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ABSTRACT

INTENTIONAL MICROGESTURE RECOGNITION FOR EXTENDED

HUMAN-COMPUTER INTERACTION

As extended reality becomes more ubiquitous, people will more frequently interact with com-

puter systems using gestures instead of peripheral devices. However, previous works have shown

that using traditional gestures (pointing, swiping, etc.) in mid-air causes fatigue, rendering them

largely unsuitable for long-term use. Some of the same researchers have promoted “microgestures”—

smaller gestures requiring less gross motion—as a solution, but to date there is no dataset of in-

tentional microgestures available to train computer vision algorithms for use in downstream in-

teractions with computer systems such as agents deployed on XR headsets. As a step toward

addressing this challenge, I present a novel video dataset of microgestures, classification results

from a variety of ML models showcasing the feasibility (and difficulty) of detecting these fine-

grained movements, and discuss the challenges in developing robust recognition of microgestures

for human-computer interaction.
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Chapter 1

Introduction

Gesture recognition is a current focus of extensive ongoing research and development in HCI

and computer vision. As extended reality technology becomes increasingly prevalent, it is antic-

ipated that people will increasingly use gestures as a means to interact with computer systems,

rather than traditional peripheral devices. Previous research has shown that the use of hand ges-

tures, such as pointing and swiping, in mid-air can result in fatigue (“gorilla arm”) [1], making

them unsuitable for extended use. In order to address this issue, Way et al. [2] have proposed

the use of smaller hand motions, known as “microgestures,” which require less movement. These

microgestures are intended to mitigate the issue of fatigue and are adaptable to multiple situa-

tions such as human-object interaction and driving a car [3–7]. In addition, microgestures are

suitable replacements for general gestures if there are physical space constraints while interact-

ing with XR systems. Beginning with simple microgestures for communicating between human

and computer, the study of microgestures has potential to facilitate delivery of complex informa-

tion using microgesture sequences. Despite the potential benefits of utilizing microgestures for

human-computer interaction, there exists no dataset of intentional1 microgestures for the purpose

of training computer vision algorithms for downstream interactions with computer systems, such

as agents deployed on XR headsets. In order to address this challenge, this research introduces a

novel video dataset of microgestures and investigates the performance of various machine learn-

ing models in classifying these gestures. Additionally, I discuss challenges and considerations in

developing robust recognition of microgestures for human-computer interaction.

My research aims to better understand the challenges posed to recognition algorithms by micro-

gestures, which are characterized by their subtle and fast nature. These properties make the task of

1On occasion, research in the computer vision community has used “microgesture” to refer to unconscious movements

that indicate emotional state (e.g., [8]). I use “microgesture” in the HCI sense, referring to some intentional movement

intended to convey information to a system.
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gesture classification difficult, creating a challenge for those working in the field of vision-based

gesture recognition for use in HCI. In response to this challenge, I created the “Microgesture”

dataset, a novel dataset that combines both real and synthetic microgestures, providing a valuable

resource for gesture classification. The Microgesture dataset is the largest dataset of its kind, con-

taining both real and synthetically-rendered videos for the task of hand gesture recognition. The

dataset includes 3,234 RGB-D videos captured in real-world scenarios from 10 different people,

as well as 3,920 RGB videos generated synthetically. In addition, I developed a taxonomy of 49

semantically-distinct gestures with the goal of eventually improving human-computer interaction

inputs. I anticipate that the Microgestures dataset will serve as a benchmark for future research

efforts, providing a valuable resource for the academic and wider research community.

My specific contributions include:

• A novel video dataset consisting of real and synthetically-generated microgestures.

• Classification results from a variety of computer vision algorithms with this dataset, show-

casing the feasibility of automatically classifying microgestures using RGB.
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Chapter 2

Related Works

In this section, I summarize some of the earlier, relevant work in modeling and recogniz-

ing gestures, including key datasets and algorithms, and describe how my methods differ from

previously-existing methods.

2.1 Datasets

There are a number of publicly-available datasets in the field of vision-based gesture recog-

nition, including ChaLearn ISO/ConGD [9], Jester [10], EgoGesture [11] IPN Hand [12], nvGes-

ture [13], and HaGRID [14]. It is important to keep in mind that these datasets lack synthetic

data.

The Jester dataset [10] is the largest dataset containing 148,092 videos that were collected from

1,300 different human subjects, covering 27 distinct actions, totaling over 5 million frames. The

authors propose that larger datasets are necessary to recognize complex and subtle gesture features.

