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ABSTRACT

THE FLAG OF BEST FIT AS A REPRESENTATIVE FOR A COLLECTION OF

LINEAR SUBSPACES

This thesis will develop a technique for representing a collection of subspaces with a

flag of best fit, and apply it to practical problems within computer vision and pattern

analysis. In particular, we will find a nested sequence of subspaces that are central, with

respect to an optimization criterion based on the projection Frobenius norm, to a set of

points in the disjoint union of a collection of Grassmann manifolds. Referred to as the

flag mean, this sequence can be computed analytically. Three existing subspace means in

the literature, the Karcher mean, the extrinsic manifold mean, and the L2-median, will be

discussed to determine the need and relevance of the flag mean. One significant point of

separation between the flag mean and existing means is that the flag mean can be computed

for points that lie on different Grassmann manifolds, under certain constraints. Advantages

of this distinction will be discussed. Additionally, results of experiments based on data from

DARPA’s Mind’s Eye Program will be compared between the flag mean and the Karcher

mean. Finally, distance measures for comparing flags to other flags, and similarity scores for

comparing flags to subspaces will be discussed and applied to the Carnegie Mellon University,

’Pose, Illumination, and Expression’ database.
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CHAPTER 1

Introduction

Pattern recognition is inherently concerned with finding the most likely classification of

data with respect to some type of allowable variation. The techniques in pattern recognition

can be reasonably partitioned into supervised classifiers and unsupervised classifiers. Super-

vised classifiers require a human to label the data points in the training set according to

their class. After labeling, these models often fit a probability distribution to each class of

data. Probabilistic classifiers are commonly used, partially because their labels can include

a confidence value along with an ordered list of best labels. However, they often disregard

the shape of the space the data live in. On the other hand, unsupervised classifiers often

assume that data are restricted to some structured space. If the geometry of that space is

known, any point in the space may be thought of as belonging to the data, even if such a

sample has never been observed. In this case, classifications can be inferred by the location

of the data points within the space.

Many researchers have had success representing data as points on a Grassmann manifold,

or the set of all q-dimensional subspaces of Rn, when their data can be seen as equivalent un-

der the set of all rotations. For example, if a set of images of one person’s face under different

illumination conditions is treated as a subspace, it is possible to identify the person in the

presence of any lighting condition the can be approximated by some linear combination of

the original images. For this reason, linear subspace models have become increasingly pop-

ular. Admitting some type of variation in a recognition model helps avoid over-fitting to a

training set and subsequently avoids exact pattern matching. Representations of videos and

images as points on Grassmann manifolds are used for activity modeling and recognition [26],
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shape analysis [20], appearance recognition [18], action classification [16], face recognition

[22, 14, 26], person detection [28], subspace tracking [25], and general manifold clustering

[2]. Within these applications is the more contained and general objective of sample-to-set

matching. As the number of points that a classifier is trained on grows, pairwise compar-

isons between new samples and the training set quickly become computationally infeasible.

Finding an average representation for each class of data is beneficial, because it allows new

samples to be classified based on their similarity to these averages rather than the whole

data set. This reduces the number of comparisons needed to classify a new sample.

Before sample-to-set matching can begin, most practical problems require a great deal

of effort to achieve a subspace representation [26, 16]. For example, it is often non-trivial

to standardize the dimensions of data points so that the subspaces live on a Grassmannian.

Additionally, a data set may have multiple meaningful forms of variation, and it can be

difficult to isolate a single type of variation for classification.

Once a linear subspace representation of a data set has been realized, there are additional

challenges in finding an average for such a collection. Most commonly used techniques, such

as the Karcher mean, are iterative in nature and thus expensive to compute. Many of the

existing algorithms assume that the subspaces are points on a single Grassmann manifold.

Due to the curvature of this manifold the algorithms can only find a unique average for

subspaces that live within a convex ball, severely limiting the data sets that can be averaged

[2]. The techniques can also be sensitive to noise, and since they assume the data live on a

single Grassmannian, the subspaces to be averaged must all be of the same dimension.

In light of the difficulties in treating data points as subspaces we propose a novel average,

the flag of best fit, as a representative for a collection of linear subspaces of Rn. A thorough
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treatment of this flag mean requires some mathematical context. Chapter 2 of this thesis

discusses the setting in which this problem was formulated, defines the relevant properties

the Grassmann manifold and flags of Rn, and reviews other subspace averages in the litera-

ture. Chapter 3 motivates the optimization problem that the flag mean solves, outlines six

ways of measuring the success of this representation, and details an analytic solution to the

optimization problem. In Chapter 4 the flag mean is applied to three synthetic experiments

that build intuition about the flag, and to two practical data sets that characterize the value

of the representation. The six measures of success from Chapter 3 are then discussed with

respect to these experiments. Finally in Chapter 5 we discuss the limitations of this subspace

average, and suggest areas for further study.
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CHAPTER 2

Overview of the Problem

2.1. The Mind’s Eye project

The Defense Advanced Research Projects Agency, or DARPA, commissions advanced

research for the Department of Defense. One such research project is the Mind’s Eye pro-

gram. The goal of the Mind’s Eye program is to develop machine-based visual intelligence for

‘smart’ cameras, that can recognize actions and events in real-time video data and describe

them using simple text messages. A research team from the computer science department

of Colorado State University, headed by professor Bruce Draper, has contributed heavily to

this program with an approach described as, ‘Visual Intelligence Through Latent Geometry

and Visual Guidance.’ Their machine learning system identifies short clips of video, cropped

for length and size, that correspond to singular actions such as ‘turn’ or ‘walk’, and pieces

of larger actions like ‘arm-movement.’ Using a representation of these video clips as 3rd

order tensors from Lui et al. and a collection of randomized decision trees developed by

O’Hara and Draper, the CSU team was able to cluster a huge number of training clips into

semantically meaningful groups with only selective human guidance [16, 19]. Samples from

three of these clusters can be seen in Figure 2.1.

Visual inspection suggested that many of the resulting clusters were dominated by a single

action, and empirical results showed that they did a good job of classifying new samples.

However, without human supervision it was difficult to identify the exceptional clusters that

contained dissimilar actions, and thus contributed negatively to classification. In an attempt

to quantify the purity of these clusters, there arose a need for a subspace average.
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(a) Tracks
labeled

‘ride-bike’

(b) Tracks labeled ‘carry’ (c) Tracks
labeled

‘walk-group’

Figure 2.1. Examples of three action classes from the Mind’s Eye data.

2.2. Mathematical background

2.2.1. Videos and images as subspaces. The majority of the applications studied

in this thesis are based around representations of video clips or collections of images as

subspaces, so it is prudent to discuss how this representation is achieved. The idea was

discussed by Belhumeur and Kriegman in 1997 when they considered the question, “What is

the set of images of an object under all possible illumination conditions? [3]” Their inquiry

was inspired by the appearance recognition techniques of Murase and Nayar in 1995, and

the Eigenpicture methods of Sirovich and Kirby in 1987 and Turk and Pentland in 1991

[18, 22, 14, 27]. They discovered that the set of all n-pixel images under all possible lighting

conditions is a convex cone in Rn, and this cone could be determined out of the span of as

little as three images under different illumination conditions. Their method for constructing

the cone was to vectorize each digital image by concatenating the columns, creating an n×3

matrix from the vectorized images, and then finding a basis for the subspace spanned by

these images using the well-known singular value decomposition. The resulting basis vectors

allowed Belheumer and Kriegman to approximate images with previously unsampled lighting

conditions by taking linear combinations of these basis vectors. More concisely, a collection

of images that vary under pose, subject, or illumination can be seen as a linear subspace when
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each of the images is vectorized and any rotation of an orthogonal basis for these vectors is

viewed as equivalent. This gives a collection of images a very natural representation on a

Grassmann manifold.

Definition A Grassmann manifold is the set of all q-dimensional subspaces of an n-

dimensional vector space, V . For the purposes of this paper, V = Rn, and thus a Grass-

mannian will be denoted Gr(q, n) with no mention of V . Points on Gr(q, n) are equivalence

classes of n× q matrices where X ∼ Y if X = Y U for some U ∈ O(q), the set of orthogonal

q × q matrices. Points on Grassmannians and linear subspaces will be denoted with square

brackets,

(1) span{X} = [X] ∈ Gr(q, n),

while the matrix representatives for these points will be denoted as capital letters with no

brackets, like X ∈ Rn×q. Since computations are done on the matrix representatives, and

not the actual subspaces, this thesis will change between the subspace notation and matrix

notation as appropriate. For convenience, our choice of representative for an equivalence

class will be an orthonormal matrix. For more information on Grassmann manifolds, refer

to [15, 7].

