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ABSTRACT 

Numerical studies of time-dependent, two-dimensional, stratified 

flow of incompressible, viscous, diffusive fluid are described. The 

particular physical problem which has been considered is th at of strati-

fied flow over a vertical fence when the motion is impulsively started 

from rest. Solutions have been calculated for the following two cases: 

R = 397, P = 10, R. = 1.58,· and R = 5000, P = 1, R. = 1.58. The e r 1 e r 1 

results are presented as contour plots of the flow variables, generated 

directly by the computer. A new iterative method was used for numerical 

integration of the governing equations and was found to be very effec-

tive. The method is based on the combination of the Crank-Nicolson 

me thod with a strongly implicit iterative method developed by Stone (196~. 

Full details of th e method are given together with a summary of its per-

formance on the problems calculated. It is shown that proper treatment 

of the inflow and outflow boundary conditions is crucial for successful 

nwnerical modeling of stratified flows. 
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Chapter I 

INTRODUCTION 

When stably stratified air flows over an obstacle, air currents 

tend to follow a wave-like pattern in the lee side of the obstacle. 

This phenomenon, called mountain lee-waves, has been observed in the 

atmosphere (Holmboe and Klieforth, 1957). Lee-waves have been studied 

analytically with the help of perturbation theory for steady lee-waves 

of SI:lall amplitudes (Lyra, 1943; Queney, 1947; Scorer, 1949). For a 

particular boundary condition upstream, Ip u = constant, where p is 

the fluid density and u is the streamwise velocity, a nonlinear model 

for steady lee-waves of finite amplitude was investigated by Long (1953), 

Yih (1960), Pao (1967), and Mi les (1968, 1969). 

These analytical approaches have contributed significantly to the 

understanding of l ee-wave phenomena. However, in nature, lee-wave flows 

usually involve waves of finite amplitude and, in addition, the boundary 

conditions are complicated. Moreover, the flow may be in a transient 

state. Hence, for a better understanding of lee-wave phenomena, laboratory 

simulation and numerical modeling with a computer are the only approaches 

currently available apart from prototype study by field investigation. 

Laboratory simulations have been conducted by Long (1959) with a liquid 

model, and by Lin and Binder (1967) in a wind tunnel. 

In laboratory simulation, one usually encounters limitati ons in the 

variability of flow parameters such as flow velocity and stratification. 

In particular, Reynolds numbers are usually quite low when high Froude 

numbers (or low Richardson numbers) are required. Consequently, molec-

ular effects are inevitable and greatly influence the flow patterns and 
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simulation analysis becomes difficult. As far as numerical computation 

is concerned, a numerical simulation by computer is usually possible 

provided a stable and rapidly convergent scheme is available. Neverthe-

less, a numerical computation itself is by no means a trivial and straight-

forward manipulation. In particular, when a nonlinear partia l differen-

tial equation such as the Navier-Stokes equation is involved , a numerica l 

experiment judged with physical understanding is always needed because 

rigorous analyses of computational stability, convergence, and error 

propagation are not available yet, although some approximate analyses 

based on th e existing mathematical theories have been explored. There-

fore, our understanding will be greatly dependent on the numerical 

experiment coupled with these approximate analyses. However , even though 

the results of a numerica l simulation may be comparable to those of 

laboratory experiments, a numerical simulation is still desirable since 

the flow paramet ers can be varied with such ease and then more information 

is available. Of course, one must recognize that, because of the limita-

tion in the avail able computer storage and because of the difficulty in 

generating turbul ence by computer, three-dimensional problems associat ed 

with turbul enc e must still be studied in the laboratory or by prototype 

investigations. 

Numerical studies of lee-waves have been carried out by Hoverma l e 

(1965) and by Foldvik and Wurtele (1967). Both studies treated the 

transient flow of inviscid stratified fluid over a barrier as an initial 

value problem. For the lack of suitable boundary conditions, both 

upstream and downstream, cyclic boundary conditions were used, i.e., 

the calculated flow conditions downstream of the barrier were fed back 
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in upstream as the oncoming flow towards the barrier. Some important 

features concerning the nonlinear effects on lee-waves were obt a ined . 

In the nwnerica l experiment described in this report, t\, o-dimensional 

laminar motion of an incompressible, viscous, diffusive and nonhomogeneous 

fluid over an obstacle will be studied. The fruitful results from the 

stu<lies by Hovermale and by Foldvik and Wurtele indicate that treating 

a transient flow instead of a steady flow is a helpful approach from 

the nwnerical point of view and, thus, in this nwnerical study a transient 

flow is considered. However, we sha ll abandon the cyclic boundary condi-

tion and make a detailed study of the effects of boundary conditions on 

the computation. In addition, a new iterative method is introduced in 

order to increase the speed of the computation . 
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Chapter II 

GOVERNING EQUATIONS AND BOUNDARY CONDITIONS 

2.1 Governing Equations 

Consider two-dimensional laminar motion of an incompressible, 

viscous, diffusive and nonhomogeneous fluid in a uniform gravitational 

field. The fluid properties other than the density , such as the vis-

cosity and thermal conductivity k 
0 

are assumed to be uniform 

in the flow field. By using Boussinesq approximation, th e equations of 

motion, the continuity equation, and the equation of energy are formu-

lated as follows: 

( au - au a~ ) ~ µ v2u p - + u + w = - + 
0 at ax az ax 0 

(2. 1) 

( a~ 
aw aw \ ~ µ v2w Po + u + w 

a z / = pg + 
at ax az 0 

(2.2) 

-au/ ax + aw/ az = O (2. 3) 

and 

C ( 
ar 

p -
0 P at 

- aT + u 
ax 

-

+w ar) = 
az 

(2. 4) 

where u and w are the velocity components in the Cartesian coordi-

nates x and -z 

p is th e pressure, 

p is the density, p
0 

is the reference density, 

C is the specific heat capacity at constant p 
-pressure, T is the ternperature, t is the time, and v2 = a2/ ax2 + 

a2; a~ 2 is the Laplacian operator. In Equation (2.4) the heat dissipa-

tion due to molecular viscosity is neglected. 
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By cross differentiating Equations (2.1) and (2.2) and then 

eliminating the pressure, one arrives at the vorticity transport 

equation, 

( a~ 
at 

- a~ + u 
ax 

+ w 
ax 

where v = µ
0
/p

0 
is the kinematic viscosity, the vorticity 

defined by 

~ = aW;aX 
-

(2.5) 

is 

(2.6)* 

and aT -= has resulted from use of the equation of state 

for the incompressible fluid and of the Boussinesq approximation. A 

stream function, 1/1 

introduced as 

u = a~/ az and 

which satisfies the continuity equation (2.3) is 

w = (2. 7) 

and the vorticity can be redefined as 

(2.8) 

For convenience, Equations (2.5), (2.7), (2.8) together with Equation 

(2.4), presented in the form 

* 

+ u + w (2.9) 
ax az 

The sign convention for t is the opposite of that more commonly 
used. It is used here for convenience. 
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in which K = k /pC is the therr.1al diffusivity, 1vill be norr.1alized to 
0 p 

give a set of nondiraensional equations. 

Let 

u = u/U 

X = x/L 

ljJ = ~/UL , 

w = w/U 

-z = z/L 

and F = r 

t = t/ (L/U) 

T-T 
0 T = lff 

u 
= 

s = 2/ (U/L) 

R = UL/v, P = v/ K , e r 

1 (2. 10) 
/IC 

l 

U, L, and ~T are the characteristic velocity, length, and temperature 

difference, respectively, and and R. 
1 

are the Reynolds 

number, Prandtl nwnber, Froude number and .Richardson number. The 

governing equations in dimensionless form become: 

~ ~ ~ R. aT 1 v2s + u + w = + at ax az 1 ax R (2. 11) 
e 

aT aT aT 1 V2T + u + w = PR at ax az (2. 12) 
r e 

and 

s = - v'2t/J (2. 13) 

where 

v' 2 a2 a2 
= + --2 

ax 2 az 

2 .2 Governing Equations in Finite Difference Form 

For numerical computation, Equations (2.11), (2.12), and (2.13) 

will be discretized into stable and convergent finite difference forms 
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and then, provided the initial conditions, boundary conditions and 

parameters are adequately defined, one may simulate a flow with the 

computer. 

In Equation (2.13) the derivatives are replaced by central differ-

ences to give, 

ljJ. 1 . - ZtjJ . . + ljJ. 1 . 
1.+ ,J l.,J 1.- ,J + 

t:. x 2 

tjJ. . 1 - ZtjJ. . + tjJ. . 1 l.,J+ l.,J l.,J-

t:.z2 
= - s. . 

1.,J 
(2.14) 

where t:.x and t:. z are the mesh intervals in the horizontal and vertical 

directions, respectively, the subscripts i and j indicate the space 

coordinates by x = it:.x and z = jt:.z • Figure 1 displays the arrange-

ment of the mesh. It can readily be shown that in respect to Equation 

(2.13), Equation (2.14) has a truncation error £ = 0(6x2) + O(t:.z 2) 

where the notation O denotes that lim O(o) - 0-
o-+o 

is finite . Thus, the 

smaller the mesh size is, the smaller the truncation error will be. 

Discretization of Equations (2.11) and (2.12) presents greater 

difficulty since one must consider questions of convergence and of 

stability. If a finite difference scheme has the property of stability, 

the difference between the solution of the finite difference system, 

say 8 .. k , and the exact solution of the differential system, say 
l. 'J ' 

B(it:.x,j t:. z,kt:.t), will remain bounded as time increases indefinitely for 

fixed mesh sizes, t:.x, t:. z and time increment t:. t • Convergence guaran-

tees that, for t fixed , 8 . . k will converge to 8 (i t:.x,j t:.z , kM) 
l. 'J ' 

as 

t:.x , t:.z . , and t:. t approach to zero. A further difficulty arises from 

the nonlinearity involved in the coupling between Equations (2.11) and 

(2 .13). Experience shows that the nonlinearity can produce instability 

in the computations although stability analysis based on the locally 
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linearized finite difference system indicates a stable schel:le. For this 

reason nwnerical experiments are always needed. 

Generally speaking, there are two classes of schel:les, explicit and 

implicit, for solving a transient problem. In explicit schemes the 

solution at a given grid point for the new time level can be calculated 

from known quantities at the present or previous time level. On the 

other hand, implicit schemes involve the solution of a set of simultane-

ous equations for calculating the solution at all the grid points at 

the new time l evel. Obviously, explicit schemes involve less algebraic 

manipulations than do implicit schemes. However, for a linear system, 

stability analysis shows that the time increment ~t for explicit 

schemes is restricted and usually ~t is kept small to satisfy require-

ments of stability and of convergence; whereas, in implicit schemes the 

ti1,1e interval has no restrictions except those imposed by considerations 

of accuracy. Consequently, a larger time increment can be used with 

implicit schemes and this can result in less computer time being required 

than in the case of explicit schemes. In particular, if we are chiefly 

interested in the asymptotic solution of a transient flow, implicit 

schemes appear to be preferable to explicit schemes. Here we would 

point out that the computational scheme which is best for a given prob-

lem will often be determined by the nature of the physical phenomena. 

For instance, if a flow involves phenomena of short period or high 

frequency the time increment must be considerably shorter than this 

period. An example is the numerical calculation of vortex shedding 

phenomena behind an obstacle (Fromm and Harlow , 1963; Thoman and 

Szewczyk, 196E). And, of course, the mesh size must be considerably 

less than the characteristic length of the shedding vortex. As for 
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the present numerical investigation, we shal 1 use an i1.1plici t sche1:1e 

since transient lee-waves propagate slowly and have a characteristic 

length comparable to or larger than the obstacle height or width . 

