problem. This is entirely consistent with the treatment of vertical velocity when 

the hydrostatic approximation is implied both above and when deriving the primitive 

equations in section 4.1.2. 

The variation o~ yields ~ == {}>"/{}r. The variation oz yields 

J fff[(OE) {}(>..,sin</>,8z) 1 
dr Jll 00. e 0.0 0(>"0, sin </>0, zo) + g8z Po cos </>0 d>"od</>odzo == O. ( 4.89) 

Noting that from thermodynamics we have p == - (8£/80.)0' integrating (4.89) by parts 

and using (4.13), we obtain the hydrostatic equation 

{)p 
0.- +g - 0 {)z -, 

which is exactly the same as (4.22). 
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The variation 6 A yields 

! [ff! [ (.) 06A (OE) o(6,x,sin¢,z) ] 
dr JJJ a

2 
cos

2 
¢ A + n or - 00. 9 0.0 O(AO, sin ¢o, zo) Po cos ¢o dAod4>odzo = O. 

( 4.91) 

Using integration by parts this can be written 

! {[f! {O [2 2 ( . )] o(p, sin ¢, z) } 
dr JJJ 6,x or a cos 4> ,x + n + 0.0 o( ,xo, sin ¢o, zo) Po cos 4>0 dAOd¢odzo = O. 

( 4.92) 

Using (4.13) in the last term and noting that 8A is arbitrary, we obtain 

~ [2 2 ,/.. (\ n)] 8(p, sin ¢;, z) = 0 
O a cos '¥ '" + .1" + 0. 0 ( , . ,/..) . 

r "',mn,¥,z 
( 4.93) 

Since 

o(p,sin¢,z) o(p,sin¢,z)8(,x,sin¢,8) [(DP) OZ (8z) 8p] 88 
o.o(,x,sin4>,z)=o.o(A,sin¢,8)8(,x,sin¢,z)=0. 8A go8- 8,x 088 oz 

( 8P) (8z) 8M = Q 8,x 0 + 9 D,x 8 = 8,x , 

we can rewrite (4.93) as 

8 [2 2 (. )] 8Af OT a cos ¢ ,x + n + 8 A = 0, 

which is the absolute angular momentum equation. It is identical to (4.26), as would be 

expected, since with the long wave approximation the zonal wind remains a predictive 

variable. 

The variation 6¢ yields 

( 4.94) 

Using integration by parts this can be written 

,/.. 8(,x,p, z) 1 d 
+0.0 cos '¥o( , ''/'' ) Po cos 4>0 d,xod¢o Zo = O. 

"'0, SIn '¥o, Zo 
( 4.95) 
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Using (4.13) in the last term and noting that 8</> is arbitrary, we obtain 

. . tan</> ( .)2 acos</> 8(A,p,Z) 
2!1 SIn </> a COS </> A + -- a cos </> A + 8( \ . A. ) = O. 

a a A,ffin~,z 
( 4.96) 

As before the Jacobian term can be written in terms of a derivative of M, the Montgomery 

potential, and we get 

(2nsin¢+ u t:¢) u+ ~~ = o. ( 4.97) 

The system of equations, (4.16), (4.22), (4.26) and (4.97), is the same as (la) - (ld) 

with the isentropic coordinate in Stevens et al. (1989). 

4.3.2 Conservation relations 

Again the observations made in section 4.1.3 on the conservation of angular momen­

tum in the zonally symmetric case, the conservation of total energy and the conservation 

of potential vorticity still apply since we were careful not to destroy any symmetries in 

the Hamiltonian when making the approximations. In this case the angular momentum 

equation is the same as for the primitive equations, but the kinetic energy corresponds 

to u2/2. For potential vorticity, as in section 4.1.3 we consider variations in the particle 

labels which leave the Jacobian (4.12) unchanged. From (4.86) we have 

J dr JJJ cos2 ¢ (,\ + n) 0 (:~ ) <To cos ¢od>'od¢od80 = O. ( 4.98) 

Using 

8 (aA) = _ 8A OOAO _ OA 80</>0 
aT 0 Ao aT 8</>0 aT (4.99) 

in (4.98) and integrating by parts in time, we obtain. 

+8¢o :r [cos2 4> ( ,\ + n) :~]} <To cos 4>od>'od4>od80 = O. ( 4.100) 

This equation is equivalent to (4.35) for the unapproximated case. Using (4.31), integrating 

by parts with respect to AO and </>0, and recalling that 8'ljJ is arbitrary, we obtain 

!.- [a (cos
2 

</> (.,\ + !1) ,A, 8)] = 0, 
aT a (AO, <Po, 80) 

(4.101) 
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which can also be written as 

8 [8(COS24>(.X+!1),A,O) 8(A,sin4>,O) ] 

8T 8(A,sin4>,O) 8(Ao,sin4>0,Oo) = o. ( 4.102) 

Evaluating the first Jacobian and using (4.12) for the latter one we obtain 

!... {0'0 [2!1 sin 4> _ 8( u cos 4»]} = 0, 
8T 0' a cos 4>84> 

( 4.103) 

which is a statement of the conservation of potential vorticity within the framework of the 

long wave approximation. Thus, we define the potential vorticity as 

D = .!. [2f"\ . A-. _ 8( u cos 4»] 
rl ~, SIn,+, A-.I)A-. • 0' a COS,+, '+' 

( 4.104) 

The discussion above demonstrates how naturally the definition of potential vorticity arises 

within the Hamiltonian framework. 



Chapter 5 

THE CHARNEY-STERN THEOREM 

Semigeostrophic theory has proven to be particularly fruitful in the study of baroclinic 

wave processes, especially in the nonlinear development where the relative vorticity reaches 

large values and where static stability is highly variable (Hoskins, 1976). These are the 

conditions under which quasi-geostrophic theory breaks down; however one would hope 

for more physical insight than primitive equation results often provide. Here we will 

consider the necessary conditions for instability in a horizontally sheared baroclinic zonal 

current, the Charney-Stern theorem, for the system of equations derived in chapters 2 

and 3, semigeostrophic theory on the j3-plane and on the sphere, respectively. In fact 

the Charney-Stern theorem seems to be such a fundamental statement of balanced fluid 

flow that one would expect it to be valid for any consistent balanced theory. vVe will 

only consider linear disturbances; however the theory allows for time-integrations into the 

nonlinear regime. 

The theorem was originally proved by Charney and Stern (1962) for linear distur­

bances on a three dimensional quasi-geostrophic flow with somewhat restricted vertical 

boundary conditions that were later generalized by Pedlosky (1964) and Bretherton (1966). 

Charney and Stern's approach was based on that of Rayleigh (1880) in that they assumed 

an exponential disturbance time dependence and integrated over the volume of the fluid 

to arrive at the necessary conditions for instability. Bretherton (1966) and Eliassen (1983) 

have shown how the requirement for exponential time dependence may be relaxed by con­

sidering the Lagrangian concept of particle displacements about the mean flow, originally 

considered by Taylor (1915). Hoskins (1976) proved the theorem for semigeostrophic the­

ory with a constant Coriolis parameter using Charney and Stern's approach. Eliassen 
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(1983) pr~ved the theorem for a linear set of equations in isentropic coordinates on tl 

,a.plane using the geostrophic momentum approximation. However, he introduced the a 

proximation into the linearized equations. Thus his set of equations cannot be integrat4 

into the nonlinear regime. 