I have the same motivation for my dataset and create both synthetic and real data to give a wider

sample to recognition algorithms. The Jester authors also note the elimination of the requirement

for any external or wearable devices in their study, which I also adopted in my research.

The IPN hand dataset [12] is a continuous gesture dataset which contains 4,000 gesture in-

stances with more than thirty different representative scenarios at 640 × 480 pixels at 30 frames

per second. The IPN dataset has been enhanced by incorporating more features of real data to

effectively train large deep learning networks. Building on this concept, I generated synthetic data

using HDR (High Dynamic Range) images to add further diversity to the dataset.

EgoGesture [11] presents a dataset primarily focused on a first-person perspective, with over

24,000 gesture samples from 50 subjects, including 83 static and dynamic gesture classes. The

authors propose that hand gestures are intuitive and natural for communicating with computers,

and a first-person perspective in XR technology offers a unique human-centered viewpoint. I
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believe such approaches have the potential to revolutionize human-computer interactions through

the integration of microgestures.

The HaGRID dataset [14] aims to improve hand gesture recognition systems for various in-

dustries through device-human interaction. The dataset consists of 552,992 Full HD RGB images

including 18 hand gestures and a “no gesture” class, with at least 34,730 unique scenes. While

HaGRID focused on static hand gestures, my study emphasized the examination of dynamic hand

gestures.

The iMiGUE dataset [15] for emotional AI research focuses on nonverbal microgestures, with

32 gesture categories, 2 emotions, and 18,499 samples from 72 subjects, obtained from online

video interviews. iMiGUE assesses a model’s ability to identify emotions by considering micro-

gestures as an integrated whole, not just isolated prototypes in a sequence. This holistic approach

matches my method for recognizing hand microgestures (Sec. 4).

The nvGesture dataset [13] contains 25 gesture classes (1,532 samples) of dynamic gestures

from 20 subjects. The authors introduced nvGesture to address the challenge of detecting and

classifying hand gestures in real-world human-computer interaction systems.

Finally, Wolf et al. [16] proposed a taxonomy for categorizing microgestures based on usability

and scenarios, which provides a useful framework for design and evaluation. This taxonomy is

used in my research to design microgestures.

2.2 Algorithms

The Jester dataset [10] has been used to show the capabilities of gestures in human-computer

interaction and their potential applications in a wide range of industries, such as automotive, gam-

ing, home automation, and consumer electronics. In constructing their networks [10], the authors

employed a methodology using spatio-temporal filters as it effectively represented spatio-temporal

data in previous approaches, e.g., [17]. Their model was trained using a stochastic gradient de-

scent (SGD) algorithm, with a learning rate of 0.001, for a total of 100 epochs, and with no data

4



augmentation being employed during the training process. The final model achieved a top-level

accuracy of 93.81%.

The IPN dataset [12] was designed to effectively detect and categorize the input stream; to ac-

complish this, they employed two hierarchical model structures, incorporating multimodal (RGB+depth)

3D CNN models with HarDNet (Harmonic Dense Networks) to achieve state-of-the-art results.

The video sequences were segmented into isolated gestures using manually annotated beginning

and ending frames. For the real data used in my study, I used the same methodology and manually

annotated the beginning and ending frames.

In their study, the EgoGesture authors [11] adopted a multimodal approach, utilizing both hand-

crafted and deep-learned features to address two key tasks: classifying gestures in separated data

and identifying gestures in continuous data. The authors demonstrated a high level of performance,

achieving an 89.7% classification accuracy for segmented ego gestures in RGB-D data and a 0.718

Jaccard index using the LSTM-C3D-LL6s8 method for spotting and recognition in continuous

data. For my research, I have chosen to focus on segmented data, where I have extracted frames

from both synthetic and real datasets.

The HaGRID authors [14] used SSDLite with MobileNetV3 for hand detection, with ResNeXt-

101 as the best for gesture classification and ResNet-152 for leading hand classification.

The iMiGUE authors [15] present a Seq2Seq-based unsupervised encoder-decoder model for

microgesture recognition without labeled data. TSM [18], a supervised 2DCNN RGB modality,

was used with a top 1 accuracy of 61.10% and top 5 accuracy of 91.24%.

The nvGesture dataset [13] was collected in both real and simulated environments using a head-

mounted camera in both RGB and depth modalities. The proposed method, which combines color,

depth, and optical flow, achieved 98.2% accuracy and a Jaccard score of 0.98.

