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ABSTRACT 

 
 
 

UNCERTAINTY AND SENSITIVITY IN A BANK STABILITY MODEL: IMPLICATIONS  
 

FOR ESTIMATING PHOSPHORUS LOADING 
 
 
 

Eutrophication of aquatic ecosystems is one of the most pressing water quality concerns 

in the U.S. and around the world. Bank erosion has been largely overlooked as a source of 

nutrient loading, despite field studies demonstrating that this source can account for the majority 

of the total phosphorus budget of a watershed. Substantial effort has been made to develop 

mechanistic models to predict bank erosion and instability in stream systems; however, these 

models do not account for inherent natural variability in input values. Providing only single 

output values with no quantification of associated uncertainty can complicate management 

decisions focused on reducing bank erosion and nutrient loading to streams. To address this 

issue, uncertainty and sensitivity analyses were performed on the Bank Stability and Toe Erosion 

Model (BSTEM), a mechanistic model developed by the USDA-ARS that simulates both mass 

wasting (stability) and fluvial erosion of streambanks. Sensitivity analysis results indicate that 

variable influence on model output can vary depending on assumed input distributions. 

Generally, bank height, soil cohesion, and plant species were found to be most influential in 

determining stability of clay (cohesive) banks. In addition to these three inputs, groundwater 

elevation, stream stage, and bank angle were also identified as important in sand (non-cohesive) 

banks. Slope and bank height are the dominant variables in fluvial erosion modeling, while 

erodibility and critical shear stress are relatively unimportant. However, the threshold effect of 

critical shear stress (determining whether erosion occurs) was not explicitly accounted for, 
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possibly explaining the relatively low sensitivity indices for this variable. Model output 

distributions of sediment and phosphorus loading rates corresponded well to ranges published in 

the literature, helping validate both model performance and selected ranges of input values. In 

addition, a probabilistic modeling approach was applied to data from a watershed-scale sediment 

and phosphorus loading study on the Missisquoi River, Vermont to quantify uncertainty 

associated with these published results. While our estimates indicated that bank erosion was 

likely a significant source of sediment and phosphorus to the watershed in question, the 

uncertainty associated with these predictions indicates that they should probably be considered 

order of magnitude estimates only.  
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CHAPTER 1: INTRODUCTION 

 

Eutrophication of aquatic ecosystems caused by excessive nutrient loading adversely 

impacts water quality, impairs aquatic habitat, limits recreational opportunities, and increases 

treatment costs. Non-point sources, including urban and agricultural stormwater runoff, have 

been recognized as major contributors of nutrient pollution in the United States while erosion of 

stream channels has been largely overlooked. Phosphorus, which along with nitrogen is a 

limiting nutrient in freshwater ecosystems (Elser et al., 2007), may enter streams directly 

adsorbed to eroded soil particles. While in general it has been shown that bank erosion can be a 

significant contributor of phosphorus to streams (e.g. Kronvang et al., 2012; Langendoen et al., 

2012; Sekely et al., 2002), quantification and prediction of these processes is more elusive. 

 

1.1 Phosphorus Loading and Bank Erosion 

Anthropogenic impacts have significantly altered the global phosphorus cycle, primarily 

through the mining of phosphorus-bearing rock to meet the increasing demand for agricultural 

fertilizer. Cropland fertilizer application has led to the  ongoing accumulation of phosphorus in 

soils, where it becomes a potential source of water pollution (Carpenter et al., 1998; Smith et al., 

1999). Phosphorus is naturally found in soils worldwide, although the abundance and chemical 

composition is controlled by a number of factors including soil texture, pH, metals 

concentrations, and the geology of the soil parent material (Brady and Weil, 2002). Total 

phosphorus content of streambanks is also controlled by these factors (Palmer-Felgate et al., 

2009), although the silt-clay content is often the largest driver (Bledsoe et al., 2000). Streambank 

phosphorus concentrations may also be higher in intensively farmed catchments (Palmer-Felgate 
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et al., 2009) or in deforested areas (Haggard et al., 2007), although others have shown little 

correlation to land use (Nellesen et al., 2011; Tufekcioglu, 2010; Zaimes et al., 2008a). 

There are a variety of anthropogenic and natural sources of phosphorus in aquatic 

systems. Point sources primarily consist of municipal wastewater discharges. Nonpoint sources 

are more diffuse and include agricultural runoff (both from plant fertilizers and animal waste), 

septic tanks, urban stormwater runoff, and channel erosion. Numerous efforts have been made to 

identify and quantify the various sources of phosphorus pollution in watersheds (eg. DeWolfe et 

al., 2004; Kronvang et al., 1997; Sharpley and Syers, 1979). Recent evidence has made it 

increasingly clear that bank and bed erosion may be a significant source of particulate 

phosphorus loading to streams, accounting for between 10% (Sekely et al., 2002) and 40% 

(Howe et al., 2011) of the total phosphorus load in an individual watershed. However, sediment 

and phosphorus loading is only part of the picture. In-channel and overbank storage of eroded 

material can be an important control on downstream transport and the ecological effect of the 

introduced nutrients (Kronvang et al., 2012a). Additionally, geomorphic complexity influences 

nutrient transport and cycling, primarily by impacting residence time and transient storage which 

has important implications for biochemical transformation and uptake (Ensign and Doyle, 2006). 

The chemical partitioning of phosphorus is also important to understanding its transport. 

Phosphorus species are generally insoluble and are typically found adsorbed to soil particles. 

They have a high affinity for the higher specific surface area of clay and silt particles and are 

also found bound in various metal oxyhydroxides including Fe-OH, Al-OH, and Ca-OH (Brady 

and Weil, 2002). Phosphorus may be found in inorganic (typically phosphate, PO4, or phosphoric 

acid, H3PO4) or organic form. The partitioning of phosphate among its various states determines 

its bioavailability for uptake by organisms, which is directly tied to its importance as a limiting 
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nutrient. The relative abundance of bioavailable phosphorus in sediment has been shown to vary 

markedly within single study sites (1-55%; Veihe et al., 2011) and between study areas 

(averaging 0.5-22% of total phosphorus; Nellesen et al. 2011; Thompson and McFarland 2007; 

Hubbard et al. 2003; McDowell and Sharpley 2001; McDowell and Wilcock 2007; Howe et al. 

2011). 

Particulate phosphorus eroded from streambanks may not be immediately bioavailable 

but this may change during downstream transport. For example, if iron-bound phosphorus is 

placed in a reducing environment (such as a lake bottom with low oxygen levels), the iron may 

be reduced from Fe(III) to Fe(II), causing it to solubilize and releasing its stored phosphorus 

(Weitzman, 2008). Because of this, there may be a delay from when phosphorous is eroded from 

streambanks and when the effects of this loading are seen. The bioavailability of phosphorus has 

important implications for its effects on water quality. However, because of the difficulty in both 

measuring bioavailable phosphorus and predicting how the forms of phosphorus will change 

over time, most water quality monitoring programs are focused only on total phosphorus. The 

ultimate fate of this phosphorus and its impact on aquatic ecosystems is a complex and important 

issue but is beyond the scope of this research, which focuses only on total loading. 

 

1.2 Bank Erosion Modeling 

Significant effort has been made to model both bank erosion due to mass wasting (i.e. 

geotechnical failure and collapse of banks) and fluvial erosion (i.e. direct entrainment of bank 

material from flowing water). Other processes such as subaerial erosion (wetting/drying or 

freeze/thaw cycles) and needle ice formation have been identified but are considered less 

effective erosive forces and are generally not incorporated into bank erosion models (Couper and 
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Maddock, 2001; Lawler, 1993; Prosser et al., 2000; Thorne, 1982). Although first developed for 

use with hillslopes, slope-stability relationships exist for both cohesive and non-cohesive soils, 

resulting in the commonly applied Culmann bank stability relationship for planar failures 

(Taylor, 1948; Thorne, 1982). Similar efforts have been made for fluvial entrainment. While 

non-cohesive material can be modeled using a comprehensive force balance (Lane, 1955), 

cohesive material requires a less direct, excess applied shear stress approach (Partheniades, 

1965). Since the development of these basic mechanistic modeling approaches, other 

investigators have attempted to combine the effects of bank failure and fluvial entrainment into a 

single model (Darby et al., 2007; Langendoen and Alonso, 2008; Langendoen and Simon, 2008; 

Osman and Thorne, 1988; Simon et al., 2000). In addition to incorporating the interactions 

between bank failure and fluvial erosion, these modeling efforts also include other complexities, 

such as the effects of pore-water pressure, confining force of the in-stream flow, and vegetation 

effects. Incorporating more complex physical processes requires more intensive model 

parameterization, increasing the amount of field data collection required by model users. These 

models are most effective at the small reach scale and cannot be easily and accurately scaled to 

predict bank instability and erosion for an entire watershed. However, in considering the 

importance of these processes in assessing the relative significance of phosphorus loading 

sources in nutrient management, watershed-scale modeling is essential.  

The maxim “all models are wrong, but some are useful” (Box and Draper, 1987) is 

popularly used as a recognition of model fallibility; however, it is rarely accompanied by a direct 

assessment of just how wrong a model is. Given the complexity of the systems they are designed 

to represent, deterministic environmental models are especially prone to being wrong and it is 

important to understand not only the assumptions and limitations of the model itself, but also 
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how natural variability within the modeled system complicates the results. The uncertainty in 

model output comes from three primary sources: (1) how well (or not well) the physical 

processes being modeled are understood, (2) the simplifying assumptions made by the model, 

and (3) natural variability in the input parameters and sampling error during field data collection. 

These issues may create significant uncertainty in the accuracy of the model results, but few 

models provide a direct quantification of this uncertainty, making it difficult for users to assign 

confidence bounds to their results. To help correct this error, and to specifically examine 

uncertainty associated with point (3), we undertook a detailed uncertainty and sensitivity analysis 

of the Bank Stability and Toe Erosion Model (BSTEM) developed by the U.S. Department of 

Agriculture – Agricultural Research Service (USDA-ARS) (Simon et al., 2000). This model was 

chosen for its inclusion of a number of complex factors (i.e. groundwater and vegetation 

influences), relative ease of use, and strong mechanistic foundation.  

 

1.3 Objectives 

The objectives of this study were to: 

1. Identify the BSTEM input parameters that most influence model output. Determining the 

most important inputs will help model users focus data collection on these variables to 

achieve the highest possible level of accuracy. Conversely, this analysis will also identify 

the least important variables; those that may be safely ignored or set to nominal values 

while losing little explanatory power.  

2. Compare ranges of model outputs to field studies. Comparing estimates of sediment and 

phosphorus loading rates with field studies helps validate the input parameter ranges 
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selected for the sensitivity analysis and demonstrates the impact of input uncertainty on 

model output. 

3. Quantify uncertainty associated with model estimates from a previous study. 

Deterministic modeling results in a single output value from a given set of inputs. 

Probabilistic modeling incorporates variability in inputs by assigning distributions of 

values rather than single numbers. This results in a distribution of output values which 

incorporates the given input variability. This approach quantifies uncertainty associated 

with model results and was applied to a previous deterministic modeling study 

(Langendoen et al., 2012). 

This research is motivated in part by a desire to quantitatively assess the relative importance 

of various nutrient loading sources, including more traditionally recognized sources such as 

municipal wastewater, urban stormwater runoff, and agricultural runoff in addition to channel 

erosion. To achieve this goal, the results of this analysis will be used to inform the development 

of a more parsimonious model to estimate phosphorus loading from bank erosion at a more 

management appropriate scale.  
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CHAPTER 2: METHODS 

 

2.1 BSTEM Introduction 

BSTEM is a mechanistic model developed by the USDA-ARS to predict bank erosion 

from mass failure and fluvial entrainment. BSTEM consists of two submodels, Bank Stability 

and Toe Erosion. The Bank Stability model predicts erosion from bank failure, using a limit 

equilibrium analysis to calculate a factor of safety, the ratio of resisting to driving forces acting 

on the bank. Values greater than one indicate stability while values less than one indicate 

instability. This model incorporates the stabilizing and destabilizing effects of pore-water 

pressure (positive pressure decreasing stability and negative pressure increasing stability), 

increased cohesion due to root reinforcement, and the confining pressure of the streamflow. The 

Toe Erosion model (something of a misnomer as it considers fluvial erosion across the entire 

bank, not just the bank toe) uses an excess shear stress equation to calculate erosion rates along a 

bank face. This model also accounts for increased shear stress on the outside of bends and the 

effective shear stress acting on individual soil grains. A detailed overview of BSTEM is included 

in the Appendix. A schematic bank with the various inputs used in BSTEM is shown in Figure 1. 

BSTEM can also account for the combined effects of fluvial erosion and mass failure. The 

eroded bank profile from the Toe Erosion model can be exported to the Bank Stability model to 

then assess likelihood of failure. A new, dynamic version of BSTEM is under development 

which automates this process over a given flow record. Because this version of the model has not 

been refined and released by USDA-ARS, and due to the added complexity which makes 

isolation of the effects of individual variables difficult, only the original, static BSTEM was 

utilized in this analysis. Sensitivity analyses were applied to the factor of safety output from the 
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Figure 1. Schematic bank diagram with BSTEM inputs labeled. Bold variables are used in both the Bank Stability and Toe Erosion 

models, italicized variables are used in the Toe Erosion model only, and the remaining variables are used in the Bank Stability model 
only. Note that failure plane is not an input variable but is included for illustrative purposes. 
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Bank Stability model, shear stress output for the Toe Erosion model, and eroded area outputs 

from both. 