Here, we use Eliassen's approach to prove the Charney·Stern theorem for our serr 

geostrophic equations in transformed (geostrophic) space; on the ,a-plane in section 6 

and on the sphere in section 6.2. The argument is identical in both cases. First, we u 

the linearized geostrophic potential pseudodensity equation (q* , where the subscript 9 h 

been dropped) to derive an equation for the geostrophic meridional eddy flux of q* in terr 

of the time derivative of an expression involving the meridional gradient of the zonal me, 

q* / f and the mean of the geostrophic particle displacements squared. Secondly, we u 

the linearized invertibility relation to write the geostrophic eddy flux of q* in terms of tl 

divergence of a geostrophic Eliassen·Palm (E·P) flux. Combining the two expressions, \ 

obtain the conservative (adiabatic and frictionless) form of an equation that Andrews at 

McIntyre (1976, 1978), McIntyre (1980) and Andrews (1983) have termed the generalizl 

Eliassen-Palm relation. This equation in its general form can be written as follows 

aA 
-+V·F=D at ' (5. 

where F is the E-P flux, A is the density of E-P wave activity and D is zero for conservati' 

motion. Edmon et ale (1980) and McIntyre (1980) have discussed this equation with 

quasi~geostrophic theory. Andrews (1983) has discussed it for the primitive equatiol 

on a ,a-plane in isentropic coordinates. Integrating our conservative form of (5.1) ov, 

the volume of the fluid, we obtain that the time derivative of the volume integral of 

vanishes, since the boundary fluxes of the E-P flux vanish. Thus, for a growing disturbanl 

the meridional gradient of 0'* / f must have both signs, which proves the Charney-Stel 

theorem. 
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5.1 The Charney.Stern theorem generalized to semigeostrophic theory on 
the ,B-plane 

Consider a zonal current on a cyclic ,B-plane in the absence of friction and diabatic 

effects. Using overbars to denote the dependent variables for the basic current, we have 

aM ay = - f(Y)ug , 
aM au = lI(p), (5.2) 

or in geostrophic space 

aM. u2 

ay = - f(Y)ug + f(~),B, 
aM· 
ae = lI(p). (5.3) 

The semigeostrophic potential pseudodensity equation on the ,B-plane can be written as 

80'· 8 ( 0'* 8M*) 8 ( 0'* aM*) 
aT + 8X - f(Y) ay + ay f(Y) ax = 0, (5.4) 

where the subscript 9 has been dropped. When linearized about the above basic state 

(5.4) becomes 

(
a 1 al~l· a) *, a}";f*' a ( (j* ) 

aT - f(Y) ay 8X (j + 8X ay f(Y) = 0, (5.5) 

where the prime indicates a deviation from the basic state and 

(5.6) 

Let us introd uce the northward geostrophic particle displacement r/, defined by 

, (a 1 aM* a) , 
Vg = aT - f(Y) ay ax 1J. (5.7) 

Using (5.6) and (5.7), we can write (5.5) as follows 

( a 1 aM* a) *, (a u·) ( a 1 a).v* a) , 
8T - f(Y) ay ax (j + f(Y) ay f(Y) {)T - f(Y) ay ax 1] = 0, (5.8) 

which can be integrated to obtain 

*' f( ) (8 (j*) , 
(j + Y 8Y f(Y) 1] = 0. (5.9) 

Multiplying (5.9) by f(Y)v~ and taking the zonal average at fixed Y, we obtain by using 

(5.7) 

f( Y)v'. *, f2(y) (a (j*) ,( a 1 8}"'f* {)) , 
gO' + 8Y f(Y) 1] aT - f(Y) ay ax 1] = 0, (5.10) 
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which can be written as 

~ (f2(y) (~ jj* ) !12) f(Y)'---;; - 0 BT BY fey) 211 + Vg(j - . (5.11) 

The linearized invertibility relation will allow us to write f(Y)v~(j*', which is the 

geostrophic meridional eddy flux of potential pseudodensity multiplied by the Coriolis 

parameter, in terms of the divergence of a geostrophic E-P flux. Thus, when we integrate 

(5.11) over the entire domain the second term vanishes since the boundary fluxes vanish, 

and for a growing disturbance a (f-l(Y)O'*) jay must have both signs. This proof of the 

Charney-Stern theorem follows Eliassen's (1983) generalization of it and does not make 

any assumptions as to the spatial or temporal structure of the disturbance. The definition 

(5.6) of the Lagrangian field r/ makes the description of the wave disturbance simpler in 

that it allows one to avoid assumptions on its exact nature. This is in agreement with 

McIntyre (1980) who states: "It has become evident in recent years that the underlying 

theoretical structure of the subject" (namely wave mean flow interactions) "becomes im-

measurably clearer if one describes wave disturbances in terms of particle displacements 

about the mean flow, in place of the more usual eddy velocity fields". 

The invertibility relation can be written as 

a(x, y,p) * 
8(X, Y,0) + (j = 0, (5.12) 

which is in a form slightly different from (2.46), but this is the form that is convenient 

to linearize. We can separate the dependent variables into basic state ones and ones that 

represent deviations from the basic state. We have x = X since fig = 0, 

and (5.13) 

Starting the linearization, we obtain 

B(y + y',p + p') + a(x', fj,p) + -* + *, = 0 
8(Y,0) B(X, Y, 0) (1 (j . (5.14) 

Noting that 

_* 8(fj,p) 
(j = - B( Y, e) , (5.15) 
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allows us to write (5.14) as 

*' _*8x' a(y',p) a(y,p') 
u = u 8X - a(y, e) - a(Y, 0)' (5.16) 

which is the linearized invertibility relation. Let us multiply (5.16) by f(Y)v~ and take 

the zonal average using (5.13), to get 

-,., _ I (OP ay' op By') , (OY BP' By BP') 
f(Y)vgu - f(Y)vg ayae - oe 8Y + f(Y)vg oe 8Y - Byae . (5.17) 

Regrouping terms, we can also write (5.17) as 

f(Y)--;-;;; - a (BY f(Y)'-P' 8p f(Y)-' ,) a (8p f(Y)-' I By f(Y)-v'. ,) 
VgU - BY ae Vg - ae Vgy + 80 BY VgY - BY gP 

, 8 (8P ) a (8y ) 8 (ay ) I a (8p ) + y 8Y 8e f(Y)~ - p' 8Y 8e fCY)~ + p' ae 8Y f(Y)~ - Y ae ay f(Y)~ . 

(5.18) 

U sing the zonally averaged thermal wind equation we can show that the four terms in the 

last line of (5.18) vanish. First, we use (5.6) to write 

a (ay ) 8 (8y ) - P'W aefCY )1Ig + P'oo W f (Y)1Ig 

== -y' [~k (~) -~k (~)] 
_ [ay ~ (aAf*') _ ay ~ (aM*')] 

P' 80 a.x 8Y 8Y ax 8e 

=..:. ,ap ~ (a1vI*') _ P' ay ~ (OAt!*') 
Y Bya)( ae ae a.x: ay , (5.19) 

where in the last line we have used 

(5.20) 

and 

(5.21) 

which are easily derived from the linearized hydrostatic and geostrophic relations. Sec­

ondly, the zonally averaged thermal wind equation can be derived by noting that 

(5.22) 
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taking the e derivative and using (5.3) to get 

(5.23) 

Using (5.23) in (5.19), we are left with 

2 . _ K. 8y 8 (aM.') 8j} a (8M.') 
9 = (I (Y) - 2,6ug ) r ae Y' ax ae - 8e p' 8X 8Y . (5.24) 

Using (5.20) and (5.21), we obtain 

( 
2 ( - ) By ( , BP' ay' ) 9 = I Y) - 2{3ug Be y ax + p' ax 

( 2) _ ) By a ( = I (Y - 2{3ug ae a.x yIP') = 0, (5.25) 

and (5.18) can be written as 

I(y)-;-;J a (OY I(Y)'-P' ap I(Y)-'-') 0 (ap 
I(Y)-'-' oj} I(Y)-' ,) 

VgU = ay 8e Vg - 80 VgY + a0 8Y VgY - 8Y vgp. 