In this study, I aim to investigate the classification of microgestures, which is a challenging

task due to the rapid and intricate nature of the hand movements involved. Therefore, accurate

classification of microgestures can have important implications for various fields, such as human-

computer interaction, psychology, and linguistics. To achieve this objective, I propose a novel

5



Microgesture dataset, which is the first and most extensive dataset of its kind for microgesture

classification, to the best of my knowledge.
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Chapter 3

Methodology

Fig. 3.1 presents a visual overview of the different components of the Microgesture dataset:

real and synthetic images against different backgrounds and in different orientations.

Figure 3.1: The dataset includes the following specific types of data: (A) Sequences of cropped real-world

images capturing the gesture from beginning to end; (B) Sequences of synthetic images depicting the same

gesture against a black background; (C) Sequence of synthetic images against a HDRI (High Dynamic

Range Image) scene; and (D) Sequence of synthetic images featuring various HDRI backgrounds, including

nature, night, urban, indoor, and outdoor settings, as well as different angles around the Z-axis.

3.1 Data Collection

I followed the gesture semantics proposed by Kendon [19] and elaborated by Lascarides and

Stone [20], among others, and capture the pre-stroke, stroke (semantic head), and post-stroke of

each gesture in the microgesture dataset.
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Data collection consisted of two segments: recording participants making the 49 microgestures

for the real dataset, and creating and rendering animations of the 49 microgestures for the synthetic

dataset.

To record participants, I used the Microsoft Kinect Azure camera to record both RGB and

depth (Fig. 3.2) at a resolution of 1,920 × 1,080 for 30 frames per second. Three Kinects were

syncronized and positioned with a backdrop of a green screen approximately 30 - 40 cm away

from the participant’s hand. The Kinect system consists of three cameras: a primary camera and

two sub-module cameras (referred to as camera 1 and camera 2). Each of these cameras has a

different delay in capturing images or data. The primary camera is the main camera of the Kinect

system, and it starts capturing images or data without any delay. In other words, it initiates its

operation immediately. However, the sub-module cameras (camera 1 and camera 2) experience

delays before they start capturing images or data. Camera 1 has a delay of 180 milliseconds, which

means it starts capturing 180 milliseconds after the primary camera. Similarly, camera 2 has a

delay of 360 milliseconds, so it starts capturing 360 milliseconds after the primary camera. These

delays between the cameras can be important to consider in certain applications or scenarios. For

example, if the Kinect system is used for motion tracking or depth sensing, the time difference

between camera captures can impact the accuracy of tracking or measurements. It’s essential to

account for these delays when analyzing or synchronizing data from multiple Kinect cameras.

Each Kinect was angled at the central point where participants made the microgestures — this

was done to maximize the amount of data being captured. Every Kinect was between 30 cm and

40 cm away from the participants’ hand. I included a 10 second recording of a checkerboard at

the beginning of each recording session in the event anyone wanted to perform their own depth

calibrations. To facilitate participant interaction and imitation using synthetic data, I placed a

screen in front of the camera setup. This allows participants to observe all the actions displayed

on the screen and replicate them. To accomplish this, I utilized Unity 3D to develop software

capable of generating 49 random movements (Fig. 3.3). The software generates these movements

randomly and records relevant information such as the movement’s name, start time, and end time.

8



Figure 3.2: This image represents the three Microsoft Kinect cameras with a green screen setup for real

data collection.

This data is crucial for later analysis and retrieval of the dataset, ensuring a clear and organized

record of the generated movements.

Figure 3.3: The image illustrates the Unity 3D software, which was used as a creative tool to generate a

varied set of 49 random gestures intended to engage participants.

9



Prior to recording, participants were informed of the procedure to follow for making the mi-

crogestures. Emphasis was placed on explaining the differences between a microgesture over a

gesture. Moving the arm or significantly moving the wrist would not qualify as a microgesture.

For instruction on how to make each microgesture, participants were shown the synthetic data and

the researcher performing the microgesture. Participants were allowed to practice making each

microgesture as the recording proceeded. When they were ready to perform they would enter the

starting position which was an open palm facing the center camera. After the participant made a

microgesture, We marked if it was made correctly [21]. The use of an “incorrect label” to remove

gesture frames that are performed incorrectly ensures that the final dataset only contains gestures

that are performed correctly. The frequency of incorrect gestures indicated the difficulty perform-

ing that gesture caused participants. Overall the data collection, Index finger swipe right, Index

finger swipe down, and Index finger swipe left had 21, 15, and 15 mistakes respectively. Each

participant was recorded for about 45 minutes which allowed for 1-4 rounds of making each mi-

crogesture. Participants were randomly assigned to start with their left or right hand and would

switch between rounds.

