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ABSTRACT OF DISSERTATIONA SYNTHESIS OF REINFORCEMENT LEARNING AND ROBUST CONTROLTHEORYThe pursuit of 
ontrol algorithms with improved performan
e drives the entire
ontrol resear
h 
ommunity as well as large parts of the mathemati
s, engineering, andarti�
ial intelligen
e resear
h 
ommunities. A fundamental limitation on a
hieving
ontrol performan
e is the 
on
i
ting requirement of maintaining system stability. Ingeneral, the more aggressive is the 
ontroller, the better the 
ontrol performan
e butalso the 
loser to system instability.Robust 
ontrol is a 
olle
tion of theories, te
hniques, and tools that form oneof the leading edge approa
hes to 
ontrol. Most 
ontrollers are designed not on thephysi
al plant to be 
ontrolled, but on a mathemati
al model of the plant; hen
e, these
ontrollers often do not perform well on the physi
al plant and are sometimes unstable.Robust 
ontrol over
omes this problem by adding un
ertainty to the mathemati
almodel. The result is a more general, less aggressive 
ontroller whi
h performs wellon both the model and the physi
al plant. However, the robust 
ontrol method alsosa
ri�
es some 
ontrol performan
e in order to a
hieve its guarantees of stability.Reinfor
ement learning based neural networks o�er some distin
t advantages forimproving 
ontrol performan
e. Their nonlinearity enables the neural network to im-plement a wider range of 
ontrol fun
tions, and their adaptability permits them toimprove 
ontrol performan
e via on-line, trial-and-error learning. However, neuro-iii




ontrol is typi
ally plagued by a la
k of stability guarantees. Even momentary insta-bility 
annot be tolerated in most physi
al plants, and thus, the threat of instabilityprohibits the appli
ation of neuro-
ontrol in many situations.In this dissertation, we develop a stable neuro-
ontrol s
heme by synthesizing thetwo �elds of reinfor
ement learning and robust 
ontrol theory. We provide a learningsystem with many of the advantages of neuro-
ontrol. Using fun
tional un
ertainty torepresent the nonlinear and time-varying 
omponents of the neural networks, we applythe robust 
ontrol te
hniques to guarantee the stability of our neuro-
ontroller. Ours
heme provides stable 
ontrol not only for a spe
i�
 �xed-weight, neural network,but also for a neuro-
ontroller in whi
h the weights are 
hanging during learning. Fur-thermore, we apply our stable neuro-
ontroller to several 
ontrol tasks to demonstratethat the theoreti
al stability guarantee is readily appli
able to real-life 
ontrol situa-tions. We also dis
uss several problems we en
ounter and identify potential avenuesof future resear
h. R. Matthew Kret
hmarDepartment of Computer S
ien
eColorado State UniversityFort Collins, Colorado 80523Summer 2000
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Chapter 1Introdu
tion
1.1 Problem StatementAutomated 
ontrollers provide 
ontrol signals to a plant in an attempt to 
ause theplant to exhibit a desired behavior. Here we use \plant" as a generi
 term for adevi
e that is 
apable of being 
ontrolled. Together, the plant, the 
ontroller, andtheir inter
onne
tion 
omprise the system. The design of 
ontrollers is 
ompli
atedby system instability whi
h results in at least improper plant operation, and possibly,signi�
ant damage to equipment and/or injury to people. Fortunately, a properlydesigned 
ontroller prevents the system from operating in a dangerous, unstable mode.Therefore, it is imperative that the 
ontroller be engineered with stable operation asa primary goal; performan
e is a se
ondary design 
onsideration to be pursued afterstability is assured.The design of su
h 
ontrollers 
an be approa
hed from a number of design philoso-phies. In this dissertation, we fo
us on two diametri
 design philosophies. The �rstdesign philosophy, robust 
ontrol, exploits signi�
ant a priori system knowledge inorder to 
onstru
t a high-performing 
ontroller that still guarantees stability. Theother design philosophy, reinfor
ement learning, builds a 
ontroller assuming littleinitial knowledge of the system but is 
apable of learning and adapting to �nd bet-ter 
ontrol fun
tions. The robust 
ontroller uses extensive system knowledge but is�xed and rigid for all time; the reinfor
ement learning 
ontroller uses limited system1



knowledge but is 
apable of 
ontinuous adaptation to �nd better 
ontrol s
hemes.The opposition of these two design approa
hes is illustrated in Figure 1.1.

a priori system knowledge

o

o

adaptability

flexibility
&

reinforcement learning

robust control

Figure 1.1: Controller Design PhilosophiesIn robust 
ontrol, we analyze the dynami
s of the plant in an attempt to builda 
ontroller that is mathemati
ally guaranteed to provide stable 
ontrol behavior.Often we dis
over an entire set of stable 
ontrollers; we then sele
t the best perform-ing 
ontroller from this stable set. However, most plants of pra
ti
al interest possessenough 
omplexity to prohibit the pre
ise spe
i�
ation of the plant dynami
s; usuallywe are for
ed to 
ompute a mathemati
al model of the plant to serve as an approxima-tion to the real plant. Consequently, the robust 
ontrol design pro
ess is 
ompli
atedbe
ause we must not only 
onstru
t a 
ontroller that is stable for our mathemati
almodel, but is also stable for the real plant. Ne
essarily, this limits the aggressivenessof the 
ontroller design and thus, results in suboptimal 
ontrol performan
e.On the other hand, reinfor
ement learning assumes little about the dynami
s ofthe system. Instead, it develops a good 
ontrol fun
tion through on-line, trial anderror learning. The 
hallenge of this approa
h is to establish a framework with enough
exibility to allow the 
ontroller to adapt to a good 
ontrol strategy. However, this
exibility may result in numerous undesirable 
ontrol strategies; the engineer must2



be willing to allow the 
ontroller to temporarily assume many of these poorer 
ontrolstrategies as it sear
hes for the better ones. It is important to note that many ofthe undesirable strategies may provide unstable 
ontrol behavior. We 
an envisionthe implausibility of the reinfor
ement learning approa
h in designing a 
ontrollerfor a heli
opter rotor; the adaptive 
ontroller may 
rash thousands, even tens ofthousands of heli
opters before it �nds a stable 
ontrol fun
tion. However, on
e thereinfor
ement learner settles in on reasonably good 
ontrol strategies, it 
an re�neits sear
h and often dis
over an exemplary 
ontroller that is not only stable, but alsooutperforms 
ontrollers designed using robust 
ontrol te
hniques.Thus, the problem this dissertation examines 
an be summarized as follows. Wedesire a robust 
ontrol approa
h be
ause this approa
h guarantees stable 
ontrol be-havior and exploits known system knowledge to a
hieve relatively good initial 
ontrolperforman
e. But, a robust 
ontrol approa
h sa
ri�
es some 
ontrol performan
e inorder to a
hieve the stability guarantee. A reinfor
ement learning approa
h is attra
-tive be
ause it is able to dis
over ex
ellently performing 
ontrollers via trial-and-errorsear
h, but might temporarily implement a variety of unstable 
ontrol fun
tions. Theproblem is to 
ombine these two te
hniques to guarantee stability and also performsafe trial-and-error sear
h in order to adaptively improve 
ontrol performan
e. Wenow present this problem in more detail by de�ning plants, stability, performan
e andnumerous other terms.1.2 Problem DetailsFigure 1.2 shows the basi
 
omponents of a typi
al system. The plant, G, is the devi
eto be 
ontrolled. A 
ontroller, K, produ
es the 
ontrol signal, u, used to modify thebehavior of the plant. In this dissertation, we fo
us on a broad 
ategory of tasksknown as tra
king tasks: the 
ontroller must provide 
ontrol signals so that the plantoutput, y, mimi
s an external, time-varying, input signal 
alled the referen
e input,3



r. Performan
e is measured by the error signal, e, whi
h is the di�eren
e between thereferen
e signal and the plant output: e = r � y. We also require that the 
ontrollermaintain system stability: for a �nite and stati
 referen
e signal, r, we require thesystem signals, u and y, remain �nite and furthermore move asymptoti
ally towardstable �xed points, �u and �y. We are more pre
ise about the notion of stability insubsequent 
hapters.
-

r
Controller

K
Plant

G
+

e u y

Figure 1.2: Nominal SystemThe vast majority of resear
h in 
ontrol theory applies to systems whi
h are linear,time-invariant (LTI). The simple mathemati
s of LTI systems enables the appli
ationof the mature and extensive body of linear systems theory. Consequently, the designof stable 
ontrollers is straightforward. However, the LTI 
onditions pla
e restri
tivelimits on the 
lass of 
ontrollers available for use.A non-LTI 
ontroller is often able to a
hieve greater performan
e be
ause it isnot saddled with the limitations of LTI. Two 
lasses of non-LTI 
ontrollers are par-ti
ularly useful for 
ontrol; nonlinear 
ontrollers implement a wider range of 
ontrolfun
tions, and adaptive 
ontrollers self-modify to better mat
h the system 
hara
ter-isti
s. However, nonlinear and adaptive 
ontrollers are diÆ
ult, and often impossible,to study analyti
ally. Thus, the guarantee of stable 
ontrol inherent in LTI designsis sa
ri�
ed for non-LTI 
ontrollers.Neural networks, or neuro-
ontrollers, 
onstitute mu
h of the re
ent non-LTI 
on-trol resear
h. Be
ause neural networks are both nonlinear and adaptive, they oftenrealize far superior 
ontrol 
ompared to LTI. However, dynami
 analysis of neuro-
ontrollers is mostly intra
table thereby prohibiting 
ontrol engineers from as
er-taining their stability status. As a result, the use of neuro-
ontrollers is primarily4



restri
ted to a
ademi
 experiments; most industrial appli
ations require guaranteesof stable 
ontrol whi
h have not been possible with neural networks.The stability issue for systems with neuro-
ontrollers en
ompasses two aspe
ts.Stati
 stability is a
hieved when the system is proven stable provided that the neuralnetwork weights are 
onstant. Dynami
 stability implies that the system is stable evenwhile the network weights are 
hanging. Dynami
 stability is required for networkswhi
h learn on-line in that it requires the system to be stable regardless of the sequen
eof weight values learned by the algorithm.1.3 Obje
tiveThe primary obje
tive of this work is to develop a framework in whi
h we 
an ensurethe stability of neuro-
ontrollers. We then use this framework to prove the stability ofboth stati
 and dynami
 neuro-
ontrollers. This obje
tive is mainly a theoreti
al goal.While a few re
ent published results have shown some su

ess with the stati
 stabilityproblem, we will provide a di�erent proof that strengthens existing solutions. We alsoo�er the �rst neuro-
ontrol s
heme proven to solve the dynami
 stability problem;the neuro-
ontroller we propose is guaranteed to provide stable 
ontrol even while thenetwork is training.As a se
ondary obje
tive, we demonstrate that the theoreti
al stability proofs arepra
ti
al to implement on real neuro-
ontrol systems ta
kling diÆ
ult 
ontrol prob-lems. Many theoreti
al results in arti�
ial intelligen
e are not amenable to pra
ti
alimplementation; often te
hni
al assumptions of the theorems are violated in orderto 
onstru
t \reasonable and working" systems in pra
ti
e. We show the assump-tions of our stability theorems do not pla
e unreasonable limitations on the pra
ti
alimplementation of a neuro-
ontrol system.To demonstrate that we have a
hieved these obje
tives we will provide the follow-ing. 5



� A formal proof of the stability of a neuro-
ontroller with �xed weights (stati
neural network).� A formal proof of the stability of a neuro-
ontroller undergoing weight 
hangesduring learning (dynami
 neural network).� A neural network ar
hite
ture and a learning algorithm suitable for use in ageneral 
lass of 
ontrol tasks.� A series of 
ase studies showing that the neuro-
ontrol ar
hite
ture and stabilityproofs are amenable to pra
ti
al implementation on several 
ontrol tasks.1.4 Approa
hIn an e�ort to a
hieve our primary goal of verifying the stability of stati
 and dynami
neuro-
ontrollers, we employ an approa
h that 
ombines reinfor
ement learning androbust 
ontrol. We draw upon the reinfor
ement learning resear
h literature to 
on-stru
t a learning algorithm and a neural network ar
hite
ture that are suitable forappli
ation in a broad 
ategory of 
ontrol tasks. Robust 
ontrol provides the toolswe require to guarantee the stability of the system.Figure 1.3 depi
ts the high-level ar
hite
ture of the proposed system. Again, ris the referen
e input to be tra
ked by the plant output, y. The tra
king error isthe di�eren
e between the referen
e signal and the plant output: e = r � y. Anominal 
ontroller, K, operates on the tra
king error to produ
e a 
ontrol signal u
.A learning agent is in
luded that also a
ts on the tra
king error to produ
e a 
ontrolsignal û. The two 
omponent 
ontrol signals are added to arrive at the overall 
ontrolsignal: u = u
 + û. Again, the goal of the 
ontroller(s) is twofold. The �rst goalis to guarantee system stability. The se
ond goal is to produ
e the 
ontrol signalsto 
ause the plant to 
losely tra
k the referen
e input over time. Spe
i�
ally, thislatter performan
e goal is to learn a 
ontrol fun
tion to minimize the mean squared6



tra
king error over time.Importantly, the learning agent does not repla
e the nominal 
ontroller; rather,it adds to the 
ontrol signal in an attempt to improve performan
e over the nominalLTI 
ontroller. This approa
h, retaining the LTI 
ontroller as opposed to repla
ingit, o�ers two advantages. First, if the neuro-
ontroller fails, the LTI 
ontroller willstill provide good 
ontrol performan
e; the neuro-
ontroller 
an be turned o� withoutgreatly a�e
ting the system. Se
ond, the 
ontrol performan
e of the system is im-proved during the learning pro
ess. If the neuro-
ontroller were operating alone, itsinitial 
ontrol performan
e would most likely be extremely poor; the neural networkwould require substantial training time to return to the level of performan
e of thenominal LTI 
ontroller. Instead, the neuro-
ontroller starts with the performan
e ofthe nominal 
ontroller and adds small adjustments to the 
ontrol signal in an attemptto further improve 
ontrol performan
e. The neuro-
ontroller starts with an existinghigh-performan
e 
ontroller instead of starting tabula rasa.
-
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Figure 1.3: Nominal System with Learning Agent ControllerBe
ause the learning agent is implemented with a neural network that 
ontainsnon-LTI features, we must solve the stati
 stability problem: we must ensure that anetwork with a �xed set of weights implements a stable 
ontrol s
heme. Sin
e exa
tstability analysis of the nonlinear neural network is intra
table, we need to modifythe network to �t into the LTI framework. To a

omplish this, we treat the nonlinearhidden units of the neural network as se
tor-bounded, nonlinear un
ertainties. Thete
hniques of robust 
ontrol are developed around the 
on
ept of treating system7



nonlinearities as un
ertainties. Thus, we 
an apply the te
hniques of robust 
ontrolto determine the stability status of the neuro-
ontroller. Spe
i�
ally, we use either�-analysis or IQC-analysis whi
h are two robust 
ontrol tools that determine thestability of systems with un
ertainty. In this way, we solve the stati
 stability problem.Along with the nonlinearity, the other powerful feature of using a neural networkfor the learning agent is its adaptability; the agent 
an learn to provide better 
on-trol. In order to a

ommodate an adaptive learning agent, we must solve the dynami
stability problem: the 
ontrol system must be proven stable while the neural networkis learning. To solve the dynami
 stability problem we require two 
omponents ofun
ertainty. As we did in the stati
 stability analysis, we use a se
tor-bounded un-
ertainty to 
over the neural network's nonlinear hidden layer. Additionally, we addun
ertainty in the form of a slowly time-varying s
alar to 
over weight 
hanges dur-ing learning. Again, we apply �-analysis and IQC-analysis to determine whether thenetwork (with the weight un
ertainty) forms a stable 
ontroller.To understand the details of how we employ �-analysis and IQC-analysis, envisionthe 
urrent neural network weight values as a point in the high-dimensional weightspa
e of the network. By adding a small perturbation to ea
h individual networkweight, we form region around the 
urrent weight spa
e point. We employ �-analysisor IQC-analysis to determine the largest set of neural network weight perturbationsthat the system 
an tolerate while still being stable. In e�e
t, the region formedby the weight perturbations a
ts as a \safety region" in the network's weight spa
ein whi
h the learning algorithm 
an operate; any network weight values within thisregion produ
e stable 
ontrol. We then apply standard reinfor
ement learning toadapt the network weights until they move outside the stable safety region. In thisway, we solve the dynami
 un
ertainty problem for stability during network training.In summary, our approa
h in meeting the primary obje
tive, a theoreti
al resultdemonstrating the stability of a neural network 
ontroller, is to 
onvert the neural8



network, with nonlinearity and the adaptive weight 
hanges, to a linear, time-invariantform by using un
ertainty regions. On
e the network has been re
ast in the LTI form,then we apply the stability analysis tools of � and IQC in order to determine thestability status of the neuro-
ontrol system.Our se
ondary obje
tive is to demonstrate the pra
ti
al appli
ation of the stabili-ty theorems to 
hallenging 
ontrol problems. To a

omplish this goal, we pursue twopaths. In the �rst path, we design a suitable learning agent to address the followingprimary 
onsiderations: the sele
tion of an appropriate learning algorithm, the 
on-stru
tion of a suitable high-level ar
hite
ture to ful�ll the dual roles of 
ontroller andlearning agent, and the design of a low-level ar
hite
ture that satisfa
torily a

om-plishes the �rst two 
onsiderations. The se
ond path that we pursue is to present
ase studies demonstrating the appli
ation of our theory to four 
ontrol tasks. Theintent of these 
ase studies is to illustrate the appli
ation of the stati
 and dynami
stability theorems to pra
ti
al 
ontrol situations; these 
ase studies are not intendedto be an empiri
al analysis 
omparing this approa
h with other 
ontrol algorithms.In the �rst path outlined above, the design of a suitable learning agent, we addressthree primary 
onsiderations. The �rst 
onsideration is sele
ting a learning algorith-m for the agent. The 
hoi
e of a learning algorithm is mostly orthogonal to the
onstraints of robust stability; we have 
onsiderable freedom in sele
ting a learningalgorithm that is geared primarily to 
ontrol performan
e. We 
hose reinfor
ementlearning for our learning agent, be
ause it is well suited to the limited informationof the system (a performan
e metri
) and the algorithm also is ideal at optimiz-ing fun
tions over extended time horizons. Reinfor
ement learning implements thetrial-and-error sear
h required to �nd good 
ontrol fun
tions.The se
ond 
onsideration is designing a high-level ar
hite
ture to a

ommodatethe dual role of the learning agent. The agent must a
t as a 
ontroller by providingreal-time 
ontrol signals in response to tra
king error input signals and must a
t as9



a reinfor
ement learner by a

umulating value fun
tions and using them to adjustthe 
ontrol poli
y. To ful�ll the possibly 
on
i
ting requirements of ea
h role, weturn to a dual network ar
hite
ture known as the a
tor-
riti
 design. We �nd thisarrangement is suitable for not only balan
ing the demands of our learning algorithmand 
ontrol fun
tion, but also for the analysis required by robust stability.The third 
onsideration in designing a learning agent is designing a low-level neu-ral ar
hite
ture to over 
ome neurodynami
 problems that o

ur with weight 
hangesduring learning. Reinfor
ement learning agents 
an be implemented in a variety ofrepresentations. The sele
tion of a representation a�e
ts the performan
e of the agentin simulations and real-world appli
ations. We dis
uss spe
i�
 neurodynami
 prob-lems we en
ounter and dis
uss how spe
i�
 neural network representations over
omethese diÆ
ulties.The se
ond path is to demonstrate the appli
ability of our robust, stable, rein-for
ement learning agent by using the agent in a series of example 
ase studies. Wesele
t four example 
ontrol problems for our 
ase studies. The �rst two 
ontrol tasksare trivial from a 
ontrol design standpoint, but they allow the reader to fully under-stand the dynami
s of the system and to 
ompute the desired optimal 
ontrol law.These two tasks serve primarily to illustrate the appli
ation of the theory to 
ontrolproblems. The third example 
ase study involves a simulated distillation 
olumn.This 
ontrol problem o�ers suÆ
ient 
omplexity to warrant state of the art 
ontrolsolutions. We apply our stable neuro-
ontroller to this task to illustrate the easeof appli
ation to 
hallenging 
ontrol problems and to demonstrate that the stableneuro-
ontroller is able to realize performan
e improvements over robust 
ontrollers.The �nal example 
ontrol task involves a model of an HVAC heating 
oil. We usethis 
ase study to demonstrate that the HVAC domain is a solid 
andidate for theappli
ation of our stable neuro-
ontroller, but that an improper appli
ation 
ouldlimit the e�e
tiveness of a stable neuro-
ontroller.10



1.5 Contribution and Signi�
an
eThe work in this dissertation has signi�
ant impli
ations for the 
ontrol 
ommunity.We provide a new approa
h to proving the stability of a �xed-weight neural network.Most importantly, our methodology is the �rst that guarantees stability during thenetwork training pro
ess. With stability guarantees for neuro-
ontrol, the 
ontrol
ommunity 
an utilize the adaptive nonlinear power of neural network 
ontrollerswhile still ensuring stability in 
riti
al 
ontrol appli
ations. We also 
ontribute aneural ar
hite
ture and learning agent design to over
ome numerous, non-trivial,te
hni
al problems. Mu
h of the previous theoreti
al work in neuro-
ontrol does notaddress implementation details, whi
h 
an render the theory inappli
able. In thisdissertation, we develop a learning agent that is suitable for appli
ation, and weprovide detailed analysis of the stable reinfor
ement learning agent as it ta
kles fourdiÆ
ult 
ontrol problems. In this se
tion, we dis
uss ea
h of these 
ontributions inmore detail.The �rst 
ontribution is our solution to the stati
 stability problem: given aneural network 
ontroller with �xed weights, we have developed a method whi
h
on
lusively proves the stability of the 
ontroller. A few other resear
h groups havearrived at similar results using other approa
hes. The most signi�
ant of these otherstati
 stability solutions is the NLq resear
h group of Suykens and DeMoor [Suykensand Moor, 1997℄. Our approa
h is similar to the NLq group in the treatment of thenonlinearity of the neural network, but we di�er in how we arrive at the stabilityguarantees. Our approa
h is also graphi
al and thus amenable to inspe
tion and
hange-and-test s
enarios.By far, our most signi�
ant 
ontribution is a solution to the dynami
 stabilityproblem. Our approa
h is the �rst to guarantee the stability of the neuro-
ontrollerwhile the network is experien
ing weight 
hanges during learning. We extend thete
hniques of robust 
ontrol to transform the network weight learning problem in-11



to one of network weight un
ertainty. With this key realization, a straightforward
omputation guarantees the stability of the network during training.An additional 
ontribution is the spe
i�
 ar
hite
ture amenable to the reinfor
e-ment learning / 
ontrol situation. As already mentioned, we build upon the earlywork of a
tor-
riti
 designs as well as more re
ent designs involving Q-learning. Ourdual network design features a 
omputable poli
y (this is not available in Q-learning)whi
h is ne
essary for robust analysis. The ar
hite
ture also utilizes a dis
rete valuefun
tion to mitigate diÆ
ulties spe
i�
 to training in 
ontrol situations; we demon-strate its e�e
tiveness in our four 
ase studies.The work in this dissertation paves the way for further resear
h in adaptive neuro-
ontrol. This initial solution to the stati
 and dynami
 stability problems is a largestep forward in allowing industry to utilize neuro-
ontrollers in their produ
ts.1.6 Overview of DissertationThis dissertation synthesizes two diverse bodies of resear
h. From the arti�
ial in-telligen
e 
ommunity we use reinfor
ement learning and neural networks. From the
ontrol 
ommunity, we employ the re
ently developed robust 
ontrol theory. Here weoutline the major 
omponents of ea
h 
hapter in this dissertation.In Chapter 2, we present an overview of the resear
h literature 
ontributing toreinfor
ement learning and robust 
ontrol.Chapter 3 introdu
es the various 
on
epts of stability. This 
hapter progressesfrom the simple mathemati
al de�nitions of stability toward the more 
omplex notionsof system stability. Although the details are lengthy, we present the entire progressionas it is fundamental to the stability proofs in later 
hapters. We start with severalkey de�nitions of stability and di�erent interpretations for ea
h de�nition. Be
ausethe stability de�nitions are typi
ally not appli
able for 
omplex systems, we alsointrodu
e Liapunov's dire
t method of as
ertaining system stability. These 
on
epts12