(5.26) 

We can now define a geostrophic E-P flux F as 

F - ( aj} I(Y) 'F' ap -:JT ap-,-, Bj} I(Y) 'F') - a0 Vg - ae CfgUg , 8Y VgUg - ay Vg , ( .5.27) 

where we have used (5.13) to write y' in terms of u~. Combining (5.11) and (5.26) us­

ing (5.27), we obtain the adiabatic and frictionless form of the generalized geostrophic 

Eliassen-Palm relation (5.1), 

8 (2 (0 u·) 12") aT I (Y) ay I( Y) 2. rf + yo . F = 0, (5.28) 

where V indicates the del operator in the meridional plane. Let us integrate over the (Y, 0) 

plane. As before (chapter 2) we shall assume that the meridional boundary conditions for 

our {3-plane are that v~ vanishes at both the northern and southern boundaries, thus the 

meridional boundary fluxes vanish. The boundary flux at the top vanishes since according 

to (2.48b) both ap/BY = 0 and p' = 0 at the top. We shall now apply the lower boundary 

condition, (2.48c). For the basic state flow we have 0 B fi - Ai = O. Differentiating with 

respect to Y, we obtain 

(5.29) 
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Differentiating (5.22) with respect to Y and using it in (5.29), we get 

8M* _ _ 8y u; l' 8j; 
8Y + f(Y)ug - f(Y)ug 8Y - (3 feY) - 0 B; BY = 0, 

or, by using the geostrophic relation for the basic flow (5.3), we obtain 

a- r a­
J(Y)u -.lL + 0-2. = 0 

9 BY K, ay at (5.30) 

For the perturbation flow on the lower boundary, we have M*' - UgU~ - 0BII' = O. 

Multiplying this expression by v~, taking the zonal average and using (5.6), we obtain 

- t-
tl tI. u' + 0-v' p' = 0 

9 9 9 K 9 
at (5.31) 

Combining (5.30) and (5.31) , we conclude that 

ap- By -
BY v~ u~ - BY f(Y)~P' = 0 at (5.32) 

Thus, the lower boundary flux also vanishes and the result of integrating (5.28) over the 

entire (Y,0) plane is 

a { { 2 (B if*) 1-ar J J f (Y) BY fey) 21]'2dY d0 :::: O. (5.33) 

Now, f2(y) is always positive and for a growing disturbance 1]'2 is positive thus requiring 

that the meridional derivative of the inverse potential vorticity takes on both signs within 

the fluid. This last requirement is equivalent to demanding that the meridional derivative 

of potential vorticity has both signs within the fluid which is exactly the Charney-Stern 

theorem of necessary conditions for instability. 

5.2 The Charney-Stern theorem generalized to semigeostrophic theory on 
the sphere 

The derivation of the spherical case proceeds in a manner identical to the one on the 

,B-plane. Again we consider a zonal current in the absence of friction and diabatic effects. 

Using overbars to denote the dependent variables for the basic current, we have 

8M cos </> • _ 
£l,l.. :::: ---;r:2f2 SIn cP Ug , 

au,+, COS '.t" 

aM 7iii = lI(p), (5.34) 
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or in geostrophic space 

fJM. u2 

afJ.T.. = - 20 sin ~ ug + .: ~ , 
'.i!" aSln cos 

fJM-
fJS = II(p). (5.35) 

The semigeostrophic potential pseudodensity equation on the sphere can be written as 

fJu· fJ ( u· fJM*) 0 ( u* fJM*) 
aT + afJA - 20 sin ~ afJ sin ~ + aa sin ~ 211 sin ~ afJA = 0, 

(5.36) 

where the subscript 9 has been dropped. When linearized about the above basic state 

(5.36) becomes 

- - - (/*' + -- = ° (
a 1 {) M· {)) a M*' a ( jj* ) 

aT 20 sin ~ afJ sin ~ aoA afJA afJ sin ~ 2f2 sin cP , 

where the prime indicates a deviation from the basic state and 

oM*' 
--;r,.~{)A- = 2f2 sin ~ v~. 
acos '.i!" 

We introduce the northward geostrophic particle displacement .,.,', defined by 

I ({) 1 aM· fJ) I 

Vg = fJT - 2f2 sin ~ afJ sin cP aoA .,.,. 

Using (5.38) and (5.39), we can write (5.37) as follows 

(
a 18M· 8)., 

aT - 2f2 sin cP aa sin cP aaA u 

+20sin~cosCP - - - '= 0, (
fJ jj*) ( a 1 a M* a) 

aa sin cP 2f2 sin cP aT 2f! sin cP ao sin ~ aaA .,., 

which can be integrated to obtain 

In what follows it is convenient to introduce the function 1( cp), where 

(5.37) 

(5.38) 

(5.39) 

( 5.40) 

(5.41) 

(5.42) 

Multiplying (5.41) by 1(cp)~ and taking the zonal average at fixed CP, we obtain by using 

(5.39) 

( 
fJ 1 fJM* fJ) 

.,." aT ~ 2f2 sin cP afJ sin ~ afJA .,." = 0, (5.43) 
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which can be written as 

a (2 (a q*) 1-) -' 
aT 7 (~) aasin ~ 2f2sin ~ 2rf + 7(~) ~O'*' = O. (5.44) 

The linearized invertibility relation will allow us to write 7( ~) v~O'*', which is the 

geostrophic meridional eddy flux of potential pseudodensity multiplied by 7( ~), in terms 

of the divergence of a geostrophic Eliassen-Palm flux. Thus, when we integrate (5.44) over 

the entire domain the second term vanishes since the boundary fluxes vanish, and for a 

growing disturbance 8 ((2f2 sin q, )-10-*) / a8 sin q, must have both signs. 

The invertibility relation can be written as follows 

8(A,sin4>,p) * 0 -.:......;,.....---.;....;...;;...:.... + 0' = . 
8(A,sin q" 0) 

(5.45) 

We can separate the dependent variables into basic state variables and variables that 

represent deviations from the basic state. We have ~ = A since Vg = 0, 

and 
. , u~ cos q, 

sin 4> = 2!l' iP' a SIn 
( 5.46) 

Starting the linearization, we obtain 

a(SIIi¢ + sin 4>', P + pI) D( A', SIIi¢, p) -* ., _ 0 
8(sin q" 0) + D(A,sin q" 0) + 0' + 0' - • 

(5.4 7) 

Noting that 

_* 8(SIIi¢,p) 
0' = - , 

8(sin~, 0) 
(5.48) 

allows us to write (5.47) as 

*, _ * 8 A' 8( sin 4>', p) 8( sin 4>, p') 
0' = 0' - - - --.;..-~...:... 

8A 8(sin q" 0) 8(sin~, 0)' 
(5.49) 

which is the linearized invertibility relation. Let us multiply (5.49) by ,( q; )v~ and take 

the zonal average using (5.46), to get 

(5.50) 
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Regrouping terms, we can also write (5.50) as 

(5.51) 

Using the zonally averaged thermal wind equation we can show that the four terms, which 

we give the symbol1i, in the last two lines of (5.51) vanish. First, we use (5.38) to write 

_ . ,a ({}p ()) ., 8 (aP ( ) ) 
1i = - SIn </> 8e 8 sin cP i cP ~ + sin </> 8 sin cP Be i cP tIy 

. ,[ 8p 8 (8M.') 8p a (aM.')] = -sIn</> -- ---
8 sin cP a8A ae 8e a8A 8 sin cP 

_ p' [8sin </> ~ ( 8Af·' ) _ 8sin </> 8 (8M.')] 
8e a8A 8sinCP 8sinCPa8A 8e 

. ,ap a (8}.;f.') _ p'asin </> ~ ( a}.;/*' ) 
= - sin </> 8 sin cP aaA De 8e a8A 8 sin <I> ' 

( 5.52) 

where in the last line we have used 

(5.53) 

and 

( 
a2n) 8M·' 

- (a2ntancp)2-2~ug sin</>'=8' cp' 
cos ';l' sin 

(5.54) 

which are easily derived from the linearized hydrostatic and geostrophic relations. Sec­

ondly, the zonally averaged thermal wind equation can be derived by noting that 

-:--;r. '.T,. ug cos cP 
SIn \f' = SIn ';l' + 2("\ . .T,.' 

a HSIn ';l' 

taking the e derivative and using (5.35) to get 

_ ((a2n tan cp? _ 2 a2n U ) 8sin</> =! 8p . 
cos3 cp 9 8e K, 8 sin cP 

(5.55) 

(5.56) 
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Using (5.56) in (5.52), we are left with 

( 
2 a2fi _) K, 8sin4>. , 8 (8M.') 

1f. = (a2fi tan~) - 2 cos3 ~ ug r 80 SIn 4> a8A 80 

osin 4> p' 0 (8M.') 
- 00 aoA 8 sin ~ . 