 

2.2 Input Data 

Input data for the sensitivity analyses were obtained from a variety of sources and were 

intended to be representative of the range of variability observed in the field. A summary of all 

input distributions used in the sensitivity analyses are shown in Tables 1 and 2. Data for 

cohesion, friction angle, and saturated unit weight for banks comprised predominately of sand, 

loam, and clay were obtained from Simon et al. (2011). Sensitivity analyses were performed 

separately for predominately sand, loam, and clay banks to analyze the varying impact on inputs 

for different bank soil types. Only soil-specific input distributions (cohesion, friction angle, and 

saturated unit weight) differed between these analyses. Data for φb, the angle describing the 

increase in apparent cohesion with matric suction, was assumed to follow a uniform distribution 

between 10 and 20 degrees (Fredlund and Rahardjo, 1993). Critical shear stress values for 

different soil types were assumed to follow a lognormal distribution and were computed based 

on BSTEM’s default values for gravel, coarse sand, fine sand, erodible cohesive, moderate 

cohesive, resistant cohesive. BSTEM default values were assumed to be the mean of the 

lognormal distribution while the standard deviation was assumed to be half this value. Erodibility 

followed the same distribution and was calculated for each data point based on the critical shear 

stress value using the following equation (Hanson and Simon, 2001): 

 𝑘𝑘 = 0.1𝜏𝜏𝑐𝑐−0.5 (1) 

Where k is the soil erodibility (cm3/N-s) and τc is the critical shear stress (Pa).
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Table 1. Summary of input data distributions and sources for the sensitivity analyses. *Gamma shape and scale parameters for bank 
height are 1.914 and 1.293, respectively. 

 

 

Distribution 
Type

Mean StDev Lognormal 
Mean

Lognormal 
StDev

Maximum Minumum Source(s) / Notes

Bank Geometry

Bank Height (m) Gamma* 2.47 1.82 -- -- 10 0.5
Andrews (1984); Hey and Thorne (1987); Hickin and 
Nanson (1984); Williams (1986)

Bank Angle (Degrees) Normal 60 15 -- -- 90 45 Assumed
Bank Toe Length (% of bank height) Normal 0.25 0.083 -- -- 0.9 0.003 Assumed
Bank Toe Angle (°) Normal 60 15 -- -- 90 45 Assumed
Channel and Flow Parameters

Channel Slope (m/m) Lognormal 0.0046 0.0050 -5.92 1.12 1.10E-02 7.70E-05
Andrews (1984); Hey and Thorne (1987); Hickin and 
Nanson (1984)

Elevation of Flow (% of bank height) Lognormal 0.528 0.208 -0.71 0.37 1 0.018 USGS gage data (Neuse, White, Yellowstone, Elwha R.)
Duration of Flow (hrs) Constant -- -- -- -- 100 100 Constant value
Bank Material (for each layer and bank toe)
Friction Angle (°) Normal Simon et al. (2011)
Cohesion (kPa) Normal Simon et al. (2011)
Saturated Unit Weight (kN/m3) Normal Simon et al. (2011)
Critical Shear Stress (Pa) Lognormal BSTEM -  distributions based on given values
Erodibility (cm3/Ns) Lognormal Calculated using Eq. 1

φb (°) Uniform -- -- -- -- 20 10 Fredlund and Rahardjo (1993)
Vegetation Rooting Effects
Rooting Depth (m) Normal 1 0.5 -- -- 2.5 0.3 Assumed
Species -- -- -- -- -- -- -- Select randomly from BSTEM options
Age(yrs) Lognormal 10 5 2.19 0.47 38 1.5 Assumed
Assemblage (%) Normal 50 25 -- -- 100 0 Assume single species with varying coverage
Additional Parameters
Radius of Curvature / Channel Width Lognormal 3 1.8 0.95 0.56 12.6 0.5 Hickin and Nanson (1984, 1975); Williams (1986)
Manning's n Lognormal 0.035 0.015 -3.44 0.41 0.1 0.025 Assumed; Chow (1959)
Water Table Depth (% of bank height) Lognormal 0.528 0.208 -0.71 0.37 1 0.018 Same distribution as stage but varies independently
Phosphorus (mg/kg) Lognormal 371 245 5.73 0.63 1,950 50 See Table 3

See Table 2
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Table 2. Summary of soil-specific input data distributions for the sensitivity analyses. 

 

We used the ProUCL software (version 5.0.00) to test if the distribution of each field data 

set were normal, lognormal, or gamma distributed at the 95% confidence level. To test for 

normality or lognormality, the Shapiro-Wilk (S-W) test was used. The Kolmogorov-Smirnov (K-

S) test was used to test for gamma-distribution. The probability distribution for bank height was 

estimated using published field data on bankfull depth or maximum depth (Andrews, 1984; Hey 

and Thorne, 1987; Hickin and Nanson, 1984; Williams, 1986). This sample set spans a variety of 

river sizes but since actual bank height data were not available, the estimation using bankfull 

depth or maximum depth is likely an overestimate of actual bank height. However, since 

BSTEM is usually applied to incised streams, these artificially high values likely reflect the 

range of bank heights for which BSTEM would be applied. The data were shown to follow a 

gamma distribution (K-S; p<0.05) and were constrained to be between 0.5 and 10 m. Bank and 

toe angles were assumed to follow a normal distribution with a mean of 60° and standard 

deviation of 15° and were constrained to the range 45°-90°.Outside these bounds, BSTEM can 

become unstable, especially on the lower end if friction angle is similar to bank angle. Bank toe 

Soil Type Mean Stdev Log Mean Log Stdev Max Min
Sand 29 4.9 -- -- 40 20
Loam 23.3 9.8 -- -- 46 6.8
Clay 18.9 11.1 -- -- 43 1
Sand 0.5 0.74 -- -- 1.9 0.01
Loam 5.3 4.5 -- -- 13.5 0.01
Clay 8.15 6.6 -- -- 26 1
Sand 18.5 0.89 -- -- 21.2 15.7
Loam 18.3 1.3 -- -- 22.4 14.2
Clay 17.6 1 -- -- 20.8 14.4
Gravel 11 5.5 2.3 0.47 42.6 2.3
Coarse Sand 0.51 0.255 -0.78 0.47 1.96 0.11
Fine Sand 0.13 0.065 -2.15 0.47 0.50 0.03
Erodible Cohesive 0.1 0.05 -2.41 0.47 0.38 0.02
Moderate Cohesive 5 2.5 1.5 0.47 19.15 1.05
Resistant Cohesive 50 25 3.8 0.47 191.0 10.5

Critical Shear Stress 
(Pa)

Weight (kN/m3)

Cohesion (kPa)

Friction Angle (°)
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length was also assumed to follow a normal distribution and was scaled to bank height; with a 

mean value of 25% of bank height and standard deviation of 8.3% of bank height. Although 

BSTEM allows for the inclusion of tension cracks in the Bank Stability model, unexpected 

threshold behavior was noted whereby tension cracks were not incorporated into every model 

run (see Appendix for more details). Therefore, tension cracks were excluded from this analysis 

as these thresholds effects could impact sensitivity results for other parameters.  

Channel slope data were obtained from published studies (Andrews, 1984; Hey and 

Thorne, 1987; Hickin and Nanson, 1984). The observed data follow an approximate lognormal 

distribution (S-W; p<0.05). Stage was estimated as a percent of bank height. To determine 

common distributions on rivers of different size in various climates, approximately seven years 

of daily stage data were collected for the White River, Indiana (USGS Gauge 03353000), Neuse 

River, North Carolina (USGS Gauge 02087183), Elwha River, Washington (USGS Gauge 

12045500), and Yellowstone River, Wyoming (USGS Gauge 06186500). Bankfull depths were 

estimated based on break points in published rating curves for these gauges. These cumulative 

data followed a lognormal distribution (S-W; p<0.05). Because BSTEM does not accept a stage 

higher than bank height (i.e. overbank flows), values (as a proportion of bank height) were 

forced to be below one. For this analysis, groundwater elevation was assumed to follow the same 

distribution as stage; however, these values were not correlated.  Hence, for any model run, stage 

and groundwater elevation were likely unequal. Values for radius of curvature are required to 

account for the effect of bends in the Toe Erosion model. These data were obtained from various 

field studies (Hickin and Nanson, 1984, 1975; Williams, 1986). They follow a lognormal 

distribution (S-W; p<0.05) and were constrained to be between 0.5 and 12.6, the limits 

commonly observed in the field (Nanson and Hickin, 1986). Manning’s n was assumed to follow 
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a lognormal distribution with a mean of 0.035 and standard deviation of 0.015. Roughness values 

for natural channels typically range from 0.025 to 0.1 (Chow, 1959), therefore these were set as 

minimum and maximum values for this analysis. 

BSTEM has 23 plant options (22 plant species plus the possibility of bare ground / no 

vegetation) incorporated within the RipRoot submodel. Of these, six are grasses while the 

remainder are woody (i.e. trees and shrubs). Plant age was assumed to follow a lognormal 

distribution (mean = 10, sd = 5) that ranges from 1.5 to 38 years, covering the probable range of 

ages for both woody and herbaceous vegetation. For each model run, the species (and possibility 

of bare ground / no vegetation) was selected randomly from the available options. The percent 

assemblage (percentage of reach composed of selected species) was assumed to follow a normal 

distribution with a mean of 50% and standard deviation of 25%. The remaining assemblage was 

assumed to be bare ground. This approach is limited to a single species as opposed to a mixed 

assemblage which may be observed in the field. Commonly observed rooting depth is typically 

less than or equal to one meter (Shields and Gray, 1992; Sun et al., 1997; Tufekcioglu et al., 

1999; Wynn et al., 2001) with the majority of the root biomass in the upper 30 cm (Jackson et 

al., 1996). For this analysis, rooting depth was assumed to follow a normal distribution with a 

mean and standard deviation of 1 and 0.5 meters, respectively. To limit abnormally shallow 

rooting depths, a minimum of 30 cm was selected. Although maximum rooting depths may be 

much higher (Canadell et al., 1996) or lower (Davidson et al., 1991) than one meter depending 

on the climate, species, and soil type, the majority of the root biomass, and therefore the area of 

increased soil strength, is typically within one meter of the surface. Rooting depth and species 

were purposefully uncorrelated in this study to determine the individual effects of each of these 

variables. 
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While not an input parameter for BSTEM, phosphorus concentration in bank soil is 

another variable with considerable natural variability both within and among sites. Phosphorus 

content of bank materials, in conjunction with bank erosion rates, is essential in determining the 

relative importance of bank erosion as a source of phosphorus in watersheds. Bank phosphorus 

concentrations (throughout this paper, references to phosphorus concentrations indicate total 

phosphorus) were obtained from twelve studies from a variety of locations (Table 3). This gave a 

total of 731 observations which approximate a lognormal distribution (S-W; p<0.05). 

Phosphorus concentrations from this distribution were multiplied by calculated eroded areas for 

the Bank Stability and Toe Erosion models (accounting for the frequency the factor of safety was 

below one or critical shear stress was exceeded) to quantify uncertainty associated with 

phosphorus loading from eroding streambanks.  

Table 3. Sources and sampling locations of streambank phosphorus data used in this study. 

 

 

 

 

 

 

 

 

 

2.3 Sensitivity Analysis 

Uncertainty analysis is the process of analyzing the distribution of model output yielded 

by varying model inputs. Sensitivity analysis looks to quantitatively apportion variance in this 

Study Location 
Bledsoe et al., 2000 Mississippi, USA 
Hongthanat, 2010 Iowa, USA 
Howe et al., 2011 Vermont, USA 

Hubbard et al., 2003 Mississippi, USA 
Kerr et al., 2011 Australia 

Merritts et al., 2010 Pennsylvania / Maryland, USA 
Nellesen et al., 2011 Iowa, USA 

Peacher, 2011 Missouri, USA 
Schilling et al., 2009 Iowa, USA 

Thompson and McFarland, 2007 Texas, USA 
Tufekcioglu, 2010 Iowa, USA 
Veihe et al., 2011 Denmark 
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output distribution to each of the input variables. Sensitivity analysis may be local or global. 

Local analyses focus on the sensitivity of the model around known “true” values of model 

inputs; however, if there is uncertainty in these “true” values, a global approach should be used. 

The global approach examines model sensitivity across the entire possible range of model inputs. 

Since this method is not dependent on assumed values of model inputs (i.e. a moment of the 

model output distribution), it is considered moment-independent (Borgonovo et al., 2011). A 

global sensitivity approach was used for this study. Sensitivity analysis can yield first order and 

higher order effects, depending on its design. First order effects are considered the main effect of 

an input on model output and are the influence of only that input value. Higher order effects 

account for interactions between the variable of interest and the other model inputs. The sum of 

first and higher order effects gives the total or cumulative effect of a variable, including the 

effects of interactions with other variables. The sum of the first order effects for all input 

variables is an indicator of the linearity of the model. If this sum is near one, the model is 

relatively linear with only minimal interaction effects. If, however, the sum is much less than 

one, interaction effects dominate the model (Saltelli et al., 2000). 

Sensitivity analysis results are dependent on the chosen method (Saltelli et al., 2004, 

2000). In general, quantitative values of different sensitivity measures may vary. However, if 

similar relative differences between input variables are observed with different methods, this can 

increase confidence in the results. For BSTEM, two concerns necessitated the use of multiple 

sensitivity analysis methods. First, the BSTEM input plant species is a non-numeric variable. 

Since some methods utilize variable ranking or harmonic oscillations in a variable, these 

methods are not suited for use in this analysis. The second issue is with the Toe Erosion model. 

This model behaves in a highly nonlinear fashion and results in skewed output distributions 
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which make it difficult to converge on an accurate sensitivity value. This problem can be avoided 

by utilizing rank- or log-transformed data; however, variance based methods cannot support this 

transformation (Borgonovo et al., 2014).  For this reason, a density-based method (Plischke et 

al., 2013) that is compatible with log-transformed data was used for the Toe Erosion model. 

Since this method relies on sorting input variables by value, it is not well suited for use on the 

plant species variable. However, this method was also applied to the Bank Stability model to 

allow for more direct comparisons between the two BSTEM submodels. Species importance was 

quantified using this method by dividing the output into the 23 species types (rather than sorting 

from high to low values like the numeric inputs). However, this results in a smaller number of 

“classes” than numeric inputs, possibly impacting the accuracy of these results. A variance-based 

method (Saltelli et al., 2010) that does not require numeric inputs was also utilized to analyze the 

Bank Stability model in order to more accurately capture the effects of plant species on model 

output.  

We used the density-based sensitivity analysis methodology of Plischke et al. (2013). 