are then applied to system stability. We dis
uss robust stability before 
on
ludingthe 
hapter with a brief dis
ussion of �-analysis and IQC-analysis theories.In Chapter 4, we present our solution to the stati
 and dynami
 stability problem-s. The 
hapter begins by introdu
ing the stability problems and motivates the needfor a solution. The 
hapter then splits into two parallel lines of development; the �rstline assumes that �-analysis is used as the robust stability tool while the se
ond lineassumes that IQC-analysis is the robust stability tool. In ea
h line, we provide thedetails of how to 
onvert a nonlinear neural network into an LTI system. By 
overingthe nonlinearity of the neural network with un
ertainty, we 
an apply the tools ofrobust 
ontrol to arrive at stati
 stability guarantees. Chapter 4 then extends oursolution of the stati
 stability problem to over
ome the dynami
 stability problem.We dis
uss how to add additional un
ertainty to the neural network weights. Thisallows us to de�ne a safety region in the network weight spa
e; the safety region per-mits the reinfor
ement learning algorithm to adjust the neural network weights whilemaintaining a guarantee of stable 
ontrol. The 
hapter 
on
ludes with a sket
h ofthe stable reinfor
ement learning algorithm general enough to re
ombine the parallellines of �-analysis and IQC-analysis.Chapter 5 details the design of the learning agent. We start by examining why thereinfor
ement learning algorithm is better suited to the 
ontrol domain than otherlearning algorithms. Our s
heme has an important requirement in that the agentmust play a dual role as both a reinfor
ement learner and as a 
ontroller. We devisea high-level ar
hite
ture to resolve diÆ
ulties in this dual role. We then dis
ussthe design of the low-level ar
hite
ture by 
onsidering various 
hoi
es of parti
ularneural networks to be used in the learning agent. The network-as-
ontroller introdu
esdiÆ
ult neuro-dynami
 problems not typi
ally en
ountered in neural network trainingor in reinfor
ement learning.We then put the algorithm and stability proofs to the test in Chapter 6. Here13



we present four example 
ontrol problems as 
ase studies in the appli
ation of thestability proofs to real 
ontrol problems. Importantly, the intent of this 
hapter is notto empiri
ally 
ompare our stable reinfor
ement learning method with other 
ontrolstrategies; instead, the purpose of Chapter 6 is to demonstrate that our theoreti
al
ontributions are appli
able to real-life 
ontrol situations without violating the pre-suppositions of the stability proofs. While trivial from a 
ontrol perspe
tive, the �rsttwo 
ontrol tasks are simple enough for the reader to easily visualize the appli
ationof stati
 and dynami
 stability to the 
ontrol design. We also apply our learningagent to a 
omplex distillation 
olumn pro
ess. This example serves to illustrate thene
essity of robust 
ontrol over optimal 
ontrol te
hniques and also to demonstratehow the neuro-
ontrol agent is able to regain 
ontrol performan
e lost to the robust
ontrol design. The HVAC (Heating, Ventilation and Air Conditioning) resear
h 
om-munity is 
urrently examining ways to employ neuro-
ontrollers in their �eld. The
omplex dynami
s of heating 
oils, 
ooling towers, building systems and other HVACsystems o�er diÆ
ult 
ontrol tasks that represent the 
utting edge in neuro-
ontrolresear
h. We ta
kle the 
ontrol of a heating 
oil to understand how the the theoryand te
hniques developed in this work are applied to this domain.Chapter 7 summarizes the dissertation, iterates our 
ontributions to the �eldsof reinfor
ement learning and 
ontrol, dis
usses the the su

esses and diÆ
ulties ofour approa
h, and �nally introdu
es some avenues of future resear
h in the arena ofstable neuro-
ontrol. Appendix A provides a brief tutorial on the use of the � andIQC tools. Appendix B lists the 
ode used in the 
ase studies.
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Chapter 2Literature Review
In this 
hapter, we review the signi�
ant 
ontributions in the resear
h literature toneuro-
ontrol, reinfor
ement learning, and robust 
ontrol. These key papers serve asthe basis for the theoreti
al and experimental advan
es outlined in this dissertation.We identify several histori
ally important papers and also dis
uss re
ent papers withdire
t relevan
e to our goal of a stable neuro-
ontrol algorithm.2.1 Robust ControlDespite the fa
t that the te
hniques of robust 
ontrol are relatively new, there are alarge number of re
ent publi
ations in this �eld. We identify a few key resear
hersand their seminal papers whi
h set the stage for the 
urrent su

ess of robust 
ontroltheory. Among the earliest works in robust 
ontrol is the stability theory of the1970s. This early work built upon the mature body of resear
h in linear systems toextend stability theorems for systems with a very spe
i�
 and limited set of nonlinear
omponents. In parti
ular, the development of the 
ir
le 
riterion and the smallgain theorem in works by Zames [Zames, 1966℄, Desoer and Vidyasagar [Desoer andVidyasagar, 1975℄, and Vidyasagar [Vidyasagar, 1978℄ provide suÆ
ient 
onditions toprove the stability of systems with nonlinear elements in the feedba
k path.Another major step introdu
es un
ertainty to handle systems with general non-linear 
omponents. The novel idea in this work is to stru
ture the type of un
ertainty15



and then provide stability theorems for any nonlinearities in the system meeting the
riteria of the stru
tured un
ertainty. The advent of a stru
tured singular value met-ri
, �, is of paramount importan
e to robust 
ontrol. Doyle [Pa
kard and Doyle, 1993℄pioneered mu
h of the early work in robust 
ontrol and provided the 
onne
tion be-tween � and stru
tured un
ertainty. Also important is the formal development of thegeneral LFT (Linear Fra
tional Transform) framework along with advan
es in 
om-puting LMIs (Linear Matrix Inequalities) with polynomial time algorithms [Pa
kardand Doyle, 1993℄. Young [Young and Dahleh, 1995; Young, 1996℄ extends �-analysisto other types of un
ertainty in
luding parametri
 un
ertainty. Notable progress inrobust 
ontrol also in
ludes the availability of 
ommer
ial software for performing the
omplex 
omputations required [Balas et al., 1996℄. Matlab's �-Tools toolbox makesrobust 
ontrol theory a

essible to the 
ontrol engineer without investing years totranslate diÆ
ult theory into pra
ti
al 
ode.2.2 Traditional Adaptive ControlWhile a
tual physi
al plants 
ontain dynami
s whi
h are not LTI (linear, time-invariant), the analysis of non-LTI systems is mostly intra
table. Mu
h of modern
ontrol theory is based upon linear, time-invariant (LTI) models. Be
ause LTI dy-nami
s are not as ri
h in their fun
tional expression, 
ontrol performan
e is oftensa
ri�
ed by the limitations imposed by LTI dynami
s. One of the early attempts bythe 
ontrol 
ommunity to seek alternatives to LTI 
ontrol design is adaptive 
ontrol.Franklin [Franklin and Selfridge, 1992℄ gives the following de�nition of adaptive 
on-trol: \Adaptive 
ontrol is a bran
h of 
ontrol theory in whi
h a 
ontrolled system ismodeled, typi
ally by means of a set of linear di�eren
e or di�erential equations, someof whose parameters are unknown and have to be estimated". The primary purposeof adaptive 
ontrol is to form a model of a physi
al plant by adapting parametersin the model. Adaptive 
ontrol typi
ally proposes a model stru
ture for the plant a16



priori; the parameters of this model are altered. By presupposing a model stru
ture,the adaptive 
ontrol s
heme is limited in its representational 
exibility [Franklin andSelfridge, 1992℄. Here we introdu
e the general approa
h by des
ribing two popularand representative adaptive 
ontrol s
hemes.One of the simpler attempts at traditional adaptive 
ontrol is the Self-TuningRegulator (STR) [Astrom and Wittenmark, 1973℄. The STR uses an equation withunspe
i�ed parameters to model the system. The parameters are updated from on-line sampling to better �t empiri
al data on the system. As the parameters areupdated, the 
ontroller is re-tuned to provide better 
ontrol for the updated systemmodel [Franklin and Selfridge, 1992℄. The major advantage of this approa
h is theSTR's predi
ation on the ri
h and well developed theory of least-squares parameterestimation. Namely, tight bounds on the system model error 
an be 
omputed read-ily. Major drawba
ks in
lude unguaranteed system stability, espe
ially during initiallearning of the system model parameters, and a requirement for a priori knowledgeof the 
orre
t stru
ture for the system equations.A more sophisti
ated approa
h to adaptive 
ontrol is the Model Referen
e Adap-tive Controller (MRAC) [Parks, 1966℄. The MRAC uses an externally supplied idealmodel of the 
losed loop system whi
h exhibits the desired 
hara
teristi
s. The param-eters of the 
ontroller are updated dynami
ally in an attempt to make the 
losed-loopsystem a
t like the referen
e model. The adaptive algorithm is posed as a Liapunovfun
tion; this has the advantage that the output error is bounded and is asymptot-i
ally stable. That is, the output of the 
losed-loop system will eventually move totra
k the referen
e model with non-in
reasing error. Again, a major disadvantageis that the stru
ture of the referen
e model must mat
h the system dynami
s. Ad-ditionally, the referen
e model is limited to being linear in order for the Liapunovstability analysis to hold.
17



2.3 Neuro-
ontrolNeuro-
ontrol originated as a spe
ial bran
h of adaptive 
ontrol. Originally, neu-ral networks were employed as adaptive 
ontrol agents to model the dynami
s of aplant [Kalkkuhl et al., 1997℄. However, neural networks are mu
h broader than thespe
i�
 models of traditional adaptive 
ontrol and their use qui
kly spread to otheraspe
ts of 
ontrol theory.The appli
ation of 
onne
tionist 
omputation (neural networks) to the area of
ontrol is not new. Mu
h of the past resear
h 
an be 
ategorized into a few dis-tin
t approa
hes; we review the most 
ommon appli
ations of neural networks to
ontrol. It is parti
ularly noteworthy that most of these approa
hes are based uponsupervised learning. Reinfor
ement learning, having been developed a de
ade laterthan supervised learning, remains mostly the fo
us of the AI 
ommunity. We reviewreinfor
ement learning approa
hes to neuro-
ontrol in Se
tion 2.5.System Identi�
ationAs stated above, among the earliest appli
ations of neural networks to 
ontrol issystem identi�
ation whi
h is also known as parameter estimation by the optimal
ontrol 
ommunity [Werbos, 1992; Barto, 1992℄. Essentially, the neural network istrained to imitate the plant as shown in Figure 2.1.
Training Sigal

Neural Net

Plant

Figure 2.1: Neuro-
ontrol: System Identi�
ation
18



System identi�
ation, in the manor of adaptive 
ontrol, is useful for plant 
lassi-�
ation. Suppose that we possess a 
ontrol solution that is e�e
tive for a parti
ular
lass of plants { plants whi
h possess a 
ertain dynami
 form. We 
onstru
t a neuralnetwork model that is 
apable of learning this form. We then train the network onthe unknown physi
al plant using supervised learning. If we 
an redu
e the approxi-mation error below a prespe
i�ed toleran
e, then we 
on
lude that the neural networkis 
apable of approximating this plant. Thus, the plant must possess dynami
s whi
hbelong to this parti
ular 
lass of plants. We then apply our known 
ontrol solutionbe
ause the 
ontrol solution is e�e
tive for all plants of this 
lass. Conversely, if theneural network is not able to redu
e the approximation error below the toleran
elevel, then the plant in question does not belong to the known 
lass of plants. We
annot apply our 
ontrol solution.While system identi�
ation provided the early bridge from pure adaptive 
ontrol toneuro-
ontrol, this method's primary utility be
ame one of providing a training signalfor a double neural network arrangement. This arrangement is dis
ussed shortly.Imitate an Existing ControllerAlso among the early appli
ations of neural networks to 
ontrol is modeling anexisting 
ontroller. This arose from early neural network resear
h involving the newly\redis
overed" ba
k propagation algorithm [Werbos, 1974; Rumelhart et al., 1986a℄and the neural network's keen ability to model a nonlinear fun
tion. The network
an be trained to imitate any nonlinear mapping given suÆ
ient resour
es (hiddenunits) [Hassoun, 1995℄. The ar
hite
ture for su
h an arrangement is sket
hed in Fig-ure 2.2. The neural network re
eives the same inputs as the 
ontroller and attemptsto produ
e the same outputs. The error is ba
k propagated through the net to adjustthe weights.An obvious question arises as to the utility of training su
h a network if we alreadyhave an existing 
ontroller. There are several reasons why we would require the neuro-19



Plant

Controller

Neural NetFigure 2.2: Neuro-
ontrol: Imitate Existing Controller
ontroller. The existing 
ontroller might be impra
ti
al or expensive. An exampleis a 
ontroller that is human; the network is trained to mimi
 a person's 
ontrolde
isions. A se
ond reason is that the neural 
ontroller may be easier to analyze; itmight be possible to gain insights to a \
ontrol rule" [Barto, 1992℄. Training a neuralnetwork using an existing 
ontroller is also useful as a method to \seed" the networko�-line. On
e the network mimi
s the 
ontroller, it 
an be pla
ed on-line and makeintelligent 
ontrol de
isions immediately. The learning pro
ess 
ontinues so that thenetwork potentially surpasses the existing 
ontroller's performan
e. However, thisrequires more than the supervised training algorithm; it requires the te
hniques ofreinfor
ement learning.System Inverse Identi�
ationThe neural network is trained to model the inverse dynami
s of the plant. Thenetwork re
eives the plant's output and attempts to reprodu
e the plant inputs a
-
urately. This arrangement is depi
ted in Figure 2.3. Naturally, this approa
h is20



limited if the plant is not invertible as is the 
ase when the forward plant fun
tion isnot inje
tive [Barto, 1992℄.
Plant

Neural NetFigure 2.3: Neuro-
ontrol: Learn an Inverse PlantMany 
ontrol problems are referen
e tra
king problems in whi
h the plant outputattempts to tra
k a referen
e input signal. Having the plant inverse as a 
ontrollerobviously implements this fun
tion ni
ely. This arrangement is shown in Figure 2.4.However, in pra
ti
e there is often diÆ
ulty in learning a well-formed plant inverse.Subtle errors and new input ve
tors 
an 
ause the inverse 
ontroller to produ
e widelydi�erent responses [Barto, 1992℄. Also, the addition of a feedba
k loop 
ompli
ates thepra
ti
ality of su
h a 
ontroller. Kawato [Kawato, 1992℄ makes extensive use if thisar
hite
ture in his feedba
k error training method. Instead of using the a
tual plantoutput as an input to the network, Kawato substitutes the desired plant response.
PlantInverse Plant

Neural Net
r r P r P  P   =  r

-1 -1

Figure 2.4: Neuro-
ontrol: Inverse Plant as ControllerDi�erential PlantThis method begins with the same basi
 arrangement of a neural network usedfor system identi�
ation as in Figure 2.1. We train one neural network to mimi
21



the forward plant. As shown in Figure 2.5, we in
lude a se
ond neural network as a
ontroller. The immediate bene�t of su
h an arrangement is that we 
an now trainthe 
ontroller o�-line (i.e. we 
an use the plant-network instead of the plant). Butthe bene�t is more profound than this.
Plant

Neural Net

Controller
Neural Net

PlantFigure 2.5: Neuro-
ontrol: Di�erential PlantThe problem of using a neural network dire
tly as a 
ontroller is that the neuralnetwork is trained using supervised learning. That is, the neural network a
ts upona plant state (usually the tra
king error) to produ
e a 
ontrol signal for the plant.In order to train the network, we must know the 
orre
t, or optimal, 
ontrol signalthat the network should have produ
ed. It is often extremely diÆ
ult to examinethe plant's output response and 
ompute what the optimal 
ontrol signal should havebeen. We require a method whi
h relates the tra
king error at the plant output withthe 
ontrol signal at the 
ontroller output (plant input).With the dual neural network di�erential plant arrangement, we now have a math-emati
al model of the plant whi
h is di�erentiable. When an referen
e input signal isapplied to the neural 
ontroller, it produ
es a 
ontrol signal for the plant. The planta
ts upon the 
ontrol signal to produ
e a plant-output. We 
an now use the errorbetween the a
tual plant output and the desired plant output to ba
k propagate theerror through the network-plant to 
ontrol signal. Jordan shows that this arrange-ment is equivalent to the transpose of the plant's Ja
obian evaluated at the 
ontrol22



signal (plant input) [Jordan, 1988℄. The 
ontrol signal error 
an now be used to trainthe 
ontroller network. By using this \double ba
k propagation" method we 
an trainthe neural 
ontroller with supervised learning. The advent of reinfor
ement learninglargely obviates a need for this arrangement. However, double ba
k propagation stillhas uses for spe
ial neural ar
hite
tures; we borrow the 
on
ept for use in trainingour neuro-
ontroller.2.4 Stable, Robust Neuro-
ontrolDespite the relative frequen
y with whi
h \robust", \stable", and \neural network"appear in paper titles populating 
onferen
e pro
eedings and journal publi
ations,there exist relatively few attempts at devising a truly stable neural network 
on-troller. Mu
h of the 
onfusion arises from the many interpretations given to theterms \robust" and \stable". In the AI 
ommunity, stability implies many di�erent
on
epts in
luding: sensitivity to fault toleran
e, relative ease of learning, and the dy-nami
s of weight 
hanges. Even in the 
ontrol 
ommunity, robustness assumes manyinterpretations; robustness generally means insensitivity to something. The problemis that there are many \somethings" to be insensitive toward. In this dissertation,robustness des
ribes a 
ontroller that is insensitive to di�eren
es in the plant modeland physi
al plant. We use the term stability to denote the formal mathemati
alde�nition of stable 
ontrol presented in Chapter 3.Along these lines, there have been very few true attempts to 
onstru
t neuro-
ontrollers whi
h are stable. There have been even fewer attempts to add the ro-bustness 
riteria. As we shall dis
uss thoroughly in subsequent 
hapters, the dearthof su

essful resear
h in this area is due to the inherent intra
tability of analyzing aneural network's dynami
 
ontribution to a 
ontrol system. Despite the la
k of di-re
tly relevant publi
ation in this area, there are a few noteworthy e�orts we outlinehere. 23



The unique, dire
t approa
h of Slotine and Sanner [Sanner and Slotine, 1992℄ u-tilizes hardware-realizable, analog, neural networks to implement a real-time, stable,adaptive 
ontroller for 
ontinuous-time, nonlinear plants. To a
hieve this result, theydo require 
ertain a priori assumptions about the 
lass of nonlinearities whi
h 
hara
-terize the plant. Slotine and Sanner present a proof based upon a Liapunov stability
riterion: the neural network ar
hite
ture is stable in the sense that the 
ontrol errorwill 
onverge monotoni
ally to a minimum.This type of \robust stability proof" is 
ommon in the earlier work in stable neuro-
ontrol. The Liapunov stability analysis (or Liapunov equation) is used to show thatnetwork learning algorithms 
ause the network outputs to asymptoti
ally 
onvergeupon a stable solution. We outline Liapunov stability analysis in Se
tion 3.3. How-ever, this type of proof is not robust in the modern sense of robust 
ontrol 
on
erningthe di�eren
es between physi
al plant dynami
s and plant model dynami
s.The approa
h of Bass and Lee [Bass and Lee, 1994℄ is noteworthy for two reasons.They propose an ar
hite
ture in whi
h the neural network is treated as unstru
turedplant un
ertainty, and they also attempt to limit the magnitude of the neural networkby having it learn only the nonlinear 
omponent of the inverse plant. Their approa
huses the neural network to linearize a nonlinear plant. Thus, the neural network doesnot provide any 
ontrol; simply, the neural network is used to learn the \un
ertainty"between the true plant and an LTI model of the plant. Then, a standard robust
ontroller is designed to 
ontrol this plant.Bass and Lee attempt to redu
e the magnitude of the neural network weightsby redu
ing the un
ertainty that the network represents. To a

omplish this, they�rst 
ompute a linear model of the plant (o�-line) using standard 
ontrol te
hniques.Then, the neural network is trained to 
ompute the di�eren
e between the linearmodel and the plant. On
e the network is trained, then they 
an 
ompute a boundon the magnitude of the neural network. They 
ombine this bound with a variant of24



the small gain theorem (see Se
tion 3.5) to prove stability. Bass and Lee do provideamong the �rst dis
ussions of how to adapt the network's learning algorithm to a
hievea bounded norm on the network output. The work in this dissertation is a signi�
antstep forward in that we use the neural network to provide dire
t 
ontrol signals. Weemploy the full nonlinear, adaptive, power of the neural network to realize improved
ontrol.Narendra and Levin [Levin and Narendra, 1993℄ propose a neuro-
ontrol s
hemeinvolving feedba
k linearization. An LTI model of a nonlinear plant is devised. Then,the neural network is used in several di�erent ways to stabilize the system about a�xed point. The stability guarantees are only valid for lo
al traje
tories about the�xed point. The lo
al validity region may be arbitrarily small. Furthermore, theirmethod relies upon substantial state information that may not be observable fromthe plant.The NLq resear
h group of Suykens, De Moor, Vandewalle and others [Suykenset al., 1996; Suykens and Moor, 1997; Suykens et al., 1997; Verrelst et al., 1997;Suykens and Bersini, 1996; Suykens et al., 1993b; Suykens et al., 1993a; Suykenset al., 1995℄ is among the most well-developed e�orts at stable, robust neuro-
ontrol.An NLq representation is a series of alternating linear and nonlinear 
omputationalblo
ks. The format is generi
 enough to in
lude most 
lasses of neural networks aswell as many other ar
hite
tures su
h as parameterized systems and Kalman �lters.NLq is signi�
ant in its formal generalization of 
ategorizing neural ar
hite
tures ina framework that is suitable for appli
ation to 
ontrol theory.The se
ond 
ontribution of NLq theory is a series of proofs demonstrating theinternal stability of systems 
ontaining NLq 
omponents. The authors present threevariations of the proof, all of whi
h are based upon solving 
onvex optimization prob-lems known as LMIs (linear matrix inequalities). The LMIs are 
on�gured to arriveat stability via a quadrati
 Liapunov-type fun
tion. The NLq team is also among the25