To create the synthetic data, a 3D model of a hand was created using Blender 3D software

(Fig. 3.4). All 49 gesture animations were then played on the rigged hand, and the videos were

generated with 2,000 × 2,000 resolution and 30 frames per second. The background was created

using a black image and five High Dynamic Range Image (HDRI) scenes that were randomly

provided to the software as a background of hand gestures. These five HDRI scenes were broken

down into five categories: night, urban, indoor, and outdoor, and each category has four images for

that scenario. The angle of the hand in each video was randomly chosen around the Z-axis (in the

coordinate system used, the Z-axis is up-down).

3.2 Data Statistics

For the real dataset I had 10 participants (60% were male and 40% were female). I collected a

total of 66 videos containing 49 gestures each. This resulted in 66 instances of each microgesture

10



Figure 3.4: The image showcases the Blender software, utilized to generate synthetic data by employing a

3D hand model and animations.

and 3,234 total instances. From this total, I excluded gestures that were incorrectly made by partic-

ipants, leaving us with 3,054 instances from which 184,107 frames were extracted. The dataset of

gestures is characterized by its uniqueness, primarily stemming from the inclusion of participants

from various age groups and racial backgrounds, as well as the noticeable differences in the speed

at which gestures were executed. By encompassing participants of different ages and races, the

dataset reflects a broader representation of the population and ensures a more comprehensive un-

derstanding of how gestures vary across demographic groups. This inclusivity allows for insights

Table 3.1: Comparison of existing gesture datasets, including ours.

Datasets Samples Labels Subjects Scenes Task

ChaLearn ISO/ConGD [9] 47,9339 249 21 1 classification, detection

IPN Hand 4218 13 50 28 classification

Jester Dataset 148,092 27 1376 N/A classification

EgoGesture 24,161 83 50 6 classification, detection

nvGesture 1532 25 20 1 classification, detection

HaGRID 552,992 19 34,730 34,730 classification

iMiGUE 18,499 32 72 N/A classification

Microgesture 301,707 49 10 21 classification

11



into potential differences in gesture styles, preferences, or cultural influences. Furthermore, the

variations in gesture speed within the dataset add another layer of richness and complexity. The

diverse pacing of gestures provides valuable information about individual motor skills, reaction

times, and expressive nuances. It enables researchers or developers to explore and analyze the

impact of timing and rhythm on gesture recognition systems or other related applications. Overall,

the unique collection of gestures within this dataset offers a valuable

For the synthetic dataset, 80 videos of each microgesture were created, all evenly split between

the left and right hands. The background for both the left and right hands were split such that both

had 20 videos with the black background and 20 videos with the HDRI background. 3,920 total

videos were created from which 117,600 frames were extracted.

In the real data collection, the number of frames recorded for each gesture varies between 60

and 81 frames. This variation can be attributed to the different speeds at which participants per-

form the gestures. Some participants may execute the gestures quickly, resulting in fewer frames

captured, while others may perform the gestures at a slower pace, leading to a greater number of

frames being recorded. This variability in frame count provides a more accurate representation of

how gestures are naturally performed by individuals in real-world scenarios. On the other hand,

in the synthetic data, each gesture is captured with a consistent speed, resulting in a fixed duration

of 30 frames for each gesture. This uniformity ensures that all synthetic gestures are standardized

in terms of timing and duration, allowing for easier comparison and analysis. While the synthetic

data may not encompass the same level of variability as the real data, it provides a controlled and

consistent basis for studying gesture patterns and developing gesture recognition algorithms. By

comparing the real data with the synthetic data, researchers and developers can gain insights into

the impact of participant speed variations on gesture recognition systems. Additionally, the con-

sistent speed of synthetic data allows for the evaluation and optimization of gesture recognition

algorithms in a controlled setting. The data statistics of my dataset are represented in Table 3.1 —

I also compare my gestures with other gesture datasets that are currently accessible online.

12



3.3 Dataset Characteristics

I designed all 49 gestures in this dataset to be easy, fast, and low-effort (and hence low-fatigue

over the long term), since these are essential qualities for microgestures to have when considering

HCI applications. I classified the gestures into 17 distinct groups by features of the gesture. I called

this gesture categorization a two-level hierarchy. Level 1 of the hierarchy consists of the gesture

groups and level 2 includes the individual gesture types. Table 3.2 describes the taxonomy of all

49 gesture classes.

Table 3.2: Comprehensive table of all 49 gestures. The second column lists the 17 groups of gestures,

while the third column lists all 49 gestures. The second and third columns are named as level 1 and level 2

gestures, respectively, in the two-level gesture hierarchy.