Density-based methods are so called because they examine probability density functions of 

model output to estimate the sensitivity of individual inputs. Plischke et al.’s (2013) method is 

advantageous because it is independent of sampling method, allows the use of log-transformed 

data, and can be coupled with a variance-based estimator to yield both first order and total order 

effects. This method consists of sorting the model output on an input variable, dividing this 

output into a number of classes (M = 50), estimating the probability density functions of these 

classes, and quantifying the separation between each of these density functions and the total 

output density function. A variance based first order sensitivity measure was also estimated using 

the classes created in the density method. 
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This method has some inherent bias due to numerical noise introduced in the probability 

density estimation and the partitioning of the data set into classes. To reduce this bias, and to 

provide confidence bounds to our density sensitivity metric, we used a bias-reducing bootstrap 

method. Bootstrapping consists of repeated resampling the initial sample, with replacement, and 

recalculation of the metric of interest. This yields a bootstrap distribution of the metric which can 

yield information on both bias and confidence bounds. From this bias estimate, we obtained the 

bias-reducing bootstrap estimate of the sensitivity index (𝛿𝛿): 

 𝛿𝛿 =  𝛿𝛿 − bıas� �𝛿̂𝛿� = 2𝛿𝛿 − 𝛿𝛿̅∗ (2) 

Where 𝛿𝛿 is the unbiased sensitivity index and 𝛿𝛿̅∗ is the mean of the 2,000 bootstrap estimates. 

While this density based method was utilized for both the Bank Stability and Toe Erosion 

models, a second, variance-based method was also applied to the Bank Stability model. Since 

this method relies only on model output, and does not require numeric model inputs, it is well 

suited to analyze the effect of plant species on the model. The variance-based method of Saltelli 

et al. (2010) allows for the simultaneous calculation of both first and total order indices from 

model output obtained from a prescribed sampling method. Given two independent sampling 

matrices, A and B, each with k columns and N rows, where k is the number of input factors and 

N is the number of simulations, a third matrix, AB, is formed which has k columns and N*k rows 

which consists of all values of A with one term in each row replaced by the corresponding term 

in matrix B. This follows a radial sampling design wherein one a value replaced by a b value in 

matrix AB is returned to its original a value in the subsequent row. Matrix AB therefore consists 

of N blocks of k rows (Table 4). 

Using this radial design scheme, the first and total order sensitivity measures can be 

estimated as follows (Jansen, 1999; Saltelli et al., 2010): 
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Where Si and STi are the first and total order indices of the ith input variable, respectively. The 

matrices A, B, and AB, were constructed from the probability density functions that describe 

each input variables. The Sobol’ quasi-random sequence (Sobol’, 1976) was utilized to sample 

from each of these distributions. Sobol’s quasi-random sequence produces non-random numbers 

that result in more uniform coverage over the range (0,1) than other random sampling 

techniques. Due to this attribute, the Sobol’ sequence was also used for parameter sampling for 

the density based sensitivity method. Details on both these sensitivity methods can be found in 

the Appendix. These uncertainty and sensitivity methods require a Monte Carlo modeling 

approach with a large number of model iterations. To automate this process, BSTEM was 

modified to run iteratively. 

Table 4. The first block of a radial sampling scheme. This is repeated N times for a total 
computational cost of N(k+2). (adapted from Saltelli et al., 2010) 

Matrix Radial Design Model Output 
A a1,1, a1,2, a1,3, … a1,k f(A) 
B b1,1, b1,2, b1,3, … b1,k f(B) 
AB b1,1, a1,2, a1,3, … a1,k f(AB) 
AB a1,1, b 1,2, a1,3, … a1,k f(AB) 
AB a1,1, a1,2, b 1,3, … a1,k f(AB) 
AB … f(AB) 
AB a1,1, a1,2, a1,3, … b1,k f(AB) 

 

An important step in conducting an accurate and robust sensitivity analysis is the 

selection of the sample size, N. For the density method, every model run is used in the sensitivity 

index calculation for each variable; therefore N equals the total computational cost (i.e. number 

of model iterations). However, for the variance method, a radial block sampling design is utilized 
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giving a total computational cost of N(k+2). Since the Bank Stability model has 14 input 

parameters (k), the computational cost of the variance method is 16 times that of the density 

method. In order to maximize sample size (and accuracy of the sensitivity analysis) but minimize 

computational cost, we conducted the sensitivity analysis for each method using a range of 

sample sizes. 

Figures 2A and 2B show the calculated first and total order indices from the variance 

method for the four most influential variables. There is significant scatter in the indices at sample 

sizes below 2,000. For the purpose of this analysis, a sample size of 5,000 was chosen as 

sensitivity indices had reached stable values by this point. This value of N gives a total 

computational cost of 80,000 for the Bank Stability model. The density method was used 

primarily to calculate total order sensitivity indices. Figures 2C and 2D show the change in 

sensitivity indices with increasing sample size for the top four variables for the raw and log-

transformed data, respectively. The trends are similar but the log-transformed data tends to 

converge more rapidly than the untransformed data. Because of the low computational cost of 

this method, a sample size of 10,000 was selected. 

Sensitivity results for the eroded area output of the Bank Stability model were only 

computed using the density method, including only model runs where the factor of safety was 

less than one (i.e. bank was predicted to fail). The sampling design of the variance method was 

not suited to this filtering method. Because three different model runs (one each from matrix A, 

B, and AB) are required to calculate each sensitivity estimator, each of these model runs must 

have a factor of safety less than one to be used in this analysis. The number of these occurrences 

was so low that a sufficient sample size could not be obtained to perform the sensitivity analysis 

for eroded area.
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Figure 2. Calculated sensitivity indices at a variety of sample sizes. Variance-based total order 
(A) and first order (B) indices for factor of safety output, clay banks (Bank Stability model). 

Density based total order indices using untransformed (C) and log-transformed (D) data for shear 
stress output (Toe Erosion model). 

 

For the Toe Erosion model, the density method was used to assess the sensitivity of the 

shear stress and eroded area outputs. The variance method was not utilized for this model 

because of stability and accuracy issues with utilizing a variance-based methodology with such a 

non-linear model (Borgonovo et al., 2014). The shear stress calculation in the Toe Erosion model 

is independent of critical shear stress and erodibility, the only two soil-specific inputs. Therefore, 

only a single analysis was performed for the shear stress output. Sensitivity analysis for the 

eroded area model output was completed for a variety of bank materials: resistant, moderate, and 
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erodible cohesive, coarse and fine sand, and gravel. Similar to the Bank Stability model, model 

runs were only utilized if bank erosion actually occurred (i.e. critical shear stress was exceeded).  

Simplified power regression models were also developed using the BSTEM output data to 

provide another line of evidence for assessing variable importance. Modeling was performed 

using the R statistical software package (Version 2.15.1) using the linear model function and log-

transformed data from clay and sand banks; loam banks were excluded due to the similarity of 

these results to clay banks. 

 

2.4 Comparison with Field Data 

Unit mass loading rates [mass / (stream length * time)] of sediment and phosphorus were 

calculated using the same input distributions as the sensitivity analysis and compared to ranges 

of loading rates published in the literature. Soil types for both the Toe Erosion and Bank Stability 

model were selected randomly for each model iteration, giving a single output distribution for 

both models. To account for frequency of flows, the stage exceedance probability (estimated by 

the cumulative lognormal probability function) was multiplied by the calculated Toe Erosion 

output. In addition, correction for flow through bends was conducted on only half of the Toe 

Erosion model runs to account for both straight and bend sections. For the Bank Stability model, 

the probability of failure (i.e. the percentage of model runs where failure was predicted) was 

multiplied by all outputs, yielding annual loading rates by simulating the probability of failure in 

any given year. These calculated loading rates were scaled nationally to provide a first order 

estimate of sediment and phosphorus loading from banks to compare to published national-scale 

estimates of other sediment and nutrient sources. This was achieved by multiplying calculated 

unit mass loading rates by the estimated 1,204,859 miles of perennial streams in the 
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conterminous U.S. (1:100,000 scale NHD data, Paulsen et al., 2006), yielding a total annual mass 

loading rate. This estimate was then divided by the 8,080,464 km2 land area of the conterminous 

U.S. to give a total mass loading rate per unit land area. 

 

2.5 Uncertainty Analysis 

The probabilistic modeling approach developed for the sensitivity analysis was applied to 

a field data set from the Missisquoi River watershed in northern Vermont (Langendoen et al., 

2012) to quantify uncertainty associated with their results. The Missisquoi River basin is 

approximately 2,230 km2 divided between Vermont, USA (83%) and Quebec, CA (17%). 

Predominant land use in the basin is forest (68%) followed by agriculture (21%) and urban (5%). 

Historic modification to watershed land use and hydrology, along with direct channel 

modification, has resulted in significant ongoing channel evolution. The Missisquoi River drains 

to Lake Champlain, a 1,200 km2 freshwater lake with significant water quality concerns driven 

by excess sediment and nutrients. Observations of bank erosion along the Missisquoi River and 

several tributaries led to a watershed-scale BSTEM modeling effort to quantify sediment and 

phosphorus loading from bank erosion to Lake Champlain (Langendoen et al., 2012). This study 

used a dynamic version of BSTEM to model sediment and phosphorus loading over 30 years of 

flow record to Lake Champlain from the U.S. portion of the Missisquoi River and several 

tributaries under baseline conditions and under various mitigation scenarios. Only baseline 

conditions were considered for this study. 

A total of 27 cross sections from the main stem of the Missisquoi River and several major 

tributaries were used to estimate sediment and phosphorus loading in one or more 2-mile long 

reaches, extrapolating these model results to the watershed scale (Langendoen et al., 2012). We 
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extracted a representative bank height, bank angle, toe length, and toe angle that best 

approximated each cross section. Langendoen et al. (2012) extrapolated flow data from two long 

term USGS gages on the mainstem of the Missisquoi River with records for water years 1980-

2010. They also utilized a simple one dimensional groundwater model, based on the Richards 

Equation, to simulate groundwater table movement. We utilized these given data to develop 

stage and groundwater elevation distributions (as a percentage of bank height) for each cross 

section. These parameters, along with other collected data, were used to model bank erosion and 

phosphorus loading for each representative site using a Monte Carlo approach. For most inputs, 

only single data points were available. It was assumed that these variables followed a uniform 

distribution between 75% and 125% of the given value. If multiple data points were available 

(i.e. geotechnical parameters), the range was extended to 75% of the minimum and 125% of the 

maximum given values. Although simple single-layer banks were assumed in this analysis, 

variability in bank material properties was incorporated by adjusting the frequency of soil-

specific parameters based on the relative thickness of that layer in the original bank. 

In the baseline Missisquoi River modeling, only seven plant species were utilized. All 

assemblages consisted of reed canarygrass (Phalaris arundinacea), sometimes including a 

second species. No data on species age were provided so age was assumed to follow the same 

distribution used in the global sensitivity analysis. While grain size was not incorporated into the 

sensitivity analyses, grain size data were incorporated into this uncertainty analysis. Langendoen 

et al. (2012) neglected BSTEM’s adjustment for flow through meanders, but did include the 

adjustment for effective shear stress acting on individual grains. This method requires a 

representative grain size (d75 in this case), to perform this adjustment (Eq. A8-A9). Bank 

phosphorus content data were available for 15 of the 27 sites (Howe et al., 2011) and were 
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shown to follow a lognormal distribution (S-W; p<0.05). Because soil-phosphorus content 

typically shows a large degree of variability both within and between sites (e.g. Bledsoe et al., 

2000; McDowell and Sharpley, 2001; Nellesen et al., 2011), the full lognormal distribution was 

used for each site. To account for frequency of flows, the stage exceedance probability 

(estimated by the cumulative lognormal probability function) was multiplied by the calculated 

Toe Erosion output. For the Bank Stability model, the probability of failure (i.e. the percentage 

of model runs where failure was predicted) was multiplied by all outputs, yielding annual 

loading rates by simulating the probability of failure in any given year. 
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CHAPTER 3: RESULTS 

 

3.1 Sensitivity Analysis 

Both the density and variance based methods were used to assess the sensitivity of the 

Bank Stability model for the three soil types (clay, loam, sand). For both methods, clay and loam 

showed essentially the same relative variable importance, although quantitative sensitivity 

indices varied slightly (Table 5, Figures 3 and 4, Figures 13 and 14). For both soil types, the 

density method indicated bank height and cohesion were most influential in determining factor 

of safety, with the remaining variables all having sensitivity indices less than half of the cohesion 

and height values. The variance method showed similar trends, however species emerged as the 

third most important variable. The density method first order estimates (a variance-based 

estimator) align well with those obtained from the global variance method; however, the total 

order sensitivity indices from the two methods show considerable divergence. While the relative 

rank of each variable is consistent, the variance method results in consistently larger sensitivity 

indices. This is due to a fundamental difference between the two methods. The density method 

quantifies differences in conditional probability density functions of model output while the 

variance method actually apportions model variance to various input variables. The variance 

based measure therefore has a more physically realistic output – the percentage of total variance 

in the model that can be attributed to an individual variable.  

Total order effects include interactions among variables, and the sum of these values can 

exceed one (100% of model variance). Since the first order estimates incorporate only the main 

effect of each variable (i.e. no interactions), the sum of these values should always be less than  

one. Additionally, this sum can be an indication of the linearity of the model; the difference from 
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Table 5. Summary of total order sensitivity results from the density and variance methods for factor of safety output for the three bank 
types. 

Rank Density Index Rank Variance Index Rank Density Index Rank Variance Index Rank Density Index Rank Variance Index
Height 1 0.281 1 0.776 1 0.260 1 0.757 2 0.158 1 0.394 1.2
Cohesion 2 0.189 2 0.340 2 0.193 2 0.358 5 0.101 5 0.133 3.0
Stage 5 0.066 7 0.064 3 0.096 6 0.067 3 0.123 3 0.240 4.5
Angle 6 0.060 4 0.078 7 0.089 4 0.106 4 0.108 4 0.139 4.8
Phi 4 0.069 5 0.067 5 0.094 5 0.102 6 0.062 8 0.053 5.5
Groundwater 7 0.048 12 0.018 6 0.092 11 0.026 1 0.261 2 0.293 6.5
Root Depth 3 0.080 14 0.013 4 0.094 13 0.013 7 0.061 7 0.083 8.0
Species 10 0.032 3 0.313 14 0.049 3 0.303 12 0.040 6 0.108 8.0
Assemblage 12 0.026 6 0.066 12 0.051 7 0.062 8 0.047 10 0.034 9.2
ToeAngle 9 0.032 8 0.024 9 0.056 9 0.034 9 0.047 11 0.015 9.2
Weight 8 0.035 11 0.021 8 0.060 10 0.027 11 0.044 12 0.014 10.0
ToeLength 11 0.028 10 0.022 10 0.054 8 0.034 14 0.038 13 0.012 11.0
Age 14 0.023 9 0.022 13 0.050 12 0.025 10 0.046 9 0.041 11.2
Phib 13 0.025 13 0.014 11 0.052 14 0.008 13 0.039 14 0.007 13.0

Clay Loam Sand Average 
Rank
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Figure 3. Variance-based total (dark) and first order (light) sensitivity measures for factor of 
safety output for clay banks. Box plots indicate the median, quartiles, and 95% confidence 

intervals. The sum of the first order indices is 0.55 (95% CI: 0.33-0.82). 