Even ,vhen an ir.1plicit scheme is used, the nonlinearity of the 

equations can cause difficulties when the Reynolds number Re becomes 

large. If the convective terms of Equation (2.11) are discretized with 

central space differences, the off-diagonal terms of the amplification 

natrix of the difference equations can become large in nagnitude com-

pared to the principal diagonal terms as Re increases and, then, the 

absolute values of the eigenvalues of the amplification matrix may be 

greater than unity. This situation has been improved somewhat by use 

of the alternating direction implicit (ADI) method (Peaceman and 

Rachford, 1955) for moderate Reynolds numbers (Pearson, 1965). For 

higher Reynolds numbers, the backward and forward difference method 

for convective terms has proved to be very effective (Thoman and Szewczyk, 

1966). This method was first suggested by Lelevier (Richtmyer and 

~or ton, 1967) and consists in representing as/ ax (or as/az) by the 

backward or forward finite <lifference depending on whether u (or w) 

is positive or negative. In this way, the amplification matrix is made 

positive definite and diagonally dominant; thus, the absolute values of 

the eigenvalues of the amplification matrix are less than unity and the 

stability criterion becomes weakly dependent on the Reynolds number. 

This method together with the ADI method has been used by Pao (1969) for 

calculation of homogeneous flow of a viscous incompressible fluid over a 

horizontal flat plate of finite length. 

In the present study, for high Reynolds number this bach'ard and 

forward difference method is applied to the convective terms and then 
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the Crank-Nicolson implicit scheme is used. The governing equations 

in finite difference form are formulated as follows: 

(i) Temperature field: 

11:1+~ - T~ . n u .. 1,J -2- [ 
T~+~ T~+ll . + T~ . T~ l . 

+ 

+ 

+ 

= 

+ 

1,J l,J 
lit 

+ 1,J 1- ,J 1,J 1- ,1 A2 -..!...:....---"-"----6-x-~-----'...._ 

Tn+ 1 _ Tii.i + l_ n n 
i+l,j 1,J + 1 i+l,j - 1 i,j J 

A3 6x 

n 
w. . [ _2-.u.. A 

2 4 

n+l 
T . . 1,J 

n+l n 
T . . l + T .. l,J- l,J 

6z 

n T . . 1 
1 'J -

Tn+l - T~+~ + T~ . l - T~ . ] i,j+l 1,J 1,J+ 1,J 
6 z 

1 
n+l 

[ Ti+l,j - 2T~+~ + T~+ll . + T~ . - 2T~ . + T~ l . 1,J 1- ,J 1+1,J l,J 1- ,J 
2P R r e 

n+l _ 2Tn. +l_ n+l T . . 1 + T. . 1 1,J+ l,J 1,J-

6x2 

n 
+ T .. 1 

1 'J + 
n - 2T . . 1,J 

n 
+ T .. 1 J 1' J - (2 .15) 



(ii) Vorticity fi eld: 

11+1 11 
1;; . . - 1;;. . 
l,J l,J + 

flt 

+ 

11 u . . 
l,J 

-2-

11 

n+l n+l n n 
r; . . - r;. 1 . + z:; .. - r; . 1 . l,J l- ,J l,J l- ,J 

11x 

11+ 1 n+l n n 
r; . . - r; . . 1 + z:; .. - r; . . 1 l,J l,J- l,J l,J-+ 

/n 

+ 

n+l n+l n 
s i,j+l - s i,j + s i,j+l 

!n 
- r;~ . J l,J 

1 
2fi. 

e 

n+l ['i•l,j - n+ 1 n+ 1 
2r; .. + r;. 1 . l,J l- ,J 

n 
+ s -i+l,j 

n n 
2r; .. + 1;;. 1 . l,J l- ,J 

+ 

+ 

n+ 1 n + 1 
s i,j+l - 2s i,j 

R. 
l 

4 

n+l n n + r + l; -.., i,j-1 i,j+l 2 s . . l,J 

n+ 1 + Tn. . T . 1 . 1 l- ,J 1+ ,J - T~ 1 . J l- 'J 

n 
l 'J -+ z:;. ·1] 

(2. 16) 



and 

(iii) Stream function field: 

l/!1·+1,J· - 2l/i · . + ljl. 1 . 1,J 1- ,J 

= - l;. . 1,J 

in which 

(a) A2 = 

(b) A2 = 

(c) A4 = 

and ( <l) A4 = 

1 

0 

1 

0 

2 
b. x 

A3 

A3 

AS 

AS 

= 0 

= 1 

= 0 

= 1 

12 

+ 
ljl .. 1 - 2lJi· . + ljl .. 1 1,J+ 1,J 1,J-

t.z 2 

(2 .17) 

for n u. 1,j > 0 

for n 0 u . < 1,j 

for n 0 W. > 1,j 

for n 0 w. < 1,j (2. 18) 

In Equations (2.lS) and (2.16), the superscripts n+l and n denote 

the time steps (n+ 1) M and nM . In the course of calculation the 

quantities at the nth time step are known, while those at the (n+l) 

time step are unknown and must be calculated. 

2.3 Initial and Boundary Conditions 

In the atmosphere, flow conditions may vary from time to time and 

we may use observed data as the initial conditions and calculate the 

flow as it develops from that state. However, this makes the problem 

complicated and, in this numerical experiment we consider a simpler 

condition. Consider a vertical fence of infinitesimal thickness and 

height 2L in a fluid of unlimited extent. The fluid, initially uni-

formly stratified in the vertical direction and at rest, is impulsively 

accelerated in th e horizontal direction so that th e velocity far fro~ 
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the fence is U and, thereafter, the velocity is maintained constant. 

The flow is initially irrotational and the vorticity which is generated 

as a result of the no-slip boundary condition on the vertical fence is 

concentrate<l only on the fence. As time passes, vorticity spreads into 

the flow field under the combined action of viscous diffusion and of 

convection. The temperature distribution at the initial instant when 

the flow starts impulsively is linearly distributed with height and the 

ter.iperature is const ant along a streamline; the characteristic tempera-

-ture difference is defined by llT=T -T L o where TL is the tel'lpera-

ture far upstream at height L measured from the center of the vertical 

fence. As time passes, the temperature distribution will be changed 

as a result of thermal diffusion and of convection. 

As far as the boundary conditions are concerned, only the no-slip 

condition for a viscous fluid is clearly defined on the boundary of 

obstacle. llowever, the governing equations are expressed in terms of 

vorticity and the veloci ty is in turn calculated from the stream function 

equation; in other words , there is no a priori boundary condition 

available for vorticity. In the following, we express the vorticity 

on the obstacle boundary in terms of the vorticity and stream function 

in the neighborhood. 

Referring to Figure 2 , we express the stream function tjJA at A 

in terms of the stream function t)J 8 and its derivatives at B by a 

Taylor series expansion 

tjJA = tjJ + 6X / ~) + t:, x 2 
B I ax B 2! ( a 3t ) + 

ax B 

(2. 19) 
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Equation (2.19) can be related to the vorticity and its derivatives at 

B by virtue of the no-slip boundary condition at B as 

which is then rewritten in the form 

= 

= 

3 
2 t,x 

by using the Taylor expansion of 

t,x2 
+ --8 

t,x2 
+ -- R 8 e 

about 

+ 

(2.20) 

B and the no-slip condition. 

The same derivation was given by Hung (1966). Now, if ( az;; / at) 8 is 

expressed by 

= 

and the remaining terms of the right hand side of Equation (2.20) are 

given the values corresponding to the nth time step, then we have 

8M 
R t, x 2 

e 

(2 . 21) 

For the vort icity on the upstream face of th e vertical fence, a similar 

equation is available: 



= 
8M 

R t,x2 
e 

[- 3 

t,x2 

+ O( t,xt, t) + O(t,t 2) 

15 

(2.22) 

Hence the vorticity on the boundary of the vertical fence at the 

(n+l) time step can be evaluated from the quantities at the nth tir.ie 

step, and then is used as a boundary condition for the calculation of 

vorticity at interior points at the n+l tir.ie step . In the case when 

an iterative process is used for the calculation of vorticity at a 

given time step, and at the (m+l) iteration are 

calculated from the values of the mth iteration by, 

(m+ 1) 3 (t/i (m) t/J (m)) 1 (m) 0 (t,x 2 ) l;; B = - l;; + 
t, x 2 B A 2 A (2. 23) 

and 
(m+ 1) 3 

(t/i~~) t/J 1~1)) 1 (m) + 0 (t,x 2 ) l;; B I = 2 /;;A' t, x 2 
(2.24) 

Subsequently they are used as boundary conditions for calculating vor-

ticity at interior points at the (m+l) iteration. 

As for the boundary va lue of vorticity on the corner of the verti-

cal fence, C , a different expression is derived as follows. Expanding 

the vortici ties l;;E , l;;E , , 1;;0 , and 1;;F in Taylor series about C 

we have 

-21;; + I;; = - l;; + t,z2 ( 321;; ) + 0( t, z3) 
U F C az2 C 

and 
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which, for 6x = 6z , are combined to give, 

(2.25) 

Hence, a finite difference from for Equation (2.25) is written as 

+ + 0(6x6t) (2.26) 

For the iterative process we have simply 

(m+ 1) Sc = (2. 27) 

As far as temperature distribution on the obstacle is concerned, we 

consider a uniform distribution for convenience, i.e., 

T = 0 • 

T = T or 
0 

On the outer boundary beyond the obstacle the boundary conditions 

are not defined a priori. Upstream very far from the obstacle, one may 

define a prescribed boundary condition. However, because of the pres-

ence of disturbances propagating from the obstacle both upstream and 

downstream, the boundary conditions for both inflow and outflow bound-

aries have to be defined in a less restrictive way by an extrapolation 

method derived from the Milne predictor formula, 
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(2.28) 

where the prime denotes the derivative with respect to x and y is 

a function of x By using the formulae 

y! = 12\x (3y. 4 - 16y. 3 + 36y . 2 - 48y. 1 + 2Sy.) + O(t::.x4) 1 u 1- 1- 1- 1- 1 

and 

y! 1 = 1-

1 
12t::.x (-y. 4 + 6y. 3 - 18y . 2 + lOy. l + 3y.) + O( t::.x4) 1- 1- 1- 1- 1 

(y. 4 - 8y . 3 + 8y . 1 - y.) + O(t::.x4) 1- 1- 1- 1 

Equation (2.28) is formulated as 

y. 4 - Sy. 3 + lOy. 2 - lOy . l + Sy. + O(t::.xS) 1- 1- 1- 1- 1 (2.29) 

Hence, with an error of order t::.x 5 , the stream function, vorticity, 

and temperature on the outflow boundary are expressed by extrapolating 

from the neighboring upstream points as follows: 

1/J i+l,j = \JJ. 4 . - S!J; . 3 . + 101µ. 2 . - lO tµ . l . + 51µ. . 1- ,J 1- ,J 1- ,J 1- ,J l,J , (2.30a) 

i;; i+l,j = i;; . 4 . - Si;;. 3 . + lO i;; . 2 . lOi;;. 1 . + Si;; .. (2.30b) 1- 'J 1- 'J 1- 'J 1- 'J 1,J ' 

and 

T. 1 . = T. 4 . ST . 3 . + lOT. 2 . lOT. 2 . + ST . . (2. 30c) 1+ ,J 1- 'J 1- 'J 1- 'J 1- 'J 1,j 
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A similar but different forN was used by Hung (1966) successfully for 

a laminar flow in a conduit expansion. Similarly, these vari abl es on 

the inflow boundary are expressed by extrapolating from the neighboring 

downstream points 

1/J . l · = 1/J. 4 . - SljJ . 3 . + 10 \j!. 2 . - 10 \j! . l . + SljJ. . , (2.31a) 1- ,J 1+ ,J 1+ ,J 1+ ,J 1+ , J l,J 

S · 1 . = z: i+4,j - s z: . 3 . + 10 1: . 2 . 10 1: . l . + s z: .. ' (2 .31b) 
1- 'J l + 'J l + 'J l + 'J l,J 

and 

T. 1 . = T. 4 . ST. 3 . + !OT . 2 . lOT . l . + ST. (2. 31c) 
1- 'J l + 'J 1+ ,J l + 'J l + 'J 1,j 

The detailed study of boundary conditions Equations (2 .30) and (2 .31) 

will be presented when the computational results are described. 