Level 1 Level 2

1 Single tap index Tap on distal phalanx of index finger w/ thumb

2 Tap on middle phalanx of index finger w/ thumb

3 Tap on proximal phalanx of index finger w/ thumb

4 Single tap middle Tap on distal phalanx of middle finger w/ thumb

5 Tap on middle phalanx of middle finger w/ thumb

6 Tap on proximal phalanx of middle finger w/ thumb

7 Single tap ring Tap on distal phalanx of ring finger w/ thumb

8 Tap on middle phalanx of ring finger w/ thumb

9 Tap on proximal phalanx of ring finger w/ thumb

10 Single tap last Tap on distal phalanx of last finger w/ thumb

11 Tap on middle phalanx of last finger w/ thumb

12 Tap on proximal phalanx of last finger w/ thumb

13 Double tap index 2x tap on distal phalanx of index finger w/ thumb

14 2x tap on middle phalanx of index finger w/ thumb

15 2x tap on proximal phalanx of index finger w/ thumb

16 Double tap middle 2x tap on distal phalanx of middle finger w/ thumb

13



Table 3.2 – continued from previous page

17 2x tap on middle phalanx of middle finger w/ thumb

18 2x tap on proximal phalanx of middle finger w/ thumb

19 Double tap ring 2x tap on distal phalanx of ring finger w/ thumb

20 2x tap on middle phalanx of ring finger w/ thumb

21 2x tap on proximal phalanx of ring finger w/ thumb

22 Double tap last 2x tap on distal phalanx of last finger w/ thumb

23 2x tap on middle phalanx of last finger w/ thumb

24 2x tap on proximal phalanx of last finger w/ thumb

25 Tap once Index finger single tap

26 Tap twice Index finger double tap

27 Move Index finger swipe up

28 Index finger swipe down

29 Index finger swipe right

30 Index finger swipe left

31 Select with index finger

32 Numbers One

33 Two

34 Three

35 Four

36 Five

37 Rotate (In air) Rotate index finger anti-clockwise

38 Rotate index finger clockwise

39 Rotate (Rub) Rub thumb on index finger anti-clockwise

40 Rub thumb on index finger clockwise

41 Slide Slide thumb backward on index finger
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Table 3.2 – continued from previous page

42 Slide thumb forward on index finger

43 Open/close Hand open

44 Hand close

45 Zoom Zoom out using palm

46 Zoom out with index finger and thumb

47 Zoom in using palm

48 Zoom in with index finger and thumb

49 Snap Snap
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Chapter 4

Model Training and Evaluation

To train models on the real dataset, using standard machine learning practice, I collaborated

with my co-authors, benefiting from their valuable assistance. [21] We carefully considered two

different ways of dividing the data into training, validation, and test segments (splits): a split where

all data from individual participants were grouped together (a “participant-wise” split), and a split

where they were not (hereafter, a “traditional” or “gesture-wise” split). For traditional gesture-

based distribution, 80%, 10%, and 10% of gestures were allocated to the train, validation, and test

sets, respectively. Since the allocation was done by level 2 gestures, the dataset contained an equal

portion of level 1 gestures for the train, validation, and test sets. The dataset of the traditional

split was used for fine-tuning various methods including SOTA models (see Table 5.1). With the

participant-wise data split, our goal was to show where and using which models the trained visual

features would applicable to general cases where the individual person has never been seen before

by the model. We assigned gestures belonging to a male and female participant to the validation

and test sets respectively, and the gestures of the remaining participants were allocated to the

training set. The training on the participant-wise split was done for level 1 gestures only (see Table

5.2).

4.1 Random Classification

We first established a random chance classification baseline. For each video in the test set, we

assigned the predicted class randomly, and computed classification accuracy and other metrics for

these random predictions. We then averaged these metrics across 10,000 iterations of randomly

guessing to minimize any noise from the random labeling.
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4.2 Landmark-Based Model

Our second baseline approach uses 3D joint positions extracted from the videos rather than raw

visual features. Videos were preprocessed to extract landmarks on the hands using MediaPipe [22].

MediaPipe is a two-stage pipeline that tracks hands using 21 landmark points made up of X, Y,

and Z coordinates. MediaPipe processes each frame into an array of landmarks normalized relative

to the image dimensions. Fig. 4.1 shows extracted landmarks superimposed on a video frame.

MediaPipe performs well for detecting hands on a frame by frame basis, and has been used in

many projects to aid in static single frame gesture classification, however, not much work has been

done to classify gestures that span multiple frames, like exist in this dataset, and no works have

explored microgestures.

