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ABSTRACT OF DISSERTATION

HOPF BIFURCATION IN ANISOTROPIC REACTION DIFFUSION SYSTEMS

POSED IN LARGE RECTANGLES

The oscillatory instability (Hopf bifurcation) for anisotropic reaction diffusion equations

posed in large (but finite) rectangles is investigated. The work pursued in this dissertation

extends previous studies for infinitely extended 2D systems to include finite-size effects. For

the case considered, the solution of the reaction diffusion system is represented in terms of

slowly modulated complex amplitudes of four wave-trains propagating in four oblique direc-

tions. While for the infinitely extended system the modulating amplitudes are independent

dynamical variables, the finite size of the domain leads to relations between them induced

by wave reflections at the boundaries. This leads to a single amplitude equation for a dou-

bly periodic function that captures all four envelopes in different regions of its fundamental

domain. The amplitude equation is derived by matching an asymptotic bulk solution to

an asymptotic boundary layer solution. While for the corresponding infinitely extended

system no further parameters generically remain in the amplitude (envelope) equations

above the onset value of the control parameter, the finite-size amplitude equation retains

a dependence on a rescaled version of this parameter. Numerical simulations show that

the dynamics of the bounded system shows different behavior at onset in comparison to
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the unbounded system, and the complexity of the solutions significantly increases when the

rescaled control parameter is increased. As an application of the technique developed, an

anisotropic Activator-Inhibitor model with higher order diffusion is studied, and parameter

values of the amplitude equations are calculated for several parameter sets of the model

equations.

Travis A. Olson
Department of Mathematics

Colorado State University
Fort Collins, CO 80523

Summer 2010
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1 Introduction

There are two generic mechanisms through which a uniform equilibrium state of a physical

system may lose stability due to variation of an external control parameter: It can undergo

a stationary instability (steady state bifurcation), or an oscillatory instability (Hopf bifur-

cation). In this thesis we will consider reaction diffusion systems posed in two-dimensional,

large but finite, domains that undergo a Hopf bifurcation. By large domain we mean that

the characteristic wavelength of the marginally stable modes at the onset of the instability

is much smaller than the size of the domain in the two main directions.

This problem is part of the general area of pattern formation in extended systems, which

has grown into a major branch of physics and applied mathematics during the past decades,

with strong impact on fields as diverse as ecology, chemistry, engineering, as well as new

technologies and processes.

1.1 Mathematical Approaches to Pattern Formation

Since the seminal paper of Turing appeared in 1952 [58], it is well known that pattern

formation is intimately connected with instabilities encountered in systems of nonlinear

partial differential equations (PDE’s), and spontaneously broken symmetries arising in their

attracting solutions. Schematically, the PDE-systems considered in pattern formation can

be written in the form

∂u

∂t
= L(∇, R)u+N (∇, u,R), (1.1)

where t is time, L is a linear operator, R is an external control parameter, and ∇ is the

gradient with respect to the unbounded variables x (usually one or two) on which the

solution-vector u dpends. Further, bounded variables such as the vertical coordinate in a

2D, infinitely extended layer, are taken into consideration by viewing the solutions u(x, t) as

elements of an appropriate function space (Hilbert ot Banach space). The second term N

has to be understood symbolically, it stands for nonlinear terms that are at least quadratic

in u and its derivatives. The system (1.1) has u = 0 as a distinct solution corresponding to
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a spatiotemporally uniform state (the basic state) of the underlying physical system, for ex-

ample the heat conduction state in Rayleigh-Bènard convection. The typical scenario is that

the basic state becomes unstable when R, usually a measure of energy flow, exceeds a critical

value Rc. At the critical (onset or threshold) value the linearized operator L has eigenvalues

on the imaginary axis. The associated non-decaying solutions of the linearized system at

onset, ut = Lu, are referred to as marginally stable modes. A generic zero eigenvalue gives

rise to a stationary instability (the marginally stable modes are time-independent) and a

generic imaginary eigenvalue to an oscillatory instability or Hopf bifurcation (temporally

oscillating marginally stable modes). Since (1.1) is translation invariant in time and space,

the marginally stable modes are spatial or spatiotemporal Fourier modes associated with

certain critical wave numbers. At leading order in terms of a small parameter ε ∼ R−Rc,

measuring the distance of the control parameter from its critical value, the solutions are

then represented as a superposition of the marginally stable modes. While the basic state

has general time and space translation invariance, the solutions above the onset usually

have lower symmetry invariance, which is referred to as spontaneous symmetry breaking.

Equivariant bifurcation theory The connection between spontaneous symmetry break-

ing and pattern formation has led to the development of equivariant bifurcation theory,

initiated by Sattinger in the 1970’s [50], and established as a branch of mathematics by

Golubistky and Stewart in the 1980’s, see [32]. In equivariant bifurcation theory the pat-

terns studied in unbounded systems are spatially or spatiotemporally periodic, in two and

higher dimensions the spatial periodicity is usually imposed by choosing a lattice. This

restriction enables one to reduce the PDE’s to a finite dimensional system of ordinary

differential equations (ODE’s), called ‘normal form’ or ‘amplitude equations,’ for the am-

plitudes of those marginally stable modes that satisfy the chosen periodicity constraints.

The application of equivariant bifurcation theorems then allows prediction of the spatially

periodic patterns that can be expected above the instability threshold, and to study their

stability against perturbations satisfying the same periodicity constraints, but not against

non-periodic perturbations or perturbations that are periodic with respect to another lat-
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tice. For example, in 2D isotropic systems one often considers both hexagonal and square

lattices for the same system, but the stability of a hexagonal pattern against perturbations

in the form of square or rhombic patterns cannot be determined. Nevertheless, the impor-

tance of this approach relies on the fact that the structure of a normal form follows solely

from the symmetries of the PDE’s, the critical eigenvalue, and the marginally stable modes

taken into account, whereas the details of the particular system studied are revealed in the

specific values of the coefficients of the normal form.

Ginzburg Landau formalism The modulation or envelope approach, also referred to

as ‘Ginzburg Landau (GL) formalism,’ takes both temporal and spatial modulations of

the marginally stable modes into account. Accordingly, the amplitudes of these modes are

treated as slowly varying in time and space, and their evolution is governed by time and

space dependent amplitude or envelope equations. This approach was initiated by Newell

and Whitehead [45] and Segel [51] in the late 1960’s in the context of fluid mechanics. In

the case of several marginally stable modes, the equations for their envelopes are coupled

canonical PDE’s of the Ginzburg Landau type. In the case of a generic stationary instability

in 1D, the envelope equation is the real Ginzburg Landau equation (RGLE) for a single,

complex envelope as described below. For 2D isotropic systems the derivation of GL-type

equations is problematic in the case of nonzero critical wave vectors, because then there

exists a continuum (circle) of critical wave vectors due to the rotation invariance of the

PDE’s. In this case one may choose again a lattice, and take only those marginally stable

modes into account that are periodic with respect to that lattice. Since the amplitudes

of these modes are still allowed to vary slowly in space, the class of solutions considered

contains spatially periodic as well as aperiodic functions, in contrast to the approach used in

equivariant bifurcation theory. Generally, the normal forms used in equivariant bifurcation

theory follow from the GL-systems when spatial variations are neglected, in which case the

GL-PDE’s reduce to ODE’s. However, a rigorous derivation of GL-systems in dimensions

two or higher, in the sense that all possible extended solutions are captured, is strictly possi-

ble only for anisotropic systems, which exhibit only a finite number of linearly independent
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marginally stable modes. A more in depth discussion of these techniques can be found in

[34, 42, 19].

Complex Ginzburg Landau equation The general ‘building block’ for Ginzburg Lan-

dau systems is the complex Ginzburg Landau equation (CGLE). In 1D the general (non-

rescaled) form of this equation is

( ∂

∂T
− c ∂

∂X

)
A =

(
µ+ d

∂2

∂X2
− a|A|2

)
A, (1.2)

where A is a complex amplitude, T and X are (slow) time and space variables, c is real,

and µ, d, and a are complex coefficients. If reflection invariance X → −X is required, one

has to set c = 0. For 2D isotropic systems, ∂2

∂X2 is replaced by the Laplacean, and for 2D

anisotropic systems by a general complex second order differential operator. The RGLE is

recovered when c = 0 and µ, d, and a are real. In this limit the equation is purely relaxative

and can be written as ∂A
∂T = − δF

δA
[19, 1], where F is a functional of (A,A) expressed in

terms of an integral, and δ/δA denotes a functional derivative. The RGLE resembles the

equation derived by Ginzburg and Landau [30], see, also [54], in their phenomenological

theory of superconductivity. There are in fact a number of analogies between this theory

and the modulational theory of pattern forming systems, see [19]. The other limiting case

arises when c = 0 and µ, d, and a are purely imaginary, in which case (1.2) becomes the

conservative nonlinear Schrödinger equation. The convective term −c ∂
∂X can be formally

eliminated by setting B(X,T ) = A(X − cT, T ), which means that the solutions are drifting

when c 6= 0.

The CGLE (1.2) is one of the most extensively studied equations in physics. It has a

huge variety of solutions and transitions between them when the parameters are varied,

see [1] for a review. The most prominent features of the solutions are phase turbulence, a

weak form of “space-time turbulence”, and hole-mediated turbulence which is dominated

by the appearance of zeros of the complex amplitude A [1, 41]. The role of (1.2) as envelope

equation near instabilities is, however, limited to generic instabilities with nonzero critical
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wave numbers in 1D translation invariant systems without reflection symmetry. In such sys-

tems instabilities generically exhibit an imaginary eigenvalue and the separation between

stationary and oscillatory instabilities disappears. All finite wave number instabilities are

described by a single CGLE with a convective term (group velocity c 6= 0). By contrast, in

systems with a reflection symmetry there is a clear separation between stationary and oscil-

latory instabilities. In 1D, stationary instabilities lead to the RGLE, whereas for oscillatory

instabilities the marginally stable modes consist of a pair of counterpropagating travelling

waves, which means that two envelopes and accordingly a system of two coupled CGLE’s

are needed to describe this instability. In [38] it is shown that the two CGLE’s have to be

globally coupled to each other (see Section 2).

Weakly nonlinear analysis The main technique used for reducing a nonlinear PDE-

system to a GL-system near an instability is a weakly nonlinear analysis [45, 51]. In this

technique the method of multiple scales, see [37, 61], is combined with an expansion of

the solutions in terms of a small parameter ε ∼ R − Rc, measuring the deviation of the

control parameter from the onset value. The envelopes are assumed to be small and slowly

varying. Specifically, since the envelopes are assumed to be O(ε), the leading terms in the

expansion of the PDE’s are the linear terms and are O(ε) as well, whereas the nonlinear

terms are O(εk) with k > 1. The slow variation of the envelopes is captured by assuming

that they depend on slow space and time variables, for example T = εpt, X = εqx, with

integers p, q ≥ 1. The appropriate values for p, q are found by balancing certain terms

in the expansion, depending on the particular type of instability. For example, T = ε2t,

X = εx in the case of a stationary instability in 1D. For oscillatory instabilities one has

to use two different slow scales, see Section 2. The solutions are then expanded in an

asymptotic series in powers of ε, with the leading term consisting of a superposition of

the marginally stable modes multiplied by their envelopes. Substitution of the expansion

into the PDE’s then leads to a hierarchy of linear equations for the higher order terms.

These terms are distinguished in ‘resonant terms’ and ‘non-resonant terms.’ The equations

for the non-resonant terms admit unique solutions, whereas the equations for the resonant
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terms (which are of the same form as the marginally stable modes) are singular and require

the invoking of solvability conditions related to a Fredholm alternative. The solvability

conditions finally lead to the system of GL-equations for the envelopes. In most cases of

interest, nonresonant terms occur already at O(ε2), and resonant terms at O(ε3). The

method has some resemblance to the averaging method widely used in Dynamical Systems

[2, 59], where zero averages are required to guarantee that certain equations have periodic

(and hence bounded) solutions.

If the envelopes are assumed to depend only on a slow time but not on space, the weakly

nonlinear analysis yields an ODE-normal form common in equivariant bifurcation theory.

Another approach to find this normal is a process called center manifold reduction and

normal form transformation, which does not utilize multiple time scales. The advantage

of the weakly nonlinear analysis is that the normal form is determined directly, without

the necessity of a subsequent near identity normal form transformation after the reduction

to the center manifold. Another reduction method used in equivariant bifurcation theory

is the so called Lyapunov Schmidt reduction, see [7]. This reduction yields a system of

reduced algebraic equations for amplitudes of specific (usually spatially or spatiotemporally

periodic) solutions.

Finite size effects In most papers on pattern formation it is assumed that there are one

or two unbounded space variables, and the GL formalism captures patterns of infinite extent

with respect to these variables. Infinitely extended systems are, however, idealized, since

any mesoscopic or macroscopic system in which pattern formation is observed is bounded.

The infinite extent idealization is often justified by arguing that the system is large com-

pared to the intrinsic wavelengths of the patterns emerging from instabilities [19], hence

the effect of distant sidewalls should be weak. Studies of sidewall effects have been pursued

in the 1970’s and 1980’s for 1D stationary instabilities in the context of Rayleigh-Bènard

convection [12, 13, 24, 25, 29]. In this case the sidewalls mainly induce a selection mecha-

nism in that special “phase winding solutions” are selected, which are still contained within

the solutions set of the RGLE. Sidewalls have, however, a strong effect on propagating pat-
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terns that are created in oscillatory instabilities. With broken spatial translation invariance,

ideal travelling waves cannot exist, since any wave propagating through a bounded domain

eventually encounters reflection at the boundary, as has been observed in convection ex-

periments on binary mixtures [40] (see Subsection 1.2). To include finite size effects in the

GL-description for oscillatory instabilities, Cross [10, 11] has phenomenologically (without

rigorous derivation) introduced a system of two locally coupled CGLE’s on a finite interval

with Robin boundary conditions containing a parameter that is interpreted as a reflection

coefficient. Another approach has been used in [17] by introducing imperfection terms

breaking the spatial translation invariance in the normal form for a Hopf bifurcation for

systems with periodic boundary conditions. These imperfection terms give rise to solutions

that are reminiscent of the so called blinking state observed experimentally [40]. In [18] the

normal form with these imperfection terms was derived from the system of Cross [10, 11]

via center manifold reduction, and in [22] a numerical bifurcation study of the full system

of Cross has been pursued showing a variety of complex wave states, including a period

doubling cascade to chaos, see, also [16].

A rigorous weakly nonlinear analysis of the effect of sidewalls on the GL description

of oscillatory instabilities in 1D systems with reflection symmetry has been performed by

Martel and Vega for the case of reaction diffusion equations [43]. The starting point of their

analysis is the globally coupled system of CGLE’s of [38]. Martel and Vega have shown that

the appropriate GL-equation for this type of instability is an evolution equation for a single

spatially periodic function with global nonlinear terms, which incorporates the envelopes of

the two counterpropagating waves in two parts of its fundamental domain, see Section 2.

The method used in this analysis is the method of matched asymptotic expansions [37, 36],

where a boundary layer expansion is matched to the bulk expansion. This paper plays a

key role for the analysis pursued in this thesis.
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1.2 Oscillatory Instabilities in Physical Systems

The Hopf bifurcation is one of the basic mechanisms that leads to temporal oscillations

in parameter-dependent dynamical systems. It has been observed experimentally in a va-

riety of biological, chemical, and physical systems. A classical example is the Belusov-

Zhabotinsky reaction [3, 62], in which for the first time the possibility of concentration

oscillations in chemical reactions has been demonstrated (in this reaction the oscillations

are visible by alternating colors), as well as the possibility of concentration wave propaga-

tion if the reaction takes place in an extended container allowing diffusion of the substances

involved in the reaction.

In systems with few effective degrees of freedom, including spatiotemporal systems of

small spatial extent, the Hopf bifurcation leads to sustained limit-cycle oscillations. More

complicated dynamics has been observed in spatially extended systems. Experiments with

fluids, in particular convection experiments, have shown that a large variety of complex spa-

tiotemporal patterns can appear already slightly above the onset of an oscillatory instability

[53, 4, 40, 35, 49].

Thermal double diffusive convection Thermal convection systems, where a fluid layer

is heated from below, may encounter a Hopf bifurcation at the onset of convection when

there is an additional restraint that acts stabilizing on the heat conduction state, and

operates on a slower time scale than the thermal expansion. In most experiments performed,

the restraint has the form of a second diffusion process [40, 35, 49]; convection in such

fluids is referred to as ‘double diffusive’ convection. Prototype examples are thermohaline

convection (diffusion of salt), convection in binary mixtures (concentration diffusion), and

magnetoconvection of an electrically conducting fluid in the presence of an external, vertical

magnetic field (diffusion of magnetic flux) [39]. In each of these fluids, the destabilizing

buoyancy is opposed by a stabilizing effect, for example, a salt gradient in thermohaline

convection, where the fluid is saltier on the bottom than on the top.

In order that in double diffusive systems the onset of convection is a Hopf bifurcation,
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the second diffusion process has to be slower than the heat diffusion [9, 39]. In this case

the conduction state loses stability to overstable disturbances. Consider for example a fluid

parcel in a saltwater heated from below and containing a stabilizing salt gradient. If the

parcel is placed upwards through some disturbance, it rapidly gives up heat to the ambient

medium while maintaining its salt content. This makes it overdense relative to the ambient

medium, and the fluid parcel descends faster than it moved upwards, overshooting on its

downward excursion. In this way growing oscillations result. For small, 2D fluid layers that

undergo a Hopf bifurcation, linear theory predicts convection rolls which alternate in the

orientation of the fluid circulation (corresponding to standing waves). In large containers

one observes convection rolls propagating through the container (traveing waves), until they

are reflected at the boundary and propagate in the opposite direction resulting in ‘blinking

state’ solutions [40].

Electroconvection in Nematic Liquid Crystals Nematic liquid crystals are charge-

carrying fluids composed of long macro-molecules. They differ from ordinary liquids in that

their molecules are on average locally oriented along a preferred direction, called the director.

For electroconvection, the nematic is sandwiched between two parallel glass plates, treated

to produce planar (parallel to the plates) alignment of the director, and an ac-voltage

is applied across the electrode plates. Above a critical value of the applied voltage, an

electrohydrodynamic instability occurs that leads to various types of convection patterns.

The instability mechanism is that a bending of the director leads to charge accumulation

which in turn induces an electric volume force driving the fluid motion. In the original theo-

retical description (the so-called ‘standard model’ [5, 33]), the resistivity is assumed Ohmic,

with the result that only the destabilizing mechanism is included. As a consequence, the

standard model does not show a Hopf bifurcation in contrast to experimental observations

[26, 27, 28]. It was later noticed that the ionization-recombination process of the charge

carriers acts stabilizing on the basic state, since the electric volume force tends to recombine

the charged particles and hence to lower the volume force. In a macroscopic description, this

process is incorporated through a non-Ohmic resistivity, in which the conductivity becomes
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a further field variable, similarly like the salt concentration in thermohaline convection. The

standard model extended by this additional field variable is referred to as ‘weak electrolyte

model’ [55, 56, 57]. The weak electrolyte model shows a Hopf bifurcation if the relaxation

time of the conductivity is larger than the relaxation time of the director-variable.

Electroconvection experiments have shown a variety of patterns above the onset, in-

cluding zig-zag stationary patterns, localized worm-like patterns, and alternating waves

[26, 27, 28]. Nematic liquid crystals provide one of the few convection systems where

extended spatiotemporal chaos [6] has been observed directly at the onset of convection

[55, 28, 15]. The Ginzburg Landau formalism for the Hopf bifurcation in systems posed in

infinitely extended domains has been applied to the weak electrolyte model in [56, 57, 20, 46].