�rst to attempt to devise a neural network learning algorithm based upon stability
onstraints. They alter Narendras's Dynami
 Ba
k Propagation Algorithm [Narendraand Parthasarathy, 1990℄ to provide stability assuran
es for their neuro-
ontroller.However, their algorithm only provides \point-wise" stability assuran
es: ea
h net-work weight value obtained during learning implements a stable system. But, thedynami
 system, in whi
h the network weights 
hange, is not guaranteed to produ
estable 
ontrol. In this dissertation, we distinguish the two approa
hes as the stati
stability problem and the dynami
 stability problem. Furthermore, the supervisedlearning algorithm of the NLq group does not utilize the ex
ellent advantages of re-infor
ement learning. Still, their work is 
learly the leading pioneering e�ort in the�eld of stable neuro-
ontrol.2.5 Reinfor
ement Learning for ControlIn this se
tion we review the most signi�
ant 
ontributions of reinfor
ement learn-ing with emphasis on those dire
tly 
ontributing to our work in robust neuro-
ontrol.Sutton and Barto's text, Reinfor
ement Learning: An Introdu
tion presents a detailedhistori
al a

ount of reinfor
ement learning and its appli
ation to 
ontrol [Sutton andBarto, 1998℄. From a histori
al perspe
tive, Sutton and Barto identify two key re-sear
h trends that led to the development of reinfor
ement learning: the trail anderror learning from psy
hology and the dynami
 programming methods from mathe-mati
s.It is no surprise that the early resear
hers in reinfor
ement learning were moti-vated by observing animals (and people) learning to solve 
ompli
ated tasks. Alongthese lines, a few psy
hologists are noted for developing formal theories of this \trialand error" learning. These theories served as spring boards for developing algo-rithmi
 and mathemati
al representations of arti�
ial agents learning by the samemeans. Notably, Roger Thorndike's work in operant 
onditioning identi�ed an ani-26



mal's ability to form asso
iations between an a
tion and a positive/negative rewardthat follows [Thorndike, 1911℄. The experimental results of many pioneer resear
hershelped to strengthen Thorndike's theories. Notably, the work of Skinner and Pavlovdemonstrates \reinfor
ement learning" in a
tion via experiments on rats and dogsrespe
tively [Skinner, 1938; Pavlov, 1927℄.The other histori
al trend in reinfor
ement learning arises from the \optimal 
on-trol" work performed in the early 1950s. By \optimal 
ontrol", we refer to the math-emati
al optimization of reinfor
ement signals. Today, this work falls into the 
ate-gory of dynami
 programming and should not be 
onfused with the optimal 
ontrolte
hniques of modern 
ontrol theory. Mathemati
ian Ri
hard Bellman is deservedly
redited with developing the te
hniques of dynami
 programming to solve a 
lass ofdeterministi
 \
ontrol problems" via a sear
h pro
edure [Bellman, 1957℄. By extend-ing the work in dynami
 programming to sto
hasti
 problems, Bellman and othersformulated the early work in Markov de
ision pro
esses.Barto and others 
ombined these two histori
al approa
hes in the �eld of rein-for
ement learning. The reinfor
ement learning agent intera
ts with an environmentby observing states, s, and sele
ting a
tions, a. After ea
h moment of intera
tion(observing s and 
hoosing a), the agent re
eives a feedba
k signal, or reinfor
ementsignal, r, from the environment. This is mu
h like the trial-and-error approa
h fromanimal learning and psy
hology. The goal of reinfor
ement learning is to devise a
ontrol algorithm, 
alled a poli
y, that sele
ts optimal a
tions (a) for ea
h observedstate (s). By optimal we mean those a
tions whi
h produ
e the highest reinfor
e-ments (r) not only for the immediate a
tion, but also for future a
tions not yetsele
ted. The mathemati
al optimization te
hniques of Bellman are integrated intothe reinfor
ement learning algorithm to arrive at a poli
y with optimal a
tions.A key 
on
ept in reinfor
ement learning is the formation of the value fun
tion.The value fun
tion is the expe
ted sum of future reinfor
ement signals that the agent27



re
eives and is asso
iated with ea
h state in the environment. Thus V (s) is the valueof starting in state s and sele
ting optimal a
tions in the future; V (s) is the sum ofreinfor
ement signals, r, that the agent re
eives from the environment.A signi�
ant advan
e in the �eld of reinfor
ement learning is the Q-learning al-gorithm of Chris Watkins [Watkins, 1989℄. Watkins demonstrates how to 
orre
tlyasso
iate the the value fun
tion of the reinfor
ement learner with both the state anda
tion of the system. With this key step, the value fun
tion 
an now be used to dire
t-ly implement a poli
y without a model of the environment dynami
s. His Q-learningapproa
h neatly ties the theory into an algorithm whi
h is both easy to implementand demonstrates ex
ellent empiri
al results.Reinfor
ement learning algorithms must have some 
onstru
t to store the valuefun
tion it learns while intera
ting with the environment. These algorithms oftenuse a fun
tion approximator to store the value fun
tion; the performan
e of the al-gorithm depends upon the sele
tion of a fun
tion approximation s
heme. There havebeen many attempts to provide improved 
ontrol of a reinfor
ement learner by adapt-ing the fun
tion approximator whi
h learns/stores the Q-value fun
tion. Andersonadds an e�e
tive extension to Q-learning by applying his \hidden restart" algorith-m to the diÆ
ult pole balan
er 
ontrol task [Anderson, 1993℄. Moore's Parti-GameAlgorithm [Moore, 1995℄ dynami
ally builds an approximator through on-line expe-rien
e. Sutton [Sutton, 1996℄ demonstrates the e�e
tiveness of dis
rete lo
al fun
tionapproximators in solving many of the neuro-dynami
 problems asso
iated with rein-for
ement learning 
ontrol tasks. We turn to Sutton's work with CMACs (CerebellarModel Arti
ular Controller) to solve some of the implementation problems for ourlearning agent. Anderson and Kret
hmar have also proposed additional algorithmsthat adapt to form better approximation s
hemes su
h as the Temporal Neighbor-hoods Algorithm [Kret
hmar and Anderson, 1997; Kret
hmar and Anderson, 1999℄.Among the notable resear
h of reinfor
ement learning is the re
ent su

ess of re-28



infor
ement learning appli
ations on diÆ
ult and diverse 
ontrol problems. Critesand Barto su

essfully applied reinfor
ement learning to 
ontrol elevator dispat
hingin large s
ale oÆ
e buildings [Crites and Barto, 1996℄. Their 
ontroller demonstratesbetter servi
e performan
e than state-of-the-art, elevator-dispat
hing 
ontrollers. Tofurther emphasize the wide range of reinfor
ement learning 
ontrol, Singh and Bert-sekas have out-
ompeted 
ommer
ial 
ontrollers for 
ellular telephone 
hannel assign-ment [Singh and Bertsekas, 1996℄. There has also been extensive appli
ation to HVAC
ontrol with promising results [Anderson et al., 1996℄. An earlier paper by Barto,Bradtke and Singh dis
ussed theoreti
al similarities between reinfor
ement learningand optimal 
ontrol; their paper used a ra
e 
ar example for demonstration [Bartoet al., 1996℄. Early appli
ations of reinfor
ement learning in
lude world-
lass 
he
kerplayers [Samuel, 1959℄ and ba
kgammon players [Tesauro, 1994℄. Anderson lists sev-eral other appli
ations whi
h have emerged as ben
hmarks for reinfor
ement learningempiri
al studies [Anderson, 1992℄.
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Chapter 3Stability Theory Overview
As the primary goal of this dissertation is to guarantee stability for systems withneuro-
ontrollers, it is important to rigorously develop the various 
on
epts of sta-bility. If a neural network is to be in
orporated as part of the 
ontrol s
heme, wemust as
ertain the requirements on the neuro-
ontrollerk su
h that signals propagat-ing through the system do not \blow up" to in�nity for reasonable system inputs. Inthis 
hapter, we present a thorough overview of the various aspe
ts of stability withspe
ial emphasis on the 
omponents of stability theory 
ontributing to the stabilityproofs for our neuro-
ontrollers in LTI systems.This 
hapter serves two purposes. First, we 
olle
t the de�nitions and theoremsthat we will require to prove neuro-
ontrol stability. We sele
t and organize those 
on-
epts germane to neuro-
ontrollers and present them in a 
oherent frame of referen
e.The se
ondary obje
tive of this 
hapter is to provide a high-level overview of stabili-ty. For theoreti
ians trained in 
lassi
al ele
tri
al engineering, mu
h of this material
an be skimmed. For the mathemati
ally literate non-engineer, this 
hapter providesenough of the fundamental parts of stability theory ne
essary for understanding theproofs we present for neuro-
ontrol stability. Numerous referen
es are 
ited so thatinterested readers may pursue a more 
omprehensive treatment of the material.In many ways, stability theory is mu
h like the three blind men who tou
h variousparts of an elephant and ea
h form widely di�erent 
on
lusions about what must30




onstitute an elephant. Similarly, we 
an approa
h stability theory from a numberof di�erent ways, ea
h of whi
h seems to be uniquely distin
t from the others. How-ever, be
ause ea
h approa
h to stability theory 
on
erns with the same fundamentalde�nitions, ea
h of these di�erent approa
hes 
an be shown to be roughly equivalent.Despite their equivalen
e, they do o�er a di�erent view of the stability of dynami
systems; ea
h approa
h has advantages over the others in some situations. Thus, this
hapter will present a number of the more 
ommon treatments of stability. Whereappropriate, we will demonstrate the equivalen
e of these approa
hes or will dire
tthe reader to referen
es showing the equivalen
e.The �rst three se
tions of this 
hapter introdu
e di�erent, but equivalent, interpre-tations of the basi
 stability de�nitions. Se
tion 3.2 lists the fundamental de�nitionsthat form the basis of stability theory. An equivalent but alternative formulation isprovided by Liapunov's dire
t method introdu
ed in Se
tion 3.3. While de�nitionalstability and Liapunov stability o�er an \internal view" of stability, a third interpre-tation in Se
tion 3.4, referred to as BIBO stability, presents stability from a systeminput/output perspe
tive.The �nal three se
tions examine feedba
k systems; the topi
s here are fundamentalto standard 
ontrol theory. In Se
tion 3.6, we present nominal stability for feedba
ksystems with pure LTI 
omponents. Se
tion 3.7 builds upon feedba
k stability toarrive at the robust stability of systems with non-LTI 
omponents. We present twote
hniques within robust 
ontrol to arrive at stability guarantees for non-LTI systems:�-analysis te
hniques of robust 
ontrol are based upon the stru
tured singular valuewhile integral quadrati
 
onstraints (IQC) derive from Liapunov theory.3.1 Dynami
 SystemsWe begin by des
ribing a generi
 
ontinuous-time dynami
 system. All of the re-sults in this 
hapter are extendible to dis
rete-time dynami
 systems; in fa
t, the31



implementation of a neural network 
ontroller will be on a digital 
omputer. Lineardynami
 systems are easily 
onverted between the 
ontinuous-time and dis
rete-timedomain. Additionally, 
ontinuous-time is the standard way of presenting stabilitytheory, thus we will follow that 
onvention here. There are several ex
ellent texts onintrodu
tory 
ontrol theory. Most of the de�nitions in this se
tion are paraphrasedfrom [Rugh, 1996; Vidyasagar, 1978; Desoer and Vidyasagar, 1975℄; ex
eptions tothese referen
es are 
ited dire
tly in the text.Consider the general system spe
i�ed by an n-dimensional state ve
tor, x(t), a
-
epting an m-dimensional input ve
tor u(t), and produ
ing the `-dimensional outputve
tor y(t). The dynami
s of su
h a system are des
ribed by the set of di�erentialequations: _x(t) = f1[t; x(t)℄ + g1[t; u(t)℄ (3.1)y(t) = f2[t; x(t)℄ + g2[t; u(t)℄ (3.2)where f1; f2; g1; and g2 are all 
ontinuous ve
tor fun
tions. To steer toward our goalof neuro-dynami
 
ontrol stability, we immediately restri
t ourselves to studying asubset of this most general system. Namely, we 
on
entrate on autonomous systems,often referred to as time-invariant systems, in whi
h the fun
tions f1; f2; g1; and g2do not depend upon t. Also we restri
t ourselves to stri
tly proper systems in whi
hg2 = 0. Thus, we arrive at: _x(t) = f1[x(t)℄ + g1[u(t)℄ (3.3)y(t) = f2[x(t)℄ (3.4)A vast majority of the resear
h in stability theory involves linear systems. Tra-ditionally, the study of nonlinear system stability has been an exer
ise in theoreti
almathemati
s; the intra
table nature of nonlinear system analysis yields little pra
ti
al32



guidelines for 
onstru
ting stable nonlinear systems. Sin
e linear system analysis istra
table, a signi�
ant body of applied resear
h has been developed for su
h systems.In the remainder of this se
tion, we 
on
entrate primarily upon linear, time-invariant(LTI) systems, returning to nonlinear systems only to note 
ontrasts.A linear, time-invariant system is governed by the di�erential equations:_x(t) = Ax(t) +Bu(t) (3.5)y(t) = Cx(t) +Du(t) (3.6)in whi
h A;B;C; and D are 
onstant matri
es of the appropriate dimensions andD = 0 for stri
tly proper systems. This situation is depi
ted graphi
ally in Figure 3.1.
x(t)  =  A x(t) + B u(t)

y(t)  =  C x(t) + D u(t)

u(t) y(t)Figure 3.1: LTI Continuous-time SystemAt this point we should make a brief 
omment about the existen
e and uniquenessof solutions to (3.5) where a solution is an expli
it fun
tion for x(t). In seeking thesesolutions, we primarily 
on
entrate on the \zero-input" 
ase given by:_x(t) = Ax(t) (3.7)The general solution to (3.7) is of the form x(t) = �(t; t0)x0, where �(t; t0) is knownas the homogeneous solution and also the state transition matrix. For the linear
ase given by (3.7) solutions typi
ally exist and are unique. The mathemati
allyinterested reader is dire
ted to [Rugh, 1996℄ for a 
omplete analysis of the uniquenessand existen
e of �(t; t0). 33



Returning to the full input/output system of (3.5), we arrive at the 
ompletesolution given in (3.8). Noti
e the solution is linear in x0 and u(t), and is 
omposedof a zero-input response given as the �rst term on the right hand side and a zero-stateresponse in the integral portion of the right hand side.x(t) = C�(t; t0)x0 + Z tt0 C�(t; t0)Bu(�)d� (3.8)In most systems of pra
ti
al interest, the solution given in (3.8) 
annot be 
omput-ed analyti
ally. Often we 
an re
over an approximate solution via numeri
al methods;however, any 
on
lusions we then draw regarding stability are not absolute. Despitethese diÆ
ulties, we 
an still propose some useful stability properties by examiningthe state matrix A. In the next se
tion, we introdu
e various de�nitions of stabilityand look as the trivial 
ases in whi
h we 
an verify stability.3.2 Basi
 Stability De�nitions and TheoremsAgain, let us 
onsider the linear, time-invariant, 
ontinuous time dynami
 systemwith zero-inputs. This system is restated here in (3.9):_x(t) = Ax(t) (3.9)De�nition 1 We say that �x is an equilibrium point of (3.9) if_x(t) = A�x = 0 (3.10)
We 
an assume that this equilibrium point is the zero ve
tor (�x = 0) without lossof generality, be
ause we 
an perform a simple 
hange of 
oordinates to produ
e anequivalent system in whi
h �x = 0 without a�e
ting the stability analysis. This shiftsimpli�es the de�nitions and proofs 
on
erning stability.34



Thus, for a system started in state x(t0) = x0 = 0 at time t0, we have thatx(t) = 0 for all t. An interesting question to ask is what happens if the system isstarted in a state that is some arbitrarily small deviation away from �x? Or if thesystem is 
urrently at state �x and is then perturbed to some nearby state, what is theresulting traje
tory of x(t)? If the system is \stable", we would like to know that thesystem will settle into the equilibrium state or, at least, that the system will not movearbitrarily far away from the equilibrium point (will not blow-up). Before we jumpinto a mathemati
ally formal statement of stability, we brie
y dis
uss the 
on
eptof a norm. A norm is a metri
 to measure the size of something. We have normsfor ve
tors, time-varying signals, and matri
es. A formal mathemati
al des
riptionof norms is given in [Skogestad and Postlethwaite, 1996℄. A 
ommon example of ave
tor norm is the 2-norm given askx(t)k2 = xT (t)x(t) (3.11)whi
h is also the inner produ
t of ve
tor and is sometimes written as kx(t)k withoutthe 2 subs
ript. Now we are ready to present our �rst set of stability de�nitions:De�nition 2 The equilibrium point 0 of the 
ontinuous-time LTI system given by(3.9) is stable at time t0 if for ea
h � > 0 there exists a Æ(�) > 0 su
h thatkx(t0)k < Æ =) kx(t)k < � 8t � t0 (3.12)
Noti
e that this de�nition does not spe
ify 
onvergen
e upon the �xed point. Itsimply states that given any distan
e �, we 
an �nd a starting point, x(t0) < Æ, su
hthat the system remains within � of the �xed point for all time. An example of asystem that is stable is a simple linear system with purely imaginary eigenvalues; the35



traje
tory is an orbit of �xed distan
e from the origin. Noti
e also that k k is anynorm on <n as they are all topologi
ally equivalent [Vidyasagar, 1978℄.Often, this same de�nition is given in another formulation. An alternative butequivalent formulation is [Rugh, 1996℄:De�nition 3 The equilibrium point 0 of the 
ontinuous-time dynami
 LTI systemgiven by (3.9) is stable at time t0 if there exists a �nite 
onstant 
 > 0 su
h thatkx(t)k < 
kx(t0)k 8t � t0 (3.13)
This de�nition is sometimes referred to as the boundedness result be
ause the normof x(t) is bounded by a multiple of the norm of the initial state x0. Consider 
 = Æ�to see 
ompatibility with De�nition 2.While stability, as stated in the above two de�nitions, implies that the traje
torywill not move arbitrarily far away from a �xed point, it does not imply that thetraje
tory will 
onverge upon the �xed point. Here, we present a stronger stabilityde�nition possessing this 
onvergen
e behavior:De�nition 4 The equilibrium point 0 of the 
ontinuous-time dynami
 LTI systemgiven by (3.9) is asymptoti
ally stable at time t0 if it is stable at time t0 and thereexists a Æ > 0 su
h that kx0k < Æ =) limt!1 kx(t)k = 0 (3.14)

This stability de�nition requires that for all initial states 
lose enough to the�xed point, the system will 
onverge to the equilibrium point eventually. Asymptoti
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stability is also referred to as exponential stability 1. An equivalent restatement ofthis de�nition is:De�nition 5 The equilibrium point 0 of the 
ontinuous-time dynami
 LTI systemgiven by (3.9) is asymptoti
ally stable at time t0 if it is stable at time t0 and thereexists a 
 > 0 and � > 0 su
h thatkx(t)k � 
e��(t�t0)kx0k t � t0 (3.15)
Thus, the traje
tory of x(t) is not only bounded by a 
onstant 
 of the initial statebut also by an exponentially de
reasing fun
tion e��(t�t0). This ensures that alltraje
tories will 
onverge to the �xed point as t!1.These two de�nitions (and their subtle variations) form the 
ore of stability theoryfor LTI systems. In the time-invariant 
ase we 
onsider here, the analysis of linearsystems is fairly straightforward. The stability of these systems depends dire
tly onthe eigenvalues of the A matrix:Theorem 1 The 
ontinuous-time LTI dynami
 system given by (3.9) is stable i�Re(�i) � 0 where �i is an eigenvalue of A. That is, the real parts of the eigenvaluesmust be less than or equal to zero. Furthermore, the system is asymptoti
ally stablei� Re(�i) < 0.Thus, as
ertaining the stability of an LTI system amounts to 
he
king the real parts ofthe eigenvalues of the state matrix A. For the 
lass of linear, time-invariant dynami
systems, stability determination is rather straightforward.1To be pre
ise, there are subtle di�eren
es between asymptoti
 stability and exponential stability;but they are equivalent for the autonomous 
ase. See [Rugh, 1996℄ for more details.37



For linear, time-varying systems (LTV), however, the eigenvalue 
ondition is in-suÆ
ient; instead, one must satisfy 
ertain 
onstraints on the solutions � of the dif-ferential equations. As stated previously, 
omputing � exa
tly is often an intra
tabletask; therefore, as
ertaining the stability of LTV systems is problemati
. Liapunov'sdire
t method, dis
ussed in the next se
tion, provides an alternative way to arrive atstability that over
omes these diÆ
ulties.3.3 Liapunov's Dire
t MethodIn this se
tion, we outline a di�erent approa
h to determine the stability of a
ontinuous-time dynami
 system. It is important to note that we are not rede�n-ing our notion of stability; instead Liapunov's dire
t method is merely an alternativeway of arriving at the same 
on
lusions regarding system stability: two di�erent pathsto the same destination (we are now the blind man pulling on the elephant's trunkinstead of its tail). Any system that is proven stable via Liapunov's dire
t methodwill also be stable a

ording to the de�nitions presented in Se
tion 3.2, but for manysystems, it is easier to rea
h the stability 
on
lusions using Liapunov's method ratherthan meeting the requirements spe
i�ed in the de�nitions. Again, the de�nitionsin this se
tion are taken primarily from [Rugh, 1996; Vidyasagar, 1978; Desoer andVidyasagar, 1975℄.For this se
tion, we return our attention to the generi
 formulation for a linear,possibly time-varying, 
ontinuous-time, dynami
 system with no input/output sig-nals: _x(t) = A(t)x(t) (3.16)Liapunov's dire
t method (also known as Liapunov's se
ond method) uses a fun
-tion de�ned on the state spa
e. If this fun
tion meets 
ertain 
riteria, then it isreferred to as a Liapunov fun
tion. 38



De�nition 6 Consider the 
ontinuous-time dynami
al system given by (3.16) withan equilibrium point at �x. A fun
tion V de�ned on a region 
 (
 � <n) of the statespa
e whi
h in
ludes �x is a Liapunov fun
tion 
andidate if1. V is 
ontinuous and 
ontinuously di�erentiable.2. V (x) > V (�x) 8x 2 
; x 6= �xEssentially, a Liapunov fun
tion 
andidate is a \bowl-shaped" fun
tion with aunique minimum at the �xed point.De�nition 7 Consider the 
ontinuous-time dynami
al system given by (3.16) with anequilibrium point at �x. A Liapunov fun
tion 
andidate, V , is a Liapunov fun
tionif _V (x) � 0 8x 2 
 (3.17)
A Liapunov fun
tion meets the requirements of being a 
andidate and it alsois monotoni
ally non-in
reasing along traje
tories of x(t). Returning to our visualimage of the bowl fun
tion, x(t) indi
ates how the state x moves along the surfa
eof the bowl a

ording to the dynami
 system given by(3.16). A Liapunov Fun
tion,then, has traje
tories whi
h never move up the surfa
e of the bowl { they alwaysmove downward on the bowl surfa
e. It is also 
onvenient to think of V as an energyfun
tion. In fa
t, for many physi
al systems, V is 
onveniently 
hosen to be thetotal energy of the system. The de�nition of a Liapunov fun
tion fa
ilitates severalstability theorems.Theorem 2 If V is a Liapunov fun
tion for the system spe
i�ed by (3.16), then thesystem is stable. Furthermore, if _V (x) < 0, then the system is asymptoti
ally stable.39



The proof of this theorem is 
omplex and thus the reader is dire
ted to [Rugh, 1996;Vidyasagar, 1978; Aggarwal and Vidyasagar, 1977℄ for various versions of the proof.Often, there is some 
onfusion in the literature as to whether the time-derivative of theLiapunov fun
tion (3.17) is non-positive (stability) or stri
tly negative (asymptoti
stability); when reading other texts, the reader should be aware of whi
h version ofLiapunov fun
tion the author assumes.One parti
ular 
hoi
e of Liapunov fun
tions is the square of the 2-norm. If we
an be assured that kxk2 de
reases with t, then we have satis�ed the requirementsfor asymptoti
 stability:V (x(t)) = kx(t)k2 = xT (t)x(t) (3.18)_V (x(t)) = ddtkx(t)k2 = _xT (t)x(t) + xT (t) _x(t) (3.19)= xT (t)[AT (t) + A(t)℄x(t) (3.20)(3.20) is a
tually a restri
tive version of a more general formulation. To arrive at themore general formulation, we re
ast (3.18) as a quadrati
 form whi
h is also referredto as a quadrati
 Liapunov form by:xT (t)Q(t)x(t) (3.21)We require that the quadrati
 Liapunov fun
tion, Q(t), be symmetri
 and positive-de�nite. It 
an be shown that these stipulations on Q(t) are equivalent to the 
on-ditions to the Liapunov 
andidate fun
tion as stated in De�nition 6. Taking thetime-derivative of the quadrati
 form, we arrive at:ddt [xT (t)Q(t)x(t)℄ = xT (t)[AT (t)Q(t) +Q(t)A(t) + _Q(t)℄x(t) (3.22)40



Theorem 3 The 
ontinuous-time dynami
al system given by (3.16) is stable i��I � Q(t) � �I (3.23)AT (t)Q(t) +Q(t)A(t) + _Q(t) � 0 (3.24)where �; � are positive 
onstants. Furthermore, the system is asymptoti
ally stable i�(3.24) is repla
ed by AT (t)Q(t) +Q(t)A(t) + _Q(t) � �I (3.25)where � is a positive 
onstant.These quadrati
 forms are yet another way to arrive at the same stability 
on
lu-sions. As we shall see in Se
tion 3.9, quadrati
 forms provide general and powerfulanalysis tools for stability.In summary, Liapunov's dire
t method is an alternative way to 
on
lude stabilityresults for a dynami
 system. The system may be of suÆ
ient 
omplexity that a s-traight forward appli
ation of the de�nitions given in Se
tion 3.2 may be ex
eedinglydiÆ
ult or impossible. This is mostly due to the fa
t that one must solve the dif-ferential equation (3.7) of the system in order to meet the de�nitional requirements.Instead, if one 
an �nd suitable Liapunov fun
tions for these systems, then one may beable to prove the stability of su
h systems. However, there is no step-by-step methodwhi
h generates Liapunov fun
tions. Often, one must rely upon intuition and experi-en
e to formulate Liapunov fun
tion 
andidates and then �nd the 
andidates (if any)whi
h meet the traje
tory requirements to be
ome full Liapunov fun
tions. Despitethis limitation, Liapunov fun
tions have been found for a large number of dynami
alsystems. A thorough treatment of the subje
t 
an be found in [Vidyasagar, 1978℄.
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3.4 Input-Output StabilityIn the previous two se
tions, we primarily 
onsider the notion of stability for the zero-input 
ase; these se
tions present suÆ
ient 
onditions for the stability of systems withexternal inputs set to 0. In this se
tion, we return to the 
ase where external inputsare non-zero. As yet another view of stability, we 
an approa
h the topi
 by lookingat 
onditions on the input/output behavior of the system. For 
larity, we restate thelinear, time-invariant system with inputs and outputs here:_x(t) = Ax(t) +Bu(t) (3.26)y(t) = Cx(t) (3.27)De�nition 8 Consider the 
ontinuous-time, LTI system given by (3.26, 3.27). Thesystem is bounded-input bounded-output stable (BIBO) if there exists a �nite
onstant � su
h that for any any input u(k) we havesupt�t0 ky(t)k � � supt�t0 ku(t)k (3.28)
where sup stands for supremum: a variant of max with mathemati
ally subtle dif-feren
es 2. This de�nition provides the familiar \bounded-input, bounded-output"(BIBO) stability notion: if the input signal is �nite, then the output signal must alsobe �nite. The 
onstant, �, is often 
alled the gain of the system. Using the 2-norm,we 
onsider BIBO in the pra
ti
al terms of energy. The ratio of the output signalenergy to the input signal energy is a �nite 
onstant (i.e. the energy gain is �nite);2Maximum represents the largest value while supremum is de�ned as the least upper bound { thea
tual bound may not be rea
hed but only approa
hed asymptoti
ally [Skogestad and Postlethwaite,1996℄ 42



the system 
annot inje
t an in�nite amount of energy, and thus, is stable. A usefulanalogy is served by water in a sink. When the tap is running, energy is being addedto the system (the water will 
ontinue to swirl around the basin). When the tap isturned o� the water will eventually drain from the basin and the sink will settle toits equilibrium point of no energy (no water). If the amount of water added from thetap is �nite, then the amount of water draining from the basin will also be �nite; thesink 
annot produ
e water.Even though we have stated BIBO stability for an LTI system, there is nothingspe
i�
 about LTI that a�e
ts the de�nition of stability. In fa
t, the same de�nitionapplies equally to other systems su
h as time-varying and nonlinear systems.In the next theorem about BIBO stability we use two te
hni
al terms from the
ontrol �eld: 
ontrollability and observability. We brie
y de�ne them here; a moredetailed de�nition 
an be found in [Skogestad and Postlethwaite, 1996; Rugh, 1996;Vidyasagar, 1978℄. Controllability is the ability to dire
t the system from any arbitrarystarting state, x1, to any arbitrary ending state, x2, in a �nite amount of time by onlymanipulating the input signal u(t). If it is not possible to dire
t the system in thismanor, then the system is said to be un
ontrollable. Similarly, if we 
an re
onstru
tthe system state, x(t), by wat
hing only the system output, y(t), then the system issaid to be observable. An unobservable system may have hidden dynami
s that a�e
tinternal states of the system but do not a�e
t the system output. For our purposes,we require the system to be 
ontrollable and observable so that we 
an relate BIBOstability to \internal stability" as stated in the previous two se
tions.Theorem 4 Consider the (
ontrollable and observable) LTI system given by(3.26,3.27). The system is asymptoti
ally stable i� it is BIBO stable.We see that BIBO stability is mathemati
ally equivalent to the asymptoti
 stabilitydis
ussed early in the de�nitions and in Liapunov's dire
t method. Intuitively thismakes sense. If we inje
t a �nite amount of energy into the system (kuk < 1), and43



the output energy of the system is �nite (kyk < 1), then ne
essarily the internalsignals of the system must asymptoti
ally de
ay to 0. The BIBO perspe
tive de�nesstability in terms of the input/output behavior of the system. This is the �rst steptowards examining the more 
omplex stability arrangements of feedba
k systems.3.5 Feedba
k StabilityTo this point, we have been 
onsidering 
ontinuous-time LTI systems in isolation(refer ba
k to Figure 3.1). Most 
ontrol systems of interest are 
omposed of multipleLTI systems 
ombined in an array of fashions su
h as parallel 
onne
tions, serial
onne
tions and parti
ularly feedba
k 
onne
tions. Generally, LTI systems 
ombineto form other LTI systems. Figure 3.2 depi
ts a typi
al feedba
k arrangement.
G1