We established a model baseline using this landmark-based approach by selecting 10 frames

starting at the 20th frame for every video in the dataset. Extracted landmarks from the collected

frames were then fed into a neural network classifier (details in Sec. 4.4).

Figure 4.1: Extracted landmarks superimposed on video still.

4.3 Computer Vision Models

We evaluated various computer vision models to determine the feasibility of detecting micro-

gestures with a computer vision method. Models were evaluated on a both level 1 and level 2
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of my gesture taxonomy. Following general practice in gesture recognition, we focused on action

recognition and gesture recognition models which weI fine-tuned for my dataset. The action recog-

nition models we evaluated were VideoMAE [23], Multiscale Vision Transformers (MViT) [24],

3D ResNet [25], and C3D [26]. Note that we used pretrained weights for VideoMAE and 3D

ResNet whereas MViT and C3D were initialized with random weights (see 4.4). The gesture

recognition models, based on Köpüklü et al. [27] used a ResNeXt [28] architecture. These mod-

els were pretrained on two different datasets: EgoGesture [11] and nvGesture [13], following the

training details of each respective work.

4.4 Training Details

we trained all models on the gesture-wise and participant-wise splits of my dataset. To train

the action recognition models, we used 1,000 epochs to fine-tune/train VideoMAE, MViT (base),

3D ResNet, and C3D with a batch size of 8 for VideoMAE and 16 for the others. For all these

models, we used an SGD optimizer with a learning rate of 1e−4. The input images were resized

to I ∈ R
3×224×224, except for when fine-tuning the gesture recognition models, where the input

size was I ∈ R
3×112×112 [11, 13]. These models were checkpointed every 5 epochs and the best-

performing checkpoints were used for evaluation.

In addition, 480 epochs were used to fine tune the state of the art gesture recognition models

(batch size of 16 and a learning rate of 1e−4 were used). 480 epochs was chosen to make a direct

comparison to the best-performing checkpoint of VideoMAE.

For the landmark-based model, we used a 2-layer feed-forward neural network with 20 and

10 units, respectively, all with ReLU activation, followed by a final softmax classification layer.

The model was trained for 100 epochs with an Adam optimizer, a learning rate of 0.001, sparse

categorical cross-entropy loss, and a batch size of 16.
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4.4.1 Train-Test Splits

For this dataset, we created 2 different train-test splits for evaluation. The first is a traditional

gesture-wise split using an 80:10:10 ratio for train, validation, and test sets respectively. The

second is a participant-wise split with the validation and test sets each having gestures from 1

human subject and the rest make up the train set. For each split (gesture and participant), we fine-

tune/train our models for both levels in the hierarchy of gestures, the higher abstract classes and

the lower fine-grained classes.

4.4.2 Metrics

We used the F1 score and top K accuracy to evaluate the classification task. To compare how

each model predicts the exact class of gesture, we measured F1 scores along with precision and

recall. We took advantage of top K accuracy to see the predicted candidates are in the K number

of options although a model missed the first predictions.
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Chapter 5

Results

My results present precision, recall, macroaveraged F1, and top-k classification accuracy for

multiple models, including the landmarks-based classifier. I also contextualize the results by pre-

senting the “random chance" baseline (Sec. 4.1). Metrics were calculated using the Scikit-learn

package, which first calculates macroaveraged F1 over each class and then averages the F1 scores

for all classes.2

5.1 Results on Gesture-wise split

Table 5.1 compares all classification results. Ultimately, VideoMAE exhibited the best perfor-

mance over both vision and landmark-based models. The top-k accuracy of vision models indicate

that the visual features of microgestures are learnable with neural networks, indicating the potential

to utilize microgestures in HCI applications that use such models. Interestingly, the models that

were pretrained on EgoGesture and nvGesture exhibited similar performance to 3D ResNet, which

is based on action recognition, indicating that pre-training on gesture may not provide particular

benefits. For gesture-wise classification at the more fine-grained level (level 2 in my taxonomy),

C3D barely performed better than random classification and the landmark-based model was on

par with or slightly worse than random, showing that classification at this level of granularity is

difficult enough to likely require a custom deep learning model fine-tuned on the dataset.

5.2 Results on Participant-wise split

As shown in Table 5.2, the performance of most models on the participant-wise split was lower

than on the level 1 gesture-wise split. The exception is 3D ResNet, which showed comparable

performance. In addition, MViT and C3D models showed a little performance gap from the random

2As a result, classes with lower than average sample support and lower than average F1 may cause overall macroaver-

aged F1 for a model to fall below both average precision and recall.
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chance model, indicating these models are poor fits for microgesture classification. Generally,

the drop in accuracy when training and evaluating on different participants is expected — such

evaluations approximate how well a trained model could be expected to generalize to an unseen

participant.

