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ABSTRACT

A DIRECT D-BAR RECONSTRUCTION ALGORITHM FOR COMPLEX

ADMITTIVITIES IN W 2,∞(Ω) FOR THE 2-D EIT PROBLEM

Electrical Impedance Tomography (EIT) is a fairly new, portable, relatively inexpensive,

imaging system that requires no ionizing radiation. Electrodes are placed at the surface of a

body and low frequency, low amplitude current is applied on the electrodes, and the resulting

voltage value on each electrode is measured. By applying a basis of current patterns, one can

obtain sufficient information to recover the complex admittivity distribution of the region

in the plane of the electrodes. In 2000, Elisa Francini presented a nearly constructive proof

that was the first approach using D-bar methods to solve the full nonlinear problem for

twice-differentiable conductivities and permittivities. In this thesis the necessary formulas

to turn her proof into a direct D-bar reconstruction algorithm that solves the full nonlinear

admittivity problem in 2-D are described. Reconstructions for simulated Finite Element

data for circular and non-circular domains are presented.

ii



TABLE OF CONTENTS

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 Theoretical Advancements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Reconstruction Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Linearization Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.2 Iterative Nonlinear Methods . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.3 Direct Nonlinear Methods . . . . . . . . . . . . . . . . . . . . . . . . 11

3. Overview of Francini’s Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1 A Brief Summary of Francini’s Proof . . . . . . . . . . . . . . . . . . . . . . 18

4. Solution of the Forward DkM = QM Problem . . . . . . . . . . . . . . . . . . . 20

4.1 Approach 1: Using Finite Differences . . . . . . . . . . . . . . . . . . . . . . 21

4.1.1 Solving System I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1.2 Solving System II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1.3 The Test Problem for the Finite Difference Solver . . . . . . . . . . 26

4.2 Approach 2: Using Vainikko’s One Grid Method . . . . . . . . . . . . . . . 31

4.2.1 Solving System I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2.2 Solving System II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3 Comparison of Forward Solvers . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.4 Boundary Values for the CGO Solutions M(z, k) for the Unit Disc . . . . . 38

5. New Theoretical Components to Complete the Reconstruction Algorithm . . . . 50

5.1 Step 1: Connecting the CGO Solutions Ψ to the D-N Data Λγ . . . . . . . 50

5.1.1 Derivation of Formulas for Exponentially Growing Solutions u1 and u2 51

iii



5.1.2 Determination of the CGO Solutions Ψ12 and Ψ21 for z ∈ ∂Ω . . . . 60

5.2 Step 4: Recovery of the matrix potential Q(z) from the CGOs M(z, k) . . . 63

5.3 Theoretical BIE Formulas for the CGO solutions Ψ(z, k) . . . . . . . . . . . 65

5.3.1 Theoretical BIE Formulas for the CGOs Ψ(z, k) - Knudsen Approach 66

5.3.2 Additional BIE Formulas for the CGO Solutions Ψ11 and Ψ22 . . . . 75

6. Implementation of the Complete Reconstruction Algorithm for Circular Domains 79

6.1 The Steps of the Full Nonlinear Reconstruction Algorithm . . . . . . . . . . 79

6.2 Step 0: Implementation of the D-N Map on the Boundary of the Unit Disc: 80

6.2.1 Discretization of the Dirichlet-to-Neumann Map Λγ . . . . . . . . . 81

6.3 Step 1: Implementation of the BIEs for the Exponentially Growing Solutions

u1(z, k) and u2(z, k) for z on the Boundary of a Circular Domain: . . . . . 83

6.4 Step 2: Implementation of the BIEs for the CGO Solutions Ψ12(z, k) and

Ψ21(z, k) for z on the boundary of a Circular Domain: . . . . . . . . . . . . 89

6.5 Step 3: Evaluation of the Scattering transform S(k) . . . . . . . . . . . . . 91

6.6 Step 4: Solution of the ∂̄k-equation . . . . . . . . . . . . . . . . . . . . . . . 91

6.7 Step 5: Computation of the Matrix Potential Q via the M to Q Formulas . 93

6.8 Step 6: Recovery of the admittivity γ(z) . . . . . . . . . . . . . . . . . . . . 97

6.8.1 Numerical Implementation of Q to γ Formulas . . . . . . . . . . . . 97

6.9 Numerical Results for Trigonometric Current Patterns . . . . . . . . . . . . 98

6.10 Numerical Results for Skip Current Patterns . . . . . . . . . . . . . . . . . 111

6.10.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7. Non-Circular Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.1 Modification of the Inverse Solver . . . . . . . . . . . . . . . . . . . . . . . . 117

7.2 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.2.1 Simulated Data Examples: Trigonometric Current Patterns . . . . . 119

7.2.2 Simulated Data Examples: Skip-3 Current Patterns . . . . . . . . . 140

8. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

iv



Appendix 167

A. A Detailed Derivation of the Admittivity Equation . . . . . . . . . . . . . . . . . 168

A.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

A.2 Maxwell’s Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

A.3 Electrode Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

A.3.1 Continuum Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

A.3.2 Gap Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

A.3.3 Shunt Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

A.3.4 Complete Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

B. Solving the Forward Problem using the Finite Element Method . . . . . . . . . . 177

B.1 Finite Element Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

B.2 Trigonometric Current Patterns . . . . . . . . . . . . . . . . . . . . . . . . . 178

B.3 The Finite Element Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

v



LIST OF FIGURES

4.1 True M ’s for the test problem using for k = 1− 2 i. . . . . . . . . . . . . . . 29

4.2 Reconstructed M ’s for the test problem using for k = 1− 2 i. . . . . . . . . 32

4.3 The test phantom for the Forward Solvers. . . . . . . . . . . . . . . . . . . . 36

4.4 Comparison of FD and Vainikko Solvers for k = 0 for M11 and M22. . . . . 37

4.5 Comparison of FD and Vainikko Solvers for k = 0 for M12 and M21. . . . . 39

4.6 Comparison of FD and Vainikko Solvers for k = −0.5 + 0.2 i for M11 and M22 40

4.7 Comparison of FD and Vainikko Solvers for k = −0.5 + 0.2 i for M12 and M21 41

4.8 Comparison of FD and Vainikko Solvers for k = 1− 2 i for M11 and M22 . . 42

4.9 Comparison of FD and Vainikko Solvers for k = 1− 2 i for M12 and M21 . . 43

4.10 Comparison of FD and Vainikko Solvers for k = −5 + 10 i for M11 and M22 44

4.11 Comparison of FD and Vainikko Solvers for k = −5 + 10 i for M12 and M21 45

4.12 Plots of M on ∂Ω for k = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.13 Plots of M on ∂Ω for k = −0.5 + 0.2 i . . . . . . . . . . . . . . . . . . . . . 47

4.14 Plots of M on ∂Ω for k = 1− 2 i . . . . . . . . . . . . . . . . . . . . . . . . 48

4.15 Plots of M on ∂Ω for k = −5 + 10 i . . . . . . . . . . . . . . . . . . . . . . . 49

6.1 G̃0 comparison on the unit disc. . . . . . . . . . . . . . . . . . . . . . . . . 88

6.2 G̃0 comparison on a disc of radius r = 0.150m. . . . . . . . . . . . . . . . . 89

6.3 The test problem in Example 1. . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.4 Scattering data for Example 1. . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.5 CGO solutions M(z, 0) for Example 1. . . . . . . . . . . . . . . . . . . . . . 102

6.6 Example 1 reconstruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.7 The test problem in Example 2. . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.8 Scattering data for Example 2. . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.9 CGO solutions M(z, 0) for Example 2. . . . . . . . . . . . . . . . . . . . . . 105

vi



6.10 Example 2 reconstruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.11 The test problem in Example 3. . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.12 Scattering data for Example 3. . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.13 Example 3 reconstructions for zero and 0.01% added noise. . . . . . . . . . 109

6.14 Example 3 reconstruction with 0.1% added noise. . . . . . . . . . . . . . . . 110

6.15 Circular test phantom for the non-unitary background example using skip-3

current patterns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.16 Reconstruction for the non-unitary example using skip-3 current patterns. . 116

7.1 The test phantom for Example 1. . . . . . . . . . . . . . . . . . . . . . . . . 120

7.2 Scattering Data for Example 1 using trigonometric current patterns. . . . . 122

7.3 CGO solutions M(z, 0) for Example 1 using trigonometric current patterns. 123

7.4 Reconstruction for Example 1 using trigonometric current patterns. . . . . 124

7.5 The test phantom for Example 2. . . . . . . . . . . . . . . . . . . . . . . . . 126

7.6 Scattering data for Example 2 using trigonometric current patterns. . . . . 127

7.7 Reconstruction for Example 2 using trigonometric current patterns. . . . . 128

7.8 Difference image for a resistive spine using trigonometric current patterns. . 129

7.9 The test phantom for Example 3. . . . . . . . . . . . . . . . . . . . . . . . . 131

7.10 Scattering data for Example 3 using trigonometric current patterns. . . . . 132

7.11 Reconstruction for Example 3 using trigonometric current patterns. . . . . 133

7.12 Difference image for a conductive tumor using trigonometric current patterns.134

7.13 The test phantom for Example 4. . . . . . . . . . . . . . . . . . . . . . . . . 136

7.14 Scattering data for Example 4 using trigonometric current patterns. . . . . 137

7.15 Reconstruction for Example 4 using trigonometric current patterns. . . . . 138

7.16 Difference image for conductive fluid using trigonometric current patterns. . 139

7.17 Scattering data for Example 1 using skip-3 current patterns. . . . . . . . . . 142

7.18 Reconstruction for Example 1 using skip-3 current patterns. . . . . . . . . . 143

7.19 Scattering data for Example 2 using skip-3 current patterns. . . . . . . . . . 145

7.20 Reconstruction for Example 2 using skip-3 current patterns. . . . . . . . . . 146

7.21 Difference image for a resistive spine using skip-3 current patterns. . . . . . 147

7.22 Scattering data for Example 3 using skip-3 current patterns. . . . . . . . . . 149

vii



7.23 Reconstruction for Example 3 using skip-3 current patterns. . . . . . . . . . 150

7.24 Difference image for a conductive tumor using skip-3 current patterns. . . . 151

B.1 The first three trigonometric current patterns . . . . . . . . . . . . . . . . . 179

viii



1. INTRODUCTION

Electrical Impedance Tomography (EIT) is a noninvasive electronic imaging technique that

generates an image of the admittivity distribution inside a domain with very limited prior

knowledge of its electrical properties. In practice, electrodes are attached to the exterior

of the domain, for example around the perimeter of a human chest, and a set of linearly

independent current patterns is applied. The currents penetrate the domain (to various

depths), and the resulting voltages on all of the electrodes are measured. In the human

body, organs, tissue, bone, etc. have different electrical properties and thus different con-

ductivities and permittivities (see Table 1.1). With EIT, these differences are exploited and

the admittivity (conductivity along with permittivity) distribution is reconstructed in the

plane of the electrodes using the electrical measurements taken at the surface. Electrical

conductivity measures the ease with which a steady current can flow, whereas electrical per-

mittivity measures the ability of a material to store a charge. Mathematically, recovering

the admittivity of the interior from measurements of potential and current on the surface

is a severely ill-posed inverse problem.

As EIT is a portable, relatively inexpensive, real-time imaging system that requires no

ionizing radiation, it is very suitable for bedside monitoring. The medical applications of

EIT are varied and include (but are not limited to): diagnosing breast cancer [KINS06,

KPH+02, IKK+07], neonatal pulmonary measurement [Pha11], monitoring and evaluating

lung function in patients [BBM94, SNM04, FSPS07, VBOM04, FPE09, FHHW02, CGMS05,

MCCG06] (this is of particular interest while patients are on respirators in hospitals), and

diagnosing pulmonary edema and embolus [SGS94, KNR99, FAS07, ZRBS] just to name

a few. David Isaacson and his research group at Rensselaer Polytechnic Institute (RPI)

are working with Massachusetts General Hospital in Boston, Massachusetts USA. They are

combining EIT simultaneously with mammograms for breast cancer detection [KNSI07].

EIT also has many industrial and engineering applications such as detection of ground-

1



Tab. 1.1: Conductivity and permittivity values (in vivo) for tissues and organs in the human chest
[FCI+91, SK57] for 100kHz.

Tissue Conductivity
(

S
m

)
Permittivity

(
µF
m

)

Blood 0.67 0.05
Liver 0.28 0.49
Cardiac Muscle 0.63 (longitudinal) 0.88 (average)

0.23 (transversal)
Lung 0.10 (expiration) 0.44

0.04 (inspiration) 0.22
Fat 0.036 0.18

water contamination [RDB+96, DRJ98], land mine detection [CMGW06], subsurface flow

remediation and monitoring [DR95, DRLN92, RDL+93, SSS30], and nondestructive evalu-

ation [WB95, XPB89].

Using Maxwell’s Equations for electromagnetic waves with spatial frequency ω, and

assuming linear constitutive relations, one can derive the admittivity equation,

∇ · (γ(z)∇u(z)) = 0, z ∈ Ω ⊂ R2

u(z)|∂Ω = f(z), z ∈ ∂Ω,
(1.1)

a generalized Laplace equation where u(z) is the electric potential

γ(z) = σ(z) + iωε(z),

is the admittivity in the interior of the domain Ω, σ(z) represents the electrical conductivity

of the body, ε(z) is the electrical permittivity of the body, and ω is the spatial frequency

of the applied current. A detailed derivation of the admittivity equation and the required

boundary conditions may be found in Appendix A.

Applying a known voltage on the boundary ∂Ω,

u(z) = f(z), z ∈ ∂Ω,

corresponds to a Dirichlet boundary condition. Measuring the resulting current density

distribution J(z) on the boundary corresponds to

γ(z)
∂u

∂ν
(z) = J(z), z ∈ ∂Ω,

2



a Neumann boundary condition. Therefore, the electrical measurements performed on the

surface of the body correspond to knowledge of the Dirichlet-to-Neumann data Λγ : f →
Λγf for Re(γ), Im(γ) ∈ C1(Ω), f ∈ H1/2(∂Ω),

Λγf = γ
∂u

∂ν

∣∣∣∣
∂Ω

∈ H−1/2(∂Ω), (1.2)

where ν denotes the outward pointing unit normal vector to the surface ∂Ω, and u is the

unique solution to (1.1) in H1(Ω) such that u|∂Ω = f . The theory requires knowledge of the

Dirichlet-to-Neumann map, but in practice current patterns are applied instead of voltages.

This is done since the D-N map amplifies noise, whereas the N-D map dampens noise. As

we apply a set of linearly independent current patterns, the Neumann-to-Dirichlet map can

tell you what voltages will occur for any given current pattern. Physically, the Dirichlet-to-

Neumann map Λγ tells you what current density distribution will result on the boundary

∂Ω for any given applied voltage. We often call Λγ a voltage to current density map.

Notice that there are two obvious problems that we could be trying to solve in (1.1):

recover the electric potential u(z) in the interior (the forward problem), or recover the

admittivity γ(z) in the interior (the inverse problem). We are interested in solving the

latter, which is often called an inverse coefficient problem.

Many advancements have been made in the real valued inverse admittivity problem

(commonly called the inverse conductivity problem) regarding the existence and unique-

ness of solutions as well as reconstruction algorithms since Calderón first posed the inverse

conductivity problem in 1980 [Cal80]. These are discussed in Section 2. In 2000, Elisa

Francini, [Fra00], extended the real-valued conductivity results of Brown and Uhlmann,

[BU97], to complex-valued admittivities which include the electrical permittivity of a body,

ε(z). Reconstructing permittivity will allow doctors to diagnose problems that were previ-

ously invisible with a conductivity-only approach (e.g., tissue necrosis in transplant organs,

distinguishing pathologies in the ICU, such as the difference between a pneumothorax (zero

permittivity) and hyperinflation (low non-zero permittivity), both of which have high resis-

tivity).

Francini proved results regarding existence and uniqueness of solutions to the admittivity

equation and outlined an approach for solving the inverse problem via a ∂̄-method. In this

3



paper, we identify R2 with C so that z = x + i y where x, y ∈ R and use the standard

notations for the ∂z and ∂̄z-derivatives,

∂z =
1
2

(
∂

∂ x
− i

∂

∂ y

)
∂̄z =

1
2

(
∂

∂ x
+ i

∂

∂ y

)
.

Francini transforms the second order partial differential equation (1.1) to a first order

system with both ∂ and ∂̄ derivatives in z,

DΨ−QΨ = 0, (1.3)

where

D =
(

∂̄z 0
0 ∂z

)

and

Q(z) =
(

0 −1
2 ∂z (log(γ(z)))

−1
2 ∂̄z (log(γ(z))) 0

)
=

(
0 Q12(z)

Q21(z) 0

)
.

We refer to the matrix Q(z) as a potential due to the analog to the Schrödinger poten-

tial. Next, Francini looks for exponentially growing solutions to (1.3) with the following

asymptotic behavior:

Ψ(z, k) =
(

ei kz 0
0 e− i kz̄

)
M(z, k), where k ∈ C and M ∼

(
1 0
0 1

)
, as |k| or |z| → ∞.

These complex geometrical optics (CGO) solutions are the key to the direct reconstruction

algorithm since the potential Q, and hence γ, can be computed directly from the elements

of the CGO solutions M (see Theorem 6.2 of [Fra00] or my more computationally practical

Theorem 10).

Another key function in the reconstruction algorithm is the scattering transform. The

scattering transform S(k), a matrix, is a nonlinear Fourier transform of the potential matrix

Q defined by

S12(k) =
i
π

∫

Ω
e(ξ,−k̄)Q12(ξ)M22(ξ, k) dµ(ξ) (1.4)

S21(k) = − i
π

∫

Ω
e(ξ, k)Q21(ξ)M11(ξ, k) dµ(ξ), (1.5)

where

e(z, k) = ei(zk+z̄k),

4



and supp(Q) ⊂ Ω.

Francini shows that the Dirichlet-to-Neumann map uniquely determines γ, but does

not provide a means of computing the scattering transform S(k) from the N-D map Λγ .

The remaining steps in her nearly constructive proof are to solve a D-bar equation in an

auxiliary complex frequency parameter k for the complex geometrical optics solutions M :

∂̄k M(z, k) = M(z, k̄)
(

e(z, k̄) 0
0 e(z,−k)

)
S(k), (1.6)

and finally to compute the matrix potential Q from the following formula

Q(z) = lim
k0→∞

µ(Bρ(0))−1

∫

k:|k−k0|<r
DkM(z, k) dµ(k), for any ρ > 0,

where

DkM = DM − i k
(

1 0
0 −1

)
Moff,

and Moff denotes the off-diagonal part of the matrix M .

These steps can be summarized in the following diagram:

Λγ
1−→

no formula
in [Fra00]

S(k) 2−→ M(z, k) 3−→ Q(z).

The formula provided by [Fra00] for Step 3 is impractical for computation because it requires

a large k limit of integrals of the CGO solutions M(z, k) and its derivatives over balls of

increasing radii in k. In this thesis, a new formula for the recovery of the matrix potential

Q from the CGO solutions M that only involves only knowledge of M(z, 0) (i.e. one value

of k) and is very suitable for computation is derived (see Theorem 10).

Step 1 was partially completed by Alan Von Herrmann [Von09]. He showed the existence

of an exponentially growing solution, u1, to the admittivity equation ∇ · (γ∇u) = 0, and

the existence of a second exponentially growing solution u2 was proved in [HHMV12] where

u1 ∼ ei kz

i k
and u2 ∼ −e− i kz̄

i k
for z ∈ C and k ∈ C \0.

Boundary integral equations for these solutions involving the Dirichlet-to-Neumann map

Λγ were established (Theorem 31 of [Von09] and [HHMV12]),

u1(z, k) =
ei kz

ik
−

∫

∂Ω
Gk(z − ζ) (Λγ − Λ1) u1(ζ, k) dS(ζ)

u2(z, k) = −e− i kz̄

ik
−

∫

∂Ω
Gk(−z̄ + ζ̄) (Λγ − Λ1) u2(ζ, k) dS(ζ)

5



for all k ∈ C \0, z ∈ C, and γ = 1 on ∂Ω where Gk(z) is the Faddeev Green’s function,

[Fad66].

The work [Von09] did not, however, include a formula connecting the exponentially

growing solutions to the scattering transform S(k). Integration by parts on the definition

of S(k) ((5.43) and (5.44)) reveals that only the traces of the CGO solutions Ψ12 and Ψ21

are required to evaluate the scattering transforms S12(k) and S21(k) for k ∈ C. However,

the connection between the exponentially growing solutions u1, u2 and the entries of Ψ, the

CGO solutions,

Ψ12(z, k) = γ1/2(z) ∂̄z u2(z, k) and Ψ21(z, k) = γ1/2(z) ∂z u1(z, k)

requires the computation of the ∂z and ∂̄z derivatives of u1 and u2. This is not possible

since the D-N map only provides knowledge of u1 and u2 on ∂Ω.

In this thesis, formulas for the CGO solutions Ψ12 and Ψ21 on the boundary that connect

u1 and Ψ21 as well as u2 and Ψ12, completing the direct reconstruction algorithm are

established. The steps are then:

Λγ −→
1

u1|∂Ω, u2|∂Ω −→
2

Ψ12|∂Ω, Ψ21|∂Ω −→
3

S(k) −→
4

M(z, 0) −→
5

Q(z) −→
6

γ(z).

Each of these steps will be explained in detail in Chapters 5 and 6.

The numerical implementation of these steps for simulated Finite Element voltage data

is presented. This constitutes the first direct nonlinear reconstruction method for complex

admittivities in EIT. To verify the validity of the inverse solver, the forward problem (1.3)

was also solved for M(z, k). The scattering transform S(k) as subsequently computed,

solved the ∂̄k-equation (1.6) solved to recover M(z, 0), the matrix potential Q(z) recov-

ered from Theorem 10 using the CGO solutions M(z, 0), and finally the admittivity γ(z)

was reconstructed via the Generalized Cauchy Integral Formula. These verifications are

tantamount to implementing Francini’s results with the improved equation for the matrix

potential Q. Solving the forward problem (1.3) has proved invaluable in testing the recon-

struction formulas that we derived as well as the numerical implementation. While time

consuming, the payoff has been enormous.

In this thesis we examine how to solve the inverse admittivity problem in 2-D using a

direct ∂̄-solver approach. The remainder of this thesis is organized as follows. Chapter 2
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provides an overview of the major theoretical developments in the EIT problem as well

as various reconstruction approaches for numerically solving the inverse problem. Chap-

ter 3 describes Elisa Francini’s proof in greater detail. In Chapter 4, we solve the forward

DkM = QM problem (1.3) for a prescribed admittivity γ that will prove useful when

testing the full inverse solver. In Chapter 5, the theory behind the full reconstruction al-

gorithm is presented. Chapter 6 contains the numerical implementation of the full inverse

solver. Chapter 7 presents the modifications necessary to implement the complete inverse

solver on non-circular domains. As a test case, we examine chest-shaped phantoms. Chap-

ter 8 concludes the thesis with a summary of future work and directions. For the reader’s

convenience, two appendices are included. Appendix A gives a detailed derivation of the

admittivity equation from first principles. Appendix B presents the Finite Element formu-

lation of the Forward Admittivity Problem (1.1) that is needed to generate the Dirichlet-

to-Neumann map corresponding to a constant admittivity (which is needed in the first step

of the reconstruction algorithm as well as to generate the simulated voltage data to test the

algorithm). The results of the reconstruction algorithm on simulated data on a disk have

been submitted in the article [HHMV12].
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2. LITERATURE REVIEW

Following Calderón’s seminal paper in 1980, [Cal80], many advancements have been made

regarding existence and uniqueness of the solution γ and the associated regularity require-

ments. These developments have spurred much research to develop practical reconstruction

algorithms. In this section we describe some of the major contributions to both the theo-

retical and computational aspects of the inverse admittivity problem.

2.1 Theoretical Advancements

Alberto Calderón, who is often credited with the emergence of EIT due to his seminal work

in 1980 [Cal80], was inspired by geophysical applications. He was working in the area of

oil prospection and wondered if the differences in conductivities of marine sand, granite,

bedrock, etc. could be determined from measurements taken on the surface. Calderón

examined whether the conductivity, σ (not including permittivity), could be uniquely de-

termined from knowledge of the voltage-to-current density map, Λσ (the D-N map). Specifi-

cally, does Λσ1 = Λσ1 imply σ1 = σ2? He showed that the linearization of the map, σ → Λσ,

uniquely determines the conductivity. In addition, he provided the reader with a direct re-

construction algorithm for the linearized case which employs Fourier transforms. However,

as the range of the linearized map is not closed, this does not answer the more general

problem.

Following Calderón’s paper, many theoretical advancements have been made. The fol-

lowing is a brief description of some of the major contributions, but it is inevitably incom-

plete. See, for example, [CBKM08, Uhl99, AP06] for a more complete listing. In 1984,

Kohn and Vogelius showed that a smooth conductivity, σ ∈ C∞(Ω), and all its derivatives

can be determined uniquely on the boundary ∂Ω [KV84]. In a followup paper in 1985,

[KV85], they extended their results to piecewise analytic conductivities. In 1986, Sylvester

and Uhlmann showed uniqueness for near constant, smooth conductivities in the interior of

a two-dimensional domain Ω [SU86].
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Progress then stalled slightly for the two dimensional problem, while advancements were

made for Rn, n ≥ 3. In 1987, Sylvester and Uhlmann proved global uniqueness for smooth

isotropic conductivities, σ ∈ C∞(Ω) where Ω ⊂ Rn for n ≥ 3 (but not the planar case n = 2).

In 1988, Nachman et al. [NSU88] relaxed the smoothness condition to σ ∈ W 2,∞(Ω) for

n ≥ 3; then in [Nac88] the smoothness was relaxed further to σ ∈ C1,1(Ω̄) and locally

uniform Lipshitz boundary ∂Ω. Currently, the result by Brown and Torres [BT03], which

relaxes the smoothness condition to conductivities with in W 3/2,p for p > 2n, is the sharpest

known result for n ≥ 3.

It was not until 1996 that the global uniqueness question was answered in two dimen-

sions. Nachman proved uniqueness for σ ∈ W 2,p(Ω) for p > 1 and Lipschitz boundary,

[Nac96]. Nachman’s proof required transforming the conductivity equation ((1.1) with

ε = 0) to the Schrödinger equation. His proof was constructive in nature and outlined a

direct reconstruction method involving ∂̄-methods. The ∂̄-methods originated in evolution

equations and inverse scattering. The methods first appeared in the work by Gardner et al.

[GGKM67] on the Korteweg-de Vries (KdV) equation. Beals and Coifman later used the

∂̄-approach in inverse scattering theory [BC80, BC85, BC86]. In 1997, Brown and Uhlmann

[BU97], further reduced the smoothness assumption on σ to conductivities in W 1,p(Ω) for

p > 2 by re-writing the second order conductivity equation as a first order system. Their

proof was also constructive in nature and again used ∂̄-methods. In 2006, Astala and

Päivärinta [AP06] removed all regularity constraints on the conductivity so that all that is

required is σ ∈ L∞(Ω). Their proof was constructive, used ∂̄-methods, and involved trans-

forming the conductivity equation to the Beltrami equation and then using a transport

equation to move the solution from outside the domain Ω, inside. One might think this is

where the story ends; however, mathematicians are still pushing the envelope, and Astala,

Lassas, and Päivärinta are currently working on removing the boundedness condition on

the conductivity [ALP11]!

The works cited above all require γ = σ to be real valued. In 2000, Elisa Francini,

[Fra00], extended the work of Brown and Uhlmann [BU97] to complex valued conduc-

tivities (also called admittivities) γ(z) = σ(z) + iωε(z) for small permittivity ε, where

Re(γ), Im(γ) ∈ W 2,∞(Ω). Francini’s proof was also constructive in nature, missing only
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a viable connection to the voltage data. In 2008, Bukhgeim [Buk08] used Carleman esti-

mates to show that a real valued Schrödinger potential in W 2,p for p > 2 can be uniquely

determined from Cauchy data. He claims that the results extend to complex conductivities

(admittivities) as well without the smallness condition on the permittivities that is required

by Francini, i.e. for Re(γ), Im(γ) ∈ L∞(Ω). However, his proof is not constructive.

The majority of the results above are for isotropic conductivities. Regarding anisotropic

conductivities, it turns out that if two anisotropic conductivities produce the same voltages

at the boundary, then the conductivities differ by a diffeomorphism. For results involving

anisotropic conductivities, see [ALP05, SU03, Syl90]. Another popular area of work involves

detecting inclusions, see [IIN+07, IS00, IS04, UW08]. When the uniqueness requirement for

the conductivity is relaxed it becomes possible to hide an object. Much research has been

done regarding techniques for electromagnetic invisibility cloaking: see [GLU03b, GLU03a,

LTU03, GKLU07, GLU09].

2.2 Reconstruction Algorithms

Existence and uniqueness results are wonderful, but in practice we would like to be able to

use those results to create an image for diagnostic purposes. The reconstruction problem is

a severely ill-posed inverse problem, since very small differences in the measured boundary

data can correspond to drastically different interior conductivity/admittivity distributions

[Ale98]. The following is a brief overview of the main types of reconstruction algorithms

as well as some major contributions. Again, this list is inevitably incomplete. Table 2.1

summarizes the following methods.

2.2.1 Linearization Methods

Linearization of the (nonlinear) Dirichlet-to-Neumann map, Λγ , is only valid when the

admittivity differs very slightly from a known distribution. The method that Calderón

presented in [Cal80] is a linearization based approach and has been implemented on sim-

ulated data in [II89, IC91, CII90] as well as experimental data [BM08, BKIS08]. Other

common linearization methods include moment methods [AS91] and backprojection meth-

ods [BB90, BT91, SV90, KWT83]. In 1990, Simske et al. formally introduced a one-step

10



Tab. 2.1: Comparison of classes of reconstruction algorithms for EIT

Algorithm Nonlinear Fast Parallelizable Convergence
Class Theory

Linearization-based No Yes No No
Output least squares Yes No No No
Statistical Inversion Yes No No No
Layer Stripping Yes Yes No No (unstable)
D-bar Yes Yes Yes Yes

Newton-Raphson algorithm called NOSER [Sim87, CIN+90]. Other one-step Newton meth-

ods include [BM04, Blu97, MIN99].

2.2.2 Iterative Nonlinear Methods

There are a multitude of iterative methods to approximate the solution to the full nonlinear

problem. Murai and Kagawa presented an iterative Finite Element approach [MSI02a]

that was based on the sensitivity/lead theorem [Ges71, Leh72]. Edic et al. [EIS+98] and

Jain et al. [JIEN97] use a multiple step Newton-Raphson method to approximate the

solution to the complex valued inverse admittivity problem. Output least-squares methods

include [Bor01, BBP96, Dob92, DS94, DBABP99, KB92, VVSK99a] among many more,

and iterative Newton’s methods include [YWT87, HWWT91]. These methods are widely

used, but no convergence theory has been established, and therefore they may converge

to local, rather than global, minima. Kalman filter approaches take time dependence into

consideration [TGLA04, VKK98, HWWT91, MAF+10]. While many of these iterative

methods are promising, their efficiencies depend on if, and how quickly, they can converge

which can add considerable computational cost.

2.2.3 Direct Nonlinear Methods

Solution of the inverse conductivity problem via Bayesian inversion was first proposed by

Kaipio et al. [KKSV00]. Their approach uses Markov chain Monte-Carlo integration and

appears to be very promising; see, e.g., [HVWV02, RWW04]. However, the computational
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time and cost is large.

Layer stripping is a direct nonlinear method that reconstructs the admittivity in each

layer working in from the boundary [SCII91, Syl92, Yag87]. While this method provides

decent reconstructions for simulated data, it has proved to be unstable with experimental

data. However, the method does work well for reconstructing γ on the boundary. The

instability is introduced as we move through each successive layer of the domain.