G 2

y1(t)

u2(t)

u1(t)
+

+
y2(t)Figure 3.2: Feedba
k SystemThere are a multitude of theorems that guarantee the stability of this type ofsystem for parti
ular 
lasses of systems for G1 and G2. We begin with the mostgeneral formulation in whi
h there are no restri
tions on G1 and G2, then we intro-du
e additional stability proofs involving spe
i�
, but 
ommon, restri
tions on thesesubsystems.The main theorem of this se
tion is the Small Gain Theorem. Suppose we de-termine that the systems, G1, and G2, are both individually BIBO stable with gainsof �1 = 2 and �2 = 5, respe
tively. Consider a �nite amount of energy inje
ted intothis system at input u1. System G1 will magnify the energy by a fa
tor of 2. Next,44



system G2 will magnify the energy by a fa
tor of 5. As the energy 
ir
ulates aroundthe feedba
k loop, it is easy to see that it will be magni�ed by 10 for ea
h passaround loop; the energy will grow without bound. Even though both systems, G1and G2, are BIBO stable, the feedba
k inter
onne
tion of the 
omponents renders theoverall system unstable. Thus, the 
onne
tedness of the 
omponents requires furtherrestri
tions on the 
omponent gains to make the overall system stable. We formal-ize this notion with the following statement of the Small Gain Theorem [Desoer andVidyasagar, 1975℄.Theorem 5 Consider the system depi
ted in Figure 3.2. The equations of this systemare given by: y1 = G1(u1 + y2) (3.29)y2 = G2(u2 + y1) (3.30)Suppose that G1 and G2 are 
ausal and BIBO stable systems:kG1e1k � �1ke1k+ �1 (3.31)kG2e2k � �2ke2k+ �2 (3.32)If �1�2 < 1 then,ky1k � �1ke1k � �1(ku1k+ �2ku2k+ �2 + �2�1)(1� �1�2) (3.33)ky2k � �2ke2k � �2(ku2k+ �1ku1k+ �1 + �1�2)(1� �1�2) (3.34)Although (3.33) and (3.34) are somewhat 
omplex, this theorem essentially statesthat if the input energy in u1 and u2 is �nite and the loop gain is less than unity,then the output energy of y1 and y2 is also �nite. The small gain theorem is a very45



broad statement about feedba
k system stability. It has been stated and proved inmany di�erent formulations. Several referen
es provide this and other formulations inmore detail [Desoer and Vidyasagar, 1975; Vidyasagar, 1978; Megretski and Rantzer,1997a; Megretski and Rantzer, 1997b℄.3.6 Nominal StabilityIn the previous four se
tions, we have addressed stability from a mathemati
ian'sperspe
tive. While this perspe
tive is both valid and useful, a 
ontrol engineer 
astsa di�erent interpretation on stability. The engineer's perspe
tive addresses spe
i�
systems en
ountered frequently in 
ontrol analysis and design. In this se
tion, weremove our mathemati
ians hat and repla
e it with that of the engineer. We examinestability from the utility of 
ontrol analysis.
-

r
Controller

K
Plant
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+

e u y

Figure 3.3: Typi
al SystemConsider the dynami
 system typi
ally en
ountered by a 
ontrol engineer as shownin Figure 3.3. Noti
e that this diagram 
ould easily be re
ast into the feedba
karrangement of Figure 3.2; we simply 
ombine the series blo
ks of the 
ontroller, K,and the plant, G, to arrive at G1. The feedba
k system, G2, is a unity gain. We
ould then apply the small gain theorem to prove stability for a parti
ular 
ontrollerand plant. However, the small gain theorem is a rather blunt tool to apply in this
ase; more pre
ise stability tools have been developed for this spe
i�
 arrangement,be
ause it is en
ountered so frequently.First, the system in Figure 3.3 is typi
ally expressed in three di�erent represen-tations: the state spa
e equation, a time fun
tion, and the transfer fun
tion. The46



state spa
e representation is a set of di�erential equations des
ribing the behaviorof a system; this is the representation that we have been dealing with so far in this
hapter (see Equation 3.5 for an example). In simpler systems, we 
an solve the set ofdi�erential equations to obtain an exa
t solution to the system. This solution is thetime fun
tion representation. Both the state spa
e and time fun
tion representationsare expressions in the time domain. In 
ontrast, the transfer fun
tion representationexpresses the system in the frequen
y domain. One must use the Lapla
e transformto move ba
k and forth between the two domains.To illustrate the three representations, we show an example system in all threeformulations. Consider the system in Figure 3.4. In the top portion of this �gureis the 
ontrol system of Figure 3.3 with a spe
i�
 
ontroller and plant. We drawa dotted box around this 
ontrol system and 
ompute the transfer fun
tion as seenfrom input r to output y. This is depi
ted in the lower portion of Figure 3.4.
-
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Figure 3.4: Example System
Most 
ontrol engineering analysis is performed in the frequen
y domain; hen
e,47



we start here. The 
ontroller, K(s), is unity and the plant, G(s), is an integratorexpressed as: K(s) = 1 (3.35)G(s) = 1s (3.36)where s is the Lapla
e variable (frequen
y). We 
ombine these systems into the open-loop fun
tion, L(s) whi
h is the system with the feedba
k path removed. In the timedomain, `(t), would be 
omputed with a messy 
onvolution integral; in the frequen
ydomain, however, L(s) is 
omputed by multipli
ation.L(s) = K(s)G(s) = 1s (3.37)Mason's Gain formula allows us to 
ompute the overall transfer fun
tion of the system(with the feedba
k path added) [Phillips and Harbor, 1996℄:P (s) = L(s)1 + L(s) = 1s + 1 (3.38)The transfer fun
tion is a 
onvenient representation be
ause it fa
ilitates easy 
om-putation of the system output, Y (s), via multipli
ation with the system input, R(s):Y (s) = P (s)R(s) (3.39)The attra
tiveness of the transfer fun
tion's frequen
y domain approa
h arises fromthe easy multipli
ation used to manipulate systems and 
ompute outputs.We use the inverse Lapla
e transform to obtain the time-domain response forP (s). 48



P (s) = 1s+ 1 InverseLapla
e! y(t) = e�ty(t0) + Z t0 e��r(t� �)d� (3.40)where the right hand side is re
ognized as the standard solution to the di�erentialequation; this solution is 
omposed of the zero-input response and the 
onvolutionintegral for the zero-state response.The equivalent state spa
e representation is given as:_y(t) = Ay(t) +Br(t) = �y(t) + r(t) (3.41)Stability of these systems 
an be determined in a number of ways. Be
ause thesystem is LTI, the eigenvalues of the state matrix indi
ate stability (see Theorem 1).Here we have only one eigenvalue (� = �1) whi
h has a negative real portion; thusthe system is stable [Rugh, 1996℄.However, we often do not possess the state spa
e representation and it may bediÆ
ult to 
ompute this from the transfer fun
tion. Instead, one 
an examine thepoles of the transfer fun
tion whi
h are the zeros in the denominator of the transferfun
tion. If the zeros all lie in the left-half 
omplex plane (real part is negative), thenthe system will be stable. Here we see that the zero of s+ 1 is s = �1 and hen
e thesystem is stable [Phillips and Harbor, 1996℄.A typi
al 
ontrol problem involves devising a 
ontroller that maximizes the per-forman
e (minimum tra
king error) while providing a stable feedba
k system. Thetwo main approa
hes are numeri
al and graphi
al. Numeri
al te
hniques su
h asH2 and H1 optimal 
ontrol rely upon 
omputers to �nd a 
ontroller to optimize aparti
ular matrix norm of the system [Skogestad and Postlethwaite, 1996℄. The artof the numeri
 methods 
on
erns devising the appropriate matrix norm to 
aptureboth the stability and performan
e 
riteria. The graphi
al te
hniques, often 
alledloop-shaping, depi
t the system visually [Phillips and Harbor, 1996; Skogestad and49



Postlethwaite, 1996℄. The stability and performan
e properties of the system 
an beseen by a well-trained 
ontrol engineer who adjusts the 
ontroller to better mat
h adesired graphi
al feature. Unlike the numeri
al methods, loop-shaping is restri
tedto SISO (Single-Input, Single-Output) systems be
ause higher order MIMO (Multi-Input, Multi-Output) systems 
annot be portrayed graphi
ally [Phillips and Harbor,1996℄.These two te
hniques form the basis for mu
h of the voluminous history of 
on-trol theory. However, the tools of robust 
ontrol have re
ently emerged to addressweaknesses in these 
ontrol design te
hniques. In the next se
tion, we outline an im-portant limitation with traditional 
ontrol and examine how robust 
ontrol over
omesthis diÆ
ulty.3.7 Robust StabilityThe 
ontrol engineer designs 
ontrollers for physi
al systems. These systems oftenpossess dynami
s that are diÆ
ult to measure a

urately su
h as fri
tion, vis
ous drag,unknown torques and other dynami
s. Furthermore, the dynami
s of the system often
hange over time; the 
hange 
an be gradual su
h as when devi
es wear or new systemsbreak in, or the 
hange 
an be abrupt as in 
atastrophi
 failure of a sub
omponentor the repla
ement of an old part with a new one. As a 
onsequen
e, the 
ontrolengineer never 
ompletely knows the pre
ise dynami
s of the system.Modern 
ontrol te
hniques rely upon mathemati
al models. It is ne
essary to
hara
terize the system mathemati
ally before a 
ontroller 
an be designed. A math-emati
al model of the physi
al system is 
onstru
ted, the 
ontroller is designed for themodel, and then the 
ontroller is implemented on the physi
al system. If there aresubstantial di�eren
es between the model and the physi
al system, then the 
ontrollermay operate with 
ompromised performan
e and possibly be unstable. The situationis exa
erbated be
ause we typi
ally require that the model be LTI; thus, the known,50



nonlinear dynami
s of the system 
annot be in
luded in the model. This problemof di�eren
es between the model and the physi
al system is 
alled the robustnessproblem. A robust 
ontroller is one that operates well on the physi
al system despitethe di�eren
es between the design model and the physi
al system.Traditional design methods (loop-shaping and numeri
 methods) are inadequateto deal with the robustness problem. Be
ause it is graphi
al, loop-shaping 
an a
-tually over
ome model di�eren
es. Appropriate fudge-fa
tors 
an be in
orporatedinto 
ontroller design making loop-shaping robust to a 
ertain extent. However, thegraphi
al te
hniques are 
on�ned to SISO (single-input, single-output) systems; thisis a major limitation as most 
ontrol designs are MIMO (multiple-input, multiple-output). Numeri
 optimization methods are inadequate be
ause they design tightlyaround the model; numeri
 te
hniques exploit the dynami
s of the model in order toa
hieve the best 
ontrol performan
e. Be
ause these exploited dynami
s may not bepresent in the physi
al system, the performan
e and stability of the 
ontroller 
an bearbitrarily poor when the 
ontroller is implemented on the physi
al system.Robust 
ontrol over
omes this obsta
le by in
orporating un
ertainty into themathemati
al model. Numeri
al optimization te
hniques are then applied to themodel, but they are 
on�ned so as to not violate the un
ertainty regions. When
ompared to the performan
e of numeri
 optimization te
hniques, robust designstypi
ally do not perform as well on the model (be
ause the un
ertainty keeps themfrom exploiting all the model dynami
s). However, while the numeri
 optimizationte
hniques often perform very poorly on the physi
al plant, the performan
e of therobust 
ontroller on the physi
al plant is similar to its performan
e on the model.The key to robust designs is 
hara
terizing the un
ertainty and adding it to themodel in the appropriate ways. Consider Figure 3.5 in whi
h un
ertainty has beenadded to the system. The un
ertainty blo
k is a transfer fun
tion (or equivalentlya state spa
e representation) that 
aptures the unmodeled dynami
s of the system.51



Note, even though we have depi
ted only one un
ertainty blo
k, models often 
ontainmultiple un
ertainty blo
ks to 
apture unmodeled dynami
s in di�erent parts of thesystem.
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Figure 3.5: Control System with Un
ertaintyA full example of a robust 
ontrol design is given in Chapter 6 with the distillationpro
ess example to motivate the need for robust 
ontrol designs and illustrate theadvantages of robust 
ontrol over numeri
 optimization te
hniques. More detail onrobust 
ontrol is found in [Skogestad and Postlethwaite, 1996; Zhou and Doyle, 1998;Doyle et al., 1992℄.After the appropriate un
ertainty blo
ks have been added, the system is 
on-densed so that all the un
ertainty is grouped together in one blo
k, and all the LTI
omponents are grouped together in a se
ond blo
k. Simple operations on 
ombiningsystems enable us to form this two sub-system formulation. Su
h an arrangementis depi
ted in Figure 3.6 where M represents the known LTI subsystem, and � rep-resents the un
ertain portion of the system. This arrangement belongs to a general
lass of system 
on�gurations known as linear fra
tional transforms (LFTs). LFTsare a framework stru
tured to fa
ilitate system analysis.On
e the system has been posed as an LFT with LTI in one blo
k and un
ertaintyin the other blo
k, then we 
an apply a number of tools to determine the stability ofsu
h a system. Two of these tools are �-analysis and IQC-analysis. We present thebasi
s of �-analysis in the next se
tion and develop the IQC method in Se
tion 3.9.52



MFigure 3.6: M-� System Arrangement (as LFT)3.8 �-analysis�-analysis is a tool used to ta
kle robust 
ontrol problems in whi
h the un
ertaintyis 
omplex and stru
tured [Balas et al., 1996; Pa
kard and Doyle, 1993; Young andDahleh, 1995℄. The primary parts of �-analysis are presented here. More detaileddes
riptions are available in [Balas et al., 1996; Pa
kard and Doyle, 1993; Youngand Dahleh, 1995; Skogestad and Postlethwaite, 1996; Zhou and Doyle, 1998; Doyleet al., 1992℄. A traditional introdu
tion to �-analysis 
onsists of two parts. In the�rst part, we de�ne a matrix fun
tion, �, and dis
uss ways to 
ompute it; this �rstpart is an exer
ise in linear algebra. In the se
ond part of the standard presentationof �-analysis, we show how the linear algebra result 
an be used to as
ertain thestability of dynami
 systems. We �rst begin by de�ning � in the 
ontext of a matrixfun
tion.
M

u v

Figure 3.7: M-� System ArrangementConsider the two blo
ks inter
onne
ted in Figure 3.7 where M and � are 
omplexmatri
es. Again, we will later relate these blo
ks to dynami
 systems but for nowwe 
onsider them soley as inter
onne
ted matri
es for the purpose of exploring their53



mathemati
al properties. We pla
e the following restri
tions on M and �. Let Mbe an nxn 
omplex blo
k: M 2 Cnxn. We de�ne � to be a diagonal 
omplex blo
kparameterized by a set of integers (d1; d2; : : : ; dk; f1; f2; :::; f`). � 
onsists of two parts.The �rst part of � is a series of k identity matri
es multiplied by a 
onstant. Thedimension of ea
h identity matrix is dixdi and the 
onstant for ea
h is 
di. Theseidentity matri
es are pla
ed along the upper left diagonal of �. The se
ond part of� is a series of ` 
omplex blo
ks ea
h of dimension fjxfj. These full 
omplex blo
ks,denoted by Æfj , are pla
ed along the lower diagonal of �. Formally, � is the set ofall diagonal matri
es su
h that� = fdiag[
1Id1 ; :::; 
k; Idk ; Æf1 ; :::; Æf`℄g; (3.42)
di 2 C; Æfi 2 Cfixfi; (3.43)kXi=1 dk + X̀i=1 fi = n: (3.44)As an example, 
onsider one parti
ular element of � with n = 6 parameterized by(d1 = 3; d2 = 1; f1 = 2). This element of � has two identity matri
es (we will use
1 = 5+ i for the �rst 
onstant and 
2 = 2 for the se
ond 
onstant); the dimension ofthe �rst identity matrix is d1xd1 = 3x3 and the se
ond has dimension d2xd2 = 1x1.These two identity matri
es are pla
e along the upper left diagonal of �. Then wehave one 
omplex blo
k of dimension f1xf1 = 2x2.26666664 5 + i 0 0 0 0 00 5 + i 0 0 0 00 0 5 + i 0 0 00 0 0 2 0 00 0 0 0 2:1� 0:1i 5i0 0 0 0 46:8 �7 + 3i
37777775 (3.45)

It is important to note that the above example is a parti
ular element of �; re
all �is a
tually de�ned as the set of all matri
es meeting the 
onditions of the parameter54



set (d1; d2; : : : ; dk; f1; f2; :::; f`). Also note that � is \blo
k diagonal" meaning thatthere are sub-blo
ks within � that o

upy the diagonal of �.De�ne ��(�) to be the largest singular value of �; this is the largest ampli�
ationpossible by the matrix. Finally, we arrive at the fundamental de�nition and theoremfor �-analysis.De�nition 9 The 
omplex stru
tured singular value, ��(M), is the size of thesmallest � whi
h makes I �M� singular. It is de�ned as:��(M) = 1min� f��(�)j det(I �M�) = 0g (3.46)
��(M) = 0; if no � makes I �M� singular: (3.47)

Before we 
on
lude the linear algebra part and begin the system stability analysispart, we brie
y dis
uss the 
omputation of �. For the vast majority of \interesting"M matri
es an exa
t 
omputation of � is not possible. Instead we 
ompute lower andupper bounds. A well known property of � is given by the following theorem [Pa
kardand Doyle, 1993; Skogestad and Postlethwaite, 1996℄:Theorem 6 For the feedba
k system in Figure 3.7,�(M) � ��(M) � ��(M) (3.48)
where �(M) is the spe
tral radius (the maximum eigenvalue), and ��(M) is the largestsingular value. Despite the diÆ
ulties in 
omputing �, the 
omputation of both �(M)55



and ��(M) is 
omparatively simple. However, these two bounds are not generally verytight and thus are not parti
ularly useful in this form. The tri
k is to exploit thediagonal stru
ture of � in order to tighten these bounds. We employ a s
aling matrixD to repla
eM with DMD�1. For di�erent 
lasses of matri
es D, this multipli
ation
hanges both �(M) and ��(M), but does not a�e
t ��(M). See [Pa
kard and Doyle,1993℄ for the detailed restri
tions on D. From the 
lass of permissable D matri
es,we 
hoose a spe
i�
 matrix to minimize the upper bound of �� and from a di�erent
lass we sele
t a di�erent s
aling matrix to maximize the lower bound of �. Note,the matri
es for maximizing the lower bound and minimizing the upper bound aredi�erent and there are di�erent restri
tions on the 
lass of ea
h matrix. Fortunately,�nding the optimal D matri
es for either bound is a linear matrix inequality (LMI)problem that is easily solved in polynomial time [Gahihet et al., 1995℄. With theses
aled bounds, we are typi
ally able to approximate � quite tightly.At this point, we have presented a mathemati
al de�nition of � in terms of amatrix fun
tion and we have shown how to approximate � using upper and lowerbounds. Now we turn to the se
ond part of � involving the appli
ation of the matrixfun
tion to the stability analysis of systems. We apply a variant of the small gaintheorem to prove that this system is stable given the restri
tions onM and �. Then,we show that this arrangement 
an be formed for any LTI system with a spe
i�
 typeof un
ertainty.The de�nition of � ( De�ntion 9 ) yields an immediate stability result. A variantof the small gain theorem employs � to 
hara
terize the 
losed-loop gain of the sys-tem. The importan
e of this appli
ation of � is 
learly and 
on
isely explained byDoyle [Pa
kard and Doyle, 1993℄; thus, I quote his explanation here:It is instru
tive to 
onsider a \feedba
k" interpretation of ��(M) at thispoint. Let M 2 Cnxn be given, and 
onsider the loop shown in Fig-ure 3.7. This pi
ture is meant to represent the loop equations u = Mv,56



v = �u. As long as I �M� is non-singular, the only solutions u, v tothe loop equations are u = v = 0. However, if I �M� is singular, thenthere are in�nitely many solutions to the equations, and norms kuk, kvkof the solutions 
an be arbitrarily large. Motivated by the 
onne
tionswith stability of systems, we will 
all this 
onstant matrix feedba
k sys-tem \unstable". Likewise, the term \stable" will des
ribe the situationwhen the only solutions are identi
ally zero. In this 
ontext then, ��(M)provides a measure of the smallest stru
tured � that 
auses \instability"of the 
onstant matrix feedba
k loop. The norm of this \destabilizing" �is exa
tly 1=��(M).There are a
tually many di�erent \
avors" of stability theorems involving �; ea
hvariation measures a slightly di�erent system property and arrives at a di�erent sta-bility result. The result of ea
h theorem is a � stability test that involves 
omputing �for a spe
i�
 part of the perturbed system. We summarize one of the more prominent�-stability theorems [Pa
kard and Doyle, 1993℄:Theorem 7 �-analysis stability theoremConsider the linear system given by:24 xk+1errk+1uk+1 35 = 24 M11 M12 M13M21 M22 M23M31 M32 M33 3524 xkdkvk 35 (3.49)vk = �uk (3.50)� = � �1 �2 � (3.51)whi
h is depi
ted in Figure 3.8.The following are equivalent:1. The dynami
 system is stable,2. ��S(M) < 1 , 57



3. max�2[0;2�℄ ��P (L(ej�In;M)) < 1.
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Figure 3.8: �-analysis System ArrangementThe 
omplete analysis and proof for the �-analysis stability theorem are availablein [Pa
kard and Doyle, 1993℄. The dire
t result of Theorem 7 are two �-analysisstability tests. Be
ause they are so 
entral, we restate them here:��S(M) < 1; (3.52)max�2[0;2�℄��P (L(ej�In;M)) < 1: (3.53)Equation 3.52, 
ommonly known as the state spa
e � test, measures the stru
turedsingular value for a spe
i�
 sub
omponent of M [Pa
kard and Doyle, 1993℄. If � isless than unity, then the system represented by M is robustly stable. Equation 3.53,referred to as the frequen
y domain � test, measures a slightly di�erent aspe
t of thesystem. Again, if the � < 1 
ondition is satis�ed, then robust stability is a
hieved.The L notation refers to an LFT formed from the nominal 
ontrol system and theun
ertainty blo
ks. More details 
an be found in [Pa
kard and Doyle, 1993℄.As dis
ussed previously, � 
annot be 
omputed dire
tly. Instead, upper and lowerbounds for � are used as an approximation. We are parti
ularly 
on
erned withthe upper bounds as these provide limitation on the size of the perturbation. Thefollowing three upper bounds are used for a
tual 
omputations:58



infDs ��(D1=2s MD�1=2s ) < 1; (3.54)infDp max�2[0;2�℄ ��[D1=2p (L(ej�In;M)D�1=2p ℄ < 1; (3.55)max�2[0;2�℄ infDp ��[D1=2p (�)L(ej�In;M)D�1=2p (�)℄ < 1; (3.56)All of the above 
omputations use the maximum singular value, ��, as the upperbound approximation to �. Re
all, that the singular value 
an be modi�ed via s
alingmatri
es, D, in order to tighten the upper bound. This allows us to approximate �quite tightly. Equation 3.54 
omputes the upper bound for the state spa
e � test ofEquation 3.52. For the frequen
y domain � test of Equation 3.53, there are a
tuallytwo di�erent upper bound approximations. Equation 3.55 employs 
onstant D s
alingmatri
es while Equation 3.56 bases its 
al
ulations on s
aling matri
es that vary asa fun
tion of frequen
y.The distin
tion between Equation 3.55 and Equation 3.56 is 
riti
al be
ause ea
htest has restri
tions on the type of stru
tured un
ertainty in
luded in �. Spe
i�
ally,the frequen
y varying upper bound test of Equation 3.56 requires that the un
ertainty
aptured by � be LTI while the stronger � tests of Equation 3.54 and Equation 3.55allow un
ertainty that is both time-varying and \bounded" nonlinear. The Matlab�-analysis toolbox implements the frequen
y varying � test, and thus, is appli
ableonly to systems with LTI un
ertainty. At the moment, this is the only available �test implemented in software. The stronger versions of � tests are not implementedin available software.For the work in this dissertation, we use the � tests to as
ertain the stability ofsystems 
ontaining a neuro-
ontroller. The neural network 
ontroller has both time-varying and nonlinear dynami
s. As a result, the stability guarantees of the Matlab �test do not apply to our neuro-
ontrol system. Playing the role of Devil's Advo
ate,we 
an 
onstru
t systems with non-LTI dynami
s that pass the frequen
y-varyingtest of Matlab's �-analysis toolbox, but are a
tually quite unstable.59