 

 
Figure 4. Density-based total (dark) and first order (light) sensitivity measures for factor of 
safety output for clay banks. Box plots indicate the median, quartiles, and 95% confidence 

intervals. The sum of the first order indices is 0.59 (95% CI: 0.45-0.72). 
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one being the amount of model variance attributed to interaction effects (Saltelli et al., 2000). 

The sum of the first order effects for the different soil types range from 0.51-0.78 for the factor 

of safety output, indicating a small to moderate degree of nonlinearity. While all first order 

effects are expected to be less than their corresponding total order effects, this was not observed 

for several variables in the density method. Again, this is likely due to the fundamental 

difference between the physical meanings of these sensitivity indices. While the total order effect 

is a density-based estimator, the first order effect is a variance measure using this same data set. 

For the purpose of this analysis, the first order effects are primarily utilized to assess the relative 

importance of variable interactions. 

For clay and loam, the eroded area sensitivity results from the density method closely 

mirror that of factor of safety (Table 6, Figures 15 and 16), except for higher sensitivity indices 

for bank height and cohesion, accompanied by subsequent reductions in values for the remaining 

variables. The sums of the first order indices are 1.0 and 1.07, indicating essentially no 

interaction effects. This sum exceeds one for clay, likely due to estimation error (the 95% 

confidence interval is 0.86-1.26). 

The results from both methods for sand banks differ significantly from those for clay or 

loam (Figures 5, 6 and 17, Tables 5 and 6). For factor of safety, groundwater, stage, and bank 

angle are considered significant along with bank height, cohesion, and species (for variance 

method only). Sensitivity indices for bank height and cohesion are lower than for clay and loam 

banks. Groundwater is considered most important, second to height, using the density method, 

while these two variable ranks are reversed in the variance method. The relative differences in 

sensitivity indices between input variables are also reduced compared to the clay and loam 

banks, suggesting variables are more similar in importance. Eroded area results for sand identify
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Table 6. Summary of total order sensitivity results from the density method for the Bank 
Stability model eroded area output for the three bank types. 

 

 
Figure 5. Variance-based total (dark) and first order (light) sensitivity measures for factor of 
safety output for sand banks. Box plots indicate the median, quartiles, and 95% confidence 

intervals. The sum of the first order indices is 0.64 (95% CI: 0.40-0.89). 

 

 

 

Rank Density Index Rank Density Index Rank Density Index
Height 1 0.521 1 0.476 1 0.380 1
Cohesion 2 0.260 2 0.284 3 0.117 2.3
Groundwater 7 0.066 4 0.066 2 0.128 4.3
Phi 5 0.077 3 0.070 9 0.032 5.7
Stage 3 0.082 6 0.043 10 0.032 6.3
Angle 4 0.077 8 0.040 8 0.035 6.7
Root Depth 12 0.057 5 0.048 4 0.066 7
Age 9 0.059 11 0.031 6 0.043 8.7
Assemblage 11 0.057 10 0.037 5 0.046 8.7
ToeAngle 6 0.068 9 0.038 12 0.028 9
Weight 8 0.064 7 0.040 14 0.024 9.7
Species 14 0.039 13 0.029 7 0.036 11.3
Phib 10 0.058 14 0.024 11 0.030 11.7
ToeLength 13 0.049 12 0.031 13 0.025 12.7
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Figure 6. Density-based total (dark) and first order (light) sensitivity measures for factor of 
safety output for sand banks. Box plots indicate the median, quartiles, and 95% confidence 

intervals. The sum of the first order indices is 0.78 (95% CI: 0.66-0.89). 

 

bank height as the most important variable, followed by groundwater and cohesion. Other 

important variables identified during the factor of safety analysis (bank angle and stage) are 

greatly reduced in importance (Figure 17). 

The sensitivity analysis for shear stress output from the Toe Erosion model indicated 

channel slope, bank height, roughness (Manning’s n), radius of curvature, and stage were (in 

decreasing order) the most important variables (Figure 7). Slope had the highest sensitivity 

index, more than twice the next highest value (bank height). Even after bias correction, the 

sensitivity analysis resulted in non-zero indices for critical shear stress and erodibility, despite 

the fact that these variables are not used by BSTEM in the calculation of shear stress. This is 

likely due to the inability of the bias correction procedure to completely remove the noise 

associated with the density method. Regardless, the indices for these variables are small (<0.05) 

and their similarity to other variables (toe length, toe angle, and bank angle) reinforce the relative 

unimportance of these remaining inputs. The sum of the first order indices is low (0.25), 
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Figure 7. Density-based total (dark) and first order (light) sensitivity measures for shear stress 
output. Box plots indicate the median, quartiles, and 95% confidence intervals. The sum of the 

first order indices is 0.25 (95% CI: 0.15-0.32). 

 

indicating that interaction effects are highly important in calculating shear stress, accounting for 

75% of the total model variance. 

Generally similar trends between the bank material types are seen for the eroded area 

output from the Toe Erosion model, with bank height, slope, stage, radius, and roughness 

remaining the most important variables in most cases. Toe length, toe angle, and bank angle are 

the three least important variables in each case (Table 7). Due to this similarity, only graphical 

output data for moderate cohesive material are shown (Figure 8). The remaining plots can be 

found in the appendix (Figures 18-22). Critical shear stress increases in importance when values 

are higher (resistant cohesive and gravel). For these two bank materials, critical shear stress is 

ranked higher than erodibility while the opposite is true for the remaining bank types. However, 

indices for these variables are still low (<0.05) indicating that they are still relatively unimportant 

overall in the model. The sums of first order indices for all bank materials were low (0.14-0.20), 

again indicating the importance of interaction effects in this model.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

D
en

si
ty

 S
en

si
tiv

ity
 In

de
x Shear Stress 

31 
 



Table 7. Summary of total order sensitivity results from the density method for the eroded area output of the Toe Erosion model for 
the six bank types. 

 

 
Figure 8. Density-based total (dark) and first order (light) sensitivity measures for eroded area output for moderate cohesive banks. 

Box plots indicate the median, quartiles, and 95% confidence intervals. The sum of the first order indices is 0.17 (95% CI: 0.08-0.25). 

Rank Density Index Rank Density Index Rank Density Index Rank Density Index Rank Density Index Rank Density Index
Height 1 0.178 1 0.201 1 0.213 1 0.267 1 0.293 1 0.303 1
Slope 3 0.066 2 0.104 2 0.119 2 0.152 2 0.151 2 0.159 2.2
Stage 2 0.079 3 0.090 3 0.089 3 0.104 3 0.114 3 0.127 2.8
Radius 4 0.064 4 0.063 4 0.062 5 0.055 5 0.057 5 0.072 4.5
Roughness 6 0.049 5 0.046 5 0.055 4 0.072 4 0.071 4 0.088 4.7
Erodibility 7 0.044 7 0.039 6 0.043 6 0.033 6 0.031 6 0.053 6.3
TauC 5 0.058 6 0.040 7 0.035 7 0.029 7 0.027 7 0.048 6.5
ToeLength 10 0.035 9 0.030 8 0.031 8 0.029 8 0.026 8 0.047 8.5
ToeAngle 8 0.036 10 0.022 9 0.026 9 0.023 9 0.024 9 0.045 9
Angle 9 0.036 8 0.030 10 0.025 10 0.022 10 0.019 10 0.043 9.5
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3.2 Comparison with Field Data 

Output distributions for sediment and phosphorus loading using the global data set show 

that these loadings from bank failure are generally lower than from fluvial erosion (Figures 9 and 

10) and that these model estimates span enormous ranges (8-10 orders of magnitude). Published 

ranges of observed and modeled loading rates from bank erosion fall within the middle of these 

model estimates. Calculated median and interquartile range (IQR) of sediment and phosphorus 

loading rates for the conterminous U.S. are shown in Tables 8 and 9 for comparison with other 

nutrient and sediment sources.  

 
Figure 9. BSTEM output distributions of annual unit sediment loading rates calculated based on 

the global data set. Horizontal lines indicate ranges of bank sediment loading rates reported in 
the literature. [1] Langendoen et al., 2012; [2] Zaimes et al., 2008; [3] Hubbard et al., 2003; [4] 

Tufekcioglu, 2010; [5] DeWolfe et al., 2004; [6] Rhoades et al., 2009. 
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Figure 10. BSTEM output distributions of annual unit phosphorus loading rates calculated based 
on the global data set. Horizontal lines indicate ranges of bank phosphorus loading rates reported 

in the literature. [1] Langendoen et al., 2012; [2] Zaimes et al., 2008; [3] Nellesen et al., 2011; 
[4] Hubbard et al., 2003; [5] Tufekcioglu, 2010; [6] DeWolfe et al., 2004; [7] Miller et al., 2014 

Table 8. Median and interquartile ranges of sediment and phosphorus loading rates from 
streambanks calculated in this study, compared to other sources for the conterminous U.S. 

(Gianessi et al. 1986) 

.  

Phosphorus Loading [kg/km-yr] 

Bank Stability

Toe Erosion

[1] 

[7] 
[6] 

[5] 
[4] 

[3] 
[2] 

10-2 10-1 100 10 102 103 104 105 106 

TSS TP
-million tons/yr- -thousand tons/yr-

Nonpoint sources
Cropland 900 615

Pasture 95 91
Range 2553 242
Forest 344 495

Other rural lands 195 170
Streambanks 553 <1
Calculated 2856 [733-11804] 877 [210-3696]

Gullies 197 <1
Roads 112 <1

Construction sites 54 <1
Other nonpoint 12 64

Point Sources 4 330
Total (w/o calc.) 2719 2007
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Table 9. Median and interquartile ranges of phosphorus loading from streambanks calculated in 
this study, compared to other sources for the conterminous U.S. (Puckett, 1995). 

 

 

3.3 Uncertainty Analysis 

Sediment and phosphorus loading rates were calculated for each reference site using a 

Monte Carlo modeling approach and compared to the original results of Langendoen et al. 

(2012) (Figures 11 and 12, Table 10). Extrapolating our model results to the watershed scale 

results in an estimated mean sediment loading of 23,900 t/yr (IQR: 11,100 – 54,700 t/yr) 

compared to Langendoen et al.’s (2012) estimate of 31,600 t/yr. Volumetric loading rates were 

converted to suspended sediment mass loadings using a median dry density of soil equal to 1,285 

kg/m3 and accounting for the percentage of sediment smaller than 125 microns (Langendoen et 

al., 2012). Estimated watershed scale phosphorus loading rates were 41,900 kg/yr (IQR: 19,300 – 

98,100 kg/yr) compared to Langendoen et al.’s (2012) estimate of 52,000 kg/yr. The annual 

average total suspended sediment and total phosphorus load of the Missisquoi River are 88,700 

t/yr and 145,000 kg/yr, respectively (1995-2009 estimate). This gives an estimated percent 

contribution of streambanks to sediment loading of 26% (IQR: 12 – 59%) compared to the 

original estimate of 36%. Contributions to phosphorus loading were similar, 29% (IQR: 13 – 

68%) compared to the original estimate of 36%.

TP [tons/km2]
Fertilizer 0.69-0.75
Manure 0.53-0.73
Point Source 0.01-0.05
Stream Load 0.02-0.06
Retention 0.93-0.98
Calculated 0.11 [0.03-0.46]
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Figure 11. Missisquoi River sediment loading rates from Langendoen et al. (2012) compared to the probabilistic modeling performed 
in this study. Error bars represent the interquartile range of the model output. Graph at the right compares cumulative sediment loading 

at the watershed scale. 

 
Figure 12. Missisquoi River phosphorus loading rates from Langendoen et al. (2012) compared to the probabilistic modeling 

performed in this study. Error bars represent the interquartile range of the model output. Graph at the right compares cumulative 
phosphorus loading at the watershed scale.
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Table 10. Sediment and phosphorus loading rates for Missisquoi River watershed sites 
calculated during this study compared with those reported by Langendoen et al. (2012) who used 

the dynamic, deterministic version of BSTEM. 

 

 

Median 25% 75% Median 25% 75%
BL1 5.43 34.4 19.1 68.8 8.48 38.1 18.5 90.6
BL2 0.0559 8.9 7.2 12.1 0.105 8.2 6.7 17.3
BL3 1.82 0.0 0.0 0.0 2.53 0.0 0.0 0.0
HB1 15.8 42.2 6.1 175 17.2 45.9 6.9 204
HB3 18.9 9.1 3.6 26.4 20.9 11.1 4.2 34.1
JB-1 8.11 4.8 2.0 9.7 8.8 5.5 2.2 11.3
JB-2 10.5 18.4 10.6 29.9 1.58 22.4 10.9 43.1
M1 69.3 12.5 11.0 14.0 84.6 18.9 17.7 21.0
M2 592 766 217 1549 605 830 252 1833

M2A 140 61.4 32.4 85.6 144 82.3 35.8 111
M3 383 501 244 1168 389 584 274 1433
M4 377 285 146 555 463 321 164 668
M6 357 269 138 610 472 310 159 668
M7 1360 417 219 1273 1390 519 263 1502
M8 32.1 49.7 25.5 96.4 33.3 58.8 31.3 118

MC-1 130 0.6 0.5 1.0 119 0.7 0.5 1.5
MC-2 24.9 11.1 6.5 17.7 21.1 13.0 7.3 21.6

MSII-1 933 548 328 998 1120 642 371 1176
MSII-2 28.5 728 525 1062 13.6 844 587 1230
MSII-3 33.5 218 74.7 527 41.2 263 89 669

MSII-3A 410 739 205 1917 454 821 234 2169
MSII-4 2.2 113 56.4 217 0.328 145 69.6 249
MSII-5 27.2 142 46.7 343 30.9 160 52.9 390

TR1 1780 187 81.6 505 2970 207 89.0 557
TR2 133 301 187 424 64.6 358 216 535
TY1 1770 553 212 1701 1220 677 254 2269
TY2 385 29.8 19.3 45.9 649 35.7 22.5 57.6

Site
CalculatedCalculated

Phosphorus [kg/km-yr]Sediment [m3/km-yr]
Langendoen et al. 