Another very promising class of algorithms can be classified as ∂̄-methods (also called D-

bar methods), which are direct and solve the full nonlinear problem. Nachman’s constructive

proof in 1996 outlined a ∂̄ based reconstruction algorithm [Nac96] for conductivities in

W 2,p for p > 1. In 2000, Siltanen et al. [SMI00] presented the first ∂̄ reconstructions

of radially symmetric conductivity distributions based on Nachman’s proof. Since then,

more intricate conductivity distributions have been considered: high contrast conductivity

distributions [SMI01, MS03], simulated phantom chests with conductivity values similar

to those in real patients [MSI02b, KLMS09], experimental tank data for phantom chests

[IMNS04, Mur07, MM09] and experimental human chest data [IMNS06, DM10, MM09]. A

regularization strategy was established in [KLMS09] for the full nonlinear algorithm which

constitutes the only proof of a global regularization strategy for a nonlinear inverse problem.

In his Ph.D thesis [Knu02], Kim Knudsen studied the Brown-Uhlmann ∂̄-reconstruction

method for σ ∈ W 1,p, p > 2, that was outlined in [BU97]. He derived the missing formulas

needed to complete the nearly constructive proof and implemented the algorithm (see also

[KT04]). While the accuracy of the reconstructions were comparable to those produced

with the Nachman approach, the initial boundary integral that provides the connection

to the data is very sensitive to noise. Knudsen has continued working with ∂̄-methods

now moving into three dimensions [BKM11, DHK11]. Very recently, the ∂̄ reconstruction

algorithm presented by Astala and Päivärinta [AP06] for bounded L∞ conductivities was

implemented by Astala et al. [AMPS10, AMP+11].

As of yet, no one else has presented direct ∂̄ reconstructions for complex admittivities

(see our recent paper [HHMV12]). This Ph.D. project involves doing just that. In this thesis,

the missing details of the ∂̄-proof for complex admittivities with Re(γ), Im(γ) ∈ W 2,∞(Ω)

as presented by Francini [Fra00] are filled in and the algorithm is implemented for W 2,∞(Ω)

phantoms as well as phantoms with sharp organ boundaries (L∞(Ω)).
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3. OVERVIEW OF FRANCINI’S APPROACH

We aim to complete and implement Francini’s nearly constructive proof, as outlined in

[Fra00], for a complex admittivity

γ(z) = σ(z) + iωε(z) z ∈ Ω,

where σ(z) is the real valued electrical conductivity, ω = 2πf is a positive constant de-

pendent on a spatial frequency f of the applied current, ε(z) is the real valued electrical

permittivity, and Ω ⊂ R2 is a bounded open domain with a Lipschitz boundary (a regularity

condition). For the rest of the paper we assume that there exist positive constants σ0 and

E such that

σ(z) > σ0, z ∈ Ω ⊂ R2 (3.1)

and

‖σ‖W 1,∞(Ω), ‖ε‖W 1,∞(Ω) ≤ E. (3.2)

We extend σ and ε from Ω to all of R2 such that σ ≡ 1 and ε ≡ 0 outside a ball with

fixed radius containing Ω, and (3.1) and (3.2) hold for all of R2. In fact, all that is required

is that γ is constant outside that ball of fixed radius; for convenience we look at the case

where γ ≡ 1.

The constructive proof presented in [Fra00] only requires Re(γ), Im(γ) ∈ W 1,∞(Ω) but

in a few places she requires Re(γ), Im(γ) ∈ W 2,∞(Ω). Thus, the complete proof is only valid

for Re(γ), Im(γ) ∈ W 2,∞(Ω). In order to attain the original reduction in the regularity

requirement on γ, the admittivity equation (1.1) is reduced to a first order system involving

∂z and ∂̄z derivatives as follows.

Let u be a solution of

∇ · γ(z)∇u(z) = 0 for z ∈ Ω ⊂ R2. (3.3)
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Then the vector (
v
w

)
= γ1/2

(
∂z u
∂̄z u

)
, (3.4)

solves the system

D

(
v
w

)
−Q

(
v
w

)
= 0, (3.5)

where D is the operator

D =
(

∂̄z 0
0 ∂z

)
,

and Q is the matrix potential

Q =
(

0 −1
2 ∂z log γ(z)

−1
2 ∂̄z log γ(z) 0

)
. (3.6)

It can be verified that (3.4) solves (3.5) with a short computation:

D

(
v
w

)
−Q

(
v
w

)
=

(
∂̄z 0
0 ∂z

)(
v
w

)

−
(

0 −1
2 ∂z log γ(z)

−1
2 ∂̄z log γ(z) 0

)(
v
w

)

=
(

∂̄z v + 1
2 [∂z log γ(z)]w

∂z w + 1
2

[
∂̄z log γ(z)

]
v

)
. (3.7)

Using (3.3) and (3.4),

∂̄z v +
1
2

[∂z log γ(z)]w = ∂̄z

(
γ1/2 ∂z u

)
+

1
2

[∂z log γ(z)]
(
γ1/2 ∂̄z u

)

=
1
2
γ−1/2

(
∂̄z γ

)
(∂z u) + γ1/2 ∂̄z ∂z u +

1
2
γ−1/2

(
∂̄z u

)
(∂z γ)

=
1

2γ1/2

[(
∂̄z γ

)
(∂z u) +

(
∂̄z u

)
(∂z γ)

]
+

1
4
γ1/2∆u

=
1

4γ1/2
[∇γ · ∇u + γ∆u]

=
1

4γ1/2
[∇ · γ∇u]

=
1

4γ1/2
[0]

= 0.
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Similarly,

∂z w +
1
2

[
∂̄z log γ(z)

]
v = ∂z

(
γ1/2 ∂̄z u

)
+

1
2

[
∂̄z log γ(z)

] (
γ1/2 ∂z u

)

=
1
2
γ−1/2 (∂z γ)

(
∂̄z u

)
+ γ1/2 ∂z ∂̄z u +

1
2
γ−1/2 (∂z u)

(
∂̄z γ

)

=
1

2γ1/2

[
(∂z γ)

(
∂̄z u

)
+ (∂z u)

(
∂̄z γ

)]
+

1
4
γ1/2∆u

=
1

4γ1/2
[∇γ · ∇u + γ∆u]

=
1

4γ1/2
[∇ · γ∇u]

=
1

4γ1/2
[0]

= 0.

Notice, that if the admittivity γ is continuous and there exists a positive constant σ0 such

that σ > σ0, then γ1/2(z) and log γ(z) are well defined. Therefore, if u satisfies (3.3), the

vector (3.4) solves (3.5). Also notice that, due to the extension of γ ≡ constant outside a

fixed ball containing Ω, the matrix potential Q has compact support and is in L∞(R2) by

(3.2).

We can represent the entries of the potential matrix Q(z) in many ways. The following

will prove useful throughout the rest of the thesis:

Q12(z) = −1
2

∂z log(γ(z)) = −∂z γ(z)
2γ(z)

= −∂z γ1/2(z)
γ1/2(z)

, (3.8)

and similarly,

Q21(z) = −1
2

∂̄z log(γ(z)) = − ∂̄z γ(z)
2γ(z)

= − ∂̄z γ1/2(z)
γ1/2(z)

. (3.9)

Introducing a complex parameter k ∈ C, we will now look for a family of exponentially

growing solutions, Ψ(z, k), to the system

DΨ(z, k)−Q(z)Ψ(z, k) = 0, z, k ∈ C (3.10)

of the special form

Ψ(z, k) = M(z, k)
(

ei kz 0
0 e− i kz̄

)
, z, k ∈ C (3.11)

=
(

M11(z, k)ei kz M12(z, k)e− i kz̄

M21(z, k)ei kz M22(z, k)e− i kz̄

)
, z, k ∈ C, (3.12)
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where

M(z, k) =
(

M11(z, k) M12(z, k)
M21(z, k) M22(z, k)

)
∈ C2× 2,

is a complex valued matrix function such that ‖M(z, k) − I‖Lp(R2) < ∞ for some p > 2

where I is the 2× 2 identity matrix.

Using the exponentially growing solutions M defined by (3.12), we can write the system

in (3.10) as

∂̄z M11(z, k)−Q12(z)M21(z, k) = 0 (3.13)

(∂̄z− i k)M12(z, k)−Q12(z)M22(z, k) = 0 (3.14)

(∂z + i k)M21(z, k)−Q21(z)M11(z, k) = 0 (3.15)

∂z M22(z, k)−Q21(z)M12(z, k) = 0. (3.16)

In matrix form,

0 =
(

∂̄z M11 −Q12M21 (∂̄z− i k)M12 −Q12M22

(∂z + i k)M21 −Q21M11 ∂z M22 −Q21M12

)

=
[(

∂̄z M11 ∂̄z M12

∂z M21 ∂z M22

)
− i k

(
1 0
0 −1

)(
0 M12

M21 0

)]
−

(
Q12M21 Q12M22

Q21M11 Q21M12

)

or equivalently,

DkM(z, k)−Q(z)M(z, k) = 0, (3.17)

where

DkM = DM − i k
(

1 0
0 −1

)
Moff,

and Moff denotes the off-diagonal part of the matrix M . The action of the inverse of the

Dk operator on a generic matrix A is given by

D−1
k A =

(
∂̄z
−1

A11

(
∂̄z− i k

)−1
A12

(∂z + i k)−1 A21 ∂z
−1 A22

)

=
1
π

∫

C

(
1

z−ζ 0
0 1

z̄−ζ

)(
A11(ζ) A12(ζ)e(z − ζ, k̄)

A21e(z − ζ,−k) A22(ζ)

)
dµ(ζ)(3.18)

=

[
1
πz ∗A11

e(z,k̄)
πz ∗A12

e(z,−k)
πz̄ ∗A21

1
πz̄ ∗A22

]
, (3.19)

where ∗ denotes convolution and

e(z, k) = ei(zk+z̄k̄).
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Francini [Fra00] proved the following theorem guaranteeing existence and uniqueness of

CGO solutions M(z, k) to (3.17). For the proof, the reader is referred to the original paper

itself [Fra00].

Theorem 1 (Theorem 3.1 of [Fra00]). Let σ and ε satisfy the assumptions (3.1) and (3.2).

There exists a constant ω0 such that for every ω < ω0 and k ∈ C there is a unique solution

M(z, k) to (3.17) satisfying the condition

M(·, k)− I ∈ Lp
(
R2

)
for some p > 2.

One should note that Francini’s approach differs from the approach by Nachman [Nac96],

and earlier by Sylvester and Uhlmann [SU86], which both involve transforming the conduc-

tivity equation (the real valued admittivity version of (3.3)) to the Schrödinger equation

via the change of variables u = σ−1/2ũ,

−∆ũ + qũ = 0, where q(z) = −∆
(
σ1/2(z)

)

σ1/2(z)
. (3.20)

Writing the equation in this form requires the real valued conductivity to be twice differ-

entiable.

In the original approach by Brown and Uhlmann [BU97], for real valued conductivities

with one derivative in Lp, the conductivity equation was transformed to a first order system

in the same manner as Francini [Fra00]. However, there is an important distinction that

needs to be noted. As Brown and Uhlmann were working with real valued conductivities (

and no permittivity) their potential matrix, here denoted QBU to avoid confusion, possessed

symmetries that the complex case does not. In particular,

QBU(z) =
(

0 −1
2 ∂z log(σ(z))

−1
2 ∂̄z log(σ(z)) 0

)
=

(
0 q(z)

q(z) 0

)

where

q(z) = −1
2

∂z log(σ(z)).

In the complex admittivity case,

−1
2

∂z log(γ(z)) 6= −1
2

∂z log(γ(z)),

which leads to the loss of symmetry relations in the CGO solutions M(z, k) and subsequently

the scattering transforms S12(k) and S21(k). The end result is that when solving for a

complex admittivity coefficient, we are forced to, at times, solve two systems rather than

just one. C’est la vie.
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3.1 A Brief Summary of Francini’s Proof

The scattering transform S(k) is the starting point in Francini’s proof; she shows that it is

uniquely determined by the Dirichlet-to-Neumann map Λγ . This piece of Francini’s proof

is not constructive.

Theorem 2 (Theorem 5.2 of [Fra00]). Let Ω be a bounded domain with Lipschitz boundary.

Assume that γ1, γ2 ∈ W 1,∞(Ω) and Λγ1 = Λγ2. Then, we can extend γ1 and γ2 to R2 \(Ω)

so that S1 = S2, where S1 and S2 are the scattering matrices associated to γ1 and γ2.

The dependence of the CGO solutions M on the auxiliary complex frequency parameter

k is related to the scattering transform through the following ∂̄k system.

Theorem 3 (Theorem 4.1 of [Fra00]). Let σ and ε satisfy (3.1) and (3.2) and let M be as

in Theorem 1. The map k → M(·, k) is differentiable as a map into Lr
−β, and satisfies the

equation

∂̄k M(z, k) = M(z, k̄)
(

e(z, k̄) 0
0 e(z,−k)

)
S(k), (3.21)

where

S(k) =
i
π

∫

R2

(
e(z,−k̄) 0

0 −e(z, k)

)
(QM)off(z, k) dµ(z). (3.22)

Moreover, for every p > 2,

sup
k
‖M(z, ·)− I‖Lp(R2) ≤ K2,

where K2 depends on E, σ0, Ω, and p.

We solve the matrix of ∂̄k-equations for the matrix of CGO solutions Ψ(z, k) inside the

domain Ω. Notice that equation (3.21) involves both M(z, k) and M(z, k̄). This slight

difference will become important during the numerical implementation of the algorithm.

After solving (3.21) for the CGO solutions M(z, k), Francini proposes solving for the

matrix potential Q(z) via the following theorem.

Theorem 4 (Theorem 6.2 of [Fra00]). For any ρ > 0,

Q(z) = lim
k0→∞

µ(Bρ(0))−1

∫

k:|k−k0|<r
DkM(z, k) dµ(k). (3.23)
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Unfortunately, this method of recovering Q(z) is computationally impractical as it re-

quires integration of derivatives of the CGO solutions M(z, k), as well as M(z, k) itself, over

all k ∈ C by taking a large k limit of integrals over balls of increasing radii in k. In this

thesis a different formula for this step which requires only knowledge of the CGOs M(z, 0)

(i.e. M(z, k) for k = 0) is derived. A detailed explanation of this formula will follow in

Chapter 5.
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4. SOLUTION OF THE FORWARD DKM = QM PROBLEM

In order to evaluate the validity of the inverse solver, the forward DkM = QM problem

(3.17) needs to be solved for the CGO solutions M(z, k), with the asymptotic condition

M(·, k) − I ∈ Lp(R2) for some p > 2 as presented in Francini [Fra00]. The asymptotic

conditions for M correspond to M11(z, k), M22(z, k) ∼ 1 and M12(z, k), M21(z, k) ∼ 0 as

|z| → ∞, or |k| → ∞ where z, k ∈ C. Notice that Equation (3.13) is coupled with (3.15)

while (3.14) with (3.16). This allows us to solve two separate systems and therefore cut by

half the size of our original coupled system (3.17). We instead solve
{

∂̄z M11(z, k)−Q12(z)M21(z, k) = 0
(∂z + i k)M21(z, k)−Q21(z)M11(z, k) = 0

, (4.1)

and {
(∂̄z− i k)M12(z, k)−Q12(z)M22(z, k) = 0

∂z M22(z, k)−Q21(z)M12(z, k) = 0
. (4.2)

This chapter describes in detail how to solve this forward problem ((4.1) and (4.2)) for

the CGO solutions M(z, k) given a prescribed admittivity distribution γ(z). Solving the

forward DkM = QM problem to recover the CGO solutions is important for the following

reasons.

• By solving the forward problem for the CGO solutions M(z, k), we were able to

generate the first plots of the scattering transform S(k) for a complex admittivity

where Re(γ), Im(γ) ∈ W 2,∞(Ω)

S12(k) =
i
π

∫

Ω
e(ξ,−k̄)Q12(ξ)M22(ξ, k) dµ(ξ)

S21(k) = − i
π

∫

Ω
e(ξ, k)Q21(ξ)M11(ξ, k) dµ(ξ).

• Those scattering transforms were then used as ‘ideal’ initial data in the reconstruc-

tion algorithm. That is, The validity of the inverse ∂̄k-solver, M to Q formula, and

inversion of the ∂̄z operator to recover γ were tested:

scattering data → ∂̄k eq → M → Q → γ.
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This can be used to investigate the robustness and stability of the reconstruction

method for all but the first step (D-N map to scattering data) of the full reconstruction

algorithm.

• We can also use the forward problem to verify the formulas that we derived to deter-

mine the value of the CGO solutions Ψ12(z, k) and Ψ21(z, k) for z ∈ ∂Ω that use the

D-N map and measured or simulated data.

In the forward DkM = QM problem we will prescribe an admittivity γ(z) and solve

(4.1)-(4.2) for the corresponding CGO solutions M(z, k). To evaluate our forward DkM =

QM solver for the CGOs M(z, k), we can additionally prescribe functions M11(z, k), M12(z, k),

M21(z, k), and M22(z, k) and calculate the resulting right hand side functions,

{
∂̄z M11(z, k)−Q12(z)M21(z, k) = F1(z, k)

(∂z + i k)M21(z, k)−Q21(z)M11(z, k) = F3(z, k)
, (4.3)

and {
(∂̄z− i k)M12(z, k)−Q12(z)M22(z, k) = F2(z, k)

∂z M22(z, k)−Q21(z)M12(z, k) = F4(z, k)
. (4.4)

We can then use the solver to ensure that we can, in fact, recover the prescribed CGO solu-

tions M(z, k). Later, we can set F1 through F4 equal to zero and solve the original forward

DkM = QM problem for non-prescribed CGO solutions M(z, k) (and only a prescribed

admittivity γ).

As we will later need to interpolate some of our calculations to new grids, we will solve all

problems on a grids created with MATLAB’s meshgrid function. Therefore, the columns of

a matrix correspond to changing the x coordinate whereas the rows correspond to changing

the y coordinate, e.g. M(xj , yp, k`) = M(p, j) for k = k` ∈ C.

4.1 Approach 1: Using Finite Differences

We first formulate the forward DkM − QM = F problem, (4.3) and (4.4), using finite

differences.
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4.1.1 Solving System I

Let us first examine the system in (4.3). Using centered finite differences to approximate

the ∂z- and ∂̄z-derivatives, the system becomes

4hF1 = M11 (xj+1, yp, k)−M11 (xj−1, yp, k) + iM11 (xj , yp+1, k)− iM11 (xj , yp−1, k)

−4hQ12 (xj , yp) M21 (xj , yp, k) , (4.5)

4hF3 = M21 (xj+1, yp, k)−M21 (xj−1, yp, k)− i M21 (xj , yp+1, k) + iM21 (xj , yp−1, k)

+4h i kM21 (xj , yp, k)− 4hQ21 (xj , yp) M11 (xj , yp, k) , (4.6)

for 1 ≤ j, p ≤ N and h denotes the step size (for convenience we have taken hx = h = hy).

To impose the asymptotic boundary conditions, we need to expand our matrix to include

j, p = 0, N + 1 to accurately describe the derivatives. We will then solve the system on

the interior nodes with an adjusted right hand side (of a linear system Am = b) that

incorporates the boundary condition. Since M21 ∼ 0 no adjustments are needed for the

right hand side involving F3, i.e. we only need to adjust the terms involving F1. We adjust

them as follows,

• 4hF1 (x1, yp, k) is replaced with 4hF1 (x1, yp, k) + 1 for p = 1, . . . , N

• 4hF1 (xN , yp, k) is replaced with 4hF1 (xN , yp, k)− 1 for p = 1, . . . , N

• 4hF1 (xj , y1, k) is replaced with 4hF1 (xj , y1, k) + i for j = 1, . . . , N

• 4hF1 (xj , yN , k) is replaced with 4hF1 (xj , yN , k)− i for j = 1, . . . , N .

Thus, the linear system to be solved is:

Am1 = b1, (4.7)

where the matrix A is given by:

A =
[

A11 A12

A21 A22

]
.

The sub-matrix A12 is given by,

A12 = −4h diag (vec (Q12)) , (4.8)
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where “diag(vec (Q12))” places the elements of Q12 (column-wise) on the diagonal of a

square (N2×N2) matrix. Similarly, the sub-matrix A21 is given by,

A21 = −4h diag (vec (Q21)) . (4.9)

Due to the large and banded nature of A11, the sub-matrix is shown in (4.10) for N = 4,



0 i 0 0 1 0 0 0 0 0 0 0 0 0 0 0
− i 0 i 0 0 1 0 0 0 0 0 0 0 0 0 0
0 − i 0 i 0 0 1 0 0 0 0 0 0 0 0 0
0 0 − i 0 0 0 0 1 0 0 0 0 0 0 0 0
−1 0 0 0 0 i 0 0 1 0 0 0 0 0 0 0
0 −1 0 0 − i 0 i 0 0 1 0 0 0 0 0 0
0 0 −1 0 0 − i 0 i 0 0 1 0 0 0 0 0
0 0 0 −1 0 0 − i 0 0 0 0 1 0 0 0 0
0 0 0 0 −1 0 0 0 0 i 0 0 1 0 0 0
0 0 0 0 0 −1 0 0 − i 0 i 0 0 1 0 0
0 0 0 0 0 0 −1 0 0 − i 0 i 0 0 1 0
0 0 0 0 0 0 0 −1 0 0 − i 0 0 0 0 1
0 0 0 0 0 0 0 0 −1 0 0 0 0 i 0 0
0 0 0 0 0 0 0 0 0 −1 0 0 − i 0 i 0
0 0 0 0 0 0 0 0 0 0 −1 0 0 − i 0 i
0 0 0 0 0 0 0 0 0 0 0 −1 0 0 − i 0




, (4.10)

and finally the sub-matrix A22 is computed by

A22 = conj (A11) + 4hk i IN2 , (4.11)
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where conj (A11) denotes the complex conjugate of the sub-matrix A11, IN2 is the N2×N2

identity matrix, and k ∈ C is a complex number. The vector m1 is given by

m1 =




M11 (x1, y1, k)
...

M11 (x1, yN , k)
M11 (x2, y1, k)

...
M11 (x2, yN , k)

...

...

...
M11 (xN , y1, k)

...
M11 (xN , yN , k)
M21 (x1, y1, k)

...
M21 (x1, yN , k)
M21 (x2, y1, k)

...
M21 (x2, yN , k)

...

...

...
M21 (xN , y1, k)

...
M21 (xN , yN , k)




, (4.12)

or using vectorize (“vec”) notation,

m1 =
[

vec (M11)
vec (M21)

]
.

Finally, the right hand side b1 is given by

b1 =
[

4hvec (F1) + V
4hvec (F3)

]
, (4.13)
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where V is the correction for the right hand side that incorporates the boundary condition.

For the N = 4 example, V is given by

V =




1 + i
1
1

1− i
i
0
0
− i
i
0
0
− i

−1 + i
−1
−1

−1− i




. (4.14)

4.1.2 Solving System II

We now proceed to the system in (4.4). Using centered finite differences to approximate

the ∂z- and ∂̄z-derivatives, the system similarly becomes

4hF2 = M12 (xj+1, yp, k)−M12 (xj−1, yp, k) + iM12 (xj , yp+1, k)− iM12 (xj , yp−1, k)

−4h i kM12 (xj , yp, k)− 4hQ12 (xj , yp) M22 (xj , yp, k) , (4.15)

4hF4 = M22 (xj+1, yp, k)−M22 (xj−1, yp, k)− i M22 (xj , yp+1, k) + iM22 (xj , yp−1, k)

−4hQ21 (xj , yp) M12 (xj , yp, k) , (4.16)

for 1 ≤ j, p ≤ N . To impose the asymptotic boundary conditions we again need to expand

our matrix to include j, p = 0, N + 1 in order to accurately describe the derivatives. We

will then solve the system on the interior nodes with an adjusted right hand side. Since

M12 ∼ 0 no adjustments are needed for the right hand side involving F2, i.e. we only need

to adjust the terms involving F4. We adjust them as follows,

• 4hF4 (x1, yp, k) is replaced with 4hF1 (x1, yp, k) + 1 for p = 1, . . . , N

• 4hF4 (xN , yp, k) is replaced with 4hF1 (xN , yp, k)− 1 for p = 1, . . . , N

• 4hF4 (xj , y1, k) is replaced with 4hF1 (xj , y1, k)− i for j = 1, . . . , N
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• 4hF4 (xj , yN , k) is replaced with 4hF1 (xj , yN , k) + i for j = 1, . . . , N

The matrix system to be solved is very similar to that of System I and is given by

Bm2 = b2 (4.17)

where the matrix B is given by:

B =
[

B11 B12

B21 B22

]

where,

B11 = conj (A11) (4.18)

B12 = A21 (4.19)

B21 = A12 (4.20)

B22 = A11 + 4hk i IN2 . (4.21)

Now,

m2 =
[

vec (M22)
vec (M12)

]
, (4.22)

and the right hand side b2 is given by,

b2 =
[

4hvec (F4) + conj(V )
4hvec (F2)

]
. (4.23)

4.1.3 The Test Problem for the Finite Difference Solver

We look at the following test problem to evaluate the results of our finite difference solver

for the forward DkM −QM = F problem (Equations (4.3) and (4.4)).

Admittivity for the Test Problem

To choose an appropriate admittivity function γ(z), we modify the ideas outlined in [MS03]

and define

γ(r) := (α1Fcond(r) + 1)2 + iω
[
(α2Fperm(r) + 1)2 − 1

]
, (4.24)

to be the admittivity where

σ(r) := (α1Fcond(r) + 1)2 , (4.25)
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is the conductivity and

ε(r) := (α2Fperm(r) + 1)2 − 1, (4.26)

the permittivity. Note that these are radially symmetric functions where r =
√

x2 + y2.

For the conductivity we use Example 3 of [MS03] so that

Fcond(r) = exp
{ −2(ρ2

1 + r2)
(r + ρ1)2(r − ρ1)2

}
, r ≤ ρ1, (4.27)

and Fcond(r) = 0 if r > ρ1. Then

∂̄ Fcond(r) =
2(x + i y)

(
r2 + 3ρ2

1

)

(r − ρ1)
3 (r + ρ1)

3 Fcond, r ≤ ρ1, (4.28)

and ∂̄ Fcond(r) = 0 if r > ρ1.

We use Example 2 of [MS03] to define the permittivity as follows,

Fperm(r) =
(
r2 − ρ2

2

)4 cos
(

3πr

2ρ2

)
, r ≤ ρ2, (4.29)

and Fperm(r) = 0 if r > ρ2. Then, for r ≤ ρ2

∂̄ Fperm(r) = (x + i y)
[
4

(
r2 − ρ2

2

)3 cos
(

3πr

2ρ2

)
− 3π

4ρ2r

(
r2 − ρ2

2

)4 sin
(

3πr

2ρ2

)]
, (4.30)

and ∂̄ Fperm(r) = 0 if r > ρ2. Notice that ∂̄ Fperm is undefined for r =
√

x2 + y2 = 0 due to

division by zero. Numerically, we can deal with this by using the sinc function

sinc(r) =
sin(r)

r
≈ 1 for r very near 0

so that for r close to zero,

∂̄ Fperm(r) = (x + i y)

[
4

(
r2 − ρ2

2

)3 cos
(

3πr

2ρ2

)
− 1

2

(
3π

2ρ2

)2 (
r2 − ρ2

2

)4

]
.

Now that we have defined the admittivity γ(r), we can form the matrix potential Q by

defining Q12 and Q21 as follows. Recall,

Q =
[

0 Q12

Q21 0

]
,

where,

Q12(z) := −1
2

∂z log (γ(z)) = −∂z(γ(z))
2γ(z)

,

Q21(z) := −1
2

∂̄z log (γ(z)) = − ∂̄z(γ(z))
2γ(z)

.
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Therefore, to define the matrix potential Q(z), we only need to calculate ∂z(γ(z)) and

∂̄z(γ(z)). Using Equation (4.25) we find,

∂̄z σ(r) = 2α1 (α1Fcond(r) + 1) ∂̄z Fcond(r), (4.31)

and using Equation (4.26),

∂̄z ε(r) = 2α2 (α2Fperm(r) + 1) ∂̄z Fperm(r). (4.32)

Therefore,

∂̄z γ(r) = ∂̄z σ(r) + iω ∂̄z ε(r)

= 2α1 (α1Fcond(r) + 1) ∂̄z Fcond(r)

+2α2 i ω (α2Fperm(r) + 1) ∂̄z Fperm(r), (4.33)

and thus the equations for Q12(z) and Q21(z) are fully defined using the calculations per-

formed above and taking the conjugates where appropriate, to obtain the ∂z-derivative

instead of the ∂̄z-derivative since σ(z) and ε(z) are real valued functions. We avoid the

tedium of writing out the explicit terms here.

Defining M11 and M21 for the Test Problem

We will need both M11 and M21 in order to calculate the right hand side functions, F1 and

F3 respectively. We will then solve a “linear” system Am1 = b1 for m1, reshape the results

into the approximate CGO solutions M11 and M21 solutions, and compare them to the true

functions with which we began. This will give us an idea of how well our solver works.

Let,

M11(x, y, k) = exp
{−x2 − y2 − 2 i xy

}
eK11 + 1 (4.34)

M21(x, y, k) = (1 + i) exp
{−x2 − y2

}
eK21, (4.35)

where eK11 = exp{−k2
1−k2

2−2ik1k2}, eK21 = exp{−k2
1−k2

2}, and k = k1 +i k2 ∈ C, shown

in Figure 4.1. We will need to compute ∂̄z M11 and ∂z M21 in order to find F1 and F3. Short

calculations yield,

∂̄z M11 = −2 i y exp
{−x2 − y2 − 2 i xy

}
eK11 (4.36)

∂z M21 = (1 + i)(−x + i y) exp
{−x2 − y2

}
eK21, (4.37)
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Fig. 4.1: True M ’s for the test problem using for k = 1− 2 i.
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which then allow us to fully define

F1 = ∂̄z M11 −Q12M21

F3 = ∂z M21 + i kM21 −Q21M11,

that will be used in the finite difference matrix formulation of the problem.

Defining M12 and M22 for the Test Problem

For completeness, we check our test problem for the second system (4.2) as well. We will

need both M12 and M22 in order to calculate or right hand side functions, F2 and F4

respectively. For simplicity, we let M12 = M21 and M22 = M11 from above. We will then

solve a system Bm2 = b2 for m2, reshape the results into the approximate M12 and M22

CGO solutions, and compare them to the true functions with which we began. This will

give us an idea of how well our forward DkM−QM = F solver works for the second system.

Let,

M12(x, y, k) = (1 + i) exp
{−x2 − y2

}
eK21, (4.38)

where eK21 = exp{−k2
1 − k2

2} and k = k1 + i k2. Define

M22(x, y, k) = exp
{−x2 − y2 − 2 i xy

}
eK11 + 1, (4.39)

where eK11 = exp{−k2
1 − k2

2 − 2ik1k2} and k = k1 + i k2. We will need to compute ∂̄z M12

and ∂z M22 in order to find F2 and F4. Short calculations yield,

∂̄z M12 = −(1 + i)(x + i y) exp
{−x2 − y2

}
eK21 (4.40)

∂z M22 = −2x exp
{−x2 − y2 − 2 ixy

}
eK11, (4.41)

which then allow us to fully define

F2 = ∂̄z M12 − i kM12 −Q12M22

F4 = ∂z M22 −Q21M12,

which we will be uses in the finite difference matrix formulation of the problem.
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Results of the Test Problem

Table 4.1 displays relative errors for z ∈ [−6, 6]2 computed by, for example:

Maximum Error for M11 Real =
max

{
Re

(
M true

11 −Mapx
11

)}

max {Re (M true
11 )}

Tab. 4.1: Relative Errors for the Test Problem

Finite Differences
k 1− 2 i
N 28

Condition Number (A) 1.9559× 103

Condition Number (B) 3.4982× 104

Max Error Re(M11) 9.5177× 10−7

Max Error Im(M11) 1.5× 10−3

Max Error Re(M21) 6.4485× 10−4

Max Error Im(M21) 7.2353× 10−4

Max Error Re(M22) 1.1220× 10−6

Max Error Im(M22) 1.5× 10−3

Max Error Re(M12) 6.4487× 10−4

Max Error Im(M12) 7.1655× 10−4

Notice that the errors for the finite difference method are very good and therefore we

can be confident that our finite difference solver for the forward DkM −QM = F problem

is accurate. Figure 4.2 shows the reconstructions using the finite difference method.