While the exa
t mathemati
al guarantees of �-analysis stability do not hold forour neuro-
ontrol systems, the �-analysis toolbox does still play an important role forour work. For the neuro-
ontrol systems 
onsidered in this dissertation, the �-analysistest works well as an indi
ator of system stability. Despite the fa
t that our non-LTIun
ertainty violates the stri
t mathemati
al assumptions in the � stability test, inpra
ti
e, the � stability test serves as a very good indi
ator of our system stability.Thus, we use Matlab's �-analysis toolbox as an approximation of system stability.In the next se
tion, we introdu
e a di�erent stability tool, IQC. The stability testwith IQC does apply to our non-LTI un
ertainty, and thus, we do have a formalmathemati
al guarantee of stability. We also in
lude the �-analysis stability testbe
ause this is the primary 
ommer
ial stability software 
urrently on the market,it is well-known among resear
hers in the �eld, it does work a

urately in pra
ti
efor our systems, and it is likely that a stronger, non-frequen
y varying, 
ommer
ial,produ
t will be added to the Matlab toolbox in the future.3.9 IQC StabilityIntegral quadrati
 
onstraints (IQC) are a tool for verifying the stability of systemswith un
ertainty. In the previous se
tion, we applied the tool of �-analysis to deter-mine the stability of su
h a system. IQC is a di�erent tool whi
h arrives at the samestability results. In this se
tion, we present the basi
 idea behind IQCs. The inter-ested reader is dire
ted to [Megretski and Rantzer, 1997a; Megretski and Rantzer,1997b; Megretski et al., 1999℄ for a thorough treatment of IQCs.Consider, on
e again, the feedba
k interpretation of a system as shown in Fig-ure 3.9. The upper blo
k, M , is the known LTI 
omponents; the lower blo
k, � isthe un
ertainty.De�nition 10 An integral quadrati
 
onstraint (IQC) is an inequality des
rib-ing the relationship between two signals, w and v. The relationship is 
hara
terized60
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Figure 3.9: Feedba
k Systemby the matrix � as: Z 1�1 ���� v̂(j!)ŵ(j!) ������(j!) ���� v̂(j!)ŵ(j!) ���� d! � 0 (3.57)where v̂ and ŵ are the Fourier Transforms of v(t) and w(t). We now summarize themain stability theorem of IQC [Megretski and Rantzer, 1997a℄.Theorem 8 Consider the inter
onne
tion system represented in Figure 3.9 and givenby the equations v =Mw + f (3.58)w = �(v) + e (3.59)Assume that:� The inter
onne
tion of M and � is well-posed. (i.e., the map from (v; w) !(e; f) has a 
ausal inverse)� The IQC de�ned by � is satis�ed.� There exists an � > 0 su
h that���� M(j!)I ������(j!) ���� M(j!)I ���� � ��I (3.60)61



Then the feedba
k inter
onne
tion of M and � is stable.A few 
omments are in order. First, the utility of this method relies upon �nd-ing the 
orre
t IQC, �, whi
h 
aptures the un
ertainty of the system. In general,�nding IQCs is a diÆ
ult task that is beyond the grasp of most engineers who wishto apply this method. Fortunately, a library of IQCs for 
ommon un
ertainties isavailable [Megretski et al., 1999℄; more 
omplex IQCs 
an be built by 
ombining thebasi
 IQCs.Se
ond, the 
omputation involved to meet the requirements of the theorem isnot diÆ
ult. The theorem requirements also transform into an LMI (linear matrixinequality). The LMI is a 
onvex optimization problem for whi
h there exist fast,
ommer
ially available, polynomial time algorithms [Gahihet et al., 1995℄.Third, the IQC does not rede�ne stability. On
e again the IQC is a tool to arriveat the same stability 
on
lusions as other te
hniques. The inventors of IQC readilydemonstrate that IQC is a generalization of both Liapunov's dire
t method and thesmall gain theorem; a slightly more 
omplex analysis shows the 
onne
tion to �-analysis. The interested reader 
an �nd these details in [Megretski and Rantzer,1997a; Megretski and Rantzer, 1997b℄.
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Chapter 4Stati
 and Dynami
 StabilityAnalysis
In the previous 
hapter, we 
onstru
ted an in
reasingly sophisti
ated notion of sta-bility by progressing from simple de�nitional stability, through Liapunov stability,to input/output stability and then �nally system stability with �-analysis and IQC-analysis. This 
hapter builds upon this previous framework to develop our maintheoreti
al results. First we present a method to determine the stability status of a
ontrol system with a stati
 neural network, a network with all weights held 
onstant.We prove the that this method identi�es all unstable neuro-
ontrollers. Se
ondly, this
hapter presents an analyti
 te
hnique for ensuring the stability of the neuro-
ontrollerwhile the weights are 
hanging during the training pro
ess. We refer to this as dy-nami
 stability. Again, we prove that this te
hnique guarantees the system's stabilitywhile the neural network is training.It is 
riti
al to note that dynami
 stability is not a
hieved by applying the stati
stability test to the system after ea
h network weight 
hange. Dynami
 stability isfundamentally di�erent than \point-wise" stati
 stability. For example, suppose thatwe have a network with weight ve
tor W1. We apply the stati
 stability te
hniques ofthis 
hapter to prove that the neuro-
ontroller implemented by W1 provides a stablesystem. We then train the network on one sample and arrive at weight ve
tor W2.Again we 
an demonstrate that the stati
 system given by W2 is stable. However,63



this does not prove that the system, while in transition from W1 to W2, is stable. Werequire the additional te
hniques of dynami
 stability analysis in order to formulatea reinfor
ement learning algorithm that guarantees stability throughout the learningpro
ess. We in
lude the stati
 stability 
ase for two important reasons. The stati
stability analysis is ne
essary for the development of the dynami
 stability theorem.Additionally, the existing resear
h literature on neural network stability addresses on-ly the stati
 stability 
ase; here, we make the distin
tion expli
it in order to illustratethe additional power of a neuro-
ontroller that solves the dynami
 stability problem.This 
hapter a
tually presents two di�erent variations of stati
 and dynami
 sta-bility, one variation using �-analysis and the other variation using IQC-analysis.While these two tools arrive at roughly equivalent de
isions regarding system sta-bility, the spe
i�
 implementation details are di�erent. We in
lude both stabilitytools, �-analysis and IQC-analysis, for several reasons. The �-analysis stability testis bene�
ial be
ause it is well-known among resear
hers in robust 
ontrol and there isa 
ommer
ial implementation available through Matlab. As dis
ussed in Se
tion 3.8,there are a
tually many di�erent stability tests based upon the stru
tured singularvalue, �. Some of these tests allow non-LTI un
ertainty fun
tions while other variantsof the � test are restri
ted to LTI un
ertainty fun
tions; be
ause the �-analysis sta-bility test implemented in Matlab requires LTI un
ertainty while our neuro-
ontrollerpossesses non-LTI un
ertainty, we invalidate the mathemati
al guarantees of stabilitywhen we use the 
ommer
ial Matlab produ
t with our neuro-
ontrol system. How-ever, for the type of systems we en
ounter, the Matlab �-analysis stability test doeswork well in pra
ti
e. Thus, it serves as a good approximate indi
ator of systemstability. It is likely that other � stability tests not requiring LTI un
ertainty maybe
ome 
ommer
ially available in the near future. Therefore, we in
lude a �-analysisversion of the stability \proofs" here and we use �-analysis as a stability tool in our
ase studies. We in
lude IQC-analysis be
ause it is appli
able to non-LTI un
ertainty.64



With IQC-analysis, we do a
hieve the stri
t mathemati
al guarantees of system stabil-ity. The drawba
k of IQC-analysis is that the software is not 
ommer
ially available;there is an unsupported beta version available from MIT [Megretski and Rantzer,1997a; Megretski and Rantzer, 1997b; Megretski et al., 1999℄. Our experien
es withexperiments in the 
ase studies indi
ate that IQC-analysis is 
omputationally moretime-
onsuming than �-analysis.In summary, the �-analysis version of the Stati
 and Dynami
 Stability Theoremspresented in this 
hapter are valid; however, our appli
ation of the theorems is 
awedbe
ause we use the Matlab �-analysis toolbox whi
h does not permit non-LTI un
er-tainty. For the IQC-analysis, both the theorems and our appli
ation of the theoremsare valid for the non-LTI un
ertainty.The remainder of this 
hapter is organized as follows. In Se
tion 4.1, we dis
ussthe general approa
h and framework for proving the stability of systems with neuralnetwork 
ontrollers. This 
hapter then divides into two trends; one is based on using�-analysis as the underlying tool for proving stability while the other trend utilizesIQC-analysis. Se
tion 4.2 dis
usses how to 
onvert the neural network into a format
ompatible with �-analysis. Then Se
tion 4.3 and Se
tion 4.4 introdu
e and provethe Stati
 Stability Theorem and the Dynami
 Stability Theorem based upon the�-analysis tool. The other trend 
on
erning IQC-analysis has three 
orrespondingse
tions. Se
tion 4.5 shows how to 
onvert the neural network into the IQC for-mat. Se
tion 4.6 and Se
tion 4.7 present and prove the Stati
 and Dynami
 StabilityTheorems based upon IQC-analysis. Finally, the two trends 
onverge as Se
tion 4.8sket
hes the stable learning algorithm based upon the Dynami
 Stability Theorem.4.1 An Overview of the Neural Stability AnalysisStati
 and dynami
 stability proofs are developed by 
onstru
ting and analyzing amathemati
al model of the plant. As dis
ussed in Se
tions 3.6 and 3.7, the design65



engineer typi
ally 
onstru
ts an LTI model of the plant before building a 
ontroller.The plant model is an LTI (linear, time-invariant) system be
ause a vast body of
ontrol resear
h and software tools are available to aid in the 
onstru
tion of stable andhigh-performing 
ontrollers for LTI systems. Conversely, the design of 
ontrollers fornon-LTI systems is greatly 
ompli
ated by the prohibitively 
omplex dynami
s and,therefore, the la
k of analyti
al tools. If the engineer desires stability assuran
es, the
hoi
e of a non-LTI 
ontroller is non-existent for all but the most trivial systems.Adding the neural network to the system introdu
es nonlinearity. The nonlinearityis a desirable feature be
ause the neural network derives mu
h of its 
omputationalpower from the nonlinearity. However, the introdu
tion of nonlinearities prohibits usfrom applying the theory and te
hniques based on LTI systems. Even if we restri
tourselves to linear networks (a major sa
ri�
e in the 
omputational ability of a neuralnetwork), we still en
ounter diÆ
ulties as the network weights 
hange during learning;this system is time-varying, and still violates the LTI assumption.Thus, we arrive at the dilemma that has impeded progress in neuro-
ontrol to date.We desire the nonlinear 
omponent of neural networks for their ability to implementbetter 
ontrollers, but we require the system be LTI so that we 
an employ ouranalysis tools 
on
erning stability. We also need to allow the network weights to
hange during learning { a further violation of the LTI prin
iple. In this 
hapter,we �rst present a te
hnique to over
ome the stati
 stability problem; we permit thenonlinearity of a neural network while still guaranteeing stability. We then present ase
ond te
hnique to solve the dynami
 stability problem so that neural networks withtime-varying weights are guaranteed to be stable.In this dissertation, we use the te
hniques of robust 
ontrol to propose a solutionto both of these problems. As detailed in Se
tion 3.7, robust 
ontrol enables thedesign of 
ontrollers for systems that 
ontain unknown nonlinearities and time-varyingdynami
s. This is a
hieved by identifying and 
hara
terizing the non-LTI 
omponents66



and then 
overing them with an un
ertainty fun
tion. The robust 
ontrol designte
hniques build 
ontrollers that remain stable for not only the LTI system, butalso any unknown non-LTI 
omponents of the system existing within the un
ertaintyregion.We 
reate two \versions" of the neuro-
ontrol system. The �rst version 
ontainsthe neural network with all of its nonlinear and time-varying features. We refer to thisas the applied version of the neuro-
ontroller be
ause it is this version that is a
tuallyimplemented as our 
ontrol s
heme. The se
ond version is a purely LTI model withthe non-LTI parts of the neural network 
onverted to un
ertainty blo
ks. This version,the testable version, is used only for the robustness tests to determine the stabilitystatus of the applied version. If we 
hoose the un
ertainty fun
tions 
orre
tly, thenstability guarantees of the testable version imply stability guarantees for the appliedversion of the neuro-
ontrol system. The next se
tion addresses the problem of howto 
over the neural network's nonlinearity with an appropriate un
ertainty fun
tion;that is, we dis
uss how to derive the testable version from the applied version of theneuro-
ontroller. The analysis of the next se
tion is spe
i�
 to the �-analysis tools.Se
tion 4.5 provides the same 
onversion for the IQC-analysis stability tool.4.2 Un
ertainty for Neural Networks: �-analysisThe neural network possesses two violations of the LTI prin
iple. The �rst violation isthe nonlinear a
tivation fun
tion of the network's hidden layer. The se
ond violationis the time-varying weight 
hanges that the network in
urs during training. If we areto in
lude a neural network as part of the 
ontrol system, then we must \
onvert" thenon-LTI parts of the neuro-
ontroller. In this se
tion, we address the �rst violation.We temporarily ignore the se
ond violation of time-varying dynami
s by stipulatingthat the networks' weights remain �xed. Spe
i�
ally, this se
tion dis
usses the mod-i�
ations we make on the applied version of the neuro-
ontroller in order to 
onvert67



it to the testable version of the neuro-
ontroller in whi
h the nonlinear hidden unitsare 
overed with un
ertainty fun
tions. Again, the analysis of this se
tion assumesthat �-analysis is the intended stability tool. Refer to Se
tion 4.5 to see a parallel
onversion for the IQC-analysis stability tool.At this point, we interje
t a few 
omments about ar
hite
tural de
isions regardingthe neural network. There are a multitude of neural networks from whi
h we 
ansele
t; here we have 
hosen a 
ommonly used ar
hite
ture with two feed forwardlayers, a nonlinear hyperboli
 tangent fun
tion in the a
tivation layer, and a linear(no a
tivation fun
tion) output layer. We have made further stipulations regardingthe number of hidden units (h) and the number of layers (2). We need to be pre
isein sorting out our motivations for sele
ting a parti
ular ar
hite
ture. Spe
i�
ally, weneed to indi
ate whi
h ar
hite
ture 
hoi
es are a result of the requirements of thestability theory, the desire to 
hoose 
ommon and simple ar
hite
tures, and the needto sele
t an ar
hite
ture that works well in pra
ti
e for a parti
ular problem. Forthe moment, we simply present the neural network ar
hite
ture. We dis
uss why andhow we arrived at this ar
hite
ture in Chapter 5.Let us begin with the 
onversion of the nonlinear dynami
s of the network's hiddenlayer into an un
ertainty fun
tion. Consider a neural network with input ve
tore = (e1; :::; en) and output ve
tor û = (û1; :::; ûm). The symbols e and û are 
hosenintentionally to be 
onsistent with the network used as a 
ontroller in other 
hapters(the network input is the tra
king error e = r � y, and the network output is theappended 
ontrol signal û). The network has h hidden units, input weight matrixWhxn, and output weight matrix Vmxh where the bias terms are in
luded as �xedinputs. The hidden unit a
tivation fun
tion is the 
ommonly used hyperboli
 tangentfun
tion. The neural network 
omputes its output by:�j = Pni=1Wi;j ei;ûk = Phj=1 Vk;j tanh(�j): (4.1)68



We 
an write this in ve
tor notation as� = We;T = tanh(�);û = V T: (4.2)These are the equations of the applied version of the neuro-
ontroller. This is theneuro-
ontroller that will a
tually be in
orporated into the physi
al 
ontrol system.With moderate rearrangement, we 
an rewrite the ve
tor notation expression in (4.2)as � = We;
j = ( tanh(�j)�j if �j 6= 01 if �j = 0 ;� = diagf
jg;û = V ��: (4.3)The fun
tion, 
, 
omputes the output of the hidden unit divided by the input ofthe hidden unit; this is the gain of the hyperboli
 tangent hidden unit. Figure 4.1is a plot of both the tanh fun
tion and the gain of the tanh fun
tion. The gain oftanh is bounded in the unit interval: 
 2 [0; 1℄. Equivalently, we say that tanh isa se
tor bounded fun
tion belonging to the se
tor [0,1℄. This se
tor boundedness isdemonstrated in Figure 4.2a.Equation 4.3 o�ers two 
riti
al insights. First, it is an exa
t reformulation of theneural network 
omputation. We have not 
hanged the fun
tionality of the neuralnetwork by restating the 
omputation in this equation form; this is still the appliedversion of the neuro-
ontroller. Se
ond, Equation 4.3 
leanly separates the nonlin-earity of the neural network hidden layer from the remaining linear operations ofthe network. This equation is a multipli
ation of linear matri
es (weights) and onenonlinear matrix, �. Our goal, then, is to repla
e the matrix � with an un
ertaintyfun
tion to arrive at the testable version of the neuro-
ontroller.69
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Figure 4.1: Fun
tions: tanh and tanh gain

a. tanh in [0,1℄ b. improved se
torFigure 4.2: Se
tor Bounds on tanh� is a diagonal matrix with the 
js along its diagonal where 
j is the nonlineargain of the jth hidden unit. We \
over" � by �nding an un
ertainty fun
tion for ea
h
 and 
onstru
ting the 
orresponding diagonalized matrix. To 
over 
 we employ anaÆne fun
tion: 
 � �
 + ~
Æ (4.4)where �
 and ~
 are 
onstants, and Æ 7! [�1; 1℄ is the unit un
ertainty fun
tion. Ina stri
t mathemati
al sense, Æ is simply a fun
tion that returns a real value on therange [�1; 1℄. From an engineering perspe
tive, Æ is the system information that is70



unknown. We normalize the unknown to have a magnitude of unity by 
hoosing theappropriate 
onstants �
 and ~
. From a stability perspe
tive, we 
an envision someoneplaying the role of Devil's Advo
ate by sele
ting values for Æ that make our systemas unstable as possible. Æ is the range, or size, of values for whi
h our system mustremain stable.As a �rst attempt, we bound, or 
over, 
 with an un
ertainty region of �1 asshown in Figure 4.2a (�
 = 0; ~
 = 1). Note however, this region is double the size ofthe [0,1℄ se
tor; it is overly 
onservative. We 
an form a tighter inequality by 
hoosing�
 = 0:5 and ~
 = 0:5 to arrive at 
 = 0:5+ 0:5Æ. Thus, we 
over 
 with a known �xedpart, 12 , and an unknown, variable part [�12 ; 12 ℄. The �xed part is the median value ofthe un
ertainty, and the unknown part is one half the range. This improved se
tor isshown in Figure 4.2b. We now express 
 as:
j � �
 + ~
Æj; (4.5)Æj 7! [�1; 1℄; (4.6)�
 = (
MAX + 
MIN)=2 = 12 ; (4.7)~
 = (
MAX � 
MIN)=2 = 12 : (4.8)Finally, we arrive at an expression for our testable version of the neural networkin matrix notation: �� = diagf�
g;~� = diagf~
Æjg;ûtestable = V (�� + ~�)�= V ��� + V ~��: (4.9)Equation 4.9 is a reformulation of the neural network; this is the testable versionof the neuro-
ontroller. It is no longer an exa
t representation of the network be
ausewe have approximated the nonlinear hidden unit with an un
ertainty region. But the71



formulation given by Equation 4.9 \
overs" the dynami
s of the original network givenin Equation 4.1. That is, any value from the applied version of the neural networkfun
tion, û, 
an be a
hieved in the testable version, ûtestable, by an appropriate 
hoi
eof values for the un
ertainty fun
tions, Æj's. Noti
e that all the �
s and ~
s are thesame for ea
h hidden unit, but the Æj's are unique for ea
h hidden unit. Also the
overage of �� + ~� ex
eeds the a
tual fun
tion area of �.At this point, we have re
ast the nonlinear applied version of the neural networkas an LTI system plus an un
ertainty 
omponent. To iterate, this testable versionof the neural network is used for the stability analysis while the applied version isa
tually employed in the physi
al system as part of the 
ontroller. The next step is toapply the stability analysis tools to determine the stability status of the neuro-
ontrolsystem.4.3 Stati
 Stability Theorem: �-analysisNow that we have re
ast the nonlinear, applied, neural network into a testable ver-sion 
omposed of linear, time-invariant 
omponents and an un
ertainty fun
tion, westate our Stati
 Stability Theorem. This version of the Stati
 Stability Theorem ispredi
ated upon using �-analysis as the underlying tool to prove stability. Se
tion 4.6presents a nearly identi
al version of the same theorem using IQC-analysis.Theorem 9 (Stati
 Stability Theorem: �-analysis version)Given the following:1. We have an LTI 
ontrol system with a (nonlinear) neural network as a 
ompo-nent. We refer to this as the applied version of the neuro-
ontroller.2. The nominal LTI 
losed-loop system (without the neural network) is internallystable. 72



3. The neural network is stati
: the hidden layer and output layer weights are held
onstant.4. We 
an re
ast the neural network into an LTI blo
k plus an un
ertainty fun
tion.We refer to this as the testable version of the neuro-
ontroller.5. The indu
ed norm of the testable version of the neural network is greater thanor equal to the indu
ed norm of the applied version of the neural network.6. A �-analysis robust stability tool (that permits non-LTI un
ertainty) indi
atesthat the testable version of the neuro-
ontrol system is stable.Under these 
onditions, the applied version with the full nonlinear neural network isstable.Proof:We separate the proof of the Stati
 Stability Theorem into two parts. The �rstpart primarily 
on
erns assumptions 4 and 5. Spe
i�
ally, if we re
ast the appliedversion of the neural network as an LTI system and an un
ertainty fun
tion (thetestable version), then the indu
ed norm of the applied version is bounded by theindu
ed norm of the testable version. We demonstrate that the spe
i�
 un
ertaintyfun
tion outlined in Se
tion 4.2 meets the indu
ed norm assumption. The se
ond partof the proof restates the 
on
lusion of the �-analysis Stability Theorem (Theorem 7from Se
tion 3.8).Part IRe
all from Se
tion 4.2, we 
an state the 
omputation of a two-layer network withtanh a
tivation fun
tions in the hidden layer as:
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û = V ��� = We;� = diagf
jg;
j = ( tanh(�j)�j �j 6= 01 �j = 0 : (4.10)This is the applied version of the neuro-
ontroller that will be implemented in thereal 
ontrol system. We have manipulated the standard formulation to produ
e theabove expression where all the nonlinearity is 
aptured in the matrix �. Furthermore,the nonlinearity in � is posed as a hidden layer gain. We then derived the testableversion of this formulation as: ûtestable = V ��� + V ~�� (4.11)where the un
ertainty fun
tion, Æ 7! [�1; 1℄, is in
luded in the diagonal matrix ~�.Given these two formulations of the neural network, we need to show that the indu
ednorm of the testable version is greater than or equal to the indu
ed norm of the appliedversion.At this point, it is helpful to view the neural networks as expli
it ve
tor fun
-tions. That is, û and ûtestable are ve
tor fun
tions and should be written as û(e) andûtestable(e) respe
tively.The indu
ed norm of a ve
tor fun
tion, f , is given bykfk = maxe 6=0 kf(e)kkek : (4.12)The indu
ed norm of a fun
tion is the maximum gain of that fun
tion. The indu
ednorm is usually rewritten in a more familiar, yet equivalent, formulation as [Skogestadand Postlethwaite, 1996℄: 74



kfk = maxkek=1 kf(e)k: (4.13)We now state the indu
ed norm of the applied version of the neural network as:kû(e)k = maxkek=1 kV �Wek; (4.14)and the indu
ed norm of the testable version askûtestable(e)k = maxkek=1 kV (�� + ~�)Wek: (4.15)The di�eren
e in these two norms arises from the distin
tion between � for theapplied version and (�� + ~�) for the testable version. These �'s are all diagonalmatri
es; thus we �rst 
onsider a 
omparison on a per element basis. In the appliedversion of �, ea
h diagonal element is given by 
j. Re
all that 
j is the gain of anonlinear tanh hidden unit. Also re
all that the gain is bounded by the se
tor [0; 1℄.For the testable version, the diagonal elements of (�� + ~�) are given by (�
j + ~
jÆj)where �
j = 12 , ~
j = 12 , and Æj is a fun
tion whose range is [�1; 1℄.It is 
lear that ea
h element of the testable version 
overs ea
h element of theapplied version. That is, for some parti
ular element of the applied version, 
j, we
an sele
t a value for Æj 2 [�1; 1℄ su
h that k(�
j + ~
jÆ)k � k
jk. The same argumentextends for the other elements along the diagonals be
ause we 
an 
hoose ea
h Æjindependently. Then, we say that the matrix fun
tion (�� + ~�) 
overs the matrix �.From inspe
tion of Equation 4.14 and Equation 4.15, we arrive at:kû(e)k � kûtestable(e)k: (4.16)This satis�es Part I of the proof. 75