1.3 Oscillatory Instabilities in 2D Anisotropic Systems

The subject of this thesis are oscillatory instabilities in 2D anisotropic systems. Our model

of the physical system assumes that we can describe the quantities of interest in terms of

two space variables and time, u = u(x, y, t). Even if the system is a three dimensional

system, for example a thin film, we assume that it is large in two of the dimensions and

the pattern formation can be sufficiently described by the extended directions. To keep the

problem as simple as possible, we consider systems of reaction diffusion equations posed in

a large rectangle with sizes Lp and Lq in the x and y directions respectively, with Lp � 1

and Lq � 1, while the aspect ratio of the system is of order one (Lp/Lq = O(1)). Although

this is a restricted class of equations, the resulting envelope equation is canonical and holds

for any anisotropic system of PDE’s posed in a rectangle that encounters the instability

considered.

This large domain assumption is necessary to allow us to consider the behavior of the

large, but finite, domain separated into two regions, one near the edges where the boundary

conditions dominate, and the other in the bulk where the external control parameter dictates

the dynamics. The derivation of the bulk solution proceeds by considering the system as

infinitely extended in both spatial directions, with the only restriction that the solutions
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of the system remain bounded at infinity. For the instability type considered in this work

the marginally stable modes of the infinitely extended bulk solution at onset consist of four

spatiotemporally periodic Fourier modes corresponding to two pairs of counterpropagating

travelling waves. In order for this type of instability to be generic, the system must be

anisotropic.

A weakly nonlinear analysis of the infinite size case problem is performed in which the

solutions slightly above onset are represented as an asymptotic series in terms of a small

parameter ε. The leading term of this series is a modulation of the marginally stable modes

by slowly varying (in time and space) amplitudes or envelopes. Solvability conditions at

higher orders lead to an evolution equation in the form of a set of four globally coupled

partial differential equations of the Ginzburg Landau type. These equations have been de-

rived for general systems by using symmetry arguments in [23], and parameter calculations

for reaction diffusion systems have been done in [21]. The physical meaning of the global

coupling is that the group velocities are finite (rather than asymptotically small) which

indicates fast energy transport that causes wave interactions to occur on average rather

than locally.

For the finite size problem, the asymptotic solution series of the infinite size case is

used to represent the solution in the bulk of the domain. A boundary layer solution is

then constructed at each of the four edges of the rectangle such that the solution decays

exponentially with increasing distance from each edge. The bulk solution and edge solutions

are then matched in an intermediate range between the bulk and the edges. The matching

conditions impose relations between the envelopes of the bulk solution which correspond to

wave reflections of the travelling waves modulated by the envelopes. The final result is a

globally coupled evolution equation for a single, doubly periodic function that captures all

four amplitudes in different regions of its fundamental domain.

The derivation of the reduced envelope equation is the main theoretical result of this

thesis. While propagation and interaction of the waves in the bulk are adequately described

by the equations of [21] for infinitely extended systems, these equations fail when the waves
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approach the boundary. Since every real system is confined, the equations of [21] can be

considered as valid only over a time range in which no wave reflections and interactions

take place at the boundary. For longer times any travelling wave created in an oscillatory

instability reaches the boundary, where finite size effects become dominant, and will lead to

states such as the so called ‘blinking state’ where the bulk solution alternates between trav-

elling waves in opposing directions as observed experimentally in convection experiments

[40]. The boundary interactions are particularly important when there is energy absorption

or injection at the boundary. In the approach used in this work, the effect of the bound-

ary conditions are incorporated into the evolution equations through dependence on two

reflection coefficients which incorporate the details of the boundary conditions.

1.4 Overview

In Section 2, previous work on oscillatory instabilities in extended systems, which is related

to this thesis, is reviewed. We first discuss in some detail Hopf instabilities in 1D reaction

diffusion systems, and outline the derivation of the globally coupled amplitude equations of

Knobloch and DeLuca [38]. In addition we present the modification of these equations due

to effects of a finite size domain by Martel and Vega [43]. Next we review the 2D infinite size

case where the system of globally coupled equations for the envelopes of the four travelling

waves is adapted from [23].

In Section 3 we describe the asymptotic analysis leading to the amplitude equations for

the Hopf instability in large rectangles. The main difference between the 2D and the 1D

cases is the subtle resonances that occur in the 2D case if a certain ratio of Lp, Lq, the group

velocities, and the real parts of the diffusion parameters is rational. Explicit equations are

given for the generic irrational case as well as the case of a (1,1)-resonance. The work in

this section is related to [21, 23] for the 2D case in the same manner as Martel’s and Vega’s

work in [43] is related to [38] for the 1D case. In Section 4 we introduce a Neural Activator-

Inhibitor reaction diffusion model adapted from a book by Murray [44] that shows how the

theoretical work in Section 3 can be extended to systems that include higher order diffusion
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terms. Section 5 discusses results of numerical simulations of the amplitude equations from

the bounded case and compares the resulting patterns with simulations of the infinite extent

case in [21]. Finally, Section 6 summarizes the results and discusses possible extensions of

this work.
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2 Hopf Bifurcation in Extended Systems

In this section previous work on Hopf instabilities in 1D and 2D systems that is related to

this thesis is reviewed in the context of reaction diffusion equations. The discussion of the

1D case in Section 2.1 also serves to introduce the basic ideas from pattern formation.

2.1 Hopf Bifurcation in 1D Reaction Diffusion Equations

Consider the system of reaction diffusion equations

∂u

∂t
= Dp

∂2u

∂x2
+ f(u,R), (2.1)

where u = (u1, ...uN )T is a vector of concentrations measured as deviations from equilibrium,

Dp is a N ×N diagonal matrix with positive entries, f describes the reaction kinetics and

satisfies f(0, R) = 0, and R is an external control parameter, for example, temperature

or catalyst concentration. For all values of R, (2.1) admits the trivial u = 0 solution

corresponding to the spatially and temporally uniform equilibrium state. We begin by

discussing the idealized situation of an unbounded domain, where −∞ < x < ∞, and u is

required to remain bounded when |x| → ∞.

2.1.1 Unbounded Domain

Let

M(R) = fu(0, R)

be the Jacobian of f at u = 0. The stability of the equilibrium u = 0 is determined by the

linearized system,

∂u

∂t
= Dp

∂2u

∂x2
+M(R)u. (2.2)

The trivial solution of (2.1) is (linearly) stable if all solutions of (2.2) decay exponentially

in time. Since (2.2) does not depend explicitly on t or x, we look for solutions that are

superpositions of the form eσteipxU , with U ∈ CN . This excludes solutions in the form of

14



diffusing Gaussians which may be important in other contexts. Substituting this into (2.2)

yields the eigenvalue problem

σU = K(p2, R)U, (2.3)

where

K(p2, R) = −Dpp
2 +M(R). (2.4)

Thus, for a given value of R, u = 0 is stable if for all p the matrix K has only eigenvalues

with negative real parts. The modes eσteipxU are called marginally, or neutrally, stable if

U is an eigenvector of K with eigenvalue σ and Re(σ) = 0. Marginally stable modes with

σ = 0 are called stationary and marginally stable modes with σ = iΩ (Ω ∈ R) are called

oscillatory. Assuming that the condition for the stationary marginally stable modes with a

zero eigenvalue,

detK(p2, R) = 0,

can be solved for R = Rs(p
2) this leads to a curve in the (p,R)-plane, which is referred

to as a stationary neutral stability curve [14]. Analogously, assuming that a condition for

the oscillatory instability with a purely imaginary eigenvalue can be solved for R = Ro(p
2),

the associated curve in the (p,R)-plane is called an oscillatory neutral stability curve. For

example, for N = 3, the characteristic equation for an eigenvalue σ of K is

σ3 + k2σ
2 + k1σ + k0 = 0,

where the real coefficients kj depend on (p2, R), kj = kj(p
2, R). Then the condition for an

imaginary eigenvalue σ = iΩ leads to the equations Ω2 = k1 and −k2Ω2 + k0 = 0, giving

k0(p2, R)− k2(p2, R)k1(p2, R) = 0

as an equation for Ro(p
2), with the constraint k1(p2, R) > 0. For general N , the equation

for (p2, R) is the resultant of two polynomial equations in Ω2 found by substituting σ = iΩ

into the characteristic equation.
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Typically, the curves Rs(p
2) and Ro(p

2) both have minima Rsc and Roc and for

R < Rc = min{Rsc, Roc}

the eigenvalues ofK are either negative or have negative real parts for all p. The transition to

instability occurs when R is increased from below and exceeds Rc. If Rc = Rsc, the system

encounters a stationary instability, and if Rc = Roc the system undergoes an oscillatory

instability or Hopf bifurcation. The value pc for which the minimum is attained, Rc =

Rsc(p
2
c) or Rc = Roc(p

2
c), is called the critical wavenumber and the corresponding marginally

stable modes are called the critical modes.

In the case of a Hopf bifurcation, the critical modes are of the form

u(x, t) = U0e
iωte±ipcx, (2.5)

where σc = iω is the critical eigenvalue and U0 is the associated eigenvector ofK(p2
c , Rc) with

respect to σc. The neutral stability curves for this case are sketched in Figure 1(a). Note

that the neutral stability curves are symmetric about p = 0 due to the reflection symmetry

x → −x of (2.2). For R = Rc this linear system has the non-decaying modes (2.5) as

solutions, all other solutions decay exponentially. For R slightly above Rc, R = Rc + ∆R,

the modes associated with wave numbers in certain intervals around ±pc of width ∼
√

∆R

are exponentially increasing and u = 0 is unstable against perturbations in the form of

these modes. The underlying wave numbers are called unstable wave numbers (see Figure

1 (b)).

For small ∆R > 0, solutions of (2.1) are represented in terms of small and slowly varying

complex amplitudes or envelopes A1(x, t) and A2(x, t) in the form

u(x, t) = (A1(x, t)eipcx +A2(x, t)e−ipcx)U0e
iωt + cc+HOT, (2.6)

where cc refers to the complex conjugate expression and HOT refers to higher order terms
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Figure 1: (a) Neutral stability curves Rs(p
2) and Ro(p

2) with the lower minimum on Ro(p
2).

(b) Bands of unstable wave numbers for R = Rc + ∆R.

defined as follows. The assumption on the envelopes are that

∣∣∣∂Aj
∂t

∣∣∣� |Aj | � 1,
∣∣∣∂2Aj
∂x2

∣∣∣� ∣∣∣∂Aj
∂x

∣∣∣� |Aj |,
and in addition it is assumed that ∆R � 1. The HOT in (2.6) are terms of higher order

than A1 and A2 in this sense. According to (2.6), the envelopes A1 and A2 modulate the

left and right travelling waves, respectively.

We briefly describe the derivation of the evolution equations for A1 and A2, and the

globally coupled equations resulting from them, following [38]. Fourier transformation of

the linear system (2.2) yields iΩũ = Kũ where ũ is the Fourier transform of u with respect

to the Fourier variables (Ω, p). Substituting the Fourier transform of the modulated left

travelling wave, A1e
ipcx+iωtU0, into this equation and projecting with the adjoint eigenvector

leads to

i∆ΩÃ1(∆Ω,∆p) = (σ(p2, R)− iω)Ã1(∆Ω,∆p), (2.7)

where Ã1 is the Fourier transform of A1, which is centered around (0,0) because A1 is slowly

varying, and ∆Ω = Ω − ω, ∆p = p − pc. The eigenvalue σ can be expanded about this
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critical value as

σ(p2, R) = iω + a0∆R+ ivp∆p− dpp∆p2 + · · · , (2.8)

with complex coefficients a0 and dpp, and the ‘critical group velocity’

vp =
∂

∂p
Imσ(p2, Rc)|pc .

Fourier inversion of (2.7) yields

∂A1

∂t
− vp

∂A1

∂x
=
(
a0∆R+ dpp

∂2

∂x2

)
A1 +HOT,

and analogously one obtains

∂A2

∂t
+ vp

∂A2

∂x
=
(
a0∆R+ dpp

∂2

∂x2

)
A2 +HOT.

These equations are not complete, since nonlinear terms and, in particular, coupling terms

are missing. The form of nonlinear terms can be inferred from symmetry considerations.

The original system (2.1) is invariant under spatial translations x → x+ x0, the reflection

x → −x and time translations t → t + t0. Applying these symmetry operations to the

modulated left and right travelling waves induces symmetry operations on the envelopes

(A1, A2),

t→ t+ t0: (A1, A2) → eiωt0(A1, A2)

x→ x+ x0: (A1, A2) → (eipcx0A1, e
−ipcx0A2)

x→ −x: (A1, A2) → (A2, A1).

The evolution equations for (A1, A2) have to be invariant under these operations. The only

nonlinear terms up to third order that satisfy that invariance are (|A1|2A1, |A2|2A2) and
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(|A2|2A1, |A1|2A2). Adding these generic nonlinear terms to the linear equations gives

∂A1

∂t
− vp

∂A1

∂x
=

(
a0∆R+ dpp

∂2

∂x2
+ e1|A1|2 + e2|A2|2

)
A1 +HOT, (2.9)

∂A2

∂t
+ vp

∂A2

∂x
=

(
a0∆R+ dpp

∂2

∂x2
+ e1|A2|2 + e2|A1|2

)
A2 +HOT, (2.10)

where the parameters e1 and e2 are complex coefficients computable from the nonlinear

terms in (2.1)

A complication of the system (2.9), (2.10) is that, assuming the generic case that vp

is O(1), ∂Aj/∂x is of lower order than ∂2Aj/∂x
2. To deal with this, one introduces wave

variables to eliminate the first order wave operators on the left hand sides of (2.9) and

(2.10). Setting ∆R = ε2 and introducing the slow variables X± and the ‘super-slow’ time

τ ,

X± = ε(x± vpt), τ = ε2t,

and expanding

A1 = εB1(X+, τ) + ε2B
(2)
1 (X+, X−, τ) +O(ε3)

A2 = εB2(X−, τ) + ε2B
(2)
2 (X+, X−, τ) +O(ε3),

the equation (2.9) is satisfied at O(ε2), and at O(ε3) it becomes

−2vp
∂B

(2)
1

∂X−
=
(
− ∂

∂τ
+ a0 + dpp

∂2

∂X2
+

+ e1|B1|2 + e2|B2|2
)
B1.

In order for this equation to have a bounded solution B
(2)
1 , the average with respect to X−

must vanish. This condition leads to an evolution equation for B1,

∂B1

∂τ
=
(
a0 + dpp

∂2

∂X2
+

+ e1|B1|2 + e2 < |B2|2 >
)
B1, (2.11)

where

< |B2|2 >= lim
L→∞

1

2L

∫ L

−L
|B2(X−, τ)|2 dX−
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denotes the average of |B2|2 with respect to X−. Analogously one finds

∂B2

∂τ
=
(
a0 + dpp

∂2

∂X2
−

+ e1|B2|2 + e2 < |B1|2 >
)
B2, (2.12)

where < |B1|2 > is the average of |B1|2 with respect to X+. The averaged terms are then

the direct result of the O(1) group velocity, vp. One can think of this as a wavefront of the

left travelling wave interacting with an infinite number of wavefronts of the right travelling

wave in terms of the super-slow time, and thus the left travelling wave cannot react with

any particular right travelling wavefront individually but can only interact on average with

the incident wavefronts leading to global coupling with the incident wave amplitude. The

system of globally coupled equations (2.11) and (2.12) has been first derived by Knobloch

and DeLuca [38], and has been applied to reaction diffusion systems and edge waves in [43]

and [48], respectively.

As a first approximation spatial variations are ignored leading to (2.11) and (2.12)

reducing to the ODE-system

dB1

dτ
= (a0 + e1|B1|2 + e2|B2|2)B1, (2.13)

dB2

dτ
= (a0 + e1|B2|2 + e2|B1|2)B2, (2.14)

which is known as the normal form for a Hopf bifurcation with O(2)-symmetry [31]. The

system (2.13), (2.14) describes solutions of (2.1) slightly above Rc when periodic boundary

conditions with period 2π/pc are imposed. For generic values of e1, e2, the only non-transient

solutions (up to symmetry operations) of (2.13), (2.14) are of the form (B1, B2) = (reiΩt, 0)

corresponding to ideal travelling waves, and (B1, B2) = (reiΩt, reiΩt) corresponding to ideal

standing waves, with different amplitudes r and frequencies Ω for the two wave types. The

travelling waves are stable if e2r < e1r < 0, and the standing waves are stable if e1r < 0 and

e2
2r < e2

1r (subscripts r and i are used to denote real and imaginary parts, respectively). If

none of these conditions are satisfied, both the standing and travelling waves are unstable.
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2.1.2 Bounded Domain

The case of a Hopf bifurcation of (2.1) posed in a large, but bounded, domain with generic

boundary conditions has been studied by Martel and Vega [43]. In this paper, (2.1) is posed

in a domain −Lp/2 < x < Lp/2 where Lp � 1, ∆R = µ ∼ L−2
p , and |A1| ∼ |A2| ∼ L−1

p .

The solution in the bulk is represented as in Section 2.1.1. Near the boundaries the solution

is represented by boundary layer solutions that decay exponentially with increasing distance

from the end points, and ensure the boundary conditions are satisfied. The bulk solution is

then matched to the boundary layer solution in certain transition regions. As a consequence

of this matching, A1 and A2 are no longer independent, but become related to each other

by translations in the wave variables. After several transformations and rescalings, and

utilizing a reflection principle, Martel and Vega arrive at the following globally coupled

equation,

∂W

∂τ
= b′′1p

∂W

∂X
+ d′pp

∂2W

∂X2
+
[
λ+ e′1|W |2 + e′2

∫ 1/2

−1/2
φ(z)|W (X − 2z − 1, τ)|2 dz

]
W. (2.15)

The function W (X, τ) is periodic in X with period 2, where d′pp, e
′
1, and e′2 are rescaled

versions of dpp, e1 and e2. The coefficient b′′1p ∈ C comes from higher order terms in the

expansion of σ, and λ ∈ R plays the role of the rescaled bifurcation parameter due to

choosing the small parameter as ε = 1/Lp. The variable X is a modified version of the slow

characteristic variable X+, and the function φ(z) is given by

φ(z) =

 (2 log ρp)ρ
1−2z
p /(ρ2

p − 1) if ρp 6= 1,

1 if ρp = 1,

where rp = ρpe
iαp , 0 < ρp < ∞, is a reflection coefficient derived from the boundary

conditions. Scaled and transformed versions of the envelopes A1 and A2 are contained in

W in the regions −3/2 < X < −1/2 and −1/2 < X < 1/2, respectively.

An important consequence of the addition of boundaries is that the spatial translation

invariance x→ x+ x0 is broken. Accordingly, the equation for W possesses only the phase
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shift invariance W → eiφW resulting from temporal translations. The reflection symmetry

x→ −x is revealed in the invariance of the equation under

W (X, τ)→W (−1−X − cτ, τ)e−i(kX+ντ),

where k = b′′1pi/d
′
ppr, ν = (b′′1pi/d

′2
ppr)Re(d′ppb

′′
1p), and c = (2/d′ppr)Re(d′ppb

′′
1p).