For an exact simulation of flow over an obstacle by computer, the 

computation should cover th e whol e flow field 1234 (see Fig. 3), espe-

cially when some asymmetric flow patterns such as shedding vortices 
R.½ 

are present. These would be expected to occur when 0 = l 
----- < 1' log R /40 e 

and R > 40 (Pao, 1968). However, becaus e of the limitation of com-e 

puter capacity , a flow fi e ld of half space 1256 was considered instead. 

It is assUJiled th at th e flow field is symmetric about the line 56 . 

Actually this is not a bad assumption when o > 1 according to Pao. 

Hence, we assume that when t > 0 

tjJ . 1 = 0 1, 

S · 1 = 0 1, 

T. 1 = 0 or T. 1 = T (2.32) 1, 1, 0 

for the boundary conditions on the line of symmetry, 56, and 



w. N 1, 
= 0 

i:;;. N = 0 , 
1, 

a/ax(T . N) = o 
1, 
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for the upper boundary condition on the line 12. 

(2.33) 
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Chapter III 

ITERATION METHOD 

In the numerical solution of Equations (2.15), (2.16), and (2.17) 

an iterative process is always encountered because of the boundary con-

ditions and the nonlinearity of the equations. Iterative methods, such 

as the Gauss-Seidel process, SOR (successive over relaxation), or ADI 

(alternating direction implicit method) may be used. However, in this 

study a new strongly implicit iterative method proposed by Stone (1968) 

will be used. This method has several advantages over the methods 

previously used. Firstly, its rate of convergence does not depend 

strongly on the nature of the coefficient matrix of the equations to 

be solved; secondly, it is not sensitive to the choice of iteration 

parameter; and thirdly, it reduces significantly the computational 

effort . 

3.1 Statement of Problem 

There are many methods available for solving a set of linear 

algebraic equations, expressed in matrix form as, 

[M]T = q (3.1) 

Direct elimination is always possible but it is time consuming and 

requires excessive computer core if the dimension of the matrix is 

large. Methods based on triangular resolution of [M] into a lower 

and an upper triangular matrix, [L] and [U] respectively, can result 

in significant savings in computational effort and in storage require-

ments as compared to other direct methods of solution when U·1J is a 

band matrix. In the particular case when [M] is tri-diagonal the 
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savings are very great indeed. When partial differential equations in 

two-dimensional space are approximated by implicit finite difference 

equations involving function values only at the reference mesh point and 

at its nearest four neighbor points, the matrix of coefficients of the 

difference equations has non-zero elements only along five diagonals, 

viz . , the principal diagonal and that on either side of it and two off-

diagonal lines. In general, when such a matrix is resolved into [L] 

and [U] , these matrices do not preserve the sparse structure of [M]. 

rlowever , if a matrix which approximates [M] can be found such that it 

is th e product of a lower and of an upper triangular matrix, each of 

which has non-zero elements on only three diagonal lines corresponding 

to the non-zero diagonal lines in [M] , then it is possible to solve 

the set of equations by an iterative method and to preserve the benefits 

arising from the sparseness of the matrix [M]. 

The expressions presented in Equations (2.15), (2.16), and (2.17), 

can be simplifi ed in a general form 

B . . T . . l + D .. T. l . + E . . T . . + F .. T. l . + H .. T .. l = q .. , l,J l,J - 1,J 1- ,J 1,J 1,J 1,J 1+ ,J 1,J l,J+ l, J 

(3. 2) 

which, expressed in matrix notation, has the form 
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E F I-! T qo,o o,o o , o o,o o,o 

D E F \ T q l 0 1, 0 l , o l,o \ 1, 0 ' ' \ \ 

' \ \ \ 

\ , ~ 'I+l ~ ', 

" ', elements , 
' ' \ 

\ \ \ 
' ' ' ' 

\ 
\ 

B \ l) -E ' F H T o,l qo,l o,l o , 1 o,l o,l 0' 1 
\ \ ' ' ', 

' ' \ ' 
\ '- ' \ 

\ ' \ ' ' = 
\ ' ' ' ' \ ' ' ' ' \ 

\ 
B. l) . E . F ·' H. T . q .. 1,j 1,J 1,j 1,j 1,j 1,j 1,J 

\ \ ' ' '- \ ' ' \ 

' ' \ \ 

' \ ' \ \ 
HI-1 J i ' ' \ '\ ' ' \ ' ' ' ' ' ' I+l ' ' \ '\ ' \ elements '\ ' FI-1 J \ ' \ ' \ ' ' 13I J 

' 
DI J 

' 
EI J 

' TI J 
' qr'~ 

(3.3) 

or 
-+ -+ 

[M) T = q (3 . 1) 

where the r.1atrix [~I) is a (I+l)x(J+l) square array. The elements of 

the matrix are composed of the coefficients of temperature, vorticity, 

and stream function in the respective Equations (2.15), (2 . 16), and 
-+ 

(2 . 17) . T is a vector composed of the sequenced temperatures, or vor-

ticities , or stream functions over the computation field . -+ q is a 

vector composed of the sequenced known quantities. In t!1e matrix ['. !) 

non-zero elements occur only along the five diagonal lines shown, 
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3.2 Algorithm for Iteration 

In order to solve Equation (3.2) iteratively, an inductive algorithm 

instead of the algorithm described by Stone (1968) will be introduced . 

In principle, both algorithms have the same outcome, but the former, it 

seems to us, has a clearer and simpler derivation. 

Assume that T .. can be evaluated from T . . 1 and T. 1 . l,J l,J+ 1+ ,J 
which are already known. Then let 

T .. = e .. T . l . + f .. T .. l + d .. l,J l,J 1+ ,J l,J l,J+ l,J (3.4) 

in which e .. , f .. , and d. . are subject to determination. Hence l,J l,J l,J 
by Equation (3. 4), T . 1 . and T. . 1 which are unknown can be ex-1- ,J l,J-
pressed in th e forms 

T. 1 . = ei-1,j T. + f. 1 . T. 1 . 1 + d. 1 . 1- 'J 1,j 1- 'J 1- 'J + 1- 'J 
(3.5) 

and 

T . . 1 = e. . 1 T. 1 . 1 + f. . 1 T. + d .. 1 l' J - l' J - l + 'J - l ' J - 1,j l 'J -
(3.6) 

Substitute Equations (3.5) and (3.6) into Equation (3.2), and then we 

have 

T . . = 
l' J 

F .. l,J 
D . . e. l .+E .. +B .. f .. l Ti+l,j l,J 1- ,J l,J l,J l,J-

H .. l,J 
D .. e. l .+E .. +B .. f .. l Ti,j+l l,J 1- ,J l,J l,J l,J-

q .. -0 .. d. l .-6 . . J . . l 
+ 1 , J 1,J 1- ,J 1 ,J 1,J- D f T B 

D E B t · - . . . 1 . . 1 . 1 - . . e . . IT. · 1 .. e. 1 .+ .. + .... 1 1,J 1- ,J 1- ,J+ 1,J 1,J- 1+l,J-1,J 1- ,J l,J l ,J l,J-

(3. 7) 

Equating the right hand sides of Equations (3.4) and (3.7), we obtain 

the following relations: 



and 

F .. l,J 
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D .. e. l . + E .. + B . . £ . . l l,J l- ,J l,J l,J l,J-

H . . l,J 
lJ . . e. l . + E. + B . . £ .. l l,J l- ,J l,J l,J l,J-

q .. - D . . d. l . - IL .d .. l l,J l,J l- ,J l,J l,J-
0 . . e . l . + E . . + lL . £ .. l l,J l- ,J l,J l,J l,J-

I) .. f . l . = 0 l,J l- ,J 

B .. e . . l l,J l,J- = 0 

= e .. l,J 

= f . . 
l 'J 

= d .. 
l,J 

(3. 8) 

(3.9) 

(3 . 10) 

(3 . 11) 

(3.12) 

In the expressions, Equation (3.8) through Equation (3.12), the capital-

ized elements are all known . If the elements with subscript s (i-1,j) 

or (i,j-1) are also known fron previous calculations, then in the above 

five relationships 1·1e have only three unknowns, e . . , f. . , and d . . . 
l,J l,J l,J 

In other words, these three unknowns are indeterminate if all five 

relationships have to be satisfied; equivalently, we can say that there 

is no way to r esolve the matrix [M] of Equation (3.1) exactly into a 

product of lower and upper triangular matrices with the same sparse 

structure as [M] , as we previously noted. 

In Equation (3. 7), the terms containing T. 1 . 1 and T. 1 . 1 l- 'J + l + ' J -
are the source of the trouble. However, if T. 1 . 1 and T. 1 . 1 l- 'J + l + 'J -

can be expressed approximately in terms of T. 1 . or T .. 1 ' or 
l+ 'J 1 'J + 

even T .. l,J and other known quantities when we evaluate T. . , then 
l,J 

we obtain three relationships for three unknowns. Expanding T . 1 . 1 ' l- 'J + 

T. 1 . , and T. . 1 in Taylor series about the grid point (i, j), we 1- ,J l,J+ 
have 
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T. 1 . = - T. + T .. + T. 1 . + 0 (tixtiz) 1- ,J+l l,J 1, J + 1 1- 'J 
(3.13) 

Similarly , 

T. 1 . 1 = - T. + T. 1 . + T .. 1 + O(tixtiz) 1+ ,J - l,J l + 'J l 'J -
(3.14) 

Now it is realized that the right hand sides of the expressions (3.13) 

an<l (3.14) have a truncation error O(tixtiz) and thus an iterative process 

is necessary for the solution of Equation (3.3) . Therefore, we introduce 

an iteration parameter a for both expressions (3.13) and (3.14) in the 

forms 

T. 1 . 1 = a (-T .. + T .. 1 + T. 1 . ) 1- ,J + l,J l 'J + 1- 'J 
(3 .15) 

and 

T. 1 . 1 = a (-T. . + T. 1 . + T. . 1) l + ,J - l ,J l + 'J l 'J -
(3.16) 

In principle, two iteration parameters, say a and B may be introduced 

to the expression Equations (3 .13) and (3.14) respectively. However, we 

use only one iteration parameter a for convenience and for simplifying 

the nwnerical experiment . 

First consider the expression Equation (3.15). By virtue of the 

Equation (3.5), Equation (3 .15 ) becomes 

T. l . l = a (-T .. + T . . 1) + a [e. l . T .. 1- ,J+ l,J l,J+ 1- ,J l,J 

+ f. 1 . T. 1 . 1 + d. 1 .] 1- ,J 1- ,J+ 1- ,J 

which gives 



T . l . = a 1- ,J+l 
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(-1 + e. l .)T . . + T .. l + d. l . 1- ,J 1 , J 1 , J+ 1- ,J 
1-a f. 1 . 