Part IIIn Chapter 3, we presented the formal framework for robust stability. Spe
i�
ally,Se
tion 3.8 outlines robust 
ontrol theory and states the �-analysis Stability Theorem.Part II of this proof is a straight-forward appli
ation of this theorem.Re
all that Theorem 7 (the �-analysis Stability Theorem) has the the following
onditions:1. The known parts of the system 
an be grouped into a single fun
tional boxlabelled M.2. The system is internally stable. (M is a stable system).3. The nonlinear and time-varying 
omponents are repla
ed by un
ertainty fun
-tions.4. The un
ertainty fun
tions have indu
ed norms whi
h bound the indu
ed normsof the unknown (and possibly non-LTI) dynami
s they repla
e.5. These un
ertainty fun
tions are usually normalized (with 
onstants of normal-ization being absorbed into the M blo
k) and grouped together in a � box.Then �-analysis performs 
omputations on the LFT formed by the M-� inter
on-ne
tion. Based upon the result of this 
omputation, we 
an infer the stability of theoriginal non-LTI system.We meet these 
onditions of the �-analysis Stability Theorem through the as-sumptions listed in the Stati
 Stability Theorem and through the result of Part I ofthe proof. Thus, we apply the result of the �-analysis Stability Theorem to 
on
ludethat the applied version of our neuro-
ontroller is stable. Q.E.D.
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4.4 Dynami
 Stability Theorem: �-analysis ver-sionWe extend the appli
ation of robust stability theory from stati
 stability analysis tohandle dynami
 stability analysis. Dynami
 stability di�er from stati
 stability inthat we permit the weights of the neural network to 
hange as a result of training;this is a further violation of the LTI model. The key 
on
ept for dynami
 stabilityanalysis is to 
onsider neural network weight updates as perturbations to the networkweights. We add additional un
ertainty to the network weights and then apply the�-analysis tools to as
ertain the stability status of the system. Again, we emphasizethat the theorem in this se
tion assumes the use �-analysis as the stability tool. Thereis a parallel version of the Dynami
 Stability Theorem for the IQC-analysis tool inSe
tion 4.7.To begin, we again 
onsider an LTI system with a neural network as a non-LTI
omponent. Re
all that the network is a two-layer, feed forward network with tanha
tivation fun
tions in the hidden layer. The network has two sets of weight matri
es:Whxn is the input-side weight matrix and Vmxh is the output-side weight matrix (ninputs, h hidden units, and m outputs with the bias terms in
luded as �xed inputs).Let us form the matrix B as a diagonal matrix in whi
h the weights of W and V aredistributed along the diagonal
B = 2666666664

W1;1 W1;2 ::: Wh;n V1;1 ::: Vm;h
3777777775 : (4.17)

Matrix B is of size zxz where z = hn+mh. Now we form a diagonal matrix BP (theP subs
ript denotes perturbation) also of size zxz by:77



BP = 2664 Bp1 Bp2 ::: Bpz 3775 ; (4.18)where ea
h Bpi 2 <. Finally, we form a diagonal matrix �L (the L subs
ript denoteslearning) again of size zxz:
�L = 2664 Æl1 Æl2 ::: Ælz 3775 ; (4.19)where Æli 7! [�1; 1℄ is the unit un
ertainty fun
tion as des
ribed in the previous se
tionon stati
 stability. These square matri
es, B, BP , and �L, are all diagonalized sothat when they are multiplied together, the 
orresponding entries of ea
h matrix willmultiply together.At this point it is instru
tive to dis
uss the purpose of BP and �L. Even thoughtheir semanti
 interpretations have little bearing on the Dynami
 Stability Theorem,it is important to understand why we are adding un
ertainty to the system in the formofBP . We regardBP as a set of individual perturbation sizes, one per weight inW andV , that will allow us to add un
ertainty to the individual network weights. Essentially,Bpi is the amount of permissible un
ertainty for the 
orresponding neural networkweight in B. This un
ertainty dire
tly translates into how mu
h of a perturbationwe tolerate for ea
h individual network weight. We will manipulate the perturbationsizes in BP until the �-analysis stability tool veri�es that the overall 
ontrol systemis stable for all these perturbations. In the dynami
 stability proof whi
h follows, wedemonstrate that given spe
i�
 stipulations regarding BP we 
an arrive at a stabilityguarantee for a neural network with dynami
 weight 
hanges. In other words, BP isthe part of the un
ertainty fun
tion that 
overs the time-varying LTI violations of alearning neural network. 78



Returning to the dis
ussion of BP , we form the inter
onne
tion system in Fig-ure 4.3. This arrangement is referred to as \multipli
ative un
ertainty" be
ause theun
ertainty in BP is a fa
tor of the known LTI system in B. Equivalently, Figure 4.3has a transfer fun
tion of B(I +BP�L). Thus ea
h element of BP is a multipli
ationfa
tor for a 
orresponding weight in B.
B

B

+

P L

Figure 4.3: Multipli
ative Un
ertainty Fun
tion for Network WeightsThe �L matrix sele
ts some portion of that perturbation to apply in either thepositive or negative dire
tion. Ea
h Æli in �L 
an be 
hosen individually; be
ausethere are z di�erent network weights, we have z degrees of freedom in sele
ting howto \weight" the perturbation sizes in BP . Noti
e also that Æli = 1 �nds the largestpositive perturbation for the 
orresponding weight in B and Æli = �1 designates thesmallest (most negative) perturbation. For example, 
onsider the �rst neural networkweight on the diagonal in B, W1;1. The 
orresponding perturbation for W1;1 in BP isBp1, the upper left element of BP . This will be multiplied by Æl1 in �L. If Æl1 = 1, thenthe maximum perturbed value for W1;1 equals W1;1(1 +Bp1). Similarly the minimumperturbed value is W1;1(1�Bp1). In this way, the �L matrix has the e�e
t of sele
tinga range of possible perturbed values for ea
h weight in the neural network.De�nition 11 The perturbed range, RWi, of a network weight is the 
ontinuousrange of values for the network weight spe
i�ed by the maximum, MaxWi, and mini-mum, MinWi, perturbed values of the network weight.
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RWi = [MinWi;MaxWi℄ (4.20)MinWi =Wi(1�Bpi) (4.21)MaxWi =Wi(1 +Bpi) (4.22)We are now ready to state the Dynami
 Stability Theorem.Theorem 10 (Dynami
 Stability Theorem: �-analysis version)Given the following:1. We have an LTI 
ontrol system with a nonlinear, time-varying neural networkas a 
omponent. We refer to this as the applied version of the system.2. The nominal LTI 
losed-loop system (without the neural network) is internallystable.3. We re
ast the neural network into an LTI blo
k plus an un
ertainty blo
k to
over the nonlinear hidden layer. This pro
ess is fully des
ribed in the Stati
Stability Theorem. We refer to this as the testable version.4. To the testable version, we introdu
e multipli
ative weight un
ertainty in theform of a diagonalized matrix as des
ribed by BP in this se
tion. This results ina maximum, MaxWi, and minimum, MinWi, perturbed value for ea
h weight inthe neural network. These values spe
ify a perturbed range, RWi, for ea
h neuralnetwork weight. This introdu
es additional un
ertainty to the system. With bothun
ertainty fun
tions (one for the nonlinear hidden layer and one for the time-varying weights), we now have the full testable version of the system.5. When training the neural network in the applied version of the system, thea

umulated 
hanges to ea
h neural network weight do not 
ause the weight toex
eed its perturbed range, RWi. 80



6. A �-analysis stability tool (that permits non-LTI un
ertainty) indi
ates that thetestable version system is stable.Under these 
onditions, the applied version of the system with the learning, non-linear neural network is stable.Proof:The proof for the Dynami
 Stability Theorem immediately follows from that of theStati
 Stability Theorem. As is the 
ase with the Stati
 Stability Theorem, we sep-arate the proof of the Dynami
 Stability Theorem into two parts. In the �rst part,we establish that the un
ertainty fun
tion 
overs the non-LTI dynami
s of the non-linear tanh hidden layer and the time-varying weights. In the se
ond part, we showthat meeting the 
onditions stated in the Dynami
 Stability Theorem imply that theoverall applied version of the system (with learning neural network) is stable.Part IWe again need to establish the 
onditions for repla
ing the non-LTI 
omponentsin the system with un
ertainty blo
ks. That is, we need to ensure that the indu
ednorm of the un
ertainty blo
k is no smaller than the indu
ed norm of the non-LTIblo
ks by showing: kû(e)k � kûtestable(e)k (4.23)where kû(e)k is the indu
ed norm of the applied version (nonlinear and time-varying)and kûtestable(e)k is the indu
ed norm of the testable version.This result is slightly more mathemati
ally 
omplex than the stati
 stability 
asebe
ause we have two un
ertainty blo
ks in the dynami
 stability 
ase. When were
on�gure the system into the M �� feedba
k arrangement for the stati
 stability
ase, the only sour
e of un
ertainty in � arises from the matrix of hidden layer gains,�. In the dynami
 stability 
ase, the � in the M � � arrangement 
ontains both81



the hidden layer gains, �, and also the time-varying neural network weights, W andV . Be
ause the � matrix is blo
k diagonal, we 
an satisfy the overall indu
ed norm
ondition on � by satisfying the indu
ed norm 
ondition on ea
h individual partof �. We need to show that the indu
ed norm of the nonlinear part is less thanthe indu
ed norm of un
ertainty fun
tion we use to 
over it, and we need to showthat the indu
ed norm of the time-varying part is less than the indu
ed norm of theun
ertainty fun
tion we use to 
over this latter part.Regarding the nonlinear hidden layer, we need only show (�� + ~�) 
overs �. Thisfa
t was established in the proof of the Stati
 Stability Theorem.Regarding the time-varying weight 
hanges, we must demonstrate that the un-
ertainty fun
tion of the testable version 
overs the weight 
hanges of the appliedversion of the neuro-
ontroller. Condition 5 of the Dynami
 Stability Theorem sup-poses this very 
ondition. The un
ertainty fun
tion forms a region of permissibleweight 
hanges, RWi; as stated in Condition 5, we need only ensure that the neuralnetwork training algorithm does not ex
eed any of these ranges.Be
ause the un
ertainty fun
tions in the testable version of the neuro-
ontroller
over both the nonlinear dynami
s of the hidden layer and the time-varying dynami
sof the weight 
hanges, we 
an 
hoose Æ's su
h the indu
ed norm of the testable versionis at least as large as the indu
ed norm of the applied version. We have met the
ondition in Equation 4.23 and Part I of the proof is 
omplete.Part IIAs we did for the Stati
 Stability Theorem, Part II of the proof for the Dynam-i
 Stability Theorem is simply a restatement of the �-analysis Stability Theorem (Theorem 7 in Se
tion 3.8). The presuppositions outlined in the Dynami
 StabilityTheorem and Part I of the proof meet the requirements for the �-analysis StabilityTheorem. It is then trivial to 
on
lude that the applied version of the neuro-
ontroller(with dynami
 weight updates) is a stable system.82



Q.E.D.Again, we emphasize that the above theorems on stati
 and dynami
 stabilityare presented in terms of the �-analysis stability tool. The mathemati
al 
orre
tnessof these theorems requires that the �-analysis stability tool a

ommodate non-LTIun
ertainty. In pra
ti
e, the only 
urrently available �-analysis stability tool pre-supposes LTI un
ertainty. Thus, our appli
ation of the theorems will be te
hni
ally
awed be
ause we are using the wrong variant of the �-analysis stability tool. How-ever, �-analysis is the most 
ommon software tool for resear
h in robust stability and,for our parti
ular uses, the LTI-un
ertainty �-analysis tool provides a very good ap-proximation to the stability status of the neuro-
ontroller. In the next three se
tions,we introdu
e a parallel development of stati
 and dynami
 stability in terms of theIQC-analysis tool. The 
urrent implementation of IQC software does support non-LTI un
ertainty. Even though IQC-analysis is not widely used or a

epted, it doesprovide the stri
t mathemati
al guarantees of stability not available in the 
urrentimplementation of �-analysis.4.5 Un
ertainty for Neural Networks: IQC-analysisIn Se
tion 4.2, we showed how to 
onvert the nonlinear portion of the neural networkinto an LTI blo
k plus an un
ertainty fun
tion. The analysis in this previous se
tionassumes that �-analysis is the tool used for stability 
he
king. Here, in this se
tion,we present a similar transformation from the applied version of the neuro-
ontrollerto the testable version, ex
ept that we assume IQC-analysis will be the underlyingstability analysis tool. Spe
i�
ally, we show how to 
over the nonlinear gain in thetanh hidden units with an appropriate IQC fun
tion and the time-varying weight
hanges with another IQC fun
tion. The reader is dire
ted to Se
tion 3.9 for detailson IQC-analysis and a list of referen
es. 83



Let us �rst start with the nonlinear tanh hidden units and assume that the neuralnetwork weights are held 
onstant. Re
all that we have transformed the 
omputationof the neuro-
ontroller to the following equations:û = V ��;� = We;� = diagf
jg;
j = ( tanh(�j)�j if �j 6= 01 if �j = 0 (4.24)where � is a diagonal matrix fun
tion that 
aptures all the nonlinearity in the neuralnetwork.Just as we did for the �-analysis 
ase, we need to �nd a fun
tion that 
oversthe non-LTI dynami
s in the above neural network. In this IQC-analysis 
ase, the
overing fun
tion must be of the IQC form. As dis
ussed previously, 
ustom buildingIQCs is a highly spe
ialized task requiring extensive training in nonlinear systemanalysis. While this level of analysis is beyond the s
ope of this dissertation, theinterested reader 
an �nd some of the details and further referen
es in [Megretski andRantzer, 1997a; Megretski and Rantzer, 1997b; Megretski et al., 1999℄. Fortunately,IQCs for many 
ommon non-LTI fun
tions have already been built and arranged inan a

essible library. We will use two of these pre-existing IQCs to 
over the non-LTIfeatures of the neuro-
ontroller.First, we must �nd an appropriate IQC to 
over the nonlinearity in the neural net-work hidden layer. From Equations 4.10, we see that all the nonlinearity is 
apturedin a diagonal matrix, �. This matrix is 
omposed of individual hidden unit gains,
, distributed along the diagonal. In IQC terms, this nonlinearity is referred to asa bounded odd slope nonlinearity. There is an Integral Quadrati
 Constraint already
on�gured to handle su
h a 
ondition. The IQC nonlinearity,  , is 
hara
terized byan odd 
ondition and a bounded slope [Megretski et al., 1999℄:84



 (�x) = � (x); (4.25)�(x1 � x2)2 � ( (x1)�  (x2))(x1 � x2) � �(x1 � x2)2: (4.26)Let us examine how this IQC fun
tion,  , \
overs" the nonlinearity of the neuralnetwork hidden layer. First, Equation 4.25 requires  to be an odd fun
tion. Next,we examine how Equation 4.26 indi
ates that  must meet a slope-boundednessrequirement. Without loss of generality, �rst 
onsider the 
ase in whi
h x1 > x2; thenEquation 4.26 redu
es to�(x1 � x2) � ( (x1)�  (x2)) � �(x1 � x2): (4.27)Looking at the left-hand inequality �rst, we see that�(x1 � x2) � ( (x1)�  (x2)); (4.28)or � �  (x1)�  (x2)x1 � x2 : (4.29)Noti
e that the r.h.s of Equation 4.29 is the \slope" of the fun
tion. If this inequalityholds for all x1 and x2, then the slope (or derivative) of  is no smaller than �.Similarly, we take the right-hand inequality of Equation 4.27 to see that the slope of is no larger than �. A parallel analysis holds for the 
ase of x2 > x1. In summary,this IQC has a bound limitted slope in the range of [�; �℄. For our spe
i�
 use, we
hoose � = 0 and � = 1 to a

ommodate ea
h hidden unit gain, 
j. Be
ause thehidden unit gain is a nonlinear fun
tion bounded by [0; 1℄, we know that the bounded85



odd slope nonlinearity is an appropriate IQC to 
over the nonlinear hidden units ofthe neural network.The tanh hidden unit fun
tion satis�es these two IQC 
onstraints. Clearly, tanhis an odd fun
tion as: tanh(�x) = �tanh(x): (4.30)It is also evident that tanh meets the bounded slope 
ondition as:0 � (tanh(x1)� tanh(x2))(x1 � x2) � (x1 � x2)2; (4.31)whi
h redu
es to (assuming x1 � x2 without loss of generality)0 � (tanh(x1)� tanh(x2)) � (x1 � x2): (4.32)This too is satis�ed be
ause tanh is a monotoni
ally in
reasing fun
tion.We now need only 
onstru
t an appropriately dimensioned diagonal matrix ofthese bounded odd slope nonlinearity IQCs and in
orporate them into the system inpla
e of the � matrix. In this way we form the testable version of the neuro-
ontrollerthat will be used in the Stati
 Stability Theorem in the following se
tion.Before we jump into the Stati
 Stability Theorem, we also address the IQC used to
over the other non-LTI feature of our neuro-
ontroller. In addition to the nonlinearhidden units, we must also 
over the time-varying weights that are adjusted duringtraining. Again, we will forego the 
ompli
ation of designing our own IQC and,instead, sele
t one from the pre
onstru
ted library of IQCs. The slowly time-varyingreal s
alar IQC is de�ned by relationship [Megretski and Rantzer, 1997a℄:
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w(t) =  (t)v(t); (4.33) (t) � �; (4.34)_ (t) � �; (4.35)where  is the non-LTI fun
tion (our neuro-
ontroller). The key features are that  is a s
alar fun
tion of time, that  is �nite, and the rate of 
hange of  is boundedby some 
onstant, � (a di�erent � than used in the bounded slope odd IQC). We 
anview ea
h weight in our neuro-
ontroller as a s
alar fa
tor. Be
ause the weights alterduring neural network training, these \s
alar fa
tors" 
hange as a fun
tion of time.If we 
an adjust the neural network learning rate so that there is an upper boundon the rate of 
hange, then this IQC is 
overs the time-varying nonlinearity in ourlearning neural network.4.6 Stati
 Stability Theorem: IQC-AnalysisWe are now again able to 
onstru
t two versions of the neuro-
ontrol system. Theapplied version 
ontains the full, nonlinear neural network. For this stati
 stabilityse
tion, we temporarily assume the network weights are held 
onstant. We also areable to form the testable version by repla
ing the nonlinear hidden unit gains with thebounded odd slope nonlinearity IQC. We now restate the Stati
 Stability Theoremin terms of IQC-analysis.Theorem 11 (Stati
 Stability Theorem: IQC-analysis version)Suppose the following:1. We have an LTI 
ontrol system with a (nonlinear) neural network as a 
ompo-nent. We refer to this as the applied version of the neuro-
ontroller.87



2. The nominal LTI 
losed-loop system (without the neural network) is internallystable.3. The neural network is stati
: the hidden layer and output layer weights are held
onstant.4. We 
an re
ast the neural network into an LTI blo
k plus an IQC fun
tion. Werefer to this as the testable version of the neuro-
ontroller.5. The IQC 
overs the nonlinearity of the neural network hidden unit.6. The IQC-analysis robust stability tool �nds a feasible solution to the IQC thusindi
ating that the testable version of the neuro-
ontrol system is stable.Under these 
onditions, the applied version with the full nonlinear neural network isstable.Proof:The proof for this theorem is straight forward. Be
ause we have sele
ted the ap-propriate IQC to address 
ondition 5, we need only apply IQC theory (see Se
tion 3.9)to 
on
lude that our applied version of the neuro-
ontroller is stable.Q.E.D.4.7 Dynami
 Stability Theorem: IQC-AnalysisWe are now ready to state the Dynami
 Stability Theorem in terms of IQC-analysis.Theorem 12 (Dynami
 Stability Theorem: IQC-analysis version)Suppose the following:1. We have an LTI 
ontrol system with a nonlinear, time-varying neural networkas a 
omponent. We refer to this as the applied version of the system.88



2. The nominal LTI 
losed-loop system (without the neural network) is internallystable.3. We re
ast the neural network into an LTI blo
k plus an IQC blo
k to 
over thenonlinear hidden layer. This pro
ess is fully des
ribed in Se
tion 4.5. We referto this as the testable version.4. To the testable version, we introdu
e an additional IQC blo
k to 
over the time-varying weights in the neural network. This pro
ess is also des
ribed in Se
-tion 4.5.5. When training the neural network in the applied version of the system, the rateof 
hange of the neuro-
ontroller's ve
tor fun
tion is bounded by a 
onstant.6. The IQC-analysis stability tool indi
ates that the testable version system is stableby �nding a feasible solution satisfying the IQCs.Under these 
onditions, the applied version of the system with the learning, non-linear neural network is stable.Proof:The proof for the Dynami
 Stability Theorem also immediately follows from that ofthe Stati
 Stability Theorem. The 
onditions listed above satisfy the pre
onditionsof IQC stability theory. We need only apply the IQC theorems to 
on
lude that ourapplied version of the neuro-
ontroller is stable. Q.E.D.In the next se
tion, we sket
h the basi
 stable learning algorithm. This is the
on
rete realization of the Dynami
 Stability Theorem. The stable learning algorithmallows us to implement a learning agent with a neuro-
ontroller and to safely integratethis agent into a 
ontrol environment in whi
h instability 
annot be tolerated. The89



following se
tion is meant only to introdu
e the high-level 
on
ept of a stable learningalgorithm. Many of the details that we have overlooked will be addressed in Chapter 5.4.8 Stable Learning AlgorithmThe Dynami
 Stability Theorem of the previous se
tion naturally spe
i�es an algo-rithmi
 implementation. Many of the previous theoreti
al results in neuro-
ontrolstability have assumptions in their theorems whi
h are violated when applying thetheory to pra
ti
al problems. One of the key features of the Dynami
 Stability The-orem is its appli
ability to real-life 
ontrol problems without violating any of theassumptions in the proof. We 
ombine the aspe
ts of the Stati
 and Dynami
 Sta-bility Theorems with a learning algorithm to arrive at the following stable, learningalgorithm.The stable learning algorithm alternates a stability testing phase with a learningphase. The purpose of the stability testing phase is to �nd the largest set of neuralnetwork weight perturbations that still retain system stability. These perturbationsform a \safety region" for ea
h weight in the network; we 
an move ea
h individualweight within its safety region and still guarantee system stability. In the se
ondphase, the learning phase, we train the network until either we are satis�ed with the
ontrol performan
e or until one of the network weights ex
eeds its safety region. Thenthe algorithm repeats with additional series of alternating stability testing phases andlearning phases. These steps are expli
itly des
ribed in the following pro
edure:Stable Learning Algorithm1. We 
he
k the stability of the nominal system (without the neuro-
ontroller).Re
all that BIBO stability presupposes internal stability of the nominal system.2. If the nominal system is stable in Step 1, then we add the neuro-
ontroller,repla
e the non-LTI neural 
ontroller with an LTI un
ertainty blo
k, and then90



perform a stati
 stability 
he
k with either the �-analysis or IQC-analysis sta-bility tools. This ensures that the initial weight values of the neuro-
ontrollerimplement a stable system. Initially, we 
hoose the network output weightsto be small so that the neuro-
ontroller has little e�e
t on the 
ontrol signalof the system. Thus, if the nominal system is stable, then the \initialized"neuro-
ontroller is typi
ally stable as well.3. The next step is the stability testing phase. We 
ompute the maximumnetwork weight un
ertainty that retains system stability. This is done with thefollowing subroutine:Stability Testing Phase
(a) For ea
h individual weight in the neural network, we sele
t an un
ertaintyfa
tor. These un
ertainty fa
tors are the diagonal entries in the BP matrix.(b) We then 
ombine all the un
ertainty into the M � � LFT arrangementand apply either the �-analysis tool or the IQC-analysis tool.(
) If � (or IQC) indi
ates that we have a stable system, we will in
rease ea
hindividual weight un
ertainty fa
tor. We multiply all the weights by thesame fa
tor to keep all the ratios 
onstant. This issue is dis
ussed in detailin Se
tion 6.2.4 and Se
tion 6.2.5.(d) Similarly, if � (or IQC) indi
ates that we have an unstable system, wede
rease ea
h individual weight un
ertainty by multiplying ea
h weightsby the same fa
tor to keep all the ratios �xed.(e) We repeat sub-steps 3
 and 3d until we have the largest set of individualweight perturbations in BP that still just barely retain system stability.91