2.2 Hopf Bifurcation in 2D Reaction Diffusion Systems in an Unbounded

Domain

For this thesis we are concerned with the 2D extension of (2.1),

∂u

∂t
= Dp

∂2u

∂x2
+Dq

∂2u

∂y2
+ f(u,R), f(0, R) = 0, (2.16)

where Dp and Dq are diagonal matrices with positive entries, and Dp 6= Dq making the

diffusion anisotropic. The meaning of u, R and f is as in Section 2.1. The stability of the

trivial solution u = 0 is determined by the linearized system

∂u

∂t
= Dp

∂2u

∂x2
+Dq

∂2u

∂y2
+M(R)u, M(R) = fu(0, R), (2.17)

and substitution of u = eσteipx+iqyU , U ∈ CN , yields the eigenvalue problem

σU = K(p2, q2, R)U, (2.18)

with

K(p2, q2, R) = −Dpp
2 −Dqq

2 +M(R). (2.19)

The eigenvalue problem (2.18) now involves two wave numbers p = (p, q) ∈ R2, and the

neutral stability curves for the 1D case become neutral stability surfaces Rs(p
2, q2) and

Ro(p
2, q2) in the 2D case. Note that in isotropic systems K only depends on |p|2, and the

1D discussion of the neutral stability minima can be directly carried over into the 2D case

22



by identifying p2 with |p|2. However, a minimum of the neutral stability curve Rs(|p|2)

or Ro(|p|2) with |p|2 > 0 will now give a full circle of critical wave numbers due to the

rotational invariance. This is a high degeneracy for which, to the author’s knowledge, no

satisfactory Ginzburg Landau formalism that captures all non-transient solutions slightly

above criticality is available.

With the assumption of an anisotropic system, the minima of the neutral stability

surfaces generically occur at isolated wave numbers. Since the system has two reflection

symmetries, one of three cases will be present, a single minimum will occur at the origin, or

two minima will exist on a reflection axis (referred to as the ‘normal case’), or four minima

off both reflection axes (referred to as the ‘oblique case’). We assume that the critical value

of the control parameter Rc occurs on the oscillatory neutral stability surface at four critical

wave numbers (±pc,±qc) with pc > 0, qc > 0. This leads to critical modes of the form

u(x, y, t) = U0e
iω±ipcx±iqcy (2.20)

where σc = iω is the imaginary eigenvalue of (2.18) at (pc, qc, 0), and U0 is the corresponding

eigenvector. At R = Rc these four modes are the only non-decaying modes as solutions. For

∆R = R−Rc slightly above 0, the modes in the roughly elliptical areas around (±pc,±qc)

with average diameter ∼
√

∆R will increase exponentially and the u = 0 state is unstable

with respect to perturbations in those modes. The corresponding wave number pairs (p, q)

are called unstable. Globally coupled envelope equations for this ‘oblique Hopf bifurcation’

in unbounded domains have been set up in [23], and are studied to some extent in [21, 46, 47].

In the following we briefly describe the derivation of these equations.

For small ∆R > 0, solutions to (2.16) are represented as a superposition of four modu-

lated oblique travelling waves in the form

u(x, y, t) = (A1e
i(pcx+qcy)+A2e

i(−pcx+qcy)+A3e
i(−pcx−qcy)+A4e

i(pcx−qcy))U0e
iωt+cc+HOT,

(2.21)

where Aj(x, y, t) are small and slowly varying envelopes. As in the 1D case the linear terms
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in the evolution equations can be inferred from the expansion of the critical eigenvalue,

σ(p2, q2, R) = iω + a0µ+ ivp∆p+ ivq∆q − dpp∆p2 − 2dpq∆p∆q − dqq∆q2 + · · · ,

where ∆p = p − pc, ∆q = q − qc, and a0, dpp, dpq, dqq are complex coefficients with dppr,

dpqr, dqqr forming a positive definite quadratic form (assuming a non-degenerate minimum

of Ro(p
2, q2) at (p2

c , q
2
c )). The coefficients vp ∈ R and vq ∈ R are the critical group velocities,

vp =
∂

∂p
Imσ(p2, q2

c , Rc)|pc , vq =
∂

∂q
Imσ(p2

c , q
2, Rc)|qc .

The leading nonlinear terms in the equations for the Aj are derived again by symmetry

considerations. The system (2.16) is invariant under time translations t → t + t0, two

spatial translations x → x+ x0 and y → y + y0, and two reflections x → −x and y → −y.

Applying these operations to the representation (2.21) of u induces the following symmetry

operations on the envelopes,

t→ t+ t0: (A1, A2, A3, A4) → eiωt0(A1, A2, A3, A4)

x→ x+ x0: (A1, A2, A3, A4) → (eipcx0A1, e
−ipcx0A2, e

−ipcx0A3, e
ipcx0A4)

y → y + y0: (A1, A2, A3, A4) → (eipcy0A1, e
ipcy0A2, e

−ipcy0A3, e
−ipcy0A4)

x→ −x: (A1, A2, A3, A4) → (A2, A1, A4, A3)

y → −y: (A1, A2, A3, A4) → (A4, A3, A2, A1),

and the evolution equations for A1, A2, A3 and A4 are invariant under these operations.

Up to cubic order there are five nonlinear terms that respect these symmetries for each

equation. With linear terms taken from σ and the nonlinear terms multiplied by generic

coefficients e1, · · · , e5, the evolution equation for A1 can be written as

∂A1

∂t
− vp

∂A1

∂x
− vq

∂A1

∂y
=
(
a0µ+ D̃(∂x, ∂y) +

4∑
j=1

ej |Aj |2
)
A1 + e5A2A3A4 +HOT, (2.22)
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where

D̃(∂x, ∂y) = dpp∂
2
x + 2dpq∂x∂y + dqq∂

2
y .

The equations for A2 and A4 follow from (2.22) by applying the x− and y−reflections,

respectively, and the equation for A3 by applying the combined reflection

(x, y,A1, A2, A3, A4)→ (−x,−y,A3, A4, A1, A2).

The problem of the lower order first derivative terms is again dealt with by utilizing char-

acteristic wave variables. In [21] the following variables are used

X± = ε(t± x/vp), Y± = ε(t± y/vq), τ = ε2t, µ = ε2,

and the Aj are expanded as Aj = εBj + ε2B
(2)
j +O(ε3), with

B1 = B1(X+, Y+, τ), B2 = B2(X−, Y+, τ), B3 = B3(X−, Y−, τ), B4 = B4(X+, Y−, τ),

which ensures that the O(ε2)-terms in the equations for the Aj cancel out. The wave

variables are no longer independent because of the relation

X+ +X− = Y+ + Y− = 2εt

Accordingly, the second order envelopes B
(2)
j depend on three wave variables which can be

chosen arbitrarily from X±, Y±. In [21] B
(2)
1 is considered a function of (X+, Y+, X−, τ).

With the above expansion, the equation (2.22) becomes up to O(ε3)

−2vp
∂B

(2)
1

∂X−
= −∂B1

∂τ
+
(
a0 + D̂(∂X+ , ∂Y+) +

4∑
j=1

ej |Bj |2
)
B1 + e5B2B3B4,

where D̂(∂X+ , ∂Y+) = D̃(∂X+/vp, ∂Y+/vq). In order for this equation to have a bounded

solution B
(2)
1 , the average of the right hand side with respect to X− must vanish, which
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leads, after some manipulations, to the following equation for B1 with global couplings to

B2, B3, B4,

∂B1

∂τ
=

(
a0 + D̂(∂X , ∂Y ) + e1|B1|2

+e2 < |B2(z, Y, τ)|2 > +e3 < |B3(z −X, z − Y, τ)|2 > +e4 < |B4(X, z, τ)|2 >
)
B1

+e5 < B2(z −X,Y, τ)B3(z −X, z − Y, τ)B4(X, z − Y, τ) >, (2.23)

where the subscript ‘+’ has been dropped, and the brackets denote averages over z. Anal-

ogous equations follow for B2, B3, and B4.

If spatial variations are ignored, the globally coupled system for B1, . . . , B4 reduces to

the ODE-system,

dB1
dτ =

(
a0 + e1|B1|2 + e2|B2|2 + e3|B3|2 + e4|B4|2

)
B1 + e5B2B3B4,

dB2
dτ =

(
a0 + e1|B2|2 + e2|B1|2 + e3|B4|2 + e4|B3|2

)
B2 + e5B1B4B3,

dB3
dτ =

(
a0 + e1|B3|2 + e2|B4|2 + e3|B1|2 + e4|B2|2

)
B3 + e5B4B1B2,

dB4
dτ =

(
a0 + e1|B4|2 + e2|B3|2 + e3|B2|2 + e4|B1|2

)
B4 + e5B3B2B1.

(2.24)

This is the normal form for a Hopf bifurcation with O(2)×O(2) symmetry, and it follows di-

rectly from (2.16) when periodic boundary conditions on (x, y) with periods (2π/pc, 2π/qc)

are imposed. This case has been introduced and studied in [52] and [60]. The basic peri-

odic solutions correspond to the following wave types (amplitudes r and frequencies Ω are

different for different wave types):

Travelling waves: B1 = reiΩτ , B2 = B3 = B4 = 0,

Standing waves: B1 = B3 = reiΩτ , B2 = B4 = 0,

Travelling rectangles in the x-direction: B1 = B2 = reiΩτ , B3 = B4 = 0,

Travelling recangles in the y-direction: B1 = B4 = reiΩτ , B2 = B3 = 0,

Standing rectangles: B1 = B2 = B3 = B4 = reiΩτ ,

Alternating waves: B1 = iB2 = B3 = iB4 = reiΩτ .
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The alternating waves are waves oscillating between the two oblique stripe patterns in the

directions (±pc, qc). Beyond the basic wave solutions, (2.24) admits more complex solutions

such as structurally stable heteroclinic cycles [52, 60], and recently a period doubling route

to chaos has been found numerically in a certain parameter regime [46].
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3 Reaction Diffusion System Posed in a ‘Large’ Rectangle

In this section we describe the derivation of the amplitude equations for a Hopf bifurcation

with four critical wavenumbers in the reaction diffusion system (2.16), when the PDEs are

posed in a large rectangle. An extension that includes higher order diffusion terms is given

in Section 4.

The problem for u = (u1, . . . , uN )T is the following (derivatives are denoted here by

subscripts):

ut = (Dp∂
2
x +Dq∂

2
y)u+ f(u, µ), (3.1)

in

−Lp/2 < x < Lp/2, −Lq/2 < x < Lq/2, (3.2)

subject to the boundary conditions,

Cpu± Epux = 0 at x = ±Lp/2, (3.3)

Cqu± Equy = 0 at y = ±Lq/2. (3.4)

The parameter µ is the reduced bifurcation parameter, µ = R−Rc, and Cp, Cq, Ep, Eq are

constant N ×N -matrices. The assumptions on f are:

(1) f(0, µ) = 0.

(2) Let fu(0, µ) be the Jacobian of f at u = 0, and let

K(p2, q2, µ) = −Dpp
2 −Dqq

2 + fu(0, µ).

Then Kc = K(p2
c , q

2
c , 0) has a simple pair of imaginary eigenvalues ±iω, with eigen-

vector KcU0 = iωU0, for fixed wave numbers (±pc,±qc) with pc > 0, qc > 0. All other

eigenvalues of Kc have negative real parts.

(3) For all (p2, q2) 6= (p2
c , q

2
c ), the eigenvalues of K(p2, q2, 0) have negative real parts.
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(4) Let F2 = fuµ(0, 0), and let U∗0 be the adjoint eigenvector of Kc for iω, KT
c U
∗
0 = −iωU∗0 ,

with the normalization U
∗T
0 U0 = 1. Let a0 = U

∗T
0 F1U0. Then a0r > 0.

Assumption (1) means that u = 0 is a uniform steady state for all µ. This assumption

can actually be relaxed as in [43], where nonhomogeneous boundary conditions are admitted,

giving rise to a steady boundary layer solution that decays exponentially in the bulk. Since

this generalization does not alter the form of the resulting amplitude equations, we consider

here the simpler case of homogeneous boundary conditions with basic solution u = 0.

Another possible generalization would be allowing the matrices Cp, Cq, Ep, Eq depend on

the variables along the corresponding edges in a reflection symmetric manner, Cp = Cp(y)

with Cp(−y) = Cp(y) etc. Also this generalization would not alter the form of the amplitude

equations, and we assume constant boundary-matrices for simplicity.

Assumptions (2) and (3) are the conditions for a generic Hopf bifurcation, and assump-

tion (4) guarantees that the instability occurs when µ crosses 0 from below. Assumption

(4) is the standard transversality condition common in bifurcation theory. Two further

genericity assumptions on the linearized problem concern the first and second order terms

with respect to (p, q), and will be introduced below.

In the weakly nonlinear analysis of (3.1)-(3.4), f is expanded as

f(u, µ) = (F1 + F2µ+ F3µ
2)u+ B(u, u) + C(u, u, u) +O(|u|3 + |uµ|+ |µ|3)|u|,

where F1 = fu(0, 0), F2 = fuµ(0, 0), F3 = fuµµ(0, 0)/2 are N × N -matrices, and B =

fuu(0, 0)/2 and C = fuuu(0, 0)/6 are bilinear and trilinear operators corresponding to the

second and third order terms in the Taylor expansion of f(u, 0), respectively.

3.1 Linearized Equation

For µ = 0, the linearization of (3.1) about u = 0 has the plane wave solution eiωtei(pcx+qcy)U0.

This solution is extended to a solution eσtei(px+qy)U by expanding the critical eigenvalue

σ about iω, and the corresponding eigenvector U about U0, in terms of (∆p,∆q) =
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(p− pc, q − qc) and µ. Substituting the expansions

σ = iω + i(vp + µb1p)∆p+ i(vq + µb1q)∆q

+dpp∆p
2 − 2dpq∆p∆q − dqq∆q2 + (a0 + a1µ)µ+ · · · (3.5)

U = U0 + ∆pU1p + ∆qU1q + ∆p2U2pp + 2∆p∆qU2pq + ∆q2U2qq

+µU3 + µ(∆pU4p + ∆qU4q) + µ2U5 + · · · (3.6)

into the eigenvalue equation [K(p2, q2, µ)− σI]U = 0, where I is the identity matrix, yields

a hierarchy of linear equations for the expansion vectors in U

T (p2
c , q

2
c , ω)U0 = 0

T (p2
c , q

2
c , ω)U1p = (2pcDp + ivpI)U0

T (p2
c , q

2
c , ω)U1q = (2qcDq + ivqI)U0

T (p2
c , q

2
c , ω)U2pp = (2pcDp + ivpI)U1p + (Dp − dppI)U0

T (p2
c , q

2
c , ω)U2pq = (2pcDp + ivpI)U1q/2 + (2qcDq + ivqI)U1p/2 + dpqU0

T (p2
c , q

2
c , ω)U2qq = (2qcDq + ivqI)U1q + (Dq − dqqI)U0

T (p2
c , q

2
c , ω)U3 = (a0I − F2)U0

T (p2
c , q

2
c , ω)U4p = (2pcDp + ivpI)U3 + (a0I − F2)U1p + ib1pU0

T (p2
c , q

2
c , ω)U4q = (2qcDq + ivqI)U3 + (a0I − F2)U1q + ib1qU0

T (p2
c , q

2
c , ω)U5 = (a1I − F3)U0 + (a0I − F2)U3

where T (p2, q2,Ω) = (F1 − p2Dp − q2Dq − iΩI) is a singular matrix when (p2, q2,Ω) =

(p2
c , q

2
c , ω). Note that these equations are all of the form

T (p2
c , q

2
c , ω)Ue = Ve + σeU0,

where Ue is an expansion vector in U , σe the expansion coefficient for the same term in

σ (e.g. Ue = U2pp, σe = −dpp), and the vector Ve depends on expansion vectors and
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coefficients of lower order. The solvability condition for Ue is that Ve + σeU0 be orthogonal

to U∗0 . This gives σe = −U∗T0 Ve, and leads to a unique solution for Ue if it is required that

U
∗T
0 Ue = 0. Applying the orthogonality condition leads to the following equations for the

coefficients occurring in (3.5),

vp = 2ipcU0
∗T
DpU0

vq = 2iqcU0
∗T
DqU0

dpp = U
∗T
0 (2pcDp + ib1pI)U1p + U

∗T
0 DpU0

dpq = U
∗T
0 (2pcDp + ivpI)U1q + U

∗T
0 (2qcDq + ivqI)U1p

dqq = U
∗T
0 (2qcDq + ib1qI)U1q + U

∗T
0 DqU0

a0 = U
∗T
0 F2U0

b1p = U
∗T
0 (2ipcDp − b1pI)U3 + U

∗T
0 (ia0I − iF2)U1p

b1q = U
∗T
0 (2iqcDq − b1qI)U3 + U

∗T
0 (ia0I − iF2)U1q

a1 = U
∗T
0 F3U0 + U

∗T
0 (F2 − a0I)U0.

Note that these include the terms µ∆p, µ∆q, µ2, which are not taken into account in the

weakly nonlinear analysis of the unbounded problem. In the bounded case they have to be

included because the stability threshold is shifted from µ = 0 to a small nonzero value of µ.

The additional genericity assumptions concerning the linearized system are

(5) vp 6= 0 and vq 6= 0.

(6) dppr > 0 and dpprdqqr − d2
pqr > 0.

Assumption (5) is our basic assumption of nonzero critical group velocities, giving rise to

global coupling terms. Assumption (6) states that the minimum of the oscillatory neutral

stability surface is non-degenerated, and leads to a non-degenerated diffusion term in the

amplitude equations.
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3.2 Bulk Solution

In the weakly nonlinear analysis of (3.1) without boundary constraints, one seeks a solution

of the form

u =
∑
m,n,k

Umnk(x, y, t, µ)ei(mpcx+nqcy+kωt), (3.7)

with small and slowly varying coefficient functions Umnk = U−m,−n,−k. Setting

E1 = ei(pcx+qcy+ωt), E2 = ei(−pcx+qcy+ωt), E3 = ei(−pcx−qcy+ωt), E4 = ei(pcx−qcy+ωt),

to simplify the notation, the leading terms in (3.7) are the basic travelling waves,

u =

4∑
j=1

Aj(t, x, y)EjU0 + cc+HOT,

where the Aj are the small and slowly varying envelopes introduced in Section 2.2. The

coefficient functions Umnk are represented as formal power series in

(∂t, ∂x, ∂y, A1, . . . , A4, A1, . . . , A4, µ),

with each term in the power series multiplied by a vector to be determined. A hierarchy of

equations for these vectors follows by substituting the series into (3.1).

In the Fourier series one distinguishes resonant Fourier terms, which are the basic waves

Ej and Ej (m,n, k = ±1), and non-resonant terms. A power series coefficient vector Ue in

a non-resonant Fourier term with labels (m,n, k) satisfies an equation of the form

T (m2p2
c , n

2q2
c , kω)Ue = Ve,

where Ve depends only on lower order terms. Since (m2, n2, k2) 6= (1, 1, 1) in the non-

resonant case, the matrix on the left hand side of this equation is nonsingular and yields

a unique solution Ue. For the resonant terms this does not work, because the relevant

matrix (T (p2
c , q

2
c , ω) if k = 1) is singular. To handle the resonant terms, one supplements
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the procedure by evolution equations for the Aj as described in Section 2.2, with initially

undetermined coefficients, up to the same order as the terms that are kept in the resonant

harmonics, and replaces Ajt by the right hand sides of these evolution equations. In this way

undetermined coefficients ce are introduced, and the equations for the coefficient vectors get

the form (for k = 1)

T (p2
c , q

2
c , ω)Ue = Ve + ceU0.

As for the linear problem, this fixes the coefficients ce in the evolution equations for the

envelopes by projecting with U∗0 , and yields unique coefficient vectors Ue recursively at each

order that is taken into account.