4.2 Approach 2: Using Vainikko’s One Grid Method

We can also solve the forward DkM = QM problem using Vainikko’s one grid method as

presented in [KMS04]. Here we describe the problem using only one grid (see [KMS04] for

details on the two-grid method) and extend it to work with systems. The main idea be-

hind this solution method involves viewing the ∂ and ∂̄ inverses as convolutions, then using

Fourier transforms to break up the convolution into a product, and using inverse Fourier

transforms to finish it off. One should note that the method presented in [KMS04] uses

Nachman’s solution method to the conductivity problem for twice differentiable conductiv-

ities ([Nac96]) and thus was able to exploit certain symmetries that result from considering

only real valued conductivities. In particular, solving that problem required only the so-

lution of a single Lippman-Schwinger type equation, rather than two separate systems of
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Fig. 4.2: Reconstructions of the M ’s for the test problem using the Finite Difference Method for
k = 1− 2 i.
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Lippman-Schwinger type equations. As Vainikko’s method requires a compact operator,

here we will only solve the original forward DkM = QM problem (not the DkM−QM = F

test problem), i.e. for Fj = 0 for j = 1, . . . , 4.

4.2.1 Solving System I

We wish to solve (4.1) where M11(z, k) ∼ 1 and M21(z, k) ∼ 0 as |k|, |z| → ∞. We invert

the ∂̄z operator using the Generalized Cauchy Integral Formula and use (3.18) to invert the

(∂z + i k) operator (given in [Fra00]). Using the compact support of Q12 and Q21 we have,

M11(z, k) = 1 +
1
π

∫

Ω

Q12(ζ)M21(ζ, k)
z − ζ

dµ(ζ)

M21(z, k) =
1
π

∫

Ω

e(z − ζ,−k)Q21(ζ)M11(ζ, k)
z̄ − ζ̄

dµ(ζ),

or using convolution




M11(z, k) = 1 + 1
πz ∗ [Q12(z)M21(z, k)]

M21(z, k) = e(z,−k)
πz̄ ∗ [Q21(z)M11(z, k)]

,

where the convolution is only taking place over the finite region Ω as the supports of Q12(z)

and Q21(z) are contained in Ω. We can write this as a stacked system,
[

1
0

]
=

([
1 0
0 1

]
−

[ 1
πz

e(z,−k)
πz̄

]
∗

([
0 Q12(z)

Q21(z) 0

] [
M11(z, k)
M21(z, k)

]))

=
(
I −G1 ∗

(
Q̃1 ·

))
M̃1 (4.42)

where I is the identity matrix

G1 =
[ 1

πz
e(z,−k)

πz̄

]
, M̃1 =

[
M11(z, k)
M21(z, k)

]
, and Q̃1 =

[
0 Q12(z)

Q21(z) 0

]
.

Vainikko’s method requires that the multiplier function, in our case Q̃1, be compact

which is why we take F1 = F3 = 0 at the beginning of this section. To implement the

solver we will use GMRES and therefore do not need to form the matrix for the operator
(
I −G1 ∗

(
Q̃ ·

))
explicitly. Rather, we will only need to implement the action of the

operator. We will use the simpler form
{

1 = M11(z, k)− 1
πz ∗ (Q12(z)M21(z, k))

0 = M21(z, k)− e(z,−k)
πz̄ ∗ (Q21(z)M11(z, k))

. (4.43)
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We will feed GMRES a function that takes a real valued vector (GMRES needs us to separate

real and imaginary parts), reshapes the vector into complex matrices for M11 and M21, then

performs the action of the operator
(
I −G1 ∗

(
Q̃1 ·

))
. To perform the convolution we will

use Fourier transforms as follows:

1
πz

∗ (Q12(z)M21(z, k)) = h2 IFFT
(

FFT
(

1
πz

)
· FFT (Q12(z) ·M21(z, k))

)
,

and similarly

e(z,−k)
πz̄

∗ (Q21(z)M11(z, k)) = h2 IFFT
(

FFT
(

e(z,−k)
πz̄

)
· FFT (Q21(z) ·M11(z, k))

)
,

where h is the step size of the uniform z grid we are using and · denotes componentwise

multiplication. We then separate the real and imaginary parts again and place the CGO

solutions M11 and M21 in an elongated real valued vector which is sent back to GMRES.

After GMRES converges to our solution vector, we will need to reshape the elongated vector

into the complex matrices M11(z, k) and M21(z, k).

To avoid blurring when using the Fourier transforms, we will evaluate the Green’s func-

tions for the ∂̄z and ∂z +ik operators, 1
πz and e(z,−k)

πz̄ respectively, on a grid twice as large.

We then place the functions Q12(z)M21(z, k) and Q21(z)M11(z, k) in the centers of matrices

on the enlarged grid padded with zeros around the edges.

4.2.2 Solving System II

We also wish to solve (4.2) where M22(z, k) ∼ 1 and M12(z, k) ∼ 0 as |k|, |z| → ∞.

We invert the ∂z operator using the Solid Cauchy Transform and use (3.18) to invert the
(
∂̄z− i k

)
operator. Using the compact support of Q12 and Q21 we have,

M22(z, k) = 1 +
1
π

∫

Ω

Q21(ζ)M12(ζ, k)
z̄ − ζ̄

dµ(ζ)

M12(z, k) =
1
π

∫

Ω

e(z − ζ,−k)Q12(ζ)M22(ζ, k)
z − ζ

dµ(ζ),

or using convolution




M22(z, k) = 1 + 1
πz̄ ∗ [Q21(z)M12(z, k)]

M12(z, k) = e(z,k̄)
πz ∗ [Q12(z)M22(z, k)]

,
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where again the convolution is only taking place over the finite region Ω as the supports of

Q12(z) and Q21(z) are contained in Ω. We can write this as a stacked system,

[
1
0

]
=

([
1 0
0 1

]
−

[ 1
πz̄

e(z,z̄)
πz

]
∗

([
0 Q21(z)

Q12(z) 0

] [
M22(z, k)
M12(z, k)

]))

=
(
I −G2 ∗

(
Q̃2 ·

))
M̃2 (4.44)

where I is the identity matrix

G2 =

[
1
πz̄

e(z,k̄)
πz

]
, M̃2 =

[
M22(z, k)
M12(z, k)

]
, and Q̃2 =

[
0 Q21(z)

Q12(z) 0

]
.

This case is computed analogously.

4.3 Comparison of Forward Solvers

From Section 4.1.3, we know that the Finite Difference solver works for the test problem

and thus we can use it to compare to solutions of the forward DkM = QM problem found

using Vainikko’s method (when the Fj ’s are zero i.e. when we are not prescribing the CGO

solutions M(z, k)). Table 4.2 shows the values for the conductivity and permittivity used

for these simulations. A twice differentiable conductivity and permittivity were prescribed

using the phantom shown in Figure 4.3. Simple admittivities γ, defined by γ = σ +i ε, were

used to help us better visualize the permittivity as the imaginary part of γ and not worry

about the frequency ω at present.

Recall that to recover the CGO solutions M for a prescribed admittivity, the potential

matrix Q is needed and therefore the ∂z and ∂̄z derivatives of γ. These derivatives were

approximated using centered finite differences for the conductivity σ and permittivity ε by

creating four additional matrices of values for the admittivity at ±h and ± i h and combining

them appropriately, where h is the step size of the grid we are using. The boundary condition

is zero due to the compact support of the matrix potential Q and therefore no additional

compensation is needed to enforce the zero boundary condition.

The results of the Finite Difference and Vainikko solvers for the various k values are

shown in Figures 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 4.10, and 4.11, with N = 27 = 128 nodes in

each of the x and y directions. Notice that the reconstructions using Vainikko’s One Grid

Method (denoted by V ) are very smooth whereas those using Finite Differences (denoted by
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Tab. 4.2: The prescribed admittivity for the test problem used to compare the Finite Difference and
Vainikko solvers for the forward DkM = QM problem.

Conductivity σ Permittivity ε

heart 1.2 0.1
lungs 0.8 0.03̄
background 1 0

Conductivity

 

 

0.8 1 1.2

Permittivity

 

 

0 0.05 0.1

Fig. 4.3: The phantom used in the test problem to compare the Finite Difference and Vainikko
solvers for the forward DkM = QM problem.
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Fig. 4.4: Comparison of Finite Difference solver (FD) and Vainikko solver (V) for the forward
DkM = QM problem. Figures are shown for M11 and M22 for k = 0.
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FD) are not. As later we will need to peel off the values of the M ’s along the boundary of

the unit disc to generate scattering data, we will prefer the smooth solutions of Vainikko’s

method. In addition, the finite difference solver ranges from 2 to 24 seconds depending on

the value of k, compared to the less than 2 seconds required by Vainikko’s method. Since

the Vainikko solver is accurate and faster than the finite difference solver it is clearly more

desirable.

4.4 Boundary Values for the CGO Solutions M(z, k) for the Unit Disc

Plots of the CGO solutions M(z, k) on the boundary of the domain ∂Ω (here Ω is the unit

disc) for the same values of k as above (0, −0.5 + 0.2 i, 1− 2 i, and −5 + 10 i).

The forward DkM = QM problem was solved using Vainikko’s method on a 128 by 128

xy grid, and bilinear interpolation was used to find the values of the CGO solutions M(z, k)

for z on the boundary of the unit disc that satisfied x2 + y2 = 1 = ei θ for 0 ≤ θ < 2π

with 63 theta values using MATLAB. Figures 4.12, 4.13, 4.14, and 4.15 show the plots for

k = 0,−0.5 + 0.2 i, 1− 2 i, and −5 + 10 i respectively (note that these are the same values of

k used to plot the CGOs M(z, k) in Figures 4.4-4.11). Notice that as |k| → ∞ the values of

the CGO solutions M11(z, k) and M22(z, k) on the boundary of the unit disc approach the

constant 1, whereas for M12(z, k) and M21(z, k) tend toward 0 as expected. Additionally,

note that the CGO solutions M12 and M22 oscillate wildly as |k| increases.
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Fig. 4.5: Comparison of Finite Difference solver (FD) and Vainikko solver (V) for the forward
DkM = QM problem. Figures are shown for M12 and M21 for k = 0.
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Fig. 4.6: Comparison of Finite Difference solver (FD) and Vainikko solver (V) for the forward
DkM = QM problem. Figures are shown for M11 and M22 for k = −0.5 + 0.2 i.
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Fig. 4.7: Comparison of Finite Difference solver (FD) and Vainikko solver (V) for the forward
DkM = QM problem. Figures are shown for Figures are shown for M12 and M21 for
k = −0.5 + 0.2 i.
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Fig. 4.8: Comparison of Finite Difference solver (FD) and Vainikko solver (V) for the forward
DkM = QM problem. Figures are shown for M11 and M22 for k = 1− 2 i.
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Fig. 4.9: Comparison of Finite Difference solver (FD) and Vainikko solver (V) for the forward
DkM = QM problem. Figures are shown for Figures are shown for M12 and M21 for
k = 1− 2 i.
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Fig. 4.10: Comparison of Finite Difference solver (FD) and Vainikko solver (V) for the forward
DkM = QM problem. Figures are shown for M11 and M22 for k = −5 + 10 i.
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Fig. 4.11: Comparison of Finite Difference solver (FD) and Vainikko solver (V) for the forward
DkM = QM problem. Figures are shown for Figures are shown for M12 and M21 for
k = −5 + 10 i.

45



0 2 4 6

0.999

0.9995

1

1.0005

1.001

Re M
11

 bndry

θ
0 2 4 6

−1

−0.5

0

0.5

1

x 10
−3 Im M

11
 bndry

θ

0 2 4 6

0.999

0.9995

1

1.0005

1.001

Re M
22

 bndry

θ
0 2 4 6

−1

−0.5

0

0.5

1

x 10
−3 Im M

22
 bndry

θ

(a) M11 and M22 for k = 0

0 2 4 6

−0.04

−0.02

0

0.02

0.04

Re M
12

 bndry

θ
0 2 4 6

−0.04

−0.02

0

0.02

0.04

Im M
12

 bndry

θ

0 2 4 6

−0.04

−0.02

0

0.02

0.04

Re M
21

 bndry

θ
0 2 4 6

−0.04

−0.02

0

0.02

0.04

Im M
21

 bndry

θ

(b) M12 and M21 for k = 0

Fig. 4.12: Plots of M11, M12, M21 and M22 on the boundary for k = 0.
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Fig. 4.13: Plots of M11, M12, M21 and M22 on the boundary for k = −0.5 + 0.2 i.
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Fig. 4.14: Plots of M11, M12, M21 and M22 on the boundary for k = 1− 2 i.
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Fig. 4.15: Plots of M11, M12, M21 and M22 on the boundary for k = −5 + 10 i.
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5. NEW THEORETICAL COMPONENTS TO COMPLETE THE
RECONSTRUCTION ALGORITHM

In this chapter the theory behind the missing steps of the full reconstruction algorithm:

Λγ −→ Ψ12|∂Ω, Ψ21|∂Ω −→ S(k) −→ M(z, 0) −→ Q(z) −→ γ(z),

is developed and described in detail. Namely the first step (connecting the CGO solutions

Ψ to the D-N data) and a more practical formula for recovering the matrix potential Q

from the exponentially growing solutions M are presented.

5.1 Step 1: Connecting the CGO Solutions Ψ to the D-N Data Λγ

In the Ph.D thesis of Alan Von Herrmann, [Von09], and our recent paper, [HHMV12], two

exponentially growing solutions to the admittivity equation (3.3) are studied. Recall that

when Francini re-wrote (3.3) as a first order system, we ended up searching for a 2× 2

solution matrix instead of just a vector (v, w)T as was originally derived. This is due to the

fact that there are two solutions to (3.3), unique up to their asymptotic conditions.

Recall that (
v
w

)
= γ1/2

(
∂z u
∂̄z u

)

solves the system

D

(
v
w

)
−Q

(
v
w

)
= 0.

We can think of the matrix of CGO solutions Ψ as two column vectors that correspond to

the exponentially growing solutions u1 and u2 respectively. Thus,
(

Ψ11

Ψ21

)
= γ1/2

(
∂z u1

∂̄z u1

)
and

(
Ψ12

Ψ22

)
= γ1/2

(
∂z u2

∂̄z u2

)
. (5.1)

The CGO solutions Ψ(z, k) are key functions in the reconstruction algorithm, however

the proof in [Fra00] does not provide a link from these functions to the Dirichlet-to-Neumann

data. A useful link can be established through exponentially growing solutions to the
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admittivity equation (3.3). For γ−1 with compact support contained in Ω, the admittivity

equation (3.3) can be studied on all of R2. If we introduce k as a complex parameter, two

distinct exponentially growing solutions, which differ in their asymptotics, u1 and u2 exist

where u1 ∼ eikz

ik and u2 ∼ e−ikz̄

−ik in a sense that is made precise in Theorems 5 and 6, where

the existence of such solutions is established. After establishing formulas for exponentially

growing solutions u1 and u2 with connections the the Dirichlet-to-Neumann data, we can

then use the relations above to establish formulas for the CGOs Ψ.

5.1.1 Derivation of Formulas for Exponentially Growing Solutions u1 and u2

The derivations for the exponentially growing solutions u1 and u2, given in our paper

[HHMV12], will make use of the following lemma proved in the real case by Nachman

[Nac96]; the complex version shown here also holds and was used in [Fra00]. The lemma is

also true if ∂̄z and ∂z and interchanged. The remainder of the derivation of the formulas

for the CGO solutions u1 and u2 is quoted from our paper [HHMV12].

Lemma 1 ([Nac96]). Let 1 < s < 2 and 1
r = 1

s − 1
2 .

1. If the complex function v ∈ Ls(R2), then there exists a unique complex function u ∈
Lr(R2) such that (∂z + ik)u = v.

2. If the complex function v ∈ Lr(R2) and ∂̄zv ∈ Ls(R2), k ∈ C \ {0}, then there exists

a unique complex function u ∈ W 1,r(R2) such that (∂z + ik)u = v.

3. If the complex function v ∈ Lr(R2) and ∂̄zv ∈ Ls(R2), k ∈ C \ {0}, then there exists

a unique complex function u ∈ W 1,r(R2) such that (∂̄z − ik)u = v.

The following lemma will also be used in the proofs of Theorems 5 and 6.

Lemma 2 ([Von09]). For ω sufficiently small and γ satisfying (3.1) and (3.2), the following

identities hold:

∂̄z(γ(z)−1/2M11(z, k)− 1) = (∂z +ik)(γ(z)−1/2M21(z, k)) (5.2)

∂z(γ(z)−1/2M22(z, k)− 1) = (∂̄z − ik)(γ(z)−1/2M12(z, k)). (5.3)
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Proof. By the product rule,

∂̄z

(
γ(z)−1/2M11(z, k)− 1

)
= ∂̄z

(
γ(z)−1/2

)
M11(z, k) + γ(z)−1/2 ∂̄z(M11(z, k))

= γ(z)−1/2Q21(z)M11(z, k) + γ(z)−1/2Q12(z)M21(z, k)

= γ(z)−1/2(∂z +ik)M21(z, k) + γ(z)−1/2Q12(z)M21(z, k).

The second equality utilized (3.8) and (3.9) while the third equality uses (3.13)-(3.16),

respectively.

We also have

(∂z +ik)
(
γ(z)−1/2M21(z, k)

)
= ∂z

(
γ(z)−1/2M21(z, k)

)
+ ikγ(z)−1/2M21(z, k)

= ∂z

(
γ(z)−1/2

)
M21(z, k) + γ(z)−1/2 ∂z(M21(z, k))

+ ikγ(z)−1/2M21(z, k)

= γ(z)−1/2Q12(z)M21(z, k) + γ(z)−1/2(∂z +ik)M21(z, k).

This establishes (5.2).

Similarly,

∂z

(
γ(z)−1/2M22(z, k)− 1

)
= ∂z

(
γ(z)−1/2

)
M22(z, k) + γ(z)−1/2 ∂z(M22(z, k))

= γ(z)−1/2Q12(z)M22(z, k) + γ(z)−1/2Q21(z)M12(z, k)

= γ(z)−1/2(∂̄z−ik)M12(z, k) + γ(z)−1/2Q21(z)M12(z, k).

We also have

(∂̄z−ik)
(
γ(z)−1/2M12(z, k)

)
= ∂̄z

(
γ(z)−1/2M12(z, k)

)
− ikγ(z)−1/2M12(z, k)

= ∂̄z

(
γ(z)−1/2

)
M12(z, k) + γ(z)−1/2 ∂̄z(M12(z, k))

− ikγ(z)−1/2M12(z, k)

= γ(z)−1/2Q21(z)M12(z, k) + γ(z)−1/2(∂̄z−ik)M12(z, k).

This establishes (5.3).

Knudsen establishes the existence of exponentially growing solutions to the conductivity

equation in the context of the inverse conductivity problem in [Knu02]. The proofs of the

existence of CGO solutions for the admittivity equation and their associated boundary

integral equations are in the same spirit as [Knu02].
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Theorem 5 ([Von09]). Let γ(z) ∈ W 1,p(Ω), with p > 2 such that σ and ε satisfy (3.1) and

(3.2), and let γ(z) − 1 have compact support in W 1,p(Ω). Then for all k ∈ C \ {0} there

exists a unique solution

u1(z, k) = eikz

[
1
ik

+ w1(z, k)
]

, (5.4)

to the admittivity equation in R2 such that w1(·, k) ∈ W 1,r(R2), 2 < r < ∞. Moreover, the

following equalities hold:

(∂z +ik)
[
e−ikzu1(z, k)− 1

ik

]
= γ−1/2(z)M11(z, k)− 1 (5.5)

∂̄z

[
e−ikzu1(x, k)− 1

ik

]
= γ−1/2(z)M21(z, k), (5.6)

and ∥∥∥∥e−ikzu1(x, k)− 1
ik

∥∥∥∥
W 1,r(R2)

≤ C

(
1 +

1
|k|

)
, (5.7)

for some constant C.

Theorem 6 ([HHMV12]). Let γ(z) satisfy the hypotheses of Theorem 5. Then for all

k ∈ C \ {0} there exists a unique solution

u2(z, k) = e−ikz̄

[
− 1

ik
+ w2(z, k)

]
, (5.8)

to the admittivity equation in R2 with w2(·, k) ∈ W 1,r(R2), 2 < r < ∞. Moreover, the

following equalities hold:

(∂̄z−ik)
[
eikz̄u2(z, k) +

1
ik

]
= γ−1/2(z)M22(z, k)− 1 (5.9)

∂z

[
eikz̄u2(z, k) +

1
ik

]
= γ−1/2(z)M12(z, k), (5.10)

and ∥∥∥∥eikz̄u2(z, k) +
1
ik

∥∥∥∥
W 1,r(R2)

≤ C

(
1 +

1
|k|

)
, (5.11)

for some constant C.

We will prove Theorem 5; the proof of Theorem 6 is analogous.

Proof. Assume u is a solution of the admittivity equation of the form (5.4), and let (v, w)T =

γ1/2(∂z u, ∂̄z u)T be the corresponding solution to (D − Qγ)Ψ = 0. Define the complex
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function v via v(z, k) = γ(z)−1/2M11(z, k) − 1. We will first show there exists a unique

complex function w1 ∈ W 1,r(R2), where r > 2 such that (∂z +ik)w1 = v, for k ∈ C \ {0}.
Let us rewrite v as follows:

v(z, k) = γ(z)−1/2
[
M11(z, k)− 1

]
+

[
γ(z)−1/2 − 1

]
.

Let r > 2 and 1 < s < 2 with 1
r = 1

s − 1
2 . We know by Theorem 4.1 of [Fra00] that there

exists a constant C > 0 depending on β, σ0 and p such that sup ‖M11(z, k)− 1‖Lr(R2) ≤ C

for every r > 2, and that γ(z)−1/2 − 1 has compact support in W 1,r(R2). It follows that

v ∈ Lr(R2), and by Minkowski’s Inequality

‖v(z, k)‖Lr =
∥∥∥γ(z)−1/2

[
M11(z, k)− 1

]
+

[
γ(z)−1/2 − 1

]∥∥∥
Lr
≤ Cr,γ ,

where Cr,γ depends on r and the bounds on σ and ε.

From (3.8) and (3.9),

∂̄z v(z) = ∂̄z(γ(z)−1/2M11(z, k)− 1)

= (∂̄z γ(z)−1/2)M11(z, k) + γ(z)−1/2(∂̄z M11(z, k))

= γ(z)−1/2Q21(z)M11(z, k) + γ(z)−1/2Q12(z)M21(z, k)

= γ(z)−1/2Q21(z)[M11(z, k)− 1]

+γ(z)−1/2Q12(z)M21(z, k) + γ(z)−1/2Q21(z)

We know that γ(z)−1/2Q21(z) ∈ Lα(R2) with 1 ≤ α ≤ p since Q12(z) has compact

support. It follows that γ(z)−1/2Q21(z) ∈ Ls(R2) ∩ L2(R2). By the generalized Hölder’s

inequality and the fact that ‖M11(z, k)− 1‖Ls is bounded with 1
s = 1

r + 1
2 , we have ∂̄z v(z) ∈

Ls(R2) and
∥∥∂̄z v

∥∥
Ls(R2)

≤ Kr,γ , where Kr,γ depends only on r and the bounds on σ and ε.

Thus, by Lemma 1 (2), there exists a unique solution w1(z, k) ∈ W 1,r(R2) such that

(∂z +ik)w1(z, k) = γ(z)−1/2M11(z, k)− 1. (5.12)

We have by (5.2),

∂̄(γ(z)−1/2M11(z, k)− 1) = (∂z +ik)
(
γ(z)−1/2M21(z, k)

)
. (5.13)

Taking ∂̄z of both sides of (5.12) and using (5.13),

∂̄z (∂z +ik) w1(z, k) = ∂̄z

(
γ(z)−1/2M11(z, k)− 1

)

= (∂z +ik)
(
γ(z)−1/2M21(z, k)

)
.

(5.14)
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Using the fact ∂̄(∂ + ik) = (∂ + ik)∂̄, it follows that

(∂z +ik)
(
∂̄z w1(z, k)− γ(z)−1/2M21(z, k)

)
= 0. (5.15)

Since ∂̄z w1(z, k)− γ(z)−1/2M21(z, k) ∈ Lr(R2), by Lemma 1 (1), we must have

∂̄z w1(z, k) = γ(z)−1/2M21(z, k). (5.16)

We now define

u1(z, k) = eikz

[
w1(z, k) +

1
ik

]
, (5.17)

then by (5.12)

(∂z +ik)
(

e−ikzu1(z, k)− 1
ik

)
= (∂z +ik) w1(z, k) = γ−1/2(z)M11(z, k)− 1,

which proves (5.5), and by (5.16)

∂̄z

(
e−ikzu1(z, k)− 1

ik

)
= ∂̄z w1(z, k) = γ−1/2(z)M21(z, k),

which proves (5.6).

The norm estimate given by (5.7) follows by Minkowski’s Inequality, the constant C

depends on r, the bound on γ − 1, and the bounds on σ and ε.

Remark: Note that from (5.5)

γ−1/2M11(z, k)− 1 = (∂z +ik)
(

e−ikzu1(z, k)− 1
ik

)

= ∂z(e−ikzu1) + ike−ikzu1(z, k)− 1

= e−ikz ∂z u1(z, k)− 1,

(5.18)

and from (5.6)

γ−1/2M21(z, k) = ∂̄z

(
e−ikzu1(z, k)− 1

ik

)

= u1(z, k) ∂̄z

(
e−ikz

)
+ e−ikz ∂̄z u1(z, k)

= e−ikz ∂̄z u1(z, k).

(5.19)

Thus, we can equivalently rewrite (5.5) and (5.6), respectively, as

γ1/2(z) ∂z u1(z, k) = eikzM11(z, k) = Ψ11(z, k) (5.20)

γ1/2(z) ∂̄z u1(z, k) = eikzM21(z, k) = Ψ21(z, k). (5.21)
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In a similar manner, we can rewrite (5.9) and (5.10), respectively, as

γ1/2(z) ∂̄z u2(z, k) = e−ikz̄M22(z, k) = Ψ22(z, k) (5.22)

γ1/2(z) ∂z u2(z, k) = e−ikz̄M12(z, k) = Ψ12(z, k). (5.23)

Useful boundary integral equations for the traces of u1 and u2 can be derived under the

additional assumption that γ ∈ W 2,p and u1, u2 ∈ W 2,p, p > 1. The following proposition

shows a relationship between the exponentially growing solutions ψS(z, k) (when they exist)

to the Schrödinger equation

(−∆ + qS(z))ψS(z, k) = 0, (5.24)

and the CGO solutions u1 and u2 to (3.3). The solution ψS to (5.24), where qS is complex,

is asymptotic to eikz in the sense that

wS ≡ e−ikzψS(·, k)− 1 ∈ Lp̃ ∩ L∞,

where 1
p̃ = 1

p − 1
2 and 1 < p < 2. The question of the existence of a unique solution to

(5.24) is addressed for real γ in [Nac96], where it is shown to exist if and (roughly) only if

qS = ∆γ1/2

γ1/2 . The solutions ψS will be used to derive the boundary integral equations for u1

and u2, but not in the direct reconstruction algorithm.

Lemma 3 ([Von09]). Let γ(z) = σ(z) + iωε(z) ∈ W 2,p(Ω), with p > 2 such that σ and ε

satisfy (3.1) and (3.2), and let γ(z) − 1 have compact support in W 1,p(Ω). Let u1 be the

exponentially growing solution to the admittivity equation as given in Theorem 5, and let

ψS be the exponentially growing solution to the Schrödinger equation (5.24), when it exists.

Then

iku1(z, k) = γ−1/2(z)ψS(z, k). (5.25)

Proof. Note that

iku1(z, k) = eikz(1 + ikw1(z, k))

= eikzγ(z)−1/2
[
γ(z)1/2 + γ(z)1/2ikw1(z, k)

]

= eikzγ(z)−1/2
(
1 +

[
γ(z)1/2 − 1

]
+ γ(z)1/2ikw1(z, k)

)
,

(5.26)
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satisfies the admittivity equation with γ(z)1/2 − 1 + γ(z)1/2ikw1(z, k) ∈ W 1,r(Ω) for r > 2.

We also know that when it exists

γ−1/2(z)ψS(z, k) = eikzγ−1/2(z)(1 + wS(z, k)) (5.27)

is also a solution to the admittivity equation with wS(z, k) ∈ W 1,p̄(R2). Hence, these expo-

nentially growing solutions must be equal completing the proof.

Lemma 4 ([HHMV12]). Let γ(z) = σ(z) + iωε(z) ∈ W 2,p(Ω), with p > 2 such that σ and

ε satisfy (3.1) and (3.2), and let γ(z) − 1 have compact support in W 1,p(Ω). Let u2 be the

exponentially growing solution to the admittivity equation as given in Theorem 6, and let

ψS be the exponentially growing solution to the Schrödinger equation (5.24), when it exists.

Then

−iku2(z, k) = γ−1/2(−z̄)ψS(−z̄, k). (5.28)

Proof. From (5.8),

−iku2(z, k) = e−ikz̄(1− ikw2(z, k))

= e−ikz̄γ−1/2(−z̄)
(
1 +

[
γ1/2(−z̄)− 1

]
− γ1/2(−z̄)ikw2(z, k)

)

satisfies the admittivity equation with [γ1/2(−z̄) − 1] − γ1/2(−z̄)ikw2(z, k) ∈ W 1,r(Ω) for

r > 2. From (5.27),

γ1/2(−z̄)ψS(−z̄, k) = e−ikz̄γ1/2(−z̄)(1 + wS(−z̄, k))

satisfies the admittivity equation with wS(−z̄, k) ∈ W 1,p̄(R2). Thus, these exponentially

growing solutions must be equal, and so

−iku2(z, k) = γ−1/2(−z̄)ψS(−z̄, k)

completing the proof.

Let us recall some terminology arising from [Nac96] before establishing boundary inte-

gral equations involving the exponentially growing solutions. Let Λσ be the Dirichlet-to-

Neumann map when Ω contains the conductivity distribution σ, and Λ1 the Dirichlet-to-

Neumann map for a homogeneous conductivity equal to 1. The Faddeev Green’s function

Gk(z) is defined by

Gk(z) := eikzgk(z), −∆Gk = δ, (5.29)
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where

gk(z) :=
1

(2π)2

∫

R2

eiz·ξ

ξ(ξ̄ + 2k)
dξ, (−∆− 4ik ∂̄z)gk = δ, (5.30)

for k ∈ C \ {0}. In the real-valued case γ = σ, the trace of the function ψS(·, k) on Ω

satisfies the integral equation [Nac96]

ψS(z, k) = eikz −
∫

∂Ω
Gk(z − ζ)(Λσ − Λ1)ψS(ζ, k)dS(ζ), z ∈ ∂Ω, (5.31)

where k ∈ C \ {0}. The equation (5.31) is a Fredholm equation of the second kind and

uniquely solvable in H1/2(∂Ω) for any k ∈ C \ {0} .

The boundary integral equations for u1 and u2 are similar to (5.31).