(5.57) 

Using (5.53) and (5.54), we obtain 

( 
2 a2fi _ ) 8sin 4> . , Bp' 8sin 4>' 

1-£ = (a2fi tan~) - 2 cos3 ~ ug 80 SIn 4> a8A + pi a8A 

(5.58) 

and (5.51) can be written as 

(.if..)-' -, 8 (8sin ¢> (.if..)~J pi 8jj (.if..) , . ,J../) 
i 'J! vg(J* = 8 sin ~ 80 i 'J! Ug - 80 I 'J! vgsin 'fJ 

a (8 ft (.if..)~J',J..' 8Sfii?> (.if..)-' ,) + 80 8 sin ~ I 'J! VgSln'fJ - 8 sin ~ I 'J! vgP . ( 5.59) 

We define a geostrophic E-P flux on the sphere G as follows 

G = (osin 4> (~)v' pi _ 8p cos
2 ~ 11. U' op cos

2 ~ V' U' _ 8Sfii?> ,( <P )1/ p') 
80 I 9 80 a 9 g' 8 sin ~ a 9 9 8 sin ~ 9 , 

(5.60) 

where we have used (5.46) to write sin4>' in terms of u~. Combining (5.44) and (5.59) 

using (5.60) gives us the conservative generalized geostrophic Eliassen-Palm relation on 

the sphere, 

~ ( 2 8 ( u· ) ~2) ._ oT i (~)aosin~ 2fisin~ 2r/ +V' G-O, (5.61) 

where V' indicates the del operator in the meridional plane. We now integrate (5.61) over 

the meridional plane, from pole to pole. The boundary flux at the top vanishes since 

according to (3.54b) both 8p/8 sin ~ = 0 and p' = 0 at the top. We shall now apply 

the lower boundary condition, (3.54c). For the basic state flow we have 0Bll - M = o. 

Differentiating with respect to sin~, we obtain 

8M* _ _ 8ug _ 0 r 8ft - ° 
8 sin ~ U

g a sin ~ B x: B sin ~ - . 
(5.62) 
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Differentia.ting (5.55) with respect to sin ~ and using it in (5.62), we get 

8M* _ _ osin e/> u~ r op - 0 
o sin ~ + a2!l tan ~ 'Ug - a2!l tan ~ 'Ug a sin ~ - sin t cos2 ~ - e B ~ a sin ~ - , 

or, by using the geostrophic relation for the basic flow (5.35), we obtain 

_ asine/> r ap 
a2n tan ~ 'Ug 0 . ~ + e - a . ~ = 0 

SIn K SIn 
at (5.63) 

For the perturbation flow on the lower boundary, we have M*' - Ug'U~ - eBII' = O. 

Multiplying this by 1Ig, taking the zonal average and using (5.38), we obtain 

- r-
U 11. u' + a-vip' = 0 

9 9 9 K 9 
at (5.64) 

Combining (5.63) and (5.64), we conclude that 

ap cos
2 
t-,-, aSIii¢j (t) 'p' 0 

asint a VgUg - osin~1' Vg = at (5.65) 

Thus, the lower boundary flux also vanishes and the result of integrating (5.61) over the 

en tire (sin ~, e) plane is 

~!"f 2(.1"..) a ( (j* )!12 .1"..d.1"..dO -aT J l' '.t' ao sin ~ 2f2 sin ~ 21] cos '.t' '.t' 'V - O. (5.66) 

In order for the disturbance to grow, r/2 must be positive and a (2f2sin ~)-1(j*) losin t 

must have both signs, i.e., the meridional derivative of the inverse potential vorticity must 

have both signs which proves the Charney-Stern theorem. 



Chapter 6 

TOWARDS A GLOBALLY VALID BALANCED THEORY 

As was discussed in chapter 2, section 2.2.4 for the t3-plane case and in chapter 3, 

section 3.2.4 for the spherical case, semigeostrophic theory breaks down on the equator. 

The equator represents a singular point in the meridional structure equation; a point where 

Vg becomes infinite. When considering the two dimensional zonally symmetric case, Vg is 

identically zero and one gets around the problem of the singular point. However, there 

can be no flow across the equator. Thus it is of very limited interest to study flows close 

to the equator and semigeostrophic theory should be viewed as basically a midlatitude 

theory. 

In this chapter zonally symmetric balanced flow in the equatorial region will be stud­

ied. Specifically we are interested in studying how the distribution of potential vorticity 

on isentropic surfaces changes with time as a tropical heat source is allowed to act. Under 

undisturbed conditions the potential vorticity increases monotonically northwards, from 

negative values south of the equator to positive values north of it and isolines of constant 

potential vorticity are straight and vertical. Deep convection induces a positive potential 

vorticity anomaly at low levels and a negative anomaly aloft. The following question arises. 

Are the requirements of the Charney-Stern theorem ever fulfilled, i.e., does a reversal of 

the potential vorticity gradient on isentropic surfaces ever develop? This would set the 

stage for instability and the breakup of the ITCZ into tropical waves. Indeed, McBride 

and Holland (1989) observed a fairly regular breakup of the ITCZ into individual weather 

systems during the 1987 monsoon season in Australia. Perhaps this regular breakup of 

the ITCZ can in part be attributed to its own powers, i.e., the ITCZ carries the seeds of 

its own destruction. 
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Again, potential temperature is the vertical coordinate. As a horizontal coordinate we 

use potential latitude, which was introduced by Hack et al. (1989). The potential latitude 

can be thought of as an angular momentum coordinate and it allows for cross equatorial 

flow while having the advantage of being a vortex coordinate. In section 6.1 the advantage 

of the coordinate transformation will be explored. The development is very similar to the 

study by Schubert and Alworth (1987) of the tropical cyclone where they use potential 

temperature and potential radius, which is also an angular momentum coordinate. Similar 

to the semigeostrophic derivations in chapters 2 and 3 everything reduces to one prognostic 

equation in (1*, the potential pseudodensity, and an invertibility principle which allows 

one to diagnose the field of M*, the Bernoulli function, and thus derive the wind- and 

massfields. In section 6.2 friction is neglected and a simple heating function thought 

to represent the ITCZ is introduced which allows one to solve the prognostic equation 

analytically. The potential pseudodensity equation was also solved analytically in the 

tropical cyclone study of Schubert and Alworth (1987) and the semigeostrophic study of 

a squall line on an I-plane by Schubert et al. (1989). Our simple study indicates that 

indeed the latent heat release thought to represent the ITCZ produces potential vorticity 

gradient reversals on the time scale of 2-3 days both at low levels, on the poleward side 

of the ITCZ, and at upper levels, on the equatorward side of the ITCZ. Thus, the ITCZ 

can be thought of as a very dynamic phenomenon - one which sets the stage for its own 

destruction. 

Section 6.3 offers some speculation on the direction and framework for future work 

in deriving a globally valid three dimensional balanced theory. This theory would not be 

restricted by the limitations of semigeostrophic theory which arise from the geostrophic 

momentum approximation and its neglect of curvature vorticity compared to shear vor­

ticity and it would be valid anywhere on the earth. Specifically the zonally symmetric 

balanced theory would be a two dimensional special case of the full three dimensional 

theory. 
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6.1 Zonally symmetric theory and the potential latitude/potential tempera­
ture coordinate 

The equations for zonally symmetric, balanced flow can be written 

Du (2n . ¢> u tan <1» - F - - uSln + v-
Dt a' 

(6.1) 

(2fi sin 4> + ut:4» u+ :Z = 0, (6.2) 

8M 
80 = II, (6.3) 

D(J' (8( v cos ¢» 88) 0 -too +- == , 
Dt a cos ¢>8¢ 80 

(6.4) 

where 

(6.5) 

is the total derivative, F represents the effects of friction and all other definitions are 

the same as in chapter 3. Specifically (6.1)-(6.4) can be obtained from (3.1)-(3.4) using 

the assumptions that all fields are independent of longitude and that the zonal flow is 

balanced. 

6.1.1 Conservation relations 

The zonal momentum equation (6.1) can also be written in the angular momentum 

form 

(6.6) 

In the absence of friction the absolute angular momentum is conserved. The ITCZ is 

highly nonconservative, however as we shall see in the next section, transforming to a 

type of angular momentum coordinate simplifies the dynamics considerably. 