The resonant terms needed in the expansion of u up to a prescribed order are the same

as the terms kept in the equations for the Aj . We expand the equation for A1 as

A1t = (vp + b1pµ)A1x + (vq + b1qµ)A1y + dppA1xx + 2dpqA1xy + dqqA1yy

+
(
a0µ+ a1µ

2 + e1|A1|2 + e2|A2|2 + e3|A3|2 + e4|A4|2
)
A1 + e5A2A3A4

+HOT, (3.8)

i.e., the expansion is carried out up to third order (one order higher in the linear terms than

in Section 2.2). The linear terms in this expansion do not involve non-resonant terms, and

coincide with the expansion terms of the critical eigenvalue. Nonlinear non-resonant terms

are created from the leading terms in u by the nonlinear terms in f . For example, the term

|A1|2A1 is created through

C(A1U0E1, A1U0E1, A1U0E1) = |A1|2A1C(U0, U0, U0)E1,

as well as from

B(A1U0E1, |A1|2U7) = |A1|2A1B(U0, U7)E1,

B(A1U0E1, A
2
1U6E

2
1) = |A1|2A1B(U0, U6)E1,
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which requires the determination of the vectors U7 and U6 (notation from Appendix A.1)

associated with |A1|2 and A2
1 in the non-resonant T (0, 0, 0) and T (4p2

c , 4q
2
c , 2ω) Fourier

terms, respectively. In turn, the terms |A1|2 and A2
1 in these Fourier terms are created from

the leading terms by pairing A1E1U0 with A1E1U0 and A1E1U0 in B, respectively, thus U7

and U6 are the unique solutions of

T (0, 0, 0)U7 = −2B(U0, U0),

T (4p2
c , 4q

2
c , 2ω)U6 = −B(U0, U0).

The resulting resonant term in u is |A1|2A1U8E1, where U8 satisfies T (p2
c , q

2
c , ω)U8 = V8 +

e1U0, with

V8 = −2B(U0, U7)− 2B(U0, U6)− 3C(U0, U0, U0),

which determines e1 and U8. The other cubic resonant terms follow similarly, the details

are summarized in Appendix A.1.

The non-resonant terms needed to determine all cubic resonant terms involve products

AjAkEjEk, AjAkEjEk and their complex conjugates, which arise in the Fourier terms with

labels m,n, k = 0 or ±2. Several of these vectors are related by symmetries, reducing the

total number of vectors at second (non-resonant) orders to seven (vectors U6, U7, W11,

W1j , Wj1, j = 2, 3 in Appendix A.1). The resonant expansion vectors associated with the

coefficients e1, . . . , e5 are denoted by U8, . . . , U12 in Appendix A.1.

3.3 Boundary Layer Expansion

Near the edge y = −Lq/2, the solution of (3.1)-(3.4) cannot be represented by envelopes

varying slowly in y. We set ỹ = y + Lq/2 and consider the problem

ut = Dpuxx +Dquỹỹ + f(u, µ), (3.9)

Cqu− Equỹ = 0 at ỹ = 0, (3.10)

u → ubulk for ỹ →∞, (3.11)
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where ubulk is the bulk solution, and the approach in (3.11) is on an exponential rate. The

starting point is again the solution of the linearized problem for µ = 0, for which we seek a

solution in the form

U0
±(x, ỹ, t) = U0(ỹ)e±ipcxeiωt + cc,

that satisfies (3.10) and (3.11). Substituting this into the linearized equation of (3.9) yields

DqU0
ỹỹ + (−p2

cDp + F1 − iωI)U0 = 0. (3.12)

This equation has the fundamental solutions U0e
±iqcỹ and 2(N − 1) solutions of the form

V k
±(ỹ) = W k

±(ỹ)e±λkỹ, 2 ≤ k ≤ N , where Reλk > 0 and the W k
±(ỹ) increase at most

algebraically as ỹ → ∞ (generically they are constant). The λk are the N − 1 remaining

roots of the characteristic equation,

det
[
λ2Dq − p2

cDp + F1 − iωI
]

= 0,

and λ2
1 = −q2

c . The superposition

U0(ỹ) = U0(eiqcỹ + rqe
−iqcỹ) +

N∑
k=2

αkV
k
−(ỹ) (3.13)

takes the form of the basic waves when ỹ → ∞, and substitution into (3.10) gives a non-

homogeneous system of N linear equations for (rq, α2, . . . , αN ), which we assume to have a

unique solution with rq 6= 0. The coefficient rq plays the role of a reflection coefficient.

The solutions U0
± are then extended to solutions of the nonlinear problem (3.9)-(3.11)

through a weakly nonlinear analysis in a similar manner as the bulk solution was derived,

except that the ỹ-dependence is solved exactly. The solution is sought in the form of a

modulated Fourier series,

u =
∑
m,k

U (m,k)(x, t, µ; ỹ)ei(mpcx+kωt),

35



with small coefficient functions U (m,k) that vary slowly in (x, t) and are power series in µ.

The leading terms are modulations in (x, t) of the ‘edge waves’ U0
±,

u =
(
M(x, t)U0(ỹ)eipcx +N(x, t)U0(ỹ)e−ipcx

)
eiωt + cc+HOT, (3.14)

where M(x, t) and N(x, t) are again small and slowly varying envelopes. Each Fourier

coefficient is expanded in a formal power series in (∂t, ∂x,M,N,M,N, µ) with ỹ-dependent

coefficients taking care of the boundary conditions at ỹ = 0. This leads to a hierarchy of

nonhomogeneous boundary value problems for the expansion functions U (e)(ỹ) of the form

DqU (e)
ỹỹ −

(
m2p2

cDp + ikωI
)
U (e) = V(e),

CqU (e) − EqU (e)
ỹ = 0 at ỹ = 0,

and U (e)(ỹ) has to remain bounded when ỹ →∞. For matching purposes only the asymp-

totic behavior of these functions for ỹ → ∞ is needed. The details are summarized in

Appendix A.2. The expansion at y = Lq/2 is found by applying the reflection y → −y.

The solutions near the edges x = ±Lp/2 are obtained in the same manner as the solutions

near y = ±Lq/2, and lead to another reflection coefficient rp.

3.4 Matching Boundary Layer Solutions and Bulk Solution

The boundary conditions for the bulk-envelopes A1, . . . , A4 follow from matching the bulk

solution to the boundary layer solutions. Considering again the edge y = −Lq/2, the

variable ỹ = y + Lq/2 is treated as O(1)-variable in the boundary layer. For the matching,

we consider the limit 1 � ỹ � s, where s � 1 is the space scale in the bulk such that

s|Ajy| = O(|Aj |). In this limit, the leading terms in the bulk solution can be expanded as

u =
{[

(A10 +A1y0ỹ)ei(pcx+qcỹ) + (A20 +A2y0ỹ)ei(−pcx+qcỹ)
]
e−iqcLq/2[

(A30 +A3y0ỹ)ei(−pcx−qcỹ) + (A40 +A4y0ỹ)ei(pcx−qcỹ)
]
eiqcLq/2

}
U0e

iωt + cc+HOT,
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where Aj0(x, t) = Aj(x,−Lq/2, t), Ajy0(x, t) = Ajy(x,−Lq/2, t), and in the higher order

terms the Aj and their derivatives are evaluated at (x,−Lq/2, t). Comparing the result-

ing bulk expansion and the boundary layer expansion from Appendices A.1 and A.2, and

requiring that they coincide up to the orders taken into account, leads to eight matching

conditions relating the Aj0 and Ajy0 to expressions involving the boundary envelopes M,N

and their derivatives, which are summarized in Appendix A.3. Eliminating the (M,N)-

terms from these matching conditions gives the following four boundary conditions for the

Aj at y = −Lq/2,

eiqcLqA4 = rqA1 +HOT, (3.15)

vq(e
iqcLqA4y + rqA1y) = rq(|rq|2 − 1)[(e1 − e4)|A1|2 + (e2 − e3 − e5)|A2|2]A1 +HOT,

(3.16)

eiqcLqA3 = rqA2 +HOT, (3.17)

vq(e
iqcLqA3y + rqA2y) = rq(|rq|2 − 1)[(e1 − e4)|A2|2 + (e2 − e3 − e5)|A1|2]A2 +HOT.

(3.18)

With these boundary conditions, the matching conditions also provide evolution equations

for the edge-envelopes M(x, t), N(x, t). Boundary conditions for M,N at x = ±Lp/2 may

be found by matching the edge solution to a corner solution valid in some neighborhood of

the corners (x, y) = (±Lp/2,−Lq/2), but we don’t pursue this since our main interest in

this paper is the equations for the bulk-envelopes.

A similar matching procedure leads to the following boundary conditions at x = −Lp/2,

eipcLpA2 = rpA1 +HOT, (3.19)

vp(e
ipcLpA2x + rpA1x) = rp(|rp|2 − 1)[(e1 − e2)|A1|2 + (e4 − e3 − e5)|A4|2]A1 +HOT,

(3.20)

eipcLpA3 = rpA4 +HOT, (3.21)

vp(e
ipcLpA3x + rpA4x) = rp(|rp|2 − 1)[(e1 − e2)|A4|2 + (e4 − e3 − e5)|A1|2]A4 +HOT.
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(3.22)

which involves the second reflection coefficient rp. Note that at the −Lp/2 boundary the e4

and e2 exchange places when compared to the −Lq/2 boundary. The boundary conditions

at the other two edges follow from (3.15)-(3.18) and (3.19)-(3.22) via reflection y → −y and

x→ −x.

3.5 Rescaled Coefficients

We first apply some transformations to the envelopes Aj that simplify the coefficients in

(3.8). The transformation Aj = A′je
i(a0iµ+a1iµ

2)t removes the imaginary parts of a0 and a1.

We then rescale t, x, y (and accordingly Lp, Lq), µ and the A′j according to

t =
dppr
v2
p

t′, x =
dppr
vp

x′, y =

√
dpprdqqr

vp
y′, µ =

v2
p

a0rdppr
µ′, A′j =

vp√
|e1r|dppr

A′′j .

Denoting the coefficients in the resulting transformed equation for A′′1 by primes, these

coefficients are related to the original coefficients by

v′p = 1, v′q =
√

dppr
dqqr

vq
vp
, d′pp =

dpp
dppr

, d′qq =
dqq
dqqr

, d′pq =
dpq√
dpprdqqr

,

b′1p =
vpb1p
a0rdppr

, b′1q =
vpb1q

a0r
√
dpprdqqr

, a′0 = 1, a′1 =
v2pa1r
a20rdppr

, e′j =
ej
|e1r| .

Omitting the primes, we then rewrite the equation for A1 as

A1t = (1 + b1pµ)A1x + (vr + b1qµ)A1y + dppA1xx + 2dpqA1xy + d+ dqqA1yy

+
(
µ+ a1µ

2 +

4∑
j=1

ej |Aj |2
)
A1 + e5A2A3A4, (3.23)

where dppr = dqqr = 1, e1r = −1 (assuming the supercriticality condition e1r < 0 before the

rescaling), and vr, a1 ∈ R (vr = v′q). Using polar forms for the reflection coefficients,

rqe
−iqcLq = ρqe

iαq , rpe
−ipcLp = ρpe

iαp ,
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the boundary conditions at y = −Lq/2 are written in the form

A4 = ρqe
iαqA1 +HOT, (3.24)

vr(A4y + ρqe
iαqA1y) = ρqe

iαq(ρ2
q − 1)[(e1 − e4)|A1|2 + (e2 − e3 − e5)|A2|2]A1 +HOT,

(3.25)

A3 = ρqe
iαqA2 +HOT, (3.26)

vr(A3y + ρqe
iαqA2y) = ρqe

iαq(ρ2
q − 1)[(e1 − e4)|A2|2 + (e2 − e3 − e5)|A1|2]A2 +HOT.

(3.27)

3.6 Slow Variables and O(1)-Amplitudes

We consider the case where Lp and Lq are large and of the same order, and write Lq = lLp,

with the aspect ratio l = Lq/Lp of the rectangle of order one. The boundary conditions

shift the instability threshold to a nonzero value

µc = −L−1
p log(ρlvrq ρp) +O(L−2

p + (LpLq)
−1 + L−2

q ), (3.28)

that is, the trivial solution Aj = 0 becomes unstable for µ > µc > 0 when ρlvrq ρp < 1. We

introduce a small parameter ε, an O(1)-control parameter λ so that the instability occurs

at λ = 0, and slow space and time variables (ξ, η, T ) by setting

ε = L−1
p , ρ = ρlvrq ρp, µ = −ε log(ρ) + ε2(λ+ b), (ξ, η, T ) = ε(x, ly, t).

In the slow space variables (ξ, η), the rectangle is rescaled to the square −1/2 ≤ ξ, η ≤ 1/2.

The variables (ξ, η, T ) are considered as new variables for the envelopes. The derivatives

then scale with ε, ∂t = ε∂T , ∂x = ε∂ξ and ∂y = lε∂η.

We next express the Aj in terms of O(1)-amplitudes Yj ,

A1 = ερξ+1/2
p ρη+1/2

q Y1exp
[
iαp(ξ + T + 1/2) + iαq(η + vrT + 1/2) + iεaT

]
, (3.29)
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A2 = ερ
−ξ+ 1

2
p ρη+1/2

q Y2exp
[
iαp(−ξ + T + 1/2) + iαq(η + vrT + 1/2) + iεaT

]
, (3.30)

A3 = ερ
−ξ+ 1

2
p ρ−η+1/2

q Y3exp
[
iαp(−ξ + T + 1/2) + iαq(−η + vrT + 1/2) + iεaT

]
, (3.31)

A4 = ερξ+1/2
p ρ−η+1/2

q Y4exp
[
iαp(ξ + T +

1

2
) + iαq(−η + vrT + 1/2) + iεaT

]
, (3.32)

where the parameters a and b are chosen so that the extra Yj terms introduced when taking

derivatives of the Aj are eliminated,

−b+ ia = −log(ρ)b1p(log(ρp) + iαp)− llog(ρ)b1q(log(ρq) + iαq) + dpp(log(ρp) + iαp)
2

+l2(log(ρq) + iαq)
2 + 2ldpq(log(ρp) + iαp)(log(ρq) + iαq). (3.33)

The evolution equation for Y1 in the interior of the square, −1/2 < ξ, η < 1/2, follows from

(3.23) as

Y1T = (1 + εb′′1p)Y1ξ + l(vr + εb′′1q)Y1η + εdppY1ξξ + l2εdqqY1ηη + 2lεdpqY1ξη

+ε[λ+ e1ρ
2ξ+1
p ρ2η+1

q |Y1|2 + e2ρ
−2ξ+1
p ρ2η+1

q |Y2|2

+ e3ρ
−2ξ+1
p ρ−2η+1

q |Y3|2 + e4ρ
2ξ+1
p ρ−2η+1

q |Y4|2]Y1

+εe5ρ
−2ξ+1
p ρ−2η+1

q Y2Y3Y4 +O(ε2), (3.34)

where b′′1p and b′′1q are given by

b′′1p=−log(ρ)b1p + 2dpp(log(ρp) + iαp) + 2ldpq(log(ρq) + iαq), (3.35)

b′′1q =−llog(ρ)b1q + 2l2dpp(log(ρq) + iαq) + 2ldpq(log(ρp) + iαp). (3.36)

Note that when ρp = ρq = 1 and αp = αq = 0 we have b′′1p = b′′1q = 0. The equations for Y2,

Y3, Y4 are obtained by applying the reflections

(ξ, η, Y1, Y2, Y3, Y4) → (−ξ, η, Y2, Y1, Y4, Y3),

(ξ, η, Y1, Y2, Y3, Y4) → (−ξ,−η, Y3, Y4, Y1, Y2), (3.37)
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(ξ, η, Y1, Y2, Y3, Y4) → (−ξ, η, Y4, Y3, Y2, Y1).

to (3.34). The boundary conditions at η = ∓1/2 follow from (3.24)-(3.27) as

Y4 = Y1 +O(ε2), (3.38)

Y3 = Y2 +O(ε2), (3.39)

lvr(Y4η + Y1η) = ±ερp(ρ2
q − 1)[(e1 − e4))ρ2ξ

p |Y1|2 + (e2 − e3 − e5)ρ−2ξ
p |Y2|2]Y1 +O(ε2),

(3.40)

lvr(Y3η + Y2η) = ±ερp(ρ2
q − 1)[(e1 − e4))ρ−2ξ

p |Y2|2 + (e2 − e3 − e5)ρ2ξ
p |Y1|2]Y2 +O(ε2),

(3.41)

and analogously we find the following boundary conditions at ξ = ∓1/2,

Y2 =Y1 +O(ε2), (3.42)

Y3 =Y4 +O(ε2), (3.43)

Y2ξ + Y1ξ =±ερq(ρ2
p − 1)[(e1 − e2)ρ2η

q |Y1|2 + (e4 − e3 − e5)ρ−2η
q |Y4|2]Y1 +O(ε2), (3.44)

Y3ξ + Y4ξ =±ερq(ρ2
p − 1)[(e1 − e2)ρ−2η

q |Y4|2 + (e4 − e3 − e5)ρ2ξ
p |Y1|2]Y4 +O(ε2). (3.45)

We now expand the amplitudes Yj in powers of ε and introduce a ‘super-slow’ time scale

τ ,

Yj(ξ, η, T, τ) = Yj0(ξ, η, T, τ) + εYj1(ξ, η, T, τ), τ = εT, (3.46)

and expand the evolution equations for the Yj and the boundary conditions up to O(ε). At

O(1) equation (3.34) reduces to the first order wave equation,

Y10T − Y10ξ − lvrY10η = 0, (3.47)
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and at O(ε) we find

Y11T − Y11ξ − lvrY11η = −Y10τ + b′′1pY10ξ + lb′′1qY10η + dppY10ξξ + l2dqqY10ηη + 2ldpqY10ξη

+[λ+ e1ρ
2ξ+1
p ρ2η+1

q |Y10|2 + e2ρ
−2ξ+1
p ρ2η+1

q |Y20|2

+ e3ρ
−2ξ+1
p ρ−2η+1

q |Y30|2 + e4ρ
2ξ+1
p ρ−2η+1

q |Y40|2]Y10

+e5ρ
−2ξ+1
p ρ−2η+1

q Y20Y30Y40. (3.48)

The equations for Yj0 and Yj1 for j = 2, 3, 4 are obtained by applying the operations (3.37)

to (3.48). These equations are valid in the interior of the square −1/2 < ξ, η < 1/2.

Substituting (3.46) into (3.38)-(3.41) and (3.42)-(3.45) leads to the following boundary

conditions

Y10 − Y40 = Y20 − Y30 = 0 = Y11 − Y41 = Y21 − Y31, (3.49)

Y10η + Y40η = Y20η + Y30η = 0, (3.50)

lvr(Y11η + Y41η)=∓ρp(ρ2
q − 1)[(e1 − e4))ρ2ξ

p |Y10|2 + (e2 − e3 − e5)ρ−2ξ
p |Y20|2]Y10,(3.51)

lvr(Y21η + Y31η)=∓ρp(ρ2
q − 1)[(e1 − e4))ρ−2ξ

p |Y20|2 + (e2 − e3 − e5)ρ2ξ
p |Y30|2]Y20,(3.52)

at η = ±1/2, and

Y10 − Y20 = Y40 − Y30 = 0 = Y11 − Y21 = Y41 − Y31, (3.53)

Y10ξ + Y20ξ = Y40ξ + Y30ξ = 0, (3.54)

Y11ξ + Y21ξ = ∓ρp(ρ2
q − 1)[(e1 − e2)ρ2ξ

p |Y10|2 + (e4 − e3 − e5)ρ−2ξ
p |Y40|2]Y10, (3.55)

Y31ξ + Y41ξ = ∓ρp(ρ2
q − 1)[(e1 − e2)ρ−2ξ

p |Y40|2 + (e4 − e3 − e5)ρ2ξ
p |Y10|2]Y40, (3.56)

at ξ = ±1/2.
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Since the functions Yj0 satisfy homogeneous first order wave equations with respect

to the O(ε)-variables (ξ, η, T ), they depend on these variables through characteristic wave

variables

X± = T ± ξ, ; Y± = T ± η

lvr
, (3.57)

as

Y10(ξ, η, T, τ) = Z10(X+, Y+, τ),

Y20(ξ, η, T, τ) = Z20(X−, Y+, τ),

Y30(ξ, η, T, τ) = Z30(X−, Y−, τ),

Y40(ξ, η, T, τ) = Z40(X+, Y−, τ).