Theorem 7 ([Von09]). Let γ ∈ W 2,p(Ω) for p > 1 and suppose γ = 1 in a neighborhood

of ∂Ω. Suppose σ and ε satisfy (3.1) and (3.2), and let γ(z) − 1 have compact support in

W 2,p(Ω). Then for any non-exceptional k ∈ C \ {0}, the trace of the exponentially growing

solution u1(·, k) on ∂Ω is the unique solution to

u1(z, k) =
eikz

ik
−

∫

∂Ω
Gk(z − ζ)(Λγ − Λ1)u1(ζ, k)dS(ζ), z ∈ ∂Ω. (5.32)

Proof. Let 1
p = 1

r − 1
2 , where 1 < r < 2 and p > 2. Let {γn}n∈N ⊂ W 2,r(Ω) be a sequence

converging to γ ∈ W 1,p(Ω). Then by the Sobolev Embedding Theorem, {γn}n∈N ⊂ W 1,r(Ω).

Let ψn be the exponentially growing solutions to the Schrödinger equation with potential

γ
−1/2
n ∆γ

1/2
n , and un be the CGO solutions defined by Theorem 5 to the admittivity equation

with admittivity γn. Then for each n ∈ N, the complex γ version of (5.31) holds for non-

exceptional k ∈ C \ {0}

ψn(z, k)|∂Ω = eikz|∂Ω −
∫

∂Ω
Gk(z − ζ)(Λγn − Λ1)ψn(ζ, k)dS(ζ), (5.33)

where γn = 1 in the neighborhood of ∂Ω.

It follows by (5.25) that for each complex number k 6= 0, and for each n ∈ N

γn
−1/2(z)
ik

ψn(z, k) = un(z, k) → u1(z, k) in H1/2(∂Ω). (5.34)
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We claim that for each n, un satisfies (5.32). To see this, by (5.25), for z ∈ ∂Ω,

eikz

ik
−

∫

∂Ω
Gk(z − ζ)(Λγ − Λ1)un(ζ, k)dS(ζ)

=
eikz

ik
−

∫

∂Ω
Gk(z − ζ)(Λγ − Λ1)

γ
−1/2
n (ζ)

ik
ψn(ζ, k)dS(ζ)

=
γ
−1/2
n (z)

ik
ψn(z, k)

= un(z, k), (5.35)

where we used the fact that γn = 1 in a neighborhood of ∂Ω. Thus, un satisfies (5.32) for

each n ∈ N.

We know by Theorem 3.1 of [Fra00] that M(z, k) depends continuously on γ. From

(5.34), we can conclude that
∫

∂Ω
Gk(z − ζ)(Λγn − Λ1)un(ζ, k)dS(ζ) 7→

∫

∂Ω
Gk(z − ζ)(Λγ − Λ1)u1(ζ, k)dS(ζ). (5.36)

Thus, by (5.34), (5.35), and (5.36), we have that u1(·, k)|∂Ω satisfies (5.32). The uniqueness

of u1(·, k)|∂Ω follows by Theorem 5.

An analogous theorem holds for u2.

Theorem 8 ([HHMV12]). Let γ ∈ W 2,p(Ω) for p > 1 and suppose γ = 1 in a neighborhood

of ∂Ω. Suppose σ and ε satisfy (3.1) and (3.2), and let γ(z) − 1 have compact support in

W 2,p(Ω). Then for any nonexceptional k ∈ C \ {0}, the trace of the exponentially growing

solution u2(·, k) on ∂Ω is the unique solution to

u2(z, k) =
e−ikz̄

−ik
−

∫

∂Ω
Gk(−z̄ + ζ̄)(Λγ − Λ1)u2(ζ, k)dS(ζ), z ∈ ∂Ω. (5.37)

Proof. Let p, r, {γn}n∈N ⊂ W 2,r(Ω), and ψn be as in the proof of Theorem 7. Let un be

the CGO solutions defined in Theorem 6 to the admittivity equation with admittivity γn.

Then for each n ∈ N, for nonexceptional k ∈ C \ {0}, evaluating (5.33) at −z̄,

ψn(−z̄, k)|∂Ω = e−ikz̄|∂Ω −
∫

∂Ω
Gk(−z̄ − ζ)(Λγn − Λ1)ψn(ζ, k)dS(ζ), (5.38)

where γn = 1 in a neighborhood of ∂Ω.

It follows by (5.28) that for each complex number k 6= 0, and for each n ∈ N
γn
−1/2(−z̄)
−ik

ψn(−z̄, k) = un(z, k) → u2(z, k) in H1/2(∂Ω). (5.39)
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We claim that for each n, un satisfies (5.37). To see this, by (5.28), for z ∈ ∂Ω,

e−ikz̄

−ik
−

∫

∂Ω
Gk(−z̄ + ζ)(Λγ − Λ1)un(ζ, k)dS(ζ)

=
e−ikz̄

−ik
−

∫

∂Ω
Gk(−z̄ + ζ)(Λγ − Λ1)

γ
−1/2
n (−ζ)
−ik

ψn(−ζ, k)dS(ζ)

=
e−ikz̄

−ik
−

∫

∂Ω
Gk(−z̄ − ξ)(Λγ − Λ1)

γ
−1/2
n (ξ)
−ik

ψn(ξ, k)dS(ξ)

=
γ
−1/2
n (−z̄)
−ik

ψn(−z̄, k)

= un(z, k), (5.40)

using the change of variables −ζ̄ 7→ ξ and the fact that γn = 1 in a neighborhood of ∂Ω.

Thus, un satisfies (5.37) for each n ∈ N.

We know by Theorem 3.1 of [Fra00] that M(z, k) depends continuously on γ. From

(5.39), we can conclude that
∫

∂Ω
Gk(−z̄ + ζ̄)(Λγn −Λ1)un(ζ, k)dS(ζ) 7→

∫

∂Ω
Gk(−z̄ + ζ̄)(Λγ −Λ1)u2(ζ, k)dS(ζ). (5.41)

Thus, by (5.39), (5.40), and (5.41), we have that u2(·, k)|∂Ω satisfies (5.37). The uniqueness

of u2(·, k)|∂Ω follows by Theorem 6.

5.1.2 Determination of the CGO Solutions Ψ12 and Ψ21 for z ∈ ∂Ω

Now that we have general formulas for determining u1(z, k) and u2(z, k) for k ∈ C \0,

we can use those formulas to derive the following theorem to determine the traces of the

exponentially growing solutions Ψ(z, k) needed for the evaluation of the scattering transform

S(k). We use the definition of the scattering transform from [Fra00],

S(k) =
i
π

∫

R2

(
e(ξ,−k̄) 0

0 −e(ξ, k)

)(
0 Q12(ξ)M22(ξ, k)

Q21(ξ)M11(ξ, k) 0

)
dµ(ξ)

so that

S(k) =
(

0 S12(k)
S21(k) 0

)
, (5.42)

where, due to the compact support of Q,

S12(k) =
i
π

∫

Ω
e(ξ,−k̄)Q12(ξ)M22(ξ, k) dµ(ξ) (5.43)

S21(k) = − i
π

∫

Ω
e(ξ, k)Q21(ξ)M11(ξ, k) dµ(ξ). (5.44)
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We will use the relations given in (3.14) and (3.15),

(∂̄ξ − i k)M12(ξ, k) = Q12(ξ)M22(ξ, k)

(∂ξ + i k)M21(ξ, k) = Q21(ξ)M11(ξ, k)

and integration by parts for the ∂ and ∂̄ operators,

∫

Ω
u ∂̄ w dx dy =

1
2

∫

∂ Ω
wu(ν1 + i ν2)dS −

∫

Ω
w ∂̄ u dx dy, (5.45)

∫

Ω
u ∂ w dx dy =

1
2

∫

∂ Ω
wu(ν1 − i ν2)dS −

∫

Ω
w ∂̄ u dx dy. (5.46)

Let us look at S12 first,

S12(k) =
i
π

∫

Ω
e(ξ,−k̄)Q12(ξ)M22(ξ, k) dµ(ξ)

=
i
π

∫

Ω
e(ξ,−k̄)(∂̄ξ − i k)M12(ξ, k) dµ(ξ)

=
i

2π

∫

∂ Ω
e(ξ,−k̄)M12(ξ, k)ν(ξ) dS(ξ)− i

π

∫

Ω
M12(ξ, k) ∂̄ξ e(ξ,−k̄) dµ(ξ)

+
i
π

∫

Ω
(− i k)e(ξ,−k̄)M12(ξ, k) dµ(ξ)

=
i

2π

∫

∂ Ω
e(ξ,−k̄)M12(ξ, k)ν(ξ) dS(ξ)− i

π

∫

Ω
M12(ξ, k)(− i k)e(ξ,−k̄) dµ(ξ)

+
i
π

∫

Ω
(− i k)e(ξ,−k̄)M12(ξ, k) dµ(ξ)

=
i

2π

∫

∂ Ω
e(ξ,−k̄)M12(ξ, k)ν(ξ) dS(ξ). (5.47)

Similarly,

S21(k) = − i
π

∫

Ω
e(ξ, k)Q21(ξ)M11(ξ, k) dµ(ξ)

= − i
π

∫

Ω
e(ξ, k)(∂ξ + i k)M21(ξ, k) dµ(ξ)

= − i
2π

∫

∂ Ω
e(ξ, k)M21(ξ, k)ν(ξ) dS(ξ) +

i
π

∫

Ω
M21(ξ, k) ∂ξ e(ξ, k) dµ(ξ)

− i
π

∫

Ω
(i k)e(ξ, k)M21(ξ, k) dµ(ξ)

= − i
2π

∫

∂ Ω
e(ξ, k)M21(ξ, k)ν(ξ) dS(ξ) +

i
π

∫

Ω
(i k)M21(ξ, k)e(ξ, k) dµ(ξ)

− i
π

∫

Ω
(i k)e(ξ, k)M21(ξ, k) dµ(ξ)

= − i
2π

∫

∂ Ω
e(ξ, k)M21(ξ, k)ν(ξ) dS(ξ). (5.48)
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Using the definition of CGO solution Ψ this is equivalent to

S12(k) =
i

2π

∫

∂ Ω
e− i ξk̄Ψ12(ξ, k)ν(ξ) dS(ξ) (5.49)

S21(k) = − i
2π

∫

∂ Ω
ei ξ̄k̄Ψ21(ξ, k)ν̄(ξ) dS(ξ). (5.50)

Therefore, we only need the traces of Ψ12(z, k) and Ψ21(z, k) to evaluate the scattering

transforms S12(k) and S21(k).

Theorem 9. The traces of the exponentially growing solutions Ψ12(z, k) and Ψ21(z, k) for

k ∈ C \0 can be determined by

Ψ12(z, k) =
∫

∂Ω

ei k̄(z−ζ)

4π(z − ζ)
δΛ(ζ)u2(ζ, k) dS(ζ) (5.51)

Ψ21(z, k) =
∫

∂Ω

[
ei k(z−ζ)

4π(z − ζ)

]
δΛ(ζ)u1(ζ, k) dS(ζ), (5.52)

where δΛ = Λγ − Λ1, and u1 and u2 are calculated via Equations (5.32) and (5.37) respec-

tively.

Proof. We use the relations in (5.1) to obtain boundary integral equations for Ψ12 and Ψ21

for z ∈ ∂Ω from Equations (5.32) and (5.37). Let us begin with Ψ12:

Ψ12(z, k) = γ1/2(z) ∂z u2(z, k)

= γ1/2(z) ∂z

[
e−ikz̄

−ik
−

∫

∂Ω
Gk(−z̄ + ζ̄)δΛ(ζ)u2(ζ, k) dS(ζ)

]

= −γ1/2(z)
∫

∂Ω
∂z

[
Gk(−z̄ + ζ̄)

]
δΛ(ζ)u2(ζ, k) dS(ζ). (5.53)

Similarly,

Ψ21(z, k) = γ1/2(z) ∂̄z u1(z, k)

= γ1/2(z) ∂̄z

[
ei kz

ik
−

∫

∂Ω
Gk(z − ζ)δΛ(ζ)u1(ζ, k) dS(ζ)

]

= −γ1/2(z)
∫

∂Ω
∂̄z [Gk(z − ζ)] δΛ(ζ)u1(ζ, k) dS(ζ). (5.54)

A thorough study of the properties of the Faddeev Green’s function Gk and its derivatives

is given in [Sil99]. The calculations for the specific derivatives needed here are shown below.

By the definition of Gk (5.29)

∂z Gk(−z̄ + ζ̄) = ∂z

[
eik(−z̄+ζ̄)gk(−z̄ + ζ̄)

]
= eik(−z̄+ζ̄) ∂z gk(−z̄ + ζ̄). (5.55)
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Using the definition of gk (5.30),

∂z gk(−z̄ + ζ̄) = ∂z
1

(2π)2

∫

R2

ei(−z̄+ζ̄)·ξ

ξ(ξ̄ + 2k)
dξ

=
1

(2π)2

∫

R2

∂z

[
e−(i/2)(z̄ξ̄+zξ)

]
eiζ̄·ξ

ξ(ξ̄ + 2k)
dξ

=
1

(2π)2

∫

R2

−(iξ/2) ei(−z̄+ζ̄)·ξ

ξ(ξ̄ + 2k)
dξ

=
ei(−z̄+ζ̄)·(−2k̄)

4
1

(2π)2

∫

R2

2ei(−z̄+ζ̄)·(ξ+2k̄)

i
(
ξ + 2k̄

) dξ

=
ei(−z̄+ζ̄)·(−2k̄)

4π
(
−z̄ + ζ̄

)

= −e−ik(−z̄+ζ̄)e−ik̄(−z+ζ)

4π(z − ζ)
, (5.56)

by the definition of the inverse Fourier transform and the well known result

F−1

{
2
iξ̄

}∧
(z) =

1
πz̄

.

Therefore, by (5.55) and (5.56)

∂z Gk(−z̄ + ζ̄) = − eik̄(z−ζ)

4π(z − ζ)
. (5.57)

The ∂̄z derivative for Ψ21 is calculated in a similar manner,

∂̄z Gk(z − ζ) = −
[

eik(z−ζ)

4π(z − ζ)

]
. (5.58)

Substituting the representations for ∂z Gk(−z̄ + ζ̄) and ∂̄z Gk(z − ζ), given in (5.57) and

(5.58), back into the equations for Ψ12 and Ψ21, given in (5.53) and (5.54) respectively,

proves the theorem.

5.2 Step 4: Recovery of the matrix potential Q(z) from the CGOs M(z, k)

After solving the ∂̄k equation for M(z, k) (3.21), we still need a way to recover the admit-

tivity distribution γ(z). Theorem 10 provides a direct relation between the CGO solutions

M(z, 0) and the matrix potential Q(z). This is the theorem that replaces the large k limit

required in Francini’s formula (3.23).
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Theorem 10. The entries of the potential matrix Q(z) defined in (3.6) can be calculated

using only knowledge of the CGO solution M(z, 0) via

Q12(z) =
∂̄z M+(Q, z, 0)
M−(Q, z, 0)

(5.59)

Q21(z) =
∂z M−(Q, z, 0)
M+(Q, z, 0)

. (5.60)

where,

M+(Q, z, k) = M11(Q, z, k) + e(z,−k)M12(Q, z, k) (5.61)

M−(Q, z, k) = M22(Q, z, k) + e(z, k)M21(Q, z, k). (5.62)

Proof. We follow an idea similar to that in [BBR01] and define

M+(Q, z, k) = M11(Q, z, k) + e(z,−k)M12(Q, z, k)

M−(Q, z, k) = M22(Q, z, k) + e(z, k)M21(Q, z, k).

I use the notation M+(Q, z, k) and M−(Q, z, k) to illustrate that M+ and M− are only

dependent on the Q matrix, not −QT as is required in [BBR01]. Therefore,

∂̄z M+(Q, z, k) = Q12(z)e(z,−k)
[
M−(Q, z, k) + i(k − k̄)M12(Q, z, k)

]
(5.63)

∂z M−(Q, z, k) = Q21(z)e(z, k)M+(Q, z, k), (5.64)

so that

∂̄z M+(Q, z, 0) = Q12(z)M−(Q, z, 0) (5.65)

∂z M−(Q, z, 0) = Q21(z)M+(Q, z, 0). (5.66)

We can verify this:

∂̄z M+(Q, z, k) = ∂̄z [M11 + e(z,−k)M12]

= ∂̄z M11 + e(z,−k) ∂̄z M12 + M12 ∂̄z e− i(zk+z̄k̄)

= ∂̄z M11 + e(z,−k)
[
∂̄z M12 − i k̄M12

]
.

Equations (3.13) and (3.14) can be written as ∂̄z M11 = Q12M21 and ∂̄z M12 = Q12M22 +

i kM12. Using these above we find

∂̄z M+(Q, z, k) = Q12M21 + e(z,−k)
[
Q12M22 + i kM12 − i k̄M12

]

= Q12 [M21 + e(z,−k)M22] + i(k − k̄)e(z,−k)M12

= Q12(z)e(z,−k)M−(Q, z, k) + i(k − k̄)e(z,−k)M12(Q, z, k),
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and therefore

∂̄z M+(Q, z, 0) = Q12(z)e(z, 0)M−(Q, z, 0) + i(0− 0̄)e(z,−0)M12(Q, z, 0)

= Q12(z)M−(Q, z, 0),

which is the desired result. Similarly,

∂z M−(Q, z, k) = ∂z [M22 + e(z, k)M21]

= ∂z M22 + e(z, k) ∂z M21 + M21 ∂z e(z, k)

= ∂z M22 + e(z, k) [∂z M21 + i kM21] .

Equations (3.15) and (3.16) give ∂z M22 = Q21M12 and ∂z M21 = Q21M11 + i kM21. Using

these relations above results in

∂z M−(Q, z, k) = Q21M12 + e(z, k) [Q21M11 − i kM21 + i kM21]

= Q21(z) [M12(Q, z, k) + e(z, k)M11(Q, z, k)]

= Q21(z)M+(Q, z, k),

and

∂z M−(Q, z, 0) = Q21(z)M+(Q, z, 0),

the desired result. The theorem follows directly from Equations (5.65) and (5.66).

Note: These formulas are advantageous since they are for the original CGO solutions

M(z, k) corresponding to the matrix Q and not −QT as in [BBR01]. This has the computa-

tional advantage of not having to solve the problem for −QT in addition to already solving

the problem for Q. In addition, the formula to recover the matrix potential Q given in in

Theorem 1 (Theorem 6.2 of [Fra00]) is computationally impractical as it requires as large

k limit of derivatives of the CGO solutions M(z, k).

5.3 Theoretical BIE Formulas for the CGO solutions Ψ(z, k)

In this section additional formulas for the determination of the CGO solutions Ψ(z, k) on

the boundary ∂Ω are presented. The formulas for the entire CGO solution matrix Ψ(z, k)

in Section 5.3.1 are derived using a method similar to that of Kim Knudsen in his Ph.D.
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thesis [Knu02], but are not practical for numerical implementation. Section 5.3.2 contains

formulas for the diagonal CGO solutions entries Ψ11 and Ψ22. While the formulas present

no issue in implementation, they are not needed in the rest of the algorithm (recall that only

the off-diagonal CGO solutions entries Ψ12 and Ψ21 are needed for the evaluation of the

scattering transform S(k)), and are therefore only included for their mathematical interest.

5.3.1 Theoretical BIE Formulas for the CGOs Ψ(z, k) - Knudsen Approach

Here the boundary integral equations for the CGO solutions Ψ that were first presented in

[Knu02] are described and extended. While these formulas have theoretical value, a practical

implementation has previously, [Knu02], proved unstable. Nevertheless, we proceed for their

mathematical interest.

Defining a Boundary Relation

Let ν = (ν1, ν2) represent the outward facing unit normal vector to the boundary ∂Ω and

therefore τ = (−ν2, ν1) denote the unit vector tangent vector to the boundary ∂Ω (in

the traditional counter-clockwise orientation). Let s : [0, | ∂Ω |] → ∂Ω be the arclength

parameterization of the boundary ∂Ω. For f ∈ C1(∂Ω), ∂τf = d
dt (f(s(t))) is the derivative

of f along the boundary ∂Ω. Define C0(∂Ω) =
{
f ∈ C(∂Ω) :

∫
∂Ω f dσ = 0

}
, then on C0(∂Ω)

we have

(∂−1
τ f)(s(t)) :=

∫ t

0
f(s(t̃)) dt̃.

Let u ∈ C2+ε(Ω) solve the admittivity equation (3.3) for some f ∈ C2+ε. Then, as we

before (
v
w

)
= γ1/2

(
∂z u
∂̄z u

)

solves

(D −Q)
(

v
w

)
= 0

where

D =
(

∂̄z 0
0 ∂z

)
, Q(z) =

(
0 −1

2 ∂z log(γ)
−1

2 ∂̄z log(γ) 0

)
.
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We wish to decompose ∂z and ∂̄z at the boundary in the unit normal direction ν and the

unit tangential direction τ . Consider, since γ ≡ 1 on the boundary ∂Ω,

2v = 2γ1/2 ∂ u

= (ux − iuy)

= (1,− i) · u

= ‖ν‖2
2(1,− i) · u

=
(
ν2
1 + ν2

2

)
(1,− i) · u

=
(
ν2
1 + ν2

2 ,− i ν2
1 − i ν2

2

) · u

=
(
ν2
1 + ν2

2 − i ν1ν2 + i ν1ν2,− i ν2
1 − i ν2

2 − ν1ν2 + ν1ν2

) · u

=
[(

ν2
1 − i ν1ν2, ν1ν2 − i ν2

2

)
+

(
ν2
2 + i ν1ν2,−ν1ν2 − i ν2

1

)] · u

= [(ν1 − i ν2)(ν1, ν2)− (ν2 + i ν1)(−ν2, ν1)] · u

= [(ν1 − i ν2)ν − (ν2 + i ν1)τ ] · u

= [(ν1 − i ν2)ν − i(ν1 − i ν2)τ ] · u

= (ν1 − i ν2)ν · u− i(ν1 − i ν2)τ · u

= ν̄ν · u− i ν̄τ · u

= ν̄
∂ u

∂ ν
− i ν̄

∂ u

∂ τ

= ν̄Λγf − i ν̄ ∂τ f

= [ν̄Λγ − i ν̄ ∂τ ] (f). (5.67)
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Similarly,

2w = γ1/2 ∂̄ u

= (ux + iuy)

= (1, i) · u

= ‖ν‖2
2(1, i) · u

=
(
ν2
1 + ν2

2

)
(1, i) · u

=
(
ν2
1 + ν2

2 + i ν1ν2 − i ν1ν2, i ν2
1 + i ν2

2 − ν1ν2 + ν1ν2

) · u

=
[(

ν2
1 + i ν1ν2, i ν2

2 + ν1ν2

)
+

(
ν2
2 − i ν1ν2, i ν2

1 − ν1ν2

)] · u

= [(ν1[ν1 + i ν2], ν2[ν1 + i ν2]) + (−ν2[−ν2 + i ν1], ν1[−ν2 + i ν1])] · u

= [[ν1 + i ν2] (ν1, ν2) + [−ν2 + i ν1] (−ν2, ν1)] · u

= [[ν1 + i ν2]ν + [−ν2 + i ν1]τ ] · u

= [ν1 + i ν2]ν · u + [−ν2 + i ν1]τ · u

= [ν1 + i ν2]Λγf + i[ν1 + i ν2] ∂τ f

= νΛγf + i ν ∂τ f. (5.68)

Equivalently we have

(
v
w

)∣∣∣∣
∂Ω

=
1
2

[
ν̄ − i ν̄
ν i ν

] [
Λγf
∂τ f

]
on ∂Ω. (5.69)

Inverting (5.69), i.e. solving for (Λγf, ∂τ f)T on the boundary, gives

[
Λγf
∂τ f

]∣∣∣∣
∂Ω

=
2

ν̄i ν − (− i ν̄ν)

[
i ν i ν̄
−ν ν̄

](
v
w

)

=
[

ν ν̄
i ν − i ν̄

](
v
w

)
,

so that [
Λγf
∂τ f

]∣∣∣∣
∂Ω

=
[

νv + ν̄w
i νv − i ν̄w

]∣∣∣∣
∂Ω

,

or {
Λγf |∂Ω = (νv + ν̄w)|∂Ω

∂τ f |∂Ω = i(νv − ν̄w)|∂Ω.
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Inverting the tangential derivative map,

∂−1
τ (∂τ f) = ∂−1

τ (i(νv − ν̄w))

= i
∫

∂Ω
(νv − ν̄w) dσ

= 0,

with the last step following from the fact that we are integrating over a closed loop and

therefore ∂−1
τ (∂τ f) = f(s(t))− f(s(t)). This gives us (νv− ν̄w) ∈ C1+ε

0 . However, we have

still yet to fully derive a boundary relation. To do so, we apply the operator Hγ = Λγ ∂−1
τ

to ∂τ f on the boundary,

Hγ (∂τ f) = Λγ ∂−1
τ (∂τ f)

= Λγf

= νv + ν̄w,

and from above we also have,

Hγ (∂τ f) = Hγ (i(νv − ν̄w))

= iHγ (νv − ν̄w) .

Therefore,

iHγ (νv − ν̄w) = (νv + ν̄w) on ∂Ω. (5.70)

Knudsen defines the space for the boundary relation as

BR =
{

(h1, h2) ∈ C1+ε(∂Ω)×C1+ε(∂Ω)
∣∣∣∣

(νh1 − ν̄h2) ∈ C1+ε
0 (∂Ω)

iHγ(νh1 − ν̄h2) = νh1 + ν̄h2

}
. (5.71)

The Cauchy data for the problem in (3.4) is given by

CQ =



(v, w)|∂Ω

∣∣∣∣∣∣

(v, w) ∈ C1+ε(Ω)×C1+ε(Ω)

(D −Q)
(

v
w

)
= 0



 .

Notice that since

∂τ f |∂Ω = i(νv − ν̄w)|∂Ω,

we have

u|∂Ω = f = i ∂−1
τ (i(νv − ν̄w)) |∂Ω,
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so that we can define a solution (v, w) to

(D −Q)(v, w)T = 0,

with (
v
w

)
= γ1/2

(
∂ u
∂̄ u

)
,

and

u|∂Ω = f = i ∂−1
τ (i(νv − ν̄w)) |∂Ω.

Knudsen, [Knu02], shows that BR, (5.71), is in fact a complete characterization of the

Cauchy data CQ for the system (3.4). His proof does not rely on the symmetry inherent in

his real valued conductivity based matrix potential QBU and thus our complex admittivity

based matrix potential Q presents no challenge to his proof.

Defining the Boundary Integral Equations

Now that we have a boundary relation that involves the Dirichlet-to-Neumann map Λγ , we

have a connection to the data. However, we still do not have enough information to solve

for the exponentially growing solutions Ψ on the boundary. Here we remedy the situation.

Recall the Cauchy Integral Operator :

Sf(z) =
1

2π i

∫

∂Ω

f(z̃)
z̃ − z

dz̃, z ∈ R2 \ ∂Ω, (5.72)

which acts as a path integral along the boundary ∂Ω in the counter-clockwise direction (the

traditional positive orientation). If z ∈ ∂Ω, then the kernel 1
z̃−z is not integrable and we

must use principle values to evaluate the integral.

We will also need the well known Plemelj’s Formulae

lim
ε→0

Sf(z ± νε) = ∓1
2
f(z) +

1
2π i

P.V.

∫

∂Ω

f(z̃)
z̃ − z

dz̃, (5.73)

where the boundary integral on the right hand side is evaluated in the sense of principle

values.

We will now present and extend the result given in Theorem 3.4.4 of [Knu02] to derive

formulas for the CGO solutions Ψ on the boundary. The main idea of the derivation is

to consider z ∈ C \Ω, i.e. the complement of Ω, and exploit the asymptotics of Ψ in that

region. We will then let z approach the boundary ∂Ω from the outside and employ Plemelj’s

Formulae.
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Lemma 5 (Lemma 3.4.3 of [Knu02]). Let r > 2 and assume that the functions v and w

satisfy (e− i kzv − 1) and e− i kzw ∈ Lr(R2) respectively. Further assume that ∂̄z v and ∂z w

in Cα(R2) for 0 < α < 1 are compactly supported in Ω. Then on the boundary, ∂Ω,

(I − iSk)v = 2ei kz

(I + iSk)w = 0.
(5.74)

Proof. Let z ∈ C \Ω, i.e. z in the complement of Ω. By definition of the ∂̄ and ∂̄
−1

operators,

v(z)e− i kz − 1 =
1
π

∫

R2

∂̄ζ

[
v(ζ)e− i kζ − 1

]

z − ζ
dµ(ζ)

=
1
π

∫

Ω

∂̄ζ

[
v(ζ)e− i kζ

]

z − ζ
dµ(ζ)

=
1
2π

∫

∂Ω

v(ζ)e− i kζ

z − ζ
ν dS(ζ)− 1

π

∫

Ω
v(ζ)e− i kζ ∂̄ζ

(
1

z − ζ

)
dµ(ζ),

using the the fact that ∂̄ v has compact support in Ω and then integration by parts. Now,

as we are only considering z outside of Ω, z − ζ 6= 0 for z ∈ Ω and thus the second integral

over Ω is zero so that

v(z)e− i kz − 1 =
1
2π

∫

∂Ω

v(ζ)e− i kζ

z − ζ
ν dS(ζ).

We know,

dζ = τ dS(ζ) = (i ν) dS(ζ),

and therefore,

ν dS(ζ) =
1
i

dζ.

Thus

v(z)e− i kz − 1 =
1

2π i

∫

∂Ω

v(ζ)e− i kζ

z − ζ
ν dζ,

and rearranging we find,

v(z)e− i kz +
1

2π i

∫

∂Ω

v(ζ)e− i kζ

ζ − z
ν dζ = 1, z ∈ C \Ω.

Now, multiply both sides by ei kz (the asymptotic behavior of v)

v(z) +
1

2π i

∫

∂Ω

v(ζ)e− i k(ζ−z)

ζ − z
ν dζ = ei kz, z ∈ C \Ω,
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or,

v(z) +
1
2 i

∫

∂Ω
v(ζ)gk(ζ − z)ν dζ = ei kz, z ∈ C \Ω, (5.75)

where,

gk(z) =
1
πz

e− i zk.

We will use a modified Plemelj’s Formula,

lim
z→∂Ω
outside





1
2 i

∫

∂Ω
φ(ζ)gk(ζ − z) dζ



 = −1

2
φ(z) + P.V.

1
2 i

∫

∂Ω
φ(ζ)gk(ζ − z) dζ. (5.76)

Now, let z tend toward the boundary ∂Ω (from the outside) in Equation (5.75) and use

(5.76),

lim
z→∂Ω
outside



v(z) +

1
2 i

∫

∂Ω
v(ζ)gk(ζ − z)ν dζ



 = lim

z→∂Ω
outside



ei kz





v(z) + lim
z→∂Ω
outside





1
2 i

∫

∂Ω
v(ζ)gk(ζ − z)ν dζ



 = ei kz

v(z) +
(
−1

2
v(z) + P.V.

1
2 i

∫

∂Ω
v(ζ)gk(ζ − z) dζ

)
= ei kz.

Multiplying through by 2 and simplifying we have,

v(z)− P.V. i
∫

∂Ω
φ(ζ)gk(ζ − z) dζ = 2ei kz,

or equivalently,

(I − iSk) v(z) = 2ei kz, (5.77)

where

Skf(z) = P.V.

∫

∂Ω
f(ζ)gk(ζ − z) dζ. (5.78)

We can now consider the corresponding formula for w(z) ∼ 0 as |z| → ∞,

w(z)ei k̄z̄ = − 1
2π i

∫

∂Ω

w(ζ)ei k̄z̄

z̄ − ζ̄
dζ̄.