This is the maximum amount of perturbation ea
h weight 
an experien
ewhile still retaining a stable 
ontrol system.4. We then use these un
ertainty fa
tors to 
ompute a permissible perturbationrange, RWi, for ea
h individual network weight. The perturbation range is the\safety range" for ea
h individual weight; all perturbations to a weight thatkeep the weight within this range are guaranteed not to indu
e instability.5. We then enter the learning phase. Noti
e at this point we have not spe
i�eda parti
ular learning algorithm. We 
ould employ any learning algorithm thatupdates the neuro-
ontroller weights as long as we do not violate the allowableperturbation range.Learning Phase(a) Train on one sample input.(b) Compute the desired weight updates.(
) If the weight updates do not ex
eed any network weight's perturbationrange, update the weights and repeat with the next training example.(d) If the weight updates do ex
eed a perturbation range, stop learning withthe last set of allowable network weights.The above des
ription is a high-level sket
h of the stable reinfor
ement learningalgorithm. At this point, we 
on
lude the theoreti
al 
ontribution of the dissertation,having established a learning algorithm whi
h is guaranteed to be stable in a 
ontrolenvironment.
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Chapter 5Learning Agent Ar
hite
ture
Our se
ondary goal is to demonstrate the appli
ability of the Dynami
 Stability The-orem to real 
ontrol situations. Before we 
an apply the theory to several 
ase studies,we must �rst 
onstru
t a detailed neuro-
ontrol agent to bridge the gap between the-ory and pra
ti
e. This agent must a

ommodate both the stipulations of the stabilitytheory and also the requirements of pra
ti
al 
ontrol situations. In this 
hapter, wedetail the development of this stable neuro-
ontrol agent.First, we motivate our 
hoi
e of the reinfor
ement learning algorithm by 
ompar-ing it to alternative algorithms in Se
tion 5.1. We then address the high-level ar-
hite
tural issues of the learning agent. Essentially, the high-level ar
hite
ture mustfa
ilitate the dual role of the learning agent; the learning agent must a
t both like areinfor
ement learner and a 
ontroller. Ea
h role has spe
i�
 fun
tional requirementsthat sometimes 
on
i
t with the other role. We dis
uss how to resolve the dual natureof the learning agent in Se
tion 5.2. We also 
onsider the low-level ar
hite
ture ofthe system; we sele
t spe
i�
 neural networks for implementing di�erent parts of theagent in Se
tion 5.3. In Se
tion 5.4, we resolve neuro-dynami
 diÆ
ulties unique toour 
ontrol situation. Finally, Se
tion 5.5 summarizes all the 
omponent ar
hite
turesand presents the detailed learning algorithms.
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5.1 Reinfor
ement Learning as the AlgorithmA myriad of learning algorithms have been developed for use in neural network-s, ma
hine learning, statisti
al learning, planning, and other bran
hes of arti�
ialintelligen
e. We de�ne the learning algorithm to be the abstra
t pro
edure that a
-
umulates the agent's experien
e and uses this experien
e to make de
isions withinan environment. The ar
hite
ture is the physi
al stru
ture that implements the al-gorithm. Naturally, the two 
on
epts are 
odependent; thus, we should be 
areful tonot blindly design for one of these 
on
epts without 
onsidering the other. However,for the purposes of 
lear exposition, we �rst present the 
hoi
e of a learning algorithmin this se
tion and then defer the dis
ussion of the spe
i�
 learning ar
hite
ture untilthe subsequent two se
tions.A widely a

epted taxonomy of learning algorithms 
lassi�es algorithms based ontheir information ex
hange with the environment [Haykin, 1994℄. There are threebroad 
ategories of learning algorithms based upon the type of information theyre
eive from the environment: supervised learning, reinfor
ement learning, and unsu-pervised learning listed from the most feedba
k information available to the algorithmto the least.Supervised learning assumes that the environment provides a tea
her. The super-vised learner 
olle
ts information from the environment and then produ
es an output.The tea
her provides feedba
k in the form of the \
orre
t" output. The supervisedlearner 
hanges its internal parameters to produ
e the 
orre
t de
ision next time itobserves the same state. The standard ba
k propagation algorithm is an exampleof supervised learning. In the 
ontrol situation, we typi
ally do not know a prioriwhat the optimal 
ontrol a
tion is for any given state. The optimal 
ontrol a
tion isdependent on the obje
tive of minimizing tra
king errors over time and on the 
om-pli
ated dynami
s of the plants. Consequently, we 
annot use supervised learning as94



the primary learning algorithm 1.The unsupervised learner observes system states and produ
es outputs. However,an unsupervised agent re
eives no feedba
k from the environment. Instead, it adjustsparameter ve
tors to 
apture statisti
al tenden
ies in the frequen
y and distribution ofthe observed states. Kohonen has proposed a number of 
lustering algorithms that areall unsupervised in nature [Kohonen, 1997℄. We 
ould employ unsupervised learningin this situation; however, we would not be using all the information available to us.While we 
annot know the optimal 
ontrol a
tion, we 
an measure its performan
e bya

umulating the tra
king error over time. The unsupervised algorithm does not usethis information. Furthermore, the result of an unsupervised algorithm, statisti
alinformation about the system, is really not the desired result. We desire a 
ontrollerto produ
e 
ontrol a
tions per ea
h observed state.In between the extremes of supervised and unsupervised algorithms is reinfor
e-ment learning. Upon observing the system state and produ
ing an output, the rein-for
ement learner re
eives an evaluation signal from the environment indi
ating theutility of its output. Through trial and error, the reinfor
ement learner is able todis
over better outputs to maximize the evaluation signal. The reinfor
ement learneradjusts its internal parameters to improve future outputs for the same observed state.Thus, reinfor
ement learning is an ideal 
hoi
e, be
ause the information needs of thealgorithm exa
tly mat
h the information available from the environment.Other aspe
ts of reinfor
ement learning also mat
h well with our 
ontrol environ-ment. Primary among these is the ability of a reinfor
ement learner to optimize overtime [Sutton and Barto, 1998℄. Spe
i�
ally, we desire to minimize the mean squaredtra
king error over time. For most 
ontrol problems, ea
h 
ontrol a
tion a�e
ts notonly the immediate tra
king error of the next time step, but also the tra
king error1We will use a form of ba
k propagation to adjust a part of the neuro-
ontroller, but the natureof the algorithm is based on reinfor
ement learning prin
iples95



at time steps into the future. Thus, the goal of ea
h 
ontrol a
tion is to minimizethe sum of future tra
king errors. The statisti
al sampling nature of reinfor
ementlearning permits the optimization of 
ontrol de
isions without having to keep tra
kof lengthy tra
king error sums [Sutton and Barto, 1998; Kaelbling et al., 1996℄.Closely asso
iated with optimization-over-time is the ability of a reinfor
ementlearner to naturally handle delays, or time-
onstants, in the system. Suppose thatthe system is a dis
rete-time system with a delay of two time steps. Any a
tion madeat time step k will not a�e
t the output at time k + 1, but instead, �rst a�e
ts theoutput at time k+3. Delays are a 
ommon feature in many of the 
ontrol systems ofinterest. Often, the delays in these systems are of unknown duration and 
an be highlyvariable for MIMO systems (there will be di�erent delay dynami
s from ea
h inputto ea
h output). Naturally, this greatly 
ompli
ates the design pro
edure. Again,be
ause of the statisti
al sampling nature of reinfor
ement learning, the learningagent \dis
overs" these delays and learns a 
ontrol fun
tion that is appropriate forthe delays. In reinfor
ement learning, the problem of delayed rewards is referred toas the temporal 
redit assignment problem [Sutton and Barto, 1998℄; reinfor
ementlearning provides an elegant solution.Reinfor
ement learning is stru
tured for a trial-and-error approa
h to learning.Most reinfor
ement learning algorithms have an exploration fa
tor that 
an be tunedto vary the degree to whi
h the agent tries new a
tions (high exploration) versusexploits a

umulated knowledge (low exploration). Typi
ally, the exploration fa
toris set high initially and then \annealed" as the learning progresses. This tenden
yfor exploration allows the reinfor
ement learner to dis
over new and possibly better
ontrol a
tions. Through repeated attempts at novel 
ontrol a
tions, the reinfor
e-ment learning algorithm a

umulates information used to produ
e improved 
ontrol.It is this feature of reinfor
ement learning that allows adaptive 
ontrol algorithms tooutperform traditional 
ontrol te
hniques on 
omplex plants. However, it is also this96



feature that forms the most signi�
ant drawba
k of reinfor
ement learning for thisappli
ation; intermediate 
ontrol fun
tions a
quired during the learning pro
ess oftenperform poorly and are frequently unstable.In Se
tion 5.5, we expli
itly list the entire stable learning algorithm in
luding thedetailed reinfor
ement learning portion. More detailed reviews of learning algorithms
an be found in [Hertz et al., 1991; Hassoun, 1995; Rumelhart et al., 1986b℄. Formore detail on reinfor
ement learning in parti
ular, 
onsult [Sutton and Barto, 1998;Kaelbling et al., 1996℄. In Se
tion 5.5, we expli
itly list the entire stable learningalgorithm in
luding the detailed reinfor
ement learning portion.5.2 High-Level Ar
hite
ture: The Dual Role of theLearning AgentAmong our top 
on
erns in sele
ting a spe
i�
 high-level ar
hite
ture for the learningagent is the need to balan
e the algorithmi
 requirements of reinfor
ement learningwith the fun
tional aspe
ts of a 
ontrol task. By high-level ar
hite
ture, we meanthe design features of the learning agent whi
h a

ommodate the unique 
ontrollerenvironment.Essentially, the agent must a
t like a reinfor
ement learner by storing and manip-ulating value fun
tions, by performing poli
y evaluation, and by performing poli
yimprovement. In 
ontrast, the agent must also a
t like a 
ontroller whi
h requiresan additional set of fun
tions from the agent. Primary among these requirements,the agent must provide the 
orre
t 
ontrol a
tion for a given state; that is, it mustimplement a poli
y. Furthermore, we stipulate that the 
ontrol a
tions be availablein real-time. This prohibits the storage of the poli
y in a format that is not readilya

essible. The stability proofs for our neuro-
ontroller also pla
e restri
tions on therole of the agent as a 
ontroller.The di
hotomy of the agent as a reinfor
ement learner and the agent as a 
on-97



troller is depi
ted in Figure 5.1. Shown in Figure 5.1a is the 
anoni
al representationof a spe
i�
 type of reinfor
ement learner: a Q-learning agent [Watkins, 1989℄. Astate/a
tion pair are input to the Q-learner to produ
e the value fun
tion representa-tive of the input pair. This value fun
tion is 
ommonly referred to as a Q-value. TheQ-learning agent spe
i�
ally implements the reinfor
ement learner by storing valuefun
tions. Via these value fun
tions, the Q-learner 
an perform poli
y evaluation andpoli
y improvement. [Sutton and Barto, 1998; Kaelbling et al., 1996℄ provide detailedinformation on Q-learners and value fun
tions.Contrast this with the diagram in Figure 5.1b showing the agent as a 
ontroller.Input to this agent is the 
urrent state of the system; the output is the agent's 
ontrolsignal. This agent implements a poli
y.
Q(s,a)

s

a Agent
Q-Learning

nerual net
learning

reinforcemente (state) u (control action)a. Reinfor
ement Learner b. ControllerFigure 5.1: Reinfor
ement Learning and Control AgentsMany neuro-
ontrollers designed by the reinfor
ement learning 
ommunity im-plement the Q-learner of Figure 5.1a. This spe
i�
 high-level ar
hite
ture suits therequirements of the agent-as-reinfor
ement-learner, but does not ful�ll the duties ofthe agent-as-
ontroller. A subtle but important point of dis
ussion is that the Q-learner does not store a poli
y. There is no expli
it fun
tion in whi
h the state isinput and an a
tion output. The question naturally arises, if this agent is in
apableof storing an expli
it poli
y, then why is this type of learning ar
hite
ture so 
ommon(and su

essful) in 
ontrol problems found in the reinfor
ement learning resear
h lit-erature? The answer to this dilemma is that while the Q-learner is unable to 
omputean expli
it poli
y, the agent 
an implement an impli
it poli
y. Be
ause the value fun
-tion is stored in the Q-learner, it is able to perform a sear
h over the set of a
tions98



to �nd the best a
tion for a parti
ular state; this \best a
tion" is the one with thelargest value fun
tion. Thus, impli
itly, the optimal poli
y 
an be 
omputed via asear
h pro
edure [Sutton and Barto, 1998℄.While the impli
it poli
y is satisfa
tory for many 
ontrol tasks, it still falls shortof our requirements in two important ways. First, the sear
h pro
edure is potentiallyquite lengthy and 
omplex. We stipulate that the 
ontrol a
tions of the agent mustbe available in real-time. In some dynami
 systems, the impli
it poli
y 
omputationtime may ex
eed the time window in whi
h we must produ
e a 
ontrol a
tion. These
ond, and more important, failure of the Q-learner 
on
erns the robust stabilityanalysis of the previous 
hapter. We require an expli
it poli
y fun
tion to determinewhether it meets the stability requirements; the poli
y must be available as an expli
itmathemati
al fun
tion. The impli
it poli
y sear
h is not amenable to the stabilityanalysis.Be
ause of these diÆ
ulties, we 
annot utilize the 
ommon Q-learning, high-level,ar
hite
ture for our agent. We require an agent with a split personality { an agen-t that expli
itly implements both ar
hite
tures in Figure 5.1. We fall ba
k uponearly e�orts in reinfor
ement learning ar
hite
ture to utilize the a
tor-
riti
 design.Here, we highlight the features of this dual ar
hite
ture; more information 
an beobtained for a
tor-
riti
 ar
hite
tures in [Sutton and Barto, 1998; Barto et al., 1983;Witten, 1977℄. The a
tor-
riti
 ar
hite
ture has two di�erent networks, one to imple-ment the reinfor
ement learner (
riti
), and one to implement the 
ontroller (a
tor).This arrangement, depi
ted in Figure 5.2, is 
opied from Sutton and Barto's text onreinfor
ement learning [Sutton and Barto, 1998℄.The a
tor network 
an be thought of as the 
ontrol agent, be
ause it implementsa poli
y. The a
tor network is part of the dynami
 system as it intera
ts dire
tly withthe system by providing 
ontrol signals for the plant. The 
riti
 network implementsthe reinfor
ement learning part of the agent as it provides poli
y evaluation and 
an99



Environment

Function
Value

Policy

Actor

Critic

state

action

TD Error

reward

Figure 5.2: A
tor-Criti
 Agentbe used to perform poli
y improvement. This learning agent ar
hite
ture has theadvantage of implementing both a reinfor
ement learner and a 
ontroller. Be
ausethe poli
y is 
omputed expli
itly in the a
tor network, we 
an meet the real-timedemands of the 
ontrol system. Also, we 
an sele
t an a
tor network ar
hite
turethat is amenable to the robust stability 
onstraints. Note that the 
riti
 network isnot a
tively 
onne
ted to the 
ontrol system; it is a \meta-system" that guides the
hanges to the a
tor network.The drawba
k of the two-network ar
hite
ture is a more 
omplex training algorith-m and extended training time [Sutton and Barto, 1998℄. The primary reason why theQ-learning ar
hite
ture is frequently used today is the simpli�ed training algorithm.The Q-learner is not only easier to 
ode, but more signi�
antly, the neuro-dynami
sof the learning agent are greatly simpli�ed. Be
ause we must use the a
tor-
riti
design for our high-level ar
hite
ture, we are fa
ed with additional neuro-dynami
problems that will be detailed in the next se
tion. At this point we have 
rafted asuitable high-level ar
hite
ture for our learning agent. Next we turn our attention tothe low-level design of the system. Namely, we must sele
t a spe
i�
 neural network100



for both the a
tor and 
riti
 
omponents.5.3 Low-Level Ar
hite
ture: Neural NetworksSplitting the learning agent into two 
omponents, a
tor and 
riti
, introdu
es a num-ber of te
hni
al problems. We solve these problems with judi
ious design 
hoi
es ofspe
i�
 neural networks for both the a
tor and 
riti
 networks.We begin by sele
ting an ar
hite
ture for the a
tor network (the 
ontroller). Forthe a
tor, we sele
t the two-layer, feed forward network with tanh hidden units andlinear output units. This ar
hite
ture expli
itly implements a poli
y as a mathemat-i
al fun
tion and is thus amenable to the stability analysis detailed in Chapter 4.Be
ause this ar
hite
ture is a 
ontinuous network rather than a dis
rete network, thea
tor will be able to provide better resolution and more 
losely learn the desired 
on-trol poli
y 2. Also, the 
ontinuous network is better suited to the stability analysis,be
ause a dis
rete network would require a pie
e-meal approa
h to the stability anal-ysis rather than the one-shot analysis possible with the 
ontinuous network. Anotheradvantage of this network arises be
ause it is a global network rather than a lo
alnetwork; thus, the network would likely be able to learn the 
ontrol poli
y faster 3.It is likely that other neural ar
hite
tures would also work well for the a
tor netprovided they met the 
onditions of the stability theorems. Here, we intend only todemonstrate that the stability theory is appli
able to real 
ontrol problems by usingsome neural ar
hite
ture; it is not our goal to demonstrate that the two-layer, feedforward network is the best 
hoi
e. The two-layer, feed forward, neural network is a2A dis
rete network has a dis
rete fun
tion mapping from the input spa
e to the output spa
ewhile the 
ontinuous network has a 
ontinuous mapping. See [Haykin, 1994; Royas, 1996; Hertzet al., 1991℄ for more details3A global network has \a
tivation" inputs that typi
ally extend over the a large part of the inputspa
e whereas a lo
al network is only a
tivated by inputs in a small, lo
alized region of the inputspa
e. See [Haykin, 1994; Royas, 1996; Hertz et al., 1991℄ for more details.101




ommon and widely studied neural ar
hite
tures and also this ar
hite
ture satis�esthe requirements of the stability theorems; thus, we utilize this ar
hite
ture for ourneuro-
ontroller.Next we turn our attention to the 
riti
 network (the reinfor
ement learner).Re
all that the 
riti
 a

epts a state and a
tion as inputs and produ
es the valuefun
tion for the state/a
tion pair. The state is the tra
king error, e, and the a
tion isthe 
ontrol signal, û. The key realization is that the 
riti
 network is not a dire
t partof the 
ontrol system feedba
k loop and thus is not limited by the stability analysisrequirements. For the 
ase studies of the next 
hapter, we originally implementedseveral di�erent ar
hite
tures for the 
riti
 network and found that a simple tablelook-up me
hanism is the ar
hite
ture that worked best in pra
ti
e 4.A CMAC (Cerebellar Model Arti
ulation Controller) network is a more sophis-ti
ated variant of table lookup methods [Sutton, 1996; Miller et al., 1990℄ whi
hfeatures an improved ability to generalize on learning examples; often CMAC net-works require more training time than table look-up methods to rea
h their �nalweight values. We �nd that CMAC also worked well, but the table look-up providednearly the same 
ontrol performan
e and required less training time than the puretable look-up ar
hite
ture.The reasons for �nally arriving at the table look-up s
heme for the 
riti
 networkare quite 
omplex; the table look-up ar
hite
ture was sele
ted be
ause it over
ameseveral neuro-dynami
 problems that arose due to the multiple feedba
k loops presentin the neuro-
ontroller. The reader who is not interested in these details may skipthe next se
tion and move to the dis
ussion of a reinfor
ement learning algorithm inSe
tion 5.5 without loss of 
ontinuity. However, the analysis and solution to theseneuro-dynami
 problems is an important aspe
t in the design and implementation of4Some resear
hers in Arti�
ial Intelligen
e do not 
lassify a table look-up ar
hite
ture as a trueneural network 102



the neuro-
ontroller. Thus, we in
lude these details in the subsequent se
tion.5.4 Neuro-Dynami
 ProblemsIn this se
tion, we �rst dis
uss how the 
omplex, feedba
k loops of the a
tor-
riti

ontroller introdu
e two neuro-dynami
 problems, and then we show why the a tablelook-up ar
hite
ture for the 
riti
 network solved these problems.The �rst 
ir
ular relationship in our agent stems from the intera
tion between thea
tor network and the plant. The a
tor network re
eives the tra
king error e fromthe plant to produ
e a 
ontrol signal, û. This 
ontrol signal is fed ba
k to the plantand thus a�e
ts the future state of the plant. The a
tor network is trained on theinput/output pairs it experien
es. Be
ause the a
tor net is tied to a plant, the stateof the plant di
tates the training examples for the a
tor network. Our �rst 
ir
ularrelationship arises between the a
tor network whi
h dire
ts the state of the plant,and the plant whi
h di
tates the training inputs for the a
tor network.The 
ir
ular relationship be
omes more 
omplex with the addition of the 
riti
neural network. The 
riti
 network re
eives its inputs (tra
king error, e, and 
ontrolsignal, û) from the plant and a
tor net respe
tively. Thus, the plant and a
tor netdetermine whi
h training examples the 
riti
 will experien
e. In turn, the 
riti
network forms the gradient information that is used to train the a
tor network; the
riti
 network 
auses 
hanges in the a
tor network.In summary, the plant a�e
ts both the a
tor network and 
riti
 network by di
-tating whi
h training samples the neural networks experien
e. The a
tor networkprovides an input to the plant that determines its future states. The 
riti
 networkprovides a training gradient to the a
tor network to determine 
hanges in the a
tornetwork's poli
y. As a result of this 
omplex intera
tion, the training examples forthe neural networks exhibit a 
haoti
 sampling distribution; the training samples willbe similar for extended periods of time, then suddenly, the training samples will shift103
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Figure 5.3: Cir
ular Causality in the A
tor-Criti
 Ar
hite
turewidely into a di�erent \operating regime".Intuitively, the sampling poli
y is similar to the the Lorenz Attra
tor [Glei
k,1987℄ whi
h looks like two 
ir
ular rings adjoined at one interse
tion point. In thisattra
tor, the state of the dynami
 system is 
on�ned to one of two nearly 
ir
ularorbits for long periods of time; then the system state will suddenly jump into theother orbit. It is the nature of 
haoti
 mathemati
s that this jump between operatingregimes 
annot be predi
ted. In the same way, the plant state (and hen
e trainingexamples) is 
on�ned to a small region of the plant state spa
e for large periods oftime. Then the plant state qui
kly 
hanges to a di�erent 
on�ned region of the statespa
e.The 
haoti
 sampling 
auses problems in 
onvergen
e of the weights for the twoneural networks. Be
ause training inputs are 
on
entrated in one small part of thestate spa
e for a long period of time, the neural network tends to \memorize" thissmall operating regime at the expense of remembering training examples from otherparts of the state spa
e. We introdu
e two new terms, value migration and valueleakage to des
ribe this neuro-dynami
 phenomena. Value migration o

urs when aneural network weights 
hange so as to leave some parts of the state spa
e under104



represented while other parts of the state spa
e are heavily 
on
entrated with neuralnetwork resour
es. We de�ne value leakage as the phenomena in whi
h the fun
-tion learned by a neural network is in
orre
tly 
hanged as a result of a non-uniformsampling distribution.Value migration o

urs when neural network learning resour
es are in
orre
tlydistributed within the state spa
e of training examples. Here, we examine this generalphenomena as it spe
i�
ally applies to the 
riti
 network. Re
all the 
riti
 networkprodu
es an output (the value fun
tion) in response to a state/a
tion input pair,(e; û). The (e; û) inputs 
an be viewed as k-dimensional input ve
tors, and ea
hinput sample as a point in <k spa
e 5. The 
riti
 network is a fun
tion: <k 7! <.While <k is in�nitely large, in pra
ti
e the training inputs tend to be 
on
entratedin a smaller subspa
e of <k determined by the physi
al limitations of the plant andthe 
ontrol signals of the a
tor network. The 
riti
 network does not need to map afun
tion from the entire domain of <k to <, but instead only needs to map from arestri
ted region of <k to <.The neural network that implements the 
riti
 network uses 
omputational re-sour
es to perform this mapping. Depending on the spe
i�
 neural ar
hite
ture, these
omputational resour
es are hidden tanh units, rbf units, tables in a table look-ups
heme, splines, or other related neural network 
omponents (see [Hertz et al., 1991;Haykin, 1994℄ for a detailed des
ription of neural networks as geometri
al spa
e map-pings). Be
ause there are only a �nite number of 
omputational resour
es availableto a neural network, it is 
riti
al that the network lo
ate them within the input spa
eappropriately so as to provide the best possible approximation to the fun
tion beinglearned. For example, it does not make sense to lo
ate hidden sigmoid units withina region of the state spa
e where there will be no training samples; this is a waste5The a
tual numeri
al value for k depends on the dimension of e and û.105



