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ABSTRACT

METHODS FOR INCORPORATING POPULATION DYNAMICS AND DECISION THEORY IN

CACKLING GOOSE MANAGEMENT

Natural resource management is often challenging due to competing stakeholder values, lim-

ited resources, or uncertainty in ecosystem processes. Cackling goose (Branta hutchinsii minima)

management faces all of these challenges. Many Native Alaskan subsistence hunters living in rural

communities rely on the seasonal influx of cackling geese each spring as a source of food security.

In addition to food, subsistence hunting provides cultural and spiritual benefits directly tied to the

values of many Native Alaskans. When cackling geese migrate out of Alaska, most birds fly to

the Willamette Valley in Oregon, and the lower Columbia River Basin in Washington. Here, the

cackling goose narrative is much different. In their wintering area, cackling geese browse on pri-

vate agricultural fields, destroying crops. The destruction of crops causes loss of agricultural yield,

and therefore, loss of income. Hazing geese from fields has become a daily requirement for many

farmers, consuming time, energy, and financial resources. In previous years, various programs

(including the Oregon Goose Control Task Force) provided services to ameliorate cackling goose

depredation on private land. These programs were, at least in part, successful at reducing depreda-

tion. Funding for these programs was limited, and when financial resources ended, the programs

disbanded leaving farmers to address the cackling goose depredation problem once again. The

competing interests between farmers and subsistence hunters has resulted in contentious debate

related to the management objectives associated with the cackling goose population as the Pacific

Flyway Council prepares to revise their cackling goose management plan.

In addition to competing stakeholder values, population dynamics of cackling geese are largely

unknown. Uncertainty associated with the population dynamics of cackling geese limits the ability
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of decision makers to predict the population response of potential management actions. Thus,

even after management objectives have been identified, the question remains as to how to choose

management actions that best meet the decision makers’ objectives. Harvest regulations, consisting

primarily of recreational hunting season length and daily bag limits, are the primary management

tool used to control cackling goose abundance. Information on how harvest regulations affect

population dynamics will provide a template for choosing management actions that optimize the

objectives associated with cackling goose management.

My objective was to address challenges associated with cackling goose management by 1)

developing and implementing methods for estimating cackling goose population dynamics based

on empirical data, 2) describe and implement quantitative methods for addressing multi-objective

problems, and 3) develop methods for incorporating information from population dynamics mod-

els with quantitative decision-theoretic methods to identify recreational harvest regulations that

optimize a decision maker’s objectives.

In Chapter 1, I develop a Bayesian hierarchical integrated population model (IPM) for as-

sessing population dynamics of cackling geese at two temporal scales, inter-annually and intra-

annually. I fit the model using two data sources, including 26 years of mark-resight data from neck

collared cackling geese and 33 years of relative abundance estimates obtained from aerial surveys.

I estimated age-, sex-, season-, and year-specific survival probabilities, annual fecundity, detec-

tion probability, relative population size, and age structure of cackling geese during years ranging

from 1982–2014. Although the model developed in Chapter 1 was specific to cackling geese, the

model can be generalized for other species by reparameterizing the link between vital rates and

abundance.

In Chapter 2, I provide a guide to quantitative methods for solving multi-objective problems

(i.e., multi-objective optimization). I apply two of the methods described in this chapter to address
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the problem of selecting a management goal for cackling geese, given the different competing

stakeholder objectives related to cackling goose management. A requirement of multi-objective

optimization is the ability to quantify each of the decision maker’s objectives into objective func-

tions. I provide examples of objective functions related to cackling goose management. I also

developed a web-based tool to allow cackling goose management decision makers to alter inputs

for these objective functions.

Chapter 3 is an extension of Chapter 2 in which I demonstrate the flexibility of the multi-

objective optimization framework by applying it to a different multi-objective problem; the prob-

lem of model selection in which an investigator balances competing objectives of model fit and

model complexity. I reconcile several model selection procedures within the multi-objective op-

timization framework. Additionally, I propose a method for model selection based on post- op-

timization specification of preferences in which a decision maker first identifies the set of Pareto

optimal solutions, and then chooses a model for which to base inference/predictions.

In Chapter 4, I combine the concepts and methods presented in Chapters 1 and Chapter 2 by in-

corporating population dynamics and multi-objective optimization into a decision theoretic frame-

work to find optimal state-dependent daily bag limits for cackling goose management. Specifically,

I describe a Markov decision process (MDP) in which I used a model of population dynamics to

inform transition probabilities of moving from abundance nt to abundance nt+1, for potential man-

agement actions including no hunting, restrictive daily bag limits, and liberal daily bag limits. I

used multi-objective optimization to inform action-specific reward functions. Finally, I identified

an optimal policy using stochastic dynamic programming.

Complex ecosystem processes often necessitate complex models for inferring ecosystem dy-

namics and quantifying uncertainty. This dissertation provides a framework for 1) using novel
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techniques to model population dynamics, and 2) methods to incorporate statistical models explic-

itly into a decision-theoretic framework to inform wildlife management. As advanced statistical

methods for ecological inference continue to proliferate, so should research focused on the devel-

opment of rigorous methods for using statistical analyses to inform decisions. This dissertation

provides flexible, quantitative tools to inform cackling goose management. The utility of this dis-

sertation for cackling goose management is most likely not in the specific output reported within

these pages, but the flexibility of the framework to incorporate alternative input from decision

makers and stakeholders. One of the primary challenges of any decision problem is quantifying

objectives or objective functions. Given these objective functions can be quantified, the methods

described here can be used to facilitate management decisions.

In addition to addressing specific issues associated with cackling goose management, this work

contributes more generally to the science of decision theory/structured decision making (SDM; Fig.

0.1). Necessary for the SDM process are models that predict the consequences of potential actions

a decision maker can take. Bayesian models of population dynamics, such as those developed in

Chapter 1 and 4, are important contributions to the modeling toolkit required for SDM (Fig. 0.1).

Likewise, Chapter 2 contributes to the SDM analysis toolkit, providing an overview of methods and

examples for incorporating preferences among objectives in a multi-objective problem, a necessity

in most, if not all SDM processes (Fig. 0.1). Finally, Chapter 4 describes methods for linking the

modeling described in Chapter 1, and multi-objective optimization described in Chapter 2, with

the other components of SDM. Chapter 4 provides an example of how complex ecological models,

objective functions, and optimization routines can be incorporated into wildlife management and/or

conservation decisions.

Future work related to this dissertation are suggested in each chapter. I highlight several of

those suggestions here. First, in Chapter 1 I note that bias in survival estimates propagates to bias
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in fecundity estimates in IPMs. This suggests that unbiased information on fecundity estimates

might help account for bias in survival estimates. Simulation studies could help clarify the rela-

tionship between bias in survival and fecundity estimates in IPMs. Second, in Chapter 1, I used

two data sources to estimate survival of cackling geese. However, a third data source exists for

cackling geese and many other harvested animals; band recovery data from harvested birds. An

extension of the IPM fit in Chapters 1 and 4 could include band recovery data to estimate survival.

Third, computation time potentially limits the flexibility of IPMs; the computation time for the

model fit in Chapter 1 exceeded 900 hours. A computationally efficient alternative to the IPM fit

in Chapters 1 and 4 would be to conduct a piece-wise analysis of each data source. That is, first

fit a model containing one data set; then use the information from the first analysis to facilitate

fitting a model to the second data set (e.g., using the results of the first analysis as a prior distri-

bution in the second analysis). A comparison of the results from each approach would help future

data analysts decide if the information that resulted from fitting the IPM is worth the additional

computational cost. Fourth, in Chapter 4 I identified an optimal management policy of the MDP

using an objective function identified using a priori specification of stakeholder preferences. An

extension of the work in Chapter 4 is to identify an optimal management policy of the MDP based

on a posteriori selection of Pareto optimal solutions. This would require using stochastic dynamic

programming to optimize the MDP for many different objective functions, each objective function

implying a different set of stakeholder weights (preferences). The benefits of this multi-objective

MDP with a posteriori specification of preferences is that decision makers could select an optimal

policy without explicitly selecting stakeholder weights. Each Pareto policy could be presented

at a stakeholder meeting, and stakeholders could potentially agree on a policy to implement. Fi-

nally, one of the assumptions of MDP is that the current state (e.g., population size) is observable

without error. Partially Observable MDPs (POMDPs) relax this assumption. Comparing optimal
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management policies calculated using MDPs and POMDPs would provide information on the ro-

bustness of the optimal solution with respect to the assumption of correctly observing the current

state. The observation model in hierarchical models could provide a framework for estimating the

observation error required in POMDPs, and therefore, POMDPs are potentially a straightforward

extension of Chapter 4.
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FIGURE 0.1. Diagram of the structured decision making process modified from
www.fws.gov. Chapter 1 is concerned with developing and implementing meth-
ods for modeling population dynamics. Chapter 2 is concerned with quantitative
decision-making methods that incorporate stakeholder preferences into the decision
making process. Not shown is Chapter 3, which is an extension of Chapter 2 for
model selection, a common multi-objective problem in wildlife research and man-
agement. Finally, Chapter 4 combines methods developed in Chapter 1 and 2 and
describes methods for incorporating other remaining components of the structured
decision making process.
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CHAPTER 1

A BAYESIAN INTEGRATED POPULATION MODEL FOR

ASSESSING CACKLING GEESE DEMOGRAPHY AT TWO

TEMPORAL SCALES

1.1. SUMMARY

Seasonal and annual population dynamics for a species are critical mechanisms of population

change. Integrated population models (IPMs) permit the simultaneous analysis of data on popu-

lation vital rates and abundance. Most of the guidance for development of IPMs have occurred

at the inter-annual scale. I developed a Bayesian hierarchical IPM that allows for simultaneous

inference on both intra- and inter-annual population dynamics. I applied the model to data col-

lected on cackling geese (Branta hutchinsii minima). Cackling geese are an important source of

food security for Native Alaskan subsistence hunters during spring and fall migration. They winter

in the Lower Columbia River Basin, Washington, and the Willamette Valley, Oregon where they

depredate agricultural crops causing yield loss. Management of cackling geese is concerned with

balancing abundance such that the population provides adequate subsistence hunting opportuni-

ties, but limits crop depredation. To better understand the mechanisms driving population change

to facilitate efficient management, I estimated age-, sex-, season-, and year-specific survival prob-

abilities. Additionally, I estimated annual fecundity, detection probability, relative population size,

and age structure of cackling geese from 1982–2014 using 33 years of abundance data and 10,428

collar-marked geese. Mean seasonal survival of two-month periods was lowest for juveniles (0.90),

then sub-adults (0.94), then adults (0.95). Mean annual survival was 0.54, 0.69, and 0.75 for ju-

veniles, sub-adults, and adults, respectively. Sex did not appear to affect additive annual survival.
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Mean fecundity of cackling geese was 1.67 birds per breeding pair for the years 1982–2004, and

2.16 for the years 1982–2004 and 2011–2013. The mean percentage of pre-breeding adults in the

population was 71%. Long-term trends appeared to be driven by the number of adults in the popu-

lation while short-term (annual) variation appeared to be driven by fecundity. The IPM developed

in this paper can be easily generalized to other life-cycles by re-parameterizing the link between

vital rates and abundance.

1.2. INTRODUCTION

Population dynamics are affected by temporal variation in vital rates that result from changes

in environmental, physiological, and/or anthropogenic conditions. Vital rates are often assessed at

two temporal scales: intra-annually (e.g., seasonally) or inter-annually (Ims and Andreassen 2000,

Sillett and Holmes 2002, Folk et al. 2007). Identifying differences in vital rates at each scale is use-

ful for elucidating mechanisms that limit and regulate populations (Fretwell 1972, Caughley 1977,

Caswell 2001). Assessing intra-annual variation in vital rates helps identify life stages, seasons,

and geographical regions within an annual cycle that have the largest effect on population dynam-

ics (Flockhart et al. 2015, Hostetler et al. 2015). Assessing inter-annual variation in vital rates

allows estimates of demographic stochasticity and population change due to larger scale temporal

processes (e.g., policy change, climate change; Lande et al. 2003). Examination of each of the two

temporal scales separately provides valuable information, but only a partial picture of population

dynamics compared to an evaluation of both scales simultaneously.

Hierarchical models are often fit with multiple data sources (Hanks et al. 2011). Integrated

population models (IPMs) are a specific class of hierarchical models for which data on vital rates

and abundance are simultaneously analyzed (Besbeas et al. 2002, Schaub and Abadi 2011). Abun-

dance data are realizations of a demographic process defined by specific vital rates and therefore
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contain information on vital rates. Incorporating abundance data with other vital rate data permits

precise parameter estimation and estimation of some unobservable vital rates (Schaub and Abadi

2011). IPMs are a relatively new modeling framework for wildlife populations and most guidance

on their development and implementation have occurred at the inter-annual temporal scale (Bes-

beas et al. 2002, Brooks et al. 2004, Schaub et al. 2007, Abadi et al. 2010, Cave et al. 2010, Schaub

and Abadi 2011, Kéry and Schaub 2012). IPMs for the intra-annual scale are much less common.

In a review of models used to examine intra-annual population dynamics (i.e., full-annual-cycle

population models), Hostetler et al. (2015) were unable to find any published examples of IPMs at

the intra-annual scale. This observation was not surprising because one or more data sets required

to fit IPMs often occur at the annual time scale. It is common, however, that one data set occurs at

the annual temporal scale and one occurs at a finer temporal scale. In cases with disparate temporal

resolutions of data, one method to fit an IPM is to align the data by dissolving the resolution of the

finer-scale data to match the scale of the coarser-scale data (e.g., Davis et al. 2014). This is advan-

tageous in that the benefits of IPMs for parameter estimation can be realized and standard models,

software, and code developed for IPMs at the inter-annual temporal scale can be implemented. It

is disadvantageous in that it results in loss of information from the data collected at finer reso-

lution. Appropriately scaling different temporal data sources for inference is important because

mechanisms driving the temporal dynamics of a process at one scale might not be important or are

inoperative at another scale (Gotway and Young 2002). Identifying methods for using disparate

data or information to make inference is a general problem in ecological, statistical, and scientific

investigation (Cressie 1996, Jelinski and Wu 1996, King 1997, Gotway and Young 2002). Meth-

ods to fit disparate temporal scales of data within an IPM framework will permit the advantages of

IPMs for estimating parameters and allow the simultaneous evaluation of multiple temporal scales.

I demonstrate the use of disparate temporal data in an IPM framework for cackling geese (Branta

3



hutchinsii minima) for which survival data were collected intra-annually and abundance data were

collected inter-annually.

Cackling geese are migratory birds that nest on the coastal plain of the Yukon-Kuskokwim

(YK) Delta, Alaska and primarily winter in the Willamette Valley and Lower Columbia River Val-

ley in Oregon and Washington (Fig. 1.1; Sedinger and Bollinger 1987, Pacific Flyway Council

1999). The cackling goose population has experienced substantial variation in size and distribu-

tion since the mid-1960s. Autumn counts in northern California ranged from > 350, 000 birds

in the mid-1960s to < 30, 000 birds in 1983 (Fig. 1.2; O’Neill 1979, Raveling 1984, King and

Derksen 1986). More recently, the U.S. Fish and Wildlife Service (USFWS) estimated abundance

at 281,000 birds in 2014 (Fig. 1.2). The cackling goose winter distribution shifted in the mid-

1980s. Formerly, most birds wintered in the Central Valley in California (Nelson and Hansen

1959, Sedinger and Bollinger 1987). After 1993, the majority of the population wintered in the

Willamette Valley and Lower Columbia River Valley (Pacific Flyway Council 1999). The extreme

changes in abundance were thought to be linked to harvest levels at both ends of their migratory

route (Raveling 1984, Raveling et al. 1992). Mechanisms driving changes in distribution are un-

known, but hypothesized to be related to drought in California between 1986–1992 or expansion

of the commercial grass industry in Oregon (Pacific Flyway Council 1999).

Cackling geese represent an important food source for subsistence hunters in Alaska. They are

regularly the second-most harvested avian species during subsistence hunts (Naves 2010; 2011;

2012). The cackling goose subsistence hunt has historically occurred from when birds arrive in

the spring (Apr–May) through the end of August, with a 30-day legal cessation implemented after

nest initiation. In addition to subsistence hunting, recreational hunting of cackling geese typically

occurs from mid-September in Alaska to mid-March in parts of Oregon and Washington. In their

winter range, cackling geese graze on private agricultural land, causing yield loss for farmers. The
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Pacific Flyway Council, in conjunction with the USFWS, is currently reviewing its cackling goose

management plan to identify solutions to balance the differing stakeholder interests associated with

cackling geese. Due to these competing interests of stakeholders and observed changes in cackling

goose abundance and distribution, understanding the intra- and inter-annual temporal variability

in population dynamics is imperative for developing an efficient management plan that addresses

the concerns of Native Alaskan subsistence hunters, Oregon and Washington farmers, recreational

hunters, and other non-consumptive benefactors. Examining life history traits at two temporal

scales helps provide a more precise estimate of the anthropogenic effect on population size of

cackling geese.

My objectives were to 1) develop an IPM framework that permits inference at two temporal

scales using a simple reconciliation of seasonal survival estimates to annual survival estimates and

link these estimates to annual abundance data, 2) apply the model to cackling geese data with

abundance collected annually and mark-resight data collected seasonally, and 3) use the results of

the model to examine the temporal variation in vital rates of cackling geese. Although the IPM I

developed was specific to the life cycle of cackling geese, the framework applies to similar types

of data for any species or life cycle.

1.3. METHODS

1.3.1. AN IPM FOR INFERENCE AT TWO TEMPORAL SCALES. Kéry and Schaub (2012) de-

scribed a three step process to build an integrated population model. First, develop a population

model that links vital rates to changes in population size. Second, describe the likelihood for each

set of data. Third, construct the joint likelihood. I follow this framework to develop a Bayesian hi-

erarchical integrated population model to assess temporal dynamics at both intra- and inter-annual

scales. I develop the model for a species with 3 age classes (juveniles, sub-adults, adults), annual
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abundance data (yt) collected pre-breeding, and breeding occurring by adults. Later, I relax the

assumption that breeding only occurs as adults, but start with this assumption for simplicity in

demonstration. I use mark-resight data in which individual animals have been captured, marked,

and released and data exist on whether marked animals have been resighted in seasons s = 1, ..., S

in year t = 1, ..., T . The data on seasonal survival for each individual i (mi) is a vector of length

J = S × T of 1s and 0s, depending on if individual i was seen or not seen, respectively, in the

season-year combination j = s + (t − 1) × S. I used this life cycle and sampling design as an

example because of its applicability to the cackling goose population to which I subsequently fit

the model. This life cycle can be generalized by appropriately reparameterizing the link between

abundance and demographic vital rates.

1.3.1.1. Step 1: Linking population size to vital rates. The deterministic link between annual

abundance and annual vital rates can be described generally as:

nt = Ant−1 , t = 2, ..., T,(1.1)

where nt is a vector with elements consisting of the abundance of each age/stage class at time t,

and A is a matrix linking nt−1 to nt through survival at time t− 1 (φt−1), fecundity at time t− 1

(ft−1), and potentially other vital rates (e.g., breeding propensity, clutch size; Caswell 2001). For a

population with three age classes (juveniles, sub-adults, adults), pre-birth data on nt, and breeding

occurring as adults, (1.1) can be described as







nsub,t

nad,t






=







0
ft−1φjuv,t−1

2

φsub,t−1 φad,t−1






×







nsub,t−1

nad,t−1







,
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where nsub,t and nad,t are the number of sub-adults and adults, respectively, in the pre-birth popu-

lation at time t, ft is the year-specific fecundity of a pair of adult animals, and φa,t are age-specific

annual survival probabilities a ∈ {juv, sub, ad}. nsub,1 and nad,1 can be either fixed or assigned

prior distributions based on available information. Suppose now seasonal data exist to estimate

φs,a,t, where s = 1, ..., S seasons or partitions of a year. Annual survival is a function of seasonal

survival. That is: φa,t = f(φs,a,t). Assuming survival is independent among seasons, and φs,a,t is

estimated for all s ∈ t, f is simply the product function with respect to s:

φa,t =
S
∏

s=1

φs,a,t.(1.2)

If φs,a,t are estimated using Markov chain Monte Carlo (MCMC) methods, φa,t is a derived param-

eter. The equivariance property of MCMC derived parameters (Hobbs and Hooten 2015) permits

estimation of the posterior distribution of φa,t (i.e., [φa,t|y,M ], where y is the vector of abundance

data and M is a matrix of mark-resight data with elements mi,j). Point estimates and credible in-

tervals can then be obtained from the posterior distribution. Now suppose φs,a,t are estimated from

data using a generalized linear regression model with logit link function: logit(φ) = Xβ, where

X is a design matrix of indicator variables that identify the season, age, year and potentially other

individual or population-level covariates of each resighting for each individual, and the parameters

β describe the effect of the covariates on survival. I chose the logit function to map the support of

Xβ (i.e., R1) to (0–1); any link function meeting this criteria could be used. Annual survival for

each time and age class can be derived from the function: φa,t =
∏S

s=1 expit{β0+β1,s+β2,a+β3,t},

where β1,1 = 0, and is accounted for in the intercept. It follows that A can be expressed as:

A =







0 1
2
ft−1

∏S
s=2 expit{β0 + β1,s + β2,juv + β3,t}

∏S
s=1 expit{β0 + β1,s + β2,sub + β3,t}

∏S
s=1 expit{β0 + β1,s + β2,ad + β3,t}






,
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providing a simple link between seasonal survival, annual survival, and population size for the IPM

framework. Alternatively, the life cycle could be represented using A = BS · · ·B2B1, where S

are the number of seasons, and:

(1.3)

B1 =















0 0 ft
2

0 φsub,1,t 0

0 0 φad,1,t















,Bi =















φjuv,i,t 0 0

0 φsub,i,t 0

0 0 φad,i,t















,BS =















0 0 0

φjuv,S,t 0 0

0 φsub,S,t φad,S,t















,

where i = 2, ..., S−1, and φa,s,t = expit{β0+β1,s+β2,a+β3,t}, for all age classes a. (Caswell and

Fujiwara 2004). Annual survival is a derived parameter from the estimated posterior distributions

of β.

1.3.1.2. Step 2: Defining the likelihood of each data set. Eq. (1.1) is deterministic and thus

far not linked to random realizations of observed data. To describe the stochastic nature of the data

relative to the observation error and process error that occur, probability distributions are assumed.

For this example, I assume abundance data collected pre-breeding are normally distributed with

mean µt, and variance σ2. I assumed µt = n′
t1, where 1 represents a vector of 1s with length

equal to the number of age classes in nt (µt is the sum of adults and sub-adults at time t). Thus:

yt ∼ N(n′
t1, σ

2), where σ2 represents the observation variance. Other probability models could

be used instead of the normal distribution using n′
t1 as the mean structure and appropriately de-

scribing the variance (e.g., yt ∼ Poisson(λt), mean and variance = λt = nt1
′). Note that these

distributions assume abundance data can be over-counted as well as under-counted. If the true

population size cannot be over-counted and data exist to estimate detection probability (false neg-

atives), the binomial distribution could be used. If an investigator is unsure about the exact form of

A, and wants to include “demographic stochasticity” (sensu Kéry and Schaub 2012), a probability

distribution could be assigned to nt. For example: log(nt) ∼ N(log(Ant−1),Σ), where Σ is a
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covariance matrix for different age classes representing variability or covariance not captured by

the functions comprising A.

A common method to model the random nature of seasonal survival probability and detection

probability is using a zero-inflated Bernoulli model (i.e., Cormack-Jolly-Seber model). Assume:

mi,j ∼



















0 , zi,j = 0

Bern(pj) , zi,j = 1

,(1.4)

where zi,j is the latent, true state (alive = 1, dead = 0) of individual i during resight occasion j.

pj is the resight probability of a marked individual during resight event j. Assume pj is estimated

using a generalized linear model with a logit link: logit(p) = Wα, where W is a design matrix

for the detection probability parameters α. We want to estimate the posterior distributions of α.

The true latent state of each animal can be modeled as:

zi,j ∼



















0 , zi,j−1 = 0

Bern(φi,j) , zi,j−1 = 1

,(1.5)

where the first case ensures that if an individual was dead during the previous resight event it

remained dead during the present resight event. The second case assumes that if an individual was

alive during the previous resight event it was alive with probability equal to the season and time

specific survival probability φi,j . Given these models for the random nature of the data, we can

specify the likelihood for each process. The likelihood of the abundance data, assuming normal

distributions for observation data and process variance is

L(µ,β,f |y) =
T
∏

t=1

[yt|µt][µt|β,f ],

9



where β are the parameters used to estimate the seasonal survival rates in (1.3). The likelihood of

the mark-resight data, assuming zero-inflated Bernoulli models, is

L(β,α,Z|M ) =
n
∏

i=1

J
∏

j=2

[mi,j|α]zi,jI
1−zi,j
mi,j=0[zi,j|β]

zi,j−1I
1−zi,j−1

zi,j=0 ,

where Z is a matrix (with elements zi,j) of the true, unknown latent state of survival, M is a matrix

of the mark-resight data, and I is an indicator variable that equals 1 when its subscript is true (e.g.,

Imi,j=0 = 1 for all cases when mi,j = 0). It is evident that both likelihoods depend on β, and thus

β will be estimated from each set of data, despite data occurring at disparate temporal scales.

1.3.1.3. Step 3: Formulate the joint likelihood and posterior distribution. Given the likelihood

functions described in step 2, the joint likelihood of the parameters given the data is:

L(β,α,Z,µ,f , σ2|y,M ) =

T
∏

t=1

[yt|µt, σ
2][µt|β,f ]

n
∏

i=1

J
∏

j=2

[mi,j|α]zi,jI
1−zi,j
mi,j=0[zi,j|β]

zi,j−1I
1−zi,j−1

zi,j=0 .

Assuming nad,1 and nsub,1 are fixed and known, defining priors for β, α, and f completes the

information required to specify the joint posterior distribution:

[β,α,Z,µ,f , σ2|y,M ] ∝

T
∏

t=1

[yt|µt, σ
2][µt|β, f ]

n
∏

i=1

J
∏

j=2

[mi,j|α]zi,jI
1−zi,j
mi,j=0[zi,j|β]

zi,j−1I
1−zi,j−1

zi,j=0 [β][α][f ][σ2].

(1.6)

From the joint posterior distribution, the full-conditional distributions of β, α, Z, f , and σ2 can

be identified (see Appendix A for full-conditional distributions).

1.3.2. APPLICATION TO CACKLING GEESE DATA. In this section, I apply a specific formu-

lation of the IPM for inference at two temporal scales to two data sources on cackling geese:
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abundance data and mark-resight data. Both data sources have been used independently to inform

management decisions for cackling goose harvest regulations (Pacific Flyway Council 1999) and

a subset of the mark-resight data was used to obtain inference for seasonal and annual survival for

years 1982–1988 (Raveling et al. 1992). However, the data have not been combined in a simulta-

neous analysis of data sources or temporal scales within an IPM framework. I describe the current

application of the data for management and the benefits gained from combining the data in a single

analysis.

1.3.2.1. Abundance data. The USFWS, Division of Migratory Birds, Alaska have conducted

aerial surveys of geese nesting in the coastal plain of the YK Delta each spring since 1985. For

a detailed description of the study design and results see U.S. Fish and Wildlife Service (2014).

Briefly, the study design consisted of pilots flying an amphibious aircraft (either Cessna 206 or

Quest Kodiak) along pre-determined transects at 145–170 km/h at a height of 30–45 m. All surveys

occurred between 29 May–24 June. The timing of the surveys was designed to coincide with goose

egg-laying and incubation. The transects extended from the coastline of the YK Delta, to approx.