Multiplying through by e− i k̄z̄ and rearranging,

w(z)− 1
2π i

∫

∂Ω

w(ζ)ei k̄(ζ̄−z̄)

z̄ − ζ̄
dζ̄ = 0, z ∈ C \Ω. (5.79)
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We will use another modified Plemelj’s Formula,

lim
z→∂Ω
outside





1
2 i

∫

∂Ω
φ(ζ)gk(ζ − z) dζ̄



 =

1
2
φ(z) + P.V.

1
2 i

∫

∂Ω
φ(ζ)gk(ζ − z) dζ̄. (5.80)

Now, let z tend toward the boundary ∂Ω (from the outside) in Equation (5.79) and use

(5.80),

lim
z→∂Ω
outside



w(z)− 1

2π i

∫

∂Ω

w(ζ)ei k̄(ζ̄−z̄)

z̄ − ζ̄
dζ̄



 = 0

w(z)− lim
z→∂Ω
outside





1
2π i

∫

∂Ω

w(ζ)ei k̄(ζ̄−z̄)

z̄ − ζ̄
dζ̄



 = 0

w(z)−
(

1
2
w(z) + P.V.

1
2 i

∫

∂Ω
w(ζ)gk(ζ − z) dζ̄

)
= 0.

Multiplying by 2 and rearranging,

w(z) + P.V. i
∫

∂Ω
w(ζ)gk(ζ − z) dζ̄ = 0,

or equivalently,
(
I + iSk

)
w(z) = 0, (5.81)

where

Skf(z) = P.V.

∫

∂Ω
f(ζ)gk(ζ − z) dζ. (5.82)

This completes the proof of Lemma 5.

Lemma 5 (with Ψ11 = v and Ψ21 = w), along with the boundary relation given in

Equation 5.70, gives us the following theorem.

Theorem 11 (Theorem 3.4.4 of [Knu02]). The system of equations on ∂Ω



(I − iSk) 0
0 (I + iSk)

(iHγ − 1)ν −(iHγ + 1)ν̄


Φ =




2ei kz

0
0


 , z ∈ ∂Ω. (5.83)

has the unique solution Φ = (Ψ11, Ψ21)|∂Ω in

{Φ ∈ C1+ε(∂Ω)×C1+ε(∂Ω) : (νΦ1 − ν̄Φ2) ∈ C1+ε
0 (∂Ω)}.
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The derivation follows directly from Lemma 5 and the boundary relation (5.70). For

the uniqueness part of the proof, I refer the reader to the proof given in [Knu02]. The

proof holds even though Knudsen only considers real valued conductivities γ = σ whereas

we consider complex admittivities γ = σ + iωε.

We also need formulas to determine Ψ12 and Ψ22 on the boundary ∂Ω. In an analogous

fashion, we find

Lemma 6. Let r > 2 and assume that the functions ṽ and w̃ satisfy ei kz̄ ṽ and
(
ei kz̄w̃ − 1

) ∈
Lr(R2) respectively. Further assume that ∂̄ ṽ and ∂ w̃ in Cα(R2) for 0 < α < 1 are compactly

supported in Ω. Then on the boundary, ∂Ω,

(I − iSk̄)ṽ = 0
(I + iSk̄)w̃ = 2ei kz̄,

(5.84)

where the operators Sk̄ and Sk̄ are given by,

Sk̄f(z) = P.V.

∫

∂Ω
f(ζ)gk̄(ζ − z) dζ (5.85)

Sk̄f(z) = P.V.

∫

∂Ω
f(ζ)gk̄(ζ − z) dζ. (5.86)

The proof of Lemma 6 is analogous to that of Lemma 5. Similarly, we have the following

theorem to recover Ψ12 and Ψ21 on the boundary ∂Ω.

Theorem 12. The system of equations on ∂Ω



0 (I − i Sk̄)
(I + i Sk̄) 0

(iHγ − 1)ν −(iHγ + 1)ν̄


 Φ̃ =




0
2ei kz̄

0


 , z ∈ ∂Ω. (5.87)

has the unique solution Φ̃ = (Ψ12, Ψ22)|∂Ω in

{Φ̃ ∈ C1+ε(∂Ω)×C1+ε(∂Ω) : (νΦ̃1 − ν̄Φ̃2) ∈ C1+ε
0 (∂Ω)}.

The proof is analogous to that of Theorem 11.

We have chosen not to implement these formulas for the CGO solutions Ψ on the

boundary since, according to Knudsen [Knu02], their accurate recovery of the CGO solutions

proves to be very difficult. Solving the systems in Equations (5.83) and (5.87) for Ψ21 and

Ψ12 requires that we also recover Ψ11 and Ψ22 (which are not required for the evaluation

of the scattering transform S(k)). Unfortunately, the exponential terms in the systems
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corresponding to the CGO solutions Ψ11 and Ψ22 dominate the solution, leaving the terms

corresponding to Ψ12 and Ψ21 corrupted with excessive computational errors. As we already

have more practical formulas for recovering Ψ12 and Ψ21 on the boundary (see Section 5.1.2),

we have not fully investigated the implementation of Equations (5.83) and (5.87).

5.3.2 Additional BIE Formulas for the CGO Solutions Ψ11 and Ψ22

Although the definitions of the scattering transforms, (5.49) and (5.50), require knowledge

of Ψ12(z, k) and Ψ21(z, k) for z ∈ ∂Ω (not Ψ11 or Ψ22), formulas for Ψ11 and Ψ22 may be

of use to someone someday. Therefore, we include them here. Recall,

∂̄z Ψ11(z, k) = Q12(z)Ψ21(z, k),

which comes from the original transformation of rewriting the admittivity equation as a

first order system using ∂z and ∂̄z derivatives. Taking the ∂z derivative of both sides and

multiplying by −4,

−4 ∂z

(
∂̄z Ψ11(z, k)

)
= −4 ∂z (Q12(z)Ψ21(z, k)) ,

or equivalently, since 4 ∂z ∂̄z = ∆ = 4 ∂̄z ∂z,

−∆Ψ11(z, k) = −4 ∂z (Q12(z)Ψ21(z, k)) . (5.88)

Using the Green’s function for −∆, we can write the solution for Ψ11(z, k) as,

Ψ11(z, k) = ei zk +
∫

Ω
Gk(z − ζ) [−4 ∂ζ (Q12(ζ)Ψ21(ζ, k))] dµ(ζ). (5.89)

Now we need to find a relation to replace the integral over Ω. In order to do so, let w be a

solution to

−∆w = −4 ∂z

(
Q̃12(z)Ψ̃21(z, k)

)
(5.90)

where,

Q̃12(z) = −1
2

∂z log(γ̃(z)).

Multiplying w by (5.88) and subtracting Ψ11 multiplied by (5.90), we have

0 =
∫

Ω
w [−∆ζΨ11 + 4 ∂ζ (Q12Ψ21)]−Ψ11

[
−∆ζw + 4 ∂ζ

(
Q̃12Ψ̃21

)]
dµ(ζ),
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and applying integration by parts on the Laplacian terms,

0 = −
∫

∂Ω
w

∂Ψ11

∂ν
−Ψ11

∂w

∂ν
dS(ζ) +

∫

Ω
∇ζw · ∇ζΨ11 −∇ζΨ11∇ζw dµ(ζ)

+4
∫

Ω
∂ζ (Q12Ψ21)−Ψ11 ∂ζ

(
Q̃12Ψ̃21

)
dµ(ζ)

=
∫

∂Ω
Ψ11

∂w

∂ν
− w

∂Ψ11

∂ν
dS(ζ)

+4
∫

Ω
∂ζ (Q12Ψ21)−Ψ11 ∂ζ

(
Q̃12Ψ̃21

)
dµ(ζ). (5.91)

Now, let γ̃ be a constant admittivity function, and therefore,

Q̃12 = −1
2

∂ log γ̃ = 0.

Thus, equation (5.91) reduces to

0 = −
∫

∂Ω
w

∂Ψ11

∂ν
−Ψ11

∂w

∂ν
dS(ζ) + 4

∫

Ω
∂ζ (Q12Ψ21) dµ(ζ),

or equivalently,

0 = −
∫

∂Ω
wΛQΨ11 −Ψ11ΛQ̃w dS(ζ) + 4

∫

Ω
∂ζ (Q12Ψ21) dµ(ζ), (5.92)

where ΛQ is a modified Dirichlet-to-Neumann map corresponding to γ and ΛQ̃ corresponds

to γ̃. We would like to interchange the CGO solution Ψ11 and the unknown function w in

the boundary integral above so that

∫

∂Ω
Ψ11ΛQ̃w dS(ζ) =

∫

∂Ω
wΛQ̃Ψ11 dS(ζ).

Therefore, we consider the following auxiliary problem where v is a solution to

−∆v = −4 ∂
(
Q̃12ṽ

)
(5.93)

v|∂Ω = Ψ11|∂Ω.

Then, as before, we combine equations (5.90) and (5.93) as follows,

0 =
∫

Ω
v

[
−∆ζw + 4 ∂ζ

(
Q̃12Ψ̃21

)]
− w

[
−∆ζv + 4 ∂ζ

(
Q̃12ṽ

)]
dµ(ζ).

Since γ̃ is constant, Q̃12 = 0 and therefore the above reduces to

0 = −
∫

Ω
v∆ζw − w∆ζv dµ(ζ).
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Applying integration by parts on the Laplacian operators,

0 =
∫

∂Ω
v
∂w

∂ν
− w

∂v

∂ν
dS(ζ)−

∫

Ω
∇ζv · ∇ζw −∇ζv∇ζw dµ(ζ)

=
∫

∂Ω
v
∂w

∂ν
− w

∂v

∂ν
dS(ζ)

=
∫

∂Ω
vΛQ̃w − wΛQ̃v dS(ζ).

Then, since v|∂Ω = Ψ11|∂Ω, we have

∫

∂Ω
Ψ11ΛQ̃w dS(ζ) =

∫

∂Ω
wΛQ̃Ψ11 dS(ζ), (5.94)

which will allow us to interchange Ψ11 and w in equation (5.92). Now, using equation (5.94)

in (5.92) yields

0 = −
∫

∂Ω
wΛQΨ11 − wΛQ̃Ψ11 dS(ζ) + 4

∫

Ω
w ∂ζ (Q12Ψ21) dµ(ζ). (5.95)

Recall that γ̃ is a constant and therefore the original equation for w, equation (5.90), reduces

to

−∆w = 0,

and thus w is the Green’s function for the −∆ operator. Using this in equation (5.95) gives

0 =
∫

∂Ω
Gk(z − ζ)

[
ΛQ − ΛQ̃

]
Ψ11(ζ, k) dS(ζ)

+
∫

Ω
Gk(z − ζ) [−4 ∂ζ (Q12(ζ)Ψ21(ζ, k))] dµ(ζ). (5.96)

Now replacing the integral over Ω with the corresponding term in (5.89) gives

0 =
∫

∂Ω
Gk(z − ζ)

[
ΛQ − ΛQ̃

]
Ψ11(ζ, k) dS(ζ) +

(
ei zk −Ψ11(z, k)

)
.

Rearranging the terms gives us the following equation for Ψ11,

Ψ11(z, k) = ei zk +
∫

∂Ω
Gk(z − ζ)

[
ΛQ − ΛQ̃

]
Ψ11(ζ, k) dS(ζ).

We can also derive a similar formula for Ψ22(z, k). We summarize the results in the following

theorem.
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Theorem 13. The exponentially growing solutions Ψ11(z, k) and Ψ22(z, k) to (3.10) can be

calculated on the boundary ∂Ω via:

Ψ11(z, k) = ei zk +
∫

∂Ω
Gk(z − ζ)

[
ΛQ − ΛQ̃

]
Ψ11(ζ, k) dS(ζ), z ∈ ∂Ω (5.97)

Ψ22(z, k) = e− i z̄k +
∫

∂Ω
Gk(−z̄ + ζ̄)

[
ΛQ − ΛQ̃

]
Ψ22(ζ, k) dS(ζ), z ∈ ∂Ω (5.98)

for z, k ∈ C where ΛQ and ΛQ̃ are modified Dirichlet-to-Neumann maps corresponding to

γ and γ̃ respectively, and γ̃ is constant.

Note that these formulas hold for all z ∈ C and therefore we could compare the recon-

structed CGO solutions Ψ11 and Ψ22 from the inverse problem (e.g. from simulated Finite

Element data) to the CGO solutions Ψ11 and Ψ22 that we can solve for via the forward

DkM = QM problem for a prescribed admittivity distribution. This gives us another check

along the way to verify that our formulas, as well as our forward solver, are correct. Note

that while formulas (5.97) and (5.98) are not needed for the solution of the full nonlinear

inverse problem, their addition allows us to recover the trace of the entire Ψ(z, k) matrix

for z ∈ ∂Ω and k ∈ C \0 (along with (5.51) and (5.52)).
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6. IMPLEMENTATION OF THE COMPLETE RECONSTRUCTION
ALGORITHM FOR CIRCULAR DOMAINS

In this chapter the numerical implementation of each of the steps of the full nonlinear

reconstruction algorithm:

Λγ −→
1

u1|∂Ω, u2|∂Ω −→
2

Ψ12|∂Ω, Ψ21|∂Ω −→
3

S(k) −→
4

M(z, 0) −→
5

Q(z) −→
6

γ(z)

are presented.

6.1 The Steps of the Full Nonlinear Reconstruction Algorithm

We now have all the necessary steps for a direct reconstruction algorithm:

1. Compute the exponentially growing solutions u1(z, k) and u2(z, k) to the admittivity

equation from the boundary integral formulas (5.32) and (5.37)

u1(z, k)|∂Ω =
eikz

ik

∣∣∣∣
∂Ω

−
∫

∂Ω
Gk(z − ζ)(Λγ − Λ1)u1(ζ, k)dS(ζ)

u2(z, k)|∂Ω =
e−ikz̄

−ik

∣∣∣∣
∂Ω

−
∫

∂Ω
Gk(−z̄ + ζ̄)(Λγ − Λ1)u2(ζ, k)dS(ζ).

2. Compute the off diagonal entries of the CGO solution Ψ(z, k) for z ∈ ∂Ω from the

boundary integral formulas (5.51) and (5.52)

Ψ12(z, k) =
∫

∂Ω

eik̄(z−ζ)

4π(z − ζ)
[Λγ − Λ1] u2(ζ, k) dS(ζ)

Ψ21(z, k) =
∫

∂Ω

[
eik(z−ζ)

4π(z − ζ)

]
[Λγ − Λ1] u1(ζ, k) dS(ζ).

3. Compute the off-diagonal entries of the scattering matrix Sγ(k) from (5.49) and (5.50)

S12(k) =
i

2π

∫

∂Ω
e−ik̄zΨ12(z, k)(ν1 + iν2)dS(z)

S21(k) = − i
2π

∫

∂Ω
eik̄z̄Ψ21(z, k)(ν1 − iν2)dS(z).
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4. Solve the ∂̄k-equation (3.21) for the matrix M(z, k)

∂̄k M(z, k) = M(z, k̄)
(

e(z, k̄) 0
0 e(z,−k)

)
Sγ(k).

5. Reconstruct the matrix potential Q from Theorem 10 using equations (5.59) and (5.60)

Q12(z) =
∂̄z M+(Q, z, 0)
M−(Q, z, 0)

Q21(z) =
∂z M−(Q, z, 0)
M+(Q, z, 0)

.

6. Use the definition of the matrix potential Q, (3.8) or (3.9) to compute log(γ)

log(γ(z)) = − 2
π

∫

C

Q12(ζ)
z̄ − ζ̄

dµ(ζ) = − 2
π

∫

C

Q21(ζ)
z − ζ

dµ(ζ)

and exponentiate to recover the admittivity distribution γ.

6.2 Step 0: Implementation of the D-N Map on the Boundary of the Unit Disc:

The first examples that we will look at will be on the unit disc, however, the goal is to work

with experimental data where the radius is often not one. We introduce a D-N map with

two subscripts, the first corresponding to the admittivity, while the second to the radius of

the domain. We may need to use the following relation between the D-N map for a circular

domain of radius 1 and admittivity γ, namely Λγ,1, and the D-N map for a circular domain

of radius r and admittivity γ, namely Λγ,r [DM10, IMNS04]:

Λγ,1 = rΛγ,r, (6.1)

when using simulated and experimental data from tanks of non-unitary radii. In addition,

the theory of the algorithm was derived with γ ≡ 1 near the boundary whereas for many

practical applications this is not true. We will approximate the value of γ near ∂Ω by the

best constant admittivity approximation to fit the measured data, denoted by γbest, using

a complex version of the method presented in [JIEN97]. We will then scale the admittivity

γ by:

γ̃ ≡ γ/γbest. (6.2)

We may then use the corresponding, scaled, D-N map given by

Λγ̃,1 =
1

γbest
Λγ,1, (6.3)
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when solving the inverse problem. Therefore, the D-N map corresponding to a circular

domain of radius 1 and scaled admittivity γ̃ (close to one) can be related to the D-N map

corresponding to a circular domain of radius r and original admittivity γ via:

Λγ̃,1 =
r

γbest
Λγ,r. (6.4)

Since the admittivity equation (3.3) assumes γ ≡ 1 on the boundary, the D-N map will

need to be scaled by the best constant admittivity γbest. However, as the formulas for

the scattering transforms, (5.49) and (5.50), only require that the domain of the potential

matrix Q(z) has compact support (not necessarily the unit disc), we can choose to either

(i) scale the D-N map according to the radius r of our practical domain and evaluate the

scattering transforms S12(k) and S21(k) for a disc of radius 1 (using (6.4))

(ii) work with the D-N map that corresponds to the radius r of our practical domain

and evaluate the scattering transforms S12(k) and S21(k) for a disc of radius r (using

(6.3)).

We will work with option (i) now and option (ii) later in Section 7.

The theory requires knowledge of the voltages that arise from any possible current

pattern. However, in practice, this is not possible as we are working with a finite number

L of electrodes. If we use the trigonometric basis functions (described in Appendix B)

that are commonly used at Rensselaer Polytechnic Institute and Dartmouth College, there

are L − 1 linearly independent current patterns. Other devices may use different current

patterns and therefore have a different number of linearly independent current patterns (but

never exceeding L − 1). For example, there are L − (n + 1) linearly independent current

patterns for the skip-n basis of current patterns commonly used at the University of São

Paulo in Brazil [CCG08, VBOM04, CLA09]. The case with skip-n current patterns will be

described in Section 6.10.

6.2.1 Discretization of the Dirichlet-to-Neumann Map Λγ

Here the discrete approximation to the D-N map for the trigonometric current patterns

is explained. Let T j
` = T (`, j) denote the value of the j-th trigonometric current pattern
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applied on the `-th electrode calculated by,

T (`, j) =





M cos(jθ`), j = 1, . . . , L
2 − 1

M cos(π`), j = L
2

M sin
((

j − L
2

)
θ`

)
, j = L

2 , . . . , L− 1,

(6.5)

where M is the amplitude of the applied current, ` = 1, . . . , L and θ` = 2π`
L . Let V j

` denote

the voltage on the `-th electrode that arises from applying the j-th current pattern. The

data, i.e. the current pattern matrix T and the voltage matrix V , need to be normalized so

that the following are satisfied.

1. Each current pattern T j has an `2 norm of 1,

Φj =
T j

‖T j‖`2
, where ‖T j‖`2 =

√√√√
L∑

`=1

(
T j

`

)2
.

Physically, this is equivalent to ensuring conservation of charge.

2. The voltages over all L electrodes are adjusted so that they sum to zero (for each

current pattern Φj), and will be denoted by Ṽ j

L∑

`=1

Ṽ j
` = 0, j = 1, . . . , L− 1.

Physically, this is equivalent to specifying a ground and therefore guaranteeing a

unique solution.

3. The adjusted voltages Ṽ are then scaled by the `2 norm of the current patterns

vj =
Ṽ j

‖T j‖`2
.

Note that the voltages must be scaled since we normalized the current patterns.

Let Rγ,r denote the Neumann-to-Dirichlet (current-density-to-voltage) operator corre-

sponding to an admittivity γ(z) in a disc of radius r. We relate the N-D map (calculated

from the experimental data) to the D-N map (which is needed for the reconstruction of the

CGO solutions u1, u2, Ψ12, and Ψ21) as follows,

Λγ,r = (Λγ,r)
−1 , (6.6)
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where B−1 denotes the inverse of a matrix B. We can model the applied current density

j(z) on the ∂Ω using the gap model (See Appendix A),

j(z) =

{
Φ`
A`

, z ∈ ∂Ω
0, else,

where A` is the area of the `-th electrode. Let RM
γ,r denote the discrete matrix approximation

of the N-D map Rγ,r where the (m,n)-th entry is defined by,

RM
γ,r(m,n) =

(
Φm

`

A`
, vn

`

)
=

L∑

`=1

Φm
` vn

`

A`
. (6.7)

Recall that the boundary integral equations (BIEs) for the CGO solutions Ψ12 and Ψ21

require knowledge of the δΛ operator defined by

δΛ = Λγ − Λ1.

To approximate Λ1, the N-D map corresponding to a constant admittivity of 1, the forward

admittivity problem ∇ · γ∇u = 0 is solved using the Finite Element Method for the pre-

scribed constant admittivity 1 (see Appendix B for details of how to implement the Finite

Element Method for the forward admittivity problem). Therefore, the δΛ operator may be

approximated via

(δΛ)M =
(
RM

γ,r

)−1 − (
RM

1,r

)−1
, (6.8)

where the superscript M is used to emphasize that this is a discrete matrix approximation.

See [IMNS04] for a more detailed explanation of the discrete approximation for the D-N

map.

6.3 Step 1: Implementation of the BIEs for the Exponentially Growing Solutions
u1(z, k) and u2(z, k) for z on the Boundary of a Circular Domain:

To reconstruct the exponentially growing solutions u1(z, k) and u2(z, k) for z on the bound-

ary of a circular domain (via formulas (5.32) and (5.37)), we follow the approach outlined

by DeAngelo and Mueller [DM10].

We wish to discretize (5.32) and (5.37). In fact, we will solve

u1(z, k)− 1
i k

=
ei zk

i k
− 1

i k
−

∫

∂Ω
Gk(z − ζ)δΛu1(ζ, k) dS(ζ) (6.9)

u2(z, k)− 1
i k

=
e− i z̄k

− i k
− 1

i k
−

∫

∂Ω
Gk(−z̄ + ζ̄)δΛu2(ζ, k) dS(ζ), (6.10)
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for z ∈ ∂Ω and k ∈ C \0. Using the basis of normalized trigonometric current patterns Φ,

we expand the the exponential terms ei kz

i k − 1
i k and e− i z̄k

− i k − 1
i k for values of z that correspond

to the positions of the centers of the L electrodes (denoted by z`):

ei z`k

i k
− 1

i k
≈

L−1∑

j=1

αj(k)Φj
` , ` = 1, . . . , L (6.11)

e− i z̄`k

− i k
− 1

i k
≈

L−1∑

j=1

βj(k)Φj
` , ` = 1, . . . , L. (6.12)

We similarly expand u1− 1
i k and u2− 1

i k using the normalized trigonometric basis of current

patterns Φ:

u1(z`, k)− 1
i k

≈
L−1∑

j=1

aj(k)Φj
` , ` = 1, . . . , L (6.13)

u2(z`, k)− 1
i k

≈
L−1∑

j=1

bj(k)Φj
` , ` = 1, . . . , L. (6.14)

Let ~a denote the column vector ~a(k) = [a1(k), . . . , aL−1(k)]T where here the superscript T

denotes the transpose of a matrix/vector. Similarly define ~b, ~α, and ~β. Since

δΛ
(

1
i k

)
=

1
i k

δΛ(1) = 0,

we have

δΛ (u1) = δΛ
(

u1 − 1
i k

)
and δΛ (u2) = δΛ

(
u2 − 1

i k

)
, (6.15)

and thus we can use the expansions of u1 − 1
i k and u2 − 1

i k in the boundary integrals in

(6.9) and (6.10) as follows

u1(z`, k)− 1
i k

=
ei z`k

i k
− 1

i k
−

∫

∂Ω
Gk (z` − ζ) δΛ

[
u1(ζ, k)− 1

i k

]
dS(ζ)

u2(z`, k)− 1
i k

=
e− i z̄`k

− i k
− 1

i k
−

∫

∂Ω
Gk(−z̄` + ζ̄)δΛ

[
u2(ζ, k)− 1

i k

]
dS(ζ),

for ` = 1, . . . , L. As the D-N map corresponds to measurements taken on the electrodes

e` for ` = 1, . . . , L, we only know how the difference in D-N maps, δΛ, acts for boundary

values ζ corresponding to the centers of the electrodes, namely for ζ = z`, ` = 1, . . . , L.

Let E`′ denote the `′-th subdivision of the boundary ∂Ω (`′ = 1, . . . , L) centered at z`′ with

length P/L where P denotes the perimeter of the domain. Splitting the integral over ∂Ω
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into a sum of integrals over the subsections E`′

u1(z`, k)− 1
i k

≈ ei z`k

i k
− 1

i k
−

L∑

`′=1

∫

E`′
Gk (z` − ζ) δΛ

[
u1(·, k)− 1

i k

]∣∣∣∣
ζ`′

dS(ζ)

=
ei z`k

i k
− 1

i k
−

L∑

`′=1

∫

E`′
Gk (z` − ζ) dS(ζ) δΛ

[
u1(ζ`′ , k)− 1

i k

]
.

Using the expansions for u1 − 1
i k and ei kz

i k − 1
i k , (6.13) and (6.11) respectively, we have

L−1∑

j=1

aj(k)Φj
` ≈

L−1∑

j=1

αj(k)Φj
` −

L∑

`′=1

∫

E`′
Gk (z` − ζ) dS(ζ) δΛ

L−1∑

j=1

aj(k)Φj
`′

=
L−1∑

j=1

αj(k)Φj
` −

L∑

`′=1

∫

E`′
Gk (z` − ζ) dS(ζ)

L−1∑

j=1

aj(k)fj (ζ`′) ,

where fj (ζ`′) denotes the action of the discretized (δΛ)M matrix on the j-th normalized

trigonometric basis function evaluated at the center of the `′-th electrode (`′ = 1, . . . , L).

Let

G̃k(`, `′) =

{
Gk (z`, ζ`′) ` 6= `′
1
dθ

∫
E`′

Gk(z` − ζ) dS(ζ) ` = `′,
(6.16)

where dθ = |E`′ | is the length of the subdivision E`′ of the boundary of the unit circle.

Then
L−1∑

j=1

aj(k)Φj
` ≈

L−1∑

j=1

αj(k)Φj
` − dθ

L−1∑

j=1

aj(k)
L∑

`′=1

G̃k(`, `′)fj (ζ`′) . (6.17)

Following DeAngelo and Mueller ([DM10]),

fp(ζ`′) ≈
(
Φ(δΛ)M

)
(`′, j), (6.18)

i.e., the (`′, j) entry in the matrix resulting from multiplication of the normalized current

pattern matrix Φ and the discretized difference in D-N maps (δΛ)M . Using the properties

of matrix multiplication, equation (6.17) can be rewritten as

L−1∑

j=1

aj(k)Φj
` =

L−1∑

j=1

αj(k)Φj
` − dθ

L−1∑

j=1

aj(k)
(
G̃kΦ(δΛ)M

)
(`, j),

or equivalently,

Φ~a = Φ~α− dθG̃kΦ(δΛ)M~a,

a matrix equation for the unknown coefficients ~a which are needed in the normalized trigono-

metric basis expansion of u1 − 1
i k .
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Using the orthonormality of the normalized trigonometric basis functions in the matrix

Φ, we multiply both sides of the equation by ΦT , and then solve

(I + A)~a = ~α, (6.19)

where

A = dθΦT G̃kΦ(δΛ)M . (6.20)

For each value of k ∈ C \0, we solve the system (6.19) using GMRES for the unknown

coefficients ~a and then reconstruct u1 − 1
i k for the specified value of k via (6.13).

Numerical experimentation has shown that the standard Green’s function for the Lapla-

cian G0(z − ζ)

G0(z − ζ) := − 1
2π

log |z − ζ| , (6.21)

is a good approximation to Gk(z − ζ) [MS03, DM10]. In this thesis, the G0 approximation

on the boundary ∂Ω is used in (6.20). In [DM10], the singularity that occurs at ζ = z` in

G0 is dealt with by setting the value to zero. In that work, an L×L matrix G̃0 is defined

whose (`, `′) entry is given by,

G̃0(`, `′) = G̃0(z` − ζ`′) :=

{
G0(z` − ζ`′) if arg(z` − ζ`′) ≥ tol
0 otherwise,

(6.22)

where `, `′ = 1, . . . , L and tol represents a tolerance threshold that one may adjust. In this

thesis, will instead use (6.16), replacing Gk by G0. As we must compute an integral over

the boundary, we make use of the fact that the singularity in G0 is an integrable singularity.

We now deal with the singularity at z` = ζ by calculating the value of

∫

E`

G0(z` − ζ) dS(ζ)

analytically for a circular domain. If the electrodes are placed uniformly around the bound-

ary of the domain, we only need to calculate the value of this integral for one value of `.

Fixing an electrode e`, and integrating over the corresponding section of the boundary E`,

∫

E`

G0(z` − ζ) dS(ζ) = − 1
2π

∫

E`

log |z` − ζ| dS(ζ),
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where z` = ei θ` is at the center of e` on E`. Thus, thus the maximum distance between z`

and ζ on E` is given by

|z` − ζ| ≤
∣∣∣ei θ` − ei(θ`−π/L)

∣∣∣

=
∣∣∣ei θ`

(
1− e− i π/L

)∣∣∣

=
∣∣∣1− e− i π/L

∣∣∣

=
√

2− 2 cos (π/L).

Therefore,

− 1
2π

∫

E`

log |z` − ζ| dS(ζ) = − 2
2π

∫ √
2−2 cos(π/L)

0
log(x) dx

= − 1
π

[x log(x)− x] |x=
√

2−2 cos(π/L)
x=0

= − 1
π

√
2− 2 cos (π/L)

[
log

(√
2− 2 cos (π/L)

)
− 1

]
,

and we can approximate the diagonal entries of the G̃0 matrix by

G̃0(`, `) := − L

2π2

√
2− 2 cos (π/L)

[
log

(√
2− 2 cos (π/L)

)
− 1

]
, (6.23)

since dθ = 2π
L is the length of the subdivision E` containing e`. Similarly, for a disc of

radius R,

G̃0(`, `) := − L

2π2

√
2− 2 cos (π/L)

[
log(R) + log

(√
2− 2 cos (π/L)

)
− 1

]
. (6.24)

Figure 6.1 shows the approximation to G0 given in (6.22) as well as the approximation

with the corrected diagonal entry given by using (6.23). Figure 6.2 compares the approx-

imations from (6.22) and (6.24) for a disc of radius 0.150m. Notice that for the unit disc,

the diagonal entries of the new G0 are set to approximately 0.5284 instead of 0, and 0.8302

instead of 0 for the r = 0.150m case.

Note that the boundary integral equation (6.10) for u2 requires G0(−z̄ + ζ̄) instead of

G0(z − ζ). Due to the definition of G0 in (6.21),

G0(z − ζ) := − 1
2π

log |z − ζ| = G0(−z̄ + ζ̄).

Therefore, in an analogous fashion, the unknown coefficients ~b for u2 (using G0) may be

found via

(I + A)~b = ~β, (6.25)
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Fig. 6.1: Comparison of the G̃0 approximation given in (6.22) (a) and the new approximation given
in (6.23) for the unit disc (b).

where A is the same matrix defined above in (6.20) and u2 − 1
i k may be reconstructed via

(6.14).