In a similar fashion, Turaga et al. and Lui et al. each discussed the idea of action

subspaces for video data [26, 16]. Treating a video clip as a collection of image matrices,

they vectorized each frame, and found an orthogonal basis for the span of the frames. This

representation has proved quite effective for action recognition. The ability to classify action

was improved by treating each video as a 3rd order tensor, and representing it with the

subspaces that spanned each of the three possible unfoldings of the tensor. In this scenario,
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each video is thought of a 3-tuple on a disjoint union of Grassmann manifolds. Figure 2.2

shows how a video clip can have three different matrix representations, depending on which

dimensions are concatenated. A basis can then be found for each of the resulting matrices.

This technique will be employed in the applications to Mind’s Eye data in Chapter 4.

(a)

Figure 2.2. An illustration of a video clip being unfolded into three matrix
representations.

2.2.2. Properties of Grassmann manifolds. In Euclidean space, distances are

measured by the minimum length of a straight line between two points. In the case of

a curved space like the Grassmann manifold, a straight line would not actually lie in the

space. For manifolds a straight line is generalized as a geodesic, the shortest path on the

manifold between two points, and we measure the distance between two points by the length
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of the geodesic between them. We would like computations on a Grassmannian to be inde-

pendent of our choice of representative for a point [X] ∈ Gr(q, n), so any measure of distance

must be an orthogonally invariant function. It has long been known that the principal angles

between linear subspaces are orthogonally invariant, and thus numerous distance metrics on

Grassmannians have been developed based on principal angles [5].

Definition If [X] and [Y ] are subspaces of Rn such that q = min {dim([X]), dim([Y ])},

then the principal angles θk ∈ [0, π/2] between [X] and [Y ] are recursively defined for

k = 1, 2, . . . , q by

(2) cos θk = max
v∈[X]

max
u∈[Y ]

uTv = uTk vk,

subject to the constraints ‖u‖ = ‖v‖ = 1, and uTj uk = vTj vk = 0 for j = 1, 2, . . . k − 1.

The vectors {u1, u2, . . . uq} and {v1, v2, . . . vq} are called the principal vectors of the pair of

spaces.

It is worth mentioning that if QX and QY are orthogonal bases for [X] and [Y ], the

principal angles and vectors between [X] and [Y ] can be calculated by finding the thin

singular value decomposition of QT
XQY [5]. If the decomposition is written as QT

XQY =

UΣV T , then the principal vectors of [X] are the columns of the matrix QXU , the principal

vectors of [Y ] are the columns of QY V , and the cosines of the principal angles between the

pair of spaces are the diagonal values of Σ, i.e. cos θk = σk.

What this characterization does not make entirely clear is that the first principal angle

between [X] and [Y ] is the arc length between vectors u1 ∈ [X] and v1 ∈ [Y ] that are the

closest together, and that each of the following principal angles is the arc length between the

closest vectors of [X] and [Y ] in the orthogonal complements to span of the principal vectors
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that have already been found. Based on this interpretation of principal angles, two useful

metrics on Grassmann manifolds from the literature will be reviewed, the geodesic distance

based on arc length and the projection Frobenius norm. A more thorough treatment of the

various metrics on Grassmann manifolds can be found in [7].

Definition If [X], [Y ] ∈ Gr(q, n), then the geodesic distance based on arc length

between the two is defined as

(3) d([X], [Y ]) = ‖Θ‖2,

where Θ is the vector of principal angles between [X] and [Y ].

It is shown in [7] that this measure of distance is the canonical metric on the Grassmann

manifold in the sense that it is equivalent to the Euclidean metric in the tangent space

of a single point on the Grassmannian. This metric arises from the representation of the

Grassmann manifold as a quotient space, i.e. Gr(q, n) = O(n)
/

(O(q)×O(n− q)) where

O(n) is the group of n× n orthogonal matrices.

Definition If [X], [Y ] ∈ Gr(q, n), then the projection Frobenius norm, or projection

F-norm, between the two is defined as

(4) dpF ([X], [Y ]) = 2−
1
2‖XXT − Y Y T‖F = ‖ sin Θ‖2,

where Θ is the vector of principal angles between [X] and [Y ].

This metric is derived from embedding the Grassmann manifold in the space of n × n

projection matrices of rank q and measuring the distance between them using the Frobenius
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norm. It can be be shown that for [X] 6= [Y ], d([X], [Y ]) > dpF ([X], [Y ]), and that these met-

rics are asymptotically equivalent. Thus for points close together, d([X], [Y ]) ≈ dpF ([X], [Y ]).

Additionally, since both metrics are based on principal angles, distances on Gr(q, n) are

bounded.

Proposition 2.2.1. For all [X], [Y ] ∈ Gr(q, n),

d([X], [Y ]) ≤ (π/2)
√
q, and(5)

dpF ([X], [Y ]) ≤ √
q.(6)

Proof. Let [X], [Y ] ∈ Gr(q, n). Then q = min {dim([X]), dim([Y ])}, and θk ∈ [0, π/2]

for k = 1, 2, . . . q. Thus we have

(7) d([X], [Y ]) = ‖Θ‖2 =

√√√√ q∑
k=1

θ2k ≤

√√√√ q∑
k=1

(π/2)2 =
√
q(π/2)2 = (π/2)

√
q,

and similarly

(8) dpF ([X], [Y ]) = ‖ sin Θ‖2 =

√√√√ q∑
k=1

sin2(θk) ≤

√√√√ q∑
k=1

1 =
√
q

as desired. �

The boundedness of the Grassmann manifold will become important when averaging

point clouds.

2.2.3. Flags and flag manifolds. The representation of data as points on Grass-

mannians is beneficial for classification as discussed in Chapter 1, but for reasons that will
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be explained in Chapter 3 the result of averaging point clouds on Grassmann manifolds in

this thesis will be characterized as a flag.

Definition Let I be a finite set of integers, I = {q1, q2, . . . , qm}. A flag of Rn is a nested

sequence of subspaces [S1] ⊂ [S2] ⊂ · · · ⊂ [Sm] such that dim([Si]) = qi, for i = 1, . . . ,m. A

flag manifold, denoted FL(n; q1, q2, . . . , qm), is the aggregate of all such flags.

If the set I = {qi} is just one integer, then FL(n; qi) is equivalent to Gr(qi, n) and the

points on either correspond to qi-dimensional subspaces of Rn. If X = [x(1)|x(2)| . . . |x(q)] is

an n× q matrix whose ith column is x(i), then the full flag living in FL(n; 1, 2, . . . , q) created

out of the vectors will be denoted with double square brackets as

(9) JXK = span{x(1)} ⊂ span{x(1), x(2)} ⊂ . . . ⊂ span{x(1), . . . , x(q)}.

For more explanation of flag manifolds and their geometry, refer to [17].

2.3. Existing subspace averages

2.3.1. Riemannian center of mass. There are a number of existing averages for

subspace data, and more specifically, points on Grassmann manifolds. The most widely used

representative for a point cloud on a Grassmannian is the Karcher mean, which is defined

as the Riemannian center of mass for the cloud [13].

Definition Let D = {[X1], [X2], . . . , [Xp]} be a finite set of points on Gr(q, n), such that the

radius of D ≤ π/4. The sample Karcher mean of D is defined to be the solution to

(10) [µK ] = arg min
[µ]

1

P

P∑
i=1

d([µ], [Xi])
2

for [Xi] ∈ D. In this setting d([µ], [Xi]) = ‖Θi‖2.
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It may be obvious that this average is the analogue of the Euclidean mean, since the

geodesic distance based on arc length is the canonical metric on the Grassmann manifold

as mentioned in Section 2.2, and we are finding the point that minimizes the sum of the

squared of the distances between itself and the data. However, unlike the Euclidean mean,

the Karcher mean does not have an analytic solution.

2.3.2. Computing µK. The two most common methods for finding the sample Karcher

mean are with a first-order gradient descent algorithm or with Newton’s method. The algo-

rithm employed in the applications of this thesis is the first-order gradient descent algorithm

described in [2]. For completeness Algorithms 1 and 2, the Grassmannian Exp and Log

maps, have been included as well. As mentioned, we choose to represent points on a Gr(q, n)

with n× q orthonormal matrices.

Algorithm 1 GrExp([X], [Y ])

UΣV T = thin svd(Y )
GrExp([X], [Y ]) = XV cos Σ + U sin Σ

Algorithm 2 GrLog([X], [Y ])

UΣV T = thin svd
(
(I −XXT )Y (XTY )−1

)
Θ = tan−1 Σ
GrLog([X], [Y ]) = UΘV T

Let {[X1], [X2], . . . , [XP ]} be a finite set of points on Gr(q, n), with a radius ≤ π/4. The

sample Karcher mean is then computed by initializing the mean as a random data point,

or for simplicity as the first data point, [µ1] = [X1]. The data points are mapped into the

tangent space at [µ1] using Algorithm 1. The Euclidean mean of these tangent vectors points

in the direction of steepest descent, δ. The estimate of the mean is then updated by moving

on the Grassmannian in the direction of δ, i.e. [µ2] = GrExp(µ1, δ). This process iterates

12



until there is no movement between [µi] and [µi+1]. At this point, the Karcher mean of

{[X1], [X2], . . . , [XP ]} is [µK ] = [µi]. This process is detailed in Algorithm 3.