1- 'J 

(3 . 17 ) 

Similarly , by use of Equation (3.6), 

form 

T. 1 . 1 1+ 'J-
is expressed in the 

( -1 + f. . 1) T. . + T. l . + d. . l 1,J- 1,J 1+ ,J 1,J-T . . = a ____ ..:..::.. __ ~.,,,_---~-- ~"'----
1 + l, J - l 1 - a e . . 1 1' J -

(3 . 18) 

Finally , substituting Equations (3 . 17) and (3.18) into Equation (3.7) 

the res ult is obt ained, 

a D .. f . l . 
I-l. . + 1 , J 1- , J 

1,J 1-a f . 1 . 
1- 'J T . . 1,J 

E .. + 1,J 

D . . (e. 1 . - a f . 1 . ) B . . (f . . 1- a e .. 1) 1,J 1- ,J 1- ,J + 1 , J 1 , J- 1 , J-

+ 

E .. + 
1 , J 

1- af . 1 . 1- a e .. 1 1- ,J 1, J -

aB .. e .. 1 F .. + 1,J 1 , J -
1,J 1-a e .. 1 1' J -

D . . (e . 1 .-a f . 1 . ) B . . (f .. 1- a e . . 1) 1,J 1- ,J 1- ,J + 1,J 1,J- 1,J-
1-a f. 1 . 1-ae .. 1 1- , J 1,J-

q . . - 1 , J d . . -
( 

D . . ) 
1,J 1-af . 1 . 1-l,J 

1 ,J d. . 
( 

B. . ) 
1-ae . . 1 1,J-l 

1 , J -1- ' J 
D. . ( e . 1 . - a f. 1 . ) 

E . . + 1,J 1- ,J 1- ,J 
1,J 1-a f . 1 . 

1- 'J 

B . . (f .. 1- a e .. 1) + 1,J 1,J- 1 , J-
1-a e . . 1 1 'J -

T. 1 . 
1 + 'J 

T . . 1 
1 ' J + 

(3 . 19) 

By comparing Equations (3.4) and (3.19), e .. , f .. , and d .. 1 , J 1,J 1 , J are 

obtained inductively as th e following expressions, 



e .. = 
l' J 

f .. = l,J 

and 

d . . = l,J 
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aB .. e .. 1 l,J l,J-
F. . + 1 1,J - ae .. 1 l 'J -- ------..,------:::------:----=---~=---------c--U . . (e. 1 .-a f. 1 . ) B .. (f . . 1- a e .. 1) 

E .. + l,J 

E . . + l,J 

l,J 1- ,J 1- , J + l ,J l,J- l,J-
1-af . 1 . 1-a e . . 1 1- ,J l , J -

a D . . f . l . 
H . . + 1, J 1- ,J 

1,J 1-af. 1 . 
1- 'J 

0 .. (e. 1 . - af . 1 .) B . . (f .. 1- a e .. 1) l,J 1- ,J 1- ,J + l,J 1, J - l,J-
1-a f. 1 . 1-ae .. 1 1- ,J l ,J-

q .. - l,J d . . -
( 

D. . ) 

1,J 1-a fi-l,j 1- l,J 
l ,J d. . 

( 
8. . ) 

1-a ei ,j-l 1,J-l 
D . . (e. 1 . - a f. 1 . ) 

E .. + 1,J 1- ,J 1- , J 
1,J 1-a f. 1 . 

1- ' J 

B . . (f .. 1- a e . . 1 + l,J l,J- l,J-
1-a e. . 1 l , J -

(3 . 20) 

(3 . 21) 

(3.2 2) 

Now th e comput at iona l procedure is straightforward and is described 

as fo llows : 

(1) Since all the capitalized e l ements and q . . l,J are known quanti-

t ies at a ll grid points, and since Equa tions (3. 20) , (3.21), and (3. 22) 

give the expressions of 

grid points ( i ,j-1 ) and 

e .. , f . . , and 
l' J l' J 

d .. l,J in terms of these a t 

(i - 1,j) , one can s i mply eva luat e e. . , l,J 
f. . and d . . in th e who l e fie l d starting from the grid point at the l,J l,J 
l eft, lower corner of th e fie ld to th at at the right , upper corner of the 

field. 

(2) When all th e e .. , f .. , and d . . have been calculat ed , l,J 1, J l,J 
T. . can be calculated " explicitly" by Equation (3 .19) from the ri gh t, l,J 
upper corner of the field to the l eft, lower corner provideti sui tabl e 

boundary condit ions are given . 
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It is interesting to note here that the original set of Equations, (3 . 2) , 

is an implicit one and that, by applying the above stated algorithJ11, one 

can s olve the equation (approximately) in an "explicit" manner. 

Since th e right hand sides of Equations (3.15) and (3.16) are only 

the approximate expressions for T . 1 . l ' 1- 'J + 
and T. 1 . 1 1+ 'J-

with trunca-

tion error O(~x~z), the calculations from the expressions Equations 

(3 .19) to (3.2 2) give only a first approximation to the exact solution, 

and an iterative process is needed to improve the accuracy . Consider 

Equation (3.1) at the (m+l) iteration. 

[M] ;cm+l) = q (3.23) 

which can be rewritten 

(3.24) 

Let 1 (m+l) __ ~T (m+l) _ ~T(m) 
u , the changes of T from iteration m to 

m+l , and ;cm) = q - [M]i (m) , the residuals at iteration m. There-

fore, replacing q .. l,J in Equations (3.22) and (3.19) by 

R~m~ = 
l,J q . . - (B .. T~r.i~ l + D . . T~m)l . + E .. T~m~ + F . . T~m)l . l,J l,J l,J- l,J 1- ,J l,J l,J l,J 1+ ,J 

(m) + H . . T . . 1) , l,J l,J+ (3. 25) 

and , replacing T .. , T .. 1 l,J l,J+ and T. 1 . in Equation (3.19) by 1+ 'J 
0~m~l) , 0(ra+l) and . (m+l) 
1,J i,j+l ' 0 i+l,j , respectively, we obtain the algorithm 

for the iterative solution of Equation (3 .1): 

e . . o ~m+ll~ + f .. o ~r11~l) + d . . 
l,J 1+ ,J l,J l,J+l l,J (3.26) 
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where e. . and f. . have the sarae definitions as in Equations (3 . 20) 1,J 1,J 
and (3 . 21), while d .. 1,J is now given by , 

d .. = 
1 'J 

R ~m~ - ( Di ' j ) d. . -
1,J 1-afi-l,j 1-l,J 

D .. (e. 1 .-af. 1 .) 
E . . + 1,J 1- ,J 1- , J 
1,J 1-af. 1 . 

1- 'J 

1 'J d. . 
( 

B. . )' 
1-aei ,j-l 1,J-l 

B .. (f . . 1- ae .. 1) l,J 1,J- l,J-
1-ae. . 1 1' J -

The iterative process can be continued until the residuals 

(3.27) 

satisfy a certain criterion, and then 

corresponding grid points . 

(m+ 1) T .. 1,J is the solution at the 

3.3 Convergence Rate 

The solution expressed in Equation (3.19) together with Equations 

(3.20), (3.21), and (3.22) is an approximate solution to Equation (3.1). 

-+ -+ 
[M] T = q (3.1) 

but is th e exact solution to 

8 . . T .. l + U .. T. l . + E .. T . . + F .. T. l . + H . . T .. l 1 , J 1,J- 1,J 1- , J 1, J 1,J 1,J 1+ ,J l,J l,J+ 

- U .. f. l . [T . l . 1- a (-T .. + T .. l + T. l .)] 1,J 1- ,J 1- , J + 1,J 1,J+ 1- ,J 

- B. . e. . l [T. l . 1- a ( -T. . + T. l . + T. . l)] = q. . 1,J l,J- 1+ ,J- l,J 1+ ,J 1,J- 1,J 

(3. 28) 

The proof can easily be obtained by substituting Equations (3.5) and 

(3.6) into Equation (3.2) and by the fact that the resultant equation 

is identical to the result of combining Equations (3.15) and (3.16) with 

Equation (3 . 7). The modified Equation (3.2) in matrix form is 
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-+ 
( U11] + [N] ) T = q C3.29) 

Therefore, the convergence rate for the corresponding iterative process 

for Equation C3.29), i.e., 

C3.30) 

can be analyzed. 

-+ 
If T is the exact solution to Equation C3.l), then the error of 

;cm) at the mth iteration is defined by 

-+ Cm) -+cm) -+ 
E = T - T 

Thus, Equation C3.30) can be rewritten into an error equation 

( p-1 ] + [N]) ; Cm+ 1) = ( [M] + [N] Jr Cm) _ [M];Cm) 

= [N]; Cm) 

which can also be expresse<l in the form 

Cm+l) (rn+l) Cm+l) Cm+l) Cm+l) B .. E .. l + D . . E. l . + E . . E. . + F .. E. l . + H . . E . . l 1,J l,J- l,J 1.- ,J 1,J 1.,J 1.,J 1.+ ,J 1.,J 1.,J+ 

-0 . . f. 1 .[ E~m+ll~ 1 - a C- E~m:l) + E~m:1)1 + E~m+ll~)] 1.,J 1.- ,J 1.- ,J+ 1.,J 1.,J+ 1.- , J 

B [ Cm+l) - " c- c C_m+_l) + c C_m+l)_ + c C_m+_l))] - . . e . . 1 E. 1 . 1 "" c. c. 1 c. 1 l,J l,J- 1+ ,J- 1,J 1+ ,J 1,J-

= -0 . . f. 1 . [E~m)l . 1 - a C- E~m~ + /m) + E~m)l .)] l,J 1.- ,J 1- ,J+ 1,J i,j+l 1- ,J 

[ Cm) - " C- c C_m)_ + CCm) + c C_m)_ )] -B . . e. · 1 E. 1 · 1 "" c. c.. 1 · c. 1 l , J l,J- 1.+ ,J- 1.,J 1+ ,J 1.,J-

C3. 31) 

C3.32) 

C3.33) 

In general, the coefficients in Equation C3.33) are not constants 

but vary from one grid point to another, from one time step to the 
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next, and from one iteration to the next. However, for indicating how 

the convergence rate behaves we simply assume 

and 

B .. = 1-1 •. = B 1,J 1,J 

D .. = F .. _ D 1,J 1,J 

E. . - - 2 (B + 0) 1,J (3.34) 

These conditions may satisfy the stream function Equation (2.17) pro-

vi<led 6x = 6z . Further, we assume 

B .. e . . l - C 1,J 1,J- (3.35) 

The condition expressed by Equation (3.35) applies when i and j 

become large and grid points are far from boundaries. Hence, using 

Equations (3.34) and (3 .35), with the assumption that the influence of 

the boundary points is negl ect ed , and by letting 

(m) 
£ . . = 1,J 

cm A [ . ( . . ) ] s exp 1 yn16x + Sn J6z y , S (3.36) 

where i 2 = -1 , we can obtain the decay factor I; per iteration for 

the error component corresponding to y and S as 

I; [0 . 5 C(l-a)K + CaA] + 2CR (3.37) = [0.5 C(l-a) K + CaA + S] + 2CR 

where 

K = cos(yn6x) cos( Sn6 z) 

A = 2 sin 2 ( yn2
6x ) sin2 ( Sn

2
6z ) 
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R = sin \ ynfx ) sin -- cos -- cos --( 8ntiz ) { yntix ) ( 8ntiz ) 
2 \ 2 2 

S - D . 2 ( yn/':,x) - - sin --2 8 . 2(8ntiz) - sin - 2-

In order to keep l~I < 1 , the iteration parameter a has to be 

defined. For solving self-adjoint elliptic difference equations, Dupont, 

Kendall, and Rachford (1968) used an approximate factorization procedure. 