The kinetic energy equation can be derived by combining (6.1) and (6.2) to get 

D]( 8M 
Dt + v a8¢ = uF, (6.7) 

where K == ~u2 is the kinetic energy per unit mass. Combining (6.7) with the continuity 

equation (6.4) gives 

8«(J']() 8«(J'v cos ¢>K) 8«(J'8]() 8M _ F. 
8t + a cos ¢>8¢> + 80 + (J'v a8¢> - (J'U . (6.8) 
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Using the continuity and hydrostatic equations the kinetic energy equation can be written 

8 ((JK) 8((7v cos4>(K + gz)) 8 ((7e(K + gz)) !.- ( 8P) _ (F _ ) (6.9) 
at + a cos 4>[J4> + [J(J - [J(J gz 8t - (7 U aw, 

where w = Dp/ Dt. 

For deriving the thermodynamic energy equation, multiply (6.4) by cpT to obtain 

a [J ((7V cos 4>cpT) [J (. ) 
[Jt (O'cpT) + a cos 4>[J4> + [J(J (7(JcpT = 0' (Q + aw) , (6.10) 

where Q = ne. Adding (6.9) and (6.10) we obtain the total energy equation 

! (u(K + cpT») + aco:<P&</> (uvcos</>(K + M)) 

[J ( . ap ) + 88 (J8(K + M) - 4> [Jt = (7(uF + Q). (6.11a) 

The lower boundary will be regarded in the same way as before. The bottom isentropic 

surface 8B is the largest value of 8 which remains everywhere below the earth's surface. 

Assuming the top boundary (JT is both an isentropic and isobaric surface and assuming 

no topography and a vanishing e at the top and bottom, we can integrate (6.11a) over the 

entire atmosphere to obtain 

%t J J (K + cpT)ua cos </>d</>d1J = J J ( uF + Q )ua cos </>d</>dlJ. 

The equation for the absolute vorticity 

( = 2f! sin 4> _ 8( u cos 4» 
a cos 4>84> 

is derived from (6.1) and can be written as either 

D( + (8( v cos 4» _ au ae + [J(F cos 4» = 0, 
Dt a cos 4>84> 8(J aa4> a cos 4>a4> 

or, in the alternative flux form, 

a( (7 P) 8 [( . 8u ) ] 
~ + a cos 4>84> V(fP - 8 [J8 + F cos4> = 0, 

(6.11b) 

(6.12) 

(6.13) 

(6.14) 

where P = (/(7 is the potential vorticity. Earlier remarks on the Haynes-McIntyre theo­

rem (1987) apply, i.e. the potential vorticity flux is exactly isentropic. Eliminating the 

horizontal divergence between (6.4) and (6.13) gives 

0' D P = 8u ae + (8e _ 8( F cos 4» , 
Dt 88 a84> 8(J a cos 4>a4> 

(6.15) 

which is the usual form of the potential vorticity equation. 
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6.1.2 Coordinate transformation 

The potential latitude coordinate cP was first defined by Hack et al. (1989) as 

•• 'U cos 4> 
SIn cP = SIn 4> - {)(';J,. . "")' aoH SIn 'j," + SIn If' 

(6.16a) 

which is equation (3.8a) in their paper. Comparing (6.16a) to (3.21) shows that the 

coordinate used in three dimensional semigeostrophic theory on the sphere (chapter 3) 

can be thought of as an approximate potential latitude. We obtain (3.21) from (6.16a) if 

U is replaced by ug and if ¢> in the second term on the right hand side is replaced by CP. 

We can rewrite (6.16a) as 

na cos2 cP = na cos2 ¢> + u cos ¢>, (6.16b) 

which makes apparent the connection of potential latitude to the total angular momentum: 

the potential latitude can be interpreted as the latitude to which an air parcel must be 

moved (conserving absolute angular momentum) in order for its zonal wind component to 

vanish. The advantages of using an angular momentum coordinate in balanced zonal mod-

els have been discussed by Shutts (1980). Since the argument of the inverse cosine function 

must not exceed unity, we limit our attention to flows for which U cos ¢> ~ fla sin2 ¢>. Note 

that this excludes westerly flows at the equator, but that frictionless flows which develop 

by thermal forcing from an initial state of rest are never westerly at the equator. 

Transforming from (¢>, (J, t) space to (<p, 0, T) space, where 0 = () and T = t, gives 

the following relations between derivatives 

8 8cp 8 8 
8t = 7ft 8cp + 8T' ( 6.17) 

8 8cp 8 
8¢> = 84> {Jcp , (6.18) 

8 8cp 8 () 
80 = {JO 8cp + 80' (6.19) 

Another way of writing (6.18) is 

{) (() {J 
cos ¢>8¢> - 2n sin <p cos cp{Jcp , (6.20) 
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since the vorticity can be expressed as 

. f} sin <P , = 20 sin <P!l • A.' 
U sin If' 

(6.21) 

We limit our attention to flows in which t is a monotonically increasing function of 

</> so that ,/ (20 sin <p) > O. In regions where , > 20 sin <P the t coordinate provides 

a natural stretching which is analogous to the stretching provided in similar situations 

by the generalized geostrophic coordinate in semigeostrophic theory (chapter 3). From 

(6.17)-(6.19) we can easily show that (6.5) can also be written as 

(6.22) 

where (6.16b) in (6.6) allows us to write 

aci> cos <p20 sin <P = - F cos 4>. (6.23) 

The advantage of (6.22) over (6.5) is the elimination of the divergent wind component v. 

Introducing the potential pseudodensity (7*, which as before is defined such that 

p(7* = 20 sin <P, the Bernoulli function M*, and a function of the zonal flow u*, we have, 

* (20 sin <P) 
(J = , (7, 

u* = (cos</» u, 
cost 

1 
M* = M + 2"u2

• 

(6.24) 

(6.25) 

(6.26) 

The potential pseudodensity is the pseudodensity a parcel would acquire if ( were changed 

to 20 sin <P under conservation of potential vorticity. The new dependent variable u* allows 

us to write transformation relations in more compact form such as the form we get when 

(6.20) is applied to u cos </>: 

20 sin </> - ~(c:~o;:J 20 sin cP 
20 sin A. = 2() . ;r,. + 8(u· cos~) • 

If' ~,SIn ':i' a cos ~8~ 

(6.27) 

Now, (6.16b) and (6.25) can be combined to yield 

O+~_ 0 
o -O-~' 

acos~ 

(6.28) 
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Thus, as -a(u*cos~)/(acos<pa<p) approaches 20sint the absolute vorticity becomes 

much larger than the local Coriolis parameter, and as u* / ( a cos t) approaches 0 the 

absolute circulation per unit area becomes infinite. 

To ensure a one to one correspondence between t and 4> we require that 

8 sin t 
8 · A.. > o. 
Sln~ 

Writing (6.16b) in terms of sines, we get 

• iii. ± ( . 2 A.. U cos 4» 1/2 
SIn '¥ = sIn ~ - Oa . 

(6.29) 

(6.30) 

We can find a condition on how to choose the sign in (6.30) by differentiating (6.30) and 

using (6.29). We obtain, 

sln'¥ = ± acos<p8<p __ ~ 1- ~ > O. a . iii. {20sincf>- 8UC08?} sl·n2 A.. ( ucosA.. )1/2 

8 sin cf> 20 sin cf> sin 2 t Oa sin 2 4> 
(6.31) 

Thus, when the term in brackets (the dimensionless vorticity) is negative we choose the 

negative sign. Conversely, when the term in brackets is positive we choose the positive 

sign. 

With the new variables u* and M*, the balance equation (6.2) and the hydrostatic 

equation (6.3) transform to 

( 
2n sin ~ ) * aM* _ 0 

1 _ u· U + a8<P - , 
nacos~ 

(6.32) 

8kl* 
ae = II. (6.33) 

Formally, (6.33) is identical to (6.3) while (6.32) is simpler than (6.2) in that (6.32) allows 

only one u* for a given 8M* /8<p. 