(3.58)

This can be used to rewrite (3.48) in the form

DY11 = −Z10τ + b′′1pZ10X+ + v−1
r b′′1qZ10Y+ + dppZ10X+X+ + v−2

r dqqZ10Y+Y+

+2v−1
r dpqZ10X+Y+

+[λ+ e1ρ
2ξ+1
p ρ2η+1

q |Z10(X+, Y+, τ)|2 + e2ρ
−2ξ+1
p ρ2η+1

q |Z20(X−, Y+, τ)|2

+ e3ρ
−2ξ+1
p ρ−2η+1

q |Z30(X−, Y−, τ)|2 + e4ρ
2ξ+1
p ρ−2η+1

q |Z40(X+, Y−, τ)|2]Z10

+e5ρ
−2ξ+1
p ρ−2η+1

q Z20(X−, Y+, τ)Z30(X−, Y−, τ)Z40(X+, Y−, τ), (3.59)

where D is the first order wave operator

D = ∂T − ∂ξ − lvr∂η.

An important consequence of the boundary conditions is that the leading order envelopes

are no longer independent. The boundary conditions (3.49) and (3.50) imply the relations

Z10(X+, Y+, τ) = Z20(X+ + 1, Y+, τ) = Z10(X+ + 2, Y+, τ), (3.60)

Z40(X+, Y−, τ) = Z30(X+ + 1, Y−, τ) = Z40(X+ + 2, Y−, τ), (3.61)
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and from (3.53) and (3.54) it follows that

Z10(X+, Y, τ) = Z40(X+, Y + 1/(lvr), τ) = Z10(X+, Y + 2/(lvr), τ), (3.62)

Z20(X−, Y, τ) = Z30(X−, Y + 1/(lvr), τ) = Z20(X−, Y + 2/(lvr), τ). (3.63)

We conclude that the leading order envelopes Zj0 are periodic of period 2 in the X-variable,

and of period 2/(lvr) in the Y -variable. Moreover, they are related to each other by shifts

of half a period in one or both of these variables.

3.7 Application of a Reflection Principle

The continuity of the boundary conditions enables us to apply a reflection principle to

extend the four coupled equations over −1/2 ≤ ξ, η ≤ 1/2 to a single equation valid in

−∞ ≤ ξ, η ≤ ∞. This is done by first reflecting at the boundaries,

wj(ξ, η, T, τ)=Y1j(ξ, η, T, τ) if −1/2 ≤ ξ ≤ 1/2, −1/2 ≤ η ≤ 1/2,

wj(ξ, η, T, τ)=Y2j(−1− ξ, η, T, τ) if −3/2 ≤ ξ ≤ −1/2, −1/2 ≤ η ≤ 1/2,

wj(ξ, η, T, τ)=Y3j(−1− ξ,−1− η, T, τ) if −3/2 ≤ ξ ≤ −1/2, −3/2 ≤ η ≤ −1/2,

wj(ξ, η, T, τ)=Y4j(ξ,−1− η, T, τ) if −1/2 ≤ ξ ≤ 1/2, −3/2 ≤ η ≤ −1/2,

(3.64)

and then extending periodically over R2,

wj(ξ + 2, η, T, τ) = wj(ξ, η + 2, T, τ) = wj(ξ + 2, η + 2, T, τ) = wj(ξ, η, T, τ). (3.65)

In this way the four equations for Yj0 and for Yj1 combine to single equations for the periodic

functions w0 and w1. With the wave operator D, these equations can be written as

Dw0 = 0, (3.66)

Dw1 = −w0τ + b′′1pw0ξ + lb′′1qw0η + dppw0ξξ + l2dqqw0ηη + 2ldpqw0ξη
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+[λ+ e1φ(ξ, η)|w0(ξ, η, T, τ)|2 + e2φ(−ξ, η)|w0(−1− ξ, η, T, τ)|2

+ e3φ(−ξ,−η)|w0(−1− ξ,−1− η, T, τ)|2

+ e4φ(ξ,−η)|w0(ξ,−1− η, T, τ)|2]w0

+e5φ(−ξ,−η)w0(−1− ξ, η, T, τ)w0(−1− ξ,−1− η, T, τ)w0(ξ,−1− η, T, τ),

(3.67)

where φ(ξ, η) is given by

φ(ξ, η) = ρ2ξ+1
p ρ2η+1

q in − 1/2 ≤ ξ, η ≤ 1/2,

and extended periodically with periods 1 in ξ and η over R2.

The equation (3.66) implies that w0 depends on (ξ, η, T ) through the wave variables

X ≡ X+ and Y ≡ Y+. Thus we write

w0(ξ, η, T, τ) = W (X,Y, τ),

w1(ξ, η, T, τ) = W1(X,Y, T, τ).
(3.68)

The function W is periodic in X and Y with periods 2 and 2P , respectively, where P =

1/(lvr). The equation for W1 follows from (3.67) and is given by

W1T = −Wτ + b′′1pWX + v−1
r b′′1qWY + dppWXX + v−2

r dqqWY Y + 2v−1
r dpqWXY

+
[
λ+ e1φ(ξ, η)|W (X,Y, τ)|2

+ e2φ(−ξ, η)|W (2T −X − 1, Y, τ)|2

+ e3φ(−ξ,−η)|W (2T −X − 1, 2T − Y − P, τ)|2 (3.69)

+ e4φ(ξ,−η)|W (X, 2T − Y − P, τ)|2
]
W

+e5φ(−ξ,−η)W (2T −X − 1, Y, τ)

×W (2T −X − 1, 2T − Y − P, τ)W (X, 2T − Y − P, τ),

where in the periodic function φ, ξ and η are replaced by ξ = X − T and η = (Y − T )/P .
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In order that this equation admits a bounded solution as T →∞, the average with respect

to T must vanish. This condition leads to the following evolution equation for W ,

Wτ = b′′1pWX + v−1
r b′′1qWY + dppWXX + v−2

r dqqWY Y + 2v−1
r dpqWXY

+
[
λ+ e1 < φ(ξ, η) > |W (X,Y, τ)|2

+ e2 < φ(−ξ, η)|W (2T −X − 1, Y, τ)|2 >

+ e3 < φ(−ξ,−η)|W (2T −X − 1, 2T − Y − P, τ)|2 > (3.70)

+ e4 < φ(ξ,−η)|W (X, 2T − Y − P, τ)|2 >
]
W

+e5 < φ(−ξ,−η)W (2T −X − 1, Y, τ)

×W (2T −X − 1, 2T − Y − P, τ)W (X, 2T − Y − P, τ) >,

with ξ = X − T and η = (Y − T )/P substituted in φ. In (3.70), the brackets denote an

average over T ,

< f(T ) >= lim
T→∞

1

T

∫ T

0
f(T ′) dT ′.

This equation, and the more explicit versions given below, are the main theoretical result

of this thesis.

Equation (3.70) is a nonlinear evolution equation for W with four global coupling terms

in the form of T -averages. These averages can be understood as follows. In the ‘short’ time

scale, when T = εt ∼ 1, the four wave-trains exhibit only linear propagation and reflections

at the walls. The propagation velocity is large (of the order ε−1) in the slower time scale

τ = ε2t ∼ 1. Thus, in the slower time scale each wave-train ‘sees’ the other travelling waves

very fast in the other oblique directions, and reflecting many times at the walls, meaning

that only a weighted, averaged effect is felt in this time scale. The weights are revealed in

the function φ and arise from the fact that the wave-trains are amplified if ρk < 1 (k = p or

q) or reduced if ρk > 1 as they travel, in order to compensate the instantaneous reduction

(if ρk < 1) or amplification (if ρk > 1) at the walls.

For given (X,Y ), (ξ, η) = (X − T, (Y − T )/P ) defines a trajectory in the (ξ, η)-plane.
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Since W , viewed as function of (ξ, η, T ), is periodic of periods 2 in both ξ and η, this

trajectory can be considered as trajectory on a 2-torus. When P = 1/(lvr) is irrational, a

single trajectory fills the torus densely, and the average becomes simply an average over the

fundamental domain. In this case the equation for W can be written more explicitly as

Wτ = b′′1pWX + v−1
r b′′1qWY + dppWXX + v−2

r dqqWY Y + 2v−1
r dpqWXY

+
[
λ+ e′1|W |2 + e′2

∫ 1/2

−1/2
ρ−2ξ′+1
p |W (X − 2ξ′ − 1, Y, τ)|2 dξ′

+ e3

∫ 1/2

−1/2

∫ 1/2

−1/2
ρ−2ξ′+1
p ρ−2η′+1

q |W (X − 2ξ′ − 1, Y − 2η′P − 1, τ)|2 dξ′dη′

+ e′4

∫ 1/2

−1/2
ρ−2η′+1
q |W (X,Y − 2η′P − 1, τ)|2 dη′

]
W

+e5

∫ 1/2

−1/2

∫ 1/2

−1/2
ρ−2ξ′+1
p ρ−2η′+1

q W (X − 2ξ′ − 1, Y, τ)

×W (X − 2ξ′ − 1, Y − 2η′P − 1, τ)W (X,Y − 2η′P − 1, τ) dξ′dη′, (3.71)

where

e′1 = e1

(ρ2
p − 1)(ρ2

q − 1)

4logρplogρq
, e′2 = e2

(ρ2
q − 1)

2logρq
, e′4 = e4

(ρ2
p − 1)

2logρp
.

Regarding the rational cases, we consider only the case of a 1 : 1-resonance, lvr = 1,

in some detail. Trajectories in this case will traverse all four primary sub-boxes Bj (Bj

denotes the box in which Yj0 is placed) and then close up. If we let θ = X − Y , then if

−1 < θ mod 2 < 0, a trajectory will traverse the boxes in the order B1 → B2 → B3 → B4.

If −2 < θ mod 2 < −1 it will traverse the boxes in the order B2 → B1 → B4 → B3. In

either case, the equation for W (X,Y, τ) is as follows,

Wτ = b′′1pWX + v−1
r b′′1qWY + dppWXX + v−2

r dqqWY Y + 2v−1
r dpqWXY + λW

+
1

2

∫ 1
2

− 3
2

{[
e1φ(z, z − θ)|W |2 + e2φ(−z, z − θ)|W (X − 2z − 1, Y, τ)|2

+ e3φ(−z,−z + θ)|W (X − 2z − 1,−Y + 2X − 2z − 1, τ)|2

+ e4φ(z,−z + θ)|W (X,−Y + 2X − 2z − 1, τ)|2
]
W (3.72)

+ e5φ(−z,−z + θ)W (X − 2z − 1, Y, τ)
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×W (X − 2z − 1,−Y + 2X − 2z − 1, τ)W (X,−Y + 2X − 2z − 1, τ)
}

dz,

but the function φ has to be evaluated differently for the two cases.
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4 Neural Activation-Inhibition Model

In this section we apply the methods of Section 3 to a reaction-diffusion model that has been

introduced and studied by Dangelmayr and Oprea [21] and extends a neural Activation-

Inhibition model introduced by Murray [44]. The model of [21] contains fourth order diffu-

sion terms which require an extension of some of the formulae defined in Section 3.

The original model given by Murray is used to describe the light and dark patterns in

mollusk shells which emerge through intermittent deposition. It is assumed that the color

of secretion is determined by activation via sensing the coloring of the existing color at the

deposition edge and accumulation of inhibitory material existing in the secretory cell. The

difference between the activation and inhibition inputs from surrounding cells determines

the net neural stimulation for that cell. Hence, the pattern evolves based on the existing

pattern and additional chemical conditions in the mollusk.

We briefly describe Murray’s model which is given by the following equations,

∂P

∂t
= S(M0P )− P −Q− d0

∂2P

∂x2
− d1

∂4P

∂x4
,

∂Q

∂t
= dP − eQ,

where P (x, t) and Q(x, t) are amounts of activation and inhibition substances provided

by 1D arrays of cells (cell position x), and d, e > 0. The neural activation mechanism is

described by a sigmoid function S(M0P ) that depends on a parameter M0 controlling its

steepness. Lateral activation and inhibition are described by the two diffusion terms in the

P -equation. Since both coefficients, d0 and d1, are assumed positive, the first diffusion term

is destabilizing and the second is stabilizing.

The sigmoid form assumed for S(M0P ) implies that the equations for P , Q have a unique

spatially and temporally uniform solution (P ∗, Q∗), given by Q∗ = dP ∗/e and S(M0P
∗) =

(1 + d/e)P ∗. Using incremental variables P = P ∗ + u1, Q = Q∗ + u2, expanding S(M0P )
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in a Taylor series about P ∗, and truncating the series at third order gives

∂u1

∂t
= Ru1 − u2 + bu2

1 − cu3
1 − d0u1xx − d1u1xxxx,

∂u2

∂t
= du1 − eu2,

with coefficients R, b, c > 0 depending on S and its derivatives. The parameter R is related

to the steepness of the sigmoid function and is treated as the main bifurcation parameter.

In [21] the following 2D extension of the u = (u1, u2)T system has been introduced,

∂tu =

 Ru1 − u2 + bu2
1 − cu3

1 − u1xx − u1yy − 1
2d1u1xxxx − d2u1xxyy − 1

2d3u1yyyy

du1 − eu2 − (c1 − 1)u2xx − (c2 − 1)u2yy

 ,
(4.1)

which includes fourth order diffusion terms in u1 and second order diffusion terms in u2,

with a scaling of (x, y) such that the second order diffusion terms of u1 are scaled to unity.

To have a globally stable situation the dj must satisfy d1 > 0 and d1d3 − d2
2 > 0. The

diffusion terms in u2 are allowed to be stabilizing (cj < 1) or destabilizing (cj > 1).

A generalized form of (4.1) posed in our rectangle is

∂u

∂t
= D(−∂2

x,−∂2
y)u+ f(u,R) in − Lp/2 < x < Lp/2,−Lq/2 < y < Lq/2, (4.2)

with the diffusion operator

D(−∂2
x,−∂2

y) = −Dp∂
2
x −Dq∂

2
y −

1

2
D2p∂

4
x −Dpq∂

2
x∂

2
y −

1

2
D2q∂

4
y , (4.3)

where Dp, Dq, D2p, Dpq and D2q are diagonal matrices. The fourth order terms in (4.2)

require us to impose two sets of boundary conditions at each edge,

Cp1u± Ep1ux = 0 at ±Lp/2 (4.4)

Cp2uxx ± Ep2uxxx = 0 at ±Lp/2 (4.5)

Cq1u± Eq1uy = 0 at ±Lq/2 (4.6)
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Cq2uyy ± Eq2uyyy = 0 at ±Lq/2. (4.7)

Note that for the model (4.1), the boundary conditions (4.5) and (4.7) must not involve u2,

that is, only the (1,1) components of Cp2, Ep2, Cq2 and Eq2 are allowed to be nonzero. For

the specific model (4.1), f and the diffusion matrices are given by

f(u,R) =

 Ru1 − u2 + bu2
1 − cu3

1

du1 − eu2

 , (4.8)

Dp =

 1 0

0 (c1 − 1)

 , Dq =

 1 0

0 (c2 − 1)

 ,

D2p =

 d1 0

0 0

 , Dpq =

 d2 0

0 0

 , D2q =

 d3 0

0 0

 .
The stability of u = 0 is determined by considering the linearized system

[F (R)−Dp∂
2
x −Dq∂

2
y −

1

2
D2p∂

4
x −Dpq∂

2
x∂

2
y −

1

2
D2q∂

4
y ]u = ut. (4.9)

with

F (R) = fu(0, R) =

R −1

d −e


for (4.1). Using the usual ansatz u = U exp(ipx+iqy+σt) and solving the related eigenvalue

problem for the minimum R to produce a purely imaginary σ gives the values at the Hopf

bifurcation. The general eigenvalue problem is

[F (R) + p2Dp + q2Dq −
p4

2
D2p − p2q2Dpq −

q4

2
D2q]U = σU. (4.10)
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which in the case of (4.1) becomes

 Ru1 − u2 + p2u1 + q2u1 − d1
p4

2 u1 − d2p
2q2u1 − d3

q4

2 u1

du1 − eu2 + (c1 − 1)p2u2 + (c2 − 1)q2u2

 = σu. (4.11)

To find (p2
c , q

2
c , Rc) from (4.11) we consider the matrix

K(p2, q2, R) =

R+ p2 + q2 − d1
p4

2 − d2p
2q2 − d3

q4

2 −1

d −e+ (c1 − 1)p2 + (c2 − 1)q2

 .
(4.12)

The matrix K has an imaginary eigenvalue if TrK = 0 and detK > 0. The condition

TrK = 0 can be solved for R leading to

Rc(p
2, q2) = e− c1p

2 − c2q
2 +

1

2
d1p

4 + d2p
2q2 +

1

2
d3q

4.

It is easy to see that if d3c1 − d2c2 > 0 and d1c2 − d2c1 > 0, the surface Rc(p
2, q2) has a

unique minimum Rc at (p2
c , q

2
c ), given by [21]

(p2
c , q

2
c ) =

1

d1d3 − d2
2

(d3c1 − d2c2, d1c2 − d2c1) (4.13)

Rc = e− d1c
2
2 + d3c

2
1 − 2d2c1c2

2(d1d3 − d2
2)

. (4.14)

Letting

E = e− (c1 − 1)(d3c1 − d2c2) + (c2 − 1)(d1c2 − d2c1)

d1d3 − d2
2

and ω2 = d− E2

and assuming d > E2, the matrix K(pc, qc, Rc) simplifies to

K(p2
c , q

2
c , Rc) =

 E −1

E2 + ω2 −E

 (4.15)
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and has eigenvalues ±iω and left and right eigenvectors

U0 =

 1

E − iω

 , U
∗T
0 =

1

2ω
(ω − iE, i).

Exploiting the fact that K(p2, q2, R) is a 2×2 matrix we have σr =TrK and σi =(detK −

(TrK)2/4)1/2. This allows us to find the critical wave velocities from the p− pc and q − qc

coefficients of σi, and the diffusion terms from the second order coefficients of σ,

vp = 2pcE(c1 − 1)/ω,

vq = 2qcE(c2 − 1)/ω,

dpp = d1p
2
c +

i

ω
[
2dp2

c(c1 − 1)2

ω2
− E(d1p

2
c + c1 − 1)],

dpq = d2pcqc +
ipcqc
ω

[
2d(c1 − 1)(c2 − 1)

ω2
− Ed2],

dqq = d3q
2
c +

i

ω
[
2dq2

c (c2 − 1)2

ω2
− E(d3q

2
c + c2 − 1)].