In their analysis, a Chebyshev sequence of parameters is used to produce 

a rapid rate of convergence. However, neither Equation (2.15) nor 

Equation (2 .16) is self-adjoint and their method for determining the 

iteration parruneter a is not applicable. As noted by Stone, a has 

to be less than 1 and the repeated use of any a in the vicinity of 1 

results in l~I > 1. In this numerical experiment, both a transient 

heat conduction difference equation and the difference equations ex-

pressed in Equations (2.15), (2.16), and (2.17) have been investigated 

and we arrived at the same conclusions. Stone suggested that the 

individual parameters should be geometrically spaced in the manner 

1-a = (1 - a / I (L-1) 
Q, max Q, = 0, .... L-1 , 

where L is t he number of parameters in a cycle and a max is the 

maximum iteration parameter. He also suggested a way to compute a max 

1 - a = min [ 26x
2 

max KZt:,x2 
1 + 

2tiz
2 J 

KXtiz 2 
1 + 

KZtix 2 

(3.38) 

where KX and KZ are the thermal conductivities in the x and z 

directions in the thermal conduction equatipn 
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(3.39) 

in which Q is the strength of local heat source . However, neither 

Equation (2.11) nor Equation (2.12) can be represented in as simple a 

form as Equation (3.39), and even if it coul<l be done, a calculated max 
according to Equation (3.38) may have a value greater than 1. Hence 

in this study we simply use the formula 

[ 
26x 2 

1 - a = min -
max 6.x2 

1 + --
6z2 

26z2 
] 

6z 2 
1 + -- -

6x2 

(3.40) 

Experience showed that amax, selected by using Equation (3.40), has no 

undesirable effects. Stone also indicated a possible way to increase 

the rate of convergence by use of double alternate iterations. This 

process can be carried out by iterating from the left-lower corner of 

the field to its right-upper corner and then from the left-upper corner 

to the right-lower corner. However, our experience indicated that the 

double iteration process did not increase the rate of convergence in 

the problem under study, and, on the contrary, it may sometimes result 

in a decrease of the convergence rate. For this reason, we apply the 

process, iterating from the left-lower corner of the field to its right-

upper corner. The rate of convergence indicated by Equation (3.37) 

applies to this process. 

Before the iteration method described above was applied to solve 

Equations (2.15), (2.16) and (2.17), it was tried on a test problem of 

a flow of homogeneous, viscous fluid with governing equations 
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ai;; ~ ~- ~ ai;; a2i;; a 2 i;; 
-+ = --+ at az ax ax az ax2 az 2 (3.41) 

and 
a21)i 

+ a2 * = - i;; 
ax 2 az 2 (3.42) 

and with the boundary conditions 

i;; = 0 1jJ = 0 on X :: 0,5 , 0 < z 2-. 0.5; and 0 < X < 0.5 z = 0.5 

ai;; / ax = o aijl/ ax = 0 on x = 0 0 < z < 0.5 (3. 43) 

and 

aijl / az = 0 on O < x < 0.5 , z = 0 

An exact solut i on of Eqs. (3.41) and (3.42) with boundary conditions 

(3.43)is given by 

1jJ = exp (-2 n2t) COSTIX COSTIZ (3.44) 

The nonlinear terms in Equation (3.41) vanish identically for the exact 

solution but, in the computation by means of finite difference approxi-

mation, the nonlinear terms do not quite vanish; thus, any instability 

caused by their presence should be detected, 

Since Equation (3.41) is identical to Equation (2.1) when R· = 0 1 

and R = 1 , the forward-backward scheme proposed for high Reynolds e 

number was not used because of the low Reynolds number. Instead, the 

central difference form is used for ai;; / ax and ai;; / az . For the numeri-

cal calculation, Equation (3.41) is expressed in an implicit finite 

difference form by 
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n+l n z;;. . - z;;. . 1,J 1,J 
lit + 

n n 
l/J. . 1 - l/J. . 1 1,J+ 1,J-

26z 
X 

n+l n+l 
z;;i+l,j - z;; i-1,j 

26x 

n n 
l/J. 1 . - l/J. 1 . 1+ ,J 1- ,J X 

n+l n+l 
z;; . • 1 - z;; . • 1 1,J+ 1,J-

26x 26z 

= 

n+l n+l n+l n+l 2 z;;~+~ n+l 
_z;;_i_+_l_.,..._j_-_2_z;;_i--','-'J'-. _+ __ z;; _i_-_1-'-, ,._j + _z;;_i...c., __ j_+_l_-__ 1--','-'J'--+--z;; -i~, ~j _-_l 

6x2 tJ.z 2 

(3.45) 

where the superscripts n and n+l denote the time steps ntJ.t and 

(n+l)llt 

by 

and Equation (3.42) is expressed in central difference form 

l/J i+l,j - 2wi,j + l/J i-1,j 

tJ. x2 + 
l/J · · 1 - 2w. . + l/J. . 1 1,J+ 1,J 1,J-

tJ.z 2 
z;; . • 1,J 

(3.46) 

Figure 4 shows grid points and meshes for the test problem. In the 

course of calculat i on, we used 

ljJ = cosnx cosnz 

and 
z;; = n2 cosnx cos nz 

as the initial conditions which are in fact the exact solution pres ented 

in Equation (3.44) when t = 0 . The calculation field contains 20 x 20 

grid points (including the boundary points); equal mesh size is used for 

both tJ.x and tJ.z, i.e., t,,.x = tJ.z = 0.5/19; the time increment t,,.t is 

0.002, which is about twelve times the limit, 

(6x) 2 

4 (3.47) 



36 

given by stability analysis if Equation (3.41) is expressed in an 

explicit finite difference form and if it is assumed that the stability 

criterion is determined by the diffusion terms rather than by the con-

vective terms of Equation (3.41). In fact, it can be shown that the 

required time increment to satisfy the stability criterion due to the 

presence of convective terms is 

ti t < 
C 

1 
Ja w/azj + Jaw/ axj 

tix tiz 

(3.48) 

which is much greater than 6td expressed in Eq tion (3.47) for our 

present problem. 

As noted in section 3.3, the solution expressed in Equation (3.19) 

together with Equations (3.20), (3.21), and (3.22) is an approximate 

solution to Equation (3.1) because of the approximate expressions 

Equation (3.15) and Equation (3.16) for T. 1 . 1 
1- 'J + 

and T. 1 . 1 • 1+ ,J-
Hence, in order to detect the effects of this approximation on the cal-

culation, we calculate Equation (3.45) once for a given time step and 

iteratively calculate Equation (3.46) twice. From this process, one 

can also detect the effects of the presence of nonlinear terms on the 

calculation. Thus, one can deduce under what conditions Equation (3.45) 

has to be calculated iteratively in order that the effects due to the 

nonlinear terms may be taken into account. As a summary of the detailed 

calculation, the calculated vorticity and stream function and the exact 

ones at the point x = 1/19 and z = 1/19 are listed in the following 

table. The computer used was a CDC 6400. 
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t z:;exact z:;calc . 1/Jexact 1/J calc. 1 1/Jcalc. 2 

0 9,60222368 ---------- 0,97290862 ---------- ----------
0 . 002 9,23052787 9.22078202 0.93524801 0.92459860 0,93348617 
0 . 004 8.87322061 8.85059308 0.89904521 0.88207465 0,89408518 
0.006 8. 52974445 8.49137856 0.86424380 0.84222221 0,85587786 
0.008 8 . 19956402 8.14333278 0.83078953 0,80469707 0.81901579 
0.01 7.88216465 7. 80672216 0,79863025 0,76921420 0,78360202 
0.012 7.57705158 7.48175327 0. 76771583 0.73555790 0,74967254 
0.014 7,28374922 7.16853732 0,73799809 0.70357176 0.71722006 
0.016 7.00180039 6.86708870 0.70943070 0. 67313486 0,68621320 
0 . 018 6 , 73076560 6.57733479 0.68196914 0.64414754 0.65660749 
0 , 02 6 . 47022238 6.29912885 0,65557059 0.61652354 0.62835160 
0.022 6 , 21976461 6.03226294 0,63019391 0.59018586 0.60139091 

In the table and 1/J calc. 2 denote the stream function calcu-

lated at the first and second iteration, respectively. 

Figure 5 presents the errors in calculated stream function and 

vorticity compared to their exact values at the corresponding times. 

At t = 0.002, first the vorticity was calculated by Equation (3.45) 

and then this newly calculated vorticity was used in Equation (3.46) 

to calculate the stream function iteratively as noted by 1/J 1 1 ca c. 
and 1/J These calculations indicate that the result of even calc. 2 · 
the first iteration is quite close to the corresponding exact solution. 

However, because of the presence of the nonlinear terms the error grows 

monotonically with time and, thus, it is concluded that for solution of 

nonlinear difference equations such as Equation (2.15), or Equation (2.16), 

it is necessary to use an iterative process even when the Reynolds number 

is small. 
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Chapter IV 

COMPUTATIONAL PROCEDURE 

In Chapter III, an iterative method was introduced to solve 

Equations (2.15), (2.16) and (2.17) expressed in an implicit form. For 

a better presentation these equations are rewritten in the general form 

expressed in Equation (3.2): 

(i) Temperature field: 

A n,(m) A n,(m) 
_ (-4_w_i_;.,.;..j_ + __ l __ ) Tn+l, (m+l) _ ( 2ui ,j + 1 ) T~+l, ~m+l) 

26z 2P R 6z2 i ,j-1 26x 2P R 6x2 1-l,J 

+ [2 + 6t 

n, (m) u .. 1,J 
26x 

- ( - A n, (m) 
3 ui,j 

26x 

r e r e 

n, (m) 
wi,j (A -A ) + _l_ (-1- + _l l] 

26z 4 5 PR • 2 • 2 re DX uZ 

+ 1 ) Tn+l, (m+l) ( 
2P R 6x2 i+l,j - -

r e 

A n, (m) 
5 wi, j 

26z + 1 ) T~+ ~, (m+ 1) 
2P R 6z2 i,J+l 

r e 

A n, (m) 
= ( 4wi,j + 1 

26 z 2P R 6z 2 

A n, (m) 

) 
Tn + ( 2ui, j 
i,j-1 26x + 1 ) T~ . 