88



0
10

20
30

40

0

10

20

30

40
0

0.1

0.2

0.3

0.4

0.5

0.6

ColumnRow

(a) G̃0 from (6.22)

0
10

20
30

40

0

10

20

30

40
0

0.2

0.4

0.6

0.8

1

ColumnRow

(b) G̃0 using (6.24)

Fig. 6.2: Comparison of the G̃0 approximation given in (6.22) (a) and the new approximation given
in (6.23) for a disc of radius r = 0.150m (b).

6.4 Step 2: Implementation of the BIEs for the CGO Solutions Ψ12(z, k) and
Ψ21(z, k) for z on the boundary of a Circular Domain:

Now that we have solved for the adjusted exponentially growing solutions u1− 1
i k and u2− 1

i k

on the boundary, we can evaluate the CGO solutions Ψ12 and Ψ21. Recall the formulas for
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Ψ12 and Ψ21 on the boundary (5.51) and (5.52)

Ψ12(z, k) =
∫

∂Ω

ei k̄(z−ζ)

4π(z − ζ)
δΛ(ζ)u2(ζ, k) dS(ζ)

Ψ21(z, k) =
∫

∂Ω

[
ei k(z−ζ)

4π(z − ζ)

]
δΛ(ζ)u1(ζ, k) dS(ζ).

Although u1− 1
i k and u2− 1

i k were computed above in Step 1, only the action of the difference

in D-N maps δΛ on u1 and similarly u2 is needed. However, by (6.15) this does not present

a challenge.

When solving for the adjusted exponentially growing solutions u1− 1
i k and u2− 1

i k above

in Step 1, we already learned how to compute a very similar version of the boundary integral

equations for Ψ12 and Ψ21! The main difference is that we will not need to use GMRES

as we have already calculated the unknown coefficients ~a and ~b that are needed for the

evaluation of δΛ(ζ)u2(ζ, k) and δΛ(ζ)u1(ζ, k) in the boundary integrals above for Ψ21 and

Ψ12 respectively. In addition, the Faddeev’s Green’s function Gk(z−ζ) is now replaced with

its ∂z and ∂̄z derivatives for Ψ12 and Ψ21 respectively. As it turns out, these functions also

arose in the work of Kim Knudsen [Knu02] when he implemented an algorithm based on

the global uniqueness result of Brown and Uhlmann for real valued conductivities in W 1,p

for p > 2, [BU97] (see Section 5.3.1 for another set of boundary integral equations derived

using methods similar to Knudsen).

The singularities in ∂z Gk(−z̄ + ζ̄) and ∂̄z Gk(z − ζ) for z = ζ are set to zero when

implementing the boundary integrals, as was done in the original approximation to the G0

operator in [DM10], giving the approximation

∂z Gk(−z̄n + ζ̄`′) ≈
{

ei k̄(zn−ζ`′ )
4π(zn−ζ`′ )

if arg(zn − ζ`′) ≥ tol

0 otherwise,

∂̄z Gk(zn − ζ`′) ≈




[
ei k(zn−ζ`′ )
4π(zn−ζ`′ )

]
if arg(zn − ζ`′) ≥ tol

0 otherwise,

for `′ = 1, . . . , L and n = 1, . . . , Nz where Nz is the number of evaluation points z along the

boundary ∂Ω. For ease of notation, let

Γ(n, `′) = ∂z Gk(−z̄n + ζ̄`′)

Γ̃(n, `′) = ∂̄z Gk(zn − ζ`′).
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Then, vectors of CGO solutions Ψ12 and Ψ21 for zn along the boundary can be approximated

via

Ψ12 ≈ 2π

L
ΓΦ(δΛ)M~b (6.26)

Ψ21 ≈ 2π

L
Γ̃Φ(δΛ)M~a (6.27)

and this process is repeated for each value of k.

6.5 Step 3: Evaluation of the Scattering transform S(k)

The values of the CGO solutions Ψ12 and Ψ21 are subsequently used in the evaluation of

the scattering transform S(k). The off-diagonal entries of the scattering transform matrix,

namely S12(k) and S21(k), were computed inside the square [−K, K]2 (with k = 0 not

included since the formulas for the CGO solutions do not hold for k = 0). Using finite

sums, (5.49) and (5.50) can be approximated

S12(k) ≈ i
Nz

Nz∑

n=1

e−ik̄znΨ12(zn, k)zn (6.28)

S21(k) ≈ − i
Nz

Nz∑

n=1

eik̄znΨ21(zn, k)zn, (6.29)

where zn denotes the coordinate the nth equally spaced evaluation point around the bound-

ary of Ω (in this case the unit disc) and Nz denotes the total number of such points along

the boundary. The factors of 2π in the denominator (originally appearing in (5.49) and

(5.50)) cancel with the width of the subintervals 2π
Nz

.

6.6 Step 4: Solution of the ∂̄k-equation

In this step the scattering transforms computed in Step 3, from Equations (6.28) and (6.29),

are used to set up and solve the ∂̄k-equation (3.21) presented in Theorem 4.1 of Francini

[Fra00] (see Theorem 3 in this thesis). We aim to solve the system (3.21) for the CGO

solutions M(z, k) over a region Ω containing the support of Q(z). Writing out the terms of
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the ∂̄k-equation in more detail, one can see that

∂̄k M(z, k) = M(z, k̄)
[

e(z, k̄) 0
0 e(z,−k)

]
S(k)

=
[

M11(z, k̄) M12(z, k̄)
M21(z, k̄) M22(z, k̄)

] [
e(z, k̄) 0

0 e(z,−k)

] [
0 S12(k)

S21(k) 0

]

=
[

M12(z, k̄)e(z,−k)S21(k) M11(z, k̄)e(z, k̄)S12(k)
M22(z, k̄)e(z,−k)S21(k) M21(z, k̄)e(z, k̄)S12(k)

]

resulting in the following two systems of equations,
{

∂̄k M11(z, k) = M12(z, k̄)e(z,−k)S21(k)
∂̄k M12(z, k) = M11(z, k̄)e(z, k̄)S12(k)

, (6.30)

and {
∂̄k M21(z, k) = M22(z, k̄)e(z,−k)S21(k)
∂̄k M22(z, k) = M21(z, k̄)e(z, k̄)S12(k)

. (6.31)

Due to the coupling, one can solve two separate systems using the scattering transforms

S12(k) and S21(k) computed in Step 3.

We first aim to solve the system in equation (6.30)
{

∂̄k M11(z, k) = M12(z, k̄)e(z,−k)S21(k)
∂̄k M12(z, k) = M11(z, k̄)e(z, k̄)S12(k)

using Vainikko’s one-grid method generalized for systems. The Generalized Cauchy Integral

Formula is used to invert the ∂̄k operator, taking into account the asymptotics of the CGO

solutions M(z, k). This results in

M11(z, k) = 1 +
1
π

∫

C

M12(z,
¯̃
k)e(z,−k̃)S21(k̃)

k − k̃
dµ(k̃)

M12(z, k) = 0 +
1
π

∫

C

M11(z,
¯̃
k)e(z,

¯̃
k)S12(k̃)

k − k̃
dµ(k̃)

or using convolution,
{

M11(z, k) = 1 + 1
πk ∗

(
M12(z, k̄)e(z,−k)S21(k)

)
M12(z, k) = 1

πk ∗
(
M11(z, k̄)e(z, k̄)S12(k)

) .

The problem is now reduced to solving
{

1 = M11(z, k)− 1
πk ∗

(
M12(z, k̄)e(z,−k)S21(k)

)
0 = M12(z, k)− 1

πk ∗
(
M11(z, k̄)e(z, k̄)S12(k)

) , (6.32)

using Vainikko’s one-grid Method. To solve this system, we write functions in MATLAB

to implement the action of the operation and use GMRES in a similar fashion as for the
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forward DkM = QM problem (see Chapter 4). We will only need to use one Green’s

function this time, i.e. the Green’s function for the ∂̄k operator. To deal with the M(z, k̄)

terms (rather than M(z, k)), we solve the system on a grid with the origin at the center

and an odd number of grid points in both the horizonal and vertical directions. Then, we

merely perform the appropriate flip (flipud for a grid that was created using MATLAB’s

meshgrid function) to ensure that we access the correct entries in the CGO solution matrix.

Additionally, we we need to solve the problem on the same k-grid for multiple values of z

so that we have the solution values M(z, k) over a region that contains Ω in the z-variable.

After each solve of the ∂̄k equation for a specific value of z̃, we store the entry of the matrix

M(z̃, k) corresponding to the k = 0 entry is stored in a new matrix M(z̃, 0) for each value

of z̃. This is done for both M11(z, k) and M12(z, k). As the two equations are coupled,

they must be solved simultaneously using GMRES. In practice, a finite k-grid is used and

therefore the convolution will only be computed over a finite, rather than infinite, grid.

One can also think of this as truncating the scattering transform S(k). As it turns out,

the numerical evaluation of the scattering transform (from data) can blow up as |k| → ∞
in certain directions. This is consistent with the scattering transform in [Nac96] for real

valued conductivities, and the truncation radius has been shown to be a regularization

method [KLMS09].

Notice that the multiplier functions in (6.32) do not have compact support even though

the scattering transforms decay rapidly to zero as |k| tends towards infinity which could be

contributing to the blowup.

The system in equation (6.31)
{

∂̄k M21(z, k) = M22(z, k̄)e(z,−k)S21(k)
∂̄k M22(z, k) = M21(z, k̄)e(z, k̄)S12(k)

is solved in an analogous manner as (6.30).

6.7 Step 5: Computation of the Matrix Potential Q via the M to Q Formulas

After solving the ∂̄k-equation via (6.30) and (6.31) in Step 4 above for the CGO solutions

M(z, 0), we use Theorem 10 to recover the potential matrix Q(z). Per the theorem,

Q12(z) =
∂̄z M+(Q, z, 0)
M−(Q, z, 0)

Q21(z) =
∂z M−(Q, z, 0)
M+(Q, z, 0)

,
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where M+ and M− are formed via (5.61) and (5.62)

M+(Q, z, k) = M11(Q, z, k) + e(z,−k)M12(Q, z, k)

M−(Q, z, k) = M22(Q, z, k) + e(z, k)M21(Q, z, k).

Therefore the ∂z and ∂̄z derivatives of M−(z, 0) and M+(z, 0) respectively are needed. First

order centered finite differences are used to approximate the ∂z and ∂̄z operators. By

definition, the ∂z and ∂̄z derivatives of a function f(z) = f(x, y) at a given point (xj , yp)

are given by,

∂z f (xj , yp) =
1
2

[
∂

∂x
f (xj , yp)− i

∂

∂y
f (xj , yp)

]

≈ 1
2

[
f (xj+1, yp)− f (xj−1, yp)

2hx
− i

f (xj , yp+1)− f (xj , yp−1)
2hy

]

=
1
4h

[
f (xj+1, yp)− f (xj−1, yp)− i f (xj , yp+1) + i f (xj , yp−1)

]

and

∂̄z f (xj , yp) =
1
2

[
∂

∂x
f (xj , yp) + i

∂

∂y
f (xj , yp)

]

≈ 1
2

[
f (xj+1, yp)− f (xj−1, yp)

2hx
+ i

f (xj , yp+1)− f (xj , yp−1)
2hy

]

=
1
4h

[
f (xj+1, yp)− f (xj−1, yp) + i f (xj , yp+1)− i f (xj , yp−1)

]

where hx and hy denote the stepsize in the x and y directions respectively. For convenience

we have taken hx = hy = h.

The matrices needed to calculate ∂̄z f(x, y) = ∂̄z f(z) for a grid with 4 points in each

of the x and y directions, i.e., for (xj , yp) where 1 ≤ j, p ≤ 4 are described below. Let

f(xj , yp) = fpj , then the following is nearly the ∂̄z derivative of f(z) for z = (xj , yp) on the
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grid 1 ≤ j, p ≤ 4



0 i 0 0 1 0 0 0 0 0 0 0 0 0 0 0
− i 0 i 0 0 1 0 0 0 0 0 0 0 0 0 0
0 − i 0 i 0 0 1 0 0 0 0 0 0 0 0 0
0 0 − i 0 0 0 0 1 0 0 0 0 0 0 0 0
−1 0 0 0 0 i 0 0 1 0 0 0 0 0 0 0
0 −1 0 0 − i 0 i 0 0 1 0 0 0 0 0 0
0 0 −1 0 0 − i 0 i 0 0 1 0 0 0 0 0
0 0 0 −1 0 0 − i 0 0 0 0 1 0 0 0 0
0 0 0 0 −1 0 0 0 0 i 0 0 1 0 0 0
0 0 0 0 0 −1 0 0 − i 0 i 0 0 1 0 0
0 0 0 0 0 0 −1 0 0 − i 0 i 0 0 1 0
0 0 0 0 0 0 0 −1 0 0 − i 0 0 0 0 1
0 0 0 0 0 0 0 0 −1 0 0 0 0 i 0 0
0 0 0 0 0 0 0 0 0 −1 0 0 − i 0 i 0
0 0 0 0 0 0 0 0 0 0 −1 0 0 − i 0 i
0 0 0 0 0 0 0 0 0 0 0 −1 0 0 − i 0







f11

f21

f31

f41

f12

f22

f32

f42

f13

f23

f33

f34

f14

f24

f34

f44




=




i f (x1, y2) + f (x2, y1)
− i f (x1, y1) + i f (x1, y3) + f (x2, y2)
− i f (x1, y2) + i f (x1, y4) + f (x2, y3)
− i f (x1, y3) + f (x2, y4)
−f (x1, y1) + i f (x2, y2) + f (x3, y1)
−f (x1, y2)− i f (x2, y1) + i f (x2, y3) + f (x3, y2)
−f (x1, y3)− i f (x2, y2) + i f (x2, y4) + f (x3, y3)
−f (x1, y4)− i f (x2, y3) + f (x3, y4)
−f (x2, y1) + i f (x3, y2) + f (x4, y1)
−f (x2, y2)− i f (x3, y1) + i f (x3, y3) + f (x4, y2)
−f (x2, y3)− i f (x3, y2) + i f (x3, y4) + f (x4, y3)
−f (x2, y4)− i f (x3, y3) + f (x4, y4)
−f (x2, y1) + i f (x3, y2)
−f (x2, y2)− i f (x3, y1) + i f (x3, y3)
−f (x2, y3)− i f (x3, y2) + i f (x3, y4)
−f (x2, y4)− i f (x3, y3)




.

However, this ignores the terms that would be present at the boundary which are represented
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in red below,



−f (x0, y1)− i f (x1, y0) + i f (x1, y2) + f (x2, y1)
−f (x0, y2)− i f (x1, y1) + i f (x1, y3) + f (x2, y2)
−f (x0, y3)− i f (x1, y2) + i f (x1, y4) + f (x2, y3)
−f (x0, y4)− i f (x1, y3) + i f (x1, y5) + f (x2, y4)
−f (x1, y1)− i f (x2, y0) + i f (x2, y2) + f (x3, y1)
−f (x1, y2)− i f (x2, y1) + i f (x2, y3) + f (x3, y2)
−f (x1, y3)− i f (x2, y2) + i f (x2, y4) + f (x3, y3)
−f (x1, y4)− i f (x2, y3) + i f (x2, y5) + f (x3, y4)
−f (x2, y1)− i f (x3, y0) + i f (x3, y2) + f (x4, y1)
−f (x2, y2)− i f (x3, y1) + i f (x3, y3) + f (x4, y2)
−f (x2, y3)− i f (x3, y2) + i f (x3, y4) + f (x4, y3)
−f (x2, y4)− i f (x3, y3) + i f (x3, y5) + f (x4, y4)
−f (x2, y1)− i f (x4, y0) + i f (x3, y2) +f (x5, y1)
−f (x2, y2)− i f (x3, y1) + i f (x3, y3) +f (x5, y2)
−f (x2, y3)− i f (x3, y2) + i f (x3, y4) +f (x5, y3)
−f (x2, y4)− i f (x3, y3) + i f (x4, y5) + f (x5, y4)




≈ 4h




∂̄z f (x1, y1)
∂̄z f (x1, y2)
∂̄z f (x1, y3)
∂̄z f (x1, y4)
∂̄z f (x2, y1)
∂̄z f (x2, y2)
∂̄z f (x2, y3)
∂̄z f (x2, y4)
∂̄z f (x3, y1)
∂̄z f (x3, y2)
∂̄z f (x3, y3)
∂̄z f (x3, y4)
∂̄z f (x4, y1)
∂̄z f (x4, y2)
∂̄z f (x4, y3)
∂̄z f (x4, y4)




.

The boundary condition of f(z) outside the mesh, (xj , yp) where 1 ≤ j, p ≤ 4, is used to

determine f (xj , yp) for j, p = 0, 5. In this case, f(z) = M+(z, 0) and by the definition of

M+(z, k),

M+(z, 0) = M11(z, 0) + M12(z, 0),

and thus M+ ∼ 1 outside the mesh due to the asymptotic conditions for the CGO solutions

M11 and M12. Therefore the ∂̄z derivative of M+ can be approximated via

∂̄z M+(z, 0) =
1
4h

(
D [vec (M+)] + B

)
(6.33)

where

D =




0 i 0 0 1 0 0 0 0 0 0 0 0 0 0 0
− i 0 i 0 0 1 0 0 0 0 0 0 0 0 0 0
0 − i 0 i 0 0 1 0 0 0 0 0 0 0 0 0
0 0 − i 0 0 0 0 1 0 0 0 0 0 0 0 0
−1 0 0 0 0 i 0 0 1 0 0 0 0 0 0 0
0 −1 0 0 − i 0 i 0 0 1 0 0 0 0 0 0
0 0 −1 0 0 − i 0 i 0 0 1 0 0 0 0 0
0 0 0 −1 0 0 − i 0 0 0 0 1 0 0 0 0
0 0 0 0 −1 0 0 0 0 i 0 0 1 0 0 0
0 0 0 0 0 −1 0 0 − i 0 i 0 0 1 0 0
0 0 0 0 0 0 −1 0 0 − i 0 i 0 0 1 0
0 0 0 0 0 0 0 −1 0 0 − i 0 0 0 0 1
0 0 0 0 0 0 0 0 −1 0 0 0 0 i 0 0
0 0 0 0 0 0 0 0 0 −1 0 0 − i 0 i 0
0 0 0 0 0 0 0 0 0 0 −1 0 0 − i 0 i
0 0 0 0 0 0 0 0 0 0 0 −1 0 0 − i 0




,
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and

B =




− i−1
−1
−1
i−1
− i
0
0
i
− i
0
0
i

− i +1
1
1

i+1




.

Since the asymptotic condition for M−(z, 0) is 1 as well, the ∂z derivative of M−(z, 0) can

be approximated similarly via

∂z M−(z, 0) =
1
4h

(
D [vec (M−)] + B

)
(6.34)

where D and B denote the complex conjugates of D and B respectively.

6.8 Step 6: Recovery of the admittivity γ(z)

The admittivity distribution γ(z) can be recovered from the formula for the matrix potential

Q(z) given in (3.6),

Q12(z) = −1
2

∂z (log γ(z)) Q21(z) = −1
2

∂̄z (log γ(z)) ,

and subsequently

γ(z) = exp
{−2 ∂z

−1 (Q12(z))
}

(6.35)

= exp
{
−2 ∂̄z

−1 (Q21(z))
}

. (6.36)

6.8.1 Numerical Implementation of Q to γ Formulas

In order to solve

−2Q21(z) = ∂̄z log (γ(z))
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for the admittivity γ one must first invert the ∂̄z-operator. Letting v(z) = log γ(z) and

f(z) = −2Q21(z) we have, by the Generalized Cauchy Integral Formula,

v(z) =
1
π

∫

C

f(ζ)
z − ζ

dµ(ζ)

= (g ∗ f) (z)

where

g(z) =
1
πz

.

Therefore, we have

log γ(z) =
1
π

∫

C

−2Q21(ζ)
z − ζ

dµ(ζ)

= −2 log (γ|∂Ω) +
1
π

∫

∂Ω

−2Q21(ζ)
z − ζ

dµ(ζ) (6.37)

=
1
πz

∗ (−2Q21(z)) , (6.38)

due to the compact support of the matrix potential Q and the requirement that γ ≡ 1 on

the boundary. Thus, by the assumption that γ ≡ 1 outside Ω, there is no contribution along

the boundary since log(1) = 0.

Using this formulation, the problem can be solved using Fourier Transforms and Inverse

Fourier Transforms. In practice, to evaluate the integral over Ω, both −2Q21(z) and 1
πz

are evaluated on a z-grid where the origin is not a node. We then compute the 2D Fast

Fourier Transform of −2Q21(z) and multiply point-wise by the 2D Fast Fourier Transform

of 1
πz since the Fourier transform of a convolution is merely the product of the two Fourier

Transforms. We then perform the 2D Inverse Fast Fourier Transform to recover the value of

the original integral over Ω. Finally, we exponentiate to recover the admittivity distribution

γ(z).

6.9 Numerical Results for Trigonometric Current Patterns

In this section several test problems simulating a simplified cross-section of a human torso

represented by a circular domain are considered. The text and figures in this section are

quoted from our recent paper [HHMV12]. In each example, the admittivity is given by

γ = σ + i ε. That is, the imaginary component includes the temporal angular frequency ω.
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Since this is a known value, there is no loss of generality in representing γ this way in the

simulations. We do not include units or frequency in these examples, since our purpose is

to demonstrate that the equations in this work lead to a feasible reconstruction algorithm

for complex admittivities.

The complete electrode model (CEM), originally described in [CING89], was imple-

mented in the FEM in order to solve the forward admittivity problem. The CEM takes

into account both the shunting effect of the electrodes and the contact impedances between

the electrodes and tissue. Thus, the simulations included a simulated contact impedance

effect on the electrodes. In our computations, Ω was chosen to be a disk of radius 0.15m,

and the FEM computations were performed on a mesh with 4538 triangular elements and

32 equispaced electrodes 0.029m × 0.024m placed on the boundary. The effective contact

impedance was chosen to be z = 0.0057Ωm2 on all electrodes in our simulations. The

current amplitude was chosen to be M = 2mA, and the applied current patterns are the

trigonometric patterns

Ij
` =

{
M cos (jθ`) , 1 ≤ ` ≤ L, 1 ≤ j ≤ L

2

M sin
((

L
2 − j

)
θ`

)
, 1 ≤ ` ≤ L, L

2 + 1 ≤ j ≤ L− 1,
(6.39)

where θ` = 2π`
L , |e`| is the area of the `th electrode, I` is the current on the `th electrode,

and L denotes the total number of electrodes. As in [IMNS04, DM10], the currents were

normalized to have `2-norm of 1, and the voltages were normalized accordingly. Also,

the D-N map was scaled to represent data collected on the unit disk using the relation

Λγ,1 = rΛγ,r, where the second subscript represents the radius of the disk.

Where indicated, we added 0.01% Gaussian relative noise to the simulated voltages

as follows. Denote the (complex-valued) vector of computed voltage for the j-th current

pattern by V j , let η = 0.0001 denote the noise level, and N a Gaussian random vector

(generated by the randn commmand in MATLAB) that is unique for each use of the notation

N . Denoting the noisy data by Ṽ j we then have Ṽ j = Re(Ṽ j) + i Im(Ṽ j) where

Re(Ṽ j) = Re(V j) + η max |Re(V j)|N

Im(Ṽ j) = Im(V j) + η max |Im(V j)|N.

We solve the boundary integral equations (5.32) and (5.37) for the traces of the CGO

solutions u1 and u2 for k ∈ [−K,K]2, with K varying for each test problem in this work.
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The solution M(z, k), to the ∂̄k equation (3.21), is computed in parallel by the method

described in Section 6.6. The low-pass filtering by taking k ∈ [−K, K]2 results in smooth

functions Mjp, j, p = 1, 2, which are differentiated by centered finite differences to recover

Q21, as described in Section 6.7. The admittivity γ was then computed by (6.38).

Define the dynamic range of the conductivity, and likewise the permittivity, by

maxσ(K) −minσ(K)

maxσ −minσ
· 100%, (6.40)

where the maximum and minimum values are taken on the computational grid for the

reconstruction and σ(K) denotes the reconstructed conductivity σ that was computed using

a scattering transform computed on the truncated k grid.

Example 1

The first test problem is an idealized cross-section of a chest with a background admittivity

of 1+0 i. Reconstructions from more realistic admittivity distributions or experimental data

are the topic of future work. Figure 6.3 shows the values of the admittivity in the simulated

heart and lungs. The scattering transform for the noise-free reconstructions was computed

on a 128×128 grid for k ∈ [−5.5, 5.5]2 and can be found in Figure 6.4. Reconstructions of the

CGO solutions M(z, 0) can be found in Figure 6.5. The reconstructed admittivity, shown

in Figure 6.6, has a maximum conductivity and permittivity value of 1.1452 + 0.1802 i,

occurring in the heart region and a minimum of 0.8286 − 0.0247 i, occurring in the lung

region, resulting in a dynamic range of 79% for the conductivity and 60% for the permittivity

when the negative permittivity value is set to 0. Although this decreases the dynamic range,

we set the permittivity to 0 when it takes on a negative value in any pixel, since physically

the permittivity cannot be less than 0. The reconstruction has the attributes of good spatial

resolution and good uniformity in the reconstruction of the background and its value.
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Fig. 6.3: The test problem in Example 1.
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Fig. 6.4: Scattering data for Example 1 with zero added noise using trigonometric current patterns
with K = 5.5.
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Fig. 6.5: CGO solutions M(z, 0) for Example 1 using trigonometric current patterns. Figure (a)
shows the CGO solutions M11(z, 0) and M22(z, 0) for the zero noise case in Example 1
whereas (b) depicts the CGO solutions M12(z, 0) and M21(z, 0).
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Fig. 6.6: Reconstruction from noise-free data for Example 1 with the real part of γ (conductivity)
on the left, and the imaginary part (permittivity) on the right. The cut-off frequency was
K = 5.5. The dynamic range is 79% for the conductivity, and 60% for the permittivity.

Example 2

This second example was chosen with conductivity values the same as in Example 1, but

with permittivity values in which the “lungs” match the permittivity of the background.

This is motivated by the fact that at some frequencies, physiological features may match

that of the surrounding tissue in the conductivity or permittivity component. This example,

purely for illustration, mimics that phenomenon. The admittivity values can be found in

Figure 6.7.

Noise-free reconstructions were produced with the scattering transform computed on a

128× 128 grid for k ∈ [−5.5, 5.5]2 shown in Figure 6.8. Figure 6.9 shows the reconstructed

CGO solutions M(z, 0). Comparing the CGO reconstructions from Example 1 to those of

Example 2, one clearly sees the absence of the “lungs” in the imaginary components of

M11(z, 0) and M22(z, 0) in Example 2, shown in Figure 6.9(a), which are clearly present

in the the imaginary components of M11(z, 0) and M22(z, 0), shown in Figure 6.5(a). This

comparison is not unique to these examples and indicates that the CGO solutions M(z, k)

contain valuable information about the underlying admittivity. The reconstructed admit-

tivity is shown in Figure 6.10 and has a maximum value of 1.1429 + 0.1828 i, and minimum
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Fig. 6.7: The test problem in Example 2. Notice that in this case, the permittivity of the lungs
matches the permittivity of the background, and so only the heart should be visible in the
imaginary component of the reconstruction.
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Fig. 6.8: Scattering data for Example 2 with zero added noise using trigonometric current patterns
with K = 5.5.

value of 0.8271− 0.0204 i. In this example, the dynamic range is 79% for the conductivity

and 61% for the permittivity when the negative permittivity value is set to 0. Again the

spatial resolution is quite good, and the background is quite homogeneous, although some

small artifacts are present in both the real and imaginary parts.
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Fig. 6.9: CGO solutions M(z, 0) for Example 2 using trigonometric current patterns. Figure (a)
shows the CGO solutions M11(z, 0) and M22(z, 0) for the zero noise case in Example 2
whereas (b) depicts the CGO solutions M12(z, 0) and M21(z, 0).
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Fig. 6.10: Reconstruction from noise-free data for Example 2 with the real part of γ (conductivity)
on the left, and the imaginary part (permittivity) on the right. The cut-off frequency was
K = 5.5. The dynamic range is 79% for the conductivity, and 61% for the permittivity.

Example 3

Example 3 is an admittivity distribution of slightly higher contrast, and a non-unitary

background admittivity of γ0 = 0.8 + 0.3 i. See Figure 6.11 for a plot of the phantom with

admittivity values for the regions. Due to the non-unitary background, the problem was

scaled, as was done, for example, in [DM10], by defining a scaled admittivity γ̃ = γ/γ0

to have a unitary value in the neighborhood of the boundary and scaling the D-N map by

defining Λγ̃ = γ0Λγ , solving the scaled problem, and rescaling the reconstructed admittivity.

Tab. 6.1: Maximum and minimum values in Example 3 with the non-unitary background were found
in the appropriate organ region. The table indicates these values of the admittivity in the
appropriate region.

Admitivity of Reconstruction from Reconstruction from
test problem noise-free data noisy data

heart 1.2 + 0.6 i 1.0246 + 0.5014 i (max) 0.9740 + 0.4679 i (max)

lungs 0.5 + 0.1i 0.5262 + 0.1258 i (min) 0.5390 + 0.1281 i (min)
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Fig. 6.11: The test problem in Example 3. In this case, the background admittivity is 0.8 + 0.3i,
rather than 1 + 0i as in Examples 1 and 2.

The scattering data for the noise-free reconstruction was computed on a 128×128 grid for

k ∈ [−5.2, 5.2] and is shown in Figure 6.12(a). Noisy data was computed as described above

in the beginning of this section, and the scattering data was also computed on a 128× 128

grid for |k| ≤ 5.5 and is shown Figure 6.12(b). The reconstructed admittivities are found in

Figure 6.13. The maximum and minimum values are given in Table 6.1. In this example,

for the noise-free reconstruction, the dynamic range is 71% for the conductivity and 75% for

the permittivity. Again the spatial resolution is quite good, and there is little degradation

in the image and the reconstructed values in the presence of noise. The scattering transform

began to blow up for noisy data, requiring the truncation of the admissible scattering data

to a circle of radius 5.5 resulting in a dynamic range of 62% for the conductivity and

68% for the permittivity. For completeness, reconstructions with 0.1% added noise (10

times the published noise level for the ACT III system at RPI) are given in Figure 6.14

with a maximum admittivity 1.0378 + 0.5131 i and minimum admittivity 0.5428 + 0.0993 i

resulting in a dynamic range of 71% for the conductivity and 83% for the permittivity.

The corresponding scattering data was computed on a 128× 128 grid with |k| < 5.2 and

truncated so that the real and imaginary parts did not exceed 0.13 and 0.085 respectively

to remove the scattering data corrupted by the noise. A thorough study of the effects of

the choice of K and its method of selection is not included in this thesis.
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Fig. 6.12: Scattering data for Example 3 with zero and 0.01% added noise using trigonometric
current patterns with K = 5.2 and |k| < 5.5 respectively.
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Fig. 6.13: Top row: Reconstruction from noise-free data for Example 3. The cut-off frequency was
K = 5.2. The dynamic range is 71% for the conductivity, and 75% for the permittivity.
Bottom row: Reconstruction from data with 0.01% added noise. The cut-off frequency was
|k| ≤ 5.5. The dynamic range is 62% for the conductivity, and 68% for the permittivity.
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Fig. 6.14: Scattering data for Example 3 with 0.1% added noise (a) and the corresponding admit-
tivity reconstruction (b).
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6.10 Numerical Results for Skip Current Patterns

As not all EIT imaging systems use the trigonometric current patterns described above

(and used at RPI), we now consider another common class of current patterns, namely skip

(or pairwise) current patterns that apply equal and opposite current on two electrodes at a

time.

