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ABSTRACT

Numerical studies of time-dependent, two-dimensional, stratified
flow of incompressible, viscous, diffusive fluid are described. The
particular physical problem which has been considered is that of strati-
fied flow over a vertical fence when the motion is impulsively started
from rest. Solutions have been calculated for the following two cases:
R =397, P_ = 10, R; = 1.58; and Re = 5000, Pr =1, R, = 1.58. The
results are presented as contour plots of the flow variables, generated
directly by the computer. A new iterative method was used for numerical
integration of the governing equations and was found to be very effec-
tive. The method is based on the combination of the Crank-Nicolson
nethod with a strongly implicit iterative method developed by Stone (1968).
Full details of the method are given together with a summary of its per-
formance on the problems calculated. It is shown that proper treatment
of the inflow and outflow boundary conditions is crucial for successful

numnerical modeling of stratified flows.
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Chapter I

INTRODUCTION

When stably stratified air flows over an obstacle, air currents
tend to follow a wave-like pattern in the lee side of the obstacle.

This phenomenon, called mountain lee-waves, has been observed in the
atmosphere (Holmboe and Klieforth, 1957). Lee-waves have been studied
analytically with the help of perturbation theory for steady lee-waves
of small amplitudes (Lyra, 1943; Queney, 1947; Scorer, 1949). For a
particular boundary condition upstream, Vo u = constant, where p is
the fluid density and u 1is the streamwise velocity, a nonlinear model
for steady lee-waves of finite amplitude was investigated by Long (1953),
Yih (1960), Pao (1967), and Miles (1968, 1969).

These analytical approaches have contributed significantly to the
understanding of lee-wave phenomena. However, in nature, lee-wave flows
usually involve waves of finite amplitude and, in addition, the boundary
conditions are complicated. Moreover, the flow may be in a transient
state. Hence, for a better understanding of lee-wave phenomena, laboratory
simulation and numerical modeling with a computer are the only approaches
currently available apart from prototype study by field investigation.
Laboratory simulations have been conducted by Long (1959) with a liquid
model, and by Lin and Binder (1967) in a wind tunnel,.

In laboratory simulation, one usually encounters limitations in the
variability of flow parameters such as flow velocity and stratification.
In particular, Reynolds numbers are usually quite low when high Froude
numbers (or low Richardson numbers) are required. Consequently, molec-

ular effects are inevitable and greatly influence the flow patterns and



simulation analysis becomes difficult. As far as numerical computation

is concerned, a numerical simulation by computer is usually possible
provided a stable and rapidly convergent scheme is available. Neverthe-
less, a numerical computation itself is by no means a trivial and straight-
forward manipulation. In particular, when a nonlinear partial differen-
tial equation such as the Navier-Stokes equation is involved, a numerical
experiment judged with physical understanding is always needed because
rigorous analyses of computational stability, convergence, and error
propagation are not available yet, although some approximate analyses
based on the existing mathematical theories have been explored. There-
fore, our understanding will be greatly dependent on the numerical
experiment coupled with these approximate analyses. However, even though
the results of a numerical simulation may be comparable to those of
laboratory experiments, a numerical simulation is still desirable since
the flow parameters can be varied with such ease and then more information
is available. Of course, one must recognize that, because of the limita-
tion in the available computer storage and because of the difficulty in
generating turbulence by computer, three-dimensional problems associated
with turbulence must still be studied in the laboratory or by prototype
investigations.

Numerical studies of lee-waves have been carried out by Hovermale
(1965) and by Foldvik and Wurtele (1967). Both studies treated the
transient flow of inviscid stratified fluid over a barrier as an initial
value problem. For the lack of suitable boundary conditions, both
upstream and downstream, cyclic boundary conditions were used, i.e.,

the calculated flow conditions downstream of the barrier were fed back



in upstream as the oncoming flow towards the barrier. Some important
features concerning the nonlinear effects on lee-waves were obtained.

In the numerical experiment described in this report, two-dimensional
laminar motion of an incompressible, viscous, diffusive and nonhomogeneous
tfluid over an obstacle will be studied. The fruitful results from the
studies by Hovermale and by Foldvik and Wurtele indicate that treating
a transient flow instead of a steady flow is a helpful approach from
the numerical point of view and, thus, in this numerical study a transient
flow is considered. However, we shall abandon the cyclic boundary condi-
tion and make a detailed study of the effects of boundary conditions on
the computation. In addition, a new iterative method is introduced in

order to increase the speed of the computation.



Chapter II

GOVERNING EQUATIONS AND BOUNDARY CONDITIONS

2.1 Governing Equations

Consider two-dimensional laminar motion of an incompressible,
viscous, diffusive and nonhomogeneous fluid in a uniform gravitational
field. The fluid properties other than the density, such as the vis-
cosity Mo and thermal conductivity ko , are assumed to be uniform
in the flow field. By using Boussinesq approximation, the equations of
motion, the continuity equation, and the equation of energy are formu-

lated as follows:

i 2%— +u 3%— + W 2%-) = - ég- - uo§2ﬁ s (2.1)
ot 9X 9Z 9X
~ P -~ ‘ o P
po(?—‘f- +;,3V~i +§li‘~i}=-é{)—-og+uo\72ﬁr X (2.2)
ot 90X 9z 0z
du/ax + ow/dz =0 (2.3)
and
oy | vl il = kv, (2.4)
Plst ox 5z
where u and w are the velocity components in the Cartesian coordi-

nates x and z , o is the density, o is the reference density,
p is the pressure, Cp is the specific heat capacity at constant
pressure, T is the temperature, t is the time, and V2 = 32/3%2 +

32/3z2 is the Laplacian operator. In Equation (2.4) the heat dissipa-

tion due to molecular viscosity is neglected.



By cross differentiating Equations (2.1) and (2.2) and then

eliminating the pressure, one arrives at the vorticity transport

equation,
9_%_ + U 9—? + W 3%. = Tl- 9-:- g + \)\728 , (2.5)
ot X 9z o X

where v = uo/po is the kinematic viscosity, the vorticity z is

defined by
7 = ow/ox - au/dz (2.6)*
and are BE o —l-ég- has resulted from use of the equation of state
To x Po 3x

for the incompressible fluid and of the Boussinesq approximation. A
stream function, @ , which satisfies the continuity equation (2.3) is

introduced as

U= 23y/3z , and w = - 3P/IxX , 2.7
and the vorticity can be redefined as
L= -2 . (2.8)

For convenience, Equations (2.5), (2.7), (2.8) together with Equation

(2.4), presented in the form

— +UuU-— +W-— = kV2 T , (2.9)

* The sign convention for z is the opposite of that more commonly
used. It is used here for convenience.



in which k = ko/pCp is the thermal diffusivity, will be normalized to

give a set of nondimensional equations.

Let
u=u/U, w=w/U, t = t/(L/U) , ¢ = z/(U/L) ,
: . T-T,
X=X 5 z = z/L , T = AT . Re = UL/v , Pr = Vi ,
U 1
¢ = J/UL , and F_ = = e (2.10)
AT VR.
v/ gL — i
TO

U, L, and AT are the characteristic velocity, length, and temperature
difference, respectively, and R, , P, , F. and R; are the Reynolds
number, Prandtl number, Froude number and Richardson number. The

governing equations in dimensionless form become:

8L gL L . B, Lo

it T REy Y C A R L (2.11)

T oT 3T 1 9

3 TV YW TP VT o (2.12)

r

and

E:.—VzlL s (2.13)
where

g2 = B2, 3%

2
ax2 0Z

2.2 Governing Equations in Finite Difference Form

For numerical computation, Equations (2.11), (2.12), and (2.13)

will be discretized 1into stable and convergent finite difference forms



and then, provided the initial conditions, boundary conditions and
parameters are adequately defined, one may simulate a flow with the
computer.