50 km inland to the edge of the upland tundra. The distance between transects was either 1.6,

3.2, 6.4, or 12.9 km, depending on the strata. Strata were delineated across the coastal plain

of the YK Delta based on perceived goose abundance; strata with higher perceived abundance

received more sampling effort (i.e., they had less distance between aerial transects). The total

survey area encompassed > 12, 000 km2 of tundra wetlands, with approx. 2,350 km of flight

distance flown on 235 transects. An observer counted and recorded the number of cackling geese

within transects during surveys. The observer also identified group size (i.e., single, pair, or ≥ 5

birds). Observers’ counts were calibrated to account for unobservable female geese (presumably

on nests) by multiplying the number of observed single birds by two. This assumed single birds
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were paired with unobservable females. The calibrated count (i.e., indicated total birds; ITB) was

yt =2(single birdsi,t + pairsi,t) + birds in flocksi,t,(1.7)

where t = 1, ..., T (corresponding to: 1985,...,2014) were the years. Note that it was possible to

over-estimate and under-estimate abundance during the surveys, and support of yt includes positive

real numbers. The USFWS, Pacific Flyway has used the equation ñt = 3.35yt to estimate annual

population size and the three-year average: δt = 1
3
(ñt+ ñt−1+ ñt−2) for establishing harvest regula-

tions for cackling geese in year t (Pacific Flyway Council 2015). The value 3.35 was obtained from

an additional data source described in the scaling relative abundance to true abundance section,

below. The cackling goose hunting season is closed when δt decreases below 80,000 birds and

subsequently re-opened when δt increases above 110,000 birds. The current population objective

is 250,000 birds (Pacific Flyway Council 1999).

Prior to 1985, cackling goose abundance was estimated using peak fall counts in the Klamath

Basin and the Sacramento Valley (Fig. 1.2; O’Neill 1979). This included first counting Taverner’s

geese (Branta hutchinsii taverneri) and cackling geese in an aircraft in their winter areas. Abun-

dance of cackling geese and Taverner’s geese was then partitioned using ground-based estimates

of the proportion of cackling geese relative to Taverner’s geese. I used the peak fall count esti-

mates divided by 3.35 for cackling geese data on yt from 1982–1984, because the current surveys

to calculate yt began in 1985.

1.3.2.2. Mark-resight data. The U.S. Geological Survey (USGS), the USFWS, the University

of California, Davis, Alaska Department of Fish and Game, California Department of Fish and

Game, Oregon Department of Fish and Wildlife, and Washington Department of Fish and Wildlife

captured, marked and resighted cackling geese from 1982–2004 and from 2011–2014. From 1982–

2004, USGS captured birds on the YK Delta by driving them into corrals while they were flightless
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in late-July–early-August. They marked each of the captured birds with a USFWS/USGS alu-

minum leg band and a yellow plastic neck band. The neck bands had a three-digit alpha-numeric

code that allowed observers to uniquely identify each marked bird from a distance. Personnel

from the USGS, the California Department of Fish and Game, the University of California, Davis,

and the USFWS resighted birds in 1982–1983, 1985–2004 in the following time/location com-

binations: late summer on the YK Delta (Aug–Sep), fall (Oct–Nov) in Oregon, Washington, and

California, winter (Dec–Feb) in Oregon, Washington, and California, spring (Mar–Apr) in Oregon,

Washington, and California, early summer on the YK Delta, and during subsequent capture occa-

sions on the YK Delta (late-Jul–Aug; Fig. 1.3). A total of 9,085 birds marked with neck collars

between 1982–2003 were used for this analysis. Of these birds, 4985, were juveniles (2,348 F,

2,637 M), and 4,100 were either sub-adults or adults but indistinguishable (2,104 F, 1,996 M). Of

the 4,100 sub-adults and adults I omitted the first year of resight data from analysis. Doing so in-

sured that each bird could be classified as an adult. From 2011–2013 cackling geese were captured

on both the YK Delta, Alaska and in Oregon. Rocket nets were used in Oregon. A total of 1,343

captured birds from this time-period were used for analyses (672 F, 671 M; Appendix B). Of these,

50 were juveniles (18 F, 32 M) and 1,293 were either sub-adults or adults (654 F, 639 M). These

1,343 birds were fitted with neck collars and aluminum leg bands. Newly captured adults were not

omitted from the first year of analysis from these data because preliminary analyses on the mark-

resight data from 1982–2004 suggested little difference in survival between sub-adults and adults.

Further, omitting the data during the shorter time frame between 2011–2014 would have limited

the inference on adult survival in 2011. Several (98) birds captured during 2011–2013 were sur-

vivors from the 1982–2004 banding period. These surviving birds could be classified immediately

as adults. During 2011–2014 birds were observed in their wintering areas in California, Oregon,

and Washington.
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1.3.2.3. Data Analysis. To analyze the cackling geese data at two temporal scales, I developed

and applied a Bayesian hierarchical IPM following the methods described in An IPM for inference

at two temporal scales. I assumed the aerial abundance data from t = 1, ..., 33 (corresponding

to 1982–2014) calculated using (1.7) was normally distributed, with mean µ = nt, and variance

σ2. The latent variable nt represented pre-breeding abundance. I assumed an inverse-gamma

distribution for the variance parameter σ2. I parameterized the inverse-gamma distribution such

that the mean and variance equaled 5, 0002. I chose 5, 0002 because I assumed the value was large

enough to realistically reflect the uncertainty of yt, but small enough to inform other components of

the model (e.g., fecundity). The maximum annual standard error estimated for yt was 5,202 (mean

= 2,976; T. Sanders, personal communication). Although it was possible for yt to be larger than true

abundance based on (1.7), it is more likely that true abundance was underestimated due to imperfect

detection during aerial surveys. Thus, I assumed nt was an estimate of relative abundance. I defined

nt by the process:

nt =nsub,t + nad,t,

nsub,t =
nsub,t−1

2
ρsub,t−1fsub,t−1φjuv,t−1 +

nad,t−1

2
ρad,t−1fad,t−1φjuv,t−1,

nad,t =nsub,t−1φsub,t−1 + nad,t−1φad,t−1,

(1.8)

where nsub,t were the number of sub-adult birds in year t = 1, ..., 33, nad,t were the number of

adult birds, ρsub,t and ρad,t were breeding propensities for each age, fsub,t and fad,t were fecundity

estimates for each age (a composite reproductive statistic defined as the mean number of birds

per pair that survived until summer banding), and φjuv,t, φsub,t, and φad,t were annual survival

probabilities. I prescribed 1-year-old birds to be sub-adults and birds ≥ 2-years-old to be adults.

The age-specific variables for breeding propensity and fecundity in (4.4) were not individually

identifiable from the data or strength of the prior information. Therefore, I reparameterized nsub,t
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such that:

nsub,t =
nad,t−1

2
ft−1φjuv,t−1,

ft−1 =
nsub,t−1ρsub,t−1fsub,t−1

nad,t−1

+ ρad,t−1fad,t−1.

The value ft−1 was identifiable in the IPM framework (assuming age structure at time 1 is known)

and ft−1 ×
nad,t−1

2
is interpretable as the number of juveniles produced in year t− 1 by sub-adults

and adults that survived to summer banding. As ρsub,t−1fsub,t−1 → 0, ft−1 → fad,t−1ρad,t−1. That

is, if either sub-adult breeding propensity or sub-adult fecundity approach zero, the estimate of ft−1

approaches the average number of juveniles produced that survive to the banding period, per adult

pair. I set nad,1 = y1 − nsub,1 = y1 − 0.2y1 for year 1. The value 0.2 was calculated by estimating

the average age distribution for adults and sub-adults for years 1983–2014 for three runs of the

MCMC algorithm, each with different starting values of nad,1 and nsub,1 ranging from 1) equal

age distribution to 2) 90% adults to 3) 90% sub-adults. I averaged over different starting values

to improve robustness of the choice of nad,1 and nsub,1. I assessed the sensitivity of the choice of

nad,1 and nsub,1 by choosing different proportions of y1 for sub-adults and adults. I examined the

following proportions: (0,1), (0.2, 0.8),(0.4, 0.6),...,(1,0), and examined age distributions through

time, starting at 1982. The choice of nad,1 and nsub,1 had only a small effect on the first two years,

and no visual effect after 1985. I assumed a uniform prior for fecundity, ft ∼ Unif(0, 15). I

assumed the demographic stochasticity of the process was accounted for in the uncertainty in each

parameter and therefore did not assume an additional probability model for the process in (4.4).

To model the mark-resight data mi,j , for i = 1, ..., 10, 428 individuals, t = 1, ..., 33, years,

s = 1, ..., 6 seasons, and j = 1, ..., 192 resight occasions (j = s + (t − 1) × S), I used the

state-space formulation of the Cormack-Jolly-Seber model described in (1.4), where zi,j was the

15



latent, true state (alive = 1, dead = 0) of cackling goose i during resight occasion j. pj was the

resight probability of a marked goose during resight event j. I modeled the true latent state of each

goose using (1.5). Survival was estimated for each season, age, sex, and year. The parameters

pj and φa,sex,j were modeled as logit(p) = Wα and logit(φ) = Xβ. The matrix W consisted

of indicator variables identifying the season and year of each potential resighting, allowing detec-

tion probability to vary additively by season and year. The matrix X distinguished birds in the

following categories: season, age of the bird during resight events, sex, and year it was resighted

(1982–2005, 2011–2014). Thus, survival was allowed to vary additively for each season, age, sex,

and year. I assumed vague priors for α and β defined by N(0, 1.52I), where I is the identity ma-

trix. I derived annual survival (φa,sex,t) for each age class, sex, and year using (1.2). I marginalized

sex-specific annual survival rates by iterating the conditional expectations of survival given sex. A

complete model statement is given in Appendix C.

1.3.2.4. Scaling relative abundance to true abundance. The Pacific Flyway currently uses the

aerial survey data described in (1.7) to make annual harvest regulations for cackling geese and

other species (Pacific Flyway Council 1999). The aerial survey data underestimate fall cackling

goose abundance because many birds are undetected and because they occur pre-breeding, omit-

ting juvenile birds from the counts. The Pacific Flyway has accounted for this by using the equation

ñt = 3.35yt, where 3.35 =
∑

t∈T
ηt∑

t∈T
yt

, T = {1989 − 2003, 2011 − 2013}, and ηt were population

estimates derived from an additional data source described in Pacific Flyway Council (1999). The

additional data source consisted of the neck-collared geese and resight information used in this

study, combined with the number of observed unmarked geese in the periods T . Specifically, the

population estimates ηt were calculated using: ηt =
unique markst

p̃t
× unmarkedt

markedt
, where unique markst

were the number of unique neckbands observed, p̃t was the detection probability, and unmarkedt
markedt

was

the ratio of unmarked-to-marked birds observed (Pacific Flyway Council 1999). The detection
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probability p̃t were estimated independently of this study and reported in Pacific Flyway Council

(1999). The estimates for ηt have been considered the closest estimate of true abundance available

which is why they were used to estimate a scaler for yt to approximate true abundance. Note that ηt

is an estimate of the number of unmarked birds in the population. To scale my estimates of relative

abundance, using the corrected mark-resight abundance estimates η = unique markst
p̃t

× unmarkedt+1
markedt

, I

calculated a multiplier cIPM that minimized the sum of squared-error distance between the poste-

rior mean of pre-breeding abundance and the mark-resight estimates of abundance, η. The multi-

plier cIPM from pre-breeding abundance to the estimated true abundance assumes cIPM is constant

among years. The resulting estimates of abundance (ntot,t = cIPME(nt|y,M)) incorporated three

data sources: aerial survey data, mark-resight survival survival data, and mark-resight population

estimation data.

I calculated posterior distributions using a Markov Chain Monte Carlo algorithm in R version

3.0.2 and C++ (R Core Team 2013). The full algorithm is provided in Appendix D. I calculated

marginal posterior distributions for the parameters β, α, f , and σ2 and the derived parameters:

nsub, nad, n, ntot, φs,a,sex,t, φa,sex,t, ps,t and annual population growth rate λ. Preliminary analyses

indicated that the β and α parameters associated with 1984 and 2004–2010 did not converge due to

no mark-resight data occurring during those periods. Therefore, I prescribed strong priors for these

parameters (i.e., I set β = 0 and α = −10) to ensure convergence. This assumes that there was

no year effect on survival during those years, and detection probability was approximately zero.

I obtained 3 parallel chains of 200,000 iterations using the algorithm. I removed the first 25,000

burn-in iterations. I examined convergence using trace plots and Gelman-Rubin diagnostics.
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1.4. RESULTS

A total of 8,193 of 10,428 neck-collared geese were resighted at least once. The oldest recorded

bird was a female captured in Alaska as an adult on 27 Jul 1985 and recaptured in Oregon on 5

Dec 2013 (> 29 years old). Resighting between 2011–2014 occurred only in California, Oregon,

and Washington, and therefore estimates of survival and detection probability during these years

from May–Aug were estimated from the 1982–2004 resight data. All other posterior distributions

reported had Gelman Rubin diagnostic statistics < 1.01 from the 25,000–200,000 MCMC itera-

tions of three chains. It required 933.5 hours to obtain 200,000 iterations on a workstation with 3.0

GHz Intel Xeon Eight-Core and 64 GB of memory.

Mean seasonal detection probability, E(E(pj|M )), was 0.26 (range = 0.01–0.63; Fig. 1.4).

Detection probability was higher in California, Oregon, and Washington than Alaska and usually

the highest from Dec–Feb (Fig. 1.5). Detection probability decreased from 1993 to 2004 corre-

sponding to a decreased banding and survey effort (Appendix B, Fig. 1.4). Most of the 95 %

credible intervals of α did not overlap 0, with the exception of the parameters associated with

detection probability in 2001–2002 and 2003–2004 indicating these years had similar detection

probability to 1982-1983 (Fig. 1.6).

Mean seasonal survival probability, E(Ej|a(φs,a|y,M )),= 0.90 (range: 0.78–0.94) for juve-

niles, 0.94 (range: 0.86–0.96) for sub-adults, and 0.95 (range: 0.89–0.97) for adults. Survival was

highest when geese were in their breeding areas in Alaska from May–Jun (Fig. 1.7). Survival was

lowest in Oct–Nov when birds were in their winter areas. The lowest and highest mean seasonal

survival probability occurred in Oct–Nov, 2013 and May–Jun, 1987, respectively. Mean annual

survival probability for juveniles, sub-adults, and adults (E(E(φa,sex,t|y,M ))) was 0.54 (range:

0.26–0.66), 0.69 (range: 0.45–0.79), and 0.75 (range: 0.53–0.83), respectively (Fig. 1.8). An-

nual survival probability was highest during 1987–1988 and lowest during 2013–2014. Sex did
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not appear to additively affect survival probability: E(βsex=female) = 0.02 (Fig. 1.9). Survival

estimates for all age classes were consistent during years with no hunting (1984-1984–1993-1994)

or restricted hunting (i.e., one or two daily bird bag limit; 1994-1995–1997-1998,2011-2012) and

were lower during years when liberal hunting occurred (i.e., three or four daily bird bag limit;

1998-1999–2004-2005,2012-2013; Fig. 1.8).

Mean fecundity for all years E(E(ft|y,M )) = 2.37 birds per pair (range: 0.25–7.33; Fig.

1.10). Mean fecundity for the years 1982–2004 was 1.67 birds per pair. Mean fecundity was

lowest in 1997 and highest in 2013. The five years with the smallest mean fecundity were 1982,

1983, 1990, 1997, and 2001. The largest mean fecundity occurred in 1991, 1993, 2002, 2012,

and 2013 (Fig. 1.10). Fecundity estimates were large from 2011–2013 relative to other years in

which fecundity estimates were available (1982–1983, 1985–2003; Fig. 1.10). The large fecundity

estimates corresponded to reduced apparent survival during these years (Fig. 1.8) and relatively

stable population counts in 2012–2014 (Fig. 1.2).

The mean proportion of adults just prior to breeding E(E
nad,t

nt
|y,M )) = 0.71 (range: 0.39–

0.97; Fig. 1.11). The population grew between 1985–1997, except in 1991 (Figs. 1.12, 1.13). Low

fecundity in 1997 and reduced survival after 1998, corresponding with liberalization of hunting

regulations, appeared to stabilize population growth (Figs. 1.8, 1.10, 1.11, 1.13, 1.12).

The value of cIPM that minimized the sum of squared error between mark-resight abundance

estimates ηt and posterior means of pre-breeding relative population size was 3.36.

1.5. DISCUSSION

1.5.1. INTRA-ANNUAL CACKLING GOOSE POPULATION DYNAMICS. Seasonal survival esti-

mates were similar among seasons with the exception of Oct–Nov (Fig. 1.7). Reduced survival

in Oct–Nov correspond to both fall migration and recreational hunting. Most ecological theory
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related to migration assumes migration is costly and therefore reduces survival (Greenberg 2005).

However, seasonal survival rates of adult female greater snow geese (Chen caerulescens atlantica)

were not lower during migration compared to other seasons, after the effects of hunting were

removed, and seasonal survival of Pacific brant (Branta bernicla nigricans) were higher during

migration compared to other seasons (Ward et al. 1997, Gauthier et al. 2001). I did not explic-

itly estimate hunting mortality but the reduced survival rate during fall migration occurred during

periods of recreational hunting. Thus, it is possible that either recreational hunting or the effects

from migration (or both) could have been responsible for reduced survival during these periods.

Survival probability during spring migration (May–Jun) was higher than any other season. Further,

high survival probability during years with either no recreational hunting or restricted recreational

hunting suggest that migration alone was not responsible for low survival rates and that recre-

ational hunting during fall migration reduced survival. Seasonal survival estimates were highest

during May–Jun corresponding to spring migration, and spring subsistence hunting.

I detected little difference (0.02) in additive annual survival between males and females. These

findings are consistent with many other studies of geese (Samuel et al. 1990, Francis et al. 1992b,

Rexstad 1992, Ward et al. 1997, Menu et al. 2002). However, I did not examine if seasonal survival

was a function of sex. Schmutz and Ely (1999) showed that seasonal survival differed among

seasons by sex, but that annual survival was similar between sexes. Raveling et al. (1992), using

some of the same data analyzed in this study, found evidence of higher survival of females during

summer in the years 1982–1988. The difference in survival was small (i.e., 0.061). There was

evidence of difference in age-specific survival, with adults having the largest survival followed by

sub-adults, then juveniles (Figs. 1.8, 1.9).
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1.5.2. INTER-ANNUAL CACKLING GOOSE POPULATION DYNAMICS. Abundance estimates

of cackling geese increased rapidly between 1985–1997 (Figs. 1.12, 1.13). This period corre-

sponded with population growth in other goose species in North America including, Canada geese

(Branta canadensis), snow geese (Chen caerulescens), and white-fronted geese (Anser albifrons;

Ankney 1996, Menu et al. 2002). Both recreational and subsistence hunting was closed for cack-

ling geese during most of the period of population growth, with the exception of 1994–1997, in

which subsistence hunting was open and recreational hunting was restricted (i.e., 1–2 bird daily

bag limit). Population growth is most affected by adult survival in long-lived species such as

cackling geese (Lebreton and Clobert 1991). Additionally, studies on other goose species suggest

that hunting mortality is additive and reduces goose survival (Francis et al. 1992b, Rexstad 1992,

Hestbeck 1994, Schmutz et al. 1997, Gauthier et al. 2001). Thus, the additional mortality due to

liberalization of hunting regulations after 1997 could have accounted for population stabilization.

Menu et al. (2002) found similar trends in stabilization of population growth following re-opening

of hunting of greater snow geese in the late 1970s, but did not have survival estimates to confirm

whether hunting reduced survival. I found that survival estimates were not lower during restrictive

recreational hunting regulations and open subsistence hunting, but were lower during periods with

liberal recreational hunting regulations. Mean annual adult survival between 1985–1997 was 0.76,

compared to 0.71 during all other times of this study, and 0.66 during periods of liberal bag limits.

The restrictive recreational hunting regulation of a 1-bird daily bag limit from the period of 1994–

1997, combined with legalization of subsistence hunting did not appear to affect annual survival

probability compared to years when hunting was illegal because abundance continued to increase

and survival estimates appeared unchanged (Figs. 1.8, 1.13). The subsistence harvest season in-

cludes most of the time cackling geese are in Alaska (minus a 30-day period during nesting), but

most subsistence harvest occurs when geese first arrive in the spring (Schmutz et al. 1997, Hupp
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et al. 2008, Naves 2010; 2011; 2012). Relatively high spring survival combined with high seasonal

and annual survival rates from 1994–1997 suggest that differences in regulations on subsistence

hunting had a small effect on survival rates compared to factors during other times of the year

(Fig. 1.7). These results are in contrast to survival rates for Pacific brant, which were lowest in late

spring (15 Apr–1 Jun) on the YK Delta, corresponding to periods of greatest subsistence harvest

(Ward et al. 1997). Although survival of cackling geese was relatively high during spring, it should

be noted that changes in pre-breeding survival have a disproportionately large effect on population

size relative to changes in survival during other parts of the year and small decreases in survival

will result in larger per capita take (Doubleday 1975, Schmutz et al. 1997).

In addition to reduced survival following 1997, the fecundity rate in 1997 was low and could

have been partially responsible for the stagnation of population growth. Low fecundity rates in

1997 are consistent with an independent data set on nest success of cackling geese in 1997 (C. Ely,

personal communication). Nest survival and productivity of arctic nesting birds are largely driven

by two ecological processes: predation and gosling growing conditions (Lepage et al. 1998, Lake

et al. 2008, Rizzolo et al. 2014). Arctic fox (Vulpes lagopus) are thought to affect cackling goose

nest success. Additionally, cackling goose density and the abundance of food, drive gosling growth

after fledging (Lake et al. 2008, Rizzolo et al. 2014). I did not explicitly link these covariates to

estimated fecundity due to limited data. However, the USFWS (unpublished data) have collected

presence-absence data on the proportion of surveyed plots with active arctic fox sign during nesting

surveys of geese on the YK Delta. The five years with the highest proportion of plots with active

fox sign included 2001, 2002, 2003, 2004, and 2008. Of these years with estimated fecundity in

this study, only the low fecundity estimated in 2001 corresponded well with large proportion of

active fox sign. This suggests either that 1) the proportion of sampled plots that contain active

fox sign is not a good indicator of population level abundance of arctic fox or that 2) mechanisms
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other than arctic fox (i.e., cackling goose density and food availability) drive differences in annual

fecundity.

Fecundity estimates were high and contained large credible intervals during the period 2012–

2014 relative to other periods of the study (Fig. 1.10). Although there was considerable variation

in the 95% credible intervals, the mean of the posterior distribution of f2012 = 6, which seems

biologically unlikely. Fecundity was not estimated using explicit data and was estimated by in-

terfacing abundance estimates and survival data with the life cycle of cackling geese. Thus, the

large values of fecundity could be the result of over-estimating yt or underestimating survival. One

potential explanation is that survival was underestimated due to differing survival rates between

neck-collared birds and non-collared birds. Samuel et al. (1990) found that survival rates of neck-

banded Canada geese were not different than those of leg-banded geese and (Menu et al. 2000)

found similar results for greater snow geese. Negative effects of collars have been observed in

small Canada geese (Alisauskas and Lindberg 2002). Because collars were used in all years of this

study, this does not explain the reduced survival estimated for 2012–2014, unless different banding

techniques were used. Another explanation is that hunters were targeting neck-collared birds, and

this occurred at a relatively higher rate during 2012–2014. In a comparison between the ratio of

collared to non-collared cackling geese in the field during resighting events in 2011–2014 and the

ratio of harvested collared geese to harvested non-collared geese, the ratio of harvested birds was

higher than that observed in the wild (B. Reischus, unpublished data). This suggests that hunters

might have been targeting neck-collared cackling geese, reducing the apparent survival. It is un-

known whether this targeting of neck-collared geese increased following the 2011–2013 banding

efforts of cackling geese. Collecting additional data on fecundity could help calibrate apparent

survival to true survival in an IPM framework. It is also possible the yt was largely over-estimated

in 2013–2014 which would increase fecundity estimates in 2012–2013. Finally, it is possible that
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because these estimates of survival occurred on the temporal boundary of observed data, the esti-

mates were not “stabilized” by subsequent data, as occurred in previous years.

The IPM provided insight on age structure of the cackling goose population from 1982–1984,

and 1985–2004 (conditional on an assumed age structure in 1982; Fig. 1.11). The low-frequency

(long-term) variation in relative abundance appeared to be most correlated with adult abundance

and the higher frequency (short-term) variation appeared to be correlated with juvenile abundance.

This is not surprising as fecundity is closely related to annual weather patterns and expected to be

highly variable compared to adult survival rates that are more consistent among years (Raveling

1978, Francis et al. 1992a, Skinner et al. 1998, Menu et al. 2002, Souchay et al. 2013).

Mean annual survival rates estimated in Raveling et al. (1992), using some of the same data

as this study, were about 25% lower than my estimates of annual survival. Raveling et al. (1992)

estimated a 25% neck-band loss rate. The estimated 25% band-loss rate in Raveling et al. (1992)

was calculated by comparing survival estimates of mark-resight data to survival estimates based

on abundance data. As an alternative and more direct approach for estimating neck-band loss, I

examined the retention of neck-bands from geese that were captured during retrap events when

leg bands could be uniquely identified. Of > 400 geese retrapped that were marked with a neck

band and leg band, only three lost their neck band and therefore I considered neck-band loss to be

negligible (< 1%). However, this does not explain the difference in survival estimates in Raveling

et al. (1992) and this study. One possible explanation for the difference in survival estimates

is the abundance data used in the IPM framework could have had a large effect on the survival

parameters. Only a small proportion (0.13) of the total number of resighted birds occurred from

1982–1988. Thus, abundance data might have had a disproportionately large effect on survival

estimates for early years, compared to later years when more mark-resight data was available for

parameter estimation.
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The multiplier cIPM that minimized the squared-error loss between yt and E(nt|y,M) for

years T was 3.36. This value is similar to the current scaler used to estimate true abundance using

yt, 3.35. Although the results are similar, cIPM has useful statistical properties. It is optimal with

respect to the squared-error loss function and it incorporates survival estimates in its calculation

through the posterior distribution of nt.

1.5.3. OTHER INSIGHTS ON INTEGRATED POPULATION MODELS. In the integrated popula-

tion model described above, the prior distribution σ2 served as a tuning parameter for the strength

of each data set (i.e., abundance data, mark-resight data). Small values of σ2 would force abun-

dance estimates to be close to yt and estimates of β to change accordingly. Large values of σ2

would permit flexibility in abundance estimates allowing β to be estimated from the mark-resight

data. I chose mean and variance parameters for σ2 large enough to allow realistic uncertainty in

abundance estimates, but still allow yt to inform vital rate parameters. If an investigator is confi-

dent in abundance estimates, then smaller values of σ2 can be chosen (i.e., either a smaller mean or

by fixing the value of σ2. This would permit more precise estimates of fecundity because the range

of fecundity values that result in values close to yt are restricted. This information can inform

sampling design for both abundance and mark-resight studies, as well as help to understand the

value of information that results from each data source.

I also examined sensitivity to more informative priors for fecundity. The priors were ft ∼

Gamma(1, 1). In combination with large values of σ2, the informative priors drove abundance

estimates to zero because the fecundity regulated by the prior was not large enough to compensate

for the estimated survival parameters. A smaller mean of σ2 or vague priors for fecundity provided

better model fit. Smaller values of σ2 forced the estimates of β to change from those estimated

from the data. Vague priors for fecundity allowed β to be estimated from the data. Thus, certain

specifications of priors in an integrated population model might result in bias in other estimated
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parameters and there is a trade-off among the sources of information in survival and fecundity. If

the preponderance of data support survival with limited or potentially erroneous prior information

on fecundity, I recommend vague priors for fecundity.

IPMs are a powerful tool for the combined analysis of vital rate data and abundance data.

They provide precise parameter estimation and the ability to estimate parameters without explicit

data. Most of the published literature for methods and application of IPMs are directed towards the

inter-annual temporal scale. To realize the benefits of IPMs for parameter estimation, investigators

have dissolved data occurring at a finer scale to match the inter-annual temporal scale. This re-

sults in loss of information and the inability to use abundance data to estimate seasonal vital rates.