Algorithm 3 Karcher mean of {[X1], [X2], . . . , [XP ]}
µ1 = X1

while d(µi, µi+1) > ε do

δ = 1
P

∑P
j=1 GrLog(µi, Xj)

µi+1 = GrExp(µi, δ)
end while
[µK ] = µi+1

As a side note, if [Xi] is not already represented by an orthogonal matrix, computing

UΣV T = thin svd(Xi) and using Xi = UV T gives us the closest point to Xi on Gr(q, n).

Additionally, the restriction of {[X1], [X2], . . . , [XP ]} to a ball of radius ≤ π/4 guarantees that

the GrExp and GrLog maps are bijective, and thus that the Karcher mean will find a unique

optimal solution. As noted in [2, 13] this radius is the maximal size of a convex set on any

Grassmannian, but as we proved in Proposition 2.2.1, the maximum distance between two

points can be much larger than this.

2.3.3. Limitations of the Karcher mean. One of the key limitations of the Karcher

mean is that it is found using an iterative algorithm. This leads to complications in larger

machine-learning systems like CSU’s contribution to the Mind’s Eye project. Since there are

multiple algorithms for finding the Karcher mean, it is hard to give a strict bound to the

convergence. First-order gradient descent algorithms are typically reported as having linear

convergence, while the Newton’s method algorithms claim quadratic convergence [1, 2, 7, 26].

In either case, the number of iterations, Nd,ε, depends heavily of the diameter of the data

set, d, and the error tolerance, ε, so that even with efficient algorithms this calculation can

be prohibitive for high-dimensional image and video data. To illustrate these dependencies,

the convergence of the Karcher mean was tested using Algorithm 3 on Gr(20, 1000). For
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Figure 2.3. Iterations needed to find the Karcher mean for different values of ε.

each error tolerance, ε, 30 random points were created. The diameter, d, of this data set

was measured as the furthest distance between any two points using the geodesic distance

based on arc length, and µK was found. The maximum number of iterations allowed was

set to 1000 so the algorithm would not run indefinitely. Figure 2.3 shows the number of

iterations it took to find the Karcher mean of each point set when the diameter of the data

is beyond the convex boundary. When ε = 0.1, the algorithm takes around 40 iterations to

find the Karcher mean for large values of d. This number continues to grow linearly as d

grows. Similarly, for ε = 0.01, the number of iterations appears to grow proportionately to

d. At this tolerance the number of iterations required is around 200 when d→ 6.5. However

for ε = 0.001, and d > 4, it takes the maximum number of iterations to find the Karcher

mean.

2.3.4. The L2-median on Riemannian manifolds. The median of a 1-dimensional

data set in Euclidean space, {x1, x2, . . . , xp} can be found as the minimizer of the sum of
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Euclidean of distances. That is

(11) µ̂ = arg min
µ∈R

p∑
i=1

‖xi − µ‖2.

While this definition has been agreed upon for the 1-dimensional case by mathematicians

and statisticians alike, there has been no consensus on how to generalize the median into

the multidimensional case. Several possible definitions which have the common property of

producing the usual definition of the median in the uni-variate case, but give different kinds

of medians in multivariate situations, are reviewed by Smalls in [23].

One incarnation that has appeared frequently in the literature as a multidimensional

median is the point that minimizes the L1-norm of the Euclidean distance between points.

This version was first introduced by Gini and Galvani in 1929 [10], and by Eells a year

later [8]. As the geodesic distance based on arc length is the Riemannian equivalent of the

Euclidean distance, the definition for this point can be written in that context.

Definition For {[X1], [X2], . . . , [Xp]|[Xi] ∈ Gr(q, n)}, the point that minimizes the L1-norm

of the geodesic distance based on arc length between points,

(12) [µL2 ] = arg min
[µ]

P∑
i=1

d([µ], [Xi]),

is the L2-median of the set.

The solution to Equation 12 is most commonly referred to as the spatial median, but

has also been called the geometrical median [12], the mediancentre [11], the L2-median [6],

and confusingly, the L1-median [23]. This thesis will refer to the point in Equation 12 as the

L2-median, and denote it as µL2 in Euclidean spaces and [µL2 ] on Grassmannians, because
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that terminology seems to best reflect the construction of the point as the minimizer of the

L1-norm of the vector of the L2-norms between the data points and the median.

One method for finding µL2 in Euclidean spaces is called the Weiszfeld algorithm, al-

though Weiszfeld did not create the algorithm or even intend to solve a location problem

[29]. The algorithm is essentially a steepest descent method, and was generalized for Rie-

mannian data, including Grassmannian data, by Fletcher et al. in 2009 [9]. Fletcher’s

modified algorithm, elucidated in Algorithm 4, employs the geodesic distance based on arc

length, Algorithm 1, and Algorithm 2.

Algorithm 4 L2-median of {[X1], [X2], . . . , [XP ]}
µ1 = X1

while d(µi, µi+1) > ε do

δ =
∑P

j=1
GrLog(µi,Xj)

d(µi,Xj)
∗
(∑P

i=1
1

d(µi,Xj)

)−1
µi+1 = GrExp(µi, δ)

end while
[µL2 ] = µi+1

The L2-median has convergence issues similar to those of the Karcher mean, because of

the dependence on GrLog and GrExp. Thus a unique optimal solution to Equation 12 is

only guaranteed when all points being averaged are within a ball of radius ≤ π/4. Similarly,

the number of iterations needed to find an optimal solution mimics those depicted for the

Karcher mean in Figure 2.3, i.e. as the diameter of the data set grows the number of

iterations needed grows proportionally.

2.3.5. The extrinsic manifold mean. A third average for points on a Grassmann

manifold is the extrinsic manifold mean. First published by Srivastava and Klassen in 2002,

the extrinsic manifold mean is an L2-mean in that it looks to minimize the L2-norm of the

vector of distances [24]. The main difference between the Karcher mean and the extrinsic
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manifold mean is that the Karcher mean uses the geodesic distance based on arc length,

whereas the extrinsic mean relies on the projection F-norm.

Definition Let {[X1], [X2], . . . , [XP ]} be a finite collection of points on Gr(q, n). Srivastava

and Klassen define the extrinsic manifold mean, [µE], as

(13) [µE] = arg min
[µ]

1

P

P∑
i=1

dpF ([µ], [Xi])
2,

where dpF ([µ], [Xi]) is again the projection Frobenius norm.

As mentioned in Section 2.2, the projection F-norm is realized by embedding the Grass-

mannian data points in the space of n × n projection matrices of rank q. By embedding

Gr(q, n) in a higher dimensional space, this projection F-norm can be thought of as cutting

corners in measuring distances between points. Algorithm 5 for finding [µE] comes from the

method of Lagrange multipliers and depends on the second equality in Equation 4.

Algorithm 5 Extrinsic manifold mean of {[X1], [X2], . . . , [XP ]}

C =
∑P

i=1XiX
T
i

for j = 1 . . . n do
λ(j)u(j) = Cu(j)

Such that λ(1) > λ(2) > · · · > λ(n)

end for
[µE] =

[
span{u(1), u(2), . . . , u(q)}

]

The result of Algorithm 5 is that [µE] is effectively the dominant q-dimensional eigenspace

of the projection matrix representations of the original Grassmannian data points. The

matrix C is an n × n real, symmetric, matrix, and rank(C) ≥ q. Thus the eigenvectors

form an orthonormal set, and the span of the q eigenvectors corresponding to the largest

eigenvalues will indeed be a point on Gr(q, n). It will become evident in Section 3 that the
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flag mean is a generalization in two directions of the extrinsic manifold mean, but interested

readers may refer to [24] for the derivation of Algorithm 5.

2.3.6. Discussion of existing averages. After presenting the most common sub-

space averages in the literature, it is relevant to briefly discuss their similarities and differ-

ences. The most notable difference between [µL2 ] and the others, is that it minimizes the

L1-norm of the vector of distances while [µK ] and [µE] minimize the L2-norm of their vectors

of distances. This difference is significant, because it ensures that [µL2] is robust to outliers.