For a system using L electrodes, it is well known that there will be L− (n + 1) linearly

independent current patterns for a skip n setup. Thus, the jth skip n current pattern J is

defined on the `-th electrode by

J j
` =





M ` = j

−M ` = j + (n + 1)
0 otherwise

(6.41)

for 1 ≤ ` ≤ L and 1 ≤ j ≤ L − (n + 1), where M again denotes the amplitude of the

applied AC current. Most groups that use skip currently patterns frequently use skip 3.

The advantage of skip 3 is that the currents penetrate the domain more than in the skip 0,

skip 1, or skip 2 cases and remain stronger than in the skip 4+ cases. Below is the current

pattern matrix J for an EIT machine with L electrodes using the skip-3 current patterns,

J =




M 0 · · · 0
0 M 0 · · · 0
0 0 M 0 · · · 0
0 0 0 M 0 · · · 0

−M 0 0 0
. . . 0

0 −M 0 · · · . . . 0

0 0 −M 0 · · · . . . 0
...

... 0
. . . . . . 0

...
...

. . . . . . . . . M
...

...
. . . · · · . . . 0

...
...

. . . · · · . . . 0
...

...
. . . · · · . . . 0

0 0 · · · · · · · · · · · · 0 −M




(6.42)

an L×(L− 4) matrix.
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6.10.1 Implementation

We would like to proceed and solve the boundary integral equations for the CGO solutions

u1 and u2 in a similar manner as for the trigonometric current patterns (see Section 6.3)

using the new D-N map corresponding to the skip-n current patterns. However, this solution

method relies on the orthonormality of the normalized trigonometric current pattern matrix

Φ, and the normalized skip-n current pattern matrix J is not orthogonal. To deal with this,

we need to form an orthonormal basis for RL−(n+1). The Gram-Schmidt procedure is used

to create an orthonormal matrix from the given skip-n current pattern matrix J . One

should note that it is not necessary to normalize the skip-n current pattern matrix J before

performing the Gram-Schmidt orthonormalization.

Gram-Schmidt Orthonormalization of the Skip-n Current Pattern Matrix

The Gram-Schmidt orthonormalization of the skip-n current pattern matrix for the L elec-

trodes is performed as follows. Let JGS denote the orthonormal current pattern matrix

produced by the Gram-Schmidt procedure on the current pattern matrix J . The Gram-

Schmidt algorithm takes a set of linearly independent vectors,
{
J j

}j=L−(n+1)

j=1
, i.e. the

columns of J , and produces a set of orthonormal vectors
{

J j
GS

}j=L−(n+1)

j=1
, i.e. the columns

of JGS. To find each vector J j
GS, one begins with the corresponding vector J j , subtracts off

its projection on to the previously formed orthonormal vectors in JGS, then divides by the

length of the resulting vector to normalize.

Synthesis of Voltages

A change of bases is performed to “synthesize” the voltages that would occur from an

experiment that applies the Gram-Schimdt normalized skip-n current patterns JGS. Once

this is done, the same methods used with the normalized trigonometric current patterns

can be employed (see Section 6.2.1) with the synthesized voltages and orthonormal Gram-

Schmidt current pattern matrix. Note that it is also necessary to “synthesize” the voltages

that would occur from an experiment with a constant admittivity distribution of 1 in the

domain in order to form the difference in D-N maps δΛ.
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We must first compute the coefficients needed to expand the skip-n current pattern

matrix J in the new orthonormal Gram-Schmidt matrix JGS. The jth skip-n current pattern

can be expanded as

J j =
L−(n+1)∑

p=1

Cpj Jp
GS

where Cpj =
(
Jp, J j

GS

)
the discrete inner product.

Once the coefficients C are obtained, the voltages that would result from applying the

orthonormal Gram-Schmidt current patterns JGS can be synthesized. The voltages Ṽ j
` are

then normalized, as in Section 6.2.1, so that they sum to zero for each current pattern

L∑

`=1

Ṽ j
` = 0, j = 1, . . . , L− (n + 1),

and subsequently scaled by the `2 norm of the original skip-n current pattern matrix J

V j =
Ṽ j

‖J j‖`2
.

We then synthesize the new voltages VGS from the normalized voltages produced using the

following change of bases:

VGS = V C−1

where the superscript −1 denotes the inverse of a matrix. Now that we have an orthonor-

mal matrix of current patterns we can form the N-D map as in Section 6.2.1, expand

the CGO solutions u1, u2, and their exponential terms in the new orthonormal matrix of

Gram-Schmidt current patterns JGS, and continue with the algorithm as before. The only

remaining difference between the skip-n current pattern method and the trigonometric cur-

rent pattern method is the number of current patterns used in the expansions (i.e. there are

L−1 linearly independent trigonometric current patterns whereas there are only L−(n+1)

linearly independent orthonormal Gram-Schmidt current patterns from the skip-n current

patterns).

To check the validity of this Gram-Schmidt synthesis, the voltages that would occur

using the same admittivity and phantom but with the orthonormal Gram-Schmidt current

patterns JGS were simulated and compared tot the synthesized voltages. The comparison

was done for the skip-3 current patterns. The synthesized voltages VGS (found using the
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change of basis) were computed with those produced with the FEM solver for the current

patterns JGS. They differed on the scale of 10−5 where the max and min for the real part

of the voltages are approximately 88 and −153 to give an idea of scale. Therefore, we can

be sure that our change of basis is accurate and can proceed with confidence in our inverse

solver for the skip-n current patterns.

A Non-Unitary Background Example

In this section reconstructions from simulated data with skip-3 current patterns with current

amplitude 2 milliamperes are presented. To generate voltage data, the forward admittivity

problem was solved on a circular domain of radius 0.150m with a prescribed admittivity

using the FEM as described in Appendix B (modified for the skip-3 current patterns).

For the following test problems L = 32 electrodes, and thus applied L − 4 = 28 linearly

independent skip-3 current patterns, were applied. The width and height of the electrodes

are 0.025m and 0.029m respectively. The mesh used to generate the Finite Element data

has 5,514 triangular elements.

We consider the circular domain shown in Figure 6.15 with a non-unitary background

using the admittivity values in Table 6.2.

Tab. 6.2: Maximum and minimum values in the non-unitary background example with skip-3 current
patterns were found in the appropriate organ region. The table indicates these values of
the admittivity in the appropriate region.

Admitivity of Reconstruction from Reconstruction from
test problem noise-free data noisy data

heart 1.1 + 0.6i 0.9521 + 0.4937i (max) 0.9681 + 0.4924i (max)

lungs 0.5 + 0.2i 0.5817 + 0.2427i (min) 0.5729 + 0.2470i (min)

background 0.8+0.4i 0.8+0.4i 0.8+0.4i

Using the simulated voltage data, the discrete D-N map was formed, the boundary

integral equations for the exponentially growing solutions u1 and u2 were solved, and the

traces of the CGO solutions Ψ12(z, k) and Ψ21(z, k) were computed for each z` on the
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boundary of the circular domain (where z` denotes the center of the `-th electrode). The

scattering transforms S12(k) and S21(k) were evaluated on a disc of radius |k| = 4.3 where

the step size in k was hk ≈ 0.067 using 128 evaluation points in each of the k1 and k2

directions for both the zero and 0.01% noise cases.

Fig. 6.15: Circular test phantom for the non-unitary background example using skip-3 current pat-
terns.

The ∂̄k-equation was solved on a z grid [−1.1, 1.1]2 with a step size hz ≈ 0.17 using 128

evaluation points in each the x and y directions. The ∂̄k-equation was only solved for values

of z inside the circle of radius 1.1. The matrix potential Q and admittivity distribution

γ were then recovered using the CGO solution matrix M(z, 0). The resulting admittivity

distributions for the zero noise and 0.01% noise cases can be found in Figure 6.16. For the

zero noise case, the dynamic range is 62% for the conductivity and 63% for the permittivity

compared to 66% and 61% for the 0.01% noise case. The heart and lungs are clearly visible

and have good spatial resolution. The dynamic ranges for the skip-3 example are less than

we saw previously with the trigonometric current patterns. This is not very surprising as

the skip-3 current patterns only have L−4 linearly independent measurements whereas the

trigonometric current patterns have L − 1. Examples using skip-3 current patterns on a

non-circular domain will be studied in Section 7.2.2.
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Fig. 6.16: Top row: Reconstruction from noise-free data for the non-unitary example using skip-
3 current patterns. The dynamic range is 62% for the conductivity and 63% for the
permittivity. Bottom row: Reconstruction from data with 0.01% added noise with skip-
3 current patterns. The dynamic range is 66% for the conductivity and 61% for the
permittivity.
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7. NON-CIRCULAR DOMAINS

In practice, the human chest is not circular and therefore we would like to be able to

use our reconstruction algorithm for non-circular domains. In this chapter the necessary

modifications are discussed and reconstructions are shown for simulated data on a chest

shaped domain.

7.1 Modification of the Inverse Solver

When we relax the assumption that the boundary of the domain is circular the theory

behind the algorithm does not change, however, our implementation does. As the domain

is no longer circular, it is no longer prudent to scale the Dirichlet-to-Neumann map by the

radius of the domain. Previous methods [Mur07, MM09] have scaled the D-N map by the

maximum radial value of the non-circular domain and have produced good reconstructions.

It is possible that the reconstructions can be improved by accurately modeling the

boundary of the domain and therefore not scaling the D-N map by any radial compo-

nent. Instead, the evaluation points z for the D-N map and exponentially growing solutions

u1(z, k) and u2(z, k) will remain the centers of the electrodes on boundary of the non-circular

domain and the CGO solutions Ψ12 and Ψ21 can be evaluated at an z ∈ ∂Ω. Units are

scaled accordingly so that the voltages are represented in volts (V), current in amps (A),

height and width of the electrode in meters (m), and the radial components of the boundary

in meters (m). As the human chest will always have a radial component less than 1 meter,

the magnitude of any point z ∈ ∂Ω will be less than 1 and therefore not cause any trouble

in Steps 1 and 2 of the reconstruction algorithm (see Sections 6.3 and 6.4). Note that we

replace dθ in the boundary integral equations for u1, u2, Ψ12, and Ψ21 with the length of a

uniform subdivision of the boundary ∂Ω calculated by P
L where P denotes the perimeter of

the boundary and L the number of electrodes used in the simulated experiment.

We move on to Step 3, the evaluation of the scattering transform. The formulas for

the scattering transform S12(k) and S21(k) require knowledge of the outward facing unit
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normal vector ν = (ν1, ν2) = ν1 + i ν2 and complex conjugate ν respectively,

S12(k) =
i

2π

∫

∂Ω
e−ik̄zΨ12(z, k)(ν1 + iν2)dS(z)

S21(k) = − i

2π

∫

∂Ω
eik̄z̄Ψ21(z, k)(ν1 − iν2)dS(z).

When the boundary is a circle of radius r, the outward facing unit normal vector can be de-

scribed by the coordinate z on the boundary ∂Ω divided by its magnitude (i.e. z/‖z‖) since

it has unit length, faces outward from the boundary, and in fact is normal to the boundary.

However, when the boundary is non-circular, as in the case with the chest-shaped domain,

we must approximate the outward facing unit normal vector using a parameterization r(θ)

of the boundary for θ ∈ [0, 2π).

To approximate the unit outward facing normal vector ν to the boundary, we first

approximate the unit tangent vector τ to the boundary pointing in the counter-clockwise

orientation in θ. To form the approximate tangent vector at a given point z0 = x0 + i y0 =

r (θ0) ei θ0 , we take another point on the boundary z+ = x+ + i y+ = r (θ+) ei θ+ where

θ+−θ0 = tol > 0 for some given tolerance. To form the unit vector from z0 to z+ we merely

subtract the corresponding entries and divide by the magnitude

τ =
〈x+ − x0, y+ − y0〉

‖〈x+ − x0, y+ − y0〉‖2

=
(x+ − x0) + i (y+ − y0)√
(x+ − x0)

2 + (y+ − y0)
2
.

We then form the unit outward facing normal vector ν to the boundary at a given point z0

by

ν = 〈τ2,−τ1〉 = τ2 − i τ1

where τ = 〈τ1, τ2〉 = τ1 + i τ2.

When evaluating the scattering transforms S12(k) and S21(k) numerically, as in Sec-

tion 6.5, we approximate the integral by a finite sum

S12(k) ≈ i
2π

P

Nz

Nz∑

n=1

e−ik̄znΨ12(zn, k)νn (7.1)

S21(k) ≈ − i
2π

P

Nz

Nz∑

n=1

eik̄znΨ21(zn, k)νn, (7.2)

where P denotes the perimeter of the domain (in meters) and νn the outward unit facing

normal at the evaluation point zn on the boundary of the domain.
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After computing the scattering transform in Step 3 of the algorithm (using the adjusted

equations (7.1) and (7.2)), we proceed to Step 4 and solve the ∂̄k-equation as before in

Section 6.6. As we will only need to reconstruct the chest-shaped domain, there is no need

to reconstruct on the entire square grid. Rather, we just compute at a sufficient number

of points outside Ω to ensure that the finite difference approximations for the ∂̄z and ∂z

derivatives of the CGO solutions M are accurate for the entire chest-shaped domain. The

parametrization r(θ) is used to determine whether or not it is necessary to solve the ∂̄k-

equation at a given point z = r ei θ in the grid by comparing r to the corresponding radius

r(θ) plus a plump up constant of 2h for the same θ value.

In Step 5 the matrix potential Q(z) is computed as before (see Section 6.7) and all

unnecessary entries (outside the chest-shaped domain) are set to zero. Finally, in Step 6

the admittivity γ is reconstructed in the same manner as in Section 6.8.

7.2 Numerical Results

In this section reconstructions from simulated finite element data for the chest-shaped test

phantom are presented. Reconstructions for a non-unitary background with and without

a resistive spine and a conductive tumor in the right lung will be examined. In each

example, reconstructions with zero and 0.01% noise in the simulated voltage data for both

trigonometric as well as skip-3 current patterns are presented (see Section 6.9 for details

regarding how the noise was incorporated).

7.2.1 Simulated Data Examples: Trigonometric Current Patterns

In this section reconstructions from data with trigonometric current patterns with current

amplitude 2 milliamperes are presented. To generate voltage data, the forward admittivity

problem was solved for a chest shaped domain with a prescribed admittivity using the FEM

as described in Appendix B. For the following test problems L = 32 electrodes, and thus

L−1 = 31 linearly independent trigonometric current patterns were applied. The width and

height of the electrodes were 0.025m and 0.029m respectively. The mesh used to generate

the Finite Element data had 5,785 triangular elements.
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Fig. 7.1: The chest-shaped phantom used in Example 1.

Example 1: A Non-Unitary Background

We first consider the chest-shaped phantom shown in Figure 7.1 with a non-unitary back-

ground using the admittivity values in Table 7.1.

Tab. 7.1: Maximum and minimum values in Example 1 with trigonometric current patterns for
the non-unitary background were found in the appropriate organ region when applying
trigonometric current patterns. The table indicates these values of the admittivity in the
appropriate region.

Admitivity of Reconstruction from Reconstruction from
test problem noise-free data noisy data

heart 1.1 + 0.6i 1.0239 + 0.5621i (max) 0.9842 + 0.5987i (max)

lungs 0.5 + 0.2i 0.5676 + 0.2435i (min) 0.5720 + 0.2528i (min)

background 0.8+0.4i 0.8+0.4i 0.8+0.4i

Using the simulated voltage data, the discrete D-N map was formed, the boundary

integral equations for the exponentially growing solutions u1 and u2 were solved, and the

traces of the CGO solutions Ψ12(z, k) and Ψ21(z, k) were computed for z on the boundary of

the chest-shaped domain. The scattering transforms S12(k) and S21(k) were evaluated on a

disc of radius |k| = 40 where the step size in k was hk ≈ 0.63 using 128 evaluation points in
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each of the k1 and k2 directions. The scattering transform for the 0.01% noisy data began

to blow up near the edges of the disc of evaluation corrupting the data. To deal with the

blow up, the scattering data was truncated non-uniformly so that the magnitudes of the

real and imaginary parts did not exceed 0.012 and 0.01, respectively. Figure 7.2 shows the

scattering transforms used for the zero and 0.01% noisy cases.

The ∂̄k-equation was solved on a z grid [−0.2, 0.2]2 with a step size hz ≈ 0.003 using 128

evaluation points in each the x and y directions. The ∂̄k-equation was only solved for values

of z that lay inside the chest shaped domain depicted in Figure 7.1 plus an epsilon buffer

of 2hz to ensure the accurate computation of the ∂z and ∂̄z derivatives of M+ and M−.

Specifically, an evaluation point z0 = R0 eiθ0 must satisfy R0 < r (θ0) + 2hz where r (θ0)

is the parameterization of the chest-shaped domain and hz is the stepsize in the z-grid.

The recovered the CGO solutions M(z, 0) can be viewed in Figure 7.3 (the zero noise case

is shown here). Notice that M11(z, 0) and M22(z, 0) appear to contain visible information

about the shape of the admittivity distribution.

The matrix potential Q and admittivity distribution γ were then recovered using the

CGO solution matrix M(z, 0). The resulting admittivity distributions for the zero noise

and 0.01% noise cases can be found in Figure 7.4. For the zero noise case, the dynamic

range is 76% for the conductivity and 80% for the permittivity compared to 69% and 86%

for the 0.01% noise case. The heart and lungs are clearly visible and the right lung is in

fact slightly larger than the left as in the test phantom.
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Fig. 7.2: Scattering data for Example 1 using trigonometric current patterns. Figure (a) shows the
scattering data used for the zero noise case whereas (b) depicts the scattering data used in
the 0.01% noisy case.
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Fig. 7.3: CGO solutions M(z, 0) for Example 1 using trigonometric current patterns. Figure (a)
shows the CGO solutions M11(z, 0) and M22(z, 0) for the zero noise case in Example 1
whereas (b) depicts the CGO solutions M12(z, 0) and M21(z, 0).
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Fig. 7.4: Top row: Reconstruction from noise-free data for Example 1 using trigonometric current
patterns. The dynamic range is 76% for the conductivity, and 80% for the permittivity.
Bottom row: Reconstruction from data with 0.01% added noise with trigonometric current
patterns. The dynamic range is 69% for the conductivity, and 86% for the permittivity.
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Example 2: A Resistive Spine

We now consider a test example with a resistive spine using the phantom in Figure 7.5 and

admittivity values in Table 7.2.

The scattering transforms were evaluated on the same k grid as in Example 1 with

|k| ≤ 40. This time, the noisy scattering data was truncated so that the magnitude of

the real and imaginary parts did not exceed 0.011 and 0.01, respectively. The resulting

scattering transforms can be viewed in Figure 7.6.

The ∂̄k-equation was solved as before in Example 1 on the same z grid. Reconstructions

of the admittivity distributions for zero and 0.01% noise are shown in Figure 7.7. For the

zero noise case, the dynamic range is 50% for the conductivity and 57% for the permittivity

compared to 55% and 56% for the 0.01% noise case. These values are clearly lower than in

Example 1, however a resistive spine with values approaching 0 is very difficult to recon-

struct. The spine is clearly visible in both the zero and 0.01% noise cases even though an

artifact that forms a bridge is present. By choosing a larger radius in k for the scattering

data, and allowing higher values in the non-uniform truncation of the scattering transform,

the bridging will disappear leaving a clearly separated resistive object visible at the top of

the reconstruction. However, other artifacts are introduced, e.g., the shapes of the lungs

and heart become distorted. Depending on what one is trying to reconstruct, different

approaches can be taken.

To emphasize the presence of the spine, Figure 7.8 shows a difference image produced

by taking the zero noise reconstruction in Example 2 (Figure 7.7) and subtracting the zero

noise reconstruction in Example 1 (which has no spine, see Figure 7.4). In this figure the

spine is clearly visible with dynamic range of 40% for the conductivity and 43% for the

permittivity. The dynamic range for the conductivity of the spine was computed by taking

the minimum value -0.2429 in the difference image Figure 7.8, and dividing it by (0.2-0.8)=-

0.6, the value prescribed, and multiplying by 100. The dynamic range for the permittivity

of the spine was computed in an analogous fashion.
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Fig. 7.5: The chest phantom in Example 1 with the addition of a spine.

Tab. 7.2: Maximum and minimum values in Example 2 with the non-unitary background and resis-
tive spine were found in the appropriate organ region when applying trigonometric current
patterns. The table indicates these values of the admittivity in the appropriate region.

Admitivity of Reconstruction from Reconstruction from
test problem noise-free data noisy data

heart 1.1 + 0.6i 1.0191 + 0.5496i 1.0557 + 0.5382i

lungs 0.5 + 0.2i 0.5653 + 0.2339i 0.5640 + 0.2353i

spine 0.2 + 0.05i 0.5669 + 0.2540i 0.5776 + 0.2281i

background 0.8+0.4i 0.8+0.4i 0.8+0.4i

126



Re S
12

 

 

−40 −20 0 20 40

−40

−20

0

20

40 −10

−5

0

5

x 10
−3 Im S

12

 

 

−40 −20 0 20 40

−40

−20

0

20

40

−5

0

5

x 10
−3

Re S
21

 

 

−40 −20 0 20 40

−40

−20

0

20

40

−5

0

5

x 10
−3 Im S

21

 

 

−40 −20 0 20 40

−40

−20

0

20

40

−5

0

5

x 10
−3

(a) Zero Noise

Re S
12

 

 

−40 −20 0 20 40

−40

−20

0

20

40 −0.01

−0.005

0

0.005

0.01

Im S
12

 

 

−40 −20 0 20 40

−40

−20

0

20

40

−5

0

5

x 10
−3

Re S
21

 

 

−40 −20 0 20 40

−40

−20

0

20

40 −0.01

−0.005

0

0.005

0.01

Im S
21

 

 

−40 −20 0 20 40

−40

−20

0

20

40

−5

0

5

x 10
−3

(b) 0.01% Noise

Fig. 7.6: Scattering data for Example 2 using trigonometric current patterns. Figure (a) shows the
scattering data used for the zero noise case whereas (b) depicts the scattering data used in
the 0.01% noisy case.
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Fig. 7.7: Top row: Reconstruction from noise-free data for Example 2. The dynamic range is 50%
for the conductivity, and 57% for the permittivity. Bottom row: Reconstruction from data
with 0.01% added noise. The dynamic range is 55% for the conductivity, and 56% for the
permittivity.
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Fig. 7.8: Difference image for the resistive spine in Table 7.2 produced by taking the zero noise
reconstruction for Example 2 and subtracting the zero noise reconstruction from Example 1
using trigonometric current patterns. The dynamic range for the spine is 40% for the
conductivity, and 43% for the permittivity.
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Example 3: A Conductive Tumor

We next consider a test example with a conductive tumor in the right lung using the

phantom in Figure 7.9 and admittivity values in Table 7.3.

The scattering transforms were evaluated on the same k grid as in Examples 1 and 2

with the noisy scattering data truncated so that the magnitude of the real and imaginary

parts did not exceed 0.011 and 0.009, respectively. The resulting scattering transforms can

be viewed in Figure 7.10.

The ∂̄k-equation was solved as before in Examples 1 and 2 on the same z grid. Recon-

structions of the admittivity distributions for zero and 0.01% noise are shown in Figure 7.11.

For the zero noise case, the dynamic range is 75% for the conductivity and 79% for the per-

mittivity compared to 70% and 96% for the 0.01% noise case. These values are comparable

to Example 1, however the tumor is not immediately visible in the right lung. The right

lung does appear less resistive than the left and to emphasize the presence of the tumor,

Figure 7.12 shows the difference image produced by taking the zero noise reconstruction in

Example 3 (Figure 7.11) and subtracting the zero noise reconstruction in Example 1 (which

has no tumor, see Figure 7.4). In this figure the tumor is clearly visible and has a dynamic

range of 14% for the conductivity, and 12% for the permittivity. The dynamic ranges for

the tumor were computed in an analogous fashion (this time using the maximum value in

the difference image) as the spine in Example 2.
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Fig. 7.9: The chest phantom in Example 1 with the addition of a tumor in the right lung.

Tab. 7.3: Maximum and minimum values in Example 3 with the non-unitary background and con-
ductive tumor in the right lung were found in the appropriate organ region when applying
trigonometric current patterns. The table indicates these values of the admittivity in the
appropriate region.

Admitivity of Reconstruction from Reconstruction from
test problem noise-free data noisy data

heart 1.1 + 0.6i 1.0174 + 0.5525 i 0.9921 + 0.6163i

lungs 0.5 + 0.2i 0.5692 + 0.2380 i 0.5698 + 0.2340i

tumor 1.1+ 0.6i 0.6549+ 0.3081i 0.6641 + 0.3073i

background 0.8+0.4i 0.8+0.4i 0.8+0.4i
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Fig. 7.10: Scattering data for Example 3 using trigonometric current patterns. Figure (a) shows the
scattering data used for the zero noise case whereas (b) depicts the scattering data used
in the 0.01% noisy case.
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Fig. 7.11: Top row: Reconstruction from noise-free data for Example 3. The dynamic range is 75%
for the conductivity, and 79% for the permittivity. Bottom row: Reconstruction from
data with 0.01% added noise. The dynamic range is 70% for the conductivity, and 96%
for the permittivity.
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Fig. 7.12: Difference image for the conductive tumor in Table 7.3 produced by taking the zero
noise reconstruction for Example 3 and subtracting the zero noise reconstruction from
Example 1. The dynamic range for the tumor is 14% for the conductivity, and 12% for
the permittivity.
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Example 4: Conductive Fluid in the Right Lung

Last we consider a test example with conductive fluid in the right lung using the phantom

in Figure 7.13 and admittivity values in Table 7.4.

The scattering transforms were evaluated on the same k grid as in Examples 1-3, this

time truncating the noisy scattering data so that the magnitudes of the real and imaginary

parts did not exceed 0.01 and 0.009, respectively. The resulting scattering transforms can

be viewed in Figure 7.14.

The ∂̄k-equation was solved as before in Examples 1-3 on the same z grid. Recon-

structions of the admittivity distributions for zero and 0.01% noise for the fluid example

are shown in Figure 7.15. The dynamic ranges for the zero noise case are 79% for the

conductivity and 83% for the permittivity compared to 74% and 80% for the 0.01% noise

case. These values are again comparable to Example 1, and the fluid is immediately visible

and quite pronounced in the right lung. To further emphasize the presence of the fluid,

Figure 7.16 shows the difference image produced by taking the zero noise reconstruction in

Example 4 (Figure 7.15) and subtracting the zero noise reconstruction in Example 1 (which

has no fluid, see Figure 7.4). In this figure the fluid is clearly visible, localized, and has

a dynamic range of 54% for the conductivity, and 51% for the permittivity. The dynamic

ranges for the fluid were computed in the same manner as the tumor in Example 3.
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Fig. 7.13: The chest phantom in Example 1 with the addition of conductive fluid in the right lung.

Tab. 7.4: Maximum and minimum values in Example 4 with the non-unitary background and con-
ductive fluid in the right lung were found in the appropriate organ region when applying
trigonometric current patterns. The table indicates these values of the admittivity in the
appropriate region.

Admitivity of Reconstruction from Reconstruction from
test problem noise-free data noisy data

heart 1.1 + 0.6i 1.0459 + 0.5798 i 1.0296 + 0.5529i

lungs 0.5 + 0.2i 0.5748 + 0.2468 i 0.5884 + 0.2339i

fluid 1.1+ 0.6i 0.9707+ 0.4936i 0.9381 + 0.5225i

background 0.8+0.4i 0.8+0.4i 0.8+0.4i
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Fig. 7.14: Scattering data for Example 4 using trigonometric current patterns. Figure (a) shows the
scattering data used for the zero noise case whereas (b) depicts the scattering data used
in the 0.01% noisy case.
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Fig. 7.15: Top row: Reconstruction from noise-free data for Example 4. The dynamic range is 79%
for the conductivity, and 83% for the permittivity. Bottom row: Reconstruction from
data with 0.01% added noise. The dynamic range is 74% for the conductivity, and 80%
for the permittivity.
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Fig. 7.16: Difference image for the conductive fluid in Table 7.4 produced by taking the zero noise
reconstruction for Example 4 and subtracting the zero noise reconstruction from Exam-
ple 1. The dynamic range for the tumor is 54% for the conductivity, and 51% for the
permittivity.
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7.2.2 Simulated Data Examples: Skip-3 Current Patterns

In this section reconstructions using skip-3 current patterns with current amplitude 2 mil-

liamperes are presented. To generate voltage data, I again solved the forward admittivity

problem was solved for a chest-shaped domain with a prescribed admittivity using a modified

version of the FEM formulation described in Appendix B. For the following test problems

L = 32 electrodes, and thus L− (3 + 1) = 28 linearly independent skip-3 current patterns,

were applied. The width and height of the electrodes are 0.025m and 0.029m respectively.

The same mesh was used to generate the Finite Element data for the skip-3 current patterns

as in the case of the trigonometric current patterns. The same test examples used for the

trigonometric current patterns in Section 7.2.1 are used for the skip-3 current patterns.

Example 1: A Non-Unitary Background

We first reconsider the phantom shown in Figure 7.1 with the non-unitary background in

Example 1 of Section 7.2.1 using the same admittivity values.

Tab. 7.5: Maximum and minimum values in Example 1 with the non-unitary background were found
in the appropriate organ region when applying skip-3 current patterns. The table indicates
these values of the admittivity in the appropriate region.

Admitivity of Reconstruction from Reconstruction from
test problem noise-free data noisy data

heart 1.1 + 0.6i 0.9645 + 0.5158i (max) 0.9606 + 0.5208i (max)

lungs 0.5 + 0.2i 0.5992 + 0.2617i (min) 0.5973 + 0.2613i (min)

background 0.8+0.4i 0.8+0.4i 0.8+0.4i

Using the simulated voltage data, the Gram-Schmidt voltages were synthesized as de-

scribed in Section 6.10. The discrete D-N map was formed, the boundary integral equations

for the exponentially growing solutions u1 and u2 were solved, and the traces of the CGO

solutions Ψ12(z, k) and Ψ21(z, k) were solved for z on the boundary of the chest-shaped

domain. The scattering transforms were evaluated for k in [−30, 30]2 with a step size of
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hk ≈ 0.47 using 128 evaluation points in each of the k1 and k2 directions. The scattering

data for the skip-3 current patterns appear to be more prone to blowup than the trigono-

metric current patterns and therefore demand a smaller truncation radius. For both the

zero noise and 0.01% noise cases, the scattering transform S was truncated so that neither

the magnitude of the maximum real component nor the maximum imaginary component

exceeded 0.012 and 0.011, respectively. The resulting scattering transforms can be viewed

in Figure 7.17.

The ∂̄k-equation was solved on the same z grid as before in Examples 1-4 in Section 7.2.1

for the trigonometric current patterns. Reconstructions of the admittivity distributions for

zero and 0.01% noise are shown in Figure 7.18. For the zero noise case, the dynamic range

is 61% for the conductivity and 64% for the permittivity compared to 61% and 65% for

the 0.01% noise case. The right lung is correctly reconstructed to be slightly larger than

the left, however there is an artifact present at the upper left part of the right lung in

the skip-3 reconstruction as compared to the trigonometric current pattern reconstruction.

In addition, the dynamic ranges for the conductivity and permittivity are reduced for the

skip-3 current patterns. However, the skip-3 current patterns may have an advantage when

it comes to noise. The zero noise and 0.01% noise reconstructions are very similar for the

skip-3 current patterns whereas you can see a clear difference for the zero noise and 0.01%

noise reconstructions when using the trigonometric current patterns.
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Fig. 7.17: Scattering data for Example 1 for skip-3 current patterns. Figure (a) shows the scattering
data used for the zero noise case whereas (b) depicts the scattering data used in the 0.01%
noisy case.
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Fig. 7.18: Top row: Reconstruction from noise-free data for Example 1. The dynamic range is 61%
for the conductivity, and 64% for the permittivity. Bottom row: Reconstruction from
data with 0.01% added noise. The dynamic range is 61% for the conductivity, and 65%
for the permittivity.
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Example 2: A Resistive Spine

We next revisit the test example with a resistive spine from Section 7.2.1 using the phantom

in Figure 7.5 and the same admittivity values.