In Equation (2.13) the derivatives are replaced by central differ-

ences to give,

P. .= 29, .+ . .
1+1’J 1,) 1-1’.] - _
= = C. 3 (2.14)

2
AX Az 1,

i,¢1 7 2,5t 4

where Ax and Az are the mesh intervals in the horizontal and vertical
directions, respectively, the subscripts i and j 1indicate the space
coordinates by x = iAx and =z = jAz . Figure 1 displays the arrange-
ment of the mesh. It can readily be shown that in respect to Equation
(2.13), Equation (2.14) has a truncation error e = 0(Ax?) + 0(Az2)

where the notation O denotes that 1lim Qéél is finite. Thus, the

"
smaller the mesh size is, the smallerétﬁe truncation error will be.
Discretization of Equations (2.11) and (2.12) presents greater
difficulty since one nust consider questions of convergence and of
stability. If a finite difference scheme has the property of stability;
the difference between the solution of the finite difference system,
say ei,j,k , and the exact solution of the differential system, say
0(iAx,jbsz,kAt), will remain bounded as time increases indefinitely for
fixed mesh sizes, Ax , Az and time increment At . Convergence guaran-
tees that, for t fixed, ei,j,k will converge to 6(iAx,jAz,kAt) as
Ax , Az , and At approach to zero. A further difficulty arises from
the nonlinearity involved in the coupling between Equations (2.11) and

(2.13). Experience shows that the nonlinearity can produce instability

in the computations although stability analysis based on the locally



linearized finite difference system indicates a stable scheme. For this
reason numerical experiments are always needed.

Generally speaking, there are two classes of schemes, explicit and
implicit, for solving a transient problem. In explicit schemes the
solution at a given grid point for the new time level can be calculated
from known quantities at the present or previous time level. On the
other hand, implicit schemes involve the solution of a set of simultane-
ous equations for calculating the solution at all the grid points at
the new time level. Obviously, explicit schemes involve less algebraic
manipulations than do implicit schemes. However, for a linear system,
stability analysis shows that the time increment At for explicit
schemés is restricted and usually At is kept small to satisfy require-
nents of stability and of convergence; whereas, in implicit schemes the
time interval has no restrictions except those imposed by considerations
of accuracy. Consequently, a larger time increment can be used with
implicit schemes and this can result in less computer time being required
than in the case of explicit schemes. In particular, if we are chiefly
interested in the asymptotic solution of a transient flow, implicit
schemes appear to be preferable to explicit schemes. Here we would
point out that the computational scheme which is best for a given prob-
lem will often be determined by the nature of the physical phenomena.
For instance, if a flow involves phenomena of short period or high
frequency the time increment must be considerably shorter than this
period. An example is the numerical calculation of vortex shedding
phenomena behind an obstacle (Fromm and Harlow, 1963; Thoman and
Szewczyk, 196€). And, of course, the mesh size must be considerably

less than the characteristic length of the shedding vortex. As for



the present numerical investigation, we shall use an implicit scheme
since transient lee-waves propagate slowly and have a characteristic
length comparable to or larger than the obstacle height or width.

Even when an implicit scheme is used, the nonlinearity of the
equations can cause difficulties when the Reynolds number Re becomes
large. If the convective terms of Equation (2.11) are discretized with
central space differences, the off-diagonal terms of the amplification
natrix of the difference equations can become large in magnitude com-
pared to the principal diagonal terms as R, increases and, then, the
absolute values of the eigenvalues of the amplification matrix may be
greater than unity. This situation has been improved somewhat by use
of the alternating direction implicit (ADI) method (Peaceman and
Rachford, 1955) for moderate Reynolds numbers (Pearson, 1965). For
higher Reynolds numbers, the backward and forward difference method
for convective terms has proved to be very effective (Thoman and Szewczyk,
1966) . This method was first suggested by Lelevier (Richtmyer and
Morton, 1967) and consists in representing 08z/8x (or 9z/3z) by the
backward or forward finite difference depending on whether u (or w)
is positive or negative. In this way, the amplification matrix is made
positive definite and diagonally dominant; thus, the absolute values of
the eigenvalues of the amplification matrix are less than unity and the
stability criterion becomes weakly dependent on the Reynolds number.
This method together with the ADI method has been used by Pao (1969) for
calculation of homogeneous flow of a viscous incompressible fluid over a
horizontal flat plate of finite length.

In the present study, for high Reynolds number this backward and

forward difference method is applied to the convective terms and then
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the Crank-Nicolson implicit scheme is used. The governing equations

in finite difference form are formulated as follows:
(i) Temperature field:

n+1 o n Tn+1 n+1 n Tn

T ) i, - v & = L. g B Ho e :

1,) 1,,] + 1,] A 1,] 1'1’J 1,) 1'1:J

At 2 2 Ax

n+1 B ni+1 n _ Tn

- i+l;5 1oy i1 53 1.7

3 AX

n n+1 n+1 n n

w 5 Tl s 1 + 1

+ 191 A 1,)] 150> 1,] 1,]=

2 4 Az

R o U

+ A 1,7+ 1] dvy % 1,) }

5 Az

B gL L el gl gt el

- 1 i+l,j i,j i-1,j 1+1,] i,j] i-1,]
- 2P.R 2

r e AXx

n+1 n+1 n+1 n n n

g - e T - T [ i T o4 B
% 1,]%1 £33 i,j-1 21,J+l 153 1,]-1J 1 (2.15)

Az
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(i1) Vorticity field:
n+1 n un n+1 ~ n+1 . Cn 3 Cn
TS TG U5 RS V% N DN U5 S T U5 NG O RO &3 U5
At 2 2 AX
n+1 n+1 n n
i+1,j © %i,j © “ivl,j Ci,jJ
+ A
3 AX
n n+1 n+1 n n
W. - g % = - .. ..
1,) 1,] 1,.]"1 1,] 193'1
+ 2 [A4 Az
n+1 _ n+l Z;n _.n
NS U 15 U V% NS U5 1 W O
5 Az
n+1 2 n+1 n+1 n 2 n n
= iv1,j ~ “%i,j i-1,7  Ci+l,] 1,5 7 %i-1,j
2K
e AX
n+1 . n+1 n+1l + -2 n + D
G V5 15 Ut VS IR VS 5 UMINE 1S L5 W 95 Ci,J'l}
A22
% T?:i j ?t} 5 ¥ 141 3 1 j
7 [ o } . (2.16)
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and

(iii) Stream function field:

Yie1,5 ~ 25,5 * Yi-1,j T R P A
2 2
AX Az
e (2.17)
in which
(a) A2 =1 , A3 =0 for u?,j >0 ,
) A, =0 , Ag=1 for u? 50,
3
() Ag=1 , Ag=0 for w; ;20
and (d) A, =0 , A =1 for w? ;<0 . (2.18)

In Equations (2.15) and (2.16), the superscripts n+l and n denote
the time steps (n+l1)At and nAt . In the course of calculation the
quantities at the nth time step are known, while those at the (n+1l)

time step are unknown and must be calculated.

2.3 Initial and Boundary Conditions

In the atmosphere, flow condition; may vary from time to time and
we may use observed data as the initial conditions and calculate the
flow as it develops from that state. However, this makes the problem
complicated and, in this numerical experiment we consider a simpler
condition. Consider a vertical fence of infinitesimal thickness and
height 2L in a fluid of unlimited extent. The fluid, initially uni-
formly stratified in the vertical direction and at rest, is impulsively

accelerated in the horizontal direction so that the velocity far from
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the fence is U and, thereafter, the velocity is maintained constant.
The flow is initially irrotational and the vorticity which is generated
as a result of the no-slip boundary condition on the vertical fence is
concentrated only on the fence. As time passes, vorticity spreads into
the flow field under the combined action of viscous diffusion and of
convection. The temperature distribution at the initial instant when
the flow starts impulsively is linearly distributed with height and the
tenperature is constant along a streamline; the characteristic tempera-
ture difference is defined by AT = %L = L where fL is the tempera-
ture far upstream at height L measured from the center of the vertical
fence. As time passes, the temperature distribution will be changed

as a result of thermal diffusion and of convection.

As far as the boundary conditions are concerned, only the no-slip
condition for a viscous fluid is clearly defined on the boundary of
obstacle. liowever, the governing equations are expressed in terms of
vorticity and the velocity is in turn calculated from the stream function
equation; in other words, there is no a priori boundary condition
available for vorticity. In the following, we express the vorticity
on the obstacle boundary in terms of the vorticity and stream function
in the neighborhood.