The robustness of a location estimator is often measured using the finite sample breakdown

point. Although it will not be defined explicitly, the finite sample breakdown point essen-

tially measures how many samples can be corrupted before the location estimator is also

corrupt. The breakdown point is trivially defined for bounded manifolds because points

cannot be corrupted without bound. However, on more general Riemannian manifolds it

can be shown that at least half the data needs to be corrupted to infinity for [µL2 ] to be

pulled to infinity. In contrast, if only one sample is pulled to infinity, both [µK ] and [µE]

get skewed to infinity as well. The proofs of these statements and more details about finite

sample breakdown points can be found in [9].

In terms of computation, the previous sections illustrated how [µK ] and [µL2 ] are found

through iterative algorithms. For P points in Gr(q, n), the time to compute either [µK ]

or [µL2 ] takes O(Pnq2Nd,ε) flops. On the other hand, Algorithm 5 shows that [µE] is the

analytic solution to Equation 13, and can be found by computing eigenvalue decomposition

of a real, symmetric n×n matrix. Thus the complexity of finding [µE] is O(n3). Additionally,

the computation of the extrinsic mean is independent of the distance between data points

or any error tolerance.
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CHAPTER 3

Presentation and Derivation

3.1. Motivation for an additional subspace average

After the previous section, it may seem that a subspace average exists to suit every

scenario or need. However, there are a number of challenges that remain to be addressed.

The first is the iterative nature of the algorithms for finding [µK ] and [µL2 ]. When dealing

with high dimensional image and video data, the time required to compute either of these

averages becomes prohibitive quickly. The computation time for [µE] can be significantly

less, depending on the make-up of the data set. More importantly though, the solution is

analytic, and thus a good approximation of the computation time can be calculated.

It is also possible in practical experiments that data points do not live within a convex

ball on their Grassmann manifold. In this scenario, the algorithms for the Karcher mean

and the L2-median will return a solution, but the solution may not be a unique optimum.

As an analogy, imagine a data set consisting of two antipodal points on a sphere. To find

a point averaging those two locations while staying on the sphere, any point on the equator

could be reasonably chosen. However, if that equatorial point was then used in a measure of

distance to other points on the sphere, the distance computed would be a very poor measure

of how close those points were to the set of antipodal points. Again, the extrinsic manifold

mean does not fall prey to this limitation. The points to be averaged need not be within a

convex set, because of the extrinsic mean’s nature as an embedding. However, in the rare

case where the qth-eigenvalue of the matrix C =
∑P

i=1XiX
T
i has multiplicity greater than

1, the optimal solution may not be unique.
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A third hurdle was realized as a result of the CSU team’s approach to the Mind’s Eye

Project. When cutting video clips to create points on a Grassmannian, it was difficult to

determine how many frames would be needed to create a subspace of the desired dimension.

Video clips were cut with the poor assumption that all frames would be linearly independent.

When this failed, the closest point on the manifold was found. However, this closest point

is not unique. Thus a need arose for a way to average points that live on a collection of

Grassmann manifolds, as none of the existing averages could accommodate such data.

3.2. Derivation

The places listed previously where existing subspace means leave something to be desired

are the areas where the flag mean will hopefully add value. The derivation will begin by

finding a set of vectors central to a collection of subspaces, which will then be used to

create a flag. Let {[Xi]}Pi=1 be a collection of subspaces of Rn such that dim([Xi]) = qi and

XT
i Xi = I. If I = {q1, . . . , qP}, with the qi’s not necessarily distinct, then [Xi] ∈

∐
I Gr(qi, n)

for i = 1 . . . P . For this collection of subspaces we wish to find the one-dimensional subspace

[u(1)] ∈ Gr(1, n) that minimizes the sum of the squares of projection F-norms between [u(1)]

and [Xi] for i = 1 . . . P . The projection F-norm loses its distinction as a metric when it

used to compare points that do not live on the same manifold, because it is possible to have

dpF ([u(1)], [Xi]) = 0 with [u(1)] 6= [Xi]. However, there is still merit in measuring similarity

between the two objects. Thus we aim to solve

(14)

arg min
[u(1)]

P∑
i=1

dpF ([u(1)], [Xi])
2

subject to u(1)Tu(1) = 1.
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This optimization problem is recognizable as the one solved by the extrinsic manifold

mean, with the caveat that the data points and the solution are not restricted to live on

a single Grassmannian. After finding [u(1)], the problem is extended to find a sequence of

optimizers to Equation 14 with additional constraints. By solving

(15)

arg min
[u(j)]

P∑
i=1

dpF ([u(j)], [Xi])
2

subject to u(j)Tu(j) = 1

u(j)Tu(k) = 0 for k < j,

it is possible to find {[u(1)], [u(2)], . . . , [u(r)]} where r is the dimension of the span of the

{[Xi]}Pi=1. These subspaces are then central to the collection of points {[Xi]}Pi=1, and will be

used in the construction of the flag mean.

Definition The flag mean of {[Xi]}Pi=1, denoted JµpF K, is a point on the flag manifold

FL(n; 1, 2, . . . , r) where r = dim(span({[Xi]}Pi=1)). Each subspace in JµpF K provides an av-

erage for {[Xi]}Pi=1 that lives on a Grassmann manifold of the appropriate dimension. The

flag mean is built from the ordered 1-dimensional subspaces that optimize Equation 15,

{[u(1)], ..., [u(r)]}. From this sequence of mutually orthogonal vectors, the flag mean is de-

fined explicitly as

(16) JµpF K = span{u(1)} ⊂ span{u(1), u(2)} ⊂ . . . ⊂ span{u(1), . . . , u(r)}.

3.2.1. Simplifying the optimization problem. As presented, the solutions to the

optimization problem in Equation 15 give an intuitive average for the collection of subspaces

{[Xi]}Pi=1, because they optimize a similar cost function to that of the widely used Karcher
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mean and the same cost function as the lesser known extrinsic mean. The methods employed

in Karcher mean algorithms are unappealing for this problem because they would require

solving r separate steepest descent or Newton’s method algorithms. Instead we apply the

equality dpF ([X], [Y ]) = ‖ sin Θ‖2 from Equation 4 to find a fast, analytic solution to the

problem similar to how Srivastava and Klassen solved for [µE] in [24].

Let θ
(j)
i be the lone principal angle between [u(j)] and [Xi]. For j = 1, . . . , r we can

rewrite the cost function of Equation 15 as,

arg min
[u(j)]

P∑
i=1

dpF ([u(j)], [Xi])
2 = arg min

[u(j)]

P∑
i=1

‖ sin θ
(j)
i ‖22(17)

= arg max
[u(j)]

u(j)T

(
N∑
i=1

XiX
T
i

)
u(j).(18)

The equality between Equation 17 and Equation 18 follows from the singular value decom-

position of u(j)TXi.

Substituting Equation 18 in as the new cost function transforms the optimization problem

from Equation 15 into

(19)

arg max
[u(j)]

u(j)T

(
N∑
i=1

XiX
T
i

)
u(j)

subject to u(j)Tu(j) = 1

u(j)Tu(k) = 0 for k < j.

3.2.2. Solving for the flag mean. To find {[u(1)], [u(2)], . . . , [u(r)]}, first define A =∑N
i=1XiX

T
i . For u(1), the problem can be turned into the Lagrangian

(20) L(u(1), λ(1)) = u(1)TAu(1) − λ(1)(u(1)Tu(1) − 1).
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The partial derivatives of L(u(1), λ(1)) are then

(21)

∂L

∂u(1)
= 2Au(1) − 2λ(1)u(1)

and
∂L

∂λ(1)
= u(1)Tu(1) − 1,

so that the first order necessary conditions for optimality are satisfied when

(22)

Au(1) = λ(1)u(1)

and u(1)Tu(1) = 1.

Thus the solution to the eigenvector problem Au(1) = λ(1)u(1) will maximize the cost

function when u(1) is the eigenvector associated with the largest eigenvalue. Once u(1) has

been found, each consecutive u(j) can be computed by solving a Lagrangian with additional

constraints to guarantee that u(j)Tu(k) = 0 for each k < j. Since A is a real, symmetric

matrix, there are r = dim(A) mutually orthogonal eigenvectors associated with non-zero

eigenvalues. If these eigenvectors are ordered by their associated eigenvalues in descending

order the resulting sequence is {[u(1)], ..., [u(r)]}, or the sequential optimizers of Equation 19.

Returning to the definition of the flag mean presented in Equation 16, these dominant r

eigenvectors of A are then used to construct JµpF K.

3.2.3. Alternative computation via the SVD. Finding the r mutually orthogonal

eigenvectors of A can be done in O(n3) flops with standard eigenvector solvers. If we exploit

the properties of the singular value decomposition that computation can be sped up in many

cases.