(2012)
Langendoen et al. 

(2012)
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CHAPTER 4: DISCUSSION 

 

4.1 Sensitivity Analysis – Bank Stability 

Previous studies have performed sensitivity analyses on a variety of bank stability models 

(although not to the extent and rigor as this analysis), yielding both similar and dissimilar results. 

Of the bank material properties, cohesion is considered more important than friction angle or 

weight (Parker et al., 2008; Samadi et al., 2009; Van de Wiel and Darby, 2007), consistent with 

the results of this analysis. However, while height was identified as influential by some (Samadi 

et al., 2009), others determined it was less influential than other parameters such as bank angle 

and cohesion (Van de Wiel and Darby, 2007). Bank angle was generally recognized as highly 

significant (Samadi et al., 2009; Van de Wiel and Darby, 2007), contrary to our results which 

ranked angle no higher than fourth for the factor of safety output. While angle was considered 

important using high nominal values, its importance has been shown to increase as angle 

decreased (Samadi et al., 2009; Van de Wiel and Darby, 2007). It is possible that angle is more 

influential in shallow sloped banks and the lower bound of 45 degrees used in this analysis is too 

large to capture these effects. Bank height showed a similar increase in importance at lower 

values (Van de Wiel and Darby, 2007), a trend which can also been seen in the conditional 

probability density functions developed using the density method (Figure 23). 

The relative importance of groundwater depth also varied among studies, either being 

considered highly important (Langendoen and Simon, 2008) or nearly insignificant (Samadi et 

al., 2009). This may be explained in part by relative cohesion values in each of these local 

sensitivity analyses. Groundwater was considered more important when cohesion values were 

low (Langendoen and Simon, 2008), similar to our results for low-cohesive, sandy banks where 
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groundwater was considered the most important variable. It is expected that groundwater 

increases in importance as cohesion is reduced. In the model, groundwater depth influences the 

extent and magnitude of matric suction (negative pore-water pressure) within the bank 

(calculated by BSTEM based on the groundwater table level) which influences the apparent 

cohesion of the bank and subsequent stability. As actual soil cohesion is reduced, other sources 

of cohesion (including groundwater and vegetation effects) would be expected to increase.  

Vegetation has been shown to most influence bank stability at low cohesion (and height) 

values (Van de Wiel and Darby, 2007). While vegetation variables (species, root depth, age, and 

assemblage) were identified as more important for sand banks than clay or loam using the 

density method, only root depth was ranked higher in sand in the variance method. However, 

since BSTEM does not allow root depth to exceed bank height, some correlation between these 

variables was introduced which could artificially increase the calculated importance of root 

depth. Vegetation is generally considered to be a major control on bank stability (Pollen, 2007; 

Simon and Collison, 2002; Thorne, 1990), leading to the significant effort of incorporating the 

RipRoot model into BSTEM (Pollen and Simon, 2005). It is therefore surprising that vegetation 

parameters do not more significantly influence model output. Species type is identified as the 

third most important variable for clay and loam banks using the variance method, but it 

considered relatively unimportant if the density method is used. However, this method is not 

designed for use with non-numeric variables, making it difficult to view the species result for this 

method with much confidence. Examining the output distributions from the density method 

indicates that for clay banks, two species result in significantly different outputs than the 

unconditional data (Figure 24A). These species are eastern gammagrass (Tripsacum dactyloides) 

and Alamo switchgrass (Panacum virgatum) which have by far the highest maximum root 
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densities off the BSTEM species. The importance of these species was further demonstrated by 

performing a regression analysis on BSTEM output for factor of safety. This identified these two 

species as the most influential in predicting factor of safety in clay banks, with power regression 

coefficients an order of magnitude greater than any other (0.287 and 0.155 compared to 0.009-

0.048 for the remaining species; Table 11). For sand banks, there is far less divergence in 

conditional outputs (Figure 24B), a trend corroborated by the regression analysis. Although 

Alamo switchgrass still has the highest coefficient, other species (e.g. cottonwood and pine) 

increase in influence. In fact, nearly all species have significantly higher coefficients for sand 

banks than clay banks (Figure 25). Clearly not all species are created equal, with some having a 

significant effect on the model while others may be nearly negligible. However, like other 

variables, this relationship varies under different bank conditions. Contrasting these results, 

previous RipRoot modeling has shown that woody species, and especially Geyer’s willow (Salix 

geyeriana), resulted in the greatest increase in total bank cohesion and that the number of large 

roots was more important than root density (Polvi et al., 2014). While this study considered only 

increases in total bank cohesion, both shrubs and trees were shown to result in more stable banks 

compared to grasses and forbs (Polvi, 2011). 

The effects of vegetation on bank stability and erosion are complex and scale dependent. 

For example, root densities are dependent on soil type and texture, with highly cohesive clays 

inhibiting rooting while loamy or sandy soils allow for well-developed root networks (Dunaway 

et al., 1994). This can lead to sandy banks being more stable than clay banks due to variable 

rooting effects. In addition, significant debate has surrounded the relative stabilizing effects of 

grasses versus trees (Lyons et al., 2000), a phenomena which is likely scale dependent (Anderson 

et al., 2004). Trees tend to have higher root densities at depth than grasses (Wynn et al., 2001), a 
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complexity that was not accounted for in this analysis which could explain the relative 

importance of grass species over tree species in clay banks. Root depth relative to bank height is 

also an important control on bank stability. Due to higher shallow root densities, grasses may be 

better at stabilizing short, shallow banks while trees are more effective for tall, steep banks 

because their roots are able to span the entire bank face (Lyons et al., 2000). 

 

4.2 Sensitivity Analysis – Toe Erosion 

An unexpected result of the sensitivity analysis for the Toe Erosion model is the relative 

unimportance of critical shear stress and erodibility, the two parameters specific to soil type. The 

basis of the Toe Erosion model is an excess shear stress relationship (Eq. A5) in which the 

erosion rate is linearly related to the applied boundary shears stress and the erodibility and 

critical shear stress of the bank material. This would imply that the Toe Erosion eroded area 

output has a relatively similar sensitivity to all three of these variables (applied shear stress being 

a function of bank geometry, channel slope, radius of curvature, and roughness). However, the 

sensitivity analysis results show that erodibility and critical shear stress are relatively 

unimportant compared to the input variables that determine applied shear stress. For highly 

erodible soil types (e.g. fine sand or erodible cohesive), critical shear stress values can be nearly 

negligible compared to applied shear stress values (as much as 3-5 orders of magnitude 

difference). This results in critical shear stress being essentially eliminated from Eq. A5 (Hanson, 

1990). Although erodibility and critical shear stress are inversely correlated, erodibility values 

remain well below that of applied shear stress and also exhibit a smaller degree of variability. 

Thus, applied shear stress becomes by far the dominant term in the excess shear stress equation, 

explaining the relative importance of variables influencing this value. This also explains why 
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critical shear stress is more influential in soils with higher critical shear stress values (such as 

resistant cohesive and coarse gravel); the relative difference between critical and applied shear 

stresses is greatly reduced. Other researchers have also shown that when predicting bank erosion, 

critical shear stress is increased in importance as grain size (and critical shear stress) increases 

(McQueen, 2011). It should be noted, however, that the sensitivity methods used in this analysis 

do not account for the important threshold effect of critical shear stress in determining whether 

erosion occurs (only when the applied shear stress is greater than this critical value). Therefore, 

this parameter is likely much more important in determining the magnitude of bank erosion than 

is indicated by these results. 

The magnitude of variability of an input variable is directly related to its importance in 

the model. It is therefore no surprise that slope was consistently identified as an important 

parameter, given that it varies across three orders of magnitude. On the other hand, specific 

weight exhibits very little variability (range of ~6 kN/m3), meaning that even if it significantly 

influences bank stability, it does not vary enough to considerably impact model output. 

 

4.3 Comparison with Field Data 

Annual phosphorus loading rates were comparable to ranges published in the literature 

(Figure 10). While many studies had much narrower ranges, most values fall near the middle of 

the two output distributions. This provides some realistic validity to these model results and 

illustrates that the wide range of calculated values corresponds well to observations reported in 

the literature. Output distributions of sediment loading rates are slightly higher than published 

literature values (Figure 9). This potential overestimation of sediment loading rates by BSTEM 

may be due to measurement error and inaccurate estimation of model parameters, particularly 
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underestimating the soil specific parameters critical shear stress and cohesion (or potential 

overestimation of bank height). In addition, many of the studies for which data are shown here 

were concerned with only suspended sediment loading from bank erosion. We did not account 

for sediment size in this analysis, potentially explaining our higher computed values. These 

results suggest that bank failure and toe erosion contribute similar magnitudes of sediment and 

phosphorus to watersheds; however, the relative importance of these processes varies between 

studies. Previous research has shown that fluvial parameters have a greater influence on BSTEM 

modeling than stability inputs (McQueen, 2011; Midgley et al., 2012) and that fluvial erosion 

may account for a larger proportion of total watershed sediment budgets than mass wasting 

(Laubel et al., 2000; Pizzuto, 2009), although this is likely dependent on site specific conditions. 

Others have shown that mass wasting may be of similar (Luppi et al., 2009) or much greater 

importance than fluvial erosion (Simon et al., 2011). The dynamic coupling of fluvial erosion 

contributing to bank instability is also an important consideration but was not incorporated into 

this modeling effort. 

Annual mass loading rates of sediment and phosphorus from streambanks calculated in 

this study are much higher than published values for streambanks or any other source in the 

conterminous U.S. (Table 8; Gianessi et al., 1986). While literature estimates for suspended 

sediment contribution from streambanks was similar to other sources (553 million tons/yr), total 

phosphorus loading was reported as minimal (<1 thousand tons/yr). There was an apparent 

failure to recognize the potential for streambanks to contain significant phosphorus 

concentrations. Simple calculation of phosphorus loading from the given 553 million tons of 

annual sediment loading (assuming a phosphorus concentration of 600 mg/kg) yields 332 

thousand tons/yr, falling between forest and range contributions. More recent estimates of 
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nationwide agricultural phosphorus loading are much higher, 3,539 and 3,201 thousand tons/yr 

for 1997 and 1987, respectively (Ruddy et al., 2006).  Our median estimates are approximately 

25% of these values; again suggesting that phosphorus loading from bank erosion can be 

significant compared to more traditionally recognized sources. Compared to other estimates 

(Table 9; Puckett, 1995), our calculations also fall between point sources and manure and 

fertilizer loading, although the small reported values for stream load suggests that much of the 

phosphorus load is being retained in watersheds (i.e. bed, bar and floodplain deposition).  

The ranges of values given by our estimates illustrate the uncertainty associated with 

modeling at this scale. IQRs of one or two orders of magnitude calls into question the accuracy 

of the results and indicates that mechanistic modeling at this scale, with the significant 

uncertainty associated with input variables, may not produce results with acceptably narrow error 

bounds. However, these results are not meant to be an accurate estimation of national-scale 

phosphorus and sediment loading. Instead, they indicate the importance of uncertainty in 

modeling efforts and show that bank erosion nationally may be of similar significance (as an 

order of magnitude estimate) as other sediment and phosphorus sources. 

 

4.4 Uncertainty Analysis 

The probabilistic modeling approach acceptably approximated the results of Langendoen 

et al. (2012), considering the simplifications inherent in the analysis. There are some notable 

exceptions where our modeling approach underestimated the sediment and phosphorus loading 

rates. This, along with the underestimate of the cumulative sediment load may be explained in 

part by the use of the static rather than the dynamic version of BSTEM. Incorporating feedback 

between the Toe Erosion and Bank Stability model would likely have led to slightly higher total 
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sediment and phosphorus loading rates as fluvial bank erosion alters bank geometry and 

potentially increases the incidence of bank failure. In addition, use of a single bank layer can 

mask the effects of variable soil stratigraphy, although it is difficult to speculate on whether this 

would result in higher or lower model estimates. 

The IQR varies significantly for each site and generally increases with the median value. 

In addition, median values are generally in the lower half of this range, indicative of positive 

skewed output distributions (e.g. lognormal), similar to the output distributions observed in the 

global analysis. The range of variability is also not consistent among sites, with MSII-3A, M2, 

M7 and TY1 having significantly large IQRs compared to other sites. Sites with larger variability 

in input values of critical shear stress also tend to have more variable outputs. However, the 

shear stress values also have to be low enough to result in at least a moderate proportion of 

model runs (>10-15%) to experience erosion (τ>τc). This importance of critical shear stress is in 

stark contrast to the results of the sensitivity analysis which indicated that this variable was 

relatively unimportant. As discussed previously, this is likely due to the threshold effect of 

critical shear stress (determining whether or not erosion will occur, in addition to the magnitude 

of the erosion) which cannot be captured by the selected sensitivity methods. Phosphorus trends 

largely follow those of sediment, unsurprising since the same input distribution of phosphorus 

concentrations was used for all sites.  

Our modeling approach significantly under-predicted both sediment and phosphorus 

loading for TR1 and TY2 and significantly over-predicted loading for MSII-2. It is difficult to 

pinpoint the exact source(s) of these inaccuracies but the most likely explanation is the 

homogeneous bank material assumed in this analysis. While we attempted to incorporate 

variability in soil-specific input parameters (e.g. critical shear stress) by weighting the frequency 
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of these values by the thickness of the original bank layer, this does not take into account the 

spatial orientation of these soils of varying erodibility. A bank consisting entirely of highly 

erodible material behaves very differently from a bank with erodible material at the top and a 

less erodible toe. These sites had layered banks with significantly different soil-specific 

parameters. These results indicate that capturing spatial heterogeneity in bank material properties 

is important for accurately modeling bank erosion. However, the close agreement between model 

results from other sites demonstrates that if differences in soil properties are less pronounced, the 

assumption of simplified homogeneous banks still yields accurate results. 