Referring to Figure 2, we express the stream function at A

Ya

in terms of the stream function ¢B and its derivatives at B by a

Taylor series expansion

{9
= wB + AX V——)' +

b x|,

2 2 3 3 N lisa. 2
A AX (§~%] , bx (zxg) L Ax (a )

BCYE ! 1 v j
21 B 3! B 4! BXH/B

+ 0(Ax®) . (2.19)
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Equation (2.19) can be related to the vorticity and its derivatives at

B by virtue of the no-slip boundary condition at B as

2 3 N 2 2
e e 1 SEJ - 25 (a | RGO
: B : X 3z IB
which is then rewritten in the form
= e (b)) - 2o, + D (w2g), + 0(axd)
B 2 B A 2 °A 8 B
AX
3 1 Ax? 3z 3
s (bg=¥y) - 538, * 5 Ry fgg i + 0(bx3) (2.20)

by using the Taylor expansion of N about B and the no-slip condition.
The same derivation was given by Hung (1966). Now, if (ag/at)B is

expressed by

) - 2

ot B

and the remaining terms of the right hand side of Equation (2.20) are

given the values corresponding to the nth time step, then we have

Sl st | 3 n_ony 1on o on (1 . Resz)
B Resz w2 B A 2 "k B 8At
+ 0(AxAt) + 0(At2) . (2.21)

For the vorticity on the upstream face of the vertical fence, a similar

equation is available:



LS

2
Cn+l B 8At 3 (wn lpn ) + 1 Cn . gn 1+ ReAx
S - T v T ' 5 ' ' At
B R Ax2 Ax2 B A 2 "A B 8At
e
+ 0(AxAt) + O(At?) . (2.22)

Hence the vorticity on the boundary of the vertical fence at the
(n+1) time step can be evaluated from the quantities at the nth time
step, and then is used as a boundary condition for the calculation of
vorticity at interior points at the n+l1 time step. In the case when

an iterative process is used for the calculation of vorticity at a

(m+1) (m+1)

given time step, CB and CB‘

at the (m+1) iteration are

calculated from the values of the mth iteration by,

l;ém+1) - _32_ (‘Pém) _ lblgm)) _ _é_ C[gm)_'_ O(sz) , (2.23)
AX
and
e = gy -y -3t v o) (2.24)
AX

Subsequently they are used as boundary conditions for calculating vor-
ticity at interior points at the (m+1l) iteration.

As for the boundary value of vorticity on the corner of the verti-

cal fence, C , a different expression is derived as follows. Expanding

the vorticities L s Lpr s Cp s and g in Taylor series about C ,
we have
32
S T T Az2 ( 2) + 0(az3)
sz IC

and
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32¢

_—

39X

z 2, + ax? + 0(ax3)

g+ Ly

C

which, for Ax = Az , are combined to give,

= - - 2(y2 3
L = - 2Ly Tp *op t Lp, Ax=(Veg) o + 0(8x7)

;
= = - 2 = 3
= 2;D + Cp + Lk * Cpy AX Re lat)c + 0(Ax3) . (2, 25]

Hence, a finite difference from for Equation (2.25) is written as

gn+1 - At r_ 2gn + Cn 4 Z;n 4 cn _ Cn
C o A2 L p " ept ot T 5
e
+ gg + 0(At?) + O0O(AxAt) . (2.26)

For the iterative process we have simply

i e T AR R oI (2.27)

As far as temperature distribution on the obstacle is concerned, we

consider a uniform distribution for convenience, i.e., T = To or

On the outer boundary beyond the obstacle the boundary conditions
are not defined a priori. Upstream very far from the obstacle, one may
define a prescribed boundary condition. However, because of the pres-
ence of disturbances propagating from the obstacle both upstream and
downstream, the boundary conditions for both inflow and outflow bound-

aries have to be defined in a less restrictive way by an extrapolation

method derived from the Milne predictor formula,
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_ 4Ax . : , 5
Yie1 = Yioz ¥ 3 (@yi -yl v 2yf )+ 0(x7) (2.28)

where the prime denotes the derivative with respect to x and y is

a function of x . By using the formulae

_ 1 "
Y3 = Toix Pgq = A0 g * 3 5 - 48y, * By 0T,
| "
Yi-1 = Tk y.q * W5 - 1875 5 * 10y 4 + Syy) + 0L&T)
and
_ 1 L
Yiez = Toix Ui-q - g+ 85 ; - ¥7g) +0xT)

Equation (2.28) is formulated as

= _ = 5
Yie1 = Yia 5y.1_3 + IOyi_2 10yi_1 + Syi £ 0(ax2) . (2.29)

Hence, with an error of order Ax® , the stream function, vorticity,
and temperature on the outflow boundary are expressed by extrapolating

from the neighboring upstream points as follows:

Vierg = Yioa,g = Vieg,y ¥ g g = 10 g5 * By 5 » (20508

Ci+1,j = Qi-4,j - 5Ci—3,j + 10Ci-—2,j - logi-l,j + SEi,j , (2.30b)
and

Tiet,i = Ti-ag = Fios,5 * Mg,y =~ Wi 5 * 513 5« (2.300)
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A similar but different form was used by Hung (1966) successfully for
a laminar flow in a conduit expansion. Similarly, these variables on
the inflow boundary are expressed by extrapolating from the neighboring

downstream points

wi_l,j = wi+4,j - 5wi+3,j + 101JJi+2’j - 101pi+1,j + Swi,j y (2.31a)

Ci-l,j = Ci+4,j - 5Ci+3,j + 10§i+2,j - 10@i+1,j + Sci,j y (2:31b)
and

Ti1,5 = Tiwa,j - STias,j * 10T 4p 5 - 10Ty, 5 + 5T &+ (2.310)

The detailed study of boundary conditions Equations (2.30) and (2.31)
will be presented when the computational results are described.

For an exact simulation of flow over an obstacle by computer, the
computation should cover the whole flow field 1234 (see Fig. 3), espe-

cially when some asymmetric flow patterns such as shedding vo;tices

R.72
i

are present. These would be expected to occur when o = 335—32726 < 1
and Re > 40 (Pao, 1968). However, because of the limitation of com-
puter capacity, a flow field of half space 1256 was considered instead.
It is assumed that the flow field is symmetric about the line 56.

Actually this is not a bad assumption when o > 1 according to Pao.

Hence, we assume that when t > 0

LT Bl
4,90 »
Ti,l =0 , or Ti,l = T0 (2:32)

for the boundary conditions on the line of symmetry, 56, and
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wN=0
Gan=9
3/0x(T; ) = 0 (2.33)

for the upper boundary condition on the line 12.



20

Chapter III

ITERATION METHOD

In the numerical solution of Equations (2.15), (2.16), and (2.17)
an iterative process is always encountered because of the boundary con-
ditions and the nonlinearity of the equations. Iterative methods, such
as the Gauss-Seidel process, SOR (successive over relaxation), or ADI
(alternating direction implicit method) may be used. However, in this
study a new strongly implicit iterative method proposed by Stone (1968)
will be used. This method has several advantages over the methods
previously used. Firstly, its rate of convergence does not depend
strongly on the nature of the coefficient matrix of the equations to
be solved; secondly, it is not sensitive to the choice of iteration
parameter; and thirdly, it reduces significantly the computational

effort.

3.1 Statement of Problem

There are many methods available for solving a set of linear

algebraic equations, expressed in matrix form as,

M1t =q . (3.1)

Direct elimination is always possible but it is time consuming and
requires excessive computer core if the dimension of the matrix is
large. Methods based on triangular resolution of [M] into a lower
and an upper triangular matrix, [L] and [U] respectively, can result
in significant savings in computational effort and in storage require-
ments as compared to other direct methods of solution when [M] is a

band matrix. In the particular case when [M] 1is tri-diagonal the
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savings are very great indeed. When partial differential equations in
two-dimensional space are approximated by implicit finite difference
equations involving function values only at the reference mesh point and
at its nearest four neighbor points, the matrix of coefficients of the
difference equations has non-zero elements only along five diagonals,
viz., the principal diagonal and that on either side of it and two off-
diagonal lines. In general, when such a matrix is resolved into [L]
and [U] , these matrices do not preserve the sparse structure of [M].
tHowever, if a matrix which approximates [M] can be found such that it
is the product of a lower and of an upper triangular matrix, each of
which has non-zero elements on only three diagonal lines corresponding
to the non-zero diagonal lines in [M] , then it is possible to solve
the set of equations by an iterative method and to preserve the benefits
arising from the sparseness of the matrix [M].