Let Q =
∑P

i=1 qi and define X = [X1|X2| . . . |XP ], so that X ∈ Rn×Q. The thin SVD

of the bases matrix X is ÛΣ̂V̂ T , where Û = [û(1)| . . . |û(r)] is the n × r orthonormal matrix
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of left singular vectors, Σ̂ is an r × r diagonal matrix whose entries, σ̂(1), . . . , σ̂(r), are the

singular values, and V̂ = [v̂(1)| . . . |v̂(r)] is the n× r matrix of right singular vectors.

Note that XXT =
∑P

i=1XiX
T
i = A, and by using the thin SVD representation of X, we

can rewrite

(23) XXT = ÛΣ̂2ÛT .

Thus up to a change in sign, the r left singular vectors of X are equal to the first r eigen-

vectors of XXT , and are exactly the solutions to the optimization problem in Equation 19,

{[u(1)], ..., [u(r)]}. By solving for the singular value decomposition of X instead of an eigen-

value decomposition of A the complexity changes to O(nQ2) flops, which is typically less

than O(n3) for image and video data.
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CHAPTER 4

Results and Analysis

The original task that led to the creation of the flag mean was to purify clusters of videos

for the Mind’s Eye Project. Thus early experiments with the flag mean are characterized in

that context. This chapter of the thesis will explore applications of the flag mean. The first

section contains synthetic experiments that explore that attempt to build intuition about

what individual subspaces contained in JµpF K represent geometrically. The second section

contains direct comparisons to the Karcher mean on practical experiments, because the

Karcher mean is the Computer Vision industry standard for averaging subspaces. The third

section contains applications with the Carnegie Mellon University, ’Pose, Illumination, and

Expression’ database.

4.1. Synthetic illustrations

This section illustrates how the flag mean differs from the Karcher mean and extrinsic

manifold mean when input data is restricted to a single Grassmann manifold. In these

examples, the full flag from JµpF K is not used. Instead, individual subspaces contained

within JµpF K are examined, and the one that best classifies the data is used. The first data

set shows that the flag mean may be less sensitive to outliers than the Karcher mean, despite

the inability to compute the finite sample breakdown point as explained in Subsection 2.3.6.

The second one shows how the flag mean is more flexible than the extrinsic manifold mean

in the presence of structured data.

4.1.1. Data fitting (robustness). The first data set shows how the flag and Karcher

means represent data on Gr(1, 2), i.e. lines in 2-space, that contain outliers. The data
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Figure 4.1. Behavior of the flag mean (green) and Karcher mean (red) when
outliers are present.

consists of two vectors chosen to be true means, µ̂1 = [0, 1]T and µ̂2 = [1, 0]T , along with

points sampled from a normal distribution around each true mean with a standard deviation

of 0.2. We begin by choosing 30 points around µ̂1 and no points around µ̂2. We then

generate the Karcher mean, [µK ], and the 1-dimensional subspace contained in JµpF K, of the

set of points. Since the angles between the points are fairly small the two means are almost

equivalent, as shown in Figure 4.1a.
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Next, we introduce outliers by adding 15 points around µ̂2 to the 30 we already have

around µ̂1 and calculate the means for the resulting 45 points. The term ’outlier’ may be

slightly abused in this experiment. The goal is to have [µK ] and JµpF K represent µ̂1 as

closely as possible. Thus the term outlier is used here to mean that the data from the

distribution about µ̂2 that is pulling [µK ] and JµpF K away from µ̂1. Figure 4.1b shows that

the Karcher mean is pulled towards the second distribution, while the flag mean is closer

to the mean of the larger distribution. The same is true for 23 outlier points, as shown in

Figure 4.1c. In Figure 4.1d the number of points about µ̂2 is increased to 30, meaning that

the two distributions are now equally represented. In this case there are no real outliers and

[µK ] ≈ JµpF K. Overall, when the data can be described as samples from a dominant class

plus outliers, the flag mean is less influenced by the outliers than the Karcher mean and is

therefore more robust. When the samples are drawn from a single distribution or an equal

number of samples are drawn from two distributions, the two means are approximately the

same.

4.1.2. True data dimension (flexibility). The extrinsic manifold mean is limited

by two requirements: the input data must live on a single Grassmann manifold and the

resulting mean must live on the same manifold. The inability of the extrinsic manifold mean

to handle subspaces of different dimensions is discussed in the real-world experiments of

Section 4.2. This section explores the limitation that [µE] must live on the same Grassmann

manifold as the original data. In particular, this lack of flexibility is a problem when the data

set has many dimensions of noise in addition to the signal dimensions, because the extrinsic

manifold mean must generate a subspace of the same dimension as the data and therefore

include the noise.
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For this illustration we fix a 2-dimensional subspace of R100, [w]. We then generate points

on Gr(10, 100) by letting [Y(i,j)] = span{w,w(i,j)}, where w(i,j) is an orthonormal matrix

representative for a random 8-dimensional subspace of R100 for i = 1 . . . 9 and j = 1 . . . 20.

We then set Di = {[Y(i,1)], . . . , [Y(i,20)]} in order to form D1,D2, . . . ,D9. We let D10 be 20

random 10-dimensional subspaces of R100. The resulting data set consists of nine sets whose

elements share a common 2-dimensional subspace, and one set that is pure noise.

We now create a flag mean for each of these point sets, JµpF K(D1), . . . , JµpF K(D10). Thus

each mean is a flag, and consists of a nested sequence of vector spaces. The histograms in

Figure 4.2 show the normalized pairwise distances between the k-dimensional subspaces in

each flag of D1, . . . ,D10 for k = 1, 2, 5, 10. These values are calculated using the projection

F-norm, and in each histogram the distances have been divided by the maximum distance

so we can compare across dimensions.

We see that when the dimension of the flag mean is low, there are two distinct groups

of distances. The group of small distances are the pairwise ones between D1, . . . ,D9. Since

the points in these sets all contain the 2-dimensional subspace [w] in their span, their low

dimensional means are very close. The set of large distances are those between D10 and

everything else. D10 was created to be an anomaly in our set so we could observe which

mean best represented our full data set. We can see in Figure 4.2d that [µE], the extrinsic

manifold mean (which is also the 10-dimensional JµpF K) does not recognize the mean of D10

as an anomaly.

4.1.3. Fisher’s Discriminant Analysis. This experiment continues down the same

line of thought as the previous subsection. The data is generated in similar way, except that

this time we fix two 2-dimensional subspaces of R100, [w] and [v]. From these we generate
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JµpF K = [µE ]

Figure 4.2. Histograms of the pairwise distances between the k-dimensional
subspaces in the flag means.

two classes of data, D̂ = D1,D2, . . . ,D10 and Ê = E1,E2, . . . ,E10. For each Di we have

20 points created as span{w,w(i,j)} where w(i,j) is a orthonormal matrix representative for

a random 8-dimensional subspace of R100, and for each Ei we have 20 points of the form

span{v, v(i,j)} where v(i,j) is a orthonormal matrix representative for a random 8-dimensional

subspace of R100.
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Figure 4.3. Fisher’s discriminant calculated for k-dimensional flag means of R100.

From the sets of points in these two classes we again generate flag means. This time

we use Fisher’s discriminant to determine how tightly the classes of means are clustered.

From the previous experiment one would assume that when we use 2-dimensional flag mean

for each set of points, the means from class Ê and class D̂ would be tightly clustered with

the means from their own class and Fisher’s discriminant would be high. This is in fact

the case, as is illustrated in Figure 4.3. Once again the 10-dimensional flag mean, or the

extrinsic manifold mean, does a very poor job of separating the two classes of data because

it is forced to represent the 8-dimensions of noise.

4.2. Comparisons to the Karcher mean on practical experiments

While the preceding section used synthetic data to illustrate the differences between some

of the means, this section tests the flag mean and the Karcher mean on complex real-world

tasks. In particular, two tasks that can benefit by computing means of vector subspaces are

exemplar selection and clustering. Exemplar selection is the task of selecting the most pro-

totypical sample in a set, where prototypical is defined as closest to the mean. The k-means
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clustering algorithm computes cluster means as a prelude to measuring distances between

samples and clusters. There are other clustering algorithms that do not require computing

sample means, but they are not addressed in this thesis. We compare the flag and Karcher

means on exemplar selection and k-means clustering applied to subspaces representing video

clips. On both tasks, the flag mean provides comparable or more accurate results than the

alternative in a fraction of the time.

In these tasks, we have again selected a single subspace from within the flag, JµpF K. In

Subsection 4.1.2 and Subsection 4.1.3 it was known ahead of time how many dimensions

of the data were meaningful and how many were noise. In these practical experiments the

dimension of the subspace from JµpF K selected was not known a priori to be be the hidden

dimension of the data. It was chosen because it provided the best results. One advantage of

the flag mean was that information about all the constituent subspaces within JµpF K is known

without additional computations, so the best subspace was simply selected as a showcase.