For many populations, intra-annual temporal population dynamics are important for guiding man-

agement decisions. For the cackling goose population, I found that seasonal survival was highest

when birds arrive in the spring and lowest in Oct–Nov. This information could potentially help

guide management decisions for a species that is harvested on both ends of its migratory range

during different parts of the year. I developed and implemented an IPM that estimated vital rate

parameters based on disparate temporal data. The model benefited from the IPM framework in

that seasonal and annual survival rates were estimated from two data sources, and fecundity and

population structure, parameters with no explicit data, were estimable. The specific model I fit

assumed known population structure in at least one year suggesting age-structure data is an impor-

tant source of information for future IPM models. The model provided new insights on cackling

goose population dynamics not obtainable through individual analyses of each data set alone.
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FIGURE 1.1. Cackling geese (Branta hutchinsii minima) nest in the Yukon-
Kuskokwim Delta, AK and primarily winter in the Lower Columbia River Valley,
WA and Willamette Valley, OR.

27



1970 1980 1990 2000 2010

Year

A
bu

nd
an

ce
 (

x1
00

0)

Peak fall counts
3.35xnesting counts
Population objective

0
50

15
0

25
0

35
0

FIGURE 1.2. Estimated cackling goose abundance from 1965–2014. Prior to 1985
abundance was estimated using peak fall counts in the Klamath Basin and Sacra-
mento Valley, CA. Since 1985 abundance (ñt = 3.35yt), has been estimated during
nesting using aerial surveys on the Yukon-Kuskokwim Delta, AK.
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FIGURE 1.3. Life-cycle and data collection periods for cackling geese. The value
f represents a composite reproductive parameter for the mean per pair number of
juveniles born that survived to banding in July.
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FIGURE 1.4. Seasonal detection probability for resighting neck-collared cackling
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FIGURE 1.6. Posterior mean and 95% credible intervals for each of 37 detection
parameters α of the integrated population model used to examine population dy-
namics of cackling geese from 1982–2014. The parameters associated with detec-
tion probability during the sampling periods in 1984–1985, and 2005–2010 were
set to -10 because no data were collected during these periods.
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FIGURE 1.8. Posterior mean and 95% credible intervals of annual survival proba-
bility of three age classes of neck-collared cackling geese from 1982–2014. Red =
adults, blue = sub-adults, and green = juveniles.
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FIGURE 1.9. Posterior mean and 95% credible intervals for each of 40 survival
parameters β of the integrated population model used to examine population dy-
namics of cackling geese from 1982–2014. The parameter associated with survival
probabilities during the sampling periods in 1984–1985, and 2005–2010 were set
to zero because no data were collected during these periods.
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FIGURE 1.10. Posterior mean and 95% credible intervals for fecundity of cackling
geese between 1982–2013.
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FIGURE 1.12. Posterior mean and 95% credible intervals of annual population
growth rate (λt = nt/nt−1) of cackling geese from 1982–2014.

38



1985 1990 1995 2000 2005 2010 2015

0e
+

00
1e

+
05

2e
+

05
3e

+
05

4e
+

05
5e

+
05

Year

A
bu

nd
an

ce

● ●
● ● ●

● ●

● ●

●
● ●

●

●
● ● ●

●

●

●

●
● ●

●

●

●

●
●

●
●

●
● ●

●

●

Estimated true abundance 95% CRI
Estimated relative abundance 95% CRI
Posterior mean
Peak fall counts
Nesting counts
Mark−resight abundance estimates

FIGURE 1.13. Estimated pre-breeding relative abundance and scaled estimates of
true abundance using the scaler cIPM = 3.36 of cackling geese from 1982–2014 fit
using an integrated population model.

39



CHAPTER 2

A GUIDE TO MULTI-OBJECTIVE OPTIMIZATION FOR

ECOLOGICAL PROBLEMS WITH AN APPLICATION TO CACKLING

GOOSE MANAGEMENT

2.1. SUMMARY

Choices in ecological research and management are the result of balancing multiple, often com-

peting, objectives. Familiar examples include natural resource management and developing mod-

els of ecological processes. Multiple-objective optimization (MOO) is a formal decision-theoretic

framework for solving multiple objective problems in terms of Pareto optimal solutions. I discuss

Pareto optimality and its relationship to MOO problems. A large class of methods for solving

MOO problems can be separated into two strategies: modeling preferences pre-optimization (the a

priori strategy), or modeling preferences post-optimization (the a posteriori strategy). The a priori

strategy requires describing preferences among objectives without knowledge of how preferences

affect the resulting decision. In the a posteriori strategy, the decision maker simultaneously consid-

ers a set of solutions (the Pareto optimal set) and makes a choice based on the trade-offs observed

in the set. I describe several methods for modeling preferences pre-optimization, including: the

bounded objective function method, the lexicographic method, and the weighted-sum method. I

discuss modeling preferences post-optimization through examination of the Pareto optimal set. I

applied each MOO strategy to the natural resource management problem of selecting a manage-

ment goal for cackling goose (Branta hutchinsii minima) abundance. Cackling geese provide food

security to Native Alaskan subsistence hunters in the goose’s nesting area, but depredate crops

on private agricultural fields in wintering areas. I developed objective functions to represent the
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competing objectives related to cackling goose management and identified an optimal solution first

using the a priori strategy, and then by examining trade-offs in the Pareto set using the a posteriori

strategy. I used four methods for selecting a final solution within the a posteriori strategy; the most

common optimal solution (i.e., the mode), the most robust optimal solution (i.e., the solution that

minimized the standard deviation), and two solutions based on maximizing a restricted portion of

the Pareto set. Three of four methods in the a posteriori strategy resulted in a similar decision to

the a priori strategy. I discuss MOO with respect to natural resource management, but it is suffi-

ciently general to cover any ecological problem that contains multiple competing objectives that

can be quantified using objective functions.

Key words decision analysis, decision theory, dominated choice, efficiency frontier, Pareto

frontier, Pareto optimality

2.2. INTRODUCTION

Ecological decisions that require balancing multiple objectives are pervasive. Examples in-

clude endangered species management (e.g., maximizing species persistence while minimizing

cost; Maguire et al. 1987), managing harvested species (e.g., maximizing cumulative harvest while

maintaining population objectives; Johnson et al. 1997), and choosing statistical models to infer

ecological processes (i.e., maximizing model fit while minimizing model complexity). When a

decision maker has multiple competing objectives, a solution that simultaneously optimizes each

objective does not exist; improving one objective results in a trade-off from another. Solving multi-

objective decision problems requires incorporating decision-maker preferences among objectives

into the decision problem (either explicitly or implicitly) to reach a compromise solution. Formal

methods for evaluating multiple-objective decision problems exist for problems too complex to

informally evaluate them (Keeney 1982).
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Methods used to address multiple objective problems have been developed in many fields

(Keeney and Raiffa 1976, Belton and Stewart 2002, Marler and Arora 2004, Mendoza and Mar-

tins 2006, Diaz-Balteiro and Romero 2008) under many names (e.g., multi-attribute optimization,

multi-criteria decision analysis, multi-objective optimization). The process of solving a multi-

objective problem consists of identifying or soliciting the objectives of the decision maker, iden-

tifying potential actions, weighing the potential actions (or the predicted outcome of the actions)

with respect to each objective, and making a choice. Scientific investigation can be used to pre-

dict the result of potential actions, but science alone is insufficient to address competing objectives

because incorporating preferences among objectives requires value-based judgement (Holland-

Bartels and Pierce 2011). Consider an early application of decision analysis for managing wildlife

populations, the case of the Sumatran rhino (Dicerorhinus sumatrensis; Maguire et al. 1987).

Sumatran rhinos are critically endangered (van Strien et al. 2008) and now thought to be extinct

in Malaysia (Havmøller et al. 2015). Maguire et al. (1987) identified two management objectives

for Sumatran rhinos: maximizing species persistence and minimizing cost. The list of potential

management actions included maintaining the status quo, controlling poaching, developing a new

reserve, expanding a current reserve, building fencing, translocation of rhinos, and developing a

captive breeding program (Maguire et al. 1987) . For each action, the authors used available infor-

mation to estimate the cost (ranging from $0 to $3.69 million dollars) and expected value of the

probability of extinction (ranging from 0 to 0.98), quantifying the trade-offs that were expected

in terms of objectives. The quantification of objectives in Maguire et al. (1987) did not reveal an

unequivocal action, as actions that maximized species persistence were more costly. Ultimately,

a decision maker can implement one management strategy (which might consist of combinations

of management actions). Thus, how can we formally combine a quantification of objectives (as in

Maguire et al. 1987) with objective preferences to select a final, optimal decision? Multi-objective
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optimization (MOO) is a formal mathematical framework for explicitly incorporating objectives

and objective preferences to evaluate decisions.

I outline the MOO framework and describe two strategies for solving MOO problems. Each

strategy incorporates objective preferences into the decision problem. The strategies differ in the

order in which preferences are incorporated; the first strategy (the a priori strategy) incorporates

preferences pre-optimization and the second (the a posteriori strategy) incorporates them post-

optimization. To demonstrate MOO, I apply both strategies to a common natural resource man-

agement problem: selecting an abundance objective for a population that affects multiple stake-

holders differently. Cackling geese (Branta hutchinsii minima) nest on the coastal plain of the

Yukon Kuskokwim (YK) Delta. They are an important food source for Native Alaskan subsistence

hunters. Ecosystem stability, the satisfaction of recreational hunters, and other non-consumptive

users also depend on them. In their wintering area in Oregon and Washington (primarily in the

Willamette Valley), cackling geese congregate on private agricultural fields and eat crops, result-

ing in loss of agricultural yield for landowners. Selecting a population objective that balances the

different stakeholder opinions is challenging. Multi-objective optimization is general, spanning

many disciplines, and strategies used to solve MOO problems provide a framework for making de-

fensible, transparent choices for natural resource management and ecological decisions in general.

2.3. THE MULTI-OBJECTIVE OPTIMIZATION PROBLEM

Multi-objective optimization assumes a decision maker can quantify the value of a decision

with respect to the decision maker’s objectives. Examples of natural resource management prob-

lems that explicitly quantified objectives include Maguire et al. (1987) who quantified objectives

for the Sumatran rhino using the expected probability of extinction and cost. Johnson et al. (1997)
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described an objective function that quantified the objectives of maximizing the expected cumu-

lative mallard (Anas platyrhynchos) harvest through time and sustaining a population size >8.1

million mallards. Converse et al. (2013) quantified the probability of successful population estab-

lishment, cost, public relations, and others for whooping crane (Grus americana) reintroductions.

A function that quantifies the value of the potential actions θ from a set of possible choices of ac-

tions Θ relative to an objective is termed an objective function (Keeney and Raiffa 1976, Williams

et al. 2002). Objective functions are inherently subjective because they are used to quantify the

aim or interest of a decision maker (Hennig and Kutlukaya 2007). For consistency with MOO

literature, I denote the objective function using f(θ) (notation definitions are also reported in Ta-

ble 2.1 for reference). Objective functions are synonymous with loss functions, utility functions,

or reward functions described in other fields (Williams et al. 2002, Berger 2013). The actions a

decision maker can consider can be either a discrete set (as was the case with the Sumatran rhino)

or continuous (e.g., choosing a target population). Without loss of generality, I assume that the

set of actions to consider is continuous. The set of actions from which a decision maker chooses

is represented by Θ. A specific action in the set of Θ is represented by θ. The value of the ob-

jective function (or utility) for a specific action is represented by f(θ). When a decision maker

has one objective to maximize, and the objective function is unimodal, the decision maker can

simply choose the value for θ that optimizes the objective function f(θ) (Fig. 2.1A). Decisions

become difficult when decision makers must consider more than one objective. A single optimal

solution for multiple competing objective functions does not exist without compromise. There are

many (possibly infinite) solutions that represent trade-offs among competing objectives. MOO is

concerned with methods for choosing among these trade-off solutions.
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The MOO problem is defined as:

f(θ∗) = optimumθf(θ),

where f(θ) = (f1(θ), f2(θ), ..., fk(θ)),

such that gj(θ) ≤ cj, j = 1, 2, ..., J,

and hl(θ) = dl, l = 1, 2, ..., L,

(2.1)

where fi(θ) represent the k different, potentially competing objective functions, f(θ) is a set of

the different objective functions, and gj and hl represent J inequality constraints and L equality

constraints, respectively (Hwang and Masud 1979). “Optimum” refers to either the minimum

or maximum depending on the nature of each objective function (e.g., minimize cost, maximize

abundance). I use only the minimum in several subsequent equations to avoid redundancy. The

elements of the vector of variables θ are known formally as design variables. Design variables are

the combination of choices the decision maker can choose for inputs into the decision problem. For

example, if a decision maker with limited personnel is concerned with eradicating invasive species

and can use both chemical and mechanical treatments, then: θ = [θ1, θ2, θ3]
′, where θ1 = amount

of chemical treatment, θ2 = amount of mechanical treatment, and θ3 = the amount of personnel

hours. A decision maker must simultaneously consider the effect from the combined choices θ1, θ2,

and θ3. The set of possible design variables from which a decision maker can choose (Θ) is termed

the feasible design space and is defined by all potential combinations of choices of θ that meet the

constraints (i.e., {θ|gj(θ) ≤ cj, j = 1, 2, ..., J, hl(θ) = dl, l = 1, 2, ..., L}). The constraints limit

the potential combinations of choices by formally considering items such as budgetary constraints,

legal mandates, etc. The feasible criterion space includes the values of f(θ) for each θ in the

feasible design space (i.e., f(θ)|θ ∈ Θ}). Consider an example to clarify notation and concepts.
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Assume a decision maker wants to maximize f1(θ) and f2(θ). The functions of f1(θ) and f2(θ)

are general but might represent various natural resource management problems (e.g., satisfaction

of two opposing stakeholders for with respect to possible densities of wolves in a management

unit). Attainment of each objective depends on only one design variable θ ∈ Θ (e.g., the possible

densities of wolves that could be considered; Fig. 2.1B). Assume Θ includes the potential choices

[0 − 20]. Also assume the inequality constraints: g1(θ) = θ ≤ 17 and g2(θ) = −θ ≥ 3. These

constraints limit the choices of θ such that 3 ≤ θ ≤ 17 and the feasible design space are values θ

in the domain [3− 17]. That is, although it might be desirable to one stakeholder to have densities

of wolves < 3 wolves per unit, managers might not want densities this low because the population

might become extirpated (Fig. 2.1B). Smaller values of θ imply higher attainment of f1(θ) and

lower attainment of f2(θ). The feasible criterion space are the 2 × 1 vectors [f1(θ), f2(θ)]
′ for all

θ ∈ [3 − 17]. The feasible criterion space can be viewed graphically (when k ≤ 3 and θ includes

one variable) by plotting the paired values of f1(θ) and f2(θ) against each other on opposing axes

(Fig. 2.1C). Optimal attainment of f1(θ) and f2(θ) (i.e., θ = θ∗1 and θ = θ∗2) occur at 4 and 16,

respectively (Fig. 2.1B). No choice of θ simultaneously optimizes f1(θ) and f2(θ) (i.e., θ∗1 6= θ∗2);

a single solution to the MOO problem does not exist. The decision maker must include additional

information to reduce the set of potential solutions to a single solution; the additional information

required is a decision maker’s preferences among objectives.

2.4. PARETO OPTIMAL SOLUTIONS AND SPECIFICATION OF PREFERENCES

Pareto optimality is a concept in MOO in which optimality is defined with respect to trade-offs

that are required to improve an objective (Deb 2001). A Pareto optimal solution is any solution

in which there are no other candidate solutions that improve achievement of at least one objective

without hindering the achievement of another objective. For example, if we assume an increase
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in the numbers of cackling geese corresponds to an increase in the objective function associated

with subsistence hunting, and a decrease in the objective function associated with agriculture, then

any management goal is a Pareto optimal solution because it requires a trade-off in objectives.

More rigorously, a Pareto optimal solution is an action θ∗ ∈ Θ in which there is no other action

θ ∈ Θ such that both f(θ) ≤ f(θ∗), and fi(θ) < fi(θ
∗) for at least one function i (note: I use

the minimum, without loss of generality Deb 2001, Marler and Arora 2004). A MOO problem

with competing objectives has a large (potentially infinite) set of Pareto optimal solutions. The

Pareto set (or Pareto frontier or efficiency frontier) is the set of Pareto optimal solutions. The

Pareto set excludes all choices that are dominated by at least one other solution (Deb 2001). A

dominated solution is a solution in which there exists another solution that is as good or better

for all objectives, and better for at least one objective. Consider the example in Fig. 2.1. Any

value of θ between 4 and 16 is a Pareto optimal solution. For all 4 < θ < 16, to improve f2(θ)

requires a trade-off from f1(θ). Likewise, to improve f1(θ) requires a trade-off from f2(θ). Note

that decisions for θ < 4 and θ > 16 are dominated solutions; both objectives can be improved

simultaneously by increasing or decreasing θ, respectively.

Methods for solving (2.1) can be separated into two strategies: specification of preferences pre-

optimization (the a priori approach) or post-optimization (the a posteriori approach; Deb 2001,

Marler and Arora 2004). A Pareto set exists in both strategies.

2.4.1. THE a priori STRATEGY. Every choice in a Pareto set corresponds to a specific ranking

(or preference) of objectives. When decision makers specify preferences pre-optimization they

are attempting to identify the choice in the Pareto set that most closely aligns with their a priori

perceptions of the importance of each objective. The information used to assign preferences can

include qualitative or quantitative values obtained from a variety of methods ranging from personal

opinion to formal theoretical development (e.g., Akaike 1973, Saaty 1988, Mustajoki et al. 2005).
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After preferences are assigned pre-optimization, the Pareto optimal solution associated with those

preferences is identified. The identification of the Pareto solution associated with a set of pref-

erences occurs using various mathematical functions (Table 2.2). These functions typically take

one of two forms; using a composition of objective functions or constraining the feasible crite-

rion space. A composition of objective functions combines the multiple objective functions into a

single objective function (e.g., Converse et al. 2013). This typically requires specifying weights

that represent the relative importance of each of the multiple objective functions. The optimum of

the resulting composite function reflects the Pareto optimal solution associated with the selected

weights/preferences. Constraining the feasible criterion space results in an optimization of (2.1)

that occurs over a single objective function (e.g., Johnson et al. 1997). The constraints are set

based on the preferences of the decision maker. The optimum of the single objective function rep-

resents the Pareto optimal solution associated with the constrained space. As an example of the

a priori approach, I consider three different functions for assigning preferences pre-optimization

to identify an optimal solution: the bounded objective function method, the lexicographic method,

and the weighted sum method. The bounded objective function method and the lexicographic

method constrain the feasible criterion space. The weighted-sum method is a composition of func-

tions. These three methods, or combinations of them, are sufficiently general to cover a diverse

array of ecological decision problems. I have also included several other methods in Table 2.2 for

reference.

The bounded objective function method assigns preferences for k objective functions by con-

straining k − 1 objective functions to preferred ranges of values, then optimizes the final objective

function within the constrained space (Marler and Arora 2004). This effectively reduces the num-

ber of objective functions to one with a constrained feasible criterion space that meets the prefer-

ences (or are in some tolerable range) of all other objectives. The MOO problem in (2.1) for the
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bounded objective function method is defined by

f(θ∗) = minθf1(θ),

such that: cl,i ≤ fi(θ) ≤ cu,i, i = 2, ..., k, where cl,i and cu,i represent the lower and upper bounds,

respectively, for each objective function i = 2, ..., k. As an example, suppose θ represents the

amount of land purchasable for conservation of an endangered species and ranges between 0 and

2,000 ha. Suppose we have two objective functions (k = 2). Let f1(θ) be a function that returns a

value of conservation to the endangered species from the amount of purchased land. For example,

the function f1(θ) = 1.1×106

1+e−0.005(θ−700) is a non-decreasing function that has diminishing marginal

returns for the amount of land purchased and is on a similar scale to to f2(θ) (Fig. 2.2). Let

f2(θ) represent the cost of land. Assume the cost of land is linearly related to the size of land

and 1 ha of land costs $1,000 (Fig. 2.2). The decision maker cannot simultaneously maximize

f1(θ) and minimize f2(θ) because both are increasing functions of θ. Suppose the decision maker

prefers cost (f2(θ)) be bounded to ≤ 1 million dollars, with 0 as a minimum bound. The optimal

solution can be found using the bounded objective function method by minimizing f1(θ) such that

0 ≤ f2(θ) ≤ 1, 000, 000. The optimal solution is the maximum of f1(θ) in the constrained feasible

criterion space determined by 0 ≤ f2(θ) ≤ 1, 000, 000 and equals 1,000 ha (Fig. 2.2). Constraints

are a natural choice for monetary objectives (or other objectives with explicit boundaries in the

feasible criterion space) because they represent realistic budgetary conditions.

The lexicographic method involves ordering objectives by importance and subsequent iterative

optimization. The intuition behind the lexicographic method is simple. First identify the order

of preference of each objective function; the most important function first (Fig. 2.3). Next iden-

tify the optimal solutions for the most important objective function (Fig. 2.3B). Given multiple

optimal solutions to the most important objective function (i.e., multiple global optima), choose
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the solutions that optimizes the second objective function (Fig. 2.3C). Continue through the re-

maining objective functions until one solution is identified (Fig. 2.3D). The MOO problem for the

lexicographic method is defined by

minθfi(θ),(2.2)

subject to fj(θ) ≤ fj(θ
∗
j ), j = 1, 2, ...i − 1, if i > 1; i = 1, 2, ...k, where fj(θ

∗

j ) is the optimal

value of the jth objective function. The objective functions are ranked in order of importance from

i = 1, 2, ..., k with i = 1 being the most important. Note that fj(θ
∗

j ) is unique but θ∗

j is not

necessarily unique. Therefore, the decision maker chooses the value of θ∗

j that optimizes fi(θ).

The optimal solution is sensitive to the ordering of objective functions (Fig. 2.3). The lexico-

graphical method is useful when a primary objective must be met. For example, when legislative

mandates (e.g., endangered species act, migratory bird treaty act) require a decision maker meet

one objective; given the first objective is met, optimize with respect to subsequent objectives. The

lexicographic method has limited use with an increasing or decreasing primary objective function

because the optimum of the primary objective function will occur at a boundary. The hierarchical

method (Table 2.2) is a generalization of the lexicographic method that relaxes the constraints in

(2.2) to be within some tolerance level (δ) of the optimal solutions of preceding objective functions.

That is, fj(θ) ≤ (1 +
δj
100

)fj(θ
∗
j ).

The weighted-sum method and its variants are the most common methods for solving MOO

problems across disciplines (see Williams 1998, Converse et al. 2013, for ecological applications).

Common variants of the weighted-sum method include the analytic hierarchy process (Saaty 1990),

the simple multi-attribute weighting technique (SMART; Edwards 1977), the preference ranking

organization method for enrichment evaluations (PROMETHEE), the elimination and choice ex-

pressing reality (ELECTRE), and several model selection criteria (which I demonstrate in Chapter
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3). A weighted sum of multiple functions is described by:

f(θ) =
k

∑

i=1

wifi(θ).(2.3)

The weights wi are chosen by the decision maker to reflect the importance of each objective.

Methods for selecting the weights have been the focus of considerable research and discussion in

fields ranging from statistics to social science (e.g., Akaike 1973, Wierzbicki 1986, Saaty 1988,

Rao and Roy 1989, Goodwin and Wright 2004). Weights are often constrained such that wi ≥ 0

and
∑k

i=1 wi = 1 to aid in interpreting weights as relative importance of objectives. The MOO

problem using a weighted sum is:

f(θ∗) = minθ

k
∑

i=1

wifi(θ),(2.4)

such that gj(θ) ≤ cj, j = 1, 2, ..., J, and hl(θ) = dl, l = 1, 2, ..., L. Consider the objective

functions used in the lexicographic example (Fig. 2.3). Instead of the lexicographic method,

suppose we apply the weighted-sum method to incorporate objective preferences into the MOO

problem. Suppose each objective is equally important such that weights wi = 1/3 for i = 1, 2, 3.

The resulting objective function is: f(θ) = 1/3f1(θ)+ 1/3f2(θ)+ 1/3f3(θ) (Fig. 2.4A). The

optimal solution is θ∗ = 1 (c.f., the lexicographic method in which θ∗ = 0.8). Had the weights

been, for example, w1 = 1/2, w2 = 1/2, w3 = 0, the optimal solution would have been θ∗ = 0.73

(Fig. 2.4B). The weighted-sum method has several advantages that contribute to its widespread

use. The intuition is simple, it provides flexibility sufficient to cover a diverse array of problems,

and it provides a method for examining the second strategy to MOO, selecting preferences post-

optimization (through multiple optimizations over many different combinations of weights). Often,

the real challenge with the weighted-sum method is agreeing on a specific set of weights.

51



The preceding three examples of specifying preferences pre-optimization are intuitively sim-

ple, yet cover a diverse array of applications. For problems in which none of the above methods

are sufficient to reduce the problem to a solution, combinations of the methods could be applied.

Consider a problem with four objectives: minimize cost, maximize species persistence, maximize

non-hunting recreation, and maximize hunting recreation. Cost could be constrained at the onset

of a problem by identifying the available budget. If species persistence must be obtained the lexi-

cographic method could be used to constrain the decision space. Finally, non-hunting and hunting

recreation could be reduced to a single objective using the weighted-sum method. The decision

maker could optimize the combined recreation objective within the constrained decision space

determined by cost and meeting the species persistence objective. The resulting choice would

keep cost under budget, meet the species persistence objective, and maximize the combined non-

hunting/hunting recreation objective, given the constraints. Alternative functions for specification

of preferences pre-optimization are reported in Table 2.2. Each of these methods must meet certain

criteria to ensure the resulting solution is part of the Pareto optimal set. Marler and Arora (2004)

provide a thorough discussion of the requirements for Pareto optimality for the three methods

described here and additional methods in Table 2.2.

Solutions to MOO problems using the a priori method are sensitive to the decision maker’s

choice of preferences and constraints. The level of sensitivity is unknown when preferences are

set. It is recommended, that after a solution is identified, a sensitivity analysis be conducted to

examine the robustness of the final solution to small changes in weights or preferences (Barron

and Schmidt 1988, Rios Insua 1990).

2.4.1.1. The a posteriori strategy. Selecting Pareto solutions using the a posteriori strategy is

similar to an exhaustive sensitivity analysis. To select a Pareto optimal solution using the a posteri-

ori method, the decision maker first identifies as many Pareto optimal solutions as possible. Pareto
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optimal solutions are identified using various algorithms including: evolutionary algorithms (Deb

2001), physical programming (Messac et al. 2001, Messac and Mattson 2002), normal bound-

ary intersection methods (Das and Dennis 1997; 1999), normal constraint methods (Messac et al.

2003), graphical methods (e.g., Fig. 2.1D), and an iterated weighted-sum approach. Graphical

methods include plotting the values of the objective functions for each action θ on opposing axes,

and are applicable when k ≤ 3 and θ is one-dimensional. The iterated weighted-sum approach is

the most common optimization technique, and is applicable for many ecological applications (but

see Athan and Papalambros 1996, Das and Dennis 1997, for limitations). The iterated weighted-

sum approach involves solving the optimization in (2.4) repeatedly, for different values of weights

w (usually in equal increments from 0–1 for each wi). Evolutionary algorithms have also increased

in popularity due to general applicability and fast computation time. There is now a field of re-

search known as evolutionary multiobjective optimization which refers to solving MOO problems

using evolutionary algorithms (Deb 2001, Coello et al. 2007).

When a decision maker identifies the Pareto set they obtain information on the trade-offs re-

quired for each potential choice θ. The decision maker uses the knowledge of the resulting trade-

offs among Pareto optimal solutions (and other information relevant to the problem) to choose a

solution from the Pareto set. The choice implies a decision maker’s preferences among objectives

because each Pareto optimal solution is associated with a set of preferences. Thus, the main dif-

ference between pre- and post-specification of preferences is the former requires describing the

relative preferences among objectives without any knowledge of the consequences. The latter uses

consequences to aid the decision.

Identifying the Pareto set is not always trivial when optimizing a large number of multivariate

objective functions. Development of computational methods and algorithms to identify a Pareto

set is a primary focus in optimization research (e.g., Balachandran and Gero 1984, Deb 2001,
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Shan and Wang 2005, Zitzler et al. 2008). Algorithms are assessed relative to their necessary and

sufficient conditions required for Pareto optimality (Marler and Arora 2004). If an algorithm meets

necessary conditions, the only solutions that are Pareto optimal are solutions to the algorithm.