The expressions presented in Equations (2.15), (2.16), and (2.17),
can be simplified in a general form

B. . T. . +D. . T. s+t By o T : * Fu 5 T, : + H. o T: & = q. .
1,j 1,j-1 1,j 1-1,j 1,j 1,] i,j i+l,j 1,j 1i,j+1 i,J

which, expressed in matrix notation, has the form
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T
0,0 F0,0 l‘0’0 0,0 q0,0
N T
D10 E1,0 Fi,0 o, 1,0 [%1,0
% . \ N . .
\ X b \ . .
& ¢ M+l __)\\ . .
N *. elements .
N % N N .
N 3 N \ .
\ " \ \\
X ~ \‘ T
B0,1 D0,1 I:o,l ro,l ho,l o,l q0,1
\ \ N \
\ X \
\ \ ) \ \
A \ \ \\ \\ =
. N\
R . D \L \f \\}i
o \
%1, 1 Thad TEd T Ti,i %,
" \ N\ N\ .
\ N \ \ : .
-
\ = \\ N \\
B . \ H
, T N % N O :
\\ . 3 \\ :
v I+l * \ .
elements N, \F ,
\ i/ \\ \ I‘]-,J -
N \ 6! :
B D E
L 1,J 1,0 “1,J L qI,J_I
(3:3)
or
> >
[M]T =q , (3.1)

where the matrix [M] is a (I+1)x(J+1) square array. The elements of
the matrix are composed of the coefficients of temperature, vorticity,
and stream function in the respective Equations (2.15), (2.16), and
(2:17) « % is a vector composed of the sequenced temperatures, or vor-
ticities, or stream functions over the computation field. a is a
vector composed of the sequenced known quantities. In the matrix [']

non-zero elements occur only along the five diagonal lines shown.
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3.2 Algorithm for Iteration

In order to solve Equation (3.2) iteratively, an inductive algorithm
instead of the algorithm described by Stone (1968) will be introduced.
In principle, both algorithms have the same outcome, but the former, it
seems to us, has a clearer and simpler derivation.

Assume that T. . can be evaluated from T. . and T. .
i,] i,j+1 i+1,j

which are already known. Then let

i3 7 % Tiens T s T T o ()

in which e , f. . , and d.1 3 are subject to determination. Hence

i,] i) )

by Equation (3.4), Ti and Ti which are unknown can be ex-

-1,j ,j-1

pressed in the forms

Vel g ™ ®iat.4 5,9 Y By Tiadget FYaig o (3.5)

and

i1 7 %51 Tienygn  faga Tayy T 5 (3.0

Substitute Equations (3.5) and (3.6) into Equation (3.2), and then we

have

Fi . H. .
T. . = - ) T. L o- 1,)]
i+1,j

D. .e. +E. .+B. .f. . D. .e. 4B, s+B. .f. . i j+1
1,] 1"1:.] 1,] 1,) 1:.]'1 1,) 1'193 1,)] 1,] 1,3"1 el

L 31,57P,5% 1,57 58,51
. .€. 4B, .#B. .f£. .
i,ji-1,j 7i,j "i,j 1,j-1

1,551,311, 501 7 P50, 501", 500
(3.7)

Equating the right hand sides of Equations (3.4) and (3.7), we obtain

the following relations:
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is3 ) i
T D. .e. .+ E. . +B. .f. . ei,j > (3.8)
1,j+i=1,j is3 i,j7i,j-1
Hi 3
T D. .e. .+ E. . + B. .f. . - fi,j > (3.9)
i,j 1-1,j] i,] e
94,5 © Di,jdi-l,j B Bi,jdi,j-l . _—
s €4 .+ E. .+ B. .f. . i,j s .
i,j 1-1,j 1,)] 1,) 1,3—1
Dy 5fia1,; = 0 o (3.11)
and
Bi,;%,5-1 = % - (3.12)

In the expressions, Equation (3.8) through Equation (3.12), the capital-
ized elements are all known. If the elements with subscripts (i-1,j)
or (i,j-1) are also known from previous calculations, then in the above

five relationships we have only three unknowns, e f. . , and d.1

i,j°? 1,] ,j.

In other words, these three unknowns are indeterminate if all five
relationships have to be satisfied; equivalently, we can say that there
is no way to resolve the matrix [M] of Equation (3.1) exactly into a
product of lower and upper triangular matrices with the same sparse

structure as [M] , as we previously noted.

In Equation (3.7), the terms containing Ti-l,j+1 and Ti+1,j-1
are the source of the trouble. However, if T. : and T. :
i-1,j+1 i+l,j-1
can be expressed approximately in terms of T. s O

41,9 Ty 341« 0¥

even Ti j and other known quantities when we evaluate Ti 5 4 then

3 )

we obtain three relationships for three unknowns. Expanding Ti 1St
SR s

Ti-l,j , and Ti,j+l in Taylor series about the grid point (i,j), we

have
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Bianaet ™07 Tayg * Baggen * Voo, g * DS (3.13)
Similarly,
Tian,5-1 =~ Ti,5 * Taer,5 * Ty, * Olaxbz) . (3.14)

Now it is realized that the right hand sides of the expressions (3.13)

and (3.14) have a truncation error O0(AxAz) and thus an iterative process
is necessary for the solution of Equation (3.3). Therefore, we introduce
an iteration parameter o for both expressions (3.13) and (3.14) in the

forms

Ticn,ge1 = 00T 50 Ty 5 * T

) (3.15)
and

T = a(-T

i+1,5-1 1,5 " Tie,g t T 0 L

In principle, two iteration parameters, say o and B may be introduced
to the expression Equations (3.13) and (3.14) respectively. However, we
use only one iteration parameter o for convenience and for simplifying
the numerical experiment.

First consider the expression Equation (3.15). By virtue of the

Equation (3.5), Equation (3.15) becomes

Tiogen = 00Ty " Tigen) wolegy 5 Ty

*E1,5 Tien,ger * dion,5)

b

which gives
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-1 + e. ) Ton, a fB Ty & +.d. :
T, , ...=a : ®i-1,303,5 " Ta5en T Gio,g (3.17)
el l-a f. :
i-1,3
Similarly, by use of Equation (3.6), Ti+1 §od is expressed in the
form
(-1 + £, . )T, o NI .
Ti+1 s % 5 1,9=01""1,73 i*l,j i,j-1 (3.18)
? 1l -oa0e. .
:J—l

Finally, substituting Equations (3.17) and (3.18) into Equation (3.7)

the result is obtained,

aD. ’
] s el A=y
l—afi_1
Ti,5°° R 3B ,?(f. . T 23,941
i E + 1,] 1'1,3 i'l’J i’J 13]'1 i:j'l k
1,7 l-afi_l’J l-ocei’j_1
B. .
F o+ * 1,] lsJ'l
13 l—aei’j_1
- D. . (e. .-af. 3 e o[y . (=0€, . i+1,]
E + 1:J( 1'1_’3 * 1'1:J) + 1:J( 1:3'1 1:3'1) #l
is3 l_ati-l,j l-aei,j_1
D. . B. .
G & = |t o il
is3 1-af. ; i-1,j l-ae. . i,j-1
i i-1,73 i,j-1 (3.19)
.- B "a(E 2 %3 i
E = Dl,J(el-l,J OLfl—l,;]) l,J(fl,J—l 0Lel,;}-l
s l-afi—l,j l-aei,j_1
By comparing Equations (3.4) and (3.19), e. . , f. ., and d, ., are
1,) 1,) 1,]

obtained inductively as the following expressions,
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¢ 3€e w 1
R 5 A 9% 1
i,] 1—oce1 j-1
e = - > (3.20)
e T e T T Lo T e
i,j 1 afi_l j l-oce.l Gl
| 1,51,
i,] 1-0Lfi_1 3
£, . = = 2 (3.21)
il N R A e B L B S B
E. . + T-of + 1
Sd “*i-1,j "%%1,5-1
and
; B, .
4,5 ° (l-af. ) 41,5 ~ |15 )di,j-l
d, . = 1-1,) 1.1 (3.22)
i,] D, .(e. . .—af. - ) B, .(f. . —ae. . : :
. 1,] 1_1:.] 1'1’3 1,] 1:3'1 1:J'1
E. . + +
157 l—afi_1 ; 1—0Lei j-1
3 9.

Now the computational procedure is straightforward and is described
as follows:

(1) Since all the capitalized elements and a3 j are known quanti-

ties at all grid points, and since Equations (3.20), (3.21), and (3.22)
give the expressions of e. . .
l’J 1’.] 3

grid points (i,j-1) and (i-1,j), one can simply evaluate e j

fi 3 and di ; in the whole field starting from the grid point at the

b s

, £f. . , and di 3 in terms of these at

left, lower corner of the field to that at the right, upper corner of the
field.

(2) When all the e. . , £f. . , and d. . have been calculated,
1,] 1,] 1,)

T. . «can be calculated "explicitly" by Equation (3.19) from the right,

3

upper corner of the field to the left, lower corner provided suitable

boundary conditions are given.
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It is interesting to note here that the original set of Equations, (3.2),
is an implicit one and that, by applying the above stated algorithm, one
can solve the equation (approximately) in an '"explicit' manner.