2P R 6x2 i-l,J 
r e 

r 

+ l_!_ -M 

n, (m) u .. 1,J 
26x 

+ 

A n, (rn) 

(
- 3ui,j 

26x 

r e 

(A -A ) -2 3 

+ 1 ) Tn + 
2P R 6x2 i+l,j 

r e 

A n, (m) 

(
- Swi,j 

26z 

(-½- + -½-l] 
6x 6z 

1 +----
2P R 6z 2 

r e 

T~ . 1,J 

n 
T .. 1 
1, J + 

( 4. 1) 
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(ii) Vorticity field: 

A n, (m) 

( 
4 wi, j 

- --~- + 2fiz 
1 ) n+l, (m+l) 

2 r; . . l 
2R fiz 1.,J-

A n, (m) 

( 
2ui,j 

- --"-"--+ 2fi x 
1 \ n+l, (m+l ) 

2 R fix 2 J r; i - l ' j 
e e 

n, (m) u .. 
1. 'J 
2fi x 

n, (m) 
wi,j ( A - A ) + ..!_ (-1- + _l_Jil r;~+~, (m+l ) 

2fiz 4 5 Re fix2 fi z 2 ~ 1.,J 

- ( -
A n, (m) A n, (m) 
3ui,j 1 ) n+l, (m+l) _ ( - Swi, j 1 ) n+l, (m+l) + r; i+l,j + r; i,j+I 2fi x 2 2fiz 2R fi z 2 2R fi x e e 

A n, (m) 
( 4wi,j + ::: 

2fiz 

+ [_!_ -
6t 

n, (m) u .. 
1. 'J 
2fi x 

A n, (m) 

2R 

1

fiz 2 ) 

n ( 2ui · 1 
) r;~ 1 . r; . . l + ,J + 

1.' J -
e 

(A - A ) -2 3 

+ 

n, (m) w .. 
1. ' J 
2fi z 

2fix 2R fix 2 1.- 'J 
e 

( 1 1 J] n --2 + -- r; . . 
fix fiz 2 1.,J 

A W~' ~m) 

-2-R- :-x-2 ) s: + 1' j 
5 1.' J 
2fiz 

+ __ 1 __ ) r;~ . 
2R fiz 2 1. , J+l 

+ 
R. 1. 
T 

e 

T
n+l, (m+l ) n+l , (m+l) n n 
. 1 . - T. 1 . + T. 1 . - T. 1 . 1.+ ,J 1.- ,J 1.+ ,J 1.- , J 

fi x 

(iii) Stream functi on field: 

e 

_l_ tjJ +-1- tjJ -2 ( -1-+_l_) tjJ .. +-1- tjJ 
fiz2 i,j-1 fix2 i-1,j fi X2 fiZ2 1.,J fiX2 i+l,j 

l - r; . . 
1.' J 

( 4. 2) 

( 4. 3) 
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In the above expressions, the superscripts inside parentheses denote 

the iteration step within a time step for temperature and vorticity 

fiel<ls. 

In the course of computation at time equal to zero, a uniform flow 

starts impulsively. The stream function field is calculation by letting 

r;; . . = 0 in Equation (4.3). Of course, the calculation proceeds itera-1,J 

tively according to the iterative method described in Chapter III. The 

initial temperature field is assumed to have the same distribution as 

the initial stream function field. A flow chart for the initial solu-

tion is presented in Figure 6 . From the initial stream function initial 

velocities u . . and w. . can be calculated to determine the values 
l,J l,J 

of A2 , A3 , A4 and A5 according to the expressions Equation (2.18). 

Subsequently, the temperature field at the interior points at time 6t 

can be compute<l by Equation (4.1) provided the boundary conditions in 

both inflow and outflow regions, and the velocities of the interior 

points are kept at the initial values; then, the temperatures on the 

inflow and outflow boundaries are extrapolated by expressions Equations 

(2.30c) and (2 . 31c). The vorticity field at the interior points and on 

inflow and outflow boundaries at time tit can be calculated in a simi-

l ar manner. However , the values of vorticity on the obstacle must be 

evaluated at time level 6t by Equations (2 . 21), (2.22) and (2 . 26) 

before thos e at the interior points at time level 6t are calculated. 

Subsequently with the calculated vorticity at time 6t , the stream 

function at interior points at time 6t is iteratively calculated by 

Equation (4.3). Note that the stream function on the inflow and outflow 

boundaries is that from the (1-1) iteration when the 1th iteration 

for interior points is processed and then the values on the inflow and 
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outflow boundaries at the £th step are extrapolated by Equations (2. 30a) 

and (2 . 31a) from those at interior points calculated at the £th iteration. 

The iterative process continues until the convergence criterion 
t/! ~£~1) - t/! ~£~ 

M I 1,J 1,J I < ,, , or ax (£+l) u 1 tjJ •• 1,J 

is satisfied. 

When the Reynolds number is small or, equivalently, when the nonlinear 

effects are not important, the temperature, vorticity, and stream function 

at time 26t may be calculated by the process described above. However, 

usually the boundary conditions and the nonlinear effects are so closely 

coupled that an iterative process must be used for the temperature and 

vorticity fields. To carry out the iterative process, we register the 

temperature and vorticity fields, calculated as described above, as 

T1 ' (O) and r; ~' ~O) and denote the associated velocity field by u?' ~O), 
1,J 1,J 

and 0, (O) w .. 1,J 
Subsequently, T~' ~m+l) and r; ~' ~m+l) and the associated 

1,J 1,J 
velocity field u?'~m) and w?'~m) will be calculated until the con-1,J 1,J 
vergence criteria 

T~' ~m+l) _ T~' ~m) 
Max I i,J i,J I 

T~' ~m+l) 
1,J 

C 4. s) 

and 

M I l,(m+l) l,(m)\ ax r; . . - r; . . < £ 
3 1,J 1,J , or 

l,(m+l) l,(m) r; . . - r;. . 
M I 1,J 1,J 
. ax l,(m-1) 

r; . . 1,J 
(4. 6) 

are satisfied. At this stage the iterative process in this time inter-

val t = 6t is complete, and the calculation can be advanced to th e 

next time interval t = 26t. In general, the iterative process can be 
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applied to the calculation from any time step, say the nth step, to 

the next time step, say the n+ 1st step. Figure 6 shows a flow chart 

describing the iterative process to produce the initial solution . A 

general flow chart for a transient solution from the nth time step to 

the n+lst time step is depicted in Figure 7. 
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Chapter V 

RESULTS AND DISCUSSION 

Before the numerical calculation starts, the time increment and 

mesh sizes nust be determined from different points of view. In theory, 

for an implicit scheme there is no restriction on the time increment. 

However, because of boundary conditions and of the nonlinearity of the 

equations, an iterative process is always needed for the calculation 

of vorticity and temperature. If a large time increment is chosen, it 

is to be expected that , for a given time interval, a large number of 

iterations will be required. On the other hand, if a small time incre-

ment is chosen then, for a given time interval, fewer iterations will 

be needed but, to reach an asymptotic state, a great number of time steps 

will be required. There is no way to determine analytically the optimum 

time increment. The only accessible way is to conduct a numerical experi-

ment and to find out the optimum time increment experimentally. Similarly, 

the optimum mesh size can also be determined experimentally. Of course, 

the computer core capacity is the most important restriction when a prob-

lem with a large number of grid points is calculated. 

Based on experience, we used a small time increment, At= 0.03, 

for the first calculation starting from t = 0, since the flow pattern 

changes rapidly right after the fluid starts flowing. After that the 

time increment At was increased from one time step to the next by the 

formula 

At= At+ 0.02 

until the condition At > 0.2 is reached. Thereafter, At= 0.2 or 

0.22, was used. As to the space mesh size, we used Ax= 0.25 and 
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~z = 0.25. Smaller mesh sizes have been tried, but the limitation in 

computer storage requires the computation field to be smaller in space 

and, then, a lot of information beyond the computation field is lost. 

On the other hand, we tried to use larger mesh size, but the increase 

in truncation errors was too great and overshadowed the advantage of a 

larger computation field. 

Figures 8 to 14 are the computational results of stream function, 

vorticity, and temperature at different time steps for a stratified flow 

with Reynolds number 397, Prandtl number 10, and Richardson number 1.58. 

The figures are direct prints from microfilm plots generated by CDC 

6600 computer. These dimensionless numbers are defined in the expres-

sions (2.10). The horizontal and vertical coordinates are normalized 

by the height, L of the vertical fence from the line 56 (Fig. 3); 

the uniform velocity of the incoming flow is the characteristic velocity; 

the characteristic temperature difference ~T is defined by ~T = dT/dz L 

where dT/dz is the temperature gradient far upstream and is a constant 

in the present study. Figure 8 shows the normalized horizontal and 

vertical coordinates, the same scale being used for both coordinates. 

As noted previously, the fluid starts impulsively as an irrotational 

flow, and thus, at the early stage of the flow development, the flow 

pattern deviates little from the irrotational flow pattern. Figure 8 

showing the stream function at t = 0.03 indicates this situation very 

clearly from the fact that the streamlines are almost symmetric about 

the vertical axis of the fence, In Figure 9 the flow pattern at t = 

1.82 is shown. On the upstream side of the fence, the streamlines are 

lifted up, while, in the lee side, the streamlines converge to produce 

a strong downslope current; the constant temperature lines show a 
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similar pattern. The most interesting thing is the development of vor-

ticity. In the case of homogeneous flow of viscous fluid, vorticity is 

confined to the region of the boundary layer and it may diffuse toward 

upstream only when the Reynolds number is very small. However, from 

Figure 9, we can see that vorticity is not only diffused in the wake 

region but also exists on the upstream side of fence as a result of 

vorticity creation by density (or temperature) inhomogeneity. 

In Figure 10, lee-waves are being generated and the first wave 

troughs tilt towards upstream. Figure 11 shows a clearer flow pattern 

of lee-waves; in particular, the contour lines of vorticity present 

alternating positive and negative regions indicating the troughs and 

crests of lee-waves. From Figures 12 to 14, one can see the development 

of lee-waves approaching an asymptotic state. Iri Figure 14, at t = 

15 . 68, two lee-waves are clearly seen; a third wave, which cannot be 

observed from the streamline contours, is indicated by the positive 

region of vorticity in the left hand corner. This numerical calcula-

tion can be compared with an experimental result by Pao et al. (1968) 

for a cylinder of diameter 1.905 cm moving with velocity 2.083 cm/sec 

in stratified salt water of density gradient -4 dp/dz = 20.15 X 10 , 

and it will be found that the flow patterns are similar. In the experi-

ment the diameter of cylinder is the characteristic length, while in 

this numerical calculation, the fence height above the line of symmetry, 

corresponding to the radius of cylinder in the experiment, serves as 

the characteristic length. For further comparison, reference may be 

made to similar flow patterns which have been calculated from the in-

viscid model (Pao, 1969; Miles, 1968). 
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Another numerical calculation for R = 5000, P = 1, and e r R. = 
1 

1.58 is presented in Figures 15 to 21 . This calculation was performed 

to determine whether the forward and backward scheme proposed for the 

vorticity and temperature equations of stratified flow can real ly t ake 

care of high Reynolds numbers. The calculation indicates that this 

scheme gives a stable computation as predicted, In the series of 

patterns in Figures 15 to 19 with the corresponding time t from 0.03 

to 18.42, one can observe a similar flow development to that described 

in the preceding paragraphs and, of course, lee-waves occur downstream of 

the obstacle. However, in Figures 20 and 21, undesirable disturbances 

appear near the inflow boundary, In order to understand these undesirable 

disturb ances, i t is necessary to recall the numerical experiments on 

boundary conditions. 

To begin with , we used a set of prescribed stream function, vorticity, 

and temperature on the inflow boundary. The computational field contains 

180 x 30 grid points with 6x = 0,25, and 6t = 0 . 25, and the vertical 

fence is located at 120 grid points from the inflow boundary. We found 

that this kind of undesirable disturbance appeared near the inflow 

boundary as early as t about 4, and that if the Richardson number was 

increased, these disturbances might appear even earlier . At firs t it 

was thought that these disturbances might have resulted from the particu-

lar iterative method. In order to clear this point, a flow of homogene-

ous fluid over the same obstacle was calculated with the same Reynolds 

number and boundary conditions. We found that, for this homogeneous 

flow, there existed no such undesirable disturbance near the upstream 

boundary and that the computation could be carried on as long as was 

desired, i.e., the computation scheme was stable and the iterative 
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method was proven to be very efficient in reducing computational efforts. 