That is, all Pareto optimal solutions can be found using the algorithm. If an algorithm meets

sufficient conditions, any solution to the algorithm is Pareto optimal. If an algorithm is sufficient

but not necessary, any solution to the algorithm is Pareto optimal, but there are other Pareto optimal

solutions than cannot be found with the algorithm. Any solution to (2.4) is sufficient for Pareto

optimality (Athan and Papalambros 1996). However, whether a solution to (2.4) is necessary

to be in the Pareto set depends on the shape of the feasible criterion space. A solution to (2.4)

is necessary if the feasible criterion space is convex (Athan and Papalambros 1996). When the

feasible criterion space is not convex, there will be Pareto optimal solutions that are not solutions

to (2.4). Alternative algorithms (e.g., evolutionary algorithms, compromise programming) might

be preferred in these cases.

When a Pareto set is identified in a MOO problem the decision maker is left with the task of

choosing among the Pareto set to obtain a final decision. This is similar to the example of the

Sumatran rhino described above, with the exception that five of the seven actions presented for

the Sumatran Rhino were dominated by two actions (in terms of the objectives of minimizing ex-

tinction probability and cost) and would not appear in the Pareto set (Maguire et al. 1987). The

advantage of Pareto optimization is that the decision maker first reduces the potential solutions to

Pareto optimal solutions. Then the decision maker identifies the trade-offs inherent in the Pareto

set. After the trade-offs are identified, any number of methods can be used to make a choice.

For example, applying constraints (as is done for the bounded objective function method), iden-

tifying solutions that are the most robust to changes in objective functions, identifying “elbows”
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in the Pareto frontier (i.e., where a small gain in one objective results in a large trade-off in an-

other objective). The final step of choosing among the Pareto solutions requires problem-specific

considerations that are subjective and depend on each decision.

2.5. APPLICATION OF MULTI-OBJECTIVE OPTIMIZATION TO SELECT A MANAGEMENT GOAL

FOR CACKLING GEESE

I consider the resource management problem of choosing a management goal for cackling

geese. The Pacific Flyway, in collaboration with the U.S. Fish and Wildlife Service, state and

Canadian wildlife agencies, and representatives of Oregon and Washington farmers and Native

Alaskan subsistence hunters, are in the process of revising the cackling goose management plan

(Pacific Flyway Council 1999). An important part of the plan is the management goal. The man-

agement goal is currently 250,000 birds. Cackling goose abundance is estimated annually using

aerial survey data (see Chapter 1). Annual management decisions related to hunting regulations

are made based on the three-year average of abundance estimates. The hunting regulations are

intended to keep the population size at or near the management goal. The Pacific Flyway must

balance the competing interests of subsistence hunters in Alaska and private agricultural farmers

in Oregon and Washington. Additional considerations the Pacific Flyway face include the satisfac-

tion of recreational hunters, the ecological integrity of the community on the YK Delta, and other

non-consumptive benefactors of the cackling goose population. I focus on the objectives related

to subsistence hunters and farmers for this example. Based on these objectives, I first develop

objective functions related to the management objectives. I then apply the weighted-sum method

(with equal weights) to develop a composite objective function to maximize. I then examine post-

optimization-specification of preferences by optimizing a large number of composite functions

obtained from the weighted-sum method with varying stakeholder weights. My objective was to
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demonstrate the applicability of MOO as a tool for selecting a management goal and not to provide

a solution to the problem. Thus I use variables in place of values specific to the problem.

2.5.1. OBJECTIVE FUNCTIONS. MOO requires specification of objective functions. An ob-

jective function fi(θ) associated with the management goal θ of cackling geese quantifies the value

of each potential θ ∈ Θ relative to the objective it represents. For pre-optimization specification

of preferences, I consider three objective functions. Two objective functions, fs(θ) and fa(θ),

represent the Pacific Flyway’s competing objectives related to Native Alaskan subsistence hunters

and agriculture in Oregon and Washington, respectively. The third objective function fb(θ) is con-

cerned with balancing the importance of the other two objective functions. All three objective

functions depend on one variable θ, that represents the number of geese for the management goal.

The task of formulating objective functions is about the translation of an interest or aim to

the formal language of mathematics (Hennig and Kutlukaya 2007). There are an infinite num-

ber of possible objective functions that might be chosen. For pragmatic reasons, it is necessary

to consider only a small number of possible choices (Hennig and Kutlukaya 2007). I developed

the objective functions based on simple axioms and hypotheses. These objective functions do not

necessarily represent the views of the associated stakeholders and are only used for demonstrat-

ing the MOO procedure. In applied settings, objective functions should be developed in close

collaboration with resource managers and/or stakeholders. Collaborating with these groups to de-

velop objective functions helps ensure the objective functions accurately represent their beliefs.

It also promotes acceptance of the decision analysis process. Without collaborative development

of objective functions it is unlikely that managers/stakeholders will be satisfied with the solution,

regardless of how closely the objective functions reflect their objectives. Formal techniques for so-

liciting information to develop objective functions is beyond the scope of this Chapter and I refer

readers to other literature (e.g., Keeney and Raiffa 1976, Gregory et al. 2012).
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I developed the objective function associated with subsistence harvest based on three axioms.

The first axiom was that if hunting regulations did not permit subsistence hunting, the value of

fs(θ) would be zero. The current management plan closes hunting season when θ < 80, 000 birds.

I denote the value at which hunting is closed as χ for generality. The second axiom was that an

increase in the management objective θ was associated with larger values of fs(θ). That is, more

birds implied higher utility. The third axiom was diminishing marginal returns. When considering

a very large population of geese (i.e., a population size θ in which a hunter providing reasonable

effort could harvest as many geese as needed; e.g., 1 million birds) it is hard to distinguish between

the utility of θ and θ + θ̃ (e.g., 1.01 millions birds). That is, the marginal utility of additional birds

beyond θ is too small to be recognized by subsistence hunters. By the second axiom, θ + θ̃ is

better than θ, but a large value of θ would already provide enough birds to maximize storage and

consumption potential. The additional θ̃ birds would provide little benefit, given the large popu-

lation size of θ; fs(θ) is bounded by some upper limit. The upper limit reflects maximum storage

capacity and/or maximum consumptive capacity of subsistence hunters. The objective function

should therefore be concave, increasing faster at low values of θ, then reaching an asymptote. I

used Bernoulli’s utility function for wealth to describe the value or utility of each management

goal θ (eq. (2.5); Bernoulli 1954). I selected an upper limit beyond the cackling goose carrying

capacity, K so the function was close to linear in the population range of χ, ...,K birds. A linear

utility function would result in the largest management goal of all concave functions, and thus is

an optimal choice for subsistence hunters (from a game-theoretic perspective). Any other concave

function would result in a sub-optimal choice of management goal with respect to subsistence

hunters. I scaled the resulting objective function between 0 and 1 for values of θ between 0 and K

(Fig. 2.5A).
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The impact of cackling geese on agriculture depends on both the number of birds in the pop-

ulation and the distribution of the wintering population relative to public and private land. The

mechanisms that determine habitat use by cackling geese relative to public and private land and

relative to abundance are unknown. I developed two hypotheses describing the extremes of the

potential distribution of geese relative to public and private land with respect to abundance. The

hypotheses were: 1) geese feed exclusively on private land and depredate crops proportionately

to population size, and 2) geese first use public land until the number of geese approaches the

public-land carrying capacity. The remaining geese use private land after the public-land carrying

capacity is met and depredate crops proportionately to population size. I represented the public

land carrying capacity with the symbol Kpl. I developed a negative linear function scaled between

0 and 1 to represent the first hypothesis (fa,1; Fig. 2.5B). I developed a piece-wise linear function

(fa,2) that equaled 1 for θ = 0, 1, ..., Kpl and decreased linearly for θ > Kpl with slope equal to the

slope of fa,1 for the second hypothesis. Assuming each hypothesis was equally likely, I averaged

the two hypotheses to obtain the agricultural objective function (fa(θ); Fig 2.5B).

Finally, I developed an objective function (fb(θ)) that represented balancing competing stake-

holder interests. The objective function fb(θ) had small values when fs(θ) and fa(θ) were far

apart and large values (i.e., 1) when fs(θ) = fa(θ). This objective function assumed equal attain-

ment of each objectives (fa(θ) and fs(θ)) is preferred to unequal attainment of each objective. I

used the negative squared-error loss function, scaled between 0 and 1 for fb(θ) (Fig. 2.5C). The
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mathematical form of each objective function was:

fs(θ) =



















0 , θ ≤ χ

log(b+ cθ) , θ > χ

,

fa(θ) =1/2fa,1(θ) + 1/2fa,2(θ),

fa,1(θ) = 1−
θ

max(θ)
,

fa,2(θ) =



















1 , θ ≤ Kpl

1−
θ−Kpl

max(θ)
, θ > Kpl

,

fb(θ) =− (fs(θ)− fa(θ))
2,

(2.5)

for θ = 0, ..., K. I scaled the functions fs(θ), fa(θ), and fb(θ) between 0 and 1 using the equation

f(θ)−min(f(θ))
max(f(θ))−min(f(θ))

.

Given the assignment of objective functions, any of the methods described in the previous

section or in Table 2.2 could be used to incorporate preferences among objectives to identify an

optimal solution. The non-decreasing and non-increasing nature of fs(θ) and fa(θ), respectively,

make several of the MOO techniques trivial. The bounded objective function will result in an

objective at the minimum or maximum bound conditional on which objective is ranked highest.

The lexicographic method will result in an objective at either 0, max(fb(θ)), or K, conditional

on what objective is ranked highest. The Pareto set includes all θ = 0, ..., K. I considered the

weighted-sum method to identify an optimal management goal.

Specifying weights for each objective is difficult when objectives represent stakeholder beliefs

or values. Perhaps the most politically palatable set of weights for stakeholders with competing
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objectives are those in which w1 = w2 = ... = wk for k stakeholders. I assumed w1 = w2 = w3 =

1/3 representing equal weight among stakeholders and equal weight to the penalty for differences

in fs(θ) and fa(θ). The resulting objective function was:

f(θ) =1/3fs(θ) + 1/3fa(θ) + 1/3fb(θ).(2.6)

The weighted-sum method combined the multiple objective functions described in (2.5) to a single

objective function that could be optimized using standard techniques (e.g., visually inspecting a

plot). The resulting function f(θ) and the optimal solution θ∗ are shown in Fig. 2.5D. The so-

lution is sensitive to the choices of χ, K, Kpl, and the weights w. The value χ is determined

by hunting regulations and the easiest to identify (80,000 for cackling geese). The carrying ca-

pacity, K, could potentially be estimated using historical abundance data when available. The

private land carrying capacity, Kpl, could be estimated using bioenergetic requirements of cack-

ling geese and the amount of food produced on available public land (e.g., McWilliams and Rav-

eling 2004). I developed a web-based application to explore the optimal management goal in

which the decision makers can identify values of χ, K, and Kpl relevant to the decision problem

(https://perrywilliams.shinyapps.io/popobjective).

2.5.2. POST-OPTIMIZATION SPECIFICATION OF PREFERENCES. The management goal θ∗

shown in Fig. 2.5D is the Pareto optimal solution associated with the choice of weights w ≡ 1/3.

A decision maker might wish to view the sensitivity of the optimal management goal relative to

the choice of weights, or alternatively, view the implied weights of a given management objective.

To examine these trade-offs, I calculated the Pareto optimal set and plotted each Pareto optimal

solution with respect to the implied weights of the solution (Fig. 2.6). To calculate the Pareto

60



optimal set I calculated optimal solutions of objective functions described by (2.6) with differing

values of wi, such that wi > 0 and
∑k

i=1 wi = 1 (i.e., values in the weight space; Fig. 2.6).

I plotted the optimal solution for each combination of weights in the weight space to examine

how changes in preferences affect changes in the management goal, and which management goals

were relatively robust to changes in preferences (Fig. 2.6). Examination of Fig. 2.6 reveals several

important points related to the information obtained using an a posteriori approach that was not

available using the a priori approach. First, the objective weights of 1/3 applied to each objective

function appears robust to small changes in w because it is on a relatively flat surface in Fig. 2.6.

Thus, the choice of θ∗ as a management goal was relatively insensitive to the choice of weights.

Second, as wb approaches zero the small changes in the remaining weight assigned to wa and

ws result in large differences in the resulting optimal management goal. Third, as wb approaches

one, differences in weights have a small effect on the optimal management goal. Thus, the most

robust management goal is one that has a large values of wb. The second and third points illustrate

the importance of an objective function that balances the competing objective functions; without

it, the management goal can reflect a large disparity between the implied weights given to each

stakeholder; with it, the implied weights are relatively insensitive to the management goal.

Given the trade-off solutions shown in Fig. 2.6, I considered four methods for selecting a final

management goal. The first method was to choose the Pareto optimal solution that was the most

common solution to θ∗ = max{f(θ)} for all combinations of wi, i = 1, 2, 3 such that
∑3

i=1 wi = 1

(i.e., the weight space), excluding management goals that were equal to 0 and K. The second

method was the management goal that was most robust to change in stakeholder weights estimated

using the standard deviation of 400 neighbors found using a 21× 21 matrix centered at each point

(for matrices that extended beyond the boundary, the boundary was used). The third method was

bounding wa < ws and maximizing fa(θ). Finally, the fourth method was bounding ws < wa
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and maximizing fs(θ). The resulting optimal solutions are shown in Figs. 2.7, 2.8, and 2.9. The

first method resulted in a solution similar to the solution obtained using the a priori method with

equal stakeholder weights (Fig. 2.7). The second method also resulted in a solution similar to the

solution obtained using the a priori method with equal stakeholder weights, but implied different

stakeholder weights. Specifically, wa = 0, ws = 0, and wb = 1 (Fig. 2.8). The third method

resulted in a solution of θ∗ = K (Fig. 2.8). This was due to Pareto optimal solutions occurring

at K even when wa was forced to less than ws. This solution is not likely a viable option for

cackling goose management. The fourth method resulted in a solution at the same location in the

weight space as the second option (i.e., wa = 0, ws = 0, and wb = 1; Fig. 2.8). Thus, three

of four methods resulted in similar management goals for the cackling goose population. Thus, a

decision maker could select the resulting management goal with the justification that it was robust

to stakeholder weights and maximizes the combined objective functions.

2.6. DISCUSSION

Researchers and practitioners across disciplines face multi-objective decision problems on a

regular basis. There are challenges at all levels of multi-objective problems. Stakeholder ob-

jectives can be difficult to quantify, alternative actions are not always clear, and how a decision

relates to objectives is often uncertain. I discussed one component of the multi-objective prob-

lem: quantitative tools and concepts to identify a solution given well defined objective functions,

a set of possible actions, and preferences among objectives. The MOO problem concerns select-

ing a Pareto optimal solution from a set of trade-off solutions. Selection occurs by specifying the

preferences explicitly or implicitly among the multiple objectives. Selecting preferences occurs

either pre-optimization in which the decision maker articulates their preferences among objectives

without knowledge of the resulting outcome, or post-optimization when the trade-offs from each
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Pareto optimal solution can be seen. The main difference between pre- and post-specification of

preferences is the former requires describing the relative preferences among objectives without any

knowledge of the consequences; the latter uses consequences to aid the decision. The value of this

difference depends on the context of the decision problem.

I described three methods for optimizing a multi-objective problem using pre-optimization

specification of preferences (the bounded objective function method, the lexicographic method,

and the weighted sum method). The combination of these methods or alternative methods de-

scribed in Table 2.2 are applicable to a diverse array of problems. The optimal solution is sensitive

to the choice of method. However, in a review of studies that used different optimization pro-

cedures in parallel for the same application, Huang et al. (2011) found the recommended course

of action did not vary significantly with the method applied. I found evidence that different op-

timization procedures resulted in similar outcomes in the cackling goose problem of selecting a

management goal. The a priori strategy using the weighted-sum method with equal weights re-

sulted in similar management goals to three of the four solutions obtained using the a posteriori

strategy. However, one of the solutions from the a posteriori strategy resulted in a different so-

lution; one that would not likely be acceptable from a management perspective, as the optimal

solution was equal to the carrying capacity.

The weighted-sum method is a useful tool for both the a priori and a posteriori strategy. Vari-

ants of the weighted-sum method (e.g., SMART) have been used in many ecological applications

(e.g., Reynolds 2001, Reynolds and Hessburg 2005, Converse et al. 2013). The specific weighted-

objective function I used for cackling geese is analogous to the SMART technique (Edwards 1977).

However, the weighted-sum method is more general and is used in applications ranging from en-

gineering (Marler and Arora 2004) to statistical and mathematical tools including mixture models,
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Fourier transforms, and model selection (see Chapter 3). Using the weighted-sum method to iden-

tify the Pareto set is computationally straightforward.

The a priori strategy is more common in ecological applications (e.g., Johnson et al. 1997,

Brown et al. 2001, Reynolds 2001, Duke and Aull-Hyde 2002, Ananda and Herath 2003, Herath

2004, Redpath et al. 2004, Snyder et al. 2004, Converse et al. 2013), than the a posteriori strategy

(e.g., Groot and Rossing 2011). The a priori strategy is prescriptive; given preferences, a solution

is prescribed. The a posteriori strategy does not require explicitly describing preferences; all

preferences can be examined, and a choice implies preferences, but is based on the trade-offs

observed. Deb (2001) argues that an a posteriori strategy is more methodical, more practical, and

less subjective. He also concedes that if preferences can be reliably articulated, there is no reason

to identify trade-off solutions. The A priori strategy is useful in decision problems consisting

of stakeholders and/or decision makers that do not agree on a solution, but might agree on the

inputs of a decision problem. For example, if the stakeholders associated with the cackling goose

management problem agreed on values of χ, K, Kpl, w and their respective objective functions,

and adhered to the decision analysis framework, an optimal management goal could be prescribed.

If they cannot agree on inputs into the decision problem, decision making methods other than

MOO might be preferred (e.g., conflict resolution). Knowledge of consequences via an a posteriori

strategy might bias a decision maker who desires a decision based on pre-optimization specification

of preferences. These situations might result in a game-theoretic decision problem (Von Neumann

and Morgenstern 2007) instead of a MOO decision problem. That is, when competing stakeholders

select objective functions or other inputs into the decision problem to optimize θ with respect to

their interests, and not to reflect the true relationship between f(θ) and their beliefs or values. Thus,

an a posteriori strategy is likely more useful for a decision maker who has competing objectives

but with non-competing interests. For example, decisions regarding optimal allocation of limited

64



resources as in the case of the Sumatran rhino. In these cases, knowledge of the trade-offs among

Pareto optimal solutions might facilitate the decision process.

I focused on examples related to natural resource management. Several other applications of

multi-objective optimization relevant to ecology include model selection, life history evolution,

and behavior ecology. Model selection is concerned with balancing the competing objectives of

model fit and model complexity (Burnham and Anderson 2002). Numerous methods have been

developed to address this problem, including the development of several information criteria (e.g.,

Akaike’s information criterion, Schwartz’ information criterion Akaike 1973, Schwarz et al. 1978).

Information criteria are weighted averages of functions related to model fit (usually assessed using

model likelihoods) and model complexity (Chapter 3). Life history evolution concerns balanc-

ing vital rates to maximize fitness (e.g., clutch size vs. survival probability; Lack 1947). Simi-

larly, behavioral ecology concerns balancing competing interests such as finding food and avoiding

predators (Mangel and Clark 1986). MOO provides a basis for developing models to investigate

hypotheses related to life history and/or behavioral ecology.

Finally, although I limited the discussion of objective functions in this paper, appropriately

modeling a decision maker’s objectives is important for MOO to be useful, regardless of which

strategy or optimization formula is used. Any optimal solution from a MOO problem is only

good as the objective functions describing the aims or interests of the decision maker. Analogous

to statistical models of ecological processes, objective functions are models of decision maker

preferences. As such, objective functions do not perfectly reflect reality. However, parsimonious

objective functions can be useful tools for facilitating complex decisions (Kendall 2001, Williams

2015, Williams and Hooten In Review). Further, in the case of objective uncertainty (e.g., Fig.

2.5B), multiple objective functions/models could be considered with the goal of reducing uncer-

tainty among objective functions through time. Methods developed for reducing ecological model
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uncertainty through time (i.e., adaptive resource management) could be employed for reducing

objective function uncertainty through time.
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Table 2.1: Notation and definitions of components in multi-objective optimization.

Notation Description

θ Design variables. An action or choice a decision maker can

choose. θ implies decisions for >1 variable.

θ∗ An optimal solution.

Θ The set or list of actions from which the decision maker can

choose. Θ is the potential combinations of potential actions

when a decision maker must make choices for >1 variable.

fi(θ) Individual objective function that describes the value of

each choice θ ∈ Θ.

f(θ) A set of multiple objective functions that depend on (poten-

tially many) choices θ.

g(θ) Inequality constraints.

h(θ) Equality constraints.

Feasible design space The choices of θ that meet the constraints.

Feasible criterion space The values of f(θ) for the feasible design space.
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Table 2.2: Standard functions or methods for incorporating decision maker preferences (in the
form of objective weights wi or goals bj) into multi-objective optimization problems. For more
details see included references or Marler and Arora (2004).

Name of function or
method

Function (f =) See for details

Weighted global
criterion 1

k
∑

i=1

wi(fi(θ))
p, fi(θ) > 0 ∀i Yu and Leitmann

(1974), Zeleny (1982),
Chankong and Haimes

(1983)

Weighted global
criterion 2

k
∑

i=1

(wifi(θ))
p, fi(θ) > 0 ∀i Yu and Leitmann

(1974), Zeleny (1982),
Chankong and Haimes

(1983)

Weighted global
criterion 3

(
k

∑

i=1

wi(fi(θ)− f o
i )

p)1/p, fi(θ) > 0 ∀i Yu and Leitmann
(1974), Zeleny (1982),
Chankong and Haimes

(1983)

Weighted global
criterion 4

(
k

∑

i=1

(wp
i (fi(θ)− f o

i )
p)1/p, fi(θ) > 0 ∀i Yu and Leitmann

(1974), Zeleny (1982),
Chankong and Haimes

(1983)

Hierarchical fj(θ) ≤ (1 +
δj
100

)fj(θ
∗
j ),

j = 1, 2, ...i− 1, i > 1, i = 1, 2, ...k

Osyczka (1984)
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Weighted Tchebycheff wi(fi(θ)− f o
i ) Marler and Arora

(2004)

Augmented weighted
Tchebycheff

wi(fi(θ)− f o
i ) + ρ

∑k
j=1(fj(θ)− f o

j ) Steuer and Choo
(1983)

Modified weighted
Tchebycheff

wi(fi(θ)− f o
i + ρ

∑k
j=1(fj(θ)− f o

j )) Kaliszewski (1987)

Exponential
weighted-criterion

∑k
i=1(e

pwi − 1)epfi(θ) Athan and
Papalambros (1996)

Weighted-product
∏k

i=i(fiθ)
wi Bridgman (1922)

Goal programming
∑k

j=1 |dj|, dj = ||bj − fj(θ)|| Charnes and Cooper
(1977)
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FIGURE 2.1. A: Single objective function f1(θ) with optimal solution
maxθ(f1(θ)) = 4. B: Multiple objective functions and feasible design space (i.e.,
possible choices for θ in the domain [3–17]; white area). The optimal values for
each objective are: maxθ(f1(θ)) = 4 and maxθ(f2(θ)) = 16. Since θo1 6= θo2 no
value of θ simultaneously optimizes f(θ). C: Feasible criterion space for multi-
objective optimization problem (i.e., {f(θ)|3 ≤ θ ≤ 17}). D: Plot of the Pareto
set (i.e., efficiency frontier or Pareto frontier), in which the dominated solutions in
C were removed. Values towards the top right of the graph are preferred. Each
solution on the Pareto frontier is Pareto optimal and represents a trade-off between
objective 1 and objective 2.

70



0 500 1000 1500 2000

0
20

00
00

40
00

00
60

00
00

80
00

00
10

00
00

0
12

00
00

0

N
A

cost > 1 million

f1(θ)f2(θ)

●

θ

C
os

t

θ*=1000

FIGURE 2.2. Example of Bounded objective function method with two objective
functions representing the value of conservation to an endangered species (solid
line) and price (dotted line) for different values of the amount of land that could
be purchased (θ). Price was bounded to be between 0 and 1,000 ha. The optimal
solution is the value that maximized the value of conservation within the bounds,
and occurred at 1,000 ha.
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FIGURE 2.3. Lexicographical method for solving multi-objective optimization
problems. A: Three objective functions with no common solution. B: Highest
priority objective function and three optimal solutions. C: Second highest priority
objective function with the three optimal solutions of the highest priority solution
shown. The open dot represents a sub-optimal solution with respect to the second
objective function. D: Least important objective function with the two optimal so-
lutions of the second highest priority objective function. The final solution is the
closed dot.
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FIGURE 2.4. The weighted-sum method applied to the objective functions shown in
Fig. 3A. The resulting function to optimize was A: θ∗ = max(1/3f1(θ)+1/3f2(θ)+
1/3f3(θ)) and B: θ∗ = max(1/2f1(θ) + 1/2f2(θ) + 0f3(θ)).
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FIGURE 2.5. Objective functions for selecting a cackling goose management goal.
A: Objective function representing the objective of maintaining a large population
size to improve subsistence hunting opportunities. B: Objective function represent-
ing the objective of minimizing crop depredation in cackling goose wintering areas.
The dashed line represents the hypothesis that cackling geese first use public land
until the carrying capacity is reached (assumed to be 54,000 in this example), then
decreasing proportionately to abundance. The dotted line assumes geese forage ex-
clusively on private land. The solid line is the average of the dotted and dashed
lines. C: Negative squared error loss between fa(θ) and fs(θ), scaled between 0
and 1. D: Weighted sum of fa(θ), fs(θ), and fb(θ), with weights w ≡ 1/3.

74



Weight space 
(front view)

1

1

1

0

Sub.

Agr.

B
al

.

●

θ*

Mgmt. goals  
(front view)

wsub=1

wagr=1

wbal=1

K

●

θ*

Mgmt. goals 
(back view)

wsub=1

wagr=1

wbal=1

K

●

θ*

Mgmt. goals 
(side view)

wsub=1
wagr=1

wbal=1

K
●

θ*

FIGURE 2.6. Weight space: Plane representing the possible combinations of

wi, i = 1, 2, 3 such that
∑3

i=1 wi = 1 and wi ≥ 0 used in the equation f(θ) =
∑n

i=1 fi(θ)wi. The red dot indicates equal weights among the three objectives of
the management goal of balancing the competing objectives of subsistence harvest,
agriculture, and balancing the first two objective functions. Mgmt. goals: three
angles of a surface of Pareto optimal solutions for a cackling goose management
goal obtained by optimizing the weighted objective function with varying values of

weights wi, i = 1, 2, 3 such that
∑3

i=1 wi = 1. The X-Y plane of the three colored
figures is the weight space. The Z-axis is the value of the optimal management goal
for each combination in the weight space. The optimal solution obtained from equal
weights = 1/3 is shown with the red point.
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FIGURE 2.7. Distribution of optimal management goals found using the weighted-
sum method with varying weight combinations of wi, i = 1, 2, 3 such that
∑3

i=1 wi = 1 and wi ≥ 0 used in the equation f(θ) =
∑n

i=1 fi(θ)wi. The red ver-
tical line represents the mode; the management goal that was most often selected
as optimal. Also shown (black vertical dotted line) is the Pareto optimal solution
obtained using equal weights among objectives.
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FIGURE 2.8. Surface of the standard deviation (SD) of Pareto optimal management
goals shown in Fig. 2.6 used as an indicator of robustness of the management
decision to changes in objective weights. The SD was taken with respect to a 21×
21 matrix of neighboring values centered at each point with boundaries repeated
ten times at each boundary. The optimal management goal with with the smallest
standard deviation (red dot) occurs at wa = 0, ws = 0, and wb = 1. Also shown
(black dot) is the Pareto optimal solution obtained using equal weights. The colors
used in Fig. 2.6 were maintained for reference.
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FIGURE 2.9. Surface of Pareto optimal solutions for a cackling goose management
goal obtained by optimizing the weighted objective function with varying values of

weights wi, i = 1, 2, 3 such that
∑3

i=1 wi = 1. The red line represents equal weights
for the subsistence objective and the agriculture objective. Thus, for the decision
rule that bounds wa < ws and chooses the max with respect to fa(θ) occurs at
θ∗ = K. The decision rule that bounds ws < wa and chooses the max with respect
to fs(θ) occurs at wa = 0, ws = 0, and wb = 1; the same result that occurred using
the standard deviation method (Fig. 2.8).
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CHAPTER 3

MODEL SELECTION AS A MULTI-OBJECTIVE OPTIMIZATION

PROBLEM

3.1. SUMMARY

Multiple-objective optimization (MOO) is a formal decision-theoretic framework for solving

multiple objective problems. Model selection is a MOO problem concerned, heuristically, with

balancing the competing objectives of model fit and model complexity. I describe the model-

selection problem within the MOO framework. I discuss two strategies of solving the MOO prob-

lem; modeling preferences pre-optimization and post-optimization. Most model selection methods

are consistent with solving MOO problems via specification of preferences pre-optimization. I

reconcile these methods within the MOO framework. I also consider model selection using post-

optimization specification of preferences. That is, by first identifying Pareto optimal solutions,

and then selecting among Pareto optimal solutions. Two concepts commonly used in model se-

lection, competing models (i.e., considering models with ∆AIC< 2) and model averaging (sensu

Burnham and Anderson 2002, p. 150), do not necessarily result in Pareto optimal solutions to the

MOO problem of maximizing model fit and minimizing model complexity. Competing models and

model averaging represent solutions to an additional objective function associated with minimiz-

ing model uncertainty. I demonstrate concepts with an application to variable selection in multiple

linear regression.