Since the right hand sides of Equations (3.15) and (3.16) are only

and T. with trunca-

the approximate expressions for Tl 1,j+1° i+1,j-1

tion error O0O(AxAz), the calculations from the expressions Equations
(3.19) to (3.22) give only a first approximation to the exact solution,
and an iterative process is needed to improve the accuracy. Consider

Equation (3.1) at the (m+1l) iteration.

pg T+ q (3.23)

which can be rewritten

->
pg o@D Crmy g t® (3.24)
> >
Let g(m+1) - T(m+1) - T(m) , the changes of T from iteration m to
n+l, and R(n) [M]T(m) , the residuals at iteration m . There-
fore, replacing qQ; ; in Equations (3.22) and (3.19) by R(mg 5
3 3
R(m) _ _ ) r(m) rm ™)
T R & (Bs,5T EERERA RLUARES. . RSB o i+1,]
o (N3+1) ) (3.25)

and, replacing T1 i T i,j+1 ° and T.
(m+1) (m+1)

5 O3 and (m 1)
1 )]

a U | ®i+l o
for the iterative solution of Equation (3.1):

i+1,] in Equation (3.19) by

, respectively, we obtain the algorithm

(n+1) (m+1) (m+1)
U P U R KR W R T S



where e. ; and fi . have the same definitions as in Equations (3.20)

3 3

and (3.21), while di 3 is now given by,

s

D. . ..
O i |y _ i _1a
i,j I-of. , .| “i-1,j T-ae. . i,j-1
-1 -1
4,5 = Y AT Ay I ¢ ST + e
o, i ti-1,57 e, P, ,3-17 0,5
i,] 1-af. . l-ae. .
1'1:3 1:]'1

The iterative process can be continued until the residuals Rim)

(m+1)

i,]

s

satisfy a certain criterion, and then T is the solution at the

corresponding grid points.

3.3 Convergence Rate

The solution expressed in Equation (3.19) together with Equations

(3.20), (3.21), and (3.22) is an approximate solution to Equation (3.1).

M T=q , (3.1)

but is the exact solution to

B. .T. . + D. .T. .+ E. .T. . + F. .T. .+ H. .T. .
i,j i,j-1 i,j 1-1,3 153 1, 14 2#l;3 1537 1;]+1

[T a(-T. + T +

" 05 %1, Mo, 501 @05 F Ty gan * Ty, 50

i,jei,j—l[Ti+l,j-1_ 0I'(_Ti,j * Ti+1,j * Ti,j-l)]= qi,j

(3.28)
The proof can easily be obtained by substituting Equations (3.5) and
(3.6) into Equation (3.2) and by the fact that the resultant equation

is identical to the result of combining Equations (3.15) and (3.16) with

Equation (3.7). The modified Equation (3.2) in matrix form is
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>
>

([n] + [N]:: T=gq . (3.29)

Therefore, the convergence rate for the corresponding iterative process

for Equation (3.29), i

€.,

el + 1) 7D < (py e )T 4 (G- e 1) G

can be analyzed.

=
If T is the exact solution to Equation (3.1), then the error of

~(m) : . X 3
T at the mth iteration is defined by

2 _ (3.31)

Thus, Equation (3.30) can be rewritten into an error equation

e+ )T < (o e RO - ™

™ (3.32)

which can also be expressed in the form

0n+1) D (m+1) E (m+1) F. (m+1) s H £(m+1)

a (| 1,3 By 15 o I l,J g 1% 1,] ,351+1,J 1,3 1,3+1

=Yy i3 1 1,3[ £m113+1 _a(—€£Tj g Emjii imzlg)]
-Bi,jei,j-l[egT;f§_1 o B (mJl) ETIIZ (m+1))]

e i,] S l,J[ £m1,3+1 = = (T; * E(T3+1 Emi,J)]
'Bi,jei,j—l[eiTi,j-l - “('€£,§ iTi,J (Tg L (S8

In general, the coefficients in Equation (3.33) are not constants

but vary froin one grid point to another, from one time step to the
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next, and from one iteration to the next. However, for indicating how

the convergence rate behaves we simply assume

B. . =H. . =B
1,)] 1,]
D. .=F. . =D
1,) 1,]
and
Ei’j = -2(B+ D) . (3.34)

These conditions may satisfy the stream function Equation (2.17) pro-

vided Ax = Az . Further, we assume

Dy o f =By e EC . (3.35)

The condition expressed by Equation (3.35) applies when i and j
become large and grid points are far from boundaries. Hence, using
Equations (3.34) and (3.35), with the assumption that the influence of

the boundary points is neglected, and by letting

(m) _ m 3 5 :
Ei,j = ¢ AY,B exp[i (ymidx + BmwjAz)] (3.36)
where i2 = -1 , we can obtain the decay factor ¢ per iteration for

the error component corresponding to vy and B as

[0.5 C(1-a)K + CaA] + 2CR

¢ [0.5 C(1-a)K + CoA + S] + 2CR (3.37)
where
K = cos(ymAx) cos(BmAz) ,
- g lﬁéﬁ, . o [BrmAz
A = 2 sin ( > sin (__5-— s
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_ YTAX BmA ymAX BmAz
R = sin ( 5 ( 5 cos \——5—— cos (-TT—_
S =-Dsin2 [XTAX] _ g sjn2[BT02
2 i P

In order to keep |£| < 1 , the iteration parameter o has to be
defined. For solving self-adjoint elliptic difference equations, Dupont,
Kendall, and Rachford (1968) used an approximate factorization procedure.
In their analysis, a Chebyshev sequence of parameters is used to produce
a rapid rate of convergence. IHowever, neither Equation (2.15) nor
Equation (2.16) is self-adjoint and their method for determining the
iteration parameter o is not applicable. As noted by Stone, o has
to be less than 1 and the repeated use of any o in the vicinity of 1
results in [&| > 1. 1In this numerical experiment, both a transient
heat conduction difference equation and the difference equations ex-
pressed in Equations (2.15), (2.16), and (2.17) have been investigated
and we arrived at the same conclusions. Stone suggested that the
individual parameters should be geometrically spaced in the manner

l-a, = (l-a )2/(L-l)

) A ; &= 05esu:li=1 ,

where L 1is the number of parameters in a cycle and L T is the

maximum iteration parameter. He also suggested a way to compute Biorne
i

2 2
I = amax = min _.._ZAX—__.__ 5 —__.%.Z}E_— (3‘38)
, kzax? ' & KXaz?
KXAz? KZAx2

where KX and KZ are the thermal conductivities in the x and z

directions in the thermal conduction equation
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» e (KZ%I) --q , (3.39)

in which Q is the strength of local heat source. However, neither
Equation (2.11) nor Equation (2.12) can be represented in as simple a
form as Equation (3.39), and even if it could be done, G ax calculated
according to Equation (3.38) may have a value greater than 1. Hence

in this study we simply use the formula

g, 2
- min - (3.40)
max 2 2
AX Az
1+ = L+ =—-
Az AX

Experience showed that O 3 selected by using Equation (3.40), has no
undesirable effects. Stone also indicated a possible way to increase
the rate of convergence by use of double alternate iterations. This
process can be carried out by iterating from the left-lower corner of
the field to its right-upper corner and then from the left-upper corner
to the right-lower corner. However, our experience indicated that the
double iteration process did not increase the rate of convergence in
the problem under study, and, on the contrary, it may sometimes result
in a decrease of the convergence rate. For this reason, we apply the
process, iterating from the left-lower corner of the field to its right-
upper corner. The rate of convergence indicated by Equation (3.37)
applies to this process.

Before the iteration method described above was applied to solve
Equations (2.15), (2.16) and (2.17), it was tried on a test problem of

a flow of homogeneous, viscous fluid with governing equations
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2 2
3t , 3% 3t 3y 3 _ 3¢ 3 (3.41)
ot 9z 09X 90X 9z 2 2
9X 9z
and
2 2
20°Y - 94y =-cz , (3.42)
2 2
90X 9z

and with the boundary conditions

z=0,¢%=0 on x=05,0<2z<0.5 and 0<x<0.5 , z=0.5

o¢/9x =0 , 3yY/3x =0 on x=0, 0<2z<0.5 , (3.43)

dt/9z , 0dY/dz =0 on 0 <x<0.5 , z

n
(@)

An exact solution of Egs. (3.41) and (3.42) with boundary conditions

(3.43)is given by

p = exp (-2m2t) cosmx cosmz . (3.44)

The nonlinear terms in Equation (3.41) vanish identically for the exact
solution but, in the computation by means of finite difference approxi-
mation, the nonlinear terms do not quite vanish; thus, any instability
caused by their presence should be detected.