Table 5.1: Reported metrics: precision, recall, F1, and top-k accuracy for all evaluated model architectures.

The level column indicated higher (1 - 17 classes) or lower (2 - 49 classes) levels of abstraction for the

defined classes.

Level Model Precision Recall F1 Top-1 Top-3 Top-5

1 Random 9.70 9.03 9.27 10.92 - -

Landmarks 14.85 14.86 11.59 19.37 54.93 72.54

VideoMAE 74.38 73.67 72.72 75.74 94.49 97.79

MViT1 52.67 52.41 51.60 52.86 83.57 92.50

3D ResNet 63.68 58.81 60.36 61.79 92.50 98.21

C3D1 31.77 32.27 31.70 35.71 69.29 83.21

Köpüklü et al. [27]2 54.57 53.99 53.03 54.93 85.92 92.61

Köpüklü et al. [27]3 57.75 56.38 56.03 59.15 88.03 92.96

2 Random 6.91 6.33 6.27 6.34 - -

Landmarks 3.79 7.21 3.63 7.40 20.78 33.45

VideoMAE 67.58 64.90 64.79 65.07 90.44 96.32

MViT∗ 41.27 39.39 38.16 39.29 67.50 77.14

3D ResNet 44.88 43.03 41.35 43.57 78.93 91.43

C3D∗ 8.73 9.86 8.87 9.64 25.00 41.07

Köpüklü et al. [27]2 44.78 41.02 40.45 41.20 73.24 82.04

Köpüklü et al. [27]3 55.18 48.67 48.19 48.59 72.89 82.04
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Table 5.2: Metrics for the 17 level 1 classes (participant-wise train-test split)

Model Precision Recall F1 Top-1 Top-3 Top-5

Random 14.84 17.48 15.11 14.18 - -

VideoMAE 25.05 25.87 20.25 30.15 66.18 81.61

MViT1 5.35 11.16 6.69 15.44 29.41 44.12

3D ResNet 63.24 55.14 56.27 57.35 89.71 95.59

C3D1 12.37 18.18 13.05 18.38 43.38 57.35

Köpüklü et al. [27]2 30.03 32.03 27.67 34.04 68.09 78.01

Köpüklü et al. [27]3 26.42 34.97 26.09 31.21 61.70 74.47
1Trained from scratch.

2Pretrained on EgoGesture.

3PreTrained on nvGesture.
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Chapter 6

Discussion

Figs. 6.1 and 6.2 show confusion matrices for all four action recognition models trained on

the gesture-wise level 1 and level 2 classes, respectively. Classifiers generally performed similarly

across both levels — for example, C3D (top-left) made the most mistakes on both levels while

VideoMAE (bottom-right) performed best. Although both C3D and VideoMAE show similar re-

sults on the UCF101 dataset (90.4% and 91.3%, respectively), VideoMAE substantially outper-

forms C3D on my real dataset for both levels, indicating there are specific design decisions that

successful microgesture models will need to address [23, 26, 29].

Fig. 6.3 shows confusion matrices plots for all four action recognition models trained on the

participant-wise split. We can see that all models had similar and better performance for the single

tap middle and number gesture classes, with 3D ResNet (bottom-left) making the fewest mistakes.

In addition, 3D ResNet was robust to Double tap index, Double tap middle, double tap ring, and

double tap last.

6.1 Misclassfications

Comparing the best-performing models, VideoMAE and 3D ResNet, for both data splits, we

can see what common microgestures are difficult for neural network models to distinguish. For the

level 1 gesture-wise split, both models have trouble identifying the tap twice and tap once classes.

Looking at the fine-grained microgestures from level 2, VideoMAE is unable to predict the slide

thumb forward on index finger (ID 42 — see Table 3.2) microgestures, and 3D ResNet is unable to

predict the similar slide thumb backward on index finger (ID 41) microgesture, perhaps indicating

that these subtle distinctions, even down to the finger level, are difficult for recognition models in

general.

Looking at the confusion matrices from the participant-wise split (Fig. 6.3) we can also see that

3D ResNet and VideoMAE have difficulty in identifying the tap twice and slide gesture classes.
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Figure 6.1: Confusion matrices for level 1 gesture classes for the traditional split. From top left: C3D,

MViT, 3D ResNet and VideoMAE.