Key words competing models, decision theory, multimodel inference, Pareto frontier, optimal

solution

3.2. INTRODUCTION

Multi-objective optimization (MOO) is a formal decision-theoretic framework for optimizing

problems with more than one objective (Chapter 2). MOO is commonly used in engineering, eco-

nomics, and other fields in which decision makers must balance trade-offs between ≥ 2 competing
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objectives (Marler and Arora 2004). For example, maximizing species persistence, while mini-

mizing cost (Maguire et al. 1987). Often, a single solution that optimizes multiple objectives does

not exist. When a decision maker has competing objectives, a solution that is optimal for one ob-

jective might not be optimal for the other objective. With competing objectives there exists many

(possibly infinite) solutions that might be considered “optimal” (i.e., Pareto optimal; Chapter 2).

However, in most decision contexts, a decision maker can only make one choice. To choose among

potential optimal solutions, a decision maker must include their preferences among objectives to

identify a final solution. MOO provides a mathematical framework for quantifying preferences for

examining multi-objective problems. The MOO framework is described generally as

f(θ∗) = optimumθf(θ),

where f(θ) = (f1(θ), ..., fk(θ)),

such that gj(θ) ≤ cj, j = 1, 2, ..., J,

and hl(θ) = dl, l = 1, 2, ..., L,

(3.1)

where f(θ) is a set of k different, potentially competing objective functions fi(θ), i = 1, ..., k, and

gj and hl represent J inequality constraints and L equality constraints, respectively (Marler and

Arora 2004, Cohon 2013). Pareto optimality is a concept of optimality used for (3.1) when no value

of θ simultaneously optimizes each function fi. A Pareto optimal solution for a minimization prob-

lem is a solution θ∗ ∈ Θ in which there is no other solution θ ∈ Θ such that both f(θ) ≤ f(θ∗),

and fi(θ) < fi(θ
∗) for at least one function i (Deb 2001, Marler and Arora 2004). For decision

problems with competing objectives, there are many, (potentially infinite) Pareto optimal solutions.

The set of solutions that are Pareto optimal are known as the Pareto set (or Pareto frontier or effi-

ciency frontier). Each solution in a Pareto set has an implied set of preferences for the objective

functions fi (Deb 2001). Thus, choosing among a set of Pareto optimal solutions requires assum-

ing (either implicitly or explicitly) preferences for the objective functions fi. Preferences among

objective functions can be specified pre- or post-optimization, representing two separate strategies
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to solving (3.1) (see Chapter 2). When specifying preferences pre-optimization, decision makers

explicitly describe preferences of objective functions and select the Pareto optimal solution asso-

ciated with their choice of preferences. When specifying preferences post-optimization, decision

makers first examine the set of Pareto optimal solutions. Then the decision maker chooses the

final Pareto optimal solution based on the trade-offs observed among the set. The choice implies

decision-maker preferences.

One of the most common methods for incorporating preferences for fi into a decision prob-

lem pre-optimization is the weighted-sum method (Athan and Papalambros 1996, Das and Dennis

1997, Cohon 2013). The weighted-sum method is described by

f(θ) =
k

∑

i=1

wifi(θ),(3.2)

in which the optimal solution is

f(θ∗) = optimizeθ

k
∑

i=1

wifi(θ).(3.3)

The weights wi are chosen by the decision maker to reflect the importance of each objective func-

tion fi. The weighted-sum method is a composition of functions that results in a single objective

function over which to optimize. When optimizing one objective function, an unequivocal optimal

choice can be made.

Model selection is a multiple-objective problem that can be considered in terms of balancing

the competing objectives of model fit and model complexity. Model selection is one of the most

common multiple-objective problems across disciplines and numerous model-selection methods

are available (e.g., Akaike 1973, Mallows 1973, Schwarz et al. 1978, Gelfand and Ghosh 1998,

Burnham and Anderson 2002, Hooten and Hobbs 2015). There is no consensus among statisticians

on best methods for model selection (Hooten and Hobbs 2015).

My objective was to examine model selection within the MOO framework and to demonstrate

that several methods commonly used for model selection are specific cases of the MOO problem

solved using the weighted-sum method with a priori specification of preferences. I examine con-

cepts of the MOO framework, specifically Pareto optimality, as it relates to several common model
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selection methods. Finally, I examine the second strategy of MOO, post-specification of prefer-

ences, and its application to the model selection problem. I demonstrate the concepts presented

using a simple example involving variable selection in a multiple linear regression model used to

model a simulated data set.

3.3. MODEL SELECTION AS A MOO PROBLEM

Methods for model selection typically consist of minimizing a weighted sum of two functions.

Heuristically, these functions represent 1) model fit and 2) model complexity. That is,

f(θ∗) = minθ

2
∑

i=1

wifi(θ).(3.4)

where θ∗ represents the optimal solutions from the set of design variables θ, describing fit and

complexity of any model, wi are weights given to the importance of the objectives associated with

model fit and complexity, and fi are functions that quantify the value of model fit and complexity.

Clearly, (3.4) is a specific form of the MOO problem defined in (3.3). A large body of theoretical

justification within the field of statistics has been developed for choices of objective functions fi(θ)

and their corresponding weights wi (Akaike 1973, Mallows 1973, Schwarz et al. 1978, Gelfand

and Ghosh 1998, Burnham and Anderson 2002, Link and Barker 2006, Hooten and Hobbs 2015).

Although there is no consensus among statisticians on specific model selection methods, most of

the theoretical development related to model selection can be described by two general functions

for fi. Differences in model selection criteria are often the result of different choices in weights.

The most common objective function for model fit is the negative log-likelihood of the data, given

parameters. That is, if f1 is the objective function associated with model fit, it is described as

f1(θ) = −log(L(θ|y)).(3.5)

Although the deviance (3.5) is the most common objective function for model fit, others have been

used. For example in Mallow’s Cp, f1(θ) =
∑n

i=1(yi−µ̂sub)
2

∑n
i=1(yi−µ̂full)2

− n, where µ̂sub equals the estimated

mean of a sub-model in consideration, µ̂full equals the estimated mean of the full model in consid-

eration, and n equals the sample size (Mallows 1973). Hooten and Hobbs (2015) reviewed several
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objective functions for model complexity using a function proportional to

f2(θ) =

p
∑

j=1

|θj − µj|
γ,(3.6)

known as the regulator, or regularizer, or penalty. In (3.6), p is the number of parameters in the

model and γ is the degree of the norm; a user-defined parameter that controls the relative penalty

of the distance between θj and mean µj . Substituting the choices of f1(θ) and f2(θ) from (3.5) and

(3.6) into (3.4), we obtain the following multi-objective optimization problem, with the objective

of minθ(f(θ)):

f(θ) =w1f1(θ) + w2f2(θ),

=w1(−log(L(θ|y))) + w2

p
∑

j=1

|θj − µj|
γ.(3.7)

Equation (3.7) is the general function used in many model selection methods including Akaike’s

information criterion (AIC), AIC for small samples (AICc), quasi-AIC (QAIC), QAIC for small

samples (QAICc), Schwartz’s information criterion (BIC), ridge regression, LASSO (least abso-

lute shrinkage and selection operator), natural Bayesian shrinkage, and some forms of posterior

predictive loss (Table 3.1; Gelfand and Ghosh 1998, Hooten and Hobbs 2015). Each of the listed

model selection methods result from specific choices of w and γ, which I report in Table 3.1. For

example, let the weights be: w1 = 2, w2 = 2, and set γ to zero. With these weights, (3.7) simplifies

to −2log(L(θ|y)) + 2p, or AIC (Table 3.1).

Expressing model-selection methods in terms of (3.3) has an important result that links model

selection to Pareto optimality. For positive weights w, any solution to (3.3) is a Pareto optimal

solution (Marler and Arora 2010). Thus, any model-selection method that can be expressed in

terms of (3.7) (i.e., the methods in Table 3.1) results in a solution that is Pareto optimal with

respect to the objectives of maximizing model fit and minimizing model complexity.

83



3.4. MODEL SELECTION USING POST-OPTIMIZATION SELECTION OF WEIGHTS

Solving a MOO problem with competing objectives using post-optimization specification of

weights requires first identifying as many Pareto optimal solutions as possible, then choosing

among the Pareto optimal solutions (Chapter 2). Pareto optimal solutions for the objective func-

tions (3.5) and (3.6) are models in which increasing the value of (3.5) requires a decrease in the

values in (3.6), and vice versa. One method for identifying Pareto optimal solutions with two ob-

jective functions, each depending on θ is to plot the values of (3.5) and (3.6) for each candidate

model on opposing axes to identify the Pareto frontier (e.g., Fig. 3.1). After the Pareto frontier is

identified, the decision maker can select the model based on the trade-offs observed in the Pareto

frontier. Thus, the selection of the final model is made without explicitly choosing weights w

associated with the model selection criteria listed in Table 3.1. However, if a choice from the

Pareto frontier is also optimal with respect to specific model-selection criterion, the weights of that

selection criterion are implied.

3.5. AN EXAMPLE: VARIABLE SELECTION IN MULTIPLE LINEAR REGRESSION

Model selection is regularly used to select variables for multiple linear regression. To examine

the variable selection problem within a MOO framework, I first generated a data set consisting of

300 observations and corresponding covariates. I then chose a top model using values for (3.7)

specific to AIC. I also considered models with ∆AIC< 2 (i.e., competing models), and calculated

a model using model averaging with AIC weights (sensu Burnham and Anderson 2002, p. 150).

Finally, I identified all Pareto optimal solutions and assessed the AIC top model, candidate models,

and the model calculated using model averaging relative to the Pareto optimal solutions.

3.5.1. DATA GENERATION. I generated response data from the model yi ∼ N(x′β, 10), for i =

1, ..., 300. I selected values of β that had a range of both negative and positive effects on the mean;

β = [5,−10,−5,−1,−0.1, 0.1, 1, 5, 10]′. I generated the design matrix X using: xi,1 ≡ 1, ∀ i

and xi,j ∼ Binom(1, 0.5), j = 2, ..., 9. I developed a scenario reflecting an investigator who col-

lected data on four covariates that were related to the response variable y by randomly selecting

four columns of X that were used to generate the data (the β values associated with the random
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columns of X that were selected were -10, -5, 1, and 5). I also assumed the investigator collected

four covariates that were independent of y. I accounted for this independence by simulating data

using xi,j ∼ Binom(1, 0.5), j = 6, ..., 9. Thus, the data included a response variable with 300

observations, and a design matrix with an intercept, four covariates that were used to generate the

response variable, and four covariates that were independent of the response variable. Four of the

nine covariates used to generate the data not randomly selected were omitted from analysis (i.e.,

the columns of X associated with β equal to − 1,−0.1, 0.1, and 10). The data to be analyzed re-

flected the scenario of an investigator with imperfect information in the form of missing covariates

and superfluous covariates on a process of interest.

3.5.2. MODEL SELECTION USING AIC. I analyzed the data using linear regression models of

the form: yi ∼ N(x′
iβi, σ

2). The models were comprised of covariates (x) and parameters (β, σ2).

I developed models representing all possible subsets of the eight available covariates representing

256 possible models. I assumed the objective function in (3.7) with values of w ≡ 2, and γ =

0 (i.e., AIC). That is, for multiple linear regression with normal, independent, and identically

distributed errors:

f(βm) =2

(

n

2
log(2π) +

n

2
log(σ̂2

mle,m) +
1

2σ̂2
mle,m

n
∑

i=1

(yi − x′βm)
2

)

+ 2

pm
∑

j=1

|βj,m|
0,(3.8)

where βm are the subset of parameters for model m = 1, ..., 256, n is the sample size, and σ̂2
mle =

∑n
i=1(yi−x′

iβm)2

n
. The model that minimized (3.8) (i.e., the AIC top model) included the intercept

and 4 of 8 covariates. Three of the four covariates that were included in the top model were used

to generate the data (associated with β = −10,−5, and 5) and one covariate that was independent

of the data. The nine competing models are shown in Table 3.2.

Models fit using multi-model averaging are special cases of (3.7) or (3.8), where instead of

minimizing over θ, θ are selected using θ̂ =
∑M

m=1 ωmθ̂mle,m, where ωm = exp(−1/2∆m)
∑M

m=1 exp(−1/2∆m)
are

model weights, θ̂mle,m is a vector containing each of the maximum likelihood parameter estimates

from each of the different M candidate models, and ∆m is the difference between an information

criterion (e.g., AIC, BIC) of the optimal model and the mth model (Burnham and Anderson 2002).

Therefore, models fit using model averaging are not an optimal solution to minθ(f(θ)) unless
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θ̂ = minm(θ̂mle,m), which will occur if ωm = 1 for any model m. I calculated the model-averaged

model for comparison among the other candidate models with respect to (3.5) and (3.6) (Table

3.2).

Finally, a common practice for pre-specification of weights in MOO problems in other appli-

cations includes examining the sensitivity of the optimal choice relative to the selected weights

(Barron and Schmidt 1988, Rios Insua 1990). An analogous procedure in the model-selection

framework is to examine the optimal solutions relative to different information criteria because

different criteria represent different objective weights (Table 3.1). The AIC, AICc, and BIC all

resulted in the same top model suggesting the optimal solution for these data was robust to several

different choices of weights.

3.5.3. MODEL SELECTION BY EXAMINING PARETO OPTIMAL SOLUTIONS. Using the sim-

ulated data described above, I examined model selection via specification of preferences post-

optimization (Fig. 3.1). That is, I identified the Pareto optimal solutions among the 256 models,

and then considered potential methods for selecting a model. To identify the Pareto optimal so-

lutions, I used a graphical approach and plotted the values f1 and f2 described in (3.8) for each

model on opposing axes to identify the Pareto Frontier (Fig. 3.1). Note that identifying the Pareto

optimal solutions did not require specifying w1 or w2, and therefore did not require adhering to an

information criterion. The Pareto optimal set included 9 models; one model for each number of

parameters 2, ..., 10. Each Pareto solution represented the model that minimized (3.8) among all

models with the same number of parameters. There were 247 dominated models (i.e., models that

were not Pareto optimal; Fig. 3.1). The AIC top model was a Pareto optimal solution; this was

expected because AIC (and other information criteria) is a specific formulation of the weighted-

sum method and is therefore sufficient for Pareto optimality (Marler and Arora 2010, see Chapter 2

for definition of sufficient). Each of the Pareto solutions correspond to a specific set of weights in

(3.7). The dominated solutions included six models that had ∆AIC < 2 (i.e., competing models).

Finally, the model-averaged model was a dominated solution; this was expected because maxi-

mum likelihood estimates will result in smaller values of -log(L(θ|y)) than any other estimates,

by definition.
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Given the information on the Pareto optimal solutions in Fig. 3.1, selecting a final model for

inference can proceed in many ways, depending on the application and the nature of the parameters

under consideration. A decision maker can use the information on the Pareto optimal solutions to

view trade-offs of fit gained by adding (or subtracting) additional parameters from the model, and

choose a Pareto optimal solution with trade-offs acceptable to the decision maker. For example,

many management decisions use model-based predictions for covariate data collected annually

(e.g., Johnson et al. 1997). Some parameters might be associated with covariates in which annual

data are difficult, expensive, or impossible to collect. The trade-offs in terms of model fit can be

assessed relative to the expense of collecting additional data for these parameters to make future

predictions. If the increase in model fit from the Pareto optimal solution that requires the additional

(expensive) covariate data does not justify the additional expense, another Pareto optimal solution

might be preferred. Another approach is to examine the curvature of the Pareto Frontier. Shapes

such as elbows (e.g, Fig. 3.1: p = 5) can be identified, in which increasing the number of parame-

ters has diminishing marginal returns in terms of f1, and decreasing the number of parameters has

a large effect on f1. Another approach is to compare the trade-offs to ecological significance of

the parameters involved and the need to make inference on those parameters. For example, if a pa-

rameter is required to inform a management decision, such as survival rates for harvest decisions,

a decision maker would prefer to choose a Pareto optimal solution that included survival rates.

Another approach might be to choose a Pareto optimal solution such that the maximum number

of parameters is constrained by the amount of data. For example, if an investigator would like to

constrain the number of parameters in the model such that p < n
30

, the investigator could select

the Pareto optimal solution that maximized model fit within the constrained set. Constraining the

number of parameters could also be conducted during the model building phase. However, this

might limit an investigator from observing the potential benefits of including additional parame-

ters. If the benefit was large, it might provide sufficient motivation for the investigator to collect

more data. When model averaging, the choice of models over which to average is not always ap-

parent. The Pareto set could be used to select models for model averaging; the final model would

be a composition of each of the Pareto optimal solutions. This approach would not guarantee the
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final model is Pareto optimal in terms of the original objective functions, as was shown with model

averaging over all models. Finally, models that are optimal in terms of model selection criteria

could be highlighted as reference points on the Pareto frontier to guide decisions. Ultimately, the

use of the Pareto frontier is that it provides visual information on the trade-offs of the objectives of

the decision maker; in this case maximizing model fit and minimizing complexity.

3.6. DISCUSSION

The explicit application of multi-objective optimization to model selection using the objec-

tive functions defined in (3.5) and (3.6) ties several important properties of MOO to common

methods for model selection. First, many different model selection methods are special cases of

the weighted-sum method; each method representing different objective weights. This provides a

unifying framework to quantitatively and visually compare model-selection methods based on dif-

ferent theoretical foundations. Practitioners of multi-objective optimization in operations research

or other decision theoretic fields usually recommend sensitivity analyses of the resulting decisions

given the choice of objective weights (Keeney and Raiffa 1976, Gregory et al. 2012). A sensitivity

analysis for the model selection problem consists of evaluating multiple model selection criteria

(representing different objective weights) to examine the robustness of the solution to the choice

of criterion. Many practitioners argue against this approach, suggesting that a criterion should be

selected based on its theoretical motivation (e.g., AIC is asymptotically efficient; BIC is consistent

Aho et al. 2014). Others view a specific information criterion as one line of evidence to assist

in a decision and report different criteria side-by-side (e.g., Araújo and Luoto 2007, Parviainen

et al. 2008). The former appears to be the dominant paradigm in ecological research, whereas the

latter is common in other fields. Second, many model selection methods result in Pareto optimal

solutions because they are specific formulations of (3.2), which is sufficient for Pareto optimality.

Thus, there is a decision-theoretic basis for model selection methods that can be expressed in the

form of (3.7) in terms of optimality criteria (i.e., Pareto optimality).
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Two other points require further qualification. First, competing models (i.e., ∆AIC< 2) are

not necessarily Pareto optimal in terms of (3.5) and (3.6). Second, models obtained using multi-

model averaging are not necessarily Pareto optimal in terms of (3.5) and (3.6). Pareto optimality is

determined with respect to the objective functions. Competing models and multi-model averaging

extend beyond the objectives described in (3.5) and (3.6). They concern the concept of model

selection uncertainty due to the random nature of data generated from a process (Burnham and

Anderson 2002). Minimizing (or accounting for) model selection uncertainty is not fully captured

by (3.5) and (3.6). Model selection uncertainty represents an additional objective. To appropriately

assess methods that account for model uncertainty in the multi-objective optimization framework,

an additional objective function that quantifies model robustness to random variation of the data

is needed. For example, the mean-squared prediction error of each model could be used as an

objective for Monte Carlo simulated data sets. Burnham and Anderson (2002) found that model

averaged estimates performed better than maximum likelihood estimates of top models when com-

paring mean-squared predicted error. Although multi-model averaging is not optimal with respect

to the traditional objectives of fit and complexity, it might be optimal when considering the addi-

tional objective of model selection uncertainty or model robustness. Appropriately accounting for

a decision maker’s objectives is important for multi-objective optimization to be useful.

Model selection by examining trade-offs of fit and complexity is not new. Users of Mallow’s

Cp often conduct similar investigations (Mallows 1973). Freitas (2004) examined Pareto opti-

mality in the related question comparing prediction and simplicity for data mining. However, I

am unaware of any wildlife or ecological studies that have formally examined model selection in

terms of Pareto optimality of fit and complexity and made a choice based on the resulting trade-offs

observed. Viewing each model’s trade-offs, in terms of objectives, provides a visual assessment

of the model selection problem, a potentially useful tool for ultimately choosing a model to base

inference. As is the case with any multi-objective optimization problem, the additional flexibility

in model choice based on post-optimization specification of preferences could be viewed as either

a positive or negative trait, depending on how an investigator values the order in which preferences

are specified. Specifying preferences pre-optimization for the model selection problem benefits
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from being objective in the sense that a decision maker chooses how to weigh their specific ob-

jective functions without being influenced by how weights will alter the outcome of optimization.

Specifying preferences post-optimization has the added flexibility of choosing a Pareto optimal

solution that provides the best trade-offs for context dependent decision problems.

Although I described the model selection problem heuristically in terms of maximizing model

fit and minimizing model complexity, I could have replaced model fit with predictive ability as one

objective of interest, and asymptotic bias correction as another. Predictive ability is the most com-

monly sought model characteristic for model selection, and many information criteria and other

model selection methods were developed to optimize predictive ability (Akaike 1973, Stone 1977,

Gelfand and Ghosh 1998, Hoeting et al. 1999, Burnham and Anderson 2002, Hooten and Hobbs

2015). Many information criteria methods have weights and penalties that serve as bias correc-

tions for optimization in terms of predictive ability (Konishi and Kitagawa 1996). That is, many

information criteria are based on bias-corrected log likelihoods, in which the model complexity is

a correction factor to remove asymptotic bias of the log likelihood of an estimated model (Konishi

and Kitagawa 1996). The MOO problem in terms of maximizing predictive ability and accounting

for model bias is similar in spirit to the MOO problem of maximizing model fit while minimizing

model complexity.
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Table 3.1: Values of weights (wi) and γ for the multi-objective optimization problem of model
selection described in (3.7) for various model selection methods. The objective function for model
fit is -log(L(θ|y)); the objective function for model complexity is

∑p
j=1 |βj − µj|

γ, j = 1, ..., p.

AIC = Akaike’s information criterion; AICc = Second-order information criterion; QAIC = quasi-
AIC; BIC = Schwartz information criterion; n = sample size; p = no. parameters in model. (∗)
indicates objective function for model fit defined by:

∑n
i=1(yi − β0 − x′β)2. See Burnham and

Anderson (2002) and Hooten and Hobbs (2015) for additional details.

Model
selection
method

w1 w2 γ Note

AIC 2 2 0

AICc 2 2( n
n−p−1

) 0

QAIC 2
ĉ

2 0 ĉ = χ2/df

QAICc
2
ĉ

2( n
n−p−1

) 0 ĉ = χ2/df

BIC 2 log(n) 0

∗Ridge
regression 1 User defined

or estimated
2 Larger values of

w2 shrink β to 0.

∗LASSO 1 User defined
or estimated

1 Larger values of
w2 shrink β to 0.
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Table 3.2: Top nine models with smallest values of f(β) from example problem considering vari-
able selection of a multiple linear regression model used to model simulated data. AIC = Akaike’s
information criterion, ∆AIC = difference in AIC between model m and model with smallest AIC.
Asterisk (∗) indicate the parameter was used to simulate the response variable (i.e., β0−β4). f1(β)
and f2(β) are described in Eq. (3.8) and Eq. (3.6), respectively. The last model in the table,
weighted average of all β0 − β8, was a model in which f(β) was calculated using parameters
(β) that were fit using model averaging of each of the 256 candidate models instead of maximum
likelihood estimates.

Model variables f(β) ∆AIC f1(β) f2(β) Pareto
(i.e., AIC) optimal

β∗
0 + β∗

1 + β∗
2 + β∗

4 + β7 1919.97 0 953.99 6 Yes

β∗
0 + β∗

1 + β∗
2 + β∗

4 1920.55 0.57 955.27 5 Yes

β∗
0 + β∗

1 + β∗
2 + β∗

3 + β∗
4 + β7 1920.94 0.97 953.47 7 Yes

β∗
0 + β∗

1 + β∗
2 + β∗

4 + β6 + β7 1920.97 1.00 953.49 7 No

β∗
0 + β∗

1 + β∗
2 + β∗

4 + β6 1921.29 1.31 954.64 6 No

β∗
0 + β∗

1 + β∗
2 + β∗

4 + β5 + β7 1921.62 1.65 953.81 7 No

β∗
0 + β∗

1 + β∗
2 + β∗

4 + β7 + β8 1921.72 1.75 953.86 7 No

β∗
0 + β∗

1 + β∗
2 + β∗

3 + β∗
4 1921.84 1.86 954.92 6 No

β∗
0 + β∗

1 + β∗
2 + β∗

4 + β5 1921.88 1.90 954.94 6 No

Weighted average of all β0−β8 2223.35 303.37 2203.35 10 No
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FIGURE 3.1. Plot of model fit (f1(θ) = −log(L(θ|y); see Eq. (3.8)) versus model
complexity (f2(θ) =no. parameters; see Eq. (3.6)) for each model described in the
multiple linear regression variable selection example. Model parameters include
the estimated βi, i = 0, ..., 8 values, and estimated σ2. Optimal solutions minimize
fit (moving towards bottom of figure) and complexity (moving to the left of figure).
The top model using f(θ) = AIC was a Pareto optimal solution. Six candidate
solutions (i.e., ∆AIC < 2) were not Pareto optimal.
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CHAPTER 4

DERIVING OPTIMAL MANAGEMENT STRATEGIES FOR

CACKLING GEESE FROM BAYESIAN INTEGRATED POPULATION

MODELS

4.1. SUMMARY

Markov decision processes (MDPs) provide a framework for optimizing management poli-

cies for recurrent decisions. Necessary to MDPs are specifying transition probabilities describing

the probability of moving from the current ecological state to future states, given the choice of

management action. The Bayesian framework provides a natural method for calculating transi-

tion probabilities based on empirical data using posterior predictive distributions. I developed a

Bayesian hierarchical integrated population model to estimate population dynamics of cackling

geese. I estimated the effect of daily bag limits on cackling goose survival during periods of recre-

ational hunting, and the effect of subsistence harvest on spring survival estimates. I then used

management-specific survival estimates to derive posterior predictive distributions describing the

probability of transitioning among population sizes, based on the management action selected. I

incorporated the transition probabilities into an MDP and identified two optimal policies for se-

lecting state-specific daily bag limits for cackling geese using stochastic dynamic programming.