Since Equation (3.41) is identical to Equation (2.1) when R; =0
and R, = 1 , the forward-backward scheme proposed for high Reynolds
number was not used because of the low Reynolds number. Instead, the
central difference form is used for 09z/9x and 93z/9z . For the numeri-
cal calculation, Equation (3.41) is expressed in an implicit finite

difference form by
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n+1 _.n ll}n _ wn n+1 _ n+1
i:j isj i’j+1 i’j’l i+1’j i'l,j
At 20z 2Ax
wn n n+1 n+1
i+l,] i-1,j » i,j+1 i,j-1
2AXx 20z
n+l _ 2 n+1l n+1 Cn+1 Zn+1 n+1
_oBiel,i T %R, Y Rion,g o BiLjel i,j = "i,j-1
sz Az

(3.45)

where the superscripts n and n+l denote the time steps nAt and
(n+1)At , and Equation (3.42) is expressed in central difference form
by

ie1,j - Yi,5 " Vi1, i 5

i,j+1 i,j-1 _

(3.46)

Figure 4 shows grid points and meshes for the test problem. In the

course of calculation, we used

COosSTX COSTZ

<
I

and

2

me COSTX COSTZ

Y
]

as the initial conditions which are in fact the exact solution presented
in Equation (3.44) when t = 0 . The calculation field contains 20 x 20
grid points (including the boundary points); equal mesh size is used for
both Ax and Az , i.e., AXx = Az = 0.5/19; the time increment At 1is

0.002, which is about twelve times the limit,

A 2
Mty < i—%l—- (3.47)
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given by stability analysis if Equation (3.41) is expressed in an
explicit finite difference form and if it is assumed that the stability
criterion is determined by the diffusion terms rather than by the con-
vective terms obequation (3.41). In fact, it can be shown that the
required time increment to satisfy the stability criterion due to the

presence of convective terms is

1

e = Tau/ezl , Toufpx]
AX Az

(3.48)

which is much greater than Atd expressed in Eq tion (3.47) for our
present problem.

As noted in section 3.3, the solution expressed in Equation (3.19)
together with Equations (3.20), (3.21), and (3.22) is an approximate
solution to Equation (3.1) because of the approximate expressions

and T.

Equation (3.15) and Equation (3.16) for Ti—l,j+1 i+l,j-1°

Hence, in order to detect the effects of this approximation on the cal-
culation, we calculate Equation (3.45) once for a given time step and
iteratively calculate Equation (3.46) twice. From this process, one

can also detect the effects of the presence of nonlinear terms on the
calculation. Thus, one can deduce under what conditions Equation (3.45)
has to be calculated iteratively in order that the effects due to the
nonlinear terms may be taken into account. As a summary of the detailed
calculation, the calculated vorticity and stream function and the exact
ones at the point x = 1/19 and z = 1/19 are listed in the following

table. The computer used was a CDC 6400.
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]

t exact calc exact calc. 1 calc. 2
0 9.60222368  ~---mmmmm- 0.97290862  ~mmmmmmmmm mmmmmmmme -
0.002 9.23052787 9.22078202 0.93524801 0.92459860 0.93348617
0.004 8.87322061 8.85059308 0.89904521 0.88207465 0.89408518
0.006 8.52974445 8.49137856 0.86424380 0.84222221 0.85587786
0.008 8.19956402 8.14333278 0.83078953 0.80469707 0.81901579
0.01 7.88216465 7.80672216 0.79863025 0.76921420 0.78360202
0.012 7.57705158  7.48175327 0.76771583 0.73555790 0.74967254
0.014  7.28374922 7.16853732  0.73799809 0.70357176 0.71722006
0.016 7.00180039 6.86708870 0.70943070 0.67313486 0.68621320
0.018 6.73076560 6.57733479 0.68196914  0.64414754  0.65660749
0.02 6.47022238 6.29912885 0.65557059 0.61652354 0.62835160
0.022 6.21976461 6.03226294 0.63019391 0.59018586 0.60139091
In the table and ¢ denote the stream function calcu-
calc, 1 calc. 2

lated at the first and second iteration, respectively.

Figure 5 presents the errors in calculated stream function and
vorticity compared to their exact values at the corresponding times.
At t = 0.002, first the vorticity was calculated by Equation (3.45)
and then this newly calculated vorticity was used in Equation (3.46)
to calculate the stream function iteratively as noted by ¢

calc. 1

and U 2 These calculations indicate that the result of even

calc.
the first iteration is quite close to the corresponding exact solution.
However, because of the presence of the nonlinear terms the error grows
monotonically with time and, thus, it is concluded that for solution of
nonlinear difference equations such as Equation (2.15), or Equation (2.16),

it is necessary to use an iterative process even when the Reynolds number

is small.
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Chapter IV

COMPUTATIONAL PROCEDURE

In Chapter III, an iterative method was introduced to solve
Equations (2.15), (2.16) and (2.17) expressed in an implicit form. For
a better presentation these equations are rewritten in the general form
expressed in Equation (3.2):

(i) Temperature field:

n, (m) n, (m)
A (A4 Lo - 1 (1, (1) B B 0+1, (1)
[ i da
2Az 2P R Az i,j-1 2AX 2P R sz i-1,j
r e r e
) n, () :
4 15 i,9 s 1 ( 1 1 n+1, (m+1)
g [At g Worky) * =i Wysh) * i 2) L
e A% Az
n, (m) n, (m)
( e 7 R 1, (me1) ( i Y 0+, (e1)
- - 3 X . - - N »
2Ax 2P R Ax i+, 2Az 2P R Az2 o]
T e r e
A Wt () K uDad)
& L3 %y R 1 n 2 iy i 1 n
2Az 2P R Az2 g | 2Ax 2P R Ax2 i-1,j
r e r e
- s (m)

1 Ui, e, S Sy L] o
it - ok Bahg) - o WAy - px T 5l Y
re AXx Az

(=

n, (m) n, (m)
Agli.3 1 n e 3 1 n
T e 7 | i, 4 VRE 2 i,j+1
2P R Ax »J 2P R Az s )
r e re

(4.1)
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(ii) Vorticity field:

n, (m) n, (m)
(A4wi,j L1 |1, meD) (Az 1,3 1| ne+l1,
- 2 - -- - '—
2Az IR Az i,j-1 2Ax IR Ax2 i-1,
(& e
- . ()
"1, Y i) L, 1
f AT T e (Aghy) ® g (Ay-hg) + R (sz ¥ AZzJ Z

n, (m) n, (m)
) (_ AUy, n+l, (m+1) ( - % )
2 . - - —
2Ax IR Ax i+l,j 2Az 2R Az2
e e
AWt (™ Aut M
- ( 4 1.5 " 1 ) Cn - 2 i3 1 Cn
2AMz IR Az 1,j-1 2Ax 2R sz i-1,3
e e
1 u2’§m) w2’§m) 1 1 1
Ylar T Taax o WAy - o (A - R ( 7 * 2)]C
e Ax Az
A ur.l’ (m) A wl:l; (m)
+ ( . 371,] " 1 Cn o . 51i,j - 1
2Ax 2R sz b 2 B | 2Az 2R Azz
e e
g, Tl gl el P
1 1153 i-1,j el ;3 i-1,7
B S—
4 AX *
(iii) Stream function field:
1 1 | 1 1
et CIE T B b, -2 # ) Y s
A22 i,j-1 sz i-1,j sz A22 %53 sz i+1,j
1 =
tE Vi T T R

(m+1)
j

n+l, (m+1)

i,]

n+1, (m+1)
i,j+1

(4.2)

(4.3)
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In the above expressions, the superscripts inside parentheses denote
the iteration step within a time step for temperature and vorticity
fields.