Tab. 7.6: Maximum and minimum values in Example 2 with the non-unitary background and re-
sistive spine were found in the appropriate organ region when applying skip-3 current
patterns. The table indicates these values of the admittivity in the appropriate region.

Admitivity of Reconstruction from Reconstruction from
test problem noise-free data noisy data

heart 1.1 + 0.6i 1.0120 + 0.5382i 1.0033 + 0.5370i

lungs 0.5 + 0.2i 0.6028 + 0.2693i 0.6028 + 0.2703i

spine 0.2 + 0.05i 0.6051 + 0.2775i 0.6101 + 0.2742i

background 0.8+0.4i 0.8+0.4i 0.8+0.4i

The scattering transforms were evaluated on the same k grid as in Example 1. For

both the zero noise and 0.01% noise cases, the scattering transform S were truncated so

that neither the magnitude of the maximum real component nor the maximum imaginary

component exceeded 0.02 or 0.015, respectively. The resulting scattering transforms can be

viewed in Figure 7.19.

The ∂̄k-equation was solved on the same z grid as the previous chest shaped domain

examples. Reconstructions of the admittivity distributions for zero and 0.01% noise are

shown in Figure 7.20. For the zero noise case, the dynamic range is 45% for the conductivity

and 49% for the permittivity compared to 45% and 48% for the 0.01% noise case. Again,

these values are clearly lower than in Example 1 which does not contain a resistive spine.

The spine is clearly visible in both the zero and 0.01% noise cases even though the bridging

artifact is present. As was the case with the trigonometric current patterns, increasing the

radius |k| for the scattering data and allowing higher values in the non-uniform truncation

of the scattering transform, decreases the presence of the bridging artifact leaving a better

defined separation for resistive object visible at the top of the reconstruction. However,

other artifacts are introduced, e.g., the shapes of the lungs and heart become distorted.
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Fig. 7.19: Scattering data for Example 2 with skip-3 current patterns. Figure (a) shows the scatter-
ing data used for the zero noise case whereas (b) depicts the scattering data used in the
0.01% noisy case.
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Fig. 7.20: Top row: Reconstruction from noise-free data for Example 2. The dynamic range is 45%
for the conductivity, and 49% for the permittivity. Bottom row: Reconstruction from
data with 0.01% added noise. The dynamic range is 45% for the conductivity, and 48%
for the permittivity.
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To emphasize the presence of the spine, Figure 7.21 shows the difference image produced

by taking the zero noise reconstruction in Example 2 (Figure 7.20) and subtracting the zero

noise reconstruction in Example 1 (which has no spine, see Figure 7.18). In this figure the

spine is clearly visible with dynamic range of 22% for the conductivity and 24% for the

permittivity.

Fig. 7.21: Difference image for the resistive spine in Table 7.6 produced by taking the zero noise
reconstruction for Example 2 and subtracting the zero noise reconstruction from Exam-
ple 1. The dynamic range for the spine is 22% for the conductivity, and 24% for the
permittivity.
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Example 3: A Conductive Tumor

We next revisit the test example with a conductive tumor in the right lung using the

phantom in Figure 7.9 and the same admittivity values as before.

Tab. 7.7: Maximum and minimum values in Example 3 with the non-unitary background and con-
ductive tumor in the right lung were found in the appropriate organ region when applying
skip-3 current patterns. The table indicates these values of the admittivity in the appro-
priate region.

Admitivity of Reconstruction from Reconstruction from
test problem noise-free data noisy data

heart 1.1 + 0.6i 0.9384 + 0.4987i 0.9298 + 0.4982i

lungs 0.5 + 0.2i 0.6403 + 0.2901i 0.6381 + 0.2951i

tumor 1.1+ 0.6i 0.6955+ 0.3303i 0.7062 + 0.3392i

background 0.8+0.4i 0.8+0.4i 0.8+0.4i

The scattering transforms were evaluated on the same k grid as in Examples 1 and 2.

For both the zero noise and 0.01% noise cases, the scattering transform S were truncated so

that neither the magnitude of the maximum real component nor the maximum imaginary

component exceeded 0.01. The resulting scattering transforms can be viewed in Figure 7.22.

The ∂̄k-equation was solved on the same z grid as the previous chest shaped domain

examples. Reconstructions of the admittivity distributions for zero and 0.01% noise are

shown in Figure 7.23. For the zero noise case, the dynamic range is 50% for the conductivity

and 52% for the permittivity compared to 49% and 51% for the 0.01% noise case. Again,

these values are lower than their trigonometric current pattern counterparts in Example 3

of Section 7.2.1. The bridging artifact between the two lungs is disappointing and regardless

of the the scattering transform and truncation criterion tried, this artifact has yet to be

removed and may be due to the manner in which the skip current patterns penetrate the

domain.
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Fig. 7.22: Scattering data for Example 3 with skip-3 current patterns. Figure (a) shows the scatter-
ing data used for the zero noise case whereas (b) depicts the scattering data used in the
0.01% noisy case.
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Fig. 7.23: Top row: Reconstruction from noise-free data for Example 3 using skip-3 current patterns.
The dynamic range is 50% for the conductivity, and 52% for the permittivity. Bottom
row: Reconstruction from data with 0.01% added noise. The dynamic range is 49% for
the conductivity, and 51% for the permittivity.
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As was the case for the trigonometric current patterns in Section 7.2.1, the the tumor

is not immediately visible in the right lung. The right lung does appear less resistive than

the left and Figure 7.24 shows the difference image produced by taking the zero noise

reconstruction in Example 3 (Figure 7.23) and subtracting the zero noise reconstruction in

Example 1 (which has no tumor, see Figure 7.18) therefore emphasizing the presence of the

tumor. Admittedly the artifact present in the left lung due to the difference in reconstructed

values for Examples 1 and 3 is disappointing, however the tumor is clearly visible, although

enlarged, in the right lung and has a dynamic range of 11% for the conductivity, and 10%

for the permittivity.

Fig. 7.24: Difference image for the conductive tumor in Table 7.7 produced by taking the zero
noise reconstruction for Example 3 and subtracting the zero noise reconstruction from
Example 1 using skip-3 current patterns. The dynamic range for the tumor is 11% for
the conductivity, and 10% for the permittivity.
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8. CONCLUSIONS

In this thesis, the first direct ∂̄-algorithm for complex admittivities where the conductivity,

σ, and permittivity ε are twice differentiable and bounded, is formulated. Formulas connect-

ing the CGO solutions Ψ in the nearly constructive proof given by Elisa Francini [Fra00] to

practical voltage data (described in the D-N map) are derived and a direct formula is devel-

oped for the recovery of the matrix potential Q from the CGO solutions M(z, k) that only

requires knowledge of M(z, 0). The reconstruction algorithm is implemented and tested

on simulated FEM voltage data for unitary and complex-valued backgrounds on circular

and non-circular domains. The method was applied to numerically simulated phantoms

with discontinuous admittivity distributions. In all cases, the results were found to display

excellent spatial resolution and good dynamic range, even in the presence of noise. This

work demonstrates that EIT, with the incorporation of permittivity, is a promising imaging

technique for chest imaging.
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anisotropic conductivity in the plane, Comm. Partial Differential Equations

30 (2005), 207224.

[ALP11] K. Astala, M. Lassas, and L. Paivarinta, The borderlines of the invisibility

and visibility for Calderon’s inverse problem, (available on arXiv: 1109.2749)

(submitted) (2011).
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APPENDIX



A. A DETAILED DERIVATION OF THE ADMITTIVITY EQUATION

The following is taken from my Master’s paper [Ham09] and gives a detailed derivation of

the admittivity equation (3.3).

A.1 Terminology

Definition: Electrical impedance describes the measure of an object’s opposition to a si-

nusoidal alternating current (AC). It extends the concept of resistance in AC circuits by

not only describing the relative amplitudes of voltages and currents, but also the changes

in their relative phases.

Definition: Magnetic permeability, µ, is the degree of magnetization of a material that

responds linearly to an applied magnetic field. Materials with high permeabilities allow

magnetic flux through more easily than others. (Newtons/Amps2)

Definition: Permittivity, ε, is a measure of the ability of a material to store a charge

(Farads/meter).

Definition: Capacitance is a measure of the amount of electrical charge stored in a mate-

rial (Farads).

Definition: Electrical conductivity, σ, measures the ease with which a steady current can

flow.

Definition: The electrical admittivity, γ, is a complex value, denoted by γ = σ + iωε,

consisting of the the electrical conductivity (real part) along with the electrical permittivity

(frequency dependent imaginary part) where ω is the time frequency of the applied AC
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current measured in Hz.

A.2 Maxwell’s Equations

In order to describe the propagation of electromagnetic fields through a body, we begin

with Maxwell’s Equations for free charge and current.

Gauss’s Law:

∇ · ~D = ρf , (A.1)

Gauss’s Law for Magnetism:

∇ · ~B = 0, (A.2)

Maxwell-Faraday Law or Faraday’s Law of Induction:

∇× ~E = −∂ ~B

∂t
, (A.3)

Ampère’s Circuital law with Maxwell’s Correction:

∇× ~H = ~Jf +
∂ ~D

∂t
, (A.4)

where

~D = electric displacement field

~E = electric field

~H = magnetizing field

~B = magnetic field

ρf = free charge density

~Jf = free current density

and ∇ · ~A represents the divergence of the vector ~A, and ∇× ~A represents the curl of the

vector ~A. For our problem, ~Jf = ~J is the current density which we apply, on the boundary

of the domain we wish to image, during the course of the experiment and use as a boundary

condition in the solution to the Forward Problem for the electric potential u.
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Gauss’s Law explains why opposite charges attract while same charges repel, and that

electrical charges create an electrical field which other charges respond to by an electrical

force. Gauss’s Law for Magnetism states that north and south (magnetic) poles come in

pairs which we call ‘magnetic dipoles’. Faraday’s Law of Induction describes how changing

a magnetic field creates an electric field. Ampère’s Law states that magnetic fields can be

generated by an electrical current and Maxwell’s correction (+∂ ~D/∂t) adds that magnetic

fields can also be generated by changing an electric field.

In order to apply Maxwell’s Equations, we need to impose constitutive relations, i.e.

relations between ~D and ~E, and between ~H and ~B. Physically these relations specify

how much magnetization and polarization a material acquires when in the presence of

electromagnetic fields. Since the currents we apply are of small frequency (28.8-125 kHz),

as in [IC90, CCG08, VBOM04, TGLA04, CLA09], we can assume that the following linear

constitutive relations hold inside the body,

~D = ε(x, ω) ~E (A.5)

~B = µ(x, ω) ~H (A.6)

~Jf = σ(x, ω) ~E (A.7)

where x and ω represent the spatial and frequency dependence of

σ = electrical conductivity,

ε = electrical permittivity,

and

µ = magnetic permeability.

In practice, as stated in [IC90], we apply sinusoidal current density patterns (in time) on

the boundary of the form,

~J source = ~J source(x) cos(ωt) = Re{ ~J sourceei ωt}. (A.8)

Thus, due to Equations (A.5), (A.6), and (A.7) we look for solutions ~E = ~E(x)ei ωt and
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~B = ~B(x)ei ωt. Using these solutions in Equation (A.3) yields

∇× ~E = −∂ ~B

∂t

= − ∂

∂t

(
~B(x)ei ωt

)

= − i ω
(

~B(x)ei ωt
)

= − i ω ~B, (A.9)

and in Equation (A.4)

∇× ~H = ~Jf +
∂ ~D

∂t

= ~Jf +
∂

∂t

(
ε(x, ω) ~E

)

= ~Jf +
∂

∂t

(
ε(x, ω) ~E(x)ei ωt

)

= ~Jf + ε(x, ω) ~E(x) iωei ωt

= ~Jf + i ω
[
ε(x, ω) ~E(x)ei ωt

]

= ~Jf + i ω ~D. (A.10)

It has been shown, in [Gla01], that the magnetic permeability of the human body differs from

that of free space (µ0 = 4π× 10−7NA−2) by less than 10−5 and its dependence on time is

negligible. Therefore, the change in magnetic permeability in oxygenated vs. deoxygenated

blood is a very small number. This small difference results from deoxygenated blood having

a higher amount of iron which then reacts to the electric field in a slightly different way.

Since the magnetic permeability of the human body is very small we can expand ~E and ~H

each in a Taylor Series about µ = 0,

~E = ~E0 + µ~E1 + µ2 ~E2 + µ3 ~E3 + . . . , (A.11)

~H = ~H0 + µ ~H1 + µ2 ~H2 + µ3 ~H3 + . . . . (A.12)

Substituting these expansions into Equation (A.3) and using the constitutive relation given

in Equation (A.6),

∇×
(

~E0 + µ~E1 + µ2 ~E2 + . . .
)

= − ∂

∂t
µ(x, ω)

(
~H0 + µ ~H1 + µ2 ~H2 + . . .

)

∇× ~E0 +∇×µ~E1 +∇×µ2 ~E2 + . . . = − ∂

∂t
µ ~H0 − ∂

∂t
µ2 ~H1 − ∂

∂t
µ3 ~H2 − . . .
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Equating terms of order zero in µ gives

∇× ~E0 = 0, (A.13)

where ~E0 is the zeroth order electric field. Then, since the curl of ~E0 is zero, there exists

an electrical potential u such that

~E0 = −∇u(x, t) (A.14)

Using the constitutive relations (A.5) and (A.7) in Equation (A.10) we have,

∇× ~H = σ(x, ω) ~E + i ω
(
ε(x, ω) ~E

)
. (A.15)

Since the divergence of a curl is zero, we take the curl of both sides of (A.15) so that

0 = ∇ ·
(
∇× ~H

)

= ∇ ·
(
σ(x, ω) ~E + iωε(x, ω) ~E

)

= ∇ · (σ + i ωε) ~E

= ∇ · (σ + i ωε)
(

~E0 + µ~E1 + µ2 ~E2 + . . .
)

= ∇ · (σ + i ωε) ~E0 +∇ · (σ + i ωε)µ~E1 +∇ · (σ + iωε) µ2 ~E2 + . . .

Taking the zeroth order equation in µ and using Equation (A.14), we have

0 = ∇ · (σ + iωε) ~E0

0 = ∇ · (σ + iωε) (−∇u)

0 = ∇ · (σ + iωε)∇u,

or equivalently,

∇ · γ∇u = 0, (A.16)

which describes the electric potential inside the body. We call Equation (A.16) the Admit-

tivity Equation.

We now need to impose boundary conditions on the problem. Physically this means

that we need to determine what the electric fields look like on the surface of the body

that we are imaging. In practice, electrodes are placed on the surface of the body and a
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sequence of currents is applied to said electrodes. This produces an (applied) current density

distribution on the surface of the body which is represented by the Neumann boundary

condition,

γ
∂u

∂ν
= j on ∂Ω (A.17)

where j is the inward pointing normal component of the current density on the boundary

∂Ω, ν is the outward pointing unit normal vector to ∂Ω, u is the voltage potential, γ is

the admittivity (i.e. γ = σ + iωε where σ is the electrical conductivity, ε is the electrical

permittivity, and ω = 28.8 kHz is the frequency of the applied current in the data sets that

we use with trigonometric current patterns) [IC90, 143] and [SCI92, 1026].

In addition, we know that the voltages on the electrodes correspond to the Dirichlet

boundary condition,

u = f(x) on ∂Ω (A.18)

A.3 Electrode Models

In this section we take a closer look at how to model the applied current density j.

A.3.1 Continuum Model

In the Continuum Model, we assume that j is a continuous function and experiments Som-

ersalo et al., [SCI92], suggest that j could have the following form,

j(θ) = cos(kθ) or j(θ) = sin(kθ)

where k ∈ Z and θ ∈ [0, 2π]. Then,

∇ · γ∇u = 0 (A.19)

γ
∂u

∂ν
= j(θ) =





cos(kθ)
or

sin(kθ)

(A.20)

is the Continuum Model. Unfortunately, this model does not take into consideration that

current is only applied on the electrodes (not in-between them). Due to this naive assump-

tion, the model has been known to overestimate the ‘characteristic resistivity’ (the voltage

on the electrode divided by the current on the electrode) by as much as 25% [SCI92].
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A.3.2 Gap Model

In the Gap Model, we now consider the placement of the electrodes and assume that the

current is constant on each of the electrodes. Let L be the number of electrodes used, and

el denote the lth electrode. This leads us to the following model,

∇ · γ∇u = 0 (A.21)

γ
∂u

∂ν
= j(l) =





Il
|el| on el for l = 1, 2, . . . , L

0 off
L⋃

l=1

el

(A.22)

where |el| is the area of the lth electrode and Il is the current on the lth electrode. For

a homogeneous tank experiment where we apply trigonometric current patterns, Il can be

computed by

Ik
l =

{
cos (kθl) , 1 ≤ l ≤ L, 1 ≤ k ≤ L

2

sin
((

L
2 − k

)
θl

)
, 1 ≤ l ≤ L, L

2 + 1 ≤ k ≤ L− 1
(A.23)

where θl = 2πl
L . This model has the advantage that it is mathematically easy to work with.

While the Gap Model is an improvement over the Continuum Model, it still overestimates

the resistivity by an unacceptable amount.

A.3.3 Shunt Model

In the Gap Model we took into consideration the placement of the electrodes, but we were

still ignoring the fact that the metal of the electrodes themselves provide a low-resistance

path for the current to pass through. We call this the “shorting or shunting effect of the

electrodes” [SCI92, 1027]. The Shunt Model, as its name suggests, accounts for this and

assumes that

1. the metal is a perfect conductor

2. the potential u is constant on the metal electrodes.

These assumptions bring us to the following model,

∇ · γ∇u = 0 (A.24)
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with boundary conditions

∫

el

γ
∂u

∂ν
dS = Il, l = 1, 2, . . . , L, (A.25)

γ
∂u

∂ν
= 0 off

L⋃

l=1

el (A.26)

and

u = Ul on el, for l = 1, 2, . . . , L (A.27)

where Ul is a the measured voltage on the electrode el (a constant that is part of the

solution). For a solution to exist, we include the condition for conservation of charge

L∑

l=1

Il = 0. (A.28)

To ensure uniqueness of the solution, we require that the voltages sum to zero (i.e. specify

the ground) by
L∑

l=1

Ul = 0. (A.29)

Unfortunately, even with these extra assumptions, the Shunt Model still falls short as it

does not replicate the experimental data to the level of precision that we can measure.

Somersalo et al. [SCI92] point out that, in fact, the discrepancy between the characteristic

resistances that can be predicted using the Shunt Model and experimental data gets worse

as the spatial frequency of the applied current patterns increases. This error increases since

a highly resistive layer forms at the interface between the boundary of the domain and the

electrodes and higher spatial frequencies contain proportionately more information about

the boundary of the domain (since they are more oscillatory and therefore do not penetrate

the domain as deeply). We characterize this resistive layer by the quantity zl, the effective

contact impedance.

A.3.4 Complete Model

In the Complete Electrode Model, as in [IC90], we extend the Shunt Model to account for

the extra resistance due to an electro-chemical reaction at the electrode-boundary interface.

Letting zl be the effective contact impedance on the lth electrode, we have that the voltage
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drop across the electrode is equal to the product of the resistance zl and the current density

γ ∂u
∂ν . Therefore we replace Equation (A.27) for the voltage measured on the lth electrode

Ul by,

u + zlγ
∂u

∂ν
= Ul on el for l = 1, 2, . . . , L. (A.30)

Thus the Complete Model is comprised of the following set of equations,

∇ · γ∇u = 0 (A.31)

with boundary conditions

∫

el

γ
∂u

∂ν
dS = Il, l = 1, 2, . . . , L, (A.32)

γ
∂u

∂ν
= 0 off

L⋃

l=1

el (A.33)

and

u + zlγ
∂u

∂ν
= Ul on el for l = 1, 2, . . . , L. (A.34)

We also impose the conditions for existence and uniqueness of a solution,

L∑

l=1

Il = 0, (A.35)

L∑

l=1

Ul = 0. (A.36)

What are the advantages to the Complete Electrode Model? Thus far, it does the best job

replicating the experimental data and has the ability to predict voltages to the precision

that we can measure [IC90].
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B. SOLVING THE FORWARD PROBLEM USING THE FINITE ELEMENT
METHOD

It is important to understand how to solve the forward admittivity problem using Finite

Elements. When determining the values of the exponentially growing solutions of Ψ12 and

Ψ21 for z ∈ ∂Ω, we need to simulate the voltages corresponding to a constant admittivity

distribution (for simplicity here we use γ = 1 and therefore Λ1). In addition, we can use a

Finite Element Method (FEM) forward solver to simulate data and test our inverse solver.

While Vauhkonen et al. [VVSK99b] look at the 3-D EIT problem, they describe, in

detail, how to solve the forward admittivity problem using the Finite Elements Mehtod with

the Complete Electrode Model. The following is taken from my Master’s paper [Ham09]

and will describe the Finite Element Method formulation.

B.1 Finite Element Formulation

Recall the boundary conditions for the Complete Electrode Model given in Section (A.3.4)
∫

el

γ
∂u

∂ν
dS = Il, l = 1, 2, . . . , L, (B.1)

γ
∂u

∂ν
= 0 off

L⋃

l=1

el, (B.2)

and

u + zlγ
∂u

∂ν
= Ul on el for l = 1, 2, . . . , L. (B.3)

Somersalo et al., [SCI92], showed that for any (v, V ) where v ∈ H1(Ω) and V ∈ CL, the

variational form of the Complete Electrode Model is

Bs((u,U), (v, V )) =
L∑

l=1

IlV̄l (B.4)

where Bs : H ×H → C is the sesquilinear form given by

Bs((u,U), (v, V )) =
∫

Ω
γ∇u · ∇v̄dx +

L∑

l=1

1
zl

∫

el

(u− Ul)(v̄ − V̄l) dS. (B.5)

177



B.2 Trigonometric Current Patterns

As trigonometric current patterns are commonly used in experiments, I describe them in

more detail here. Let L be the number of electrodes used in the experiment. Then, if

we apply trigonometric current patterns we will have L − 1 linearly independent current

patterns. The trigonometric current patterns are defined as,

Ik
l =

{
M cos(kθl) k = 1, . . . , L

2

M sin
((

k − L
2

)
θl

)
k = L

2 + 1, . . . , L− 1
(B.6)

where θl =
2πl

L
for l = 1, 2, . . . , L−1 and M is the amplitude of the applied current pattern.

Figure B.1 shows the first 3 trigonometric current patterns cos(x), cos(2x), and cos(3x)

for the case M = 1 and L = 6 electrodes.

B.3 The Finite Element Scheme

We follow the ideas outlined in [VVSK99b] using the Finite Element Method to formulate

our continuous problem as a discrete one. We begin by discretizing our domain Ω ⊂ R2,

using tetrahedra, into very small elements. Suppose (u,U) is the solution to the forward

admittivity problem using the Complete Electrode Model and that we are applying trigono-

metric current patterns. Using finite sums, we can approximate the voltage distribution

inside our domain with,

uh(~x) =
N∑

k=1

αkφk(~x), (B.7)

and on the electrodes with

Uh(~x) =
N+(L−1)∑

k=N+1

β(k−N)~n(k−N), (B.8)

where

• the h represents that the solution is discrete

• L = the number of electrodes used in the experiment

• the test functions φk make up a basis for the finite dimensional space H ⊂ H1(Ω)

• ~nj = (1, 0, . . . , 0,−1, 0, . . . , 0)T ∈ RL× 1 where the −1 is in the j + 1st position
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Fig. B.1: The first three trigonometric current patterns
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• N = the number of nodes in the finite element mesh

• αk and β(k−N) are coefficients yet to be determined

Notice that this choice of ~n(k−N) satisfies the condition for the ground in Equation (A.36)

since, by plugging the ~n(k−N)’s into Equation (B.8),

Uh(~x) =
N+(L−1)∑

k=N+1

β(k−N)~n(k−N)

=
L−1∑

k=1

βk~nk

=

(
L−1∑

k=1

βk,−β1,−β2, . . . ,−βL−1

)T

, (B.9)

where T denotes the transpose of a matrix/vector. Let Uh
l = Uh(el), and [~nk]l denote the

lth component of the vector ~nk. Then,

Uh
l = Uh(el) = lth component of

(
L−1∑

k=1

βk,−β1,−β2, . . . ,−βL−1

)T

,

which gives,

Uh
1 =

L−1∑

k=1

βk

Uh
2 = −β1

Uh
3 = −β2

...

Uh
L = −βL−1.

Then,

L∑

l=1

Uh
l = sum of components of Uh

= 0.

In order to implement the Finite Element Method computationally in MatLab, we first

need to expand Equation (B.4) using our approximating functions in Equations (B.7) and

(B.8) with v = φj for j = 1, 2, . . . , N and V = ~nj for j = N + 1, N + 2, . . . , N + (L − 1).
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Let’s look at this is in cases.

Case 1: 1 ≤ k, j ≤ N

Here uh 6= 0, Uh = 0, v 6= 0, but V = 0 and thus Bs((uh, Uh), (v, V )) becomes

Bs((uh, 0), (v, 0)) =
∫

Ω
γ∇uh · ∇v̄dx +

L∑

l=1

1
zl

∫

el

uhv̄ dS

=
∫

Ω
γ∇

(
N∑

k=1

αkφk(~x)

)
· ∇φ̄j dx +

L∑

l=1

1
zl

∫

el

(
N∑

k=1

αkφk(~x)

)
φ̄j dS.

Then using Equation (B.4), we have

Bs((uh, 0), (v, 0)) =
L∑

l=1

Il(0)l = 0,

which gives,

∫

Ω
γ∇

(
N∑

k=1

αkφk

)
· ∇φ̄j dx +

L∑

l=1

1
zl

∫

el

(
N∑

k=1

αkφk

)
φ̄j dS = 0 1 ≤ j ≤ N. (B.10)

Looking at the kth term, without the coefficient (we put it back later), we have

Bkj =
∫

Ω
γ∇φk · ∇φ̄j dx +

L∑

l=1

1
zl

∫

el

φkφ̄j dS. (B.11)

Case 2: 1 ≤ k ≤ N and N + 1 ≤ j ≤ N + (L− 1)

Here uh 6= 0, Uh = 0, v = 0, and V 6= 0 and thus Bs((uh, Uh), (v, V )) becomes

Bs((uh, 0), (0, V )) = −
L∑

l=1

1
zl

∫

el

uhV̄l dS

= −
L∑

l=1

1
zl

∫

el

(
N∑

k=1

αkφk

)
(~nj)l dS

= −
L∑

l=1

1
zl

∫

el

N∑

k=1

αkφk (~nj)l dS. (B.12)

The last line comes from the fact that the entries of ~n are real, which gives ~n = ~n. In

addition we have,

(~nj)l =





1 l = 1
−1 l = j + 1
0 else.

(B.13)
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Then using Equation (B.4), we have

Bs((uh, 0), (0, V )) =
L∑

l=1

IlV̄l = I1 − Ij+1,

and Equation (B.12) becomes

−
L∑

l=1

1
zl

∫

el

N∑

k=1

αkφk (~nj)l dS = I1 − Ij+1 for N + 1 ≤ j ≤ N + (L− 1). (B.14)

Looking at the kth term, without the coefficient (again we put it back later), we have

Ckj = −
L∑

l=1

1
zl

∫

el

φk (~nj)l dS

= −
[

1
z1

∫

e1

φk dS − 1
zj+1

∫

ej+1

φk dS

]
. (B.15)

Case 3: N ≤ k ≤ N + (L− 1) and 1 ≤ j ≤ N

Here, uh = 0, Uh 6= 0, v 6= 0, and V = 0 and thus Bs((uh, Uh), (v, V )) becomes,

Bs((0, Uh), (v, 0)) = −
L∑

l=1

1
zl

∫

el

Uhv̄l dS

= −
L∑

l=1

1
zl

∫

el




N+(L−1)∑

k=N+1

β(k−N)~n(k−N)




l

φ̄j dS. (B.16)

Then using Equation (B.4), we have

Bs((0, Uh), (v, 0)) =
L∑

l=1

Il(0)l = 0,

and Equation B.16 becomes

−
L∑

l=1

1
zl

∫

el




N+(L−1)∑

k=N+1

β(k−N)~n(k−N)




l

φ̄j dS = 0 1 ≤ j ≤ N. (B.17)

Looking at the kth term, without the coefficient (again we put it back later), we have

C̃kj = −
L∑

l=1

1
zl

∫

el

(
φ(k−N)

)
l
~φj dS

= −
[

1
z1

∫

e1

φ̄j dS − 1
zj+1

∫

ej+1

φ̄j+1 dS

]
. (B.18)
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Case 4: N ≤ k, j ≤ N + (L− 1)

Here, uh = 0, Uh 6= 0, v = 0, and V 6= 0 and thus Bs((uh, Uh), (v, V )) becomes,

Bs((0, Uh), (0, V )) =
L∑

l=1

1
zl

∫

el

UhV̄l dS

=
L∑

l=1

1
zl

∫

el




N+(L−1)∑

k=N+1

β(k−N)~n(k−N)




l

(
~nj

)
l

dS. (B.19)

Then using Equation (B.4), we have

Bs((0, Uh), (0, V )) =
L∑

l=1

Il

(
~̄nj

)
l
= I1 − Ij+1,

and Equation B.16 becomes

L∑

l=1

1
zl

∫

el




N+(L−1)∑

k=N+1

β(k−N)~n(k−N)




l

(
~̄nj

)
l

dS = I1 − Ij+1 1 ≤ j ≤ N. (B.20)

Looking at the kth term, without the coefficient (again we put it back later), we have

Dkj =
L∑

l=1

1
zl

∫

el

(
~n(k−N)

)
l

(
~̄nj

)
l

dS

=
L∑

l=1

1
zl

∫

el

(
~n(k−N)

)
l
(~nj)l dS. (B.21)

If j = k −N , Equation (B.21) becomes,

Djj =
L∑

l=1

1
zl

∫

el

(~nj)l (~nj)l dS

=
1
z1

∫

e1

dS +
1

zj+1

∫

ej+1

dS

=
|e1|
z1

+
|ej+1|
zj+1

, (B.22)

where |e1| and |ej+1| denote the area of the 1st and j + 1st electrodes respectively.

If j 6= k −N ,

Dkj =
1
z1

∫

e1

dS − 0

=
|e1|
z1

. (B.23)

Thus for N ≤ k, j ≤ N + (L− 1),

Dkj =

{ |e1|
z1

+ |ej+1|
zj+1

j = k −N
|e1|
z1

j 6= k −N.
(B.24)
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We can combine Equations (B.10), (B.14), (B.17), and (B.20) into a system written as,

A~b = ~f (B.25)

where ~b = (~α, ~β)T ∈ CN+L−1 (where ~α = (α1, α2, . . . , αN ) and ~β = (β1, β2, . . . , βL−1)) and

A ∈ C(N+L−1)×(N+L−1) is of the form,

A =
(

B C

C̃ D

)
, (B.26)

and the data vector

~f = (0, Ĩ)T , (B.27)

where 0 ∈ C1×N and Ĩ = (I1 − I2, I1 − I3, . . . , I1 − IL) ∈ C1×(L−1).

Solving Equation (B.25) for the unknown coefficients ~b,

~b = A−1 ~f, (B.28)

gives the solution to the forward admittivity problem with the Complete Electrode Model.

The coefficients in the vector ~α represent the voltages throughout the domain, while those

in ~β are used to find the voltages on the electrodes by

Uh = C~β, (B.29)

where,

C =




1 1 1 . . . 1
−1 0 0 . . . 0
0 −1 0 . . . 0

. . .
0 0 0 . . . −1




, (B.30)

and C is an L×(L− 1) matrix.
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