The first optimal policy corresponded to reward functions associated with the current management

strategy for cackling geese (i.e., a population objective of 250,000 geese, and hunting closure when

abundance estimates are < 80,000 geese). The second optimal policy corresponded to a reward

function I developed using multi-objective optimization of three competing objectives; maximizing

abundance to improve subsistence harvest, minimizing abundance to reduce agricultural depreda-

tion, and balancing stakeholder satisfaction (Chapter 2). Survival rates between periods of closed

recreational hunting and periods of restricted daily bag limits (i.e., one or two birds per day) were

similar among age classes. Liberal daily bag limits (three or four birds per day) were correlated

with decreased survival rates among all age classes, with juvenile birds appearing to be affected
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the most. Closing subsistence hunting appeared to have a positive effect on juvenile survival, but

a negative effect on sub-adult and adult survival indicating that closing subsistence hunting might

not be an effective management policy for increasing cackling goose abundance. The two opti-

mal management policies were: 1) no hunting between 0–80,000 birds, restrictive daily bag limits

between 80,000–235,000 birds, and liberal hunting for >235,000 birds for the current manage-

ment framework, and 2) no hunting between 0–80,000 birds, restrictive daily bag limits between

80,000–223,000 birds, and liberal daily bag limits for >223,000 birds for the alternative manage-

ment framework.

Key words Bayesian inference, Branta hutchinsii minima, cackling geese, decision theory,

harvest management, hierarchical integrated population model, Markov decision process, posterior

predictive distribution, stochastic dynamic programming.

4.2. INTRODUCTION

Ecological systems are dynamic, changing stochastically through time. Methods for mod-

eling stochastic dynamic ecological processes using empirical data have led to the proliferation

of advanced statistical methods. Formal methods for linking these models to natural resource

management are critical for using scientific investigation to evaluate and select among alternative

management strategies (Williams 2015). Markov decision processes provide a framework for link-

ing decision making to models of ecosystem processes based on empirical data (Anderson 1975,

Kendall 2001, Puterman 2014).

Markov decision processes (MDPs) are used to represent stochastic dynamic processes that

can be partially controlled through the actions of a decision maker through time (Puterman 2014).

MDPs have been used for many ecological applications including: modeling animal foraging be-

havior (Mangel and Clark 1986), describing mate desertion in birds (Kelly and Kennedy 1993),

management of mallard harvest (Anas platyrhynchos; Anderson 1975, Williams 1996, Johnson

et al. 1997), and endangered species management (Johnson et al. 2011). Models of ecosystem pro-

cesses are incorporated into MDPs by describing the probability of transitioning from one system
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state to any other system state, given the choice of action. Models for describing transition proba-

bilities range from expert elicitation (e.g., Lau and Leong 1999), to fitting models using empirical

evidence (e.g., Johnson et al. 1997; 2011).

Bayesian methods are becoming increasingly popular for modeling ecological processes (Hooten

and Hobbs 2015). Bayesian methods provide a natural method for modeling transition probabili-

ties in Markov decision processes because the Bayesian framework treats all unobserved quantities

as random variables. A future state is an unobserved random quantity from the system that is being

modeled and therefore, we can use Bayesian models of system dynamics to estimate the probabil-

ity of future states, conditional on observed data (Gelman et al. 2014, Hobbs and Hooten 2015).

Specifically, the probability of a future state, given data y, can be estimated using posterior predic-

tive distributions:

[ỹ|y] =

∫

θ

[ỹ|θ][θ|y]dθ,(4.1)

where [ỹ|y] is the probability of unobserved data (or future state) given the observed data y, [ỹ|θ]

is the likelihood of ỹ given θ, and [θ|y] is the posterior distribution of θ, given y. Consider a

specific application of (4.1) for the problem of predicting future population size nt+1. Assume

nt+1 is described by a function of the current population size nt, random parameters describing the

population dynamics (θ), and potential management actions a:

nt+1 = f(nt,θ, a).(4.2)

For example, the function f might be a function describing the life cycle of an animal, in which

case the vector θ might consist of parameters representing the vital rates of the population, and

a is the action to be implemented that, potentially, affects the vital rates. Given data y, we can

estimate the posterior predictive distribution for nt+1, resulting in the probability of moving from

the current state nt to future states nt+1 for a specific management action a. That is, the predictive

distribution of nt+1 can be written as

[nt+1|y, a] =

∫

θ

[nt+1|θ, a][θ|y, a]dθ.(4.3)
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Equation (4.3) can be discretized to finite states and incorporated into a MDP to describe tran-

sition probabilities among states. Combining transition probabilities with actions and reward func-

tions, we can find an optimal solution to the MDP using solution algorithms such as stochastic

dynamic programming (Puterman 2014). The optimal solution incorporates the objectives of the

decision makers and statistical inference based on empirical data.

To demonstrate the application of posterior predictive distributions for modeling transition

probabilities in an MDP, I consider the management problem of selecting annual daily bag limits

for a harvested species. The cackling goose (Branta hutchinsii minima) is a migratory bird species

that nests on the coastal plain of the Yukon-Kuskokwim (YK) Delta, Alaska. They winter primarily

in the Willamette Valley and Lower Columbia River Valley in Oregon and Washington (Sedinger

and Bollinger 1987, Pacific Flyway Council 1999). Cackling geese are hunted recreationally across

their range. Recreational hunting begins in mid-September in Alaska, and often continues through

a late goose season in mid-March in Oregon and Washington. Subsistence hunting is prominent

to the economy and social welfare of many rural Alaskan communities (Wolfe and Walker 1987).

Migratory bird subsistence hunting in Alaska has historically occurred from when birds arrive in

the spring (Apr–May) through the end of August (Naves 2010; 2011; 2012). Most subsistence

harvest of cackling geese occurs in the spring (Naves 2010; 2011; 2012). Cackling geese are

regularly the second-most harvested avian species during subsistence hunts (behind greater white-

fronted geese (Anser albifrons); Naves 2010; 2011; 2012).

Autumn counts of cackling geese conducted in northern California declined from > 350, 000

birds in the mid-1960s to < 30, 000 birds in 1983 (O’Neill 1979, Raveling 1984, King and Derksen

1986). In response to this estimated population decline, the Pacific Flyway Council, in collabora-

tion with the U.S. Fish and Wildlife Service, state wildlife agencies, and Native Alaskans agreed to

close recreational and subsistence harvest of cackling geese during the 1984–1985 hunting season

until abundance estimates increased to over 110,000 birds (Pamplin Jr 1986, Pacific Flyway Coun-

cil 1999). Abundance estimates increased rapidly after the 1984 hunting closure to approximately

220,000 birds in 1994 (Fig. 1.2; Pacific Flyway Council 1999). After the population recovery, sub-

sistence and recreational hunting were re-instituted with a 1-bird daily bag limit in 1994–1995 for
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recreational hunting (Table 4.1). Subsistence hunting had no bag limit, but had a 30-day cessation

period after nest initiation. The Willamette Valley falls mainly in Oregon’s Northwest Permit Zone

(http://www.dfw.state.or.us/). Daily bag limits in the Northwest Permit Zone have ranged from 1–4

birds per day since 1994, with season length ranging from 23 to 100 days (mean = 91 days; Table

4.1).

The Pacific Flyway Council selects cackling goose harvest regulations annually based on abun-

dance estimates from data collected when geese are nesting in Alaska (see Chapter 1 for description

of aerial survey methods and estimation procedures; Pacific Flyway Council 1999). The current

population objective is 250,000 geese; harvest regulations are selected to achieve this objective (Pa-

cific Flyway Council 1999). The Pacific Flyway Council is currently revising its cackling goose

management plan. A consideration for any management plan of harvested waterfowl species is

the annual choice of daily bag limits. I address choosing daily bag limits by incorporating statis-

tical inference from data collected on the population dynamics of cackling geese, into a decision

theoretic framework. My objectives were to 1) reparameterize the model developed in Chapter 1

to represent the population dynamics of cackling geese relative to different harvest regulations, 2)

use the population model to estimate posterior predictive distributions for transition probabilities

among population sizes, and 3) incorporate the transition probabilities into an MDP framework to

calculate optimal state-specific harvest regulations for cackling goose management.

4.3. METHODS

4.3.1. MARKOV DECISION PROCESS. The general MDP consists of 5 components including:

1) the potential states of a system of interest, 2) potential actions a decision maker can choose,

3) a function, or functions, describing the rewards of an action, given the current state of the

system, 4) transition probabilities, and 5) a discount factor. A set of system states, denoted S ,

is a finite set that contains all the potential states, s, of a system that could occur. For example,

if a decision maker is interested in abundance, the set of states includes values between 0 and

the carrying capacity. MDPs assume the state st at time t is observed without error, but moving

from state st to future state st+1 is random and described by a probability distribution, [st+1|st, a],

98



that depends at least partly on the action, a, that is implemented. The distribution [st+1|st, a] is a

model (either conceptual or statistical) that describes the probability of future state st+1, given the

current state st, and action a. A reward function R(st, a), describes the reward for choosing action

a in state st. Reward functions quantify the aim or interests of decision makers and are therefore

subjective. Finally, a discount factor δ is a value between zero and one that describes the relative

value of rewards in future time periods. It is commonly used in economic applications to model

depreciation of money in future time periods. However, it is often set to one (or close to one) in

ecological applications, indicating the value of a resource in the future is the same as the value of

the resource now (e.g., Milner-Gulland 1997, Shea and Possingham 2000, Westphal et al. 2003).

For the cackling goose management problem, I assumed potential states included in the set

{0, 1000, 2000, ..., 400000} birds. I assumed a discount factor close to one (i.e., 0.99999) for com-

putational reasons (i.e., to achieve a solution for an infinite time horizon problem). I describe the

remaining components of the MDP for the cackling goose management problem in the following

sections.

4.3.1.1. Management actions. The set of management actions I considered were the daily bag

limits used for cackling geese in the Willamette Valley (Northwest Permit Zone) during the 1982–

1983 to 2013–2014 hunting seasons (Table 4.1). Counties in the Northwest Permit Zone currently

include Benton, Clackamas, Clatstop, Columbia, Lane, Lincoln, Linn, Marion, Multnomah, Polk,

Tillamook, Washington, and Yamhill county (http://www.dfw.state.or.us/). These counties com-

prised 79% (559 of 712) of reported harvested cackling geese in the Pacific Flyway banded from

1982–2014 (https://www.pwrc.usgs.gov/bbl). The harvest regulations were restrictive hunting (one

or two bird daily bag limit; 1982–1983 to 1983–1984, 1994–1985 to 1997–1998, 2005–2006 to

2009–2010), no hunting, including no subsistence hunting (zero bird daily bag limit; 1984–1985

to 1993–1994), and liberal hunting (three or four daily bag limit; 1998–1999 to 2004–2005, 2012–

2013 to 2013–2014). I grouped daily bag limits into no hunting, restrictive hunting, and liberal

hunting so that each management action had at least eight years of survival information from the

mark-resight data to estimate survival rates associated with the management action.
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4.3.1.2. Transition probabilities. To estimate the probability of moving from state nt to any

other state nt+1, given an action (i.e., [nt+1|nt, a]), I derived posterior predictive distributions from

a Bayesian hierarchical integrated population model fit with 26 years of cackling geese mark-

resight data, and 32 years of relative abundance data. I used the data described in abundance data

and mark-resight data in Chapter 1.

Model development—I used a model similar to the model used in Chapter 1, with different

parameterization to account for the different potential management actions available. As in Chapter

1, I assumed aerial abundance data from t = 1, ..., 33 (corresponding to 1982–2014) was normally

distributed, with mean µ = nt, and variance σ2. The latent variable nt represented pre-breeding

abundance and was defined by the process:

nt =nsub,t + nad,t,

nsub,t =
nad,t−1

2
ft−1φjuv,t−1,

nad,t =nsub,t−1φsub,t−1 + nad,t−1φad,t−1,

ft−1 =
nsub,t−1ρsub,t−1fsub,t−1

nad,t−1

+ ρad,t−1fad,t−1,

(4.4)

where nsub,t were the number of sub-adult birds in year t = 1, ..., 33, nad,t were the number of

adult birds, ft−1 is a composite reproductive statistic consisting of breeding propensities for each

age, ρsub,t and ρad,t, and fecundity estimates for each age fsub,t and fad,t (i.e., defined as the mean

number of birds per pair that survived until summer banding). Thus, ft−1 ×
nad,t−1

2
is interpretable

as the number of juveniles produced in year t−1 by sub-adults and adults that survived to summer

banding. The parameters φjuv,t, φsub,t, and φad,t were annual survival probabilities. I assumed

sub-adults were 1-year-old birds, and adults were ≥ 2-year-old birds. I set nad,1 = y1 − nsub,1 =

y1 − 0.2y1 for year 1. nad,1 = 0.2 was used for consistency with the model fit in Chapter 1. I

assumed a uniform prior for fecundity, ft ∼ Unif(0, 15). I assumed an inverse-gamma prior for σ2,

σ2 ∼ IG(r, q), where r and q were selected such that the mean and variance of the inverse-gamma

distribution both equaled 5,0002, respectively (using moment matching; Hobbs and Hooten 2015).
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I chose 5,0002 as the mean for σ2 because the maximum annual standard error for yt calculated by

the Pacific Flyway Council was 5,202 (mean = 2,967; T. Sanders, personal communication). Thus,

the variance of our prior for σ2 was conservative. I assumed the demographic stochasticity of the

process was accounted for in the uncertainty in each parameter and therefore did not assume an

additional probability model for the process in (4.4).

To model the mark-resight data mi,j , for i = 1, ..., 10, 428 individuals, t = 1, ..., 33, years,

s = 1, ..., 6 seasons, and j = 1, ..., 192 resight occasions (j = s + (t − 1) × S), I used the

state-space formulation of the Cormack-Jolly-Seber model. That is,

mi,j ∼















0 , zi,j = 0

Bern(pj) , zi,j = 1

,(4.5)

where zi,j was the latent, true state (alive = 1, dead = 0) of cackling goose i during resight

occasion j. The parameter pj was the resight probability of a marked goose during resight event

j. I estimated pj using a generalized linear model with a logit link: logit(p) = Wα, where W

is a design matrix for the detection probability parameters α. The design matrix W included

indicator variables for season and year of resight events. I assumed vague priors for α defined by

N(0, 1.52I), where I is the identity matrix. I modeled the true latent state of each individual using

zi,j ∼















0 , zi,j−1 = 0

Bern(φi,j) , zi,j−1 = 1

,(4.6)

where the first case ensures that if an individual was dead during the previous resight event it

remained dead during the present resight event. The second case assumes that if an individual

was alive during the previous resight event, it was alive with probability equal to the season- and

time-specific apparent survival probability φi,j . In Chapter 1, I modeled apparent survival for each

season, age, sex, and year to develop an IPM framework that permitted inference on survival at two

temporal scales. In this chapter, I consider an alternative parameterization to assess the effect of

different management actions on survival. That is, I allowed survival to vary for the different time

frames in which different harvest regulations were instituted. I also modeled age specific survival,
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and an interaction with harvest regulations and age. The relationships between survival and the

covariates were

logit(φi,j) = β0 + β′

1(seasonj) + β′

2(agei,j) + β′

3(mgmtj) + β′

4(agei,j × mgmtj),(4.7)

for i = 1, ..., 10, 428 individuals and the season-year combination j = s + (t − 1) × S, corre-

sponding to the different management actions in seasons 1, ..., S = 6, and years 1, ..., 32 (i.e.,

1982,...,2013). The six seasons included late summer (Aug–Sep) on the YK Delta, fall (Oct–Nov)

in Oregon, Washington, and California, winter (Dec–Feb) in Oregon, Washington, and California,

spring (Mar–Apr) in Oregon, Washington, and California, early summer (May–Jun) on the YK

Delta, and during subsequent capture occasions on the YK Delta (late-Jul–Aug). Age included

juvenile, sub-adult, and adult birds. The management covariate (mgmt) identified years in which

no hunting, restrictive hunting, or liberal hunting regulations were implemented. The management

covariate was only applied to seasons in which the action was most likely to occur. The seasons

included Oct–Nov, Dec–Feb, and Mar–Apr for recreational hunting, and May–Jun for subsistence

hunting (Naves 2010; 2011; 2012). I assumed vague priors for β defined by N(0, 1.52I). The full

model statement is given in Appendix C.

I calculated posterior distributions using a Markov Chain Monte-Carlo algorithm I wrote using

a combination of R version 3.0.2 and C++ (R Core Team 2013, supplementary material). The full

algorithm is given in Appendix E. I calculated marginal posterior distributions for the parameters

β, α, f and σ2 and the derived parameters φs,a,mgmt, ps,t and nt+1,a,nt
(nt+1,a,nt

is described in

the next section). I obtained 3 parallel chains of 200,000 iterations using the algorithm. I removed

the first 50,000 burn-in iterations and I examined convergence using trace plots and Gelman-Rubin

diagnostics (Gelman et al. 2014).

Posterior predictive distribution for nt+1—To estimate the probability of transitioning from

one state (i.e., population size nt) to another state (nt+1), given the choice of management action, I

derived the parameter nt+1 from the estimated posterior distributions described above. I calculated
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future population size, for any nt, and any management action using

nt+1,nt,a =ntγ
S
∏

s=1

φad,s,a + nt(1− γ)
S
∏

s=1

φsub,s,a +
ntγ

2
f

S
∏

s=2

φjuv,s,a,(4.8)

where γ = nad

nad+nsub
, was the proportion of adults in the population. Using each value of γ(ki),

φ
(ki)
ad,s,a, φ

(ki)
sub,s,a, f (ki), and φ

(ki)
juv,s,a from the ki = 50, 001, ..., 200000 iterations of the i = 1, 2, 3

MCMC chains, I calculated the values of nt+1,a,nt
, for all nt ∈ {1000, 2000, ..., 400, 000} birds,

and all a ∈ A . These calculations resulted in a distribution for each combination of action and

population size. I discretized the continuous distribution into a set of 400 finite states by rounding

values of nt+1 to the nearest thousand birds. I chose 400 states because I assumed 400,000 birds

was the carrying capacity of cackling geese (Chapter 1). I standardized each of these distributions

to sum to one. Thus, for any value of nt, and any action a, I derived a probability mass function

describing the probability of moving from nt to nt+1 (i.e., [nt+1|nt, a]; Fig. 4.1). Because γ and f

were calculated for all years t = 1, ..., 32 in each iteration of the MCMC chain, I used the mean

among all years of each iteration to use in (4.8).

4.3.1.3. Reward functions. When a decision maker chooses an action a given a state n, at time

t, the decision maker receives a reward R(a, n). I considered two scenarios for developing reward

functions for cackling goose management. The first scenario represented the current regulatory

framework for cackling geese reported in Pacific Flyway Council (1999). That is, a population

objective of 250,000 birds, and a management trigger point of 80,000 birds for closing recreational

and subsistence harvest. The second, alternative scenario, considers the objective function that I

developed using the weighted-sum method to identify a population objective for cackling geese

described in Chapter 2 (Eq. (2.5), Eq. (2.6), and Fig. 2.5D).

Reward functions for the current regulatory framework—To develop reward functions for

each potential management action for the current regulatory framework, I first developed several

assumptions. I made the following four assumptions for liberal and restrictive harvest. First, the

maximum reward occurred when subsequent abundance equaled 250,000 birds (Pacific Flyway

Council 1999). Second, the reward function was symmetric on both sides of the population objec-

tive. A symmetric reward function implies that values of n greater than the population objective
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have the same decrease in reward as values below the population objective (Williams 2015). Cack-

ling goose management balances the competing objectives of providing a population size adequate

for subsistence harvest, and minimizing crop depredation in their wintering area (Chapter 2). A

symmetric reward function represents these competing objectives. Third, population sizes close to

the management goal had relatively smaller losses in reward per bird compared to population sizes

far from the management goal. Thus, the reward functions were concave (Williams 2015). Fourth,

if the population was below 80,000 birds, implementing restrictive or liberal hunting would have

no reward. A standard reward function meeting these axioms is the negative squared error loss

function (R∗(n) = −(n− 250, 000)2). I scaled R∗(n) to be between 0 and 1 using

R(n) =















R∗(n)−R∗(80,000)
max(R∗(n))−R∗(80,000)

80, 000 < n < 420, 000

0 otherwise

(4.9)

(Fig. 4.2A). The reward function in (4.9) is not currently a function of any action a. I assumed

the reward accrued by a decision maker depends not only on state nt, but the future state nt+1,

which depend on the action implemented. Thus, I calculated the reward function conditioned on

actions by calculating the expected reward, with expectation taken over the conditional transition

probability [nt+1|nt, a]:

R(n, a) =
∑

nt+1∈N

R(n)[nt+1|nt, a],(4.10)

(Fig. 4.2B). For no hunting, I assumed a reward function that equaled zero for values of nt >

80, 000 birds. For values of nt < 80, 000 birds, I assumed the reward function equaled R(80, 000, a),

for a = restrictive hunting (Fig. 4.2B). The no-hunting reward function implies that no hunting

is preferred to other actions when the population is below 80,000 birds, but when the population

reaches 80,000 birds, no hunting has zero reward.

Reward functions for an alternative regulatory framework—In addition to the negative

squared-error loss function described for R(n) in (4.9), I considered an additional reward function

that I described in Chapter 2 (Eq. (5), Eq. (6), and Fig. 2.5D), for comparison. Briefly, this
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reward function considered three objectives for cackling goose management: 1) minimizing cack-

ling goose depredation on agriculture fields, 2) maximizing subsistence harvest, and 3) balancing

competing stakeholder objectives. These functions were described in (2.5) as:

fs(n) =















0 , n ≤ χ

log(b+ cn) , n > χ

,

fa(n) =1/2fa,1(n) + 1/2fa,2(n),

fa,1(n) = 1−
n

max(n)
,

fa,2(n) =















1 , n ≤ Kpl

1−
n−Kpl

max(n)
, n > Kpl

,

fb(n) =− (fs(n)− fa(n))
2.

The function fs(n) is an objective function associated with subsistence hunting, in which b = 1,

c = 1×10−6, and χ is a variable for the trigger point at which subsistence and recreational hunting

are closed. Values of b and c were chosen to scale fs(n) to the support of cackling goose population

size. The function fa(n) is an objective function associated with agriculture and was a weighted

average of two hypotheses, fa,1(n) and fa,2(n). The first hypothesis, fa,1(n), assumes cackling

geese fed exclusively on private fields. The second hypothesis, fa,2(n), assumes cackling geese

first fed on public land until the public land carrying capacity, Kpl, is obtained. After Kpl is ob-

tained, remaining birds feed on private land. The function fa(n) is a mixture of these two extreme

hypotheses. The final function, fb(n) returns small values when fs(n) and fa(n) are different, and

large values when fs(n) and fa(n) are similar, representing the objective of maintaining similar

satisfaction levels between stakeholders. I assumed χ = 80, 000 birds to be consistent with current

regulations. I also assumed Kpl = 54, 000 birds, the estimated carrying capacity for cackling geese

on public U.S. Fish and Wildlife Service land in the Willamette Valley (A. Mini, unpublished tech-

nical report). Finally, I assumed the carrying capacity of the population (max(n)) was 400,000

birds, reflecting the largest abundance estimates calculated for cackling geese (Chapter 1). I scaled
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the functions fs(n), fa(n), and fb(n) between 0 and 1 using the equation
f(n)−min(f(n))

max(f(n))−min(f(n))
. I then

took the weighted average of each function using f(n) = 1/3fs(n) + 1/3fa(n) + 1/3fb(n) (Fig.

4.2C). Similar to the methods used for developing action-specific reward functions for the current

regulatory framework (described in the previous section), I calculated the expected reward for both

restrictive and liberal daily bag limits using (4.10), and I used the same method for calculating the

reward function for closing subsistence and recreational hunting (Fig. 4.2D).

4.3.2. OPTIMAL MANAGEMENT POLICY. I calculated optimal management policies for each

of the management scenarios described above. I used stochastic dynamic programming to calculate

expected cumulative reward for each management policy (Puterman 2014, Williams et al. 2002).

That is, for each potential policy π, consisting of state-dependent management actions of either

closing hunting, restrictive daily bag limits, or liberal daily bag limits, I calculated the expected

total reward:

νπ(N) = lim
T→∞

E

{ T
∑

t=1

λt−1R(n, a)

}

,(4.11)

in which 0 ≤ λ < 0 is the discounted reward which I set close to one, ensuring the limit in (4.11)

existed (Puterman 2014). The optimal policy was the policy that maximized (4.11). I used policy

iteration (Puterman 2014) to solve (4.11) for each potential policy using the MDPToolbox package

in R version 3.0.2 (R Core Team 2013, Chades et al. 2014).

4.4. RESULTS

4.4.1. MANAGEMENT SPECIFIC SURVIVAL RATES. Apparent survival estimates during peri-

ods of no hunting (neither recreational hunting nor subsistence hunting) and restrictive hunting

(open subsistence hunting and a one or two bird daily bag limit for recreational hunting) were

similar for juveniles, sub-adults, and adults, with a three notable differences (Figs. 4.3, 4.4). First,

juvenile survival was lower during hunting seasons (Oct-Nov–Mar-Apr) when restrictive recre-

ational hunting occurred than when no hunting occurred (Fig. 4.3). Second, juvenile survival dur-

ing May-Jun was higher during closed subsistence hunting, compared to when subsistence hunting
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was open (Fig. 4.4). Third, sub-adult and adult survival was lower during May-Jun when sub-

sistence hunting was closed compared to when it was open (Fig. 4.4). Liberal hunting decreased

survival in all age classes during Oct-Nov–Mar-Apr, and had the largest effect on juvenile birds

(Fig. 4.3). The mean effect of liberal hunting during Oct-Nov–Mar-Apr was similar for sub-adults

and adults, but more variable for sub-adults than adults (Fig. 4.3).

4.4.2. OPTIMAL MANAGEMENT STRATEGIES. The action-specific transition probabilities are

shown in Fig. 4.1. No hunting resulted in the highest probability of increasing population size in

future years, followed by restrictive hunting, then liberal hunting. Transition probabilities were

more variable for no hunting than restrictive hunting. The optimal management strategy for the

negative squared-error-loss reward function (used to represent the current regulatory framework),

and the transition probabilities shown in Fig. 4.1, was no hunting when the population size was less

than 80,000 birds, restrictive hunting when the population size was between 80,000 and 235,000

birds, and liberal hunting when the population size was greater than 235,000 birds (Fig. 4.5).

The optimal management strategy for the reward functions described using the weighted-sum ap-

proach of Chapter 2 (the alternative regulatory framework) was no hunting when the population

size was less than 80,000 birds, restrictive hunting when the population size was between 80,000

and 223,000 birds, and liberal hunting when the population size was greater than 223,000 birds

(Fig. 4.5).

4.5. DISCUSSION

Bayesian population-dynamics models that incorporate action-specific survival rates provide a

natural method for calculating action-specific transition probabilities among population states us-

ing posterior predictive distributions. The transition probabilities can be incorporated in an MDP,

which can be solved using stochastic dynamic programming to identify optimal management poli-

cies. I applied these methods to the problem of selecting harvest regulations for the management

of cackling geese.
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A requirement for incorporating Bayesian posterior predictive distributions in an MDP is dis-

cretization of the posterior predictive distribution into finite states. It is possible that such a dis-

cretization does not ensure the posterior uncertainty in transition probabilities are adequately spec-

ified (Dorazio and Johnson 2003). Here, I considered 400 discrete states. In earlier simulations

I considered 400,000 states. Although the computational requirements were greater, the optimal

policy was the same (after rounding). Dorazio and Johnson (2003) discussed the computational

limitation of stochastic dynamic programming when the number of state and control variables are

large. In the application to cackling geese which only included 400 potential state values, 3 man-

agement actions, and a 400 × 400 transition probability matrix, the computational time to find an

optimal solution took less than a second. Thus, combining the Bayesian approach described by

Dorazio and Johnson (2003) for objectives that concern cumulative rewards obtained from a future

sequence of management actions using stochastic dynamic programming appears to be tractable

for problems similar in size to the cackling goose management problem.