We next consider the bulk solution for the general system (4.1). The expansion is

the same as in Section 3, and the expansion vectors satisfy the same hierarchy of linear

equations, except that the matrix T is now

T (p2, q2,Ω) = F1 + p2Dp + q2Dq − p4 1

2
D2p − p2q2Dpq − q4 1

2
D2q − iΩI,

and the vectors on the right hand sides involving the diffusion matrices have to be extended

by the additional diffusion matrices. We list only those equations that have been modified,

which are

T (p2
c , q

2
c , ω)U1p = (−2pcDp + 2p3

cD2p + 2pcq
2
cDpq + ivpI)U0

T (p2
c , q

2
c , ω)U1q = (−2qcDq + 2p2

cqcDpq + 2q3
cD2q + ivqI)U0

T (p2
c , q

2
c , ω)U2pp = (−2pcDp + 2p3

cD2p + 2pcq
2
cDpq + ivpI)U1p

+(−Dp + 3p2
cD2p + q2

cDpq − dppI)U0
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T (p2
c , q

2
c , ω)U2pq = (−2pcDp + 2p3

cD2p + 2pcq
2
cDpq + ivpI)U1q/2

+(−2qcDq + 2p2
cqcDpq + 2q3

cD2q + ivqI)U1p/2

+(2pcqcDpq − dpqI)U0

T (p2
c , q

2
c , ω)U2qq = (−2qcDq + 2p2

cqcDpq + 2q3
cD2q + ivqI)U1q

+(−Dq + p2
cDpq + 3q2

cD2q − dqqI)U0

T (p2
c , q

2
c , ω)U4p = (−2pcDp + 2p3

cD2p + 2pcq
2
cDpq + ivpI)U3 + (a0I − F2)U1p + ib1pU0

T (p2
c , q

2
c , ω)U4q = (−2qcDq + 2p2

cqcDpq + 2q3
cD2q + ivqI)U3 + (a0I − F2)U1q + ib1qU0.

For (4.1) the operators occurring in the hierarchy have the simple forms

F1 =

Rc −1

d −e

 , F2 =

1 0

0 0

 , F3 = 0,

B(uj , uk) =

bu1ju1k

0

 , C(uj , uk, ul) =

−cu1ju1ku1l

0

 .
The coefficients for the Ginzburg Landau equations also have the same form as in Section

3, except for modifications coming from the additional diffusion terms. We again list only

those coefficients which are modified,

vp = iU0
∗T

(−2pcDp + 2p3
cD2p + 2pcq

2
cDpq)U0

dpp = U
∗T
0 (−2pcDp + 2p3

cD2p + 2pcq
2
cDpq + ivpI)U1p + U

∗T
0 (−Dp + 3p2

cD2p + q2
cDpq)U0

dpq = U
∗T
0 (−2pcDp + 2p3

cD2p + 2pcq
2
cDpq + ivpI)U1q/2

+U
∗T
0 (−2qcDq + 2p2

cqcDpq + 2q3
cD2q + ivqI)U1p/2 + 2pcqcU

∗T
0 DpqU0

b1p = iU
∗T
0 (−2pcDp + 2p3

cD2p + 2pcq
2
cDpq + ivpI)U3 + iU

∗T
0 (a0I − F2)U1p

The parameters vq, dqq and b1q can be found through the symmetry operation p↔ q.

It is straightforward to find explicit expressions for the coefficients in the Aj equations

for the model system (4.1). The linear coefficients have already been computed from the
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eigenvalue σ. To obtain the nonlinear coefficients we need to find U6, U7, W11 −W13 and

W21 −W23. Since

B(U0, U0) = B(U0, U0) =

b
0

 , C(U0, U0, U0) =

−c
0

 ,
these are all of the form

Wk =
−2b

det T (p2, q2,Ω)

T22(p2, q2,Ω)

d

 ,

where T22(p2, q2,Ω) is the (2,2) entry in the T (p2, q2,Ω) matrix. Using these vectors, U0

and U∗0 in the general formulae for e1 − e5 we get

e1 = (1− iE

ω
)(

2eb2

d− eRc
− b2T22(4p2

c , 4q
2
c , 2ω)

det T (4p2
c , 4q

2
c , 2ω)

− 3

2
c)

e2 = (1− iE

ω
)(

2eb2

d− eRc
− 2b2T22(4p2

c , 0, 0)

det T (4p2
c , 0, 0)

− 2b2T22(0, 4q2
c , 2ω)

det T (0, 4q2
c , 2ω)

− 3c)

e3 = (1− iE

ω
)(

2eb2

d− eRc
− 2b2T22(4p2

c , 4q
2
c , 0)

det T (4p2
c , 4q

2
c , 0)

− 2b2T22(0, 0, 2ω)

det T (0, 0, 2ω)
− 3c)

e4 = (1− iE

ω
)(

2eb2

d− eRc
− 2b2T22(0, 4q2

c , 0)

det T (0, 4q2
c , 0)

− 2b2T22(4p2
c , 0, 2ω)

det T (4p2
c , 0, 2ω)

− 3c)

e5 = (1− iE

ω
)(−2b2T22(4p2

c , 0, 0)

det T (4p2
c , 0, 0)

− 2b2T22(0, 4q2
c , 0)

det T (0, 4q2
c , 0)

− 2b2T22(0, 0, 2ω)

det T (0, 0, 2ω)
− 3c).

For the specific values of the fourth order diffusion parameters

d1 = 22.3862, d2 = 13.0021, d3 = 20.6642,

and c = 1 and e = 1.5, and varying the parameters b, d, c1 and c2 as below we obtain

numerical values for the corresponding Ginzburg Landau coefficients in Table 1. Note that

the parameter set L3 has c1, c2 < 1 as stabilizing parameters which implies vp, vq < 0.

We now consider the boundary layer expansion for the general problem (4.2), (4.4)-(4.7)
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L1 L2 L3 L4

b 0.1729 0.1500 0.1650 0.2
d 2.4144 2.4 2.3 2.6
c1 1.2 1.5 0.8 1.5
c2 1.3 1.1 0.6 1.5

Rc 1.4540 1.4477 1.4850 1.4347
pc 0.1640 0.2385 0.1725 0.1979
qc 0.2145 0.1321 0.1016 0.2190
ω 0.4707 0.4895 0.1402 0.6919
vp 0.2064 0.7160 -0.7428 0.4165
vq 0.4048 0.0793 -0.8752 0.4609
dpp 0.6020-2.4734i 1.2731-4.7422i 0.6658-3.0314i 0.8765-2.7438i
dpq 0.4573-1.3408i .4096-1.1653i 0.2278-.1153i 0.5634-1.0158i
dqq 0.9503-3.8484i .3605-1.2043i 0.2133+2.6990i 0.9909-2.9501i
e1 -1.2875+3.1314i -1.2632+3.3814i -2.4793-2.4121i -1.3598+2.4312i
e2 -3.2190+7.5421i -2.9067+8.1088i -5.1571+23.9691i -2.9103+5.4716i
e3 -2.9585+8.2732i -2.9377+8.1548i -93.5446+90.5574i -2.9124+5.6948i
e4 -2.9356+8.0792i -3.0271+6.6482i -2.9140+7.8088i -2.9009+5.5444i
e5 -2.9761+8.3283i -2.8958+8.0288i -2.9064+8.1372i -2.9573+5.7893i

Table 1: Calculated amplitude equation parameters for the Activator-Inhibitor model

at y ∼ −Lq/2,

ut = (−Dp∂
2
x −Dq∂

2
ỹ − 1

2D2p∂
4
x −Dpq∂

2
x∂

2
ỹ − 1

2D2q∂
4
ỹ)u+ f(u, µ),

Cq1u− Eq1uỹ = 0 at ỹ = 0,

Cq2uỹỹ − Eq2uỹỹỹ = 0 at ỹ = 0,

u → ubulk for ỹ →∞.
(4.16)

Using the edge ansatz from Section 3 we get the following ODE for U0,

(−Dq + p2
cDpq)U0

ỹỹ −
1

2
D2qU0

ỹỹỹỹ + (p2
cDp −

p4
c

2
D2p + F1 − iωI)U0 = 0. (4.17)

The roots of the characteristic polynomial are found from

det[(−Dq + p2
cDpq)λ

2 − 1

2
D2qλ

4 + (p2
cDp −

p4
c

2
D2p + F1 − iωI)] = 0. (4.18)
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If D2q is of full rank there will be 4N roots of this polynomial. In the case of (4.1), D2q

has only a single nonzero entry in the (1,1) entry leaving 6 roots coming in three pairs, one

pair will be ±iqc and the two other pairs, ±λq1,±λq2, have Reλqj > 0, thus only the roots

with the negative sign can be used leaving

U0(ỹ) = U0(eiqcỹ + rqe
−iqcỹ) + rq1V

0
q1e
−λq1ỹ + rq2V

0
q2e
−λq2ỹ, (4.19)

where V 0
q1 and V 0

q2 are the eigenvectors corresponding to the eigenvalues −λq1 and −λq2.

We then apply the boundary conditions to solve for the boundary parameter rq. Letting

Cq = I2, Cq2 =

1 0

0 0

 , Eq =

β1 0

0 β2

 , Eq2 =

β3 0

0 0

 ,
gives us three equations for rq, rq1 and rq2. Denoting the eigenvectors by Vq1 = [v1, w1]T ,

Vq2 = [v2, w2]T the equations to be solved are

(1− β1iqc + rq(1 + β1iqc))u1c + (1 + β1λq1)rq1v1 + (1 + β1λq2)rq2v2 =0

(1− β2iqc + rq(1 + β2iqc))u2c + (1 + β2λq1)rq1w1 + (1 + β2λq2)rq2w2 =0

−q2
c (1− β3iqc + rq(1 + β3iqc))u1c + λ2

q1(1 + β3λq1)rq1v1 + λ2
q2(1 + β3λq2)rq2v2 =0

In the general case, if D2q is of full rank, this system becomes a system of 4N equations.

Considering the parameter set L4 above, the three eigenvalue and eigenvector pairs are

±qci = ±0.2190i, U0 =

 1

1.4564− 0.6919i

 ,

−λq1 = −1.9883 + 0.0912i, Vq1 =

 1

1.4448− 0.6507i

 ,
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β1 1 1 -0.5 0.25
β2 1 -1 -1.3 5.3
β3 1 1 -1.1 4.83

rq -0.9085+0.4179i -0.5701-0.3743i -0.8824+0.4807i 0.0594+0.9943i

.

Table 2: Values of rq using parameter set L4 for four values of βj

−λq2 = −0.3805 + 1.7710i, Vq2 =

 1

−70.7820− 83.3390i

 .
For the case of β1 = β2 = β3 = 0 the reflection coefficient is rq = −1. Some values of rq for

L4 have been calculated for various values βj 6= 0 and are given in Table 2.

The hierarchy of differential equations for the functions U j(ỹ) in the general case coin-

cides with the equations from Section 3, except that the differential operator is now

T̃ (p2,Ω) = F1 + p2Dp −Dq∂
2
ỹ − p4 1

2
D2p + p2Dpq∂

2
ỹ −

1

2
D2q∂

4
ỹ − iΩI

and the right hand sides involving diffusion matrices have to be extended again. We list

only the modified equations, which are

T̃ (p2
c , ω)U1 = (−2pcDp − 2pcDpq∂

2
ỹ + 4

p3
c

2
D2p)U0

T̃ (p2
c , ω)U2 = (−2pcDp − 2pcDpq∂

2
ỹ + 4

p3
c

2
D2p)U1 + (−Dp −Dpq∂

2
ỹ + 6

p2
c

2
D2p)U0

T̃ (p2
c , ω)U4 = (−2pcDp − 2pcDpq∂

2
ỹ + 4

p3
c

2
D2p)U3 − F2U1.

This leads to the persistent parts of the edge expansion as stated in the general case with

lower order diffusion, and the analysis can proceed as described in that section leading to

the boundary conditions for the envelopes.
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5 Simulations

To demonstrate the pattern dynamics provided by the non-local evolution equation for the

doubly periodic function W (X,Y, τ), we construct visualizations of the patterns resulting

form the simulation for the generic irrational case of lvr /∈ Q. For practical reasons we also

require that Lp, Lq, pc and qc are such that the basic wavelength is at least two grid lengths

in each direction and that αp = αq = 0. In addition we consider b′′1p = b′′1q = 0 and for the

visualization we assume a = 0 in the rescaling of Aj to Yj .

The method used to simulate the equation is based on the pseudo-spectral method,

where one exploits the one-to-one nature of the function values at a finite number of grid

points and a finite Fourier series. This correspondence allows us to calculate the derivatives

in Fourier space, while calculating the local and averaged terms in wave-variable, (X,Y ),

space through the use of fast Fourier transforms. The solutions are calculated in Fourier

space using Matlab’s routine ODE45, a fourth order Runge-Kutta method with variable

step size.

The use of a spectral method is warranted by the fact that the function to be computed

is two-periodic, and spatial derivatives are turned into scalar multiplication of the Fourier

coefficients. If M2 Fourier modes are used, we start by introducing an M ×M random,

complex matrix as initial condition in wave-variable space for the system. Since ODE45

works on vectors, we must convert the grid point values into Fourier modes through a

two-dimensional FFT, and then vectorize the matrix before we input it into the Matlab

solver. This is done by taking each column and adjoining it to the bottom of a growing

column vector V ((k − 1)M + 1 : kM) = u(:, k) (using Matlab notation). The intermediate

calculations for each step are done by reconstituting the M ×M matrix. The input Fourier

mode matrix is used to calculate the derivatives via scalar multiplication. The computation

of the local terms and the averaging terms is done in physical space by taking the Fourier

mode matrix and calculating a two-dimensional inverse fast Fourier transform. In (X,Y )

space the local term is simply a scalar multiplication at the grid points, while the averaged

terms are sums over the appropriate dimensions of the matrix divided by the total lengths.
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The average over the X-dimension is a sum across the rows, and the average over the Y-

dimension is a sum across the columns, with each of them divided by M/2. These vectors

are then turned back into M × M matrices by adjoining each vector with itself in the

appropriate way, and then using scalar multiplication to create the corresponding matrix

in (X,Y ) space. The overall average term is the sum of the entire matrix divided by M2/4,

and consists of a single number which multiplies the matrix values. The final average can be

turned into matrix multiplication as u∗uTu/(M2/4) which simplifies the calculation. These

terms in (X,Y ) space are then summed and transformed back into Fourier space and added

to the derivative terms, vectorized, and then fed into the ODE45 solver for the next step. A

final two-dimensional inverse Fourier transform captures the solution at the grid points in

wave-variable space for visualization. To build the visualization we translate our solution in

wave-variable space to the solution in the slow space variables, W (X,Y, τ)→ w0(ξ, η, T, τ),

and then split w0 into the four O(1) envelopes Yj0 which are then scaled to the approximate

Aj and thus reconstruct the resultant pattern.

In the first subsection we focus our simulations on comparing the bounded case with the

infinite extent case, so we begin by simulating parameter regimes that have been explored

in the infinite case to compare the resulting solutions. We assume perfectly reflecting

boundary conditions, ρp = ρq = 1, for these simulations and consider no phase change at

the boundary, αj = 0, representing a reflection off of a free boundary.

In the next subsection we explore the effects of ρk 6= 1 which represent energy injection

or absorption at the boundary. We explore several sets of parameter values and allow the

reflection parameter to vary between 0.1 ≤ ρk ≤ 2 and observe the changes in the resulting

pattern.

For all simulations in this paper we set

Lp = 57, Lq = 53, pc = 0.75, qc = 0.8, ω = 1.1, M = 32.
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5.1 Effects of the Bounded Domain: ρp = ρq = 1

We begin by considering the case of perfect reflection at the boundaries. Perfectly reflecting

boundaries cause the critical value of the control parameter to be unchanged. For all

explored parameter values the basic pattern is a standing (pulsating) rectangle (SR) pattern

that is stable at the stability threshold. This pattern has |W | constant in time and space

and a Fourier spectrum consisting of a dominant constant mode (mode number (17,17) in

our Fourier mode plots). As λ increases, SR becomes unstable and the resulting patterns

are determined by the specific parameters for the Ginzburg-Landau equation. The Fourier

modes are listed as (Y -mode,X-mode).

First, a set of parameters is studied for which the differential equations for the Aj ,

obtained by ignoring spatial variations in the envelope equations (the ‘normal form’), shows

a period doubling sequence to chaos [21],

(e1, e2, Im(e3), e4, e5) =

(−1− 1.1806i,−0.923− 0.5538i, 1.3613,−0.2223− 3.3025i,−0.4647− 0.2472i),

(dpp, dpq, dqq, vr) = (1 + 0.0108i, 0.4364 + 0.0149i, 1 + 0.0276i, 1.13),

and Re(e3) is varied. The period doubling route to chaos in the normal form occurs as

Re(e3) goes from −0.641 to −0.644. For the W -equation, a period doubling route to chaos

was not specifically observed in the simulations run for this thesis. This may be because the

proper values of λ have not been found, or the nature of the coupling at the boundaries has

precluded the period doubling sequence from occurring. However, for this set of parameters

and Re(e3) = −0.6422 (referred to as PD) the system is sensitive to the values in the initial

random matrix. While all patterns described below occurred in all simulations of PD, the

transition from the TR-crash to the V-stripe pattern (described below), and the loss of

stability of the V-stripe pattern occur at different values of λ depending on the specific run.

This may constitute chaotic solutions predicted by the infinite extent case with a shift in
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Figure 2: Plot of main modes of PD (averaged over 7 ≤ τ ≤ 8) for 1 ≤ λ ≤ 30

parameter values due to the finite domain, or may be some other, not yet discovered, cause.

This is an avenue for further study, but is beyond the scope of this thesis. One random

matrix was used to generate the wave-pattern graphs in this subsection (labeled PD*) and

another was used to generate Figure 2 and form the basis of the discussions.

The SR pattern is stable up to λ = 10. For all values of the rescaled driving parameter

λ ≤ 10, |W | and |Aj | are constant in space and time. This can be seen in the Fourier

spectrum of the W solution at λ = 10, which has nearly all of its energy in the constant

mode as can be seen in Figure 2.

The first instability of the SR pattern occurs at λ = 11 and leads to a cycle in which

the standing rectangle develops a ‘wobble’ that grows until a short period of a horizontal

travelling rectangle (TR) pattern is observed. This then decays through the wobble state

back to the standing rectangle as seen in Figure 3. The wobble is created when the am-

plitudes have their minima at alternating sides of the cell, and the travelling rectangle is

caused by (A2, A3) having minima at locations where (A1, A4) have maxima and vice versa.

62



(a)

(b)

Figure 3: Wobble-TR pattern (left) and |Aj | (right) for PD* with λ = 11 at (a) τ = 3.5219
and (b) τ = 3.5296

Then the variations of the amplitudes decay until they are nearly identical leading back to

the standing rectangles. The directions of the horizontal travelling wave state do not show

a pattern from one cycle to the next but waves travelling in both directions are observed.

The |W | solution is uniform in the Y -direction, however in the X-direction it shows a time

varying oscillation around the average value of 0.41. In this oscillation, minima occur in the

center when the maxima are at the boundaries and vice versa, and oscillate between values

of 0.39 to 0.43 with a period of τ = 1.44. The Fourier spectrum of this case still has most

of its energy in the constant mode, but the (17,16) and (17,18) modes begin to show slight

gains in energy as can be seen in Figure 2.

For 12 ≤ λ ≤ 15 the pattern shows a splitting of the domain into left and right parts.
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(a)

(b)

Figure 4: TR-crash pattern (left) and |Aj | (right) for PD* at λ = 12 for (a) τ = 3.302 and
(b) τ = 3.304.

In each, opposing travelling rectangle patterns occur that alternate directions, first moving

towards the vertical center axis, and then away from it (referred to as TR-crash) as seen

in Figure 4. There are periods where all four amplitudes have minima in the middle and

maxima near the boundaries leading to standing rectangles that simply decay, spatially,

towards the y-axis in the center. At other points in the cycle, (A2, A3) have maxima when

(A1, A4) have minima on one side leading to right travelling rectangles on that side while

the situation is reversed on the other side leading to left travelling waves on that side. In

these periods one observes, alternatively, travelling rectangles colliding in the center of the

cell or travelling rectangles emerging from the center of the cell. The |W | solution is, again,

uniform in the Y direction, however, it presents a travelling sine wave in the X direction
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with two spatial periods over the domain. The spectrum for the W solution of PD on the

range of 12 ≤ λ ≤ 15 has most of its energy in the (17,16) and (17,18) modes at equivalent

magnitudes. In this region the constant mode rapidly decreases as seen in Figure 2.