The uncertainty in cumulative annual sediment and phosphorus loads estimates reflect the 

variable uncertainty observed among modeled sites. For both sediment and phosphorus, the 25th 

and 75th percentiles are approximately half and twice the median value, respectively. While this 

is a relatively large error bound, it is lower than might be expected when applying a site-scale 

model to a relatively large watershed. It may be that order of magnitude estimates (i.e. tens of 

thousands of tons annually) are a more suitable product of this type of analysis than absolute 

values. Although Langendoen et al. (2012) reported a baseline sediment contribution from 

streambanks as 36%, this analysis indicated the actual value could range from 12% to 59% (or 

~17-70% if we assume half and twice the reported value, respectively). Similarly, phosphorus 

contribution from streambanks were reported as 36% of the total, but could range from 13% to 

68%. Despite these rather large ranges, it is still probable that streambanks are a significant 

source of sediment and phosphorus to the Missisquoi River. Others have found that streambank 

suspended sediment contributions tend to be around three times the contribution of phosphorus 

(Laubel et al., 2003; Sekely et al., 2002). However, another study from Vermont found similar 

contributions (31% of total suspended sediment and 25% of total phosphorus) as in the 
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Missisquoi River watershed (DeWolfe et al., 2004). Including more complexity into the model, 

notably multi-layered heterogeneous banks and dynamic modeling, would likely have impacted 

these error ranges. Error bounds may be increased or decreased with the inclusion of bank 

layering, depending on specific geometry, but would likely increase with dynamic modeling due 

to feedbacks between the submodels and changes in bank geometry over time. 

 

4.5 Implications for Managers 

The results of this analysis may be of particular interest to managers and model users 

who wish to use BSTEM to obtain accurate and reliable bank stability and erosion results, but 

are limited in the amount of field data they can collect due to budget, time, or other constraints. 

The greatest focus should therefore be on the most influential variables. In addition to having 

different relative influences on model output, model parameters also vary in the effort required to 

accurately measure them. For example, bank height was identified as one of the most important 

variables for both the Bank Stability and Toe Erosion models, regardless of soil type. 

Fortunately, bank height is relatively easy to measure in the field. The uncertainty in bank height 

would mostly come from larger scale modeling where bank height needs to be quantified at a 

large reach or small watershed scale. Spatial variability will therefore be the largest factor in 

accurately assessing this variable. 

Slope, used to calculate shear stress, is a highly important variable in the Toe Erosion 

model. Ideally, this slope value would be the friction slope, sometimes assumed equal to the 

water surface slope. Although slope is relatively easy to measure with standard surveying 

equipment, it varies spatially along a river and temporally at a specific site. Bed slope should 
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remain relatively fixed over a range of discharges, but using bed slope in the model assumes 

uniform flow which may not always be valid.  

Soil cohesion and critical shear stress are both influential soil-specific parameters that are 

also very difficult to measure. The borehole shear test device (Lohnes and Handy, 1968) is often 

used to measure cohesion and friction angle of in-situ soils. While this device is relatively 

inexpensive, it can be laborious to use, especially if a large number of measurements are 

required. Cohesion can also be measured by standard laboratory testing, although this can be 

costly. Additionally, bank material strength can be estimated by measuring both stable and 

unstable banks in the field and plotting the observed heights versus angles. The graphical 

threshold between stable and unstable banks can be used with the Culmann stability equation and 

assumptions of specific weight and friction angle to back out an operational cohesion value. This 

operational cohesion value incorporates additional strength parameters such as vegetation but 

assumes consistent conditions among the surveyed bank sites. Regardless of the method used, 

significant effort should be made to accurately quantify bank soil cohesion at a variety of points 

throughout the reach in question (including in all visible soil layers, if applicable). If modeling 

sandy or un-cohesive banks, cohesion becomes less important and groundwater more so. 

Although direct measurement of groundwater levels in near-bank wells provides the most 

accurate information, this is likely not feasible for most studies. Therefore, groundwater 

elevation can either be calculated based on known stages using a simple groundwater model (e.g. 

Langendoen et al., 2012) or can be assumed to equal stage. This approach ignores the effects of 

differential stage and groundwater levels on the rising and falling limb of a hydrograph which 

may impact model accuracy. Stage can often be obtained from gage data and extrapolated to the 

site of interest by normalizing to bank height.  
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Relatively unimportant parameters (i.e. 𝜙𝜙𝑏𝑏, toe length and angle, soil weight, and non-

species vegetation parameters) can be set to nominal or assumed values (or ranges of values) 

without losing significant explanatory power of the model. Species is the only vegetation 

parameter to have significant influence on model output; however, this may be largely due to the 

outsized effect of two species in particular (gamma grass and Alamo switch grass), at least in 

cohesive banks. Therefore, identifying at least the type of dominant species present (i.e. grass vs. 

tree/shrub) and whether these species are known to have high root densities is important. 

Regardless of the difficulty in obtaining field data for specific inputs, spatial and 

temporal variability is an important consideration. Therefore, every effort should be made to 

quantify parameters at various points throughout the reach of interest and use these data to 

pursue a more probabilistic modeling approach. When modeling at a larger scale, subdividing the 

study area into “representative reaches” is likely a suitable approach, as long as heterogeneities 

both within and between sites are accounted for. If a Monte Carlo approach is not feasible, model 

users should at least vary inputs at discrete values across the observed range in order to quantify 

uncertainty associated with their model estimates. If multiple data points are not available for a 

particular input, this may be varied around the single available value by some fixed uncertainty 

percentage. 

To fully characterize watershed-scale water quality impacts, it is important to quantify 

nutrient loading from all potential sources, including bank erosion. We have demonstrated that 

there is substantial uncertainty in modeling sediment and nutrient loading from bank erosion, but 

what is more crucial is how this compares with uncertainty in estimated loads from other 

sources. It is essential to compare uncertainty between various loading estimates to adequately 

assess the relative importance of various nutrient sources in a watershed. 
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4.6 Limitations of this Study and BSTEM 

There are a number of simplifications made during this analysis that, along with 

assumptions inherent in BSTEM itself, limit the applicability of these results. First, BSTEM is 

only designed to model planar failure. While this type of failure is common on short, steep 

banks, it proceeds by a very different mechanism as rotational failure, which is more often 

observed on taller, shallower banks (Thorne, 1982). BSTEM is able to model cantilever failure; 

however, this complex bank geometry was not included in this analysis. Another major 

simplification was the use of homogeneous bank material. Banks often consist of two or more 

layers of soils with different geotechnical parameters (Karmaker and Dutta, 2010; Parker et al., 

2008; Thorne, 1982), not to mention micro-scale variability within layers of the same soil type. 

Also, while BSTEM can accept complex bank geometries, only simplified banks with a uniform 

angle were utilized. These simplifications to bank geometry and composition may affect the 

applicability of the results of this analysis to complex, composite streambanks. In addition, these 

simplifications, along with the use of a static rather than dynamic BSTEM model, likely 

impacted the accuracy of the Missisquoi River probabilistic modeling. Assuming single-layer, 

homogeneous banks and not incorporating feedback between the Toe Erosion and Bank Stability 

models could explain our generally lower sediment and phosphorus loading rates for both 

individual sites and the watershed as a whole, compared to the results of Langendoen et al. 

(2012). 

In addition to rotational failures, BSTEM also does not account for other erosion 

mechanisms, including pop-out or seepage failure and subaerial processes. While these processes 

are generally less influential than other failure and erosion mechanisms, they may be significant 

under certain conditions (Cancienne et al., 2008; Prosser et al., 2000). However, they are 

50 
 



dependent on very different physical processes. Seepage failure is controlled primarily by 

groundwater/stage differential, porosity, and the presence of macropores in the bank material 

(Fox et al., 2007a; Wilson et al., 2007). Therefore variables that aren’t included in BSTEM, 

namely porosity and permeability, would likely be significant. Although seepage erosion has 

been directly quantified (Fox et al., 2007b), only early attempts have been made at developing 

regression models (Fox et al., 2007a, 2006) and mechanistic models (Chu-Agor et al., 2008a, 

2008b; Fox and Felice, 2014) to predict erosion rates. Subaerial processes are controlled by 

freeze/thaw and wetting/drying cycles which loosens exposed soil (Couper and Maddock, 2001; 

Couper, 2003). Climatological variables, including the number of freeze/thaw cycles and the 

number of days with frost have been shown to be correlated with subaerial erosion rates (Couper 

and Maddock, 2001; Pizzuto, 2009), but these variables control soil moisture content, the main 

driver of subaerial erosion (Thorne, 1982). Subaerial processes are likely not significant in all 

cases. Lawler (1995) suggests that scale is an important driver in principal bank erosion 

processes, with subaerial erosion, fluvial erosion, and mass wasting dominant in the headwaters, 

mid-basin region, and lower reaches, respectively. This is supported by studies in which 

subaerial erosion has been shown to be important in small watersheds (Harden and Foster, 2009; 

Prosser et al., 2000). BSTEM would likely not perform well in areas where subaerial erosion 

dominates or significantly influences other erosive processes. 

While BSTEM does incorporate the stabilizing effects of vegetation on bank stability, it 

does not include any increased resistance to fluvial erosion from vegetation (likely through 

increasing critical shear stress). Plant roots and thick grass assemblages have been shown to 

significantly increase bank material resistance and even completely prevent fluvial erosion 

(Pollen-Bankhead and Simon, 2010; Prosser et al., 2000; Smith, 1976). Vegetation increases 
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roughness and deflects flow, limiting the shear stress experienced by the bank material (Thorne, 

1990). However, instream wood from riparian forests can deflect flow into the bank, causing 

locally increased scour (Trimble, 2004, 1997), although this process is complex and scale-

dependent (Anderson et al., 2004). Nonetheless, vegetation effects on fluvial erosion are likely 

significant and their omission from BSTEM and this analysis limits the applicability of these 

results. 

Finally, sensitivity analysis results are influenced by the distributions of input variables 

used in the model (Saltelli et al., 2000). The ranges and distributions used in this sensitivity 

analysis were meant to be representative of actual field conditions; however, they cannot reflect 

the complete variability of input parameters that are observed. Therefore, care should be taken 

when applying the results of this analysis to a system in which parameters differ significantly 

from the ranges used herein. 

 

4.7 Future Research 

In this study, we developed a simplified probabilistic version of BSTEM to quantify 

uncertainty associated with bank stability and erosion modeling. This approach accounts for 

uncertainty in input values and can provide more robust bank stability analysis than a 

deterministic modeling approach by providing a probability of failure rather than a single factor 

of safety value (Parker et al., 2008). We recommend that a complete probabilistic version of 

BSTEM be developed. Ideally, this would include both the static version utilized herein and the 

dynamic version currently under development by USDA-ARS.  

Even a probabilistic BSTEM is still a site-specific model. To more accurately quantify 

the potential for bank erosion to contribute to phosphorus loading at the watershed scale, a true 
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watershed-scale model must be developed. Uncertainties and spatial heterogeneity in input 

values only increases at larger scales and accounting for the effect of this uncertainty on model 

predictions is critical.  These complexities may be addressed in part by watershed segmentation 

into relatively similar modeled reaches and accounting for uncertain input parameters to address 

inherent heterogeneity.    

The results of this analysis can inform development of a simplified watershed-scale 

model. Specifically, the most influential variables from the Bank Stability model (height, 

cohesion, groundwater, stage, and species) and Toe Erosion model (slope, height, stage, critical 

shear stress) will be incorporated while other variables may be ignored or set to nominal values. 

Furthermore, incorporating two bank layers would likely increase model accuracy while adding 

minimal complexity. Finally, a dynamic model with feedbacks between fluvial erosion and bank 

stability calculations will provide the most physically meaningful results and allow for modeling 

with specific hydrologic regimes. 
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CHAPTER 5: CONCLUSIONS 

 

Geomorphic systems are inherently complex and predicting their behavior can be 

challenging at best. Understanding how this natural complexity manifests itself within a model 

framework is essential for determining the uncertainty associated with these predictions. We 

performed a sensitivity analysis of a bank stability and erosion model (BSTEM) to quantify the 

effects of input parameter uncertainty on model output (objective 1). We determined that 

variable importance fluctuates under different conditions (e.g. bank soil type) but identified some 

general trends. Bank height and cohesion were both identified as influential for predicting 

stability in banks with more cohesive soils. Groundwater, stage, and bank angle increased in 

importance as cohesion was reduced. Species type was also considered important, although 

remaining vegetation parameters tended to have little influence. Parameters used to calculate 

shear stress (especially slope) were much more influential in modeling fluvial erosion than soil 

specific parameters; although the importance of critical shear stress on determining whether or 

not erosion would occur was not explicitly accounted for. Model outputs were compared to 

previously published rates of sediment and phosphorus loading (objective 2). Varying all input 

parameters across their probable ranges resulted in correspondingly large ranges of both 

sediment and phosphorus loading rates, which matched relatively well to ranges of published 

values. Applying a probabilistic modeling approach to a previous watershed-scale modeling 

study allowed for a quantification of uncertainty associated with these published results 

(objective 3). While our estimates indicated that bank erosion was likely a significant source of 

sediment and phosphorus to the case study watershed in question, the uncertainty associated with 

these predictions means they should probably be considered order of magnitude estimates only. 