We now want to derive the potential pseudodensity equation which will be the fun­

damental prognostic equation of the model. The (7* equation is derived from the potential 

vorticity equation (6.15)~ We first note that (6.18) and (6.19) can be combined to yield 

(6.34) 
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which makes apparent the nomenclature vortex coordinates. Using (6.20), (6.23) and 

(6.34) we can rewrite the right-hand side of (6.15) to obtain the potential pseudo density 

equation 

Du* * (8( ~ cos ~ ) 88 ) 0 -+u +- = . Dt cos~8~ 89 
(6.35) 

In the absence of heating and friction 0'* is conserved. However, the ITCZ is highly 

nonconservative. As we shall see, a midtropospheric maximum in 8 plays the crucial role 

of a sink of (j* in the lower troposphere and a source of 0'. in the upper troposphere. The 

flux form of (6.35) will prove to be particularly useful. With D / Dt given by (6.22), the 

flux form of (6.35) becomes 

8u* + 8(O'*~ cos ~) + 8(0'*8) = O. 
8T cos~8~ 89 

(6.36) 

The advantage of (6.36) is that, if the source terms ~ and iJ are known functions of 

(~, 0, T), then the problem of solving for the time evolution of 0'* is separate from the 

rest of the dynamics. If ~ and iJ are simple enough, (6.36) can even be solved analytically, 

as was discussed by Schubert and Alworth (1987) and Schubert et ala (1989). Such 

analytic solutions of (6.36) will be further discussed in section 6.2.1. 

6.1.3 Invertibility principle 

The potential pseudodensity u* is a combination of the mass field 0' and the balanced 

wind field u expressed in terms of the dimensionless vorticity (/2!1 sin CPo Since 0' is 

related to M* through hydrostatic balance (6.33) and ( is related to M* through gradient 

balance (6.32) the complete flow field can be obtained from 0'* by inverting it to get M*. 

To derive the invertibility principle we use the transformation relations (6.19) and (6.20) 

in the definition (6.24) to obtain the Jacobian form 

8 (sin ¢,p) * _ 0 
a ( sin CP, 0) + 0' - , (6.37) 

which can be written as 

8 (sin </>, IT) r *_ 
8 (sin CP, 0) + (J - 0, (6.38) 
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when noting that r(p) = dIT/dp. To derive the Jacobian in (6.38) it is easiest to express 

the balance condition (6.32) in terms of 4>, ~ and M* as follows 

. (cos
2 ~ ) aM* 2f2sInq,11a ~ -1 + q,8q; = 0 

cos '+' a cos 
(6.38) 

and then take the derivatives. Using the hydrostatic and balance conditions we get 

[ 
8 ( 1 aM*)] a2M* (82}.1J*)2 

4f22 sin 
2 

q, - sin q; cos
3 

q; a8q, sin <I- C053 q; aa~ 802 + a8~a0 

'" sin¢ (. aM"')2 
+rO' sin ~ 2nsm q, - na2 cos ~a~ = 0, (6.39a) 

which is the desired relation between M* and 0'*. If the upper isentropic surface a = aT is 

also an isobaric surface with Exner function ITT, the upper boundary condition for (6.39a) 

is 

(6.39b) 

We now approximate the lower boundary condition by assuming that the geopotential 

vanishes on the lower isentropic surface e = eB, so that M = ell there. Using (6.26) to 

express M in terms of M'" and u, (6.25) to express u in terms of u*, (6.32) to express u* 

in terms of }.II * , and (6.33) to express II in terms of M*, we can write the lower boundary 

condition as 

. (. {J}.I[*) (a}.lI* *) 1 (8M*) 2 
211 SIn q; 211 SIn ~ - 11a2 cos <pD<p e 80 - M + 2' a8ip = 0 at 0 = eB. 

(6.39c) 

For the boundary conditions at the poles, symmetry requires 

{JAl* K 

a~ = 0 at ip = ± 2"' (6.39d) 

We can now summarize the results of our analysis as follows. If the time evolution 

of the 0'* field can be determined from (6.36), we can then solve the diagnostic problem 

(6.39) for M*, after which the wind field u* and the mass field IT can be determined from 

(6.32) and (6.33). This is all accomplished in (q" 0) space. The transformation to other 

representations, e.g., u( ¢, B) or u( ¢;, p), is straightforward. 
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The diagnostic problem (6.39) involves nonlinearities in both the partial differential 

equation (6.39a) and the lower bou.ndary condition (6.39c). Because of the nonlinearities, 

problem (6.39) must be solved using an iterative technique. Note that the coefficients r 
and sin 4> in (6.39a) are functions of M*, and must therefore be included in the iterative 

procedure. 

6.2 The breakdown of the ITCZ 

We now want to use the idealized model developed in the previous section to study 

the response of the zonally symmetric atmosphere to a deep tropical heat source. To 

simplify the solution of (6.36) friction is ignored (~ = 0). A heating function separable in 

potential latitude and potential temperature is assumed. Its latitudinal part is of Gaussian 

structure, the same as the one used by Hack et ale (1989). The vertical structure is a simple 

sine function with a midtropospheric maximum and it is zero on both boundaries. Given 

this heating profile the prognostic equation can be solved analytically. Then equation 

(6.39) need only be inverted when output is desired and thus efficiency is not a primary 

concern. 

6.201 An analytical solution of the a* equation 

In the spirit of Schubert and Alworth (1987) and Schubert et al. (1989) we will use 

the method of characteristics to solve (6.36). Let us consider the case where the heating 

is a sine function in the vertical 

iJ = Q( iP) sine 7r Z), (6.40) 

where Z = (0 - 0B)/(0T - 08), and Q(iP) is the Gaussian latitude distribution of the 

specified heating and will be considered later. Multiplying (6.36) by iJ and using (6.40) 

we obtain 

(6.41) 

where T(iP) = Q(iP)T/(0T - 0B). According to (6.41) the quantity 8a* is constant 

along each characteristic curve determined from dZ / sine 7r Z) = dT. By integration of this 
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equation we can show that the characteristic through the point (Z, T) intersects the T = ° 
axis at 

Zo(Z, T) == ~tan-l [e-r tan (1r:)] . (6.42) 

Since 8u· is constant along each characteristic, then 

iJ(Z, T)u*(Z, T) = iJ(Zo(Z, 7),0) u*(Zo(Z, 7),0). (6.43) 

Assuming that the initial value of u* is the constant uo, we can use (6.40) and (6.42) to 

write (6.43) as 

* sin {2 tan-1 [e-T tan (q.)]} 
u (Z, T) = Uo . ( Z) . 

SIn 7r 
(6.44a) 

Although (6.44a) is indeterminate at the boundaries Z = ° and Z = 1, use of l'Hopital's 

rule yields 

{ 

eT Z = 1 
u*(Z, 7) = Uo 

e-T Z = 0. 
(6.44b) 

Equations (6.44) constitute the analytic solution of the frictionless version of the potential 

pseudodensity equation when the diabatic source has the form (6.40). The complete 

solution u*(~, E>, T) can be plotted once Q( ~), and hence 7( ~), is specified. Since the T 

clock runs faster where Q( ~) is large, the largest anomalies in the u* field will occur in 

the ITCZ. 

For the latitudinal distribution of the heating we choose the form 

Q(~) = Q04a7r-t {erf[a(1 + sin ~c)] + erf[a(1 - sin ~c)]} -1 exp[-a2(sin (P - sin ~c?]. 

(6.48) 

By varying (Pc and a we can consider simulated ITCZ's centered at different latitudes and 

with different widths. Through integration of (6.48) it can be shown that 

1 j1r/2 
-2 Q( ~) cos ~ d(P = Qo, 

-1r/2 
(6.49) 

so that different values of q)c and a all result in the same area averaged heating Qo. In 

particular we shall set a = 15, 0 ~ q)c ~ 30 degrees, 0T = 360 K and E>B = 300 K. 