For 16 ≤ λ ≤ 18 the (17,16) mode decreases while the (18,16) mode increases leading

to a pattern that is a slight variation of SR, where there is some motion of the rectangles

around the cell during minima-maxima exchanges of the standing rectangles. It is during

this transition that the |W | solution changes from being uniform in the Y -direction to

having oblique rolls, creating the next pattern.

For 19 ≤ λ ≤ 24 the pattern shows symmetry across the y-axis but begins to show

motion in the vertical direction leading to alternating V-stripe patterns of diagonal waves

in each half plane as seen in Figure 5. These are interspersed with brief phases where the

SR pattern can be observed. The V-stripe can be seen when maxima for (A1, A3) coincide

with minima for (A2, A4) leading to a region of oblique standing waves. The corresponding

oblique standing waves can be seen when (A2, A4) have maxima in the same region where

minima for (A1, A3) occur. The solution |W | has a slow travelling periodic component as in

the TR-crash case, however it is now consisting of an oblique roll. In this region the (17,18)

and the (18,16) modes dominate with the former shrinking and the latter growing, as can

be seen in Figure 2. Above λ = 25 the patterns become increasingly complex with many

modes with non-trivial magnitudes. For PD*, the V-stripe pattern was stable past λ = 37

and the |W | solution showed a spatially and temporally periodic wave in the Y direction

leading to the X-oscillations developing an undulation. For PD* at λ = 37 the Fourier

spectrum is noticeably variable in time with the constant mode oscillating between zero

and 180 and smaller oscillations noticed in other modes. The maximum peaks, averaged

over 7 ≤ τ ≤ 8, occurring in the (17,16) mode with a magnitude of 1400, and the (17,18)

mode with a magnitude of 1300, then the (17,14), (18,16), (18,18), (17,20) modes are all

over 200.

For the next set of parameters considered in this thesis, referred to as CAW, chaotic
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(a)

(b)

(c)

Figure 5: V-stripe pattern (left) and |Aj | (right) for PD* at λ = 37 for (a) τ = 3.8454, (b)
τ = 3.8563, (c) τ = 3.8618.
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Figure 6: Plot of main modes of CAW (averaged over 7 ≤ τ ≤ 8) for 1 ≤ λ ≤ 30

alternating waves are observed in the unbounded systems [47]. The parameters are

(e1, e2, e3, e4, e5) =

(−1− 0.7048i,−1.1805− 1.2256i,−1.0579− 1.9018i, 1.1001− 1.4069i,−1.9091− 1.4926i),

(dpp, dpq, dqq, vr) = (0.9347− 1.1142i, 0.2071− 0.4659i, 0.3437− 0.1956i, 1.13).

One interesting aspect of this set is that e4 has a positive real part making it a destabilizing

parameter. For this set of parameters the solution shows a mirror symmetry across the two

axes where a minimum rotates in each quadrant of the main state giving rise to alternating

diamond and ‘X’ patterns (DX) as in Figure 7. The dominant modes of the Fourier spectrum

of CAW over 1 ≤ λ ≤ 30 are displayed in Figure 6. The figure shows that the constant

mode is dominant through λ = 9 and for 10 ≤ λ ≤ 25 the (16,18) and (18,16) modes are

dominant leading to stationary oblique rolls with two periods in the |W | solution over this

range. For λ ≥ 26, the patterns are highly complex and difficult to categorize while the

Fourier spectrum shows several significant peaks indicating a complex pattern for W .

The composition of the DX pattern through the amplitudes is similar to that of the V-
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(a)

(b)

(c)

Figure 7: DX pattern (left) and |Aj | (right) for CAW at λ = 11 for (a) τ = 3.2895, (b)
τ = 3.3936 , (c) τ = 3.4539.
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E I Et EU

e1 -1+i -1+0.54i -1+i -1+i
e2 -2.5-1.1i -2.5-1.1i -1.1-1.1i -2.5-1.1i
e3 -3.4-2i -3.4-2i -2.4-2i -3.4-2i
e4 -5.7-i -5.7-i -5-i -5.7-i
e5 -3.5-0.5i -3.5-0.5i -3.5-0.5i -3.5-0.5i
dpp 1+0.2i 0.9-4i 1-0.2i 0.9-i
dpq 0.2+0.03i 0.6-3i 0.8-0.3i 0.2-0.02i
dqq 0.15+0.03i 1.6-7i 0.9-0.3i 1.2+2i

Table 3: Parameter sets from [21]

stripe pattern in that there are regions with alternating maxima and minima of (A1, A3) and

(A2, A4) leading to standing waves. The primary difference between the V-stripe pattern

and the DX pattern is the presence of four regions of standing waves in the main cell instead

of two.

Lastly we study four parameter sets considered in [21]. For all four parameter sets,

travelling waves are stable normal form solutions, but in the setting of the infinite extent

amplitude equations they show different types of instabilities. The parameter values are

given in Table 3 and are referred to as E, I, Et and EU corresponding to the instabilities

observed in [21]. The parameters dppr and dqqr are here not rescaled to 1 which then implies

that the rescaled group velocities simplify to vr = vq/vp. For these simulations, vp = 1.16

and vq = 0.87.

For I and EU we see similar behavior, although at different values of λ. As λ is increased,

the initial instability in both cases is the V-stripe pattern which then degrades to spatially

and temporally complex patterns.

For E and Et the initial, categorizable, instability shows the DX pattern. For set E,

the SR pattern is stable until λ = 9 where the pattern is highly complex. The DX pattern

then emerges and is stable over 10 ≤ λ ≤ 38. The |W | solution is similar to CAW over its

DX λ regime.

While we did not see stable travelling waves in any of the simulations described in this

subsection, we did observe phases of travelling rectangles in parts of the domain for certain
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Figure 8: Plot of main modes of E (averaged over 7 ≤ τ ≤ 8) for 1 ≤ λ ≤ 40

values of the parameters. To see what happens to travelling waves, an initial condition in

the form of a travelling wave was entered for the parameter set above, but in the long run

the persistent pattern was unaffected. This can be explained by the perfect reflections at

the boundaries translating, for example, an A1 wave into an A4 wave at the y = −Lq/2

boundary. Since these travelling waves have wavefronts in oblique directions the pattern

resulting from this interaction is a travelling rectangle in the −x direction. Consequently,

any travelling wave pattern is likely to decay to travelling rectangles which, for small driving,

turn into the predominant standing rectangles. The Fourier spectra show a preference for

the constant mode for small λ confirming that the standing rectangles are stable for small

driving. The modes that appear as λ increases depend upon the specific parameters of

the system leading to different behaviors once the standing rectangles become unstable.

Increasing λ activates more Fourier modes and causes time varying spectra leading to more

complex wave patterns.

5.2 Effects of the Bounded Domain: ρp, ρq 6= 1

In this subsection we explore the role of the parameters ρp and ρq. We consider the case

of ρp = ρq = ρk and study two parameter sets that show distinct patterns in the perfectly
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reflecting case. First, the PD set for the wobble-TR state at λ = 11, then for a random

matrix that shows the V-stripe state at λ = 37. Secondly, the E set for the DX state at

λ = 15. In each case we vary ρk over the range of 0.1 ≤ ρk ≤ 2 in increments of 0.1.

The action of the boundary parameters ρp and ρq affect the solution of the W equation

by scaling the averages. If ρk < 1 the averages become smaller, thus, when Re(ej) < 0

the averaged terms become less stabilizing and for ρk > 1 the averaged terms become more

stabilizing. For the same value of λ, this effect means that |W | will, on average, be larger

for ρk < 1 and smaller for ρk > 1. It must be noted that changing ρp and ρq will have an

effect on µc as seen in equation (3.28), increasing µc when the boundary parameters are

less than one and decreasing µc when they are both greater than one. Note that since λ is

relative to µc, changes in µc are adjusted for automatically in this method, thus simulations

at the same value of λ are at different levels of driving for different values of ρk.

The boundary parameters also affect the Aj when they are constructed from the O(1)

Yj amplitudes due to the (x, y) powers occurring as multiplicative factors which act like

“envelopes” on the Aj . For example, if a = αp = αq = 0, at x = Lp/2, y = Lq/2 we have

A1 = ερpρqY1 and at x = −Lp/2, y = −Lq/2 we have A1 = εY1. Moreover, when ρk < 1 |A1|

will, on average, have a minimum in the upper right hand corner of the cell and the related

oblique travelling waves will be relatively small in that region. As |A1| becomes larger due

to the “envelope” the oblique travelling wave will also grow in magnitude as it travels to the

lower left corner where it is then reflected at a lower magnitude. This can be seen as energy

absorption at the boundary taking an incident wave and reflecting it at a lower energy. For

ρk < 1 the driving over the bulk is larger than Rc which grows the reflected waves as they

travel across the cell until it interacts with the opposing edge. When ρk > 1 is sufficiently

large, indicating a large energy input at the boundary, µc can be negative meaning that

the driving for the system may be below Rc and still lead to persistent nontrivial patterns.

This can be described as small perturbations being amplified at the reflecting boundary

and then slowly decaying under a driving smaller than Rc until they become incident with

the opposing boundary.
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Figure 9: Plot of main modes of PD (averaged over 7 ≤ τ ≤ 8) at λ = 11 showing wobble-TR
pattern at ρk = 1 for 0.1 ≤ ρk ≤ 2.

We first consider the wobble-TR pattern of PD at λ = 11. At ρk = 0.9 the modification

of the pattern is an off-center diamond pattern that alternates sides during the TR phase

of the cycle as seen in Figure 10. As ρk decreases to 0.1, the periods of standing rectangles

became shorter and the diamonds become more centered eventually becoming stationary,

centered in the center of the cell, as the bounding ‘ρ envelope’ dominates the Aj ’s. As

ρk increases above one, the behavior is similar to that of ρk < 1 with a diamond pattern

alternating sides with waves emerging from the corners and moving towards the center. The

centers of the alternating diamonds converge to the center of the cell as ρk increases to two.

The |W | solution maintains the behavior of the perfectly reflecting case for all values of ρk

evaluated for this thesis. The Fourier spectrum of the |W | solution is qualitatively similar

to the spectrum for the ρk = 1 case in the previous section where the constant mode carries

nearly all of the energy in the spectrum. However, the magnitude decreases as ρk increases,

from 1405 at ρk = 0.1 to 237 at ρk = 2 as can be seen in Figure 9. The small values for

(17,16) and (17,18) are largest around ρk = 1 and decrease for both smaller and larger ρk

indicating that they could be the cause of the off-center minima for the diamond pattern.

For the V-stripe pattern we use the same random matrix for simulations at all values
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(a)

(b)

(c)

Figure 10: wobble-TR pattern (left) showing off-center diamonds and |Aj | (right) with
ρk = 0.9 for PD at λ = 12 for (a) τ = 5.5584, (b) τ = 5.5603, (c) τ = 5.6107.
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Figure 11: Plot of main modes of PD (averaged over 7 ≤ τ ≤ 8) at λ = 37 showing V-stripe
pattern at ρk = 1 for 0.1 ≤ ρk ≤ 2.

of ρk of PD such that the V-stripe pattern is stable at λ = 37 when ρk = 1. For this

set of parameters we find the spatial average of |Aj | an order of magnitude larger than

the previous patterns. Consequently, the smaller variations for ρk less than one induce no

observable change to the pattern as these are dominated by the driving term. The first

discernible change as ρk decreases occurs at ρk = 0.6 as a slight tendency of the rectangles

near the corners to move towards the corners with no noticeable change near the center.

The corners eventually have phases of waves moving towards the corners while the V-stripe

pattern persists in the middle of the cell for small ρk = 0.1 as seen in Figure 12. The |W |

solutions at ρk = 1 for this initial random matrix show the oblique rolls with two periods

in the domain and show small spatial and temporal variations along the directions of the

rolls. The Fourier spectrum of the |W | solution at ρk = 1 (averaged over 7 ≤ τ ≤ 8) has

dominant peaks at (17,16) and (16,18) as seen in Figure 11, with temporal variation in

several neighboring peaks. As ρk decreases, the size and frequency of the spatial variations

increase and the frequency of the temporal changes increase in magnitude. However, the

size of the oblique rolls also increases, with |W | showing larger maxima as ρk decreases.

This keeps the ridges of the oblique rolls the dominant feature of the |Aj |, which causes the
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observed pattern to remain unchanged in the bulk.

Above ρk = 1 the behavior changes more fundamentally. At ρk = 1.2 the pattern shows

a TR-crash behavior with no hint of stationary oblique waves as can be seen in Figure 13.

The |W | solution fundamentally changes behavior with rolls in the X-direction replacing

the oblique rolls with two periods in the X direction and a slow temporal undulation of the

rolls in the Y direction. As can be seen in Figure 11 the dominant modes are transitioning

at ρk = 1.1 and at ρk = 1.2 the (17,16) and (17,18) modes are dominant and nearly identical

in magnitude while the (16,18) mode is significantly diminished. The (17,16) and (17,18)

modes are dominant in the ρk = 1 case indicating X-periodicity with two rolls in that

direction and, at most, only slight Y variation, which is what we see for ρk ≥ 1.2 indicating

the TR-crash behavior. As ρk approaches 2 the TR-crash pattern continues with center-

moving oblique waves beginning to become more apparent at the corners. The V-stripe

behavior does not reappear for ρk > 1. The Fourier spectra for λ = 37, using this specific

initial random matrix, show time dependence for all ρk and shows significant variation in

dominant modes as ρk changes.

The last set of parameters we consider is E which shows a DX pattern at λ = 15 when

ρk = 1. Once again, the first variation of the pattern is a tendency for the waves to move

towards the corners as ρk becomes smaller than one. This becomes more pronounced and

becomes persistent as ρk decreases to 0.1 as can be seen in Figure 15. For increasing ρk above

one, the DX pattern is robust against small increases and shows the tendency to have some

motion of the rectangles from the corners towards the center during the shifts between the

diamond and X patterns. This tendency for center moving waves simply becomes stronger

as ρk increases without eliminating the DX pattern up to ρk = 2. The |W | solutions for all

values of ρk studied show temporally constant oblique rolls with two periods in the domain.

This set of parameters shows a Fourier spectrum for W where the primary peaks are at the

(16,18) and (18,16) modes, and the energy decreases in magnitude as ρk increases as seen

in Figure 14. The magnitudes decrease consistently as ρk increases with no other modes

showing increases which reinforces the persistence of the DX pattern throughout the full
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(a)

(b)

(c)

Figure 12: V-stripe pattern (left) showing travelling waves moving towards the corners and
|Aj | (right) at ρk = 0.1 for PD at λ = 37 for (a) τ = 6.6371, (b) τ = 6.6458, (c) τ = 6.6557.
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(a)

(b)

(c)

Figure 13: V-stripe pattern (left) showing TR-crash pattern and |Aj | (right) at ρk = 1.2
for PD at λ = 37 for (a) τ = 6.5833, (b) τ = 6.5899, (c) τ = 6.5965.
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Figure 14: Plot of main modes of E (averaged over 7 ≤ τ ≤ 8) at λ = 15 showing DX
pattern at ρk = 1 for 0.1 ≤ ρk ≤ 2.

range of the boundary parameter.

Varying the boundary parameter ρk has an effect on the overall pattern. For patterns

where |W | is spatially and temporally slowly varying and small this is most evident in the

behavior of the patterns near the edges while the behavior in the center of the cell is nearly

unchanged. For patterns where |W | is relatively large with relatively dynamic spatial and

temporal behavior, such as the V-stripe pattern, a change in ρk can change the nature of

the |W | solution leading to a change of the pattern in the bulk as well as causing travelling

oblique waves in the corners.

78



(a)

(b)

(c)

Figure 15: DX pattern (left) and |Aj | (right) with ρk = 0.1 for E at λ = 15 for (a)
τ = 6.5768, (b) τ = 6.5899, (c) τ = 6.6009.
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6 Conclusions

In this thesis we constructed a globally coupled Ginzburg-Landau equation from a set of

coupled reaction diffusion equations posed in a large, but finite domain. We have shown

that boundary conditions have an effect on the coupling of the equations and developed

a method for finding solutions for the four main envelopes via a single, doubly periodic

function W (X,Y, τ) obtained from the envelopes by applying a reflection principle. The

resultant patterns of the original system can then be determined via a simplified system for

W . Therefore the specific patterns observed, and over which intervals of external driving

these patterns are stable, can be found by studying the W -solutions. This is much easier

to pursue than computing the complex wave patterns of the original system.

Beyond this computational advantage, the importance (‘added value’) of our work lies

in the fact that the equation for W is canonical, and is valid for any anisotropic PDE-

system with two reflection symmetries that is posed in a large rectangle and encounters a

Hopf bifurcation with four oblique travelling waves. The derivation in this thesis was done

specifically for reaction diffusion systems with second order diffusion terms, however, the

same procedure is applicable to other system as well, including the weak electrolyte model

for electroconvection in nematic liquid crystals. A first step towards more general equations

has been made by including higher order diffusion terms in the Activator-Inhibitor system.

Due to the boundary conditions, which allowed us to reduce the four coupled evolution

equations to a single equation, the simulation of the amplitudes could be simplified to

simulating the single equation for W in the doubly periodic domain for the characteristic

wave variables using a Fourier-Galerkin approximation. The envelopes modulating the

initial unstable modes could then be extracted from W by performing a computationally

straightforward spatial transformation. In comparison to simulations of the unbounded

case, we have seen that the boundary interactions have changed the behaviors of solutions

in various parameter regimes. This exploration is by no means exhaustive and further

simulations need to be done to see whether the behaviors of the infinite extent case are

simply shifted to other parameter values, or precluded by the finite boundaries altogether.
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The W -equation derived for the finite size system contains a rescaled bifurcation param-

eter, λ, and an aspect ratio, l. These parameters are not present in the four globally coupled

Ginzburg Landau equations resulting for the unbounded domain, the parameter Re(a0) in

(2.23) can be rescaled to unity (which was done in [21]). In particular the variation of λ

had a strong effect on the observed solutions in that their complexity increased when λ

was increased. The reason is that the eigenvalues of the linearized W -system are discrete,

and more and more modes get excited (non-decaying in the linearized W -equation) when λ

increases. On the other hand, for small λ we always observed standing rectangles governed

by a single mode. Since for any finite λ the number of excited modes is finite, it is tempting

to assume that the W -dynamics resides in an attracting invariant manifold (‘inertial man-

ifold,’ see [8]), whose dimension increases when λ crosses certain discrete values. On the

other hand, an inertial manifold for the W -system would correspond to an inertial manifold

for the original reaction diffusion system, and O(1)-variations of λ correspond to O(ε2)-

variations of the original bifurcation parameter. This sensitivity of solutions of a ‘finite size

Ginzburg Landau system’ on a rescaled bifurcation parameter can be expected for any type

of instability, and could provide a new approach for computing and characterizing inertial

manifolds in evolution equations posed in large domains under variation of a parameter.