4.2.1. Mind’s Eye data. The data set contains 2, 345 short videos clips extracted from

larger and longer outdoor videos collected as part of DARPA’s Mind’s Eye project. The video

clips – which we call tracks – were automatically selected through background subtraction

to be centered on a person, although the background subtraction is imperfect and sometimes

only part of the person is visible. All tracks are 48 frames long (about 1.5 seconds) and are

rescaled to a size of 32 × 32 pixels. The tracks were manually assigned labels based on the

action they depict. There are a total of 77 unique labels; Figure 2.1 in Section 2.1 shows

examples of frames from tracks labeled “ride-bike”, “carry” and “walk-group” . The largest

number of tracks associated with a label is 637 (“walk”) and the smallest is 1 (“climb,”

“shove,” etc.).
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For the purposes of these experiments, tracks are treated as 3-dimensional 32 × 32 ×

48 tensors with axes corresponding to width, height, and frame number. The tensors are

‘unfolded’ along each of their axes to create 3 different matrix representations of the data as

depicted in Figure 2.2. The traditional unfolding along the temporal axis turns each tensor

into a matrix of size 1024× 48; the other two unfoldings create 1536× 32 matrices. In these

experiments, the flag and Karcher means are used to compute track means in each of the

three possible unfoldings. Following [16], the distance between two tracks is the product

manifold distance. This means that the distance between tracks T1 and T2 is the sum of the

squares of the geodesic distances based on arc length in the three unfoldings.

One might expect that each unfolding would produce data points on a single Grassmann

manifold; for example, that the temporal unfolding would produce points on Gr(48, 1024).

Often, however, the matrices are not full rank. Physically, this means that some of the

frames in the track are linearly dependent. This is not a problem when computing the flag

mean, because the flag mean does not require that the subspaces being averaged span the

same number of dimensions. It is a problem for the Karcher mean, however. Therefore,

when computing the Karcher mean we replace rank-deficient samples with the nearest point

on the appropriate Grassman manifold.

4.2.2. Exemplar selection. The first task is to choose exemplars from sets of tracks.

On each trial, the system is given a set of similar tracks, and computes the mean of the set

using the flag and Karcher means. For each mean it then selects the closest sample to the

mean as an exemplar. Since the goal is to find exemplars that represent the set well, an

automatically selected exemplar is considered ‘correct’ if the action label associated with the
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Figure 4.4. Rate at which exemplars chosen match the dominant class of a
cluster for various meant types.

exemplar is the most common action label in the set, and ‘incorrect’ otherwise. The quality

of a mean is measured by how often it predicts a correct exemplar.

Some methodological details. First, there are different algorithms for computing the

Karcher mean. We implemented Algorithm 3. Second, the Karcher mean in particular is

sensitive to how similar the samples being averaged are to each other. We therefore formed

similar sets of tracks by clustering. To avoid interactions between the exemplar selection

method and the clustering algorithm, we used an algorithm that does not require computing

means, namely agglomerative clustering with Ward’s linkage. Third, the Karcher mean is

computed by an iterative algorithm that requires a convergence threshold. We tested the

Karcher mean with a strict convergence tolerance of ε = 0.01 and a weak tolerance of ε = 1.

Fourth, the flag mean contains a variable number of nested subspaces depending on the

dimension of the data being averaged; we empirically chose the 10-dimensional subspace in

JµpF K as the best subspace for classification. Finally, as baselines for comparison we also

selected exemplars randomly, and according to their distance from the Euclidean mean.
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Figure 4.4a illustrates how often the exemplar label matches the label of the dominant

action in a cluster. We see that the flag mean (green) is competitive with the strict tolerance

Karcher mean (solid red). It is well known the the Euclidean mean (blue) is poorly suited to

averaging data on Grassmann manifolds, and yet the Karcher mean with a weak convergence

tolerance (dashed red) does almost as poorly. We also notice that the accuracy for each

mean increases as the number of clusters increases. This happens when the average number

of tracks in a cluster approaches 2, making either track an equally valid exemplar.

Figure 4.4b shows the time needed to compute each set of means. Cluster sizes ranged

from 50 to 1200 in increments of 50. The experiment was run with Matlab code timed by

the computer’s wall clock, but even with that caveat the differences are meaningful. On

average, it took 147 seconds to compute the flag mean for a set of clusters, and 3.53 × 103

seconds or about an hour in total. In contrast, it took 2.222 × 104 seconds on average to

create the Karcher means with the strict tolerance, which is the line in Figure 4.4a that is

comparable to the flag mean in accuracy. In total, calculating the strict Karcher means took

5.333× 105 seconds, or over 148 hours. Even for the Karcher mean with the weak tolerance,

computation time was more than that of the flag mean. The weak tolerance Karcher took

941.72 seconds on average and 2.26× 104 seconds or 6.278 hours total.

4.2.3. Naive k-means clustering. The second task is k-means clustering. This algo-

rithm is well-known and iteratively clusters data by computing the means of sets of samples

and then re-assigning every sample to the nearest mean. As a result, it matters both how

accurate the computed mean is and how quickly it can be computed. In this experiment,

we first select 601 videos to cluster from the original set of 2, 345. There are two reasons for

this. First, the original data set has one label (“walk”, with 637 instances) that dominates all
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Figure 4.5. Comparison of k-means clustering on the Mind’s Eye data set
using different means.

others. Second, it was simply not feasible to evaluate k-means clustering with the Karcher

mean even with a loose tolerance threshold on 2, 345 samples. The 601 videos that were

chosen for this experiment have 17 unique labels. The largest class has 187 members and

the smallest has 3.

In the first step of the k-means clustering algorithm we initialize k centers randomly

chosen from our data set. Distances are then calculated between all points and each center,

and points are assigned to the closest center. In the second step, means are calculated from

the data points assigned to each cluster, distances are calculated between the means and all

points, and each point is re-assigned to the mean nearest it. We allow Step 2 to iterate until

the clusters have stabilized, that is, until the calculation of a new mean does not change

cluster membership. We measure the quality of a cluster in terms of its label purity. For

example, if all the samples in a cluster share the same label, its purity is 100%; if half the

samples share a label, its purity is 50%. In general, if there are N samples in a cluster, the

lowest possible purity is 1
N

.

35



In Figure 4.5a, we see the cluster purity for the k-means clusters made using the 10-

dimesional flag mean, the Karcher mean with weak convergence tolerance (ε = 1), and

random samples used as means. The clustering was performed 20 times for each value of k.

The cluster purity is not high for either the flag or Karcher mean, indicating that the data

set is very challenging, but both means beat the random baseline by a significant amount.

As we see in Figure 4.5b, computation time was an order of magnitude bigger for the Karcher

mean when the number of clusters was small. The difference in time decreases as the number

of clusters grows. As the average number of tracks in a cluster shrinks, so does the diameter

of the point set on the Grassmann manifold. This in turn improves the convergence of the

Karcher mean, and can account for this decrease in time. The computation time for the

Karcher mean with a strict convergence tolerance was infeasible on a data set of this size.

4.3. Computations with flags

The aim of this section is to compare flags to flags and subspaces to flags in a way that

respects the structure of a flag as a nested sequence. The order of the subspaces within

a flag is important. The earlier work, which presented in Section 4.2, disregarded much

of the structure of the flag because it was desirable at that time to remain in the familiar

territory of comparing subspaces to subspaces. This section contains more recent material

that works directly with the flags, and attempts to exploit the order of the nested sequence.

To compare flags, we need to define metrics between them. Grassmannian metrics can be

intuitively generalized into flag metrics if the flags live on a single flag manifold. As defined

in Subsection 2.2.3, two flags live on the same manifold if the subspaces in their nested

sequence have compatible dimensions.
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Definition Let I = {q1, q2, . . . , qm} be a collection of integers and let FL(n; q1, q2, . . . , qm)

be the associated flag manifold. Suppose that JXK, JY K ∈ FL(n; q1, q2, . . . , qm). The flag

distance based on arc length between JXK and JY K, denoted d(JXK, JY K), is the sum

of the Grassmannian distances between each of the constituent subspaces in the two flags.

That is,

(24) d(JXK, JY K) =
∑
k∈I

d([X](k), [Y ](k)),

where [X](k) means the k-dimensional subspace contained within JXK. The format of this

definition can generalize all of the Grassmannian distance measures by substituting the

appropriate metric into Equation 24. For example, the flag projection Frobenius norm

is defined similarly as

(25) dpF (JXK, JY K) =
∑
k∈I

dpF ([X](k), [Y ](k)).