54 
 



Given the uncertainty associated with modeling bank erosion, we recommend a probabilistic 

modeling approach that accounts for the effect of input variability on model output. The results 

of this study, namely the quantification of variable importance and the impacts of input 

variability on model output, can also be used to inform the development of a parsimonious 

watershed-scale model to estimate sediment and nutrient loading from bank erosion.
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APPENDIX 

 

A.1 BSTEM Summary 

BSTEM is a mechanistic model developed by the USDA-ARS to assess bank stability 

and susceptibility to erosion. BSTEM consists of two submodels, Bank Stability and Toe 

Erosion. The Bank Stability Model uses a modified Mohr-Coulomb analysis to determine the 

resisting strength of the bank material under saturated conditions: 

 𝑆𝑆𝑟𝑟 = 𝑐𝑐′ + (𝜎𝜎 − 𝜇𝜇) tan𝜙𝜙′ (A1) 

Where Sr is the shear strength of the soil (kPa), c’ is effective cohesion (kPa), σ is normal stress 

(kPa), μ is pore-water pressure (kPa), and ϕ’ is the effective friction angle (°). Normal stress is a 

function of the weight of the failure block (W) and the angle of the failure plane (β): 

 𝜎𝜎 = 𝑊𝑊cos 𝛽𝛽 (A2) 

BSTEM also accounts for an increase in soil shear strength due to matric suction. In an 

unsaturated bank, soil pores are filled with both air and water, potentially resulting in negative 

pore-water pressure (i.e. matric suction). This negative pressure provides an additional resisting 

force by creating a greater attractive force between adjacent soil particles. This effect can be 

incorporated into the Mohr-Coulomb equation as follows (Fredlund et al., 1978): 

 𝑆𝑆𝑟𝑟 = 𝑐𝑐′ + (𝜎𝜎 − 𝜇𝜇𝑎𝑎) tan𝜙𝜙′ + (𝜇𝜇𝑎𝑎 − 𝜇𝜇𝑤𝑤) tan𝜙𝜙𝑏𝑏 (A3) 

Where 𝜇𝜇𝑎𝑎 is pore-air pressure (kPa), 𝜇𝜇𝑤𝑤 is pore-water pressure (kPa), and(𝜎𝜎 − 𝜇𝜇𝑎𝑎) is the net 

normal stress on the failure plane. The angle 𝜙𝜙𝑏𝑏 describes the rate of increase of shear strength 

from matric suction and typically varies between 10-20° (Fredlund and Rahardjo, 1993), 

although values may be higher, especially near saturated conditions (Simon et al., 2000).  
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Streambank failure occurs by a variety of mechanisms (e.g. Thorne, 1982), but BSTEM 

can only model planar and cantilever failures. For this analysis, only planar failures were 

included given the simplified bank geometries utilized (i.e. no overhanging blocks). BSTEM 

primarily utilizes a horizontal layers method to calculate the factor of safety. However, if a 

tension crack is present, the vertical slices method is used. Since no tension cracks were included 

in this analysis, only the horizontal layer method will be described. This method is a limit 

equilibrium analysis where the Mohr-Coulomb equation is utilized for the saturated portion of 

the bank (Eq. A1) and the Fredlund et al.(1978) method is used for the unsaturated portion (Eq. 

A3). BSTEM also incorporates layered soils with different geotechnical properties, changes in 

soil unit weight based on moisture content, and confining pressure from streamflow. Driving 

forces in a streambank are controlled by the total volume and weight of soil in the failure block 

(determined by height, angle, unit weight, and mass of pore-water). The ratio of resisting and 

driving forces yields the factor of safety, with values greater than one indicating stability and 

values less than one indicating instability. 

 
𝐹𝐹𝐹𝐹 =

𝑐𝑐𝑐𝑐 + (𝜇𝜇𝑎𝑎 − 𝜇𝜇𝑤𝑤)𝐿𝐿 tan𝜙𝜙𝑏𝑏 + [𝑊𝑊cos 𝛽𝛽 − 𝜇𝜇𝑎𝑎𝐿𝐿 + 𝑃𝑃 cos(𝛼𝛼 − 𝛽𝛽)] tan𝜙𝜙′

𝑊𝑊 sin𝛽𝛽 − 𝑃𝑃 sin(𝛼𝛼 − 𝛽𝛽)
 (A4) 

Where c is apparent cohesion (kPa), L is the length of the failure plane (m), W is the soil weight 

(kN), P is the hydrostatic confining force due the water level in the stream (kN/m), β is the 

failure plane angle (degrees from horizontal), and α is the bank angle (degrees from horizontal). 

This analysis is repeated for each layer within the bank to yield a total factor of safety. 

BSTEM also incorporates the effects of root reinforcement by vegetation on bank 

stability. While soil is generally strong in compression but weak in tension, roots are the 

opposite. A composite material of roots in a soil matrix therefore has increased strength. An 

early relationship describing increased soil strength due to roots is a function of root tensile 
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strength, areal density, and root distortion during shear (Wu et al., 1979). This equation tends to 

overestimate root reinforcement because it assumes that all roots contribute their full tensile 

strength during failure and that all roots break simultaneously (Pollen and Simon, 2005; Pollen et 

al., 2004) . To correct this, a new algorithm, RipRoot, was developed (Pollen and Simon, 2005). 

RipRoot is a fiber bundle model which predicts progressive root breakage and subsequent 

redistribution of the applied load. This algorithm was further modified to account for root pullout 

(in addition to root breakage) (Pollen, 2007), further increasing model accuracy. In practice, 

RipRoot uses a given plant age to construct a root network of different size classes unique to the 

given species. The additional soil shear strength can then be calculated given a species-specific 

tensile strength versus root diameter relationship developed from field data. Root density is 

highest at shallow depths and also varies depending on maximum rooting depth and plant age. 

RipRoot can account for the effects of multiple species, correcting for the relative abundance of 

each. The increased soil strength calculated by RipRoot is added to the original soil cohesion to 

yield an apparent cohesion of the bank. 

The Toe Erosion model utilizes an excess shear stress equation to calculate average 

erosion at each node along the bank (Partheniades, 1965): 

 𝐸𝐸 = 𝑘𝑘Δ𝑡𝑡(𝜏𝜏𝑜𝑜 − 𝜏𝜏𝑐𝑐) (A5) 

Where E is the erosion distance (m), k is the erodibility coefficient (m3/N-s), Δt is the time step 

(s), 𝜏𝜏𝑜𝑜 is the average boundary shear stress (Pa), and 𝜏𝜏𝑐𝑐 is the critical shear stress of the bank 

material (Pa). Average boundary shear stress is calculated for each bank segment: 

 𝜏𝜏𝑜𝑜 = 𝛾𝛾𝛾𝛾𝛾𝛾 (A6) 

Where γ is the specific weight of water (9,810 N/m3), R is the hydraulic radius of the bank 

segment (m), and S is slope (m/m). Shear stress is typically greater in the outside of meander 
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bends due to higher maximum velocities near the bank, super-elevation of the water surface, and 

secondary currents directed towards the bank (Knighton, 1998). BSTEM accounts for these 

effects by adjusting the average boundary shear stress (Crosato, 2009, 2007): 

 
𝜏𝜏𝑜𝑜 =

𝛾𝛾𝑛𝑛2(𝑢𝑢 + 𝑈𝑈)2

𝑅𝑅1/3  (A7) 

Where n is Manning’s roughness coefficient, u is reach averaged velocity (m/s), and U is the 

increase in near-bank velocity (m/s). BSTEM may also account for the effective boundary shear 

stress acting on individual sediment grains. It does this by dividing total shear stress into grain, 

form, and vegetal components, each with a unique roughness value. Grain roughness is estimated 

using Strickler’s equation (Chow, 1959): 

 𝑛𝑛𝑔𝑔 = 0.0417(𝑑𝑑𝑠𝑠
1 6⁄ ) (A8) 

Where ds is a representative grain size of the sediment (m). The grain boundary shear stress is 

then computed as: 

 
𝜏𝜏𝑔𝑔 = 𝜏𝜏𝑜𝑜 �

𝑛𝑛𝑔𝑔2

𝑛𝑛2
� (A9) 

This analysis incorporates corrections for both flow through bends and effective grain shear 

stress.  

 

A.2 Input Data 

Input data for the sensitivity analysis were obtained from a variety of sources and were 

intended to be representative of the range of variability observed in the field. Data for the 

median, 75th percentile, and 25th percentile cohesion, friction angle, and saturated unit weight 

values for sand, loam, and clay were obtained from Simon et al. (2011). The data were assumed 

to approximate a normal distribution because of relatively low skewness values (-0.50 – 0.33). 
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Using the normal distribution assumption, the mean and standard deviation of each distribution 

(clay, loam, and sand soils) were estimated as follows: 

 𝑥𝑥�𝑝𝑝 =  𝑥̅𝑥 + 𝑧𝑧𝑝𝑝𝑠𝑠 (A10) 

Where x̂p is the value of the pth percentile, x̅ is the mean of the data, zp is the z-value for the pth 

percentile, and s is the standard deviation of the data. Using the 75th and 25th percentiles gives a 

system of two equations which can be solved for the mean and standard deviation. Maximum 

and minimum values for these parameters were assumed to be the outlier threshold (1.5 times the 

interquartile range above the third or below the first quartile). Minimum cohesion values were 

arbitrarily set to 0.01 kPa as minimum calculated values were less than zero. Calculated 

minimum friction angle for clay was also less than zero and was therefore set to one. 

 

A.3 Sensitivity Analysis 

The method of Plischke et al. (2013) is a density based sensitivity method. Given two 

continuous random variables, X and Y, if X=x then FY|X=x(y) (that is the output distribution of Y 

given X=x) represents the new degree of belief about Y. Measuring the separation between the 

distributions FY(y) and FY|X=x(y) can quantify the effect of fixing X at x. Implementing this 

method follows the following steps: 

1. Perform a traditional uncertainty analysis by obtaining model outputs (Y) for variable 

model inputs (X). 

2. Partition the data set into classes. This is done by sorting on an input variable (and 

associated model output) and dividing this matrix into a fixed number of classes, M. In 

this case, M was chosen to be 50. Increasing the class number above this value has a 

negligible effect on estimation accuracy (Plischke et al., 2013). 
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3. Approximate the densities conditional to each of these classes using kernel smoothing. 

Kernel smoothing is a procedure for approximating probability density functions for a 

given data set. For the purposes of this study, we utilized Gaussian kernel density 

estimator of the following form: 

 
𝑓𝑓𝑌𝑌(𝑦𝑦) =

1
𝑛𝑛
�

1
𝛼𝛼

1
2𝜋𝜋

𝑒𝑒−�
𝑦𝑦−𝑦𝑦𝑗𝑗
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2
2�

𝑛𝑛

𝑗𝑗=1
 (A11) 
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 (A12) 

Where n is the number of data points and α is the kernel bandwidth. The subscript m 

refers to each of the individual M classes. This equation is used to estimate the kernel 

density function 𝑓𝑓𝑌𝑌� (𝑦𝑦) at l individual quadrature points. In this case, l was chosen to be 

100. The kernel bandwidth, α, was determined from the following (Härdle, 1991): 

 
𝛼𝛼 = 1.06 ∗ min �𝑠𝑠,

𝐼𝐼𝐼𝐼𝐼𝐼
1.34

� ∗ 𝑛𝑛−1 5�  (A13) 

Where s is the sample standard deviation, IQR is the interquartile range, and n is the 

sample size. The kernel density function was calculated for each of the M classes and for 

the entire output array Y.  

4. We can estimate the point-wise separation of each class density estimate 𝑓𝑓𝑌𝑌|𝑐𝑐𝑚𝑚(𝑦𝑦) with 

the total density estimate 𝑓𝑓𝑌𝑌(𝑦𝑦)at each l quadrature point: 

 𝑠𝑠𝑚𝑚,𝑗𝑗 = 𝑓𝑓𝑌𝑌�𝑦𝑦𝑗𝑗� − 𝑓𝑓𝑌𝑌|𝑐𝑐𝑚𝑚�𝑦𝑦𝑗𝑗�,     𝑗𝑗 = 1, … , 𝑙𝑙,   𝑚𝑚 = 1, … ,𝑀𝑀 (A14) 

We then perform a numerical integration of 𝑠𝑠𝑚𝑚,𝑗𝑗 using the trapezoidal rule to get a total 

separation estimate for each class: 

 
𝑆̂𝑆𝑚𝑚 =

1
2
� ��𝑠𝑠𝑚𝑚,𝑗𝑗+1� + �𝑠𝑠𝑚𝑚,𝑗𝑗���𝑦𝑦𝑗𝑗+1 − 𝑦𝑦𝑗𝑗�

𝑙𝑙−1

𝑗𝑗=1
,     𝑚𝑚 = 1, … ,𝑀𝑀 (A15) 
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5. Finally, we can calculate the total order density sensitivity metric estimator: 

 
𝛿𝛿𝑖𝑖 =

1
2𝑛𝑛

� 𝑛𝑛𝑚𝑚𝑆̂𝑆𝑚𝑚
𝑀𝑀

𝑚𝑚=1
 (A16) 

This method has some inherent bias in the estimator 𝛿𝛿𝑖𝑖. This is due to numerical noise 

introduced in the kernel-density estimation and the partitioning of the data set into classes. To 

reduce this bias, and to provide confidence limits to our density sensitivity metric, we used a 

bias-reducing bootstrap method. Bootstrapping consists of repeated resampling the initial 

sample, with replacement, and recalculating the metric of interest. This yields a bootstrap 

distribution of the metric which can yield information on both bias and confidence bounds. 

Given the average 𝛿𝛿̅∗ of the density sensitivity metric estimates derived from the B bootstrap 

replicates, the bias can be estimated as: 

 bıas� �𝛿𝛿� = 𝛿𝛿̅∗ −  𝛿𝛿 (A17) 

From this bias estimate, we can obtain the bias-reducing bootstrap estimate of 𝛿𝛿: 

 𝛿𝛿 =  𝛿𝛿 − bıas� �𝛿̂𝛿� = 2𝛿𝛿 − 𝛿𝛿̅∗ (A18) 

Where 𝛿𝛿 is the unbiased sensitivity index and 𝛿𝛿̅∗ is the mean of the 2,000 bootstrap estimates. 

Also from this bootstrap distribution, we determined the 95% confidence intervals of our density 

sensitivity metric estimate using the bootstrap percentiles estimate. This consists of ranking the 

bootstrap sensitivity estimates to find the Lth and Uth values which correspond to the lower and 

upper confidence limits, respectively. 