MDPs assume that the state st in time t can be observed without error. Many ecological ap-

plications that use MDPs make this assumption, even when it is clearly violated (e.g., Johnson

et al. 1997, this study). Partially observable MDPs (POMDPs) relax the assumption of no observa-

tion error (Williams 2009; 2011). POMDPs represent a form of statistical decision theory (sensu

Williams 2015) that account for recurrent decisions. POMDPs are theoretically attractive because

they relax the assumption of no observation error, but they pose the greatest challenge in both anal-

ysis and computation. POMDPs can easily exceed computational capacity for many applications

due to the added uncertainty incorporated in the observation process (Williams 2009). However,

for problems similar in size to the cackling goose management problem, they are likely tractable.

Because uncertainty in the observation process is incorporated in Bayesian integrated populations

models, developing POMDP is a natural extension for future research for using Bayesian models

in a decision theoretic framework.

4.5.1. MANAGEMENT-SPECIFIC SURVIVAL RATES. In Chapter 1, I found that seasonal sur-

vival estimates were lowest from Oct–Nov in California, Oregon, and Washington and highest

during May–Jun in Alaska. Modeling the effects of management actions and how they interact
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with age classes reveals new insight into the population dynamics of cackling geese. In the cack-

ling goose wintering area in the Willamette Valley, survival rates appeared to be affected by the

choice of daily bag limits (Fig. 4.3). The difference between no hunting and restrictive hunting

(i.e., a one- or two-bird daily bag limit) was small. However, liberal hunting (a three or four bird

daily bag limit) appeared to have a large influence on survival rates. The influence of liberal hunt-

ing on juveniles was disproportionately large. This result supports other studies investigating the

effects of hunting on juvenile birds (Francis et al. 1992a, Schmutz et al. 1994, Frederiksen et al.

2004).

I found that survival rates were the highest during the season with the highest subsistence

hunting pressure (May–Jun). The closure of the subsistence harvest only appeared to have a posi-

tive influence on juvenile survival. It appeared to have a negative influence on sub-adult and adult

survival (Fig. 4.4). There are at least four possible explanations for this result. The first explana-

tion is these results were due to random or unexplained variation and any correlation with harvest

regulation is coincidental. Mean spring survival on the YK Delta could have been lower from

1985–1994 (years with closed subsistence hunting) than from 1995–2002 (years with open subsis-

tence hunting) due to factors unrelated to harvest regulations. Despite having 18 years of data with

2,605 birds resighted in this space-time combination (Chapter 1, Appendix B), there is no way to

rule out this possibility in observational studies. The second explanation is that when recreational

hunting is closed, an increased number of birds survive the winter and die due to other factors (e.g.,

migration) suggesting compensatory hunting mortality realized during spring migration (Anderson

and Burnham 1976). The third explanation (related to the second explanation) is that the closure of

subsistence hunting during 1984–1993 was ineffective, and subsistence harvest continued. In this

scenario, during years of closed recreational hunting, cackling geese did not experience hunting

pressure until reaching their nesting area. After they reached their nesting area, they might have

been more susceptible to harvest, given they did not experience hunting pressure in their wintering

area. An ineffective closure of subsistence hunting would explain similar survival rates between

periods of subsistence harvest and an agreed upon closure to subsistence harvest. However, this

reasoning does not explain why juvenile survival was higher in years during the agreed closure to
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subsistence harvest, as juveniles were the most susceptible to harvest in California, Oregon, and

Washington. The fourth explanation (related to the second explanation) is that subsistence harvest

has a limited influence on survival rates of cackling geese. Regardless of the explanation, closing

subsistence harvest appeared to only have a small impact on spring survival rates of cackling geese

in Alaska during the years of these data. Schmutz et al. (1994) and Petersen (1992) found similar

survival rates for emperor geese (Chen canagica) in periods of subsistence hunting vs. years dur-

ing the closed subsistence hunting seasons, indicating similar survival rates during both open and

closed subsistence hunting are more general than cackling geese.

4.5.2. OPTIMAL MANAGEMENT TRIGGER POINTS. The optimal policy for selecting daily

bag limits was similar among the two scenarios I considered. The optimal policies only differed

by 12,000 birds for when to select restrictive vs. liberal daily bag limits (235,000 vs. 223,000;

Fig. 4.5). The reward functions I considered did not account for the value to recreational hunters

of potentially increased harvests due to differing regulations, and only considered achieving the

population objective. However, I indirectly incorporated hunter satisfaction into the management

action of no harvest by specifying reward functions for this action based on the current regulatory

framework and independent of transition probabilities. That is, for both management scenarios,

I did not use the expected reward calculated in (4.10) for closing hunting and used a piece-wise

constant function with breaks at 80,000 birds. The piece-wise constant function ensured no hunting

would occur below 80,000 birds and some hunting would occur above 80,000 birds. Extensions

to this framework could include objective functions for maximizing the cumulative harvest, while

maintaining a population size within a desired limit (e.g., Johnson et al. 1997). These extensions

require additional assumptions on regulation-specific harvest rates and the value of each additional

harvested bird.

Finally, additional management actions might be considered by incorporating additional data

or assumptions. For example, egg collection is a common practice among Native Alaskans. Incor-

porating the effects of egg-collecting on transition probabilities might be examined by assuming

egg collecting has a negative effect on cackling goose fecundity. In future analyses, prior distribu-

tions could incorporate knowledge on the impact of egg collecting on fecundity and be propagated
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into posterior predictive distributions for transition probabilities and assessed in the MDP frame-

work.
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Table 4.1: Management regulations for cackling geese. Daily bag limits and season lengths
were obtained from the Federal Register (https://www.federalregister.gov) for the Northwest
Special Permit Goose Zone in Oregon. The Northwest Special Permit Zone covers the
Willamette Valley, Oregon where 79% of harvested banded geese were shot and reported be-
tween 1982–2014. Data on harvest regulations from 1982–1984 were not available in the federal
register, but consisted of restrictive harvest regulations (B. Reischus, personal communication).
1A collaborative effort between federal and state wildlife agencies and Alaska Natives resulted
in an agreed closure of cackling goose subsistence hunting between January 1984 and 1993
(Pamplin Jr 1986). 2Subsistence hunting formally recognized with ammendments to the Migra-
tory Bird Treaty Act in 1997.

Hunting year Daily bag limit Season length Subsistence Action
(days) hunting designation

1982–1983 - - Not recognized Restrictive
1983–1984 - - Not recognized Restrictive
1984–1985 0 0 Closed1 Closed
1985–1986 0 0 Closed Closed
1986–1987 0 0 Closed Closed
1987–1988 0 0 Closed Closed
1988–1989 0 0 Closed Closed
1989–1990 0 0 Closed Closed
1990–1991 0 0 Closed Closed
1991–1992 0 0 Closed Closed
1992–1993 0 0 Closed Closed
1993–1994 0 0 Closed Closed
1994–1995 1 23 Not recognized Restrictive
1995–1996 1 100 Not recognized Restrictive
1996–1997 2 89 Open2 Restrictive
1997–1998 2 89 Open Restrictive
1998–1999 4 88 Open Liberal
1999–2000 4 96 Open Liberal
2000–2001 4 93 Open Liberal
2001–2002 4 93 Open Liberal
2002–2003 4 90 Open Liberal
2003–2004 4 90 Open Liberal
2004–2005 1 96 Open Restrictive
2005–2006 2 96 Open Restrictive
2006–2007 2 96 Open Restrictive
2007–2008 2 97 Open Restrictive
2008–2009 2 97 Open Restrictive
2009–2010 2 97 Open Restrictive
2010–2011 2 97 Open Restrictive
2011–2012 2 96 Open Restrictive
2012–2013 3 97 Open Liberal
2013–2014 4 98 Open Liberal
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FIGURE 4.1. Transition probabilities representing the probability of moving from
the current state (x-axis) to a future state (y-axis) for three different management ac-
tions. Lighter colors indicate higher probabilities. The diagonal black line indicates
remaining in the current state.
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FIGURE 4.2. A: Standardized (between zero and one) negative squared error loss
function representing the rewards associated with the current management frame-
work with maximum reward occurring at the population objective of n = 250, 000
birds and no reward below the trigger point at which hunting is closed (i.e.,
n = 80, 000 birds). B: Expected rewards given the reward function in A and transi-
tion probabilities in Fig. 4.1. C: Reward function representing an alternative man-
agement framework derived using the weighted combination of stakeholder utility
functions described in Chapter 2. D: Expected rewards given the reward function
in C and action specific transition probabilities in Fig. 4.1. Black indicates closing
hunting, red indicates restrictive bag limits (one or two birds per day), and green
indicates liberal bag limits (three or four birds per day).
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FIGURE 4.3. Age and management specific 95% credible intervals of seasonal sur-
vival probability for cackling geese. Red credible intervals indicate no hunting; blue
indicates restrictive harvest regulations, and green indicates liberal harvest regula-
tions.
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FIGURE 4.4. Prior and posterior distributions for the parameters associated with
the effect of closing subsistence harvest on spring survival rates of three age classes
of cackling geese in Alaska. Closing subsistence harvest had a slight positive effect
on juvenile survival, but a negative effect on sub-adult and adult survival. The clo-
sure of subsistence harvest always succeeded closure of cackling goose recreational
hunting.
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FIGURE 4.5. Optimal management strategies for two management frameworks;
the current regulatory framework, and an alternative regulatory management frame-
work that was suggested in Chapter 2. Dark gray represents closing subsistence
and recreational hunting and occurs when population sizes fall below 80,000 birds.
Medium gray indicates restrictive harvest regulations and occurs between 80,000
and 235,000 birds for the current management framework and 80,000 and 223,000
birds for the alternative management framework. Light gray indicates liberal har-
vest regulations and occurs above 235,000 for the current management framework
and above 223,000 birds for the alternative management framework.
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Araújo, M. B., and M. Luoto. 2007. The importance of biotic interactions for modelling species

distributions under climate change. Global Ecology and Biogeography 16:743–753.

Athan, T. W., and P. Y. Papalambros. 1996. A note on weighted criteria methods for compromise

solutions in multi-objective optimization. Engineering Optimization 27:155–176.

Balachandran, M., and J. Gero. 1984. A comparison of three methods for generating the Pareto

optimal set. Engineering Optimization 7:319–336.

Barron, H., and C. P. Schmidt. 1988. Sensitivity analysis of additive multiattribute value models.

Operations Research 36:122–127.

118



Belton, V., and T. Stewart. 2002. Multiple criteria decision analysis: an integrated approach.

Springer Science & Business Media.

Berger, J. O. 2013. Statistical decision theory and Bayesian analysis. Springer Science & Business

Media.

Bernoulli, D. 1954. Exposition of a new theory on the measurement of risk. Econometrica 22:23–

36.

Besbeas, P., S. N. Freeman, B. J. Morgan, and E. A. Catchpole. 2002. Integrating mark–recapture–

recovery and census data to estimate animal abundance and demographic parameters. Biometrics

58:540–547.

Bridgman, P. W. 1922. Dimensional analysis. Yale University Press.

Brooks, S., R. King, and B. Morgan. 2004. A Bayesian approach to combining animal abundance

and demographic data. Animal Biodiversity and Conservation 27:515–529.

Brown, K., W. N. Adger, E. Tompkins, P. Bacon, D. Shim, and K. Young. 2001. Trade-off analysis

for marine protected area management. Ecological Economics 37:417–434.

Burnham, K. P., and D. R. Anderson. 2002. Model selection and multimodel inference: a practical

information-theoretic approach. Springer Science & Business Media.

Caswell, H. 2001. Matrix population models. Wiley Online Library.

Caswell, H., and M. Fujiwara. 2004. Beyond survival estimation: mark-recapture, matrix popula-

tion models, and population dynamics. Animal Biodiversity and Conservation 27:471–488.

Caughley, G. 1977. Analysis of vertebrate populations. The Blackburn Press.

Cave, V. M., R. King, and S. N. Freeman. 2010. An integrated population model from con-

stant effort bird-ringing data. Journal of Agricultural, Biological, and Environmental Statistics

15:119–137.

Chades, I., G. Chapron, M.-J. Cros, F. Garcia, and R. Sabbadin,

2014. MDPtoolbox: Markov Decision Processes toolbox. URL

http://CRAN.R-project.org/package=MDPtoolbox.

Chankong, V., and Y. Haimes. 1983. Multiobjective Decision Making Theory and methodology.

Elsevier Science Publishing.

119



Charnes, A., and W. Cooper. 1977. Goal programming and multiple objective optimizations. Part

I European Journal Operational Research 1:39–54.

Coello, C. C., G. B. Lamont, and D. A. Van Veldhuizen. 2007. Evolutionary algorithms for solving

multi-objective problems. Springer Science & Business Media.

Cohon, J. L. 2013. Multiobjective programming and planning. Courier Dover Publications.

Converse, S. J., C. T. Moore, M. J. Folk, and M. C. Runge. 2013. A matter of tradeoffs: reintro-

duction as a multiple objective decision. The Journal of Wildlife Management 77:1145–1156.

Cressie, N. A. 1996. Change of support and the modifiable areal unit problem. Geographical

Systems 3:159–180.

Das, I., and J. Dennis, 1999. An improved technique for choosing parameters for Pareto surface

generation using normal-boundary intersection. Pages 411–413 in Short Paper Proceedings of

the Third World Congress of Structural and Multidisciplinary Optimization, volume 2.

Das, I., and J. E. Dennis. 1997. A closer look at drawbacks of minimizing weighted sums of objec-

tives for Pareto set generation in multicriteria optimization problems. Structural Optimization

14:63–69.

Davis, A. J., M. B. Hooten, M. L. Phillips, and P. F. Doherty. 2014. An integrated modeling

approach to estimating Gunnison sage-grouse population dynamics: combining index and de-

mographic data. Ecology and Evolution 4:4247–4257.

Deb, K. 2001. Multi-objective optimization using evolutionary algorithms. John Wiley & Sons.

Diaz-Balteiro, L., and C. Romero. 2008. Making forestry decisions with multiple criteria: a review

and an assessment. Forest Ecology and Management 255:3222–3241.

Dorazio, R. M., and F. A. Johnson. 2003. Bayesian inference and decision theory-a framework for

decision making in natural resource management. Ecological Applications 13:556–563.

Doubleday, W. G. 1975. Harvesting in matrix population models. Biometrics 31:189–200.

Duke, J. M., and R. Aull-Hyde. 2002. Identifying public preferences for land preservation using

the analytic hierarchy process. Ecological Economics 42:131–145.

Edwards, W. 1977. How to use multiattribute utility measurement for social decisionmaking. IEEE

Transactions on Systems, Man and Cybernetics 7:326–340.

120



Flockhart, D., J.-B. Pichancourt, D. R. Norris, and T. G. Martin. 2015. Unravelling the annual

cycle in a migratory animal: breeding-season habitat loss drives population declines of monarch

butterflies. Journal of Animal Ecology 84:155–165.

Folk, T. H., R. R. Holmes, and J. B. Grand. 2007. Variation in northern bobwhite demography

along two temporal scales. Population Ecology 49:211–219.

Francis, C. M., M. H. Richards, F. Cooke, and R. F. Rockwell. 1992a. Changes in survival rates

of lesser snow geese with age and breeding status. The Auk 109:731–747.

Francis, C. M., M. H. Richards, F. Cooke, and R. F. Rockwell. 1992b. Long-term changes in

survival rates of lesser snow geese. Ecology 73:1346–1362.

Frederiksen, M., R. D. Hearn, C. Mitchell, A. Sigfússon, R. L. Swann, and A. D. Fox. 2004. The
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Mustajoki, J., R. P. Hämäläinen, and A. Salo. 2005. Decision support by interval

SMART/SWINGincorporating imprecision in the SMART and SWING methods. Decision Sci-

ences 36:317–339.

Naves, L. C., 2010. Alaska Migratory Bird Subsistence Harvest Estimates. Technical report,

Alaska Department of Fish and Game Division of Subsistence and Alaska Migratory Bird Co-

Management Council.

125



Naves, L. C., 2011. Alaska migratory bird subsistence harvest estimates. Technical report,

Alaska Department of Fish and Game Division of Subsistence and Alaska Migratory Bird Co-

Management Council.

Naves, L. C., 2012. Alaska Migratory Bird Subsistence Harvest Estimates. Technical report,

Alaska Department of Fish and Game Division of Subsistence and Alaska Migratory Bird Co-

Management Council.

Nelson, U. C., and H. A. Hansen. 1959. The cackling goose, its migration and management. US

Fish and Wildlife Service, Bureau of Sport Fisheries and Wildlife.

O’Neill, E. 1979. Fourteen years of goose populations and trends at Klamath Basin refuges.

Management and biology of Pacific Flyway geese. 0regon State Univ. Bookstores, Inc. .

Osyczka, A. 1984. Multicriterion optimization in engineering with fortran programs. John Wiley

and Sons.

Pacific Flyway Council. 1999. Pacific Flyway management plan for the cackling Canada goose.

Cackling Canada Goose Subcomm., Pacific Flyway Study Comm. [c/o USFWS], Portland, OR.

Unpubl. Rept. 36 pp. + appendices.

Pacific Flyway Council. 2015. Pacific Flyway Council Recommendations, Informational Notes,

and Subcommittee Reports. Pacific Flyway Council, Omaha, NE. Unpubl. Rept. 145 pp.

Pamplin Jr, W. L., 1986. Cooperative efforts to halt population declines of geese nesting on

Alaska’s Yukon-Kuskokwim Delta. Pages 487–506 in Transactions of the North American

Wildlife and Natural Resources Conference, volume 51.
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APPENDIX A

FULL-CONDITIONAL DISTRIBUTIONS
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j=2

[mi,j|α]zi,jI
1−zi,j
mi,j=0[zi,j|β]

zi,j−1 [β]

[α|·] ∝
n
∏

i=1

J
∏

j=2

[mi,j|α]zi,j [α]

[zi,j|·] ∝ [mi,j|α]zi,jI
1−zi,j
mi,j=0[zi,j|β]

zi,j−1I
1−zi,j−1

zi,j=0 [zi,j+1|β]
zi,jI

1−zi,j
zi,j+1=0

[f |·] ∝
T
∏

t=1

[yt|β, ft, σ
2][f ]

[σ2|·] ∝
T
∏

t=1

[yt|β, ft, σ
2][σ2]
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APPENDIX B

MARKING AND RESIGHT DATA

Table B.1: Marking and resight numbers of neck-collared cackling geese by time and location.

Year New

marked

juve-

niles

New

marked

adults

Jul–Aug

(AK)

Oct–

Nov

(CA,

OR,

WA)

Dec–

Feb

(CA,

OR,

WA)

Mar–

Apr

(CA,

OR,

WA)

Apr–

May

(AK)

Recap

(AK)

1982 150 73 0 85 74 32 0 0

1983 71 39 0 92 58 34 0 0

1984 72 47 0 0 0 0 0 0

1985 168 418 0 509 436 325 11 0

1986 245 168 100 572 598 374 36 1

1987 363 170 165 565 501 386 89 12

1988 205 140 97 657 574 297 153 7

1989 205 318 225 745 679 548 149 17

1990 187 369 263 902 869 491 183 22

1991 211 335 283 849 943 610 214 19

1992 297 303 367 959 746 601 252 17

1993 221 394 262 996 1059 839 214 16

1994 288 310 81 911 1050 878 218 24

1995 365 206 434 897 845 735 189 18

1996 258 113 96 731 698 755 207 54

1997 397 152 194 684 868 761 273 72

1998 392 198 77 469 717 654 99 23

1999 285 69 1 493 831 542 185 18
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Table B.1: Marking and resight numbers of neck-collared cackling geese by time and location.

Year New

marked

juve-

niles

New

marked

adults

Jul–Aug

(AK)

Oct–

Nov

(CA,

OR,

WA)

Dec–

Feb

(CA,

OR,

WA)

Mar–

Apr

(CA,

OR,

WA)

Apr–

May

(AK)

Recap

(AK)

2000 244 97 0 457 645 362 56 13

2001 202 79 0 91 407 310 47 35

2002 148 93 0 73 189 155 30 1

2003 11 10 0 135 260 203 0 32

2004 59 8 0 0 0 0 0 0

2005 0 0 0 0 0 0 0 0

2006 0 0 0 0 0 0 0 0

2007 0 0 0 0 0 0 0 0

2008 0 0 0 0 0 0 0 0

2009 0 0 0 0 0 0 0 0

2010 0 0 0 0 0 0 0 0

2011 50 536 0 333 187 240 0 0

2012 0 210 0 148 87 98 0 0

2013 0 547 0 384 318 329 0 0
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APPENDIX C

COMPLETE MODEL STATEMENT FOR CHAPTER 1 AND

CHAPTER 4

yt ∼N(nt, σ
2) t = 1982, ..., 2014

mi,j ∼















0 , zi,j = 0

Bern(ps,t) , zi,j = 1

j = 1, ..., 192

zi,j ∼















0 , zi,j−1 = 0

Bern(φs,a,sex,t) , zi,j−1 = 1

nt = nsub,t + nad,t

nsub,t =
nad,t−1

2
ft−1φjuv,t−1 t = 1983, ..., 2014

nad,t = nad,t−1φad,t−1 + nsub,t−1φsub,t−1

φa,t = Esex[φa,sex,t] t = 1982, ..., 2013

φa,sex,t =
6
∏

s=1

φs,a,sex,t,

logit(φ) = Xβ

β ∼ N(0, 1.52I)

logit(p) = Wα
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α ∼ N(0, 1.52I)

ft ∼ Unif(0, 10)

Nad,1 = 0.8y1

Nsub,1 = y1 −Nad,1

σ2 = IG(mean = 5, 0002, var = 5, 0002)
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APPENDIX D

CHAPTER 1 MCMC ALGORITHM

run.mcmc <- function(y,Y,X,W,I,beta.tune.1,beta.tune.2,alpha.tune,

fec.tune,starting.values,n.iter,name){

#

# (08June2014) Perry Williams [last modified: 09May2015]

# Integrated Population Model With state-space formulation of

# Cormack-Jolly-Seber model for mark-resight data (CJS)

# and population counts.Y

#

# Updates:

# 20 Sept 2014 added c++ code for Z sampler

# 22 Sept 2014 changed posterior distribution of nsub,x,w

# 29 Sept 2014 fixed c++ code for Z sampler

# 05 October added interactions for survival

# 04 Dec 2014 changed year to a random variable

# 09 Jan 2015 added adult data

# 12 Jan 2015 got rid of uncertainty in nsub, x,q

# 16 Jan 2015 added 2011-2013 data.

# 09 May 2015 Simplified for chapter 1

###

### Subroutines and packages

###

library(mvtnorm) # multivariate normal

library(Rcpp)

library(RcppArmadillo)

library(truncnorm)

library(compiler)

sourceCpp(’˜/Dropbox/PhD/chapter1/analysis/

supporting.material/cackler.binom.cpp’)

expit=function(x){

1/(1+exp(-x))

}

logit=function(x){

log(x/(1-x))
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}

calc.annual.survival=function(beta,I,seasons){

years=32

annual.survival.juv=numeric(years*2)

annual.survival.sub=numeric(years*2)

annual.survival.ad=numeric(years*2)

beta=matrix(beta,nrow=dim(I)[1],ncol=dim(I)[2],byrow=T)

survival=1/(1+exp(-rowSums(beta*I)))

for(i in 1:(years*2)){

annual.survival.juv[i]=

prod(survival[(i*18-17):(i*18-17+5)])

}

for(i in 1:(years*2)){

annual.survival.sub[i]=

prod(survival[(i*18-11):(i*18-11+5)])

}

for(i in 1:(years*2)){

annual.survival.ad[i]=

prod(survival[(i*18-5):(i*18)])

}

male.juv.survival=annual.survival.juv[seq(1,

length(annual.survival.juv), 2)]

male.sub.survival=annual.survival.sub[seq(1,

length(annual.survival.sub), 2)]

male.ad.survival=annual.survival.ad[seq(1,

length(annual.survival.ad), 2)]

female.juv.survival=annual.survival.juv[seq(2,

length(annual.survival.juv), 2)]

female.sub.survival=annual.survival.sub[seq(2,

length(annual.survival.sub), 2)]

female.ad.survival=annual.survival.ad[seq(2,

length(annual.survival.ad), 2)]

juv.survival=rowMeans(cbind(male.juv.survival,

female.juv.survival))

sub.survival=rowMeans(cbind(male.sub.survival,

female.sub.survival))

ad.survival=rowMeans(cbind(male.ad.survival,

female.ad.survival))

list(male.juv.survival=male.juv.survival,

male.sub.survival=male.sub.survival,

male.ad.survival=male.ad.survival,

female.juv.survival=female.juv.survival,

female.sub.survival=female.sub.survival,

female.ad.survival=female.ad.survival,

juv.survival=juv.survival,sub.survival=
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sub.survival,ad.survival=ad.survival

)

}

calc.pop=function(N.ad1,N.sub1,N.ad,N.sub,fec,

phi.juv,phi.sub,phi.ad){

N.sub[1]=N.ad1/2*fec[1]*phi.juv[1]

N.ad[1]=N.sub1*phi.sub[1]+N.ad1*phi.ad[1]

for(i in 2:years){

N.sub[i]=(N.ad[i-1]/2)*fec[i]*phi.juv[i]

N.ad[i]=N.sub[i-1]*phi.sub[i]+N.ad[i-1]*phi.ad[i]

}

N=c((N.ad1+N.sub1),(N.sub+N.ad))

mu=N

list(mu=mu,N.ad=N.ad,N.sub=N.sub,N=N)

}

invgammastrt <- function(igmn,igvar){

q <- 2+(igmnˆ2)/igvar

r <- 1/(igmn*(q-1))

list(r=r,q=q)

}

###

### Dimensions

###

years=length(y)-1

n=dim(Y)[1]

J=dim(Y)[2]

seasons=(J-1)/years

ages=3

no.betas=length(X)

no.alphas=length(W)

###

### Hyperparameters

###

s2.hyper=invgammastrt(5000ˆ2,5000ˆ2)

sigma2.r=s2.hyper[1]

sigma2.q=s2.hyper[2]

sigma2.b=1.5ˆ2

mu.b.p=rep(0,seasons)

mu.b.phi=rep(0,no.betas)

N.ad1=y[1]*.8
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N.sub1=y[1]*.2

###

### Empty Matrices, and acceptance parameters

###

accept.N.ad1=0

accept.N.sub1=0

accept.fec=0

fec.tune.save=numeric(n.iter)

accept.alpha=0

accept.beta.1=0

accept.beta.2=0

beta.tune.save.1=numeric(n.iter)

beta.tune.save.2=numeric(n.iter)

N.sub=numeric(years)

N.ad=numeric(years)

sigma2.y.save=numeric(n.iter)

fec.save=matrix(NA,nrow=n.iter,ncol=years)

alpha.save=matrix(NA,nrow=n.iter,ncol=no.alphas)

beta.save=matrix(NA,nrow=n.iter,ncol=no.betas)

mu.save=matrix(NA,nrow=n.iter,ncol=years+1)

N.ad.save=matrix(NA,nrow=n.iter,ncol=years)

N.sub.save=matrix(NA,nrow=n.iter,ncol=years)

N.save=matrix(NA,nrow=n.iter,ncol=years+1)

###

### Starting values

###

beta.star=rnorm(40,0,1)

Y_tmp=Y

Y_tmp[is.na(Y_tmp)]=0

alpha=starting.values[[2]]

alpha[c(8,28:34)]=-10

logit.p=W[[1]]*alpha[1]

for(i in 2:no.alphas){

logit.p=logit.p+W[[i]]*alpha[i]

}

p=expit(logit.p)

beta=starting.values[[3]]

beta[c(12,31:37)]=0

logit.phi=X[[1]]*beta[1]

for(i in 2:no.betas){

logit.phi=logit.phi+X[[i]]*beta[i]

}
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phi=expit(logit.phi)

N.ad=starting.values[[4]]

N.sub=starting.values[[5]]

N=starting.values[[6]]

phi.juv=rep(0.6,32)

phi.sub=rep(0.8,32)

phi.ad=rep(0.8,32)

Z=matrix(0,nrow=n,ncol=J)

Z[,1]=1

for(t in 2:(J-1)){

Y.tmp=apply(Y[,t:J],1,sum,na.rm=TRUE)==0

#if bird not seen in any future years Y.tmp=TRUE

Z.tmp=Z[,t-1]==1 & Z[,t+1]==0

Z[,t]=ifelse(Y.tmp,

#if bird not seen this year (Y.tmp==TRUE):

ifelse(Z.tmp,

#if bird alive last

#year and dead next year Z.tmp=TRUE:

rbinom(n,1,(phi[,t-1]*(1-phi[,t-1])*
(1-p[,t-1]))/

((phi[,t-1]*(1-phi[,t-1])*
(1-p[,t-1]))+1-phi[,t-1])),

#survival probability is binom dist.