Further extensions of this work include a numerical representation of the boundary layer

solution that can be added to the bulk solution to improve the simulation of patterns in the

entire domain. Another exploration is to pursue the derivation of the amplitude equations

for more general evolution equations. A more challenging extension is to consider more

general domains with curved boundaries. The bulk expansion is then still valid, but the

boundary layer expansion and the matching become more difficult. In particular, curved

boundaries will eliminate the ability to utilize a doubly periodic domain.
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A Details of the Expansions in Section 3

A.1 Bulk Expansion

The complete expansion considered in the representation of the bulk solution as described

in Section 3.2 is given by,

u = {[(A1U0 + V1)eipcx+iqcy + (A2U0 + V2)e−ipcx+iqcy

+(A3U0 + V3)e−ipcx−iqcy + (A4U0 + V4)e+ipcx−iqcy]eiωt + cc}

+{[(A1)2ei2pcx+i2qcy + (A2)2e−i2pcx+i2qcy) + (A3)2e−i2pcx−i2qcy

+(A4)2ei2pcx−i2qcy)]ei2ωtU6

+[(A1A3 +A2A4)W11 + (A1A2e
i2qcy +A3A4e

−i2qcy)W12

+(A1A4e
i2pcx +A2A3e

−i2pcx)W13]ei2ωt (A.1)

+(A1Ā3e
i2pcx+i2qcy +A2Ā4e

−i2pcx+i2qcy)W21

+(A1Ā2 + Ā3A4)ei2pcxW22 + (A1Ā4 +A2Ā3)ei2qcyW23 + cc}

+[|A1|2 + |A2|2 + |A3|2 + |A4|2]U7 +HONRT,

whereHONRT denotes higher order non-resonant terms. The resonant term V1 is expanded

as,

V1 = −iA1x(U1p + µU4p)− iA1y(U1q + µU4q)−A1xxU2pp − 2A1xyU2pq −A1yyU2qq

+µA1(U3 + µU5) +A1(|A1|2U8 + |A2|2U9 + |A3|2U10 + |A4|2U11)

+A2Ā3A4U12 +HORT,
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with HORT denoting resonant terms of higher order. The other resonant terms V2, V3, V4

follow by applying to V1 the symmetry operations,

(x, y,A1, A2, A3, A4) → (−x, y,A2, A1, A4, A3),

(x, y,A1, A2, A3, A4) → (−x,−y,A3, A4, A1, A2),

(x, y,A1, A2, A3, A4) → (x,−y,A4, A3, A2, A1),

(A.2)

respectively, leading to

V2 = iA2x(U1p + µU4p)− iA2y(U1q + µU4q)−A2xxU2pp + 2A2xyU2pq −A2yyU2qq

+µA2(U3 + µU5) +A2(|A2|2U8 + |A1|2U9 + |A4|2U10 + |A3|2U11)

+A3Ā4A1U12 +HORT

V3 = iA3x(U1p + µU4p) + iA3y(U1q + µU4q)−A3xxU2pp − 2A3xyU2pq −A3yyU2qq

+µA3(U3 + µU5) +A3(|A3|2U8 + |A4|2U9 + |A1|2U10 + |A2|2U11)

+A4Ā1A2U12 +HORT

V4 = −iA4x(U1p + µU4p) + iA4y(U1q + µU4q)−A4xxU2pp + 2A4xyU2pq −A4yyU2qq

+µA4(U3 + µU5) +A4(|A4|2U8 + |A3|2U9 + |A2|2U10 + |A1|2U11)

+A1Ā2A3U12 +HORT

The evolution equations for A2, A3, A4 follow from (3.8) also by the operations (A.2),

A2t = −(vp + µb1p)A2x + (vq + µb1q)A2y + dppA2xx − 2dpqA2xy + dqqA2yy

+A2(µa0 + µ2a1 + e1|A2|2 + e2|A1|2 + e3|A4|2 + e4|A3|2) + e5A3Ā4A1 +HOT

(A.3)
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A3t = −(vp + µb1p)A3x − (vq + µb1q)A3y + dppA3xx + 2dpqA3xy + dqqA3yy

+A3(µa0 + µ2a1 + e1|A3|2 + e2|A4|2 + e3|A1|2 + e4|A2|2) + e5A4Ā1A2 +HOT

(A.4)

A4t = (vp + µb1p)A4x − (vq + µb1q)A4y + dppA4xx − 2dpqA4xy + dqqA4yy

+A4(µa0 + µ2a1 + e1|A4|2 + e2|A3|2 + e3|A2|2 + e4|A1|2) + e5A1Ā2A3 +HOT

(A.5)

Proceeding as explained in Section 3.2, shows that the non-resonant expansion vectors are

the unique solutions of the equations,

(A1)2-terms: T (4p2
c , 4q

2
c , 2ω)U6 = −B(U0, U0),

|A1|2-terms: T (0, 0, 0)U7 = −2B(U0, U0),

A1A3 and A2A4-terms: T (0, 0, 2ω)W11 = −2B(U0, U0),

A1A2 and A3A4-terms: T (0, 4q2
c , 2ω)W12 = −2B(U0, U0),

A1A4 and A2A3-terms: T (4p2
c , 0, 2ω)W13 = −2B(U0, U0),

A1A3 and A2A4-terms: T (4p2
c , 4q

2
c , 0)W21 = −2B(U0, U0),

A1A2 and A4A3-terms: T (4p2
c , 0, 0)W22 = −2B(U0, U0),

A1A4 and A2A3-terms: T (0, 4q2
c , 0)W23 = −2B(U0, U0),

(A.6)

where T (p2, q2,Ω) = F1 − p2Dp − q2Dq − iΩI. The resonant expansion vectors satisfy,

A1|A1|2-terms: T (p2
c , q

2
c , ω)U8 =e1U0 − 2B(U0, U7)− 2B(Ū0, U6)− 3C(U0, U0, U0),

A1|A2|2-terms: T (p2
c , q

2
c , ω)U9 =e2U0 − 2[B(U0, U7 +W22) + B(U0,W12) + 3C(U0, U0, U0)],

A1|A3|2-terms: T (p2
c , q

2
c , ω)U10 =e3U0 − 2[B(U0, U7 +W21) + B(U0,W11) + 3C(U0, U0, U0)],

A1|A4|2-terms: T (p2
c , q

2
c , ω)U11 =e4U0 − 2[B(U0, U7 +W23) + B(U0,W13) + 3C(U0, U0, U0)],

A2A3A4-terms:T (p2
c , q

2
c , ω)U12 =e5U0 − 2[B(U0,W22 +W23) + B(U0,W11) + 3C(U0, U0, U0)],

(A.7)
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and the solvability conditions yield the nonlinear coefficients in the envelope equations,

e1 = U
∗T
0 (2B(U0, U7) + 2B(U0, U6) + 3C(U0, U0, U0)),

e2 = 2U
∗T
0 (B(U0, U7 +W22) + B(U0,W12) + 3C(U0, U0, U0)),

e3 = 2U
∗T
0 (B(U0, U7 +W21) + B(U0,W11) + 3C(U0, U0, U0)),

e4 = 2U
∗T
0 (B(U0, U7 +W23) + B(U0,W13) + 3C(U0, U0, U0)),

e5 = 2U
∗T
0 (B(U0,W22 +W23) + B(U0,W11) + 3C(U0, U0, U0)).

(A.8)

A.2 Expansion at the Edge y ∼ −Lq/2

The solution in the edge layer y ∼ −Lq/2 is expanded in terms of slowly varying envelopes

M(x, t) and N(x, t) similarly as the bulk solution in [43] in the form,

u = [(MU0 − iMx(U1 + µU4)−MxxU2 + µM(U3 + µU5)

+M |M |2U8 +M |N |2U9 +MtU10 +HORT )eipcx+iωt + cc]

+[(NU0 + iNx(U1 + µU4)−NxxU2 + µN(U3 + µU5) +N |N |2U8

+N |M |2U9 +NtU10 +HORT )e−ipcx+iωt + cc]

+[(M2ei2pcx +N2e−i2pcx)U6ei2ωt +MNW1ei2ωt +MNW2ei2pcx

+cc] + (|M |2 + |N |2)U7 +HONRT, (A.9)

where the expansion functions U j(ỹ) depend on the edge variable ỹ = y+Lq/2, and HORT

and HONRT stand again for higher order resonant non-resonant terms, respectively. The
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nonhomogeneous differential equations for the coefficient functions in (A.9) are,

Mx : DqU1
ỹỹ + (−p2

cDp + F1 − iωI)U1 = 2pcDpU0,

Mxx : DqU2
ỹỹ + (−p2

cDp + F1 − iωI)U2 = 2pcDpU1 +DpU0,

µM : DqU3
ỹỹ + (−p2

cDp + F1 − iωI)U3 = −f2U0 − 2B1(u1,U0),

µMx : DqU4
ỹỹ + (−p2

cDp + F1 − iωI)U4 = −f2U1 + 2pcDpU3 − 2B1(u1,U1),

µ2M : DqU5
ỹỹ + (−p2

cDp + F1 − iωI)U5 = −f3U0 − f2U3 − 2B1(u1,U3),

M2 : DqU6
ỹỹ + (−4pcDp + F1 − i2ωI)U6 = −2B(U0,U0),

|M |2 : DqU7
ỹỹ + F1U7 = −2B(U0, Ū0),

MN : DqW1
ỹỹ + (F1 − i2ωI)W1 = −2B(U0,U0),

MN̄ : DqW2
ỹỹ + (−4p2

cDp + F1)W2 = −2B(U0, Ū0),

M |M |2 : DqU8
ỹỹ + (F1 − p2

cDp − iωI)U8 = −2B1(U7,U0)− 2B1(U6, Ū0)

−3C1(U0,U0, Ū0),

M |N |2 : DqU9
ỹỹ + (F1 − p2

cDp − iωI)U9 = −2B1(U7 +W2,U0)− 2B1(W1, Ū0)

−6C1(U0,U0, Ū0),

Mt : DqU10
ỹỹ + (F1 − p2

cDp − iωI)U10 = U0.

(A.10)

The leading order coefficient function U0(ỹ) is determined as described in Section 3.3. The

higher order functions U j(ỹ) have to satisfy the same boundary conditions at ỹ = 0 and for

ỹ →∞ (remain bounded) as U0(ỹ).

For matching purposes we only need to consider the asymptotic behavior of the U j(ỹ),
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and using (3.13) we determine the asymptotic behavior of the U j(ỹ) as follows,

U1 = [−vp
vq

(iỹU0 + U1q) + U1p]e
iqcỹ + rq[−vp

vq
(−iỹU0 + U1q) + U1p]e

−iqcỹ + EST,

U3 = [ ia0vq (iỹU0 + U1q) + U3]eiq0ỹ + rq[
ia0
vq

(−iỹU0 + U1q) + U3]e−iq0ỹ + EST,

U6 = (e2iq0ỹ + r2
qe
−2iq0ỹ)U6 + rqW13 + EST,

U7 = (1 + |rq|2)U7 + (r̄qe
2iq0ỹ + rqe

−2iq0ỹ)W23 + EST,

W1 = 2rqW11 + (e2iq0ỹ + r2
qe
−2iq0ỹ)W12 + EST,

W2 = (1 + |rq|2)W22 + (r̄qe
2iq0ỹ + rqe

−2iq0ỹ)W21 + EST,

U8 = [i
e1+|rq |2e4

vq
(iỹU0 + U1q) + U8 + |rq|2U11]eiq0ỹ

+rq[i
|rq |2e1+e4

vq
(−iỹU0 + U1q) + |rq|2U8 + U11]e−iq0ỹ + EST,

U9 = [i
e2+|rq |2(e3+e5)

vq
(iỹU0 + U1q) + U9 + |rq|2(U10 + U12)]eiq0ỹ

+rq[i
|rq |2e2+e3+e5

vq
(−iỹU0 + U1q) + |rq|2U9 + U10 + U12]e−iq0ỹ + EST,

U10 = −i
vq

(iỹU0 + U1q)e
iq0ỹ +

−irq
vq

(−iỹU0 + U1q)e
−iq0ỹ + EST,

(A.11)

where EST denotes exponentially decaying terms. The functions in (A.11) evolve asymp-

totically towards expressions involving the vectors from the bulk solution. However, looking

at the equation for U2,

(Dq∂ỹỹ − p2
cDp + F1 − iωI)U2 = 2pcDpU1 +DpU0 (A.12)

the right hand side of this equation depends on U1 which, asymptotically, contains ỹ linearly.

The explicit form of the equation for U2 is given by,

(Dq∂ỹỹ − p2
cDp + F1 − iω)U2 = [(1− 2pc

vp
vq
ỹ)DpU0 −

vp
vq

2pcDpU1q + 2pcDpU1p]e
iqcỹ

+rq[(1 + 2pc
vp
vq
ỹ)DpU0 −

vp
vq

2pcDpU1q + 2pcDpU1p]e
−iqcỹ.

To solve for U2, we use the ansatz U2 = [H2
+ + ỹK2

+ + ỹ2s2
+U0]eiqcỹ + rq[H

2
− − ỹK2

− +
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ỹ2s2
−U0]e−iqcỹ, and find that s2

+ = s2
− = iv2

p/(2v
2
q ), where K2

+ = K2
− = (vp/vq)[(vp/vq)U1q −

U1p], which implies H2
+ = H2

−. This is sufficient to show that these terms don’t contribute

to the boundary conditions. Since we concentrate on the U1q terms for the second boundary

conditions at ỹ = 0, the important finding is that, with K2
+ = K2

−, we necessarily find that

the U1q terms in each must be equal, ie H2
+ = H2

− = ν2U1q+ other terms. Similar arguments

lead to equivalent forms for U4 and U5.

Consequently, up to U0 and U1q terms, the edge expansion becomes,

u = {U0e
iqcỹ
(
M − ỹ

[
(
vp
vq

+ iµs4)Mx + s2Mxx + (µ
a0

vq
− µ2s5)M

+
e1 + |rq|2e4

vq
M |M |2 +

e2 + |rq|2(e3 + e5)

vq
M |N |2

])
+rqU0e

−iqcỹ
(
M + ỹ

[
(
vp
vq

+ iµs4)Mx + s2Mxx + (µ
a0

vq
− µ2s5)M

+
|rq|2e1 + e4

vq
M |M |2 +

|rq|2e2 + e3 + e5

vq
M |N |2

])
+U1qe

iqcỹ
(

(
ivp
vq
− iµν4)Mx − ν2Mxx + (µ

ia0

vq
+ µ2ν5)M

+ i
e1 + |rq|2e4

vq
M |M |2 + i

e2 + |rq|2(e3 + e5)

vq
M |N |2

)
+rqU1qe

−iqcỹ
(

(
ivp
vq
− iµν4)Mx − ν2Mxx + (µ

ia0

vq
+ µ2ν5)M

+ i
|rq|2e1 + e4

vq
M |M |2 + i

|rq|2e2 + e3 + e5

vq
M |N |2

)
+HORT}eipcx+iωt

+{U0e
iqcỹ
(
N − ỹ

[
− (

vp
vq

+ iµs4)Nx + s2Nxx + (µ
a0

vq
− µ2s5)N

+
e1 + |rq|2e4

vq
N |N |2 +

e2 + |rq|2(e3 + e5)

vq
N |M |2

])
+rqU0e

−iqcỹ
(
N + ỹ

[
− (

vp
vq

+ iµs4)Nx + s2Nxx + (µ
a0

vq
− µ2s5)N

+
|rq|2e1 + e4

vq
N |N |2 +

|rq|2e2 + e3 + e5

vq
N |M |2

])
+U1qe

iqcỹ
(
− (

ivp
vq
− iµν4)Nx − ν2Nxx + (µ

ia0

vq
+ µ2ν5)N

+ i
e1 + |rq|2e4

vq
N |N |2 + i

e2 + |rq|2(e3 + e5)

vq
N |M |2

)
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+rqU1qe
−iqcỹ

(
− (

ivp
vq
− iµν4)Nx − ν2Nxx + (µ

ia0

vq
+ µ2ν5)N

+ i
|rq|2e1 + e4

vq
N |N |2 + i

|rq|2e2 + e3 + e5

vq
N |M |2

)
+HORT}e−ipcx+iωt

+cc+HONRT (A.13)

A.3 Matching and Boundary Conditions

Comparing (A.13) to (A.1) as explained in Section 3.4 leads to the the following matching

conditions,

A1e
−iqcLq/2 = M +HOT,

A4e
iqcLq/2 = rqM +HOT,

A2e
−iqcLq/2 = N +HOT,

A3e
iqcLq/2 = rqN +HOT,

(A.14)

and

−iA1ye
−iq0Lq/2 = −ivp

vq
Mx + ν2Mxx + µ

ia0

vq
M − iν4µMx + ν5µ

2M

+i
e1 + |rq|2e4

vq
M |M |2 + i

e2 + |rq|2(e3 + e5)

vq
M |N |2 − i

vq
Mt +HOT

iA4ye
iq0Lq/2 = rq[−i

vp
vq
Mx + ν2Mxx + µ

ia0

vq
M − iν4µMx + ν5µ

2M

+i
|rq|2e1 + e4

vq
M |M |2 + i

|rq|2e2 + e3 + e5

vq
M |N |2 − i

vq
Mt] +HOT

−iA2ye
−iq0Lq/2 = i

vp
vq
Nx + ν2Nxx + µ

ia0

vq
N + iν4µNx + ν5µ

2N

+i
e1 + |rq|2e4

vq
N |N |2 + i

e2 + |rq|2(e3 + e5)

vq
N |M |2 − i

vq
Nt +HOT

iA3ye
iq0Lq/2 = rq[i

vp
vq
Nx + ν2Nxx + µ

ia0

vq
N + iν4µNx + ν5µ

2N

+i
|rq|2e1 + e4

vq
N |N |2 + i

|rq|2e2 + e3 + e5

vq
N |M |2 − i

vq
Nt] +HOT
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Equations (A.14) and (A.15) combine to give two pairs of boundary conditions for the bulk

amplitudes,

eiqcLqA4 =rqA1 +HOT,

vq(e
iqcLqA4y + rqA1y)=rq(|rq|2 − 1)[(e1 − e4)A1|A1|2 + (e2 − e3 − e5)A1|A2|2] +HOT,

eiqcLqA3 =rqA2 +HOT,

vq(e
iqcLqA3y + rqA2y)=rq(|rq|2 − 1)[(e1 − e4)A2|A2|2 + (e2 − e3 − e5)A2|A1|2] +HOT.

(A.15)

Analogously the set of boundary conditions at the edge x = −Lp/2 is obtained,

eipcLpA2 =rpA1 +HOT,

vp(e
ipcLpA2x + rpA1x)=rp(|rp|2 − 1)[(e1 − e2)A1|A1|2 + (e4 − e3 − e5)A1|A4|2] +HOT,

eipcLpA3 =rpA4 +HOT,

vp(e
ipcLpA3x + rpA4x)=rp(|rp|2 − 1)[(e1 − e2)A4|A4|2 + (e4 − e3 − e5)A4|A1|2] +HOT,

(A.16)

and the boundary conditions at y = Lq/2 and x = Lp/2 follow from symmetry considera-

tions,

eiqcLqA1 =rqA4 +HOT,

vq(e
iqcLqA1y + rqA4y)=rq(|rq|2 − 1)[(−e1 + e4)A4|A4|2 + (−e2 + e3 + e5)A4|A3|2] +HOT,

eiqcLqA2 =rqA3 +HOT,

vq(e
iqcLqA2y + rqA3y)=rq(|rq|2 − 1)[(−e1 + e4)A3|A3|2 + (−e2 + e3 + e5)A3|A4|2] +HOT,

(A.17)
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and

eipcLpA1 =rpA2 +HOT,

vp(e
ipcLpA1x + rpA2x)=rp(|rp|2 − 1)[(−e1 + e2)A2|A2|2 + (−e4 + e3 + e5)A2|A3|2] +HOT,

eipcLpA4 =rpA3 +HOT,

vp(e
ipcLpA4x + rpA3x)=rp(|rp|2 − 1)[(−e1 + e2)A3|A3|2 + (−e4 + e3 + e5)A3|A2|2] +HOT.

(A.18)
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