In the course of computation at time equal to zero, a uniform flow
starts impulsively. The stream function field is calculation by letting
Ci,j = 0 in Equation (4.3). Of course, the calculation proceeds itera-
tively according to the iterative method described in Chapter III., The
initial temperature field is assumed to have the same distribution as
the initial stream function field. A flow chart for the initial solu-
tion is presented in Figure 6. From the initial stream function initial
velocities u, and w. . can be calculated to determine the values

»J 1,

of A2 5 A3 5 A4 and A5 according to the expressions Equation (2.18).
Subsequently, the temperature field at the interior points at time At
can be computed by Equation (4.1) provided the boundary conditions in
both inflow and outflow regions, and the velocities of the interior
points are kept at the initial values; then, the temperatures on the
inflow and outflow boundaries are extrapolated by expressions Equations
(2.30c) and (2.31c). The vorticity field at the interior points and on
inflow and outflow boundaries at time At can be calculated in a simi-
lar manner. However, the values of vorticity on the obstacle must be
evaluated at time level At by Equations (2.21), (2.22) and (2.26)
before those at the interior points at time level At are calculated.
Subsequently with the calculated vorticity at time At , the stream
function at interior points at time At is iteratively calculated by
Equation (4.3). Note that the stream function on the inflow and outflow

boundaries is that from the (£-1) iteration when the 2th iteration

for interior points is processed and then the values on the inflow and
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outflow boundaries at the gth step are extrapolated by Equations (2.30a)
and (2.31a) from those at interior points calculated at the Zth iteration.

The iterative process continues until the convergence criterion
(1) (0)

Max|¢(l L. glgl <e ,or Max|—=J (R*l)lil1 < 6, is satisfied.

i,]

When the Reynolds number is small or, equivalently, when the nonlinear
effects are not important, the temperature, vorticity, and stream function
at time 2At may be calculated by the process described above. However,
usually the boundary conditions and the nonlinear effects are so closely
coupled that an iterative process must be used for the temperature and
vorticity fields. To carry out the iterative process, we register the

temperature and vorticity fields, calculated as described above, as

Tl’(o) nd ci’§0) and denote the associated velocity field by ug 50),
and w2’§0) Subsequently, i (m L) and Ci,§m+1) and the associated
velocity field ug’(m) and wg (m) will be calculated until the con-

vergence criteria

T1,(m+1) 1 , (m)

1, (m+1) 1, (m) i,j i,]
Max |T )i T',j | 52 , or Max | Tl’(m+1) I < 62
1,)]
(4.5)
and
Cl,(m+1) 1, (m)
1 (m 1) 1,(m) " 1,3 i V%
Max|c i ad , or Max| W) | < .
e
(4.6)

are satisfied. At this stage the iterative process in this time inter-
val t = At 1is complete, and the calculation can be advanced to the

next time interval t = 2At. In general, the iterative process can be
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applied to the calculation from any time step, say the nth step, to

the next time step, say the n+lst step. Figure 6 shows a flow chart
describing the iterative process to produce the initial solution. A
general flow chart for a transient solution from the nth time step to

the n+lst time step is depicted in Figure 7.



43

Chapter V

RESULTS AND DISCUSSION

Before the numerical calculation starts, the time increment and
mesh sizes nust be determined from different points of view. In theory,
for an implicit scheme there is no restriction on the time increment.
However, because of boundary conditions and of the nonlinearity of the
equations, an iterative process is always needed for the calculation
of vorticity and temperature. If a large time increment is chosen, it
is to be expected that, for a given time interval, a large number of
iterations will be required. On the other hand, if a small time incre-
ment is chosen then, for a given time interval, fewer iterations will
be needed but, to reach an asymptotic state, a great number of time steps
will be required. There is no way to determine analytically the optimum
time increment. The only accessible way is to conduct a numerical experi-
ment and to find out the optimum time increment experimentally. Similarly,
the optimum mesh size can also be determined experimentally. Of course,
the computer core capacity is the most important restriction when a prob-
lem with a large number of grid points is calculated.

Based on experience, we used a small time increment, At = 0.03 ,
for the first calculation starting from t = 0, since the flow pattern
changes rapidly right after the fluid starts flowing. After that the
time increment At was increased from one time step to the next by the

formula

At = At + 0.02

until the condition At > 0.2 is reached. Thereafter, At = 0.2 or

0.22, was used. As to the space mesh size, we used Ax = 0.25 and
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Az = 0.25. Smaller mesh sizes have been tried, but the limitation in

computer storage requires the computation field to be smaller in space
and, then, a lot of information beyond the computation field is lost.

On the other hand, we tried to use larger mesh size, but the increase

in truncation errors was too great and overshadowed the advantage of a
larger computation field.

Figures 8 to 14 are the computational results of stream function,
vorticity, and temperature at different time steps for a stratified flow
with Reynolds number 397, Prandtl number 10, and Richardson number 1.58.
The figures are direct prints from microfilm plots generated by CDC
6600 computer. These dimensionless numbers are defined in the expres-
sions (2.10). The horizontal and vertical coordinates are normalized
by the height, L , of the vertical fence from the line 56 (Fig. 3);
the uniform velocity of the incoming flow is the characteristic velocity;
the characteristic temperature difference AT is defined by AT = dT/dz L
where dT/dz is the temperature gradient far upstream and is a constant
in the present study. Figure 8 shows the normalized horizontal and
vertical coordinates, the same scale being used for both coordinates.

As noted previously, the fluid starts impulsively as an irrotational
flow, and thus, at the early stage of the flow development, the flow
pattern deviates little from the irrotational flow pattern. Figure 8
showing the stream function at t = 0.03 indicates this situation very
clearly from the fact that the streamlines are almost symmetric about
the vertical axis of the fence. In Figure 9 the flow pattern at f =
1.82 1is shown. On the upstream side of the fence, the streamlines are
lifted up, while, in the lee side, the streamlines converge to produce

a strong downslope current; the constant temperature lines show a
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similar pattern. The most interesting thing is the development of vor-
ticity. In the case of homogeneous flow of viscous fluid, vorticity is
confined to the region of the boundary layer and it may diffuse toward
upstream only when the Reynolds number is very small. However, from
Figure 9, we can see that vorticity is not only diffused in the wake
region but also exists on the upstream side of fence as a result of
vorticity creation by density (or temperature) inhomogeneity.

In Figure 10, lee-waves are being generated and the first wave
troughs tilt towards upstream. Figure 11 shows a clearer flow pattern
of lee-waves; in particular, the contour lines of vorticity present
alternating positive and negative regions indicating the troughs and
crests of lee-waves. From Figures 12 to 14, one can see the development
of lee-waves approaching an asymptotic state. In Figure 14, at t =
15.68, two lee-waves are clearly seen; a third wave, which cannot be
observed from the streamline contours, is indicated by the positive
region of vorticity in the left hand corner. This numerical calcula-
tion can be compared with an experimental result by Pao et al. (1968)

for a cylinder of diameter 1.905 cm moving with velocity 2.083 cm/sec
4

2

in stratified salt water of density gradient dp/dz = 20.15 x 10~
and it will be found that the flow patterns are similar. In the experi-
ment the diameter of cylinder is the characteristic length, while in
this numerical calculation, the fence height above the line of symmetry,
corresponding to the radius of cylinder in the experiment, serves as
the characteristic length. For further comparison, reference may be
made to similar flow patterns which have been calculated from the in-

viscid model (Pao, 1969; Miles, 1968).
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Another numerical calculation for Re = 5000, Pr = 1, and Ri =
1.58 1is presented in Figures 15 to 21. This calculation was performed
to determine whether the forward and backward scheme proposed for the
vorticity and temperature equations of stratified flow can really take
care of high Reynolds numbers. The calculation indicates that this
scheme gives a stable computation as predicted. In the series of
patterns in Figures 15 to 19 with the corresponding time t from 0.03
to 18.42, one can observe a similar flow development to that described
in the preceding paragraphs and, of course, lee-waves occur downstream of
the obstacle. However, in Figures 20 and 21, undesirable disturbances
appear near the inflow boundary. In order to understand these undesirable
disturbances, it is necessary to recall the numerical experiments on
boundary conditions.

To begin with, we used a set of prescribed stream function, vorticity,
and temperature on the inflow boundary. The computational field contains
180 x 30 grid points with Ax = 0.25, and At = 0.25, and the vertical
fence is located at 120 grid points from the inflow boundary. We found
that this kind of undesirable disturbance appeared near the inflow
boundary as early as t about 4, and that if the Richardson number was
increased, these disturbances might appear even earlier. At first it
was thought that these disturbances might have resulted from the particu-
lar iterative method. In order to clear this point, a flow of homogene-
ous fluid over the same obstacle was calculated with the same Reynolds
number and boundary conditions. We found that, for this homogeneous
flow, there existed no such undesirable disturbance near the upstream
boundary and that the computation could be carried on as long as was

desired, i.e., the computation scheme was stable and the iterative
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method was proven to be very efficient in reducing computational efforts.
Hence, it is concluded that these undesirable disturbances are associated
with the existence of stratification.