#with conjugate parameters for phi

ifelse(Z[,t-1]==0,0,

#if bird dead last year

#its dead this year

1)),

#if bird alive last year

#and alive next year its alive this year

1)

#if birds seen sometime in the future Y.tmp==1,

#its still alive.

}

ZY.tmp=Z[,J-1]==1 & Y[,J]==0

#If alive penultimate year but not seen in

#ultimate year

ZY2.tmp=Z[,J-1]==0 & Y[,J]==0

#If dead in penultimate year and not seen in ultimate year

Z[,J]=ifelse(ZY.tmp,rbinom(n,1,(phi[,J-1]*(1-p[,J-1]))/

((phi[,J-1]*(1-p[,J-1]))+

1-phi[,J-1])),ifelse(ZY2.tmp,0,1))

fec=pmin(starting.values[[1]],4.5)

pop=calc.pop(N.ad1,N.sub1,N.ad,N.sub,fec,phi.juv,phi.sub,phi.ad)

survive=calc.annual.survival(beta,I,seasons)

Z_new=matrix(0,nrow=n,ncol=J)
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Z_new[,1]=1

###

### MCMC Loop

###

for(k in 1:n.iter){

if(k%%100==0) cat(k," ")

###

### Sample sigma2.y

###

tmp.q=length(y)/2+sigma2.q$q

tmp.r=(1/sigma2.r$r+.5*sum((y-pop$mu)ˆ2))ˆ(-1)

sigma2.y=1/rgamma(1,tmp.q,,tmp.r)

###

### Sample fec

###

# if(accept.fec/k < 0.3){ # used during burn in to tune

# fec.tune=max(fec.tune -.001, 0.0001)

# }

# if(accept.fec/k >0.5){

# fec.tune=fec.tune+0.001

# }

fec.star=rtruncnorm(years,a=0,b=15,fec,fec.tune)

pop.star=calc.pop(N.ad1,N.sub1,pop$N.ad,pop$N.sub,

fec.star,survive$juv.survival,survive$sub.survival,

survive$ad.survival)

pop=calc.pop(N.ad1,N.sub1,pop$N.ad,pop$N.sub,fec,

survive$juv.survival,survive$sub.survival,

survive$ad.survival)

#Metropolis-Hastings

mh1 = sum(dnorm(y,pop.star$mu,sqrt(sigma2.y),log=TRUE)) +

sum(log(dtruncnorm(fec,a=0,b=Inf,fec.star,fec.tune)))

mh2 = sum(dnorm(y,pop$mu,sqrt(sigma2.y),log=TRUE)) +

sum(log(dtruncnorm(fec.star,a=0,b=Inf,fec,fec.tune)))

mh=min(exp(mh1-mh2),1)

if(mh>runif(1)){

pop=pop.star

fec=fec.star

accept.fec=accept.fec+1

}
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####

#### Sample Z

####

Z=sample_Z(J,as.matrix(Y_tmp),Z,Z_new,phi,p)

ZY.tmp=Z[,J-1]==1 & Y_tmp[,J]==0

ZY2.tmp=Z[,J-1]==0 & Y_tmp[,J]==0

Z[,J]=ifelse(ZY.tmp,rbinom(n,1,(phi[,J-1]*(1-p[,J-1]))/

((phi[,J-1]*(1-p[,J-1]))+1-

phi[,J-1])),ifelse(ZY2.tmp,0,1))

###

### Sample alphas

###

#Proposal

alpha.star=rnorm(no.alphas,alpha,alpha.tune)

alpha.star[c(8,28:34)]=-10

logit.p.star=W[[1]]*alpha.star[1]

logit.p=W[[1]]*alpha[1]

for(i in 2:no.alphas){

logit.p.star=logit.p.star+W[[i]]*alpha.star[i]

logit.p=logit.p+W[[i]]*alpha[i]

}

p.star=expit(logit.p.star)

p.star.na=p.star

p=expit(logit.p)

p.na=p

p.star.na[is.na(Y[,2:(dim(Y)[2])])]=NA

p.na[is.na(Y[,2:(dim(Y)[2])])]=NA

#Metropolis-Hastings

mh1 = sum(dbinom(Y[,-1][Z[,-1]==1],1,

p.star.na[Z[,-1]==1],log=TRUE),na.rm=TRUE) +

dnorm(alpha.star,mu.b.p,sqrt(sigma2.b),log=TRUE)

mh2 = sum(dbinom(Y[,-1][Z[,-1]==1],1,p.na[Z[,-1]==1],

log=TRUE),na.rm=TRUE) +

dnorm(alpha,mu.b.p,sqrt(sigma2.b),log=TRUE)

mh=min(exp(mh1-mh2),1)

if(mh>runif(1)){

alpha=alpha.star

p=p.star

accept.alpha=accept.alpha+1

}
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###

### Sample betas 1

###

#Proposal

# if(accept.beta.1/k < 0.3){beta.tune.1= #used for tuning only

# max(beta.tune.1 -.001, 0.0001)}

# if(accept.beta.1/k >0.5){beta.tune.1=

# beta.tune.1+0.001}

beta.star[1:9]=rnorm(9,beta[1:9],beta.tune.1)

beta.star[10:40]=beta[10:40]

beta.star[c(12,31:37)]=0

logit.phi.star=X[[1]]*beta.star[1]

logit.phi=X[[1]]*beta[1]

for(i in 2:40){

logit.phi.star=logit.phi.star+X[[i]]*beta.star[i]

logit.phi=logit.phi+X[[i]]*beta[i]

}

phi.star=expit(logit.phi.star)

phi.star.na=phi.star

phi=expit(logit.phi)

phi.na=phi

phi.star.na[is.na(Y[,2:(dim(Y)[2])])]=NA

phi.na[is.na(Y[,2:(dim(Y)[2])])]=NA

survive.star=calc.annual.survival(beta.star,I,seasons)

survive=calc.annual.survival(beta,I,seasons)

pop.star=calc.pop(N.ad1,N.sub1,pop$N.ad,pop$N.sub,fec,

survive.star$juv.survival,

survive.star$sub.survival,

survive.star$ad.survival)

pop=calc.pop(N.ad1,N.sub1,pop$N.ad,pop$N.sub,fec,

survive$juv.survival,

survive$sub.survival,

survive$ad.survival)

#Metropolis-Hastings

mh1 = sum(dbinom(Z[,-1],Z[,-J],phi.star.na,log=TRUE),

na.rm=TRUE) + sum(dnorm(y,pop.star$mu,sqrt(sigma2.y),

log=TRUE)) + sum(dnorm(beta.star,mu.b.phi,sqrt(sigma2.b),

log=TRUE))

mh2 = sum(dbinom(Z[,-1],Z[,-J],phi.na,log=TRUE),na.rm=TRUE) +

sum(dnorm(y,pop$mu,sqrt(sigma2.y),log=TRUE)) +

sum(dnorm(beta,mu.b.phi,sqrt(sigma2.b),log=TRUE))

mh=min(exp(mh1-mh2),1)

if(mh>runif(1)){

beta=beta.star
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pop=pop.star

survive=survive.star

phi=phi.star

accept.beta.1=accept.beta.1+1

}

###

### Sample betas 2

###

#Proposal

# if(accept.beta.2/k < 0.3){beta.tune.2= #used for tuning only

# max(beta.tune.2 -.001, 0.0001)}

# if(accept.beta.2/k >0.5){beta.tune.2=

# beta.tune.2+0.001}

beta.star[10:40]=rnorm(31,beta[10:40],beta.tune.2)

beta.star[1:9]=beta[1:9]

beta.star[c(12,31:37)]=0

logit.phi.star=X[[1]]*beta.star[1]

logit.phi=X[[1]]*beta[1]

for(i in 2:40){

logit.phi.star=logit.phi.star+X[[i]]*beta.star[i]

logit.phi=logit.phi+X[[i]]*beta[i]

}

phi.star=expit(logit.phi.star)

phi.star.na=phi.star

phi=expit(logit.phi)

phi.na=phi

phi.star.na[is.na(Y[,2:(dim(Y)[2])])]=NA

phi.na[is.na(Y[,2:(dim(Y)[2])])]=NA

survive.star=calc.annual.survival(beta.star,I,seasons)

survive=calc.annual.survival(beta,I,seasons)

pop.star=calc.pop(N.ad1,N.sub1,pop$N.ad,pop$N.sub,fec,

survive.star$juv.survival,

survive.star$sub.survival,

survive.star$ad.survival)

pop=calc.pop(N.ad1,N.sub1,pop$N.ad,pop$N.sub,fec,

survive$juv.survival,

survive$sub.survival,

survive$ad.survival)

#Metropolis-Hastings

mh1 = sum(dbinom(Z[,-1],Z[,-J],phi.star.na,log=TRUE),

na.rm=TRUE) + sum(dnorm(y,pop.star$mu,sqrt(sigma2.y),

log=TRUE)) + sum(dnorm(beta.star,mu.b.phi,sqrt(sigma2.b),

log=TRUE))
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mh2 = sum(dbinom(Z[,-1],Z[,-J],phi.na,log=TRUE),na.rm=TRUE) +

sum(dnorm(y,pop$mu,sqrt(sigma2.y),log=TRUE)) +

sum(dnorm(beta,mu.b.phi,sqrt(sigma2.b),log=TRUE))

mh=min(exp(mh1-mh2),1)

if(mh>runif(1)){

beta=beta.star

pop=pop.star

survive=survive.star

phi=phi.star

accept.beta.2=accept.beta.2+1

}

###

### Save Samples

###

sigma2.y.save[k]=sigma2.y

fec.save[k,]=fec

alpha.save[k,]=alpha

beta.save[k,]=beta

N.ad.save[k,]=pop$N.ad

N.sub.save[k,]=pop$N.sub

N.save[k,]=pop$N

# beta.tune.save.1[k]=beta.tune.1

# beta.tune.save.2[k]=beta.tune.2

# fec.tune.save[k]=fec.tune

if(k%%100==0){

out=list(sigma2.y.save=sigma2.y.save,

fec.save=fec.save,

alpha.save=alpha.save,

beta.save=beta.save,

N.ad.save=N.ad.save,

N.sub.save=N.sub.save,

N.save=N.save,

accept.beta.1=accept.beta.1,

accept.beta.2=accept.beta.2,

accept.alpha=accept.alpha,

accept.fec=accept.fec,

# beta.tune.save.1=beta.tune.save.1,

# beta.tune.save.2=beta.tune.save.2,

# fec.tune.save=fec.tune.save

)

save(out,file=name)

}

cat("\n")

}
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}
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APPENDIX E

CHAPTER 4 MCMC ALGORITHM

run.mcmc <- function(y,Y,X,W,I,beta.tune,alpha.tune,

fec.tune,starting.values,n.iter,name){

#

# (08June2014) Perry Williams [last modified: 5Dec2014]

# Integrated Population Model With state-space formulation of

# Cormack-Jolly-Seber model for mark-resight data (CJS)

# and population counts.Y

#

# Updates:

# 20 Sept 2014 added c++ code for Z sampler

# 22 Sept 2014 changed posterior distribution of nsub,x,w

# 29 Sept 2014 fixed c++ code for Z sampler

# 05 October added interactions for survival

# 04 Dec 2014 changed year to a random variable

# 09 Jan 2015 added adult data

# 12 Jan 2015 got rid of uncertainty in nsub, x,q

# 16 Jan 2015 added 2011-2013 data.

# 09 May 2015 Simplified for chapter 1

# 03 Aug 2015 changed for chapter 3

###

### Subroutines and packages

###

library(mvtnorm) # multivariate normal

library(Rcpp)

library(RcppArmadillo)

library(truncnorm)

library(compiler)

sourceCpp(’˜/Dropbox/PhD/chapter1/analysis/

supporting.material/cackler.binom.cpp’)

expit=function(x){

1/(1+exp(-x))

}

logit=function(x){
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log(x/(1-x))

}

invgammastrt <- function(igmn,igvar){

q <- 2+(igmnˆ2)/igvar

r <- 1/(igmn*(q-1))

list(r=r,q=q)

}

I1=c(0,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) # No hunting

I2=c(1,1,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,

0,0,0,0,0,1,1,1,1,1,1,1,1,0,0) # Restrictive

I3=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,

1,1,1,1,1,0,0,0,0,0,0,0,0,0,0) # Liberal

I.=cbind(I1,I2,I3)

calc.annual.survival=function(beta,I.){

# closed, restrictive, liberal

juv.surv=c(

expit(beta[1])* #d closed

expit(beta[1]+beta[2])* #r

expit(beta[1]+beta[3])* #a

expit(beta[1]+beta[4])* #c

expit(beta[1]+beta[5])* #e

expit(beta[1]+beta[6]), #f

expit(beta[1]+beta[9])* #d restrictive

expit(beta[1]+beta[2])*
expit(beta[1]+beta[3])*
expit(beta[1]+beta[4]+beta[9])*
expit(beta[1]+beta[5]+beta[9])*
expit(beta[1]+beta[6]),

expit(beta[1]+beta[10])* #d liberal

expit(beta[1]+beta[2])*
expit(beta[1]+beta[3])*
expit(beta[1]+beta[4]+beta[10])*
expit(beta[1]+beta[5]+beta[10])*
expit(beta[1]+beta[6]))

sub.surv=c(

expit(beta[1]+beta[7])* #d closed

expit(beta[1]+beta[2]+beta[7])* #r

expit(beta[1]+beta[3]+beta[7])* #a

expit(beta[1]+beta[4]+beta[7])* #c

expit(beta[1]+beta[5]+beta[7])* #e

expit(beta[1]+beta[6]+beta[7]+beta[12]+beta[16]), #f

expit(beta[1]+beta[7]+beta[9])* #d restrictive
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expit(beta[1]+beta[2]+beta[7])*
expit(beta[1]+beta[3]+beta[7])*
expit(beta[1]+beta[4]+beta[7]+beta[9]+beta[13])*
expit(beta[1]+beta[5]+beta[7]+beta[9]+beta[13])*
expit(beta[1]+beta[6]+beta[7]),

expit(beta[1]+beta[7]+beta[10]+beta[14])* #a liberal

expit(beta[1]+beta[2]+beta[7])*
expit(beta[1]+beta[3]+beta[7])*
expit(beta[1]+beta[4]+beta[7]+beta[10]+beta[14])*
expit(beta[1]+beta[5]+beta[7]+beta[10]+beta[14])*
expit(beta[1]+beta[6]+beta[7]))

ad.surv=c(

expit(beta[1]+beta[8])* #d Closed

expit(beta[1]+beta[2]+beta[8])* #r

expit(beta[1]+beta[3]+beta[8])* #a

expit(beta[1]+beta[4]+beta[8])* #c

expit(beta[1]+beta[5]+beta[8])* #e

expit(beta[1]+beta[6]+beta[8]+beta[12]+beta[20]), #f

expit(beta[1]+beta[8]+beta[9]+beta[17])* #r restrictive

expit(beta[1]+beta[2]+beta[8])*
expit(beta[1]+beta[3]+beta[8])*
expit(beta[1]+beta[4]+beta[8]+beta[9]+beta[17])*
expit(beta[1]+beta[5]+beta[8]+beta[9]+beta[17])*
expit(beta[1]+beta[6]+beta[8]),

expit(beta[1]+beta[8]+beta[10]+beta[18])* #a liberal

expit(beta[1]+beta[2]+beta[8])*
expit(beta[1]+beta[3]+beta[8])*
expit(beta[1]+beta[4]+beta[8]+beta[10]+beta[18])*
expit(beta[1]+beta[5]+beta[8]+beta[10]+beta[18])*
expit(beta[1]+beta[6]+beta[8]))

juv.annual=juv.surv[1]*I.[,1]+juv.surv[2]*I.[,2]+

juv.surv[3]*I.[,3]

sub.annual=sub.surv[1]*I.[,1]+sub.surv[2]*I.[,2]+

sub.surv[3]*I.[,3]

ad.annual=ad.surv[1]*I.[,1]+ad.surv[2]*I.[,2]+

ad.surv[3]*I.[,3]

cbind(juv.annual,sub.annual,ad.annual)

}

calc.pop=function(N.ad1,N.sub1,N.ad,N.sub,

fec,phi.juv,phi.sub,phi.ad){

N.sub[1]=N.ad1/2*fec[1]*phi.juv[1]

N.ad[1]=N.sub1*phi.sub[1]+N.ad1*phi.ad[1]

for(i in 2:years){

N.sub[i]=(N.ad[i-1]/2)*fec[i]*phi.juv[i]

N.ad[i]=N.sub[i-1]*phi.sub[i]+N.ad[i-1]*phi.ad[i]
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}

N=c((N.ad1+N.sub1),(N.sub+N.ad))

mu=N

list(mu=mu,N.ad=N.ad,N.sub=N.sub,N=N)

}

###

### Dimensions

###

years=length(y)-1

n=dim(Y)[1]

J=dim(Y)[2]

seasons=(J-1)/years

ages=3

no.betas=length(X)

no.alphas=length(W)

###

### Hyperparameters

###

hp.sigma2=invgammastrt(5000ˆ2,5000ˆ2)

sigma2.r=hp.sigma2$r

sigma2.q=hp.sigma2$q

sigma2.b=1.5ˆ2

mu.alpha=rep(0,seasons)

mu.beta=rep(0,no.betas)

###

### Empty Matrices, and acceptance parameters

###

accept.N.ad1=0

accept.N.sub1=0

accept.fec=0

accept.alpha=0

accept.beta=0

sigma2.y.save=numeric(n.iter)

N.ad1.save=numeric(n.iter)

N.sub1.save=numeric(n.iter)

N.sub=numeric(years)

N.ad=numeric(years)

fec.save=matrix(NA,nrow=n.iter,ncol=years)

alpha.save=matrix(NA,nrow=n.iter,ncol=no.alphas)
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beta.save=matrix(NA,nrow=n.iter,ncol=no.betas)

mu.save=matrix(NA,nrow=n.iter,ncol=years+1)

N.ad.save=matrix(NA,nrow=n.iter,ncol=years)

N.sub.save=matrix(NA,nrow=n.iter,ncol=years)

N.save=matrix(NA,nrow=n.iter,ncol=years+1)

beta.tune.save=numeric(n.iter)

fec.tune.save=numeric(n.iter)

###

### Starting Values

###

Y_tmp=Y

Y_tmp[is.na(Y_tmp)]=0

sigma2.y=5000ˆ2

N.ad1=y[1]*.8

N.sub1=y[1]*.2

alpha=starting.values[[2]]

alpha[c(8,28:34)]=-10

logit.p=W[[1]]*alpha[1]

for(i in 2:no.alphas){

logit.p=logit.p+W[[i]]*alpha[i]

}

p=expit(logit.p)

beta=starting.values[[3]]

beta[c(11,15)]=0

logit.phi=X[[1]]*beta[1]

for(i in 2:no.betas){

logit.phi=logit.phi+X[[i]]*beta[i]

}

phi=expit(logit.phi)

N.ad=starting.values[[3]]

N.sub=starting.values[[5]]

N=starting.values[[6]]

phi.juv=starting.values[[7]]

phi.sub=starting.values[[8]]

phi.ad=starting.values[[9]]

Z=matrix(0,nrow=n,ncol=J)

Z[,1]=1

for(t in 2:(J-1)){

Y.tmp=apply(Y[,t:J],1,sum,na.rm=TRUE)==0

#if bird not seen in any future years Y.tmp=TRUE

Z.tmp=Z[,t-1]==1 & Z[,t+1]==0

Z[,t]=ifelse(Y.tmp,

#if bird not seen this year (Y.tmp==TRUE):

ifelse(Z.tmp,

151



#if bird alive last year

#and dead next year Z.tmp=TRUE:

rbinom(n,1,(phi[,t-1]*(1-phi[,t-1])*
(1-p[,t-1]))/

((phi[,t-1]*(1-phi[,t-1])*
(1-p[,t-1]))+1-phi[,t-1])),

#survival probability is

#binom dist. with conjugate

#parameters for phi

ifelse(Z[,t-1]==0,0,

#if bird dead last year

#its dead this year

1)),

#if bird alive last year

#and alive next year its alive this year

1)

#if birds seen sometime in the

#future Y.tmp==1, its still alive.

}

ZY.tmp=Z[,J-1]==1 & Y[,J]==0

#If alive penultimate year but not seen in final year

ZY2.tmp=Z[,J-1]==0 & Y[,J]==0

#If dead in penultimate year and not seen in final year

Z[,J]=ifelse(ZY.tmp,rbinom(n,1,(phi[,J-1]*(1-p[,J-1]))/

((phi[,J-1]*(1-p[,J-1]))+

1-phi[,J-1])),

ifelse(ZY2.tmp,0,1))

fec=starting.values[[1]]

pop=calc.pop(N.ad1,N.sub1,N.ad,N.sub,fec,

phi.juv,phi.sub,phi.ad)

survive=calc.annual.survival(beta,I.)

Z_new=matrix(0,nrow=n,ncol=J)

Z_new[,1]=1

###

### MCMC Loop

###

for(k in 1:n.iter){

if(k%%100==0) cat(k," ")

###

### Sample sigma2.y

###

tmp.q=length(y)/2+sigma2.q
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tmp.r=(1/sigma2.r+.5*sum((y-pop$mu)ˆ2))ˆ(-1)

sigma2.y=1/rgamma(1,tmp.q,,tmp.r)

###

### Sample fec

###

# if(accept.fec/k < 0.3){ #used for tuning only

# fec.tune=max(fec.tune -.001, 0.0001)

# }

# if(accept.fec/k >0.5){

# fec.tune=fec.tune+0.001

# }

fec.star=rtruncnorm(years,a=0,b=15,

fec,fec.tune)

pop.star=calc.pop(N.ad1,N.sub1,pop$N.ad,

pop$N.sub,fec.star,

survive[,1],survive[,2],survive[,3])

pop=calc.pop(N.ad1,N.sub1,pop$N.ad,pop$N.sub,fec,

survive[,1],survive[,2], survive[,3])

#Metropolis-Hastings

mh1 = sum(dnorm(y,pop.star$mu,sqrt(sigma2.y),

log=TRUE)) +sum(log(dtruncnorm(fec,

a=0,b=Inf,fec.star,fec.tune)))

mh2 = sum(dnorm(y,pop$mu,sqrt(sigma2.y),

log=TRUE)) + sum(log(dtruncnorm(fec.star,

a=0,b=Inf,fec,fec.tune)))

mh=min(exp(mh1-mh2),1)

if(mh>runif(1)){

pop=pop.star

fec=fec.star

accept.fec=accept.fec+1

}

####

#### Sample Z

####

Z=sample_Z(J,as.matrix(Y_tmp),Z,Z_new,phi,p)

ZY.tmp=Z[,J-1]==1 & Y_tmp[,J]==0

ZY2.tmp=Z[,J-1]==0 & Y_tmp[,J]==0

Z[,J]=ifelse(ZY.tmp,rbinom(n,1,(phi[,J-1]*(1-p[,J-1]))/

((phi[,J-1]*(1-p[,J-1]))+1-phi[,J-1])),

ifelse(ZY2.tmp,0,1))
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###

### Sample alphas

###

#Proposal

alpha.star=rnorm(no.alphas,alpha,alpha.tune)

alpha.star[c(8,28:34)]=-10

logit.p.star=W[[1]]*alpha.star[1]

logit.p=W[[1]]*alpha[1]

for(i in 2:no.alphas){

logit.p.star=logit.p.star+W[[i]]*alpha.star[i]

logit.p=logit.p+W[[i]]*alpha[i]

}

p.star=expit(logit.p.star)

p.star.na=p.star

p=expit(logit.p)

p.na=p

p.star.na[is.na(Y[,2:(dim(Y)[2])])]=NA

p.na[is.na(Y[,2:(dim(Y)[2])])]=NA

#Metropolis-Hastings

mh1 = sum(dbinom(Y[,-1][Z[,-1]==1],

1,p.star.na[Z[,-1]==1],log=TRUE),na.rm=TRUE) +

dnorm(alpha.star,mu.alpha,sqrt(sigma2.b),log=TRUE)

mh2 = sum(dbinom(Y[,-1][Z[,-1]==1],1,

p.na[Z[,-1]==1],log=TRUE),na.rm=TRUE) +

dnorm(alpha,mu.alpha,sqrt(sigma2.b),log=TRUE)

mh=min(exp(mh1-mh2),1)

if(mh>runif(1)){

alpha=alpha.star

p=p.star

accept.alpha=accept.alpha+1

}

###

### Sample betas

###

#Proposal

# if(accept.beta/k < 0.3){beta.tune=max( #used for tuning only

# beta.tune -.001, 0.0001)}

# if(accept.beta/k >0.5){beta.tune=beta.tune+0.001}

beta.star=rnorm(no.betas,beta,beta.tune)

beta.star[c(11,15)]=0

logit.phi.star=X[[1]]*beta.star[1]

logit.phi=X[[1]]*beta[1]
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for(i in 2:no.betas){

logit.phi.star=logit.phi.star+X[[i]]*beta.star[i]

logit.phi=logit.phi+X[[i]]*beta[i]

}

phi.star=expit(logit.phi.star)

phi.star.na=phi.star

phi=expit(logit.phi)

phi.na=phi

phi.star.na[is.na(Y[,2:(dim(Y)[2])])]=NA

phi.na[is.na(Y[,2:(dim(Y)[2])])]=NA

survive.star=calc.annual.survival(beta.star,I.)

survive=calc.annual.survival(beta,I.)

pop.star=calc.pop(N.ad1,N.sub1,pop$N.ad,pop$N.sub,fec,

survive.star[,1],survive.star[,2],survive.star[,3])

pop=calc.pop(N.ad1,N.sub1,pop$N.ad,pop$N.sub,fec,

survive[,1],survive[,2],survive[,3])

#Metropolis-Hastings

mh1 = sum(dbinom(Z[,-1],Z[,-J],

phi.star.na,log=TRUE),na.rm=TRUE) +

sum(dnorm(y,pop.star$mu,sqrt(sigma2.y),log=TRUE)) +

sum(dnorm(beta.star,mu.beta,sqrt(sigma2.b),log=TRUE))

mh2 = sum(dbinom(Z[,-1],Z[,-J],phi.na,log=TRUE),

na.rm=TRUE) + sum(dnorm(y,pop$mu,sqrt(sigma2.y),

log=TRUE)) + sum(dnorm(beta,mu.beta,sqrt(sigma2.b),

log=TRUE))

mh=min(exp(mh1-mh2),1)

if(mh>runif(1)){

beta=beta.star

pop=pop.star

survive=survive.star

phi=phi.star

accept.beta=accept.beta+1

}

###

### Save Samples

###

sigma2.y.save[k]=sigma2.y

fec.save[k,]=fec

alpha.save[k,]=alpha

beta.save[k,]=beta

N.ad.save[k,]=pop$N.ad

N.sub.save[k,]=pop$N.sub

N.save[k,]=pop$N
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beta.tune.save[k]=beta.tune

fec.tune.save[k]=fec.tune

if(k%%100==0){

out=list(fec.save=fec.save,

alpha.save=alpha.save,

beta.save=beta.save,

N.ad.save=N.ad.save,

N.sub.save=N.sub.save,

N.save=N.save,

accept.beta=accept.beta,

accept.alpha=accept.alpha,

accept.fec=accept.fec,

# fec.tune.save=fec.tune.save,

# beta.tune.save=beta.tune.save

)

save(out,file=name)

}

cat("\n")

}

}
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