In practice the flags generated from PIE images are full flags, that is, their index set I

contains all of the integers between 1 and some number q. However, that number q is not

fixed. An extreme example is that a flag could be created out the span of a single image

vector, i.e., a point on Gr(1, n). The flag generated by this single point then lives on FL(n; 1).

This flag cannot be compared to a flag on FL(n; 1, . . . , q) for any q > 1 with the metric in

Equation 24. Thus, we will define similarity scores that have many of the properties of

metrics but allows us to compare flags from different flag manifolds.

Definition Suppose [X] ∈ Gr(q, n), and JY K ∈ FL(n; p1, . . . , pm). For j = 1, . . . ,m, let θj

be the smallest principal angle between [X] and the pj-dimensional subspace in JY K, [Y ](pj).
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The first-angle similarity score between subspaces and flags is defined as

(26) d̃([X], JY K) =

√√√√ m∑
j=1

θ2j .

Note that θ1 ≥ θ2 ≥ . . . ≥ θm, because the subspaces contained in JY K are nested.

Now suppose JXK ∈ FL(n; 1, . . . , q) and JY K ∈ FL(n; 1, . . . , p) with q ≤ p. For j =

1, . . . , q, let θj be the smallest principal angle between the [X](j) and [Y ](j). The first-angle

similarity score between full flags is defined as

(27) d̃(JXK, JY K) =

√√√√ q∑
j=1

θ2j ,

and again the sequence of θj’s is non-increasing. These two similarity measures are not

equivalent in the case where JXK = [X], but they will both prove to have interesting dis-

criminatory properties. In this thesis, the similarity measure being used will only be denoted

by the notation on the input data. That is d̃([X], JY K) or d̃(JXK, JY K).

4.3.1. PIE data. To take advantage of the structure of the flag mean, this section

will consider a data set that contains multiple meaningful forms of variation; the Carnegie

Mellon University, ’Pose, Illumination, and Expression’ database, or PIE for short [21].

This database consists of color images of the head and shoulders of 68 different subjects.

The subjects were photographed under 42 different lighting conditions (illumination), with

cameras in 13 different locations about their head (pose). Each set of photos was then

duplicated for 4 different facial expressions. With this small amount of expressions, there

is not really enough to do interesting classification so they were excluded from experiments.

Thus all expressions are ’neutral’ for this thesis. The native resolution of each image is
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(a) Pose 04,
Illumination 10

(b) Pose 04,
Illumination 21

(c) Pose 11,
Illumination 10

(d) Pose 11,
Illumination 21

Figure 4.6. Uncropped images of Subject 07 from the PIE data set.

486 × 640 pixels. The images were converted to gray-scale for ease of computation. The

same techniques that are employed in this section could be used on color images, but it

would takes three times as long. Samples of two different illumination conditions and poses

for a single subject are shown in Figure 4.6.

4.3.2. Pre-processing. The PIE data set is well-known, and considered ’cracked’ in

the Computer Vision community. That is, state-of-the-art methods for classification can

accurately classify the samples with perfect accuracy. For example, Beveridge et al. are

able to perfectly identify all subjects in the PIE dataset using the minimum principal angle

between illumination spaces [4]. This thesis will not claim to be the state-of-the-art in

classifying images from PIE. That is not the intention of these applications. Instead, we aim
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to show that even naive classification with the flag mean is good, and that there is room to

use these techniques in areas that other algorithms cannot operate.

To improve error rates, this thesis, like most techniques in the literature, performs some

pre-processing on the PIE images. The images will all be converted to gray-scale. Addi-

tionally they will be cropped and registered by hand so that the eyes of every image are at

the same height. To perform this registration without cutting all images down to just the

eyes, 12 subjects were removed from the data set leaving 56 unique subjects. The removed

subjects typically had the front of their face obscured by the left edge of the image in some

samples. The cropped images are 277 pixels by 299 pixels, and when vectorized they become

vectors in 82823-dimensional space. Additionally, the 42 illumination conditions were broken

up into two sets of 21. In one set, the ambient lighting is turn on and the 21 conditions come

from a variety of flashes. In the other set, the ambient lighting is turned off, and the flashes

are the same. For these experiments, only the samples with the ambient lighting turned off

were used, giving us 21 illumination conditions. The other 21 were discarded because they

included some subjects wearing glasses. This is not an insurmountable obstacle, but does

present some issues that are beyond the scope of this thesis. Samples of the cropped and

registered images that are used for classification can be seen in Figure 4.7.

Once the images have been trimmed and aligned properly, they need to be used to create

subspaces in order for the flag mean to be applicable. Each image is vectorized as described in

Section 2.2. Some number of similar image vectors are then concatenated into a matrix, and

an orthonormal basis for the span of the columns of that matrix is found. This orthonormal

matrix then becomes the representative for the Grassmannian point of that set of images.
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(a) Pose 04,
Illumination 10

(b) Pose 04,
Illumination 21

(c) Pose 11,
Illumination 10

(d) Pose 11,
Illumination 21

Figure 4.7. Cropped and registered images of Subject 07 from the PIE data set.

Since there are three meaningful forms of variation in our modified PIE database, there

remains a choice about how to group the image vectors.

4.3.3. Organization matters. One natural way to organize these PIE images into

subspaces is to fix two of the variables and allow the third to run free. For example, take the

image vectors of one single subject, a single pose, and all possible illumination conditions

and create a point on a Grassmannian. This process could be repeated for the same single

subject and all illumination conditions, but with a different fixed pose each time. This creates

Grassmannian points of one subject’s illumination space, each with a different pose. Points

with this organization will be referred to as Subject-Pose-Illumination points or SPI-points.

Consider a subset of the images that consists of 10 illumination conditions, 10 poses, and

1 expression for a single subject. Thus the subset contains 100 unique images of the subject.
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Figure 4.8. One set of images of Subject 07 with a fixed pose and a variety
of illumination conditions used to create a subspace. This organization creates
an SPI-point.

Figure 4.9. A second set of images of Subject 07 with a fixed pose and a
variety of illumination conditions used to create an SPI-point..

Find an orthonormal basis for 10 images of the subject that share a pose and each have a

distinct illumination condition from the subset. This defines an SPI-point. It is possible to

create 10 distinct SPI-points from the subset of 100 images. The images used to create two

of these SPI-points for Subject 07 are displayed in Figure 4.8 and Figure 4.9.

From the subset of 100 images, create 10 SPI-points, one for each pose. If all ten images

are linearly independent, the SPI-points will be 10-dimensional subspaces of the pixel space,
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Figure 4.10. The first ten images in the flag mean of SPI-points of Subject
07. The points each have a fixed pose and a variety of illumination conditions.

and thus they will live on Gr(82823, 10). It is difficult to visualize the flag mean in an illus-

trative way, but there is intuition to be gained from visualizing the vectors, {u(1), . . . , u(r)},

that are used to create it. The first 10 vectors in the flag mean of 10 SPI-points of Subject

07 are displayed in Figure 4.10. With the exception of the first vector, Figure 4.10 makes

it appear as though each vector in the flag approximates a single illumination condition of

Subject 07, while individual poses are not discernible. This seems reasonable, because the

commonality between the SPI-points used to create the flag mean of Subject 07 is that they

each contain all 10 illumination conditions present in the subset.

Similarly, with the exact same collection of images we could create points organized as

Subject-Illumination-Pose points or SIP-points. These points have a single subject, a single

illumination condition, and a range of poses. The SPI-points and the SIP-points would likely

not live on the same Grassmann manifold, and there would certainly not be the same number

of points of each type. Two of the 10 possible SIP-points of Subject 07 are shown in Figure

4.11 and Figure 4.12.
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Figure 4.11. One set of images of Subject 07 used to create an SIP-point.
The images have a fixed illumination condition and a variety of poses.

Figure 4.12. A second set of images of Subject 07 used to create an SIP-
point. The images have a fixed illumination condition and a variety of poses.

As before, 10 SIP-points are created from the subset, one for each pose. Since an or-

thonormal basis for each point must be found to perform computations, the two represen-

tations of the same collection of images are quite different, and we hope that the flag mean

of the SPI-points and the flag mean of the SIP-points are markedly different as well. The

first 10 vectors in the flag mean of the 10 SIP-points of Subject 07 are displayed in Figure

4.13. This time each vector in the flag appears to approximate a single pose of Subject 07.
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Figure 4.13. The first ten images in the flag mean of 10 SIP-points of Subject 07.

Regardless of interpretation, the two flag means are created from the same 100 images, but

clearly represent those images in distinct ways.

The flag vectors in Figure 4.10 and Figure 4.13 appear potentially meaningful, but can the

two flags be distinguished quantitatively? At a minimum, two flags created out of samples

organized randomly should be more similar to each other than a flag created out of SIP-

points and a flag created out of SPI-points, if the flags all use the exact same image vectors.