Hence, it is concluded that these undesirable disturbances are associated 

with the existence of stratification. 

Now, one may ask why these undesirable disturbances exist near the 

inflow boundary but not near the outflow boundary. Consider a transient 

flow of stratified fluid passing over an obstacle. The disturbances 

caused by the presence of this obstacle may propagate towards both up-

stream and downstream in the form of iternal gravity waves. If we have 

suitable boundary conditions for both inflow and outflow boundaries, 

these iternal gravity waves in the computational field can pass through 

both boundaries, and as time goes on the asymptotic state can be achieved 

in the long run. However, if unsuitable boundary conditions are used, 

the disturbances propagating from the obstacle cannot all pass through 

the boundaries but may reflect back from the boundaries as artificially 

introduced disturbances. For this numerical study, the predictor formula 

expressed in Equation (2.30) and Equation (2.31) was used to extrapolate 

the disturbances from the interior points to the boundaries. At the 

outflow boundary, it appears that the outflow can efficiently carry the 

disturbance away from the computational field. However, at the inflow 

boundary, any undesirable disturbance which occurs may be brought back 

into the computational field by the inflow as an artificial disturbance 

which will finall y produce undesirable lee-waves downstream of the 

inflow boundary. One numerical experiment was made to examine the 

behavior of thes e undesirable lee-waves and it was found that they could 

propagate downstream of the inflow boundary . Clearly , this phenomenon 

is a kind of computational instability, caused by the interaction of the 

boundary condition and the flow field although, based on the stability 

analysis, the computational scheme is stable and convergent. 
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In short, the effects of boundary conditions on the computation are 

dependent on the flow phenomena themselves. In the case of homogeneous 

fluid, the boundary condition at the inflow boundary usually involves 

no problem since disturbances decay exponentially with distance but, in 

the case of stratified fluid, the inflow boundary condition becomes cru-

cial since disturbances propagate upstream far from the obstacle and, 

therefore, this boundary condition must receive careful treatment if 

meaningful results are to be obtained, This is the reason why, in the 

problem described herein, the computational region upstream of the 

obstacle contains more grid points than that downstream, According to 

experience gained during this numerical experiment, a transformation in 

coordinates to make the computational field extended towards far upstream 

and downstream would be helpful. Where a vertical fence as an obstacle 

is concerned, exponential coordinates and elliptical coordinates may be 

used so that in the region near the obstacle a fine mesh is available 

and, in the region far from the fence, a coarse mesh may be used. Thus, 

not only better accuracy could be obtained but also the flow boundaries 

of the computational field could be pushed as far away as the computer 

storage allows, Because of limitation in computing time, these special 

coordinates have not been tried. However, in principle, their applica-

tions should produce no problem in computation if the iterative method 

introduced in Chapter III is used since, as noted previously, this 

iterative method is insensitive to the coefficients contained in Equa-

tion (3.1) and, in fact, the transformation in coordinates changes only 

these coefficients but not the basic structure of Equation (3.1). 

In order to illustrate how the computation was performed for both 

flow conditions described above, two tables·· are listed at the end of 
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this chapter, Both computations were made for square meshes in 

Cartesian coordinates. In these tables, the first and second columns 

indicate the time t at which the computation was made and the time 

increment ~t , respectively. The third column is the ti~e step being 

computed measured from the instant when the flow starts impulsively. 

The fourth and fifth columns denote the iteration numbers for tempera-

ture and vorticity and for stream function at a given time step, while 

the sixth and seventh are the accumulated iteration numbers for the cor-

responding variables. The first computation listed in Table I has the 

following convergence criteria for iteration of temperature and vor-

ticity at a given time step (n+l), 

Max 
6~+~,(m+l)_ 6~+~,(m) 

I 1,J 1,J I 
n+l, (m+l) e. . 

< 0.01 for I e~+~, (m+l) I > 0.1 
1,J 

1,J 

or 

Maxl e~+~,(m+l) - e~+~,(m)J < 0,001 , for 
1,J 1,J 

where e . . - T . . or s. . 1,J 1,J 1,J 

and for stream function using the calculated vorticity at the (m+l) 

iteration at time step (n+l), 

Maxi < 0.01 for 

or 
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For the second computation listed in Table II, the convergence criteria 

are: 

(a) t < 20 

Maxi 
8~+~,(m+l) _ 8~+~,(m) 
l,J l,J I 

8~+~, (m+l) 
< 0.01 for 

l,J 

or 

Maxl0~+~,(m+l) - 8~+~,(m) I < 0.001 for 
l,J l,J 

where 8 . . _ T. . or i:;. . l,J l,J l,J 

and 

Max 

or 

(b) t > 20 

n+l, (m+l) 8. . 

< 0.01 

Max I 1, J 1, J 
n+ 1, (m+ 1) 8 . . l,J 

or 

for 

< 0.001 for 

Maxl 0~+~,(m+l) - 8~+~,(m) I < 0.0001 for 
l,J l,J 

where 8 . . - T. . or i:;. . 1,J l,J l,J 

and 

I 0~+~, Cm+i) I > 0.1 
l,J 

10~+~,cm+iJ I < 0.1 
l,J 

I 0~+~, Cm+iJ I > 0.1 
l' J 

10~+~,Cm+iJ I < 0.1 
l,J 
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lj/ £~1) - / £~ 
lw~ i ~l) I M I l,J l,J < 0.001 for > 0 . 1 ax (£+ l) l,J ljJ .. l,J 

or 

Maxi / £~l) - w ~ i ~ I < 0.0001 for lw~ i ~i) I < 0.1 l,J l,J l,J 

from columns 4 and S of Tables I and II, it can be s een that when 

the comp utation s t art s , a numb er of iterations is needed s ince, in the 

ear ly s tages, the flow is highly time-dependent . As the computation 

goes through th e mi<l<lle course , th e i t eration numbers are as low as 2 . 

Indee<l this situation c l ear ly indicates that the iterative method 

in t ro<l uce<l in Chap t er II I is really a good one . It is noted that in 

Pearsons work (1965), a smoothing par ameter was introduced for both the 

boundary and interior points to reduce the computational efforts by 

decreasing iteration numbers for vorticity calculation at a given time 

step; it seems to us that the iteration parameter a for the present 

iteration metho<l may have this effect. For the first computation, 79 

time steps were calculate<l and 30 minutes of CDC 6600 computer time 

were spent; on the average, each time step took 25 seconds approximately. 

One thing must be noted about the last row of the Table II which shows 

that at time t = 23.46 a great number of iterations was made for tempera-

ture and vorticity as well as for stream function. Comparison of these 

values with the corresponding ones at t = 20.52 indicates that the great 

number of iterations is not due to the smaller residuals used for con-

vergence criteria when t > 20. In fact, one may relate th i s situation 

to the computational instability caused by the unsuitable boundary 

conditions as described above, In other words, if this difficulty 
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particularly involved in the numerical calculation of stratified flows 

can be removed by some special coordinates, the iterative method is 

indeed a good one for the numerical calculation of general problems in 

geophysical fluid mechanics. 



Time 
Step 

t lit n 

0.03 0,03 1 
1. 82 0.2 13 
4,76 0.2 27 
8,76 0.22 46 
9.80 0.2 51 

12.74 0.2 65 
15.68 0.2 79 

R = 397, P = 10 e r 

TABLE I 

Iteration Iteration 
Number for Number for 

Temperature, T Stream 
and Vorticity, z: Function, 

5 14 
4 5 
2 3 
2 2 
2 2 
2 2 
7 9 

R. = 1.58 
1 

~x = 0.25 , ~z = 0.25 

Accumulated 
Iteration 

Number for 
Temperature, T 

iJJ and Vorticity , z: 

5 
53 
95 

133 
143 
171 
213 

Grid Points= 180 x 30, Computer Time (CDC 6600) = 30 min., Total core used 51,100 decimal. 

Accumulated 
Iteration 

Number for 
Stream 

Function, iJJ 

14 
81 

137 
176 
186 
214 V, 

v,l 

272 



TABLE II 

Accumulated Accumulated 
Iteration Iteration Iteration Iteration 

Time Number for Number for Number for Number for 
Step Temperature, T Stream Temperature, T Stream 

t lit n and Vorticity, z: Function, l/1 and Vorticity, z: Function, l/1 

0,03 0,03 1 5 14 5 14 

2.88 0.22 18 4 5 73 105 
8.34 0.22 44 2 2 131 174 

13. 38 0.22 68 2 2 179 222 
18.42 0.22 92 2 2 227 270 
20 .52 0.22 102 5 9 256 315 

u, 
~ 

23 .46 0.22 116 47 226 557 849 

R = 5000., P = 1., R. = 1.58, !::.x = 0.25, !::.z = 0.25, e r 1 
Computer Time (CDC 6600) = 60 min., Grid Points= 180 x 30, Total core used 51,100 decimal. 
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l,J 

DEFINE ljl . . ON OBSTACLE l,J 

COMPUTE ljl~+~ AT INTERIOR POINTS l,J 

COMPUTE ljl~+~ ON INFLOW AND OUTFLOW 
1,J 

BOUNDARIES BY EXTRAPOLATION 

NO-------------iCONVERGED? 

YES 

COMPUTE u. . AND w. . 
l,J 1,J 

T .. = l/J . . l,J l,J 

Fig. 6. Flow Chart for Initial Solution 
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E;, 
ltn+l = tn + Ml 
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l.' J 
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COMPUTE T. 

l.' j 
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l.' J 
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I STOP 

Fig. 7. Flow Chart for Transient Solution 



+6 

+4 

-t 2 

0 

- Flow Direction 
IIIIIIIIIIIUUllltttfltl I lltl 111111111 tltfltllltll 11111 ltll 11111 tllltltl 111111 I IUU I 1111 ttltlt t It II lttll tt 11111 If 11111 ti I I I 111 I I 11 I ti I It I I I 11 I I I I It I I 11 

+15 +10 +5 -5 -10 -15 -20 

--- -Location of Vertical Fence 

Contour From 0. To 7.200E+OO Contour Interval of 4 . 00E-01 
Scaled By 1E+02 Pt(3.3) = 5.000E- 01 

Fig. 8. Stream Function At t = 0 . 03, Re = 397, Pr = 10, Ri = 1.58 

6X = 0.25, 6Z = 0.25 , 6t = 0. 03, grid points (180 x 30) 

-25 - 30 



Stream 
Function 

Vorticit y 

Temperature 

Contour From 0 . To 7 . 200E +OO Contour interval of 4.000E-01 
Scaled by l E+O~ Pt(3.3) = 5.000E-01 

-~ ill lllilU illllil lilllli Wlill UUJw.u.UU..1.iu..11""' 

Contour From - 5.400E+OO to 3.000E- 01 Contour Interval of 3 . 000E- 01 
Scaled By 1E+0 2 Pt(3 . 3) = -3.643E-07 

flt 11111 ffltllttflt flltfl I It I I I I 11 I I II I 1111111 It 1111111 I I If I I, I 11111 I 1111111 t 11I111111 t t I I I I It I I 1111 I 11 t ti I I 11 It I 1111 I It I I I 11 II I I I It I It I I I I I 11 I 1111 I I I I I 11 I I I 1111 f I I 11111 I 11 I 

Contour From 0 . To 7. 200E +OO Contour Interval of 4 . 000E-01 
Scaled by 1E+02 Pt(3.3) = 5 . 000E-01 

Fig . 9 . Flow Patterns At t = 1.82, Re = 397, Pr = 10, Ri = 1.58, 

6X = 0 . 25 , 6Z = 0.25 , 6t = 0.20 , grid point (180 x 30) 



Stream 
Function 

Vort icity 

Temperature 

IIIIIIUIIHllllllllllllltlllllllllllllllllllllllllllllllllllllllllfllllllfllllltllllltfllltllllltllllllltllllltlllHIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII, . 