6.2 Key Frame Selection for Landmarks

Recognizing more complex gestures is substantially easier if precise key frames are identified

prior to recognition, since this preemptively filters excess noise. Since the landmarks-based ap-

proach performed poorly yet is fast to train, but also used a constant frame selection across all

videos, my collaborators and I wanted to investigate if smarter selection of frames could improve
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Figure 6.2: Confusion matrices for level 2 gesture classes for the traditional split. From top left: C3D,

MViT, 3D ResNet and VideoMAE.

this model’s performance. [30] developed a key frame annotation solution that locates key frames

using a three stage pipeline. First, a simple binary classifier recognizes the general static shape of

a gesture of interest (a “hold”). Next frames in a gesture video are grouped by relative changes

in motion to create “segments.” Finally, we identify segments with some percentage of frames in

“hold” using another binary classifier. Using this data, we can identify the start and end of the key

frames, along with the start and end of the “peak" segment, which contain the most still frames in
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Figure 6.3: Confusion matrices for level 1 gesture classes for the participant-wise split. From top left: C3D,

MViT, 3D ResNet and VideoMAE.

“hold” and could be considered the peak of the key frames [30]. We hypothesized that we could

improve the overall performance of the landmark-based classifier over multiple frames using these

annotated values to select dynamic features on a per-gesture basis.

To test this procedure, an additional experiment was run on a subset of the Microgesture data.

The gestures included in the subset were snap, two, index finger swipe right, hand close, and zoom

in with palm. We trained a feedforward neutral network on the subset to retrieve key frames us-
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Table 6.1: Average reported metrics: precision, recall, F1, and top-k accuracy. 10 frames were gathered for

both methods. Static collection started at frame 20 of each video. Dynamic started at the unique key frame

location for each individual video.

Method Precision Recall F1 Top-1 Top-3

Static 35.28 39.16 33.86 41.48 83.49

Dynamic 66.35 66.48 62.78 69.10 89.10

Table 6.2: Standard deviation of reported metrics: precision, recall, F1, and top-k accuracy.

Method Precision Recall F1 Top-1 Top-3

Static 23.99 20.36 21.97 21.16 9.78

Dynamic 22.80 19.00 22.00 18.28 9.86

ing the same hyperparameters defined in Sec. 4.4, using a leave-one-out split for each of the 10

participants. Tables 6.1 and 6.2 show the average performance and standard deviation of classifi-

cation using the dynamic key frame selection compared to the static method, run on the same 5

gestures [30]. The increase in performance using the dynamic method shows promise as a solution

to improve the overall performance of the landmark based model if trained using the dynamic key

frames across the entire dataset. This makes sense, since the microgesture movements are quite

small and the key frame identification eliminates excess noise.
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Chapter 7

Future Work

Here, I presented a novel microgesture dataset to serve as a benchmark and to encourage re-

search into the use of microgestures interactive systems. However, the current dataset has only

minimal egocentric data (Sec. 3.1) and thus limits the ability to adopt microgestures in XR con-

texts — microgestures are particularly important for XR contexts where the user could conceivably

interact with the system throughout the day.

From an HCI perspective, future work should evaluate how effective my set of microgestures

are from both a fatigue estimation perspective and from a usability perspective. In parallel, com-

puter vision research should focus on identifying which gesture types are most easily recognized

by trained systems. In this work, I showcase the feasibility of detecting various microgestures, but

future work can likely surpass these baselines since I did not explore custom models.

Our used novel technique for intelligent key frame selection [30] increases both performance

and training efficiency — where training modern computer vision models as we used can each

take between 1-5 days, the classifier portions of the key frame selection pipeline can be trained

in a matter of minutes, and the entire procedure approaches the accuracy of some of the top-

performing vision models. This technique is discussed in more detail in [30], but was evaluated

only on a subset of the dataset. A larger evaluation is the subject of future work.
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Chapter 8

Conclusion

Microgestures represent a naturalistic and low-effort strategy for human-computer interaction.

However, prior to this work, microgesture datasets were limited at best, especially from the per-

spective of what would be needed to study them from an AI application perspective. My novel

microgesture dataset includes video recordings of a hierarchy of microgesture types from a multi-

tude of participants. Further, it contains synthetic videos of gestures being performed which can be

augmented with various backgrounds or variations to improve the robustness of the trained model.

My experimental results, which compared random chance, landmark-based, and computer vi-

sion models, show how well micoregestures can be recognized by a computer vision system. While

these results showcase the feasibility of detecting microgestures, they also highlight the difficulties

that need to be overcome for an interactive system to capitalize on microgestures. While this is

just the start of the work that needs to be accomplished to integrate microgestures into HCI appli-

cations, I believe it provides a solid foundation on which the HCI and AI research communities

can build.
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