Figure 4.14 show the results of 100 trials of this procedure. For each trial, one subject,

ten poses, and ten illumination conditions were randomly selected. The images containing

all possible combinations of those poses and illuminations were used, creating a set of 100

images. From these 100 images, ten points on Gr(10, 82823) were created for each flag. The

flags were compared using the first-angle similarity score for full flags described in Equation

27. The top, blue line shows the similarity score of the SPI-flag with the SIP-flag of these

images, and the bottom, blue line shows the similarity score between the two random flags.

The dotted line shows the average distance between the structured flags and the dash-dot

line shows the average distance between the random flags. As can be seen in the figure, there
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Figure 4.14. Distance between an SIP-flag and an SPI-flag compared to the
distance between two random flags using the same collection of PIE images,
along with their average distances.

were only two trials out of 100 where the distance between the random flags was greater than

the distance between the structured flags.

4.3.4. PIE classification. The results in Figure 4.14 show that organizing the PIE

images in meaningful ways has the potential to separate the different forms of variation in

the set, or at least separate the true variation from the noise. To push this hypothesis further

we attempt supervised classification of the images in the data set based on their subject.

Note that these same computations could be performed to classify images based on pose or

illumination if they were used as our top level variables. The supervision in this experiment

is that we know the labels associated with each sample ahead of time. A portion of the

images will be set aside as test samples. The goal is to match each of the test samples to

the cluster, or mean, associated with their subject.
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The training set consists of the samples corresponding to all combinations of 67% of the

poses, and 67% of the illumination conditions. That means there are 9 × 14 = 126 images

associated with each of the 56 subjects. For each subject we create two flags, a flag made

from the 14 possible SPI-points, and a flag created from the 9 possible SIP-points. The

remaining 33% of the poses and illumination conditions are held out, leaving 4 × 7 = 28

images of each subject where neither the pose or the illumination condition is contained in

the training set. There are also 9 × 7 = 63 images of each subject where the exact image

is not contained in the training set, but the pose has been seen, and 4× 14 = 56 images of

each subject where the illumination condition has been seen. Combining these three types

of images, the test set has 147 samples of each subject that were not included in the training

set. Once the flags have been constructed, each individual test image is compared to all 56

SIP-flags and all 56 SPI-flags using the first-angle similarity score between subspaces and

flags. Each image is then given the subject label of the flag that is closest to it. The labels

from the classification are then compared to the known labels for each test sample. The

confusion matrix for classification based on the SPI-flags can be seen in Figure 4.15 and for

the SIP-flags in Figure 4.16. These matrices show the percentage of samples of Subject i,

that were correctly classified as Subject i.

The matrices themselves can be quite dense, but a few quantities gleaned from them can

provide additional insight. For the SPI-flags, there was an overall error rate of 48.3%. For

the SIP-flags, that error rate was 43.6%. If the numbers are broken down by the type of test

image used, it appears that images where the pose has already been seen in the training set

are easy to classify using the flag means. As shown in Figure 4.17, the error rate for images

that overlap pose using SPI-flags is 1.81%. For the SIP-flags, the error rate is 0.00% as in
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Figure 4.18. In other words, the SIP-flags perfectly classified the test images where the pose

had been seen in the training set.

The high classification rates seen in these test images is not mimicked by the ones where

the illumination condition had previously been seen. It makes sense that classification would

not improve by using a previously seen lighting condition, because as mentioned in Subsection

2.2.1, the illumination subspaces of an object can be spanned with as little as three images

under varying illumination conditions. The error rate for classifying test images of previously

seen illumination condtions using SPI-flags is 83.6%, and using SIP-flags it is 76.3%. These

confusion matrices can be seen in Figure 4.19 and Figure 4.20. Comparably, the error rate

for classifying the test images where neither the pose or illumination condition have been

previously seen is 82.0% using SPI-flags and 76.0% using SIP-flags. In all scenarios the error

rate is lower for SIP-flags than it is for SPI-flags. The confusion matrices for the test images

where neither the pose or illumination have previously been seen are shown in Figure 4.21

and Figure 4.22.

4.4. Analysis

This chapter began with three pieces of motivation for creating a new way to average

subspaces. The first was that the Karcher mean and the L2-median are computed via

iterative algorithms. The derivation in Subsection 3.2.1 shows that we can find an analytic

solution to the flag mean optimization problem. The exemplar selection experiment in

Subsection 4.2.2 and the k-means clustering problem in Subsection 4.2.3, show that the

computation time for the flag mean is significantly less than for the Karcher mean. These

computation times are even faster than the method for computing the extrinsic mean in

some cases, due to the SVD formulation presented in Subsection 3.2.3.
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The second factor to be addressed by the flag mean is that the Karcher mean and L2-

median can only provide a unique optimal solution if the points being averaged live close

enough together on the Grassmann manifold. Distance between points is not an issue for

the flag mean. The rare situation in which the flag mean could find a non-unique optimal

solution is if one or more of the eigenvalues of the matrix A =
∑P

i=1XiX
T
i had a multiplicity

greater than 1. This scenario never occurred in the applications contained in this thesis, but

if it did there are reasonable ways to create a unique optimum. For example, suppose that

the rank(A) = 3, so that λ(1), λ(2), λ(3) were the only nonzero eigenvalues, with associated

eigenvectors u(1), u(2), u(3). Additionally, suppose that λ(1) = λ(2) 6= λ(3). A natural solution

would be to use the flag, JµpF K = span{u(1), u(2)} ⊂ span{u(1), u(2), u(3)}, as the unique

optimal solution. The result is still a flag, it just lives on FL(n; 2, 3) rather than FL(n; 1, 2, 3).

The third and final motivation for creating the flag mean was to average data that lives

on multiple Grassmann manifolds, and be able to compare each data point to the resulting

average. This has been achieved by finding the flag mean as the sequential optimizers to

Equation 19 and through the similarity scores defined in Section 4.3. The examples shown

in Subsection 4.3.3 and Subsection 4.3.4 show that these similarity scores can be applied to

real problems for comparing flags to flags and subspaces to flags.
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Figure 4.15. Confusion matrix for Subject classification using SPI-flags with all test images.
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Figure 4.16. Confusion matrix for Subject classification using SIP-flags with all test images.
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Figure 4.17. Confusion matrix for Subject classification using SPI-flags with test images whose poses overlap
training samples.
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Figure 4.18. Confusion matrix for Subject classification using SIP-flags with test images whose poses overlap
training samples.
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Figure 4.19. Confusion matrix for Subject classification using SPI-flags with test images whose illuminations
overlap training samples.
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Figure 4.20. Confusion matrix for Subject classification using SIP-flags with test images whose illuminations
overlap training samples.
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Figure 4.21. Confusion matrix for Subject classification using SPI-flags with test images that do not overlap
training samples.
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Figure 4.22. Confusion matrix for Subject classification using SIP-flags with test images that do not overlap
training samples.
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CHAPTER 5

Concluding Remarks

This thesis presented a way to represent a collection of subspaces with a flag of best fit,

and applied it to examples to demonstrate its practicality. In particular, the thesis used a

natural, geometric optimization criterion based on the projection Frobenius norm to average

a set of points in the disjoint union of a collection of Grassmann manifolds. It additionally

developed some theory with respect to comparing flags to other geometric objects with a

goal of classification, that can be used as a starting point for further applications. The flag

mean was compared to directly to the Karcher mean and the extrinsic manifold mean, and

differences between the flag mean and the L2-median were discussed.

5.1. Future work

There are many directions that this work could continue in the future. The most im-

mediate extension is to apply the similarity scores used in Section 4.3 to the comparisons

with the Karcher mean in Section 4.2. One of the assumed reasons for the poor performance

of both the Karcher mean and the flag mean on the Mind’s Eye data was that there is a

great deal of variability present. The samples were hand labeled to represent the action

they contained, but it is very possible that that types of variation that humans key in on

are not the only types present. Perhaps if we base classifications on the entire flag created

from a collection of video subspaces, and visually inspect them, we will notice what forms

of variation dominate the classification.

More generally, we would like to extend this work to attempt to sort and cluster images

with multiple forms of variation, like the PIE images, without supervision. The example
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in Subsection 4.3.3 showed that using SPI-points and SIP-points resulted flags that were

further apart than random ones. It is our goal to sort the PIE images by creating flags out

of images selected without supervision that push the flags as far apart as possible.

Other directions for this work will include more rigorous theory around flags and the flag

mean. We wish to do direct comparisons with the L2-median, and hope to show that the flag

mean is typically closer to that point than it is to the Karcher mean. Even though we cannot

compute the finite sample breakdown point for these estimators on the Grassmann manifold,

it would be nice to have intuition about when each type of average is most appropriate.
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