The latitude e-folding width of heating corresponding to a = 15 is 8 degrees which is in 

agreement with Marshall Islands rainfall data (Yanai et al., 1973, Fig. 12) and has been 

discussed by Hack et ale (1989). Choosing Qo = 0.30 K/day results in a peak heating 
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6.2.2 Results 

The fields of u*/uo computed from (6.44) at T = 2,3,4 days are shown in figures 

6.la-6.3a. The corresponding fields of potential vorticity P, normalized by 20./(10 are 

shown in the lower part of the figures (6.1b-6.3b). In the ITCZ, a region of low potential 

pseudodensity develops at lower levels and a region of high potential pseudodensity at 

upper levels. Due to vertical advection, the upper tropospheric maximum in (1* begins 

to get pinched off as a small u* spreads throughout the troposphere. The convective 

modification of the P field occurs within a background state which has a northward in­

crease of P. As convection continues the gradient of P becomes locally reversed in the 

lower troposphere poleward of the ITCZ and in the upper troposphere equatorward of 

the ITCZ. These features are consistent with observations made by Burpee (1972) in his 

study of the origins of easterly waves in the lower troposphere of the north African region. 

According to the Charney-Stern theorem, such zonal flows (Le., those with a reversal in 

the meridional gradient of the potential vorticity) are unstable. Thus, it would appear 

that ITCZ convection alone ca.n lead to the generation of unstable zonal flows. This may 

be the cause of periodic breakdowns of the ITCZ. 

6.3 Framework for future work 

The task at hand is to extend the theory so as to fill the top right-hand box in figure 

1.1, Le., to derive a fully consistent globally valid three dimensional balanced theory. 

The most general system of balanced equations is that of Charney (1962). However, 

in its present form the equations are highly implicit in the dependent variables and the 

dynamics are far from being reducible to the simple mathematical form of semigeostrophic 

theory. Additionally, even though the balance equations include a full representation of 

curvature effects, they are formally not valid in regions of large vorticity. A transforma.­

tion to vortex coordinates should solve that. Because of the complexity of the nonlinear 

balance equations the coordinate transformations might be expected to take the form of 

differential relations. However, similar to semigeostrophic theory, the prediction and di­

agnosis of the balanced mass and wind fields would be performed in transformed space so 
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Figure 6.1: Results for T ::= 2 days. (a) Isolines of 0'. /0'0 (Le., potential pseudodensity 
measured in units of 0'0) in (cI>, 0) space. Note that the convection of the ITCZ generates 
a lower tropospheric layer of high potential vorticity and an upper tropospheric layer of 
low potential vorticity. (b) Isolines of O'oP /(20.) (Le., potential vorticity measured in units 
of 20./0'0). 
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SIGt.AASTAR/SIGt.AAO AT 72.0 HOURS, INCRM = 0.100 
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Figure 6.2: Results for T = 3 days. (a) Isolines of 0'* /0'0 (Le., potential pseudodensity 
measured in units of 0'0) in (<p,0) space. (b) Isolines of 0'0P/(2fl) (Le., potential vorticity 
measured in units of 2fl/O'o). 
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SIGMASTAR/SIGMAO AT 96.0 HOURS. INCRM = 0.100 
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Figure 6.3: Results for T = 4 days. (a) Isolines of u* / Uo (Le., potential pseudo density 
measured in units of eTa) in (iP,0) space. (b) Isolines of eToP/(2fl) (Le., potential vorticity 
measured in units of 2fl/eTo). 
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that a transformation to physical space, and thus a solution o~ the coordinate differential 

equations, would only be required at times when output was desired. Within such a the­

ory the nonlinear balance system could be expected to blossom out in the same way that 

the geostrophic momentum approximation system blossomed out within semigeostrophic 

theory. 

From the discussion in chapter 4, one expects Hamilton's principle to be the ideal tool 

with which to perform the task at hand. The problem is, how to formulate Hamilton's 

principle, i.e., how to define the Lagrangian of the system so as to arrive at the desired 

result. Seliger and Whitham (1968) addressed a similar problem within the Eulerian 

description of fluid dynamics. They were concerned with finding the simplest variational 

principle that gave exactly the equations of motion of a certain system and no others. 

They concluded that the Clebsch representation of the wind would lead to the simplest 

principle, and the Lagrangian was simply the pressure. The Clebsch representation may 

be written 

v = V'x + SV'T] + QV' {3, (6.50) 

where S is entropy, X, T], Q and {3 are scalar potentials. The vortex coordinates are equal 

to Q and /3. Independent variations of X, S, T], Q and f3 lead to the equations of motion. 

For our purposes the Clebsch representation seems especially promising, since we need to 

approximate the wind of the system with a balanced wind. This is certainly worth further 

study. 



Chapter 7 

SUMMARY AND CONCLUSIONS 

Balanced models offer an alternative to the full primitive equations for studying the 

rotational modes of atmospheric motions. The fact that these models filter out gravity 

waves makes it easier to interpret the dynamical processes that are involved in many 

weather phenomena; thus balanced models hold the promise of providing valuable insight 

into the workings of our atmosphere. A requirement one strives to fulfill when developing 

balanced models is that of keeping the fundamental conservation principles intact and thus 

assuring that the models are consistent. However, the models will always be limited by the 

severity of the approximations made to the momentum equations, the assumptions of the 

underlying balance, and by how the earth's rotation is represented. Again, the importance 

of the transformation to vortex coordinates should be emphasized. Then the equations can 

be expressed in closed form without any horizontal ageostrophic advection. Additionally, 

these coordinates provide the natural stretching of regions of low vorticity and shrinking 

of regions of high vorticity resulting in more symmetric length scales. Combining vortex 

coordinates with the isentropic coordinate makes the divergent part of the wind entirely 

implicit and the whole dynamics reduce to two equations, a prognostic equation for the 

potential pseudo density and an invertibility relation from which both the mass and the 

wind fields may be diagnosed. This work is concerned with generalizing semigeostrophic 

theory to take account of the variability of the Coriolis parameter. The assumption of 

geostrophic balance in semigeostrophic theory makes it impossible to generalize it to the 

entire sphere, but a hemispheric model was developed in chapter 3. A ,B-plane version 

of the theory was derived in chapter 2. Chapter 4 described a powerful technique for 

deriving approximate dynamical models. This technique involves applying Hamilton's 
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principle to an approximate Lagrangian while preserving the symmetries of the original 

Lagrangian and thus guaranteeing the existence of the important cbnservation principles. 

In particular it was shown how the theory in chapter 3 can be derived using this approach. 

In fact a whole ensemble of balanced models was derived; each of those models had a 

particular balance condition and a corresponding coordinate transformation, but all of 

them satisfied the canonical momentum equations. Our choice of the models in chapters 

2 and 3 was motivated by the appearance of the approximate momentum equations in 

physical coordinates and their resemblance to the J-plane momentum equations with the 

geostrophic momentum approximation. Chapter 5 addressed the Charney-Stern theorem 

which was then used in the following chapter to examine the periodic breakdown of the 

ITCZ in a zonally symmetric atmosphere with a gradient wind balance. This work is but 

a stroll on the road to a globally valid balanced theory, the two dimensional form of which 

is this last model. Note that in the meridional direction we have a natural balance, so to 

speak, guided by the angular momentum principle, and a corresponding vortex coordinate. 

We are not so fortunate in the zonal direction. 

Perhaps the primary virtue of the semigeostrophic ,a-plane model developed in chap­

ter 2 over and above that of Salmon (1985) is that it is fully three dimensional in the 

elegant and concise version of isentropic and vortex coordinates. The linearized version 

of this model leads to a generalized Charney-Stern theorem for barotropic-baroclinic in­

stability and to Rossby wave solutions with a meridional structure different from that in 

quasi-geostrophic theory. This model would seem to be ideal for studying the occlusion 

process in synoptic scale baroclinic waves. Similarly, the semigeostrophic hemispheric 

model developed in chapter 3 takes advantage of combining vortex and isentropic coordi­

nates, again reducing the dynamics to just two fundamental equations. Once more, the 

linearized version leads directly to the Charney-Stern theorem. This theory would seem 

ideal for studying large scale processes such as stratospheric dynamics. The only other 

semigeostrophic spherical model known to us is that of Shutts (1988) which suffers from 

a rather severe approximation to its kinetic energy and therefore is not as general. Ad­

mittedly, the computational problem poses somewhat of a challenge. The fundamental 



85 

diagnostic equation of both models is a nonlinear second order problem with a nonlinear 

lower boundary condition. It is of primary importance to have an efficient solver since 

this equation must be solved at each timestep. Fulton (1989) used multigrid methods 

(Fulton et al., 1986) to solve the invertibility for a two dimensional, J-plane problem. 