 𝐿𝐿 = 𝐵𝐵 ∗ 𝛼𝛼/2  (A19) 

   

 𝑈𝑈 = 𝐵𝐵 ∗ (1 − 𝛼𝛼/2) + 1 (A20) 

71 
 



Where B is the number of bootstrap replicates and α = 0.05. Density measures are only total 

order effects; however, this method also lends itself to calculation of a first order, variance based 

sensitivity index. Using the same class-partitioning that was used in the calculation of the density 

sensitivity index, the first order estimator can be found as follows: 

 
𝜂̂𝜂𝑖𝑖
2 =

∑ 𝑛𝑛𝑚𝑚(𝑦𝑦�𝑚𝑚 − 𝑦𝑦�)2𝑀𝑀
𝑚𝑚=1

∑ �𝑦𝑦𝑗𝑗 − 𝑦𝑦��
2𝑛𝑛

𝑗𝑗=1

 (A21) 

Where nm is the number of observations in the m class, 𝑦𝑦� is the average of all model output, and 

𝑦𝑦�𝑚𝑚 is the average of the model output for the m class. 

While the density based method of Plischke et al. (2013) was utilized for both the Bank 

Stability and Toe Erosion models, a second, variance-based method was also applied to the Bank 

Stability model. Since this method relies only on model output, and does not require numeric 

model inputs, it is well suited to analyze the effect of plant species on model output. The 

variance-based method of Saltelli et al.(2010) allows for the simultaneous calculation of both 

first and total order indices from model output obtained from a prescribed sampling method. 

Given a model that is a function of an array of input variables (Y = f(X1, X2, …Xk), the variance 

based first order sensitivity measure for any variable Xi is: 

 
𝑆𝑆𝑖𝑖 =

𝑉𝑉𝑋𝑋𝑖𝑖 �𝐸𝐸𝑋𝑋~𝑖𝑖
(𝑌𝑌|𝑋𝑋𝑖𝑖)�

𝑉𝑉(𝑌𝑌)
 (A22) 

Where Xi is the ith factor and 𝑋𝑋~𝑖𝑖 is the matrix of all factors but Xi. The inner expectation 

operator takes the mean of Y over all possible values of 𝑋𝑋~𝑖𝑖 keeping Xi fixed. The sensitivity 

measure is then the ratio of the variance in this expectation to the total variance in model output. 

The total order sensitivity measure is: 
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𝑆𝑆𝑇𝑇𝑇𝑇 = 1 −

𝑉𝑉𝑋𝑋~𝑖𝑖 �𝐸𝐸𝑋𝑋𝑖𝑖(𝑌𝑌|𝑋𝑋~𝑖𝑖)�
𝑉𝑉(𝑌𝑌)

 (A23) 

The numerator in this formula can be thought of as the first order effect of 𝑋𝑋~𝑖𝑖 so that the total 

variance minus this value is the variance component produced by all terms (and combination of 

terms) that include Xi. 

 

A.4 Accounting for Correlation 

Several parameters are directly related to each other and it is important to take this 

correlation into account during the analysis. In some cases this correlation is simply the result of 

the methodology used to construct individual probability density functions. For example, toe 

length, stage, and groundwater are all generated as percentages of bank height. When bank 

height was perturbed in the radial sampling design of the variance method, these variables also 

must change. However, to keep the relative geometry the same, the new toe length, stage, and 

groundwater are the same percentage of bank height as the previous iteration. Although the 

values of stage, groundwater elevation, and toe length change along with bank height, their 

values relative to bank height remain the same and therefore the analysis should only capture the 

effect of changing bank height on model output.  

Other correlations were not taken into account in this analysis. For example, rooting 

depth typically varies by species and age (Canadell et al., 1996; Jackson et al., 1996) but no such 

relationship was incorporated into this procedure. In addition, while stage and groundwater 

elevation are typically related in reality, they are not directly correlated to each other for this 

analysis. This was done to allow these two elevations to be different which simulates either a 

rising (stage>groundwater) or falling (stage<groundwater) hydrograph. Parker et al.(2008) found 

that some correlation may exist between soil parameters (friction angle, cohesion, and weight) 
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but that it is generally weak. The positive correlation of ϕb, the angle describing the increase in 

effective cohesion with matric suction, with saturation (Simon et al., 2000) was also not 

incorporated. Finally, BSTEM does not allow root depth to exceed bank height. Therefore, some 

unintentional correlation between these variables occurs as root depths may be reduced to remain 

below bank height. This may artificially inflate the importance of root depth in the sensitivity 

analysis results as changes in bank height are partially incorporated. Phosphorus content has 

been shown to be positively correlated with the percentage of silt and clay in the soil (Agudelo et 

al., 2011; Bledsoe et al., 2000; Cooper and Gilliam, 1987; Palmer-Felgate et al., 2009; Young et 

al., 2013, 2012); however, this complexity was not included in the analysis of phosphorus 

loading from bank erosion. Instead, all soil types were assumed to follow the same lognormal 

distribution of phosphorus concentration. 

 

A.5 Tension Cracks 

BSTEM is able to simulate tension cracks in banks. However, during this analysis, 

unexpected model behavior was noted. Tension cracks are not simulated by the model for every 

tension crack depth that is inputted by the user. A threshold effect was observed where the 

tension crack depth must exceed 1/3 of the failure plane height. The cause of this threshold 

behavior is due to the method BSTEM uses to compute tension crack location. If the bank 

conditions are such that the interslice normal force (banks with a tension crack utilize the vertical 

slice computational method) is positive or the tension crack does not extend along a slice 

boundary to the failure plane, no tension crack is included in the factor of safety calculation. 

BSTEM assumes three slices per bank layer. Since this analysis always utilized a single bank 

layer, the tension crack depth must exceed 1/3 of the total shear plane height. The interslice 
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normal force is calculated from a force balance on each slice. If the resisting forces are high 

enough, this interslice normal force if positive. If however, resisting forces are insufficient, the 

interslice normal force will become negative. It is only when this force is negative (or zero) that 

a tension crack will form. This provides a physical check on the inclusion of a tension crack in 

the BSTEM model since these cracks would only form when there is a net force driving two 

slices apart. The interslice normal force is a function of many variables (including friction angle, 

cohesion, and pore-water pressure), but it is the confining force of the streamflow that appears to 

have the greatest impact. Because the threshold behavior for tension cracks exhibited by the 

model would complicate the sensitivity analysis and potentially mask or exaggerate the effects of 

other variables, this feature was excluded from this analysis. 
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A.6  Supplementary Figures and Tables 

 

Figure 13. Variance-based total (dark) and first order (light) sensitivity measures for factor of 
safety output for loam banks. Box plots indicate the median, quartiles, and 95% confidence 

intervals. The sum of the first order indices is 0.51 (95% CI: 0.29-0.76). 

 

 
Figure 14. Density-based total (dark) and first order (light) sensitivity measures for factor of 
safety output for loam banks. Box plots indicate the median, quartiles, and 95% confidence 

intervals. The sum of the first order indices is 0.59 (95% CI: 0.44-0.71). 
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Figure 15. Density-based total (dark) and first order (light) sensitivity measures for eroded area 
output for clay banks. Box plots indicate the median, quartiles, and 95% confidence intervals. 

The sum of the first order indices is 1.07 (95% CI: 0.86-1.26). 

 

 
Figure 16. Density-based total (dark) and first order (light) sensitivity measures for eroded area 
output for loam banks. Box plots indicate the median, quartiles, and 95% confidence intervals. 

The sum of the first order indices is 1.0 (95% CI: 0.84-1.12). 
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Figure 17. Density-based total (dark) and first order (light) sensitivity measures for eroded area 
output for sand banks. Box plots indicate the median, quartiles, and 95% confidence intervals. 

The sum of the first order indices is 0.54 (95% CI: 0.39-0.67). 

 

 
Figure 18. Density-based total (dark) and first order (light) sensitivity measures for eroded area 
output for fine sand bank material. Box plots indicate the median, quartiles, and 95% confidence 

intervals. The sum of the first order indices is 0.14 (95% CI: 0.05-0.20). 
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Figure 19. Density-based total (dark) and first order (light) sensitivity measures for eroded area 

output for coarse sand bank material. Box plots indicate the median, quartiles, and 95% 
confidence intervals. The sum of the first order indices is 0.15 (95% CI: 0.04-0.22). 

 

 
Figure 20. Density-based total (dark) and first order (light) sensitivity measures for eroded area 
output for erodible cohesive bank material. Box plots indicate the median, quartiles, and 95% 

confidence intervals. The sum of the first order indices is 0.18 (95% CI: 0.10-0.25). 
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Figure 21. Density-based total (dark) and first order (light) sensitivity measures for eroded area 
output for resistant cohesive bank material. Box plots indicate the median, quartiles, and 95% 

confidence intervals. The sum of the first order indices is 0.18 (95% CI: 0.09-0.25). 

 

 
Figure 22. Density-based total (dark) and first order (light) sensitivity measures for eroded area 
output for gravel bank material. Box plots indicate the median, quartiles, and 95% confidence 

intervals. The sum of the first order indices is 0.20 (95% CI: 0.12-0.27). 
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Figure 23. Conditional (colored) and unconditional (black) output distributions from the density 
sensitivity analysis method for the height input variable (A: clay banks; B: sand banks). Height 
values proceed from low to high as the color changes from blue to green to red. Note the low 

height values (blue) tend to have a greater divergence from the unconditional output than higher 
values (red), indicating greater impact on model output. 
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Figure 24. Conditional (light gray) and unconditional (black) output distributions from the 

density sensitivity analysis method for the species input variable (A: clay banks; B: sand banks). 
Note the divergence of the two conditional distributions corresponding to eastern gammagrass 
and Alamo switchgrass for clay banks (A) but much more uniformity for the sand banks (B). 
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Table 11. Summary of power regression results of BSTEM factor of safety output using the variables height, cohesion, and species 
(clay) and height, cohesion, species, stage, groundwater, and angle (sand). ***p < 0.001; **p < 0.01; *p < 0.05; -p > 0.05. 

 

 

 

 

Species Coefficient Significance Species Coefficient Significance
Alamo Switchgrass (Panacum virgatum) 0.287 *** Alamo Switchgrass (Panacum virgatum) 0.269 ***
Eastern Gammagrass (Tripsacum dactyloides ) 0.155 *** Cottonwood (Populus  spp.) 0.150 ***
Geyer's Willow (Salix geyeriana ) 0.048 *** Eastern Gammagrass (Tripsacum dactyloides ) 0.148 ***
Cottonwood (Populus  spp.) 0.047 *** Longleaf Pine (Pinus palustris ) 0.113 ***
Rose Spirea (Spiraea douglasii ) 0.046 *** Lodgepole Pine (Pinus contorta ) 0.110 ***
River Birch (Betula nigra ) 0.042 *** Himalayan Blackberry (Rubus armeniacus ) 0.102 ***
Longleaf Pine (Pinus palustris ) 0.041 ** Sandbar Willow (Salix interior ) 0.101 ***
Oregon Ash (Fraxinus latifolia ) 0.039 ** Oregon Ash (Fraxinus latifolia ) 0.100 ***
Lodgepole Pine (Pinus contorta ) 0.035 ** Rose Spirea (Spiraea douglasii ) 0.099 ***
Sandbar Willow (Salix interior ) 0.034 ** American Sweetgum (Liquidamber styraciflua ) 0.098 ***
Eastern Sycamore (Plantanus occidentalis ) 0.033 ** River Birch (Betula nigra ) 0.095 ***
Wet Meadow 0.031 * Tamarisk (Tamarix ramosissima ) 0.094 ***
Himalayan Blackberry (Rubus armeniacus ) 0.031 * Geyer's Willow (Salix geyeriana ) 0.092 ***
American Sweetgum (Liquidamber styraciflua ) 0.030 * Eastern Sycamore (Plantanus occidentalis ) 0.092 ***
Lemmon's Willow (Salix lemmonii ) 0.029 * Lemmon's Willow (Salix lemmonii ) 0.091 ***
Tamarisk (Tamarix ramosissima ) 0.029 * Reed Canarygrass (Phalaris arundinacea ) 0.083 ***
Dry Meadow 0.028 * Mountain Alder (Alnus tenuifolia ) 0.081 ***
Black Willow (Salix nigra ) 0.025 * Black Willow (Salix nigra ) 0.074 ***
Mountain Alder (Alnus tenuifolia ) 0.022 - Russian Olive (Elaeagnus angustifolia ) 0.073 ***
Perrenial Ryegrass (Lolium perenne ) 0.016 - Perrenial Ryegrass (Lolium perenne ) 0.071 ***
Reed Canarygrass (Phalaris arundinacea ) 0.016 - Wet Meadow 0.027 -
Russian Olive (Elaeagnus angustifolia ) 0.009 - Dry Meadow 0.021 -

CLAY BANKS SAND BANKS
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Figure 25. Comparison of calculated power regression coefficients for all BSTEM species for clay and sand banks. 

 

 

0.0

0.1

0.2

0.3

R
eg

re
ss

io
n 

C
oe

ffi
ci

en
t 

Clay Sand

84 
 


	ABSTRACT
	ACKNOWLEDGEMENTS
	LIST OF TABLES
	LIST OF FIGURES
	CHAPTER 1: INTRODUCTION
	1.1 Phosphorus Loading and Bank Erosion
	1.2 Bank Erosion Modeling
	1.3 Objectives

	CHAPTER 2: METHODS
	2.1 BSTEM Introduction
	2.2 Input Data
	2.3 Sensitivity Analysis
	2.4 Comparison with Field Data
	2.5 Uncertainty Analysis

	CHAPTER 3: RESULTS
	3.1 Sensitivity Analysis
	3.2 Comparison with Field Data
	3.3 Uncertainty Analysis

	CHAPTER 4: DISCUSSION
	4.1 Sensitivity Analysis – Bank Stability
	4.2 Sensitivity Analysis – Toe Erosion
	4.3 Comparison with Field Data
	4.4 Uncertainty Analysis
	4.5 Implications for Managers
	4.6 Limitations of this Study and BSTEM
	4.7 Future Research

	CHAPTER 5: CONCLUSIONS
	REFERENCES
	APPENDIX
	A.1 BSTEM Summary
	A.2 Input Data
	A.3 Sensitivity Analysis
	A.4 Accounting for Correlation
	A.5 Tension Cracks
	A.6  Supplementary Figures and Tables