Now, one may ask why these undesirable disturbances exist near the
inflow boundary but not near the outflow boundary. Consider a transient
flow of stratified fluid passing over an obstacle. The disturbances
caused by the presence of this obstacle may propagate towards both up-
stream and downstream in the form of iternal gravity waves. If we have
suitable boundary conditions for both inflow and outflow boundaries,
these iternal gravity waves in the computational field can pass through
both boundaries, and as time goes on the asymptotic state can be achieved
in the long run. However, if unsuitable boundary conditions are used,

the disturbances propagating from the obstacle cannot all pass through

the boungaries but may reflect back from the boundaries as artificially
introduced disturbances. For this numerical study, the predictor formula
expressed in Equation (2.30) and Equation (2.31) was used to extrapolate
the disturbances from the interior points to the boundaries. At the
outflow boundary, it appears that the outflow can efficiently carry the
disturbance away from the computational field. However, at the inflow
boundary, any undesirable disturbance which occurs may be brought back
into the computational field by the inflow as an artificial disturbance

which will finally produce undesirable lee-waves downstream of the

inflow boundary. One numerical experiment was made to examine the

behavior of these undesirable lee-waves and it was found that they could

propagate downstream of the inflow boundary. Clearly, this phenomenon
is a kind of computational instability, caused by the interaction of the

boundary condition and the flow field although, based on the stability

analysis, the computational scheme is stable and convergent.
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In short, the effects of boundary conditions on the computation are
dependent on the flow phenomena themselves. In the case of homogeneous
fluid, the boundary condition at the inflow boundary usually involves
no problem since disturbances decay exponentially with distance but, in
the case of stratified fluid, the inflow boundary condition becomes cru-
cial since disturbances propagate upstream far from the obstacle and,
therefore, this boundary condition must receive careful treatment if
meaningful results are to be obtained. This is the reason why, in the
problem described herein, the computational region upstream of the
obstacle contains more grid points than that downstream. According to
experience gained during this numerical experiment, a transformation in
coordinates to make the computational field extended towards far upstream
and downstream would be helpful. Where a vertical fence as an obstacle
is concerned, exponential coordinates and elliptical coordinates may be
used so that in the region near the obstacle a fine mesh is available
and, in the region far from the fence, a coarse mesh may be used. Thus,
not only better accuracy could be obtained but also the flow boundaries
of the computational field could be pushed as far away as the computer
storage allows. Because of limitation in computing time, these special
coordinates have not been tried. However, in principle, their applica-
tions should produce no problem in computation if the iterative method
introduced in Chapter III is used since, as noted previously, this
iterative method is insensitive to the coefficients contained in Equa-
tion (3.1) and, in fact, the transformation in coordinates changes only
these coefficients but not the basic structure of Equation (3.1).

In order to illustrate how the computation was performed for both

flow conditions described above, two tables are listed at the end of
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this chapter. Both computations were made for square meshes in
Cartesian coordinates. In these tables, the first and second columns
indicate the time t at which the computation was made and the time
increment At , respectively. The third column is the time step being
computed measured from the instant when the flow starts impulsively.

The fourth and fifth columns denote the iteration numbers for tempera-
ture and vorticity and for stream function at a given time step, while
the sixth and seventh are the accumulated iteration numbers for the cor-
responding variables. The first computation listed in Table I has the
following convergence criteria for iteration of temperature and vor-

ticity at a given time step (n+l),

en+l,(m+1)_ en+1,(m)

v i,j i,j n+1, (m+1)
Max | T, e D) | < 0.01 for |ei’j | > 0.1 ,
i,]
or
Max|ePt1s (1) o+l (M) g 001, for |eR*1UM)| Lo
1,)] 1,] - 1,) -
where 6. . =T. . or ¢z.
i,] i,j i,j

and for stream function using the calculated vorticity at the (m+1)

iteration at time step (n+l),

gArl) | 58
Max|-=2d—rrastd| < 0.01 for |w§f31)1 > 0.1 ,
lpi,j
or
(2+1) (2) (2+1)
Max|wi’j - wi,jl < 0.001 for |¢i’j | « 0.1 .
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For the second computation listed in Table II, the convergence criteria

are:
(a) t < 20
en+1,(m+1) _ en+1,(m)
Max 1,J 1, < 0.01 for Ien+1,(m+1)| > 0.1
o*1, (m+1) ol i,j B
i,j
or
1
Max|e’.l‘+j’("‘+1) -l <0001 for [T ™D <o,
> ’J 1’3
where ei 3 = Ti 3 or gi j ¢
b 3 b
and
LD @)
Max |—22 (2+1)1’J| < 0.01 for |w§f;1)| = 0.1
i,j
or
Max{wi(ggl) - wi(2§| < 0.001 for lwi(l;fl)[ <0.1 .
(b) t > 20
en+1,(m+1) _ en+1,(m)
Max |22 1,)] | <0.001 , for |[o™* 1M1, ¢
en+1,(m+1) — % ? 2 s "
i,j
or
Max|oT 1> (WD) g™ L <0 0001 for [o™1 M) oy
’J l)J 1,:’ —
where 6. . =T. . or . .
1,] 1,] i,j ’

and
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giel) lp(fé)
i’j 1:] (9,"‘1)
Max | SO | < 0.001 for lwi,j | > 0.1
is]
or
Max|p D - B C 00001 for [0V < 0.1
1,] 1,)° — 143 —

From columns 4 and 5 of Tables I and II, it can be seen that when
the computation starts, a number of iterations is needed since, in the
early stages, the flow is highly time-dependent. As the computation
goes through the middle course, the iteration numbers are as low as 2.
Indeed this situation clearly indicates that the iterative method
introduced in Chapter III is really a good one. It is noted that in
Pearsons work (1965), a smoothing parameter was introduced for both the
boundary and interior points to reduce the computational efforts by
decreasing iteration numbers for vorticity calculation at a given time
step; it seems to us that the iteration parameter o for the present
iteration method may have this effect. For the first computation, 79
time steps were calculated and 30 minutes of CDC 6600 computer time
were spent; on the average, each time step took 25 seconds approximately.
One thing must be noted about the last row of the Table II which shows
that at time t = 23.46 a great number of iterations was made for tempera-
ture and vorticity as well as for stream function. Comparison of these
values with the corresponding ones at t = 20.52 indicates that the great
number of iterations is not due to the smaller residuals used for con-
vergence criteria when t > 20. In fact, one may relate this situation
to the computational instability caused by the unsuitable boundary

conditions as described above. In other words, if this difficulty



52

particularly involved in the numerical calculation of stratified flows
can be removed by some special coordinates, the iterative method is

indeed a good one for the numerical calculation of general problems in

geophysical fluid mechanics.



TABLE I

Accumulated Accumulated
Iteration Iteration Iteration Iteration
Time Number for Number for Number for Number for
Step Temperature, T , Stream Temperature, T , Stream
t At n and Vorticity, ¢ Function, v and Vorticity, ¢ Function, ¢
0.03 0.03 1 5 14 5 14
1.82 0.2 13 4 5 53 81
4,76 0.2 27 2 3 95 137
8.76 0.22 46 2 2 133 176
9.80 0.2 51 2 2 143 186
12.74 0.2 65 2 2 171 214
15.68 0.2 79 7 9 213 272
Re = 3 Pr 10 , 1,58 , Ax = 0.25 Az = 0.25

Grid Points =

180 x 30, Computer Time (CDC 6600)

= 30 min., Total core used 51,100 decimal.

€9



TABLE II

Accumulated Accumulated
Iteration Iteration Iteration Iteration
Time Number for Number for Number for Number for
Step Temperature, T , Stream Temperature, T , Stream
At n and Vorticity, ¢ Function, ¢ and Vorticity, ¢ Function, y
0.03 0.03 J! 5 14 5 14
2.88 0.22 18 4 5 73 105
8.34 0.22 44 2 2 131 174
13.38 0.22 68 2 2 179 222
18.42 0.22 92 2 2 227 270
20.52 0.22 102 5 9 256 315
23.46 0.22 116 47 226 557 849
Re = 5000., ) AX Az = 0,25,

Computer Time (CDC 6600) = 60 min., Grid Points

180 x 30, Total

core used 51,100 decimal.

¥S
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