This numerical technique holds great promise for the future because it is fast, efficient 

and should be able to handle the discontinuity introduced at the lower boundary. The 

prognostic equation has to predict a discontinuous positive field, but as was mentioned 

earlier, workable schemes do exist. 

A globally valid three dimensional balanced theory would be extremely valuable since 

it would combine all the balanced flow processes of the atmosphere under one hat, indepen­

dent of location, scale or curvature of the system. In that way it would unify midlatitude 

and tropical filtered theories into one framework. For example, this theory could be used 

to study the transformation of an easterly wave into a hurricane. It may be argued that 

the equatorial atmosphere is inherently unbalanced and that Kelvin waves playa major 

part in its dynamics. From that point of view, a filtered three dimensional theory is not 

beneficial and one may resort to the long wave approximation theory which was derived 

in the last section of chapter 4. In fact, the whole approach of potential vorticity thinking 

is incomplete in the equatorial atmosphere, since Kelvin waves are devoid of potential 

vorticity. 
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Appendix A 

ROSSBY WAVES ON THE ,B-PLANE 

Here we"" consider solutions of 

O.l\A = 0 
80 

8M 
0--M =0 

80 

at 0= 0T, 

at 0=08, 

M = 0 when Y = Yo, 

M = 0 as Y --+ 00, 

(A.Ia) 

(A.lb) 

(A.Ic) 

(A.Id) 

(A. Ie) 

where Yo > - fo/,B, which simply means that the ,B-plane does not cross the equator. 

To eliminate the vertical structure in (A.la) we define the vertical inner product 

l
eT 

(u, v) == u(0)v(0)d0. 
9B 

(A.2) 

For any functions u and v, we seek a vertical transform of the form 

v [u(0)] = Ul = (u, w,), (A.3) 

where the kernel q; l( 0) of the transform is to be chosen so that 

(AA) 

with c, a constant. Using (A.2) and (A.3) we can integrate the left-hand side of (AA) by 

parts twice to obtain 

(A.5) 
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The boundary condi~ions (A.lb )-(A.lc) then imply that the desired property (A.4) will 

hold provided that we choose wI(0) and CI as solutions of the Sturm-Liouville eigenproblem 

dw, = 0 
d0 

dWI 
0- - WI = 0 

d0 

at 

at 

(A.6a) 

(A.6b) 

0= 0a. (A.6c) 

According to the Sturm-Liouville theory (A.6) has a countably infinite set of solutions 

{cz, W/}~o' the eigenfunctions WI are orthogonal in the inner product (A.2), may be chosen 

to be real and they form a complete set. Thus any well-behaved function u(0) may be 

expanded in terms of the eigenfunctions and we may write 

00 

u(0) = L u,w,(0). (A.7) 
1=0 

The coefficients in the expansion are given by Ul = (u, WI) where the WI have been nor­

malized. Therefore the vertical transform pair is given by (A.3) and (A.7). Now (A.6) can 

easily be solved and we get 

[
(roO'O)1/2 ] 

Wl(0) = cos C( (0T - 0) , (A.B) 

where the C( are the solutions of 

(A.9) 

The c, can be interpreted as the gravity wave speeds corresponding to the different equiva­

lent depths hi satisfying CI = (9hl)1/2 where 9 is the acceleration due to gravity. However, 

this is a balanced model and we have no propagating gravi ty waves. 

Taking the vertical transform of (A.la) we get 

(A.I0) 

The ,a-plane circles the earth and the resulting cyclic boundary conditions and simple X 

dependence allow us to define the zonal transform as the usual Fourier transform. Let us 

define Mlm(Y, T) as the zonal Fourier transform of Ml(X, Y, T). The transform pair is 



94 

21r'a 

Mlm(Y, T) = 2!a [ Ml(X, Y, T)e-imX dX, } 

00 ' 

Ml(X, Y, T) = 1: MlmeimX 
(A.II) 

m=-oo 
where a is the distance from the earth's rotation axis. Transforming (A.I0) zonally we 

obtain 

8 { 2 ) 8 ( 1 8Mlm) [f2(Y) 2] }. aT f (Y 8Y f2(y) 8Y + -T - m Mlm + zmf3Mlm = O. (A.12) 

We will now design a transform to eliminate the meridional structure. Let us define 

the meridional inner product 

(plq) = [00 p(Y)q(Y)J-2(Y)dY, 
}Yo 

(A.13) 

for any functions p(Y) and q(Y) on [Yo, 00). We seek a meridional transform of the form 

T [P(Y)] = Pn = (pIKn) ' (A.14) 

where the kernel Kn(Y) of the transform is to be chosen such that the meridional transform 

of (A.12), which completes the transformation to spectral space, has the following form 

dMlmn(T). ( ) 
dT - ZlIlmnM Imn T = O. (A.I5) 

Taking the meridional transform of (A.12) we get 

00 2 a 1 8MT f (Y) 2" . " -2 { ( ") [2] } 1. f (Y) 8Y j2(Y) aY + -T - m MT + .mf3M ICnf (Y)dY = 0, 

(A.16) 

where the subscript T indicates a partial derivative with respect to T and where we have 

substituted the subscripts 1m, indicating that a vertical and a zonal transform have been 

taken, with the hat over M. Integrating by parts twice and using the boundary conditions 

(A.ld) and (A.Ie) we obtain 

roo {[ d ( 1 dKn) (1 m2) ] A • mf3 .. } 
}Yo dY f2(y) dY + - Cf - f2(y) Kn MT + l f2(y) MKn dY 

(A.17) 
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Therefore the required property holds provided we choose the kernel Kn such that 

(A.lSa) 

with the boundary conditions 

I 
f2(Y) Kn = 0 when Y=Yo, (A.lSb) 

1 
f2(y)Kn = 0 when Y -+ 00. (A.lSc) 

The above is a Sturm-Liouville problem, thus the eigenfunctions Kn are orthogonal in the 

inner product (A.13), may be chosen to be real and they form a complete set. vVe now 

want to determine the eigenfunctions and eigenvalues. It is convenient to make a change 

of variable as follows 

Y = f(Y) = fo + /3Y, (A.19) 

then (A. IS) becomes 

~2 d~ [~2 ~?] + [- c~ - ~: + :~] Kn = 0, (A.20a) 

1 
y2 Kn = 0 when Y = fo + ,BYo, (A.20b) 

1 
y2 Kn = 0 when Y -+ 00. (A.25c) 

Let us make (A.20) dimensionless by defining the units of time and length as follows 

[time] = (l/cz,B)1/2 , [length] = (cd f3)1/2 . (A.21) 

Then (A.20a) becomes 

(A.22a) 

Defining 

(A.23) 

and writing (A.22) in terms of Fn we get 

d2Fn [ 2 m 2 2 ] -- + -m + - - Y - - :F. = 0 dy2 V y2 n 
(A.24a) 
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1 
-Fn = 0 y when (A.24b) 

1 
-Fn = 0 y when y~oo. (A.24c) 

This differential equation has the solutions (see Abramowitz and Stegun, 1965) 

(A.25) 

where a = ±3/2, L~a) denotes the generalized Laguerre polynomials, and 

m 
(A.26) 

Vmn = m2 + 4n + 20 + 2 . 

The boundary condition at infinity has been satisfied. Let us write 

(A.27) 

The other boundary condition will determine B in terms of A. When the /Cn are normalized 

in the inner product (A.13), the value of A is derived. Choosing the interval for y to be 

(0,00) is particularly convenient since then 

(A.28) 

and L~3/2) are orthogonal polynomials so that A can easily be determined. Note that this 

corresponds to the ,B-plane extending infinitly close to the equator, since then fo = - ,BYo 

or f(Yo) = fo + ,8Yo = o. 
To summarize, the full solution of (A.I) is of the form 

with the dispersion relation 

I'm 
Vmn = m2 + ~(4n + 20 + 2) . 
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