Contour From 0. To 7.200E+OO Contour Interval of 4.000E-01 
Scaled by 1E+02 Pt(3.3) = 5.000E-01 

Contour- From -4.500E+OO to 
Scaled By 

3.000E-01 Contour Interval of 3 . 000E- 01 
1E+02 Pt (3 . 3) = -1. 792E- 05 

Contour From O. To 7.200E+OO Contour Interval of 4. 000E-01 
Scaled By 1E+02 Pt (3.3) = 5.000E-01 

Fig . 10. Flow Patterns At t = 4.76, Re= 397, Pr= 10, Ri = 1.58, 

6X = 0.25, 6Z = 0.25, 6t = 0.20, grid points (180 x 30) 



Stream 
Function 

Vorticity 

Temperature 

1111111111111,,, ... , •••••••••••••••••••••••••••••• ,.,1,11111111111111111111,1111111111111111111111111111111111111,,,,., ••••• , •••••••••••••••••••••••••••••••••••••••••••••••• . · 

Contour From 0. 
Scaled By 

To 7.200E+OO Contour Interval of 
1E+02 Pt(3.3) = 4.996E-Ol 

4.000E-01 

Contour From 
Scaled By 

-5.lOOE+OO To 3.000E-01 Contour Interval of 3.000E-01 
1E+02 Pt(3.3) = -3.239E-04 

Ullllllflflllllllll I ltltllllf .. 11 I Ill ti II lflltl 11111111 lfllllltlt II I I 11111 tlltlttl II Ill fltfl 111 lltllfl tltllltl It fllltl ltl I I It II 1111 lflltl ..... I I It 11 ltt I I I II It , 

Contour From 0 . To 7.200E+OO Contour Interval of 
1E+02 Pt(3.3) = 4.997E-Ol 

4.000E-01 
Scaled by 

Fig. 11. Flow Patterns At t = 20. 52, Re = 397, Pr = 10, Ri = 1.58, 

6X = 0. 25, 6Z = 0.25, 6t = 0 . 22 , grid points (180 x 30) 



Stream 
Function 

Vorticity 

Temperature 

Contour From 0 . 
Scaled By 

To 7.200E+OO Contour Interval of 4.000E-01 
1E+02 Pt(3.3) = 4.993E-Ol 

Contour From -5.lOOE+OO To 3.000E-01 Contour Interval of 3.000E-01 
Scaled by 1E+02 Pt(3.3) = - 6 .0lOE-04 

; ; Olllllllllllltllllllllllllllltftll IUUIUll 1111111111111111111111111111111111111111ft tit 111 I I I I I I IUI II t It t 11 tit I It I I I llfl It 11111 It I I I It I It I I I I I 11 t I It I II I I I It It 11 HI ti It I I I I , 

Contour From 
Scaled By 

0. To 7.200E+OO Contour Interval of 
1E+02 Pt(3.3) = 4 . 995E-Ol 

....................................... , ...... 
4.000E-01 

Fig . 12. Flow Patterns At t = 9.8, Re= 397, Pr= 10, Ri = 1.58, 

6X = 0.25 , 6Z = 0 . 25 , 6t = 0 . 20, grid points (180 x 30) 



Stream 
Function 

Vorticity 

Temperature 

Cont our From 0 . 
Scaled By 

To 7. 200E+OO Contour Interval of 
1E+02 Pt(3.3) = 4.972E-Ol 

4.000E-01 

Contour From - 4 . 800E+OO to 3 . 000E- 01 Contour Interval of 3.000E-01 
Scaled by 1E+02 Pt (3.3) = -2.656E-03 

Contour From 0. 
Scaled By 

To 7.200E+OO Contour Interval of 
1E+02 Pt (3.3) = 4.979E-Ol 

.. , ...................................................... . 
4.000E-01 

Fig. 13. Flow Patterns At t = 12.74, Re =397, Pr= 10, Ri = 1.58, 
6X = 0 . 25 , 62 = 0.25, 6t = 0 .20, gr i<l points (180 x 30) 

0 

-..J 
0 



Stream 
Function 

Vorticity 

Temperature 

Contvur From 0. 
Scaled By 

To 7.200E+OO Contour Interval of 4 . 000E-01 
1E+02 Pt(3.3) = 4.914E-Ol 

Contour From -4.500E+OO to 3.000E-01 Contour Interval of 3.000E-01 
Scaled By 1E+02 Pt(3.3) = -8.924E-03 

Contour From 0. 
Scaled By 

To 7.200E+OO Contour Interval of 
1E+02 Pt(3 . 3) = 4.930E-Ol 

Fig . 14 . Fl ow Patterns At t = 15.68, Re= 397 , 

4 . 000E-01 

Pr= ~O , Ri = 1.58, 

6X = 0. 25 , 67.. = 0.25, 6t = 0 . 20 , grid points (180 x 30) 



+6 

+4 

+2 

0 

Flow Direction 

. . Jlltlllllllltl •• ....... '" ..... •tllllltfllltll lllllllllllllfltllltl llllllllllUUIII flllltlfltlllllllll 111111111111111111111111 I 11 I I 11111 II 11111111 I I I II I 11 

+15 -+10 -15 -20 

Contour From 0 . To 7. 200E+OO Contour Interval of 4 . 000E - 01 
Scaled By 1E+02 Pt(3.3) = 5.000E-01 

Fig . 15. Stream Function At t = 0.03, Re= 5000, Pr= 1, Ri = 1.58, 

f:.. X = 0.25, f:..Z = 0.25, f:.. t = 0.03, grid points (180 x 30) 

-25 -30 



Stream 
Function 

Vort icity 

Temperature 

Contour From O. 

I I Ill I I 11I111111111111 I I Ill I I 11111 I I I I 11111 t I I I ti 11111I111111111111111111111111 I 111111 II t 11t11111 t t Ill It It I I I I It I tit It t I I I It t I I It t It It I tit I , 

To 7 . 200E+OO Con t our Interval of 4 . 000E-01 
Scaled by 1E+02 Pt(3.3) = 5 . 000E-01 

Contour From -5.lOOE+OO to 3.000E-01 Contour Interval of 3 . 000E- 01 
Scaled by 1E+02 Pt(3.3) = -2.411E-06 

Ill I II II II II I II II II Ill 11111111111111111111 It II I II II I 111 I It II I 111111 I 111111111tItI111111 t I 1111 t t 11111tit11111111 It I I I It I II 11 f ti I It 11 ft I I I It I 111111 I I I I I I I I I 111 I I I I I I I I , 

Contour from 0 . to 7 . 200E+OO Contour Interval of 4.000E-01 
Scaled By 1E+02 Pt(3.3) = 5.000E-01 

Fig. 16. Flow Patt erns At t = 2 . 88, Re = 5000, Pr = 1, Ri = 1.5 8, 

f'..X = 0. 25 , f'..Z = 0 . 25, /'it= 0 . 22 , grid points (180 x 30) 



Stream 
Function 

Vorticity 

Temperature 

Contour From O. To 7.200E+OO Contour Interval of 4 . 000E-01 
Scaled By 1E+02 Pt(3.3) = 4 . 997E-Ol 

Contour From -5.lOOE+OO to 3.000E-01 Contour Interval of 3.000E-01 
Scaled By 1E+02 Pt(3.3) = -2.560E-04 

Contour From O. To 7 . 200E+OO Contour Int erval of 4.000E- 01 
Scaled By 1E+02 Pt{3.3) = 4. 998E-Ol 

Fig. 17. Flow Patterns At t = 8.34, Re = 5000, 
~x = 0. 25, ~z = 0. 25, ~t = 0.2 2, 

Pr= 1, Ri = 1.58, 
grid points (180 x 30) 

-



Stream 
Function 

Vorticity 

Temperature 

Contour From 0. 
Scaled By 

To 7.200E+OO Contour Interval of 
1E+02 Pt(3.3) = 4 .963E-Ol 

4.000E-01 

Contour From -4.800E+OO To 3.000E-01 Contour Interval of 3.000E-01 
Scaled By 1E+02 Pt(3.3) = -3.539E-03 

Contour From 0. 
Scaled By 

To 7.200E+OO Contour Interval of 
1E+02 Pt(3.3) = 4.972E-Ol 

Fig. 18. Flow Patterns At t = 13.38, Re = 5000, 

4.000E-01 

Pr= 1 
' 

Ri = 1. 58, 

t::.X = 0.25, t::.Z = 0. 25, t::.t = 0.22, grid points (180 x 30) 



Stream 
Function 

Vorticity 

Temperature 

. 11111 I I I Ill 111111111111111111 ll llfll 11111111 e 111 It t • t It t t t •II t it tit 1111 I ft 1111 ti If I 11111111111 fl II f I ltl 111111 fl t 11 It ft I I I e 111 t f I 11 I 111 t III 11 1181111 1 111 t 11 I f I I f I I 11 ltI I 111 I 1 1 .. ,,.... ~ 

Contour From 0. 
Scaled By 

To 7.200E+OO Contour Interval of 
1E+02 Pt(3.3) = 4.824E-Ol 

4.000E-01 

Contour From -4.500E+OO To 3.000E-01 Contour Interval of 3.000E-01 
Scaled By 1E+02 Pt(3.3) = -l.795E-02 

Contour From O. 
Scaled By 

To 7.200E+OO Contour Interval of 
1E+02 Pt(3.3) = 4.862E-01 

Fig. 19. Flow Patterns At t = 18.42, Re= 5000, 

4.000E-01 

Pr = 1, Ri = 1. 58, 

tiX = 0.25, tiZ = 0.25, tit= 0.22, grid points (180 x 30) 

"' 



Stream 
Function 

Vorticity 

Temperature 

-

Contour From 0. 
Scaled By 

111,;;;; ..... , .......... . 

To 7.200E+OO Contour Interval of 4.000E-01 
1E+02 Pt(3.3) = 4.738E-Ol 

Contour From -4 .BOOE+OO To 6.000E-01 Contour Interval of 3.000E-01 
Scaled By 1E+02 Pt(3.3) = -2.762E-02 

Contour From 
Scaled By 

0. To 7. 200E+OO 
1E+02 Pt(3.3) = 

Contour Interval of 4. OOOE-01 
4.791E-Ol 

Fig. 20. Flow Patterns At t = 20.52, Re= 5000, Pr= 1, Ri = 1.58, 

6X= 0.25, 6Z = 0.25, 6t = 0.22, grid points (180 x 30) 

!! 

... 



Stream 
Function 

Vorticity 

Temperature 

Contour From O. 
Scaled By 

To 7.200E+OO Contour Interval of 4,000E-01 
1E+02 Pt(3.3) = 6,056E-Ol 

Contour From -5.600E+OO to 4.000E-01 Contour Interval of 4.000E-01 
Scaled By 1E+02 Pt(3.3) = -l.320E-Ol 

Contour From O. 
Scaled By 

To 7.200E+OO Contour Interval of 
1E+02 Pt(3.3) = 5.854E-Ol 

4.000E-01 

Fig. 21. Flow Patterns At t = 23.46, Re= 5000, Pr= 1, Ri = 1.58, 

!).X = 0.25, !).Z = 0. 25, !).t = 0.22, grid points (180 x 30) 
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