of the network's 
omputational resour
es. Be
ause the 
orre
t lo
ations for trainingresour
es is not usually known a priori, part of the training routine for a neural net-work is to pla
e the network's 
omputational resour
es in the 
orre
t lo
ations in thestate spa
e; that is, the network's resour
es should be lo
ated among the dense areasof training samples in the input state spa
e.Typi
al neural network training algorithms make small 
hanges to the 
ompu-tational resour
es ( for example, adjusting the input-side weights for a two-layer,feed forward network ) to lo
ate the 
omputational resour
es 
loser to input trainingve
tors. Usually, these algorithms require a uniform sampling distribution so thattraining samples are drawn from all parts of the state spa
e. This prevents networkresour
es from migrating toward any one over-sampled region of the input spa
e. Thisis pre
isely the problem that o

urs with our 
haoti
 sampling in the on-line, neuro-
ontrol framework, be
ause we do not have 
ontrol over the distribution of trainingsamples.To over
ome value migration, we must either ensure a uniform sampling distribu-tion or we must �x the 
omputational resour
es in parts of the state spa
e a priori;the latter option is the only viable option for our neuro-
ontrol s
heme. Throughinspe
tion of the tra
king error, e, and by knowing bounds on the a
tor network'soutput signal, û, we 
an estimate the subregion of the state spa
e, <k, in whi
h thetraining samples will be drawn. Our table look-up network, evenly distributes 
om-putational resour
es (table entry boundaries) among this subregion of the input statespa
e. We do not 
hange the table boundaries as a result of training experien
e.The disadvantage is that we 
annot �ne-tune the 
omputational resour
es to better�t this subregion of training samples; but the advantage we 
an is that our tablelook-up network is immune to value migration.The se
ond neurodynami
 problem, value leakage, o

urs when the network's out-put fun
tion is adversely a�e
ted by an uneven sampling distribution. Te
hni
ally,106



value migration is a subset of value leakage, but here, we use value leakage in refer-en
e to additional neurodynami
 problems. Consider a neural network whose 
om-putational resour
es are stati
ally lo
ated within the input state spa
e (the networkresour
es will not 
hange as a result of training). Additionally, let these 
omputation-al resour
es either be global or be lo
al with 
ontinuous a
tivation fun
tions. Mostneural network training algorithms update the output fun
tion (output weights, tableentries) in proportion to the a
tivation of the 
omputational resour
es.Resour
es that are global, will be fully a
tivated by a large number of inputs be-
ause ea
h unit's region of a
tivation extends globally a
ross the input state spa
e.The output values 
orresponding to these resour
es will 
hange as a result of inputsamples that fall within the region of a
tivation. Resour
es that are lo
al and 
ontin-uous are fully a
tivated only by those input samples that fall within the lo
al region ofa
tivation. However, these same resour
es will be slightly a
tivated for input samplesthat o

ur near to the lo
al region of a
tivation. Thus, these lo
al, 
ontinuous re-sour
es re
eive a full training update for a small number of input samples, but re
eiveslight training updates for other training inputs adja
ent to the a
tivation region.These type of neural network 
omputational resour
es, global or 
ontinuous andlo
al, require training samples that are uniformly distributed among the input statespa
e. With our 
haoti
 training samples, the network re
eives a large number oflo
ally 
on
entrated training samples at a time. This disrupts the output values ofeither global resour
es or nearby 
ontinuously lo
al resour
es. As a result, the neuralnetwork's weights are unable to 
onverge to the appropriate values.To over
ome this problem, we sele
t a neural network whose 
omputational re-sour
es are lo
al and dis
rete. The table look-up method meets both of these require-ments. These and other neurodynami
 problems are an area of a
tive resear
h. Afew groups have begun to answer parts of the overall problem; the interested read-er is dire
ted to [Kret
hmar and Anderson, 1997; Kret
hmar and Anderson, 1999;107



Anderson, 1993; Sutton, 1996; Sutton and Barto, 1998℄ for more information.5.5 Neural Network Ar
hite
ture and LearningAlgorithm DetailsIn this se
tion, we present the details of the neural networks and the robust, stable,reinfor
ement learning algorithm. Figure 5.4 depi
ts the a
tor and 
riti
 networks. Asummary of the details for ea
h 
omponent is listed here:
W V

u(k)

h mn

e(k)
e(k)

u(k)

Q(e,u)A
tor Criti
Figure 5.4: Network Ar
hite
tures
A
tor Net� Feed-forward, two-layer, neural network,� Parameterized by input and output weights, W and V ,� n (# inputs) determined by the 
ontrol task. For most tasks, this in
ludes thetra
king error and possibly additional plant state variables. Also in
luded is anextra variable held 
onstant at 1 for the bias input.� m (# outputs) determined by the 
ontrol task. This is the number of 
ontrolsignals needed for the plant input. 108



� h (# hidden units) A free variable we 
an 
hoose to be smaller for faster learningor larger for more expressive 
ontrol fun
tionality.� tanh hidden unit a
tivation fun
tions,� linear output unit a
tivation fun
tions,� e(k) is the input signal at time k. The signal is 
omposed of the tra
king errorand additional plant and 
ontroller internal state variables. Also in
ludes thebias input set to 1.� û(k) is the output signal at time k. Computed by the a
tor net via feed forward
omputation: �j = Pni=1Wi;j ei;ûk = Phj=1 Vk;j tanh(�j):� Trained via ba
k propagation (gradient des
ent). Training example providedby 
riti
 net.Criti
 Net� Table look-up,� Parameterized by table, Q,� n�1+m inputs determined by the 
ontrol task. The input to the 
riti
 networkin
ludes the a
tor net input, e(k) (without bias term) and the a
tor net output,û(k) signals. The a
tor net input has n� 1 signals (without bias term) and thea
tor net output has m signals for a total n� 1 +m input signals to the 
riti
network. 109



Initialize: W,V = arbitrarily small random numbersQ = 0 (set table look-up entries to 0)Repeat /* Stability Phase *//* 
omputes maximum weight perturbations */BP = stability phase(P ,W ,V );/* Learning Phase *//* trains network weights */W ,V ,Q = learning phase(P ,W ,V ,Q,BP ,
)Until ( desired tra
king performan
e level a
hieved ORno further tra
king performan
e obtained )Figure 5.5: Stable Reinfor
ement Learning Algorithm� A single output, the value fun
tion Q(e; û).� Trained via SARSA, a variant of reinfor
ement learning [Sutton, 1996℄.The learning algorithm is 
omposed of two primary phases: a stability phase in whi
hwe use � or IQC to 
ompute the largest set of perturbations that 
an be added to thea
tor net weights while still keeping the overall system stable, and a learning phase inwhi
h we use reinfor
ement learning to train both the a
tor and 
riti
 neural networks.We start with the high-level des
ription of the algorithm and then present the detailsof ea
h of the two phases. Figure 5.5 lists the steps in the high-level des
ription,while Figure 5.6 and Figure 5.7 detail the steps in the stability and learning phases,respe
tively.We now des
ribe ea
h step of the Stability Phase algorithm as given in Fig-ure 5.6:� Step 1:The inputs to this routine are the 
ontrol problem, P , and the 
urrent a
tornetwork weights in W and V . 110



1. Inputs:� P : The 
ontrol system (used for � or IQC 
al
ulations),� W ,V : The 
urrent neuro-
ontroller weights whi
h form B.2. Initialize the individual neural network weight perturbations in BP . Set ea
hperturbation, Bpi, proportional to its 
orresponding weight in B. (The rationalefor keeping the perturbations proportional is dis
ussed at length in Se
tion 6.2.3and Se
tion 6.2.4 in the next 
hapter).Bpi = BiPB3. Set: Bbase = BP , minf = 1, maxf = 14. Arrange the overall system, P , and the LTI un
ertainty (with BP ) into theM �� LFT. Compute � (or IQC).5. If � (or IQC) indi
ates that the system is stable, thenWhile ( system is stable ) doBegin maxf = maxf � 2BP = Bbase �maxfre
ompute � (or IQC)End6. Else if � (or IQC) indi
ates that the system is not stable, thenWhile ( system is not stable ) doBegin minf = minf � 2BP = Bbase �minfre
ompute � (or IQC)End7. Redu
e the range between minf and maxf by:While ( maxf�minfminf < 0:05 )Begin test = minf + (maxf �minf)=2
ompute � for BP = Bbase � testif stable, then minf = test, else maxf = testEnd8. Return Bbase �minf Figure 5.6: Stability Phase111



� Step 2:We must sele
t initial values for the perturbations in the BP matrix. We havez degrees of freedom in sele
ting the perturbations. Re
all that z is the numberof weights in the a
tor network, z = nh + hm. We opt to initialize the per-turbations so that they are all some �xed 
onstant times their 
orrespondingweight in B. There are other ways to assign the initial values for perturbations.In Se
tions 6.2.3 and 6.2.4 we dis
uss why we use this parti
ular method forinitializing the perturbations.� Step 3:Bbase stores the initial set of perturbations. We will be assigning the a
tualperturbations in BP by multiplying Bbase by some other 
onstants. minf andmaxf are two su
h 
onstants. We will 
ompute BP = minf � Bbase and BP =maxf � Bbase as two possible perturbation matri
es to use when 
omputing �.In general, we would like minf to be the largest 
onstant for whi
h � indi
atesstability and maxf to be the smallest 
onstant for whi
h � indi
ates instability.Eventually, minf a
ts like a lower bound for stability, and maxf a
ts like anupper bound. However, in this initial step, we seed them both,minf andmaxf ,with the value of 1.� Step 4:We arrange the system into an LFT and 
ompute �. For all future � 
ompu-tations, we use this same LFT arrangement ex
ept that we substitute in newvalues for BP , the perturbation matrix.� Step 5:If the initial value for maxf = 1 produ
es a stable system for �, then we willdouble the value of maxf until BP = maxf � Bbase produ
es an unstable �value. Thus, maxf lies in the set of 
onstants produ
ing unstable systems.112



� Step 6:Similarly, if the initial value for minf = 1 produ
es an unstable system for �,then we will halve the value of minf until BP = minf �Bbase produ
es a stable� value. Thus minf is in the range of 
onstants that produ
e stable systems.� Step 7:At this point, minf is a 
onstant that produ
es stable systems, and maxf is a
onstant that produ
es unstable systems. Our obje
tive is to �nd the 
onstantin between minf and maxf for whi
h the system is still just barely stable. This\
ross-over point" represents the maximum perturbation sizes the system 
anhandle and still be stable. In this step of the algorithm, we use binary sear
h tohalve the distan
e between minf and maxf on ea
h loop pass. We stop whenwe are arbitrarily 
lose to the 
ross-over point (5% in our algorithm).� Step 8:minf is now very 
lose to the 
ross-over point into instability. Yet BP =minf � Bbase still produ
es a stable system. We return this BP matrix as aresult of the stability phase of the algorithm.We now des
ribe ea
h step of the Learning Phase algorithm as listed in Fig-ure 5.7:� Step 1:The inputs to this routine are the 
ontrol system (P ), the a
tor network weights(W and V ), and the 
riti
 network weights (Q). The allowable a
tor networkperturbations, BP , are also input. These perturbations are 
omputed in thestability phase; we use them to determine the allowable perturbation ranges,R, for ea
h weight in the a
tor net. The �nal input is 
, the halting 
riteria.The learning phase of the algorithm will 
ontinue until training 
auses oneof the a
tor network weights to ex
eed its perturbation range. If this never113



1. Inputs:� P : The system (used for � or IQC 
al
ulations),� W ,V : The 
urrent neuro-
ontroller weights.� Q : The 
urrent table look-up values.� BP : Set of a
tor net perturbations (
omputed in stability phase).� 
 : A 
riteria for halting the training.2. Initialize:� e = 
urrent state of system (tra
king error and possibly other variables).� û = 
urrent a
tor net 
ontrol a
tion.3. Take 
ontrol a
tion u = u
 + û and observe new state (tra
king error) e'.4. Choose next 
ontrol a
tion: û0 = ��greedy(e).� = tanh(We0)û0 = �V � with probability 1� �û0 = �V + random from 0:1(ûMAX � ûMIN) with probability �5. Train 
riti
 network:Q(e; û) = Q(e; û) + �(
(r � y +Q(e0; û0))�Q(e; û))6. Compute desired a
tor net output: û� = gradient sear
h(Q(e; �))7. Train a
tor network: V = V + �1�(û� � û)W = W + �2eV (1� �2)(û� � û)If W and V ex
eed perturbation ranges R, then retain previous values of Wand V and exit learning phase.8. Update state information: e = e0, û = û09. If perturbation 
riteria 
 is met, then exit learning phase. Otherwise, gotoStep 3. Figure 5.7: Learning Phase114



happens, then the algorithm would pro
eed inde�nitely. To prevent an in�niteloop situation, we provide additional halting 
riteria. In our 
ontrol tasks,this takes the form of a �xed number of training trials; after we train for themaximum number of samples, we exit the learning phase.� Step 2:We 
ompute the 
urrent tra
king error e by subtra
ting the plant output y fromthe referen
e signal r. We then add any additional signals required by the a
tornetwork inputs to form the e ve
tor. This \state ve
tor" e is then fed to thea
tor network to produ
e the 
ontrol ve
tor û.� Step 3:We �rst 
ombine the a
tor net 
ontrol ve
tor û with the nominal 
ontrollerve
tor u
 to produ
e the overall 
ontrol ve
tor u. We feed the 
ontrol ve
torto the plant and observe the new plant output y0. We then 
ompute the newtra
king error e0.� Step 4:We use a well-known algorithm 
alled ��greedy to 
ompute the next a
tor net-work 
ontrol a
tion û0. The ��greedy algorithm uses the a
tor network outputwith probability 1 � � or adds a small random perturbation to the a
tor net-work output with probability �. This provides a natural exploration 
apabilityto allow our a
tor network to sear
h for better a
tions and not 
onverge toa suboptimal 
ontrol poli
y too qui
kly. See [Sutton, 1996℄ for details on the��greedy algorithm.� Step 5:The 
riti
 network table stores the value fun
tion for our system. The tableis indexed by state/a
tion pairs: Q(e; û). Ea
h entry in the table refers to thevalue of a parti
ular state/a
tion pairing. Re
all that value refers to the sum of115



the future tra
king errors over time. For example, if our system is 
urrently atstate e and we sele
ted 
ontrol a
tion û, then we should expe
t our future sum oftra
king errors to be Q(e; û). If our system then moves to the next state/a
tion(e0; û0), we should expe
t our sum of future tra
king errors to be Q(e0; û0). Ifwe add the 
urrent tra
king error, r � y, to Q(e0; û0) we should expe
t this tobe equal to Q(e; û). Any di�eren
e between these two quantities is 
alled ourtemporal di�eren
e error. In reinfor
ement learning, we 
ompute the temporaldi�eren
e error and then perform gradient des
ent to update the table entriesso as to minimize the temporal di�eren
e error. The learning rate is given by�. One additional feature is the dis
ount fa
tor of 
 6. For 
ontrol tasks thatdo not typi
ally end after a �nite number of steps, the sum of future 
ontrolerrors will grow to in�nity and all the values in the 
riti
 network table look-upwill grow to in�nity. For these tasks, we use a dis
ount fa
tor identi�ed by the
onstant 
 to keep the Q-values in the 
riti
 network �nite. We use 0.95 and0.90 for our dis
ount fa
tors in di�erent tasks. See [Sutton, 1996℄ for detailedinformation on dis
ount fa
tors in in�nite horizon, temporal di�eren
e learningalgorithms.� Step 6:In the next step, we use the ba
k propagation algorithm to train the a
tornetwork. Sin
e ba
k propagation is a supervised learning algorithm, we needa training exemplar, û�, for the a
tor network. We use the information in the
riti
 network to 
ompute the training exemplar. For example, the system is
urrently in a state spe
i�ed by the tra
king error e. Using e as an input, thea
tor network produ
ed a 
ontrol signal as output, û. This might not be the6The 
 used here is not to be 
onfused with our earlier use of 
 when 
onverting the nonlineartanh hidden layer to an un
ertainty blo
k. Reinfor
ement learning algorithms have traditionallyused the symbol 
 as a 
onstant dis
ount fa
tor.116



best 
ontrol signal; there may be a better 
ontrol signal, û� whi
h minimizesthe sum of future tra
king errors. Be
ause the 
riti
 network stores the valuefun
tions (sum of future tra
king errors), we 
an use the 
riti
 to �nd the\optimal" 
ontrol a
tion û�. First we de�ne a lo
al neighborhood around thea
tor network's 
urrent output, Ûln. We do not want to sear
h globally forû� be
ause we want our a
tor net to make small in
remental adjustments toits 
ontrol fun
tion output. We map out a grid of 
ontrol a
tions within theneighborhood Ûln to �nd the 
ontrol a
tion with the smallest value fun
tiona

ording to the 
riti
 network. We use this value as the training exemplar forthe a
tor net. Ûln = small lo
al neighborhood of ûû� = minû2ÛlnQ(eln; û)� Step 7:This step is the standard ba
k propagation algorithm for a two-layer, feed for-ward neural network with tanh hidden unit a
tivation fun
tions and linear out-put unit a
tivation fun
tions. See [Hassoun, 1995; Rumelhart et al., 1986a;Haykin, 1994; Hertz et al., 1991℄ for more information on the ba
k propagationalgorithm. Importantly, in this step we test to see if the weight updates to thea
tor network would ex
eed the perturbation ranges spe
i�ed by BP . If the per-turbation range would be ex
eeded by the update, then we do not perform theweight update, exit the learning phase, and return the 
urrent network weightvalues W , V , and Q.� Step 8:We update the state information.� Step 9:At this point, we test to see if we have met the additional halting 
riteria117



spe
i�ed by input 
. If we have not, then we repeat the algorithm for a newtraining sample. Again, examples of halting 
riteria in
lude a stopping after amaximum number of training iterations or a 
ondition to halt when the networkhas 
eased to improve 
ontrol performan
e. If we do not in
lude the additionalhalting 
riteria, then the learning phase might 
ontinue inde�nitely as it ispossible that the neural network weights may never ex
eed the perturbationranges.
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Chapter 6Case Studies
In the previous two 
hapters, we develop both the theory and the pra
ti
al ar
hite
-ture for a robust reinfor
ement learning neuro-
ontrol agent. Spe
i�
ally, Chapter 4introdu
es a framework in whi
h a neural network is re
ast as an LTI system; wepresent 
onditions on this network su
h that the resulting 
ontrol system is stablewith �xed network weights (stati
 stability) and varying network weights (dynami
stability). Chapter 5 
on
erns the details of 
onstru
ting an agent suitable for im-plementing the stati
 and dynami
 stability theory. Also in Chapter 5, we dis
usspra
ti
al design de
isions required to �t the learning agent into the unique environ-ment of the 
ontrol agent.In this 
urrent 
hapter, we apply the learning agent to four example 
ontrol tasks.The purpose of this 
hapter is to serve as a 
ase study for the appli
ation of the stat-i
/dynami
 stability theory to real-life 
ontrol problems. We intend to demonstratethat the theory is easily amenable to pra
ti
al 
ontrol appli
ation. The purpose ofthis 
hapter is not to provide an empiri
al study on the performan
e of this method,nor is it to 
ompare this learning agent's 
ontrol performan
e with other 
ontrol de-signs. However, we will show that the 
ontrol performan
e of our learning agent is atleast 
omparable to other 
ontrol methods in order to demonstrate that the stati
allyand dynami
ally stable learning agent is able to perform well in pra
ti
e.The four example tasks we have sele
ted for our 
ase study ea
h a�ord a di�er-119



ent demonstrative purpose. The �rst two 
ontrol tasks are relatively simple from a
ontrol standpoint; both are dynami
 systems of simple enough 
omplexity that thereader 
an easily visualize the 
ontrol dynami
s. The �rst task is a simple �rst-orderpositioning 
ontrol system. The se
ond task adds se
ond-order dynami
s whi
h aremore 
hara
teristi
 of standard \physi
ally realizeable" 
ontrol problems.The third 
ase study involves a 
hallenging distillation 
olumn 
ontrol task whi
his sele
ted from a robust 
ontrol textbook [Skogestad and Postlethwaite, 1996℄. Thedistillation 
olumn task is MIMO (multi-input, multi-output) with highly un
oupleddynami
s that make this task a highly diÆ
ult 
ontrol problem. The �nal 
ase study
on
erns an HVAC (Heating, Ventilation, and Air-Conditioning) 
ontrol system. Weapply our robust 
ontrol agent to a model of a heating 
oil and dis
uss the suitabilityof applying our robust 
ontrol agent to simulation models.6.1 Case Study: Task 1, A First-Order PositioningSystemTask 1 is a simple non-me
hani
al positioning task. A single input 
alled the referen
esignal, r moves on the interval [�1; 1℄ at random points in time. The plant output,y, must tra
k r as 
losely as possible. The system is depi
ted in Figure 6.1
ry

-1 -0.5 0 0.5 1Figure 6.1: Task 1: First Order SystemThe plant is a �rst order system and thus has one internal state variable x. Itis the plant output, y, that must tra
k r. A 
ontrol signal u is provided by the
ontroller(s) to position y 
loser to r. A blo
k diagram of the system is shown inFigure 6.2. 120
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Figure 6.2: Task 1: Nominal Control SystemAlthough the original task is posed in the 
ontinuous time, we 
onvert it to adis
rete-time system for 
ompatibility with the digital learning agent. The dynami
sof the dis
rete-time system are given by:x(k + 1) = x(k) + u(k) (6.1)y(k) = x(k) (6.2)where k is the dis
rete time step representing 0:01 se
onds of elapsed time. Weimplement a simple proportional 
ontroller (the 
ontrol output is proportional to thesize of the 
urrent error) with Kp = 0:1.e(k) = r(k)� y(k) (6.3)u(k) = 0:1e(k) (6.4)Noti
e that the system is �rst order with none of the physi
ally interpretable prop-erties su
h as fri
tion, momentum and spring for
es.6.1.1 Learning Agent ParametersRe
all from Chapter 5 that the learning agent has a dual network ar
hite
ture. The
riti
 network is responsible for learning the value fun
tion (mapping state variableand 
ontrol a
tion to 
ontrol performan
e) and the a
tor network is responsible forlearning the 
ontrol poli
y (mapping state variables to 
ontrol a
tions).121



The 
riti
 network is a table look-up with input ve
tor [e; û℄ and the single valuefun
tion output, Q(e; û). The table has 25 partitions separating ea
h input forminga 25x25 matrix. The a
tor network is a two-layer, feed forward neural network. Thetwo inputs are (e; 1) where the 1 is the �xed-input bias term. There are three tanhhidden units, and one network output û. The entire network is then added to the
ontrol system. This arrangement is depi
ted in blo
k diagram form in Figure 6.3.
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Figure 6.3: Task 1: Control System with Learning AgentFor training, the referen
e input r is 
hanged to a new value on the interval [�1; 1℄sto
hasti
ally with an average period of 20 time steps (every half se
ond of simulatedtime). We train for 2000 time steps at learning rates of � = 0:5 and � = 0:1 for the
riti
 and a
tor networks respe
tively. Then we train for an additional 2000 stepswith learning rates of � = 0:1 and � = 0:01. Re
all from Se
tion 5.5 that � is thelearning rate of the 
riti
 network and � is the learning rate for the a
tor network.In Se
tion 5.4 we dis
ussed the reason for the di�erent learning rates: in order toensure that both networks 
onverge during learning, the 
riti
 network must learn122



faster than the a
tor network.In the above des
ription, we make several de
isions regarding design issues su
has network sizes, network types, and learning rates. We must be expli
it aboutthe motivations behind ea
h design de
ision. For the a
tor and 
riti
 networks, thenumber of inputs and outputs are predetermined by the task; Task 1 has one statevariable and one 
ontrol variable that ne
essitate the input/output sizes of the twonetworks. We use trial and error to test several di�erent numbers of hidden units forthe a
tor network; three hidden units seem to provide adequate fun
tional expressionfor learning the a
tor net's poli
y. We 
aution that this trial and error approa
h is notan exhaustive or thorough empiri
al investigation into whi
h number of hidden unitsprovides the best results in terms of learning speed and overall 
ontrol performan
e.The trial and error testing simply allows us to qui
kly �nd network parameters (thenumber of hidden units in this 
ase) whi
h seem to work well in pra
ti
e. We applysimilar trial and error testing to arrive at the learning rates and the number of requiredtraining iterations. Regarding the type of network, we 
hoose a table look-up networkfor the 
riti
 net in order to avoid neuro-dynami
 problems; these are dis
ussed ingreat detail in Chapter 5. The a
tor net is a two-layer feed forward net with tanhhidden unit a
tivation fun
tions as per the requirements also stated in Chapter 5: weneed a 
ontinuous fun
tion to implement the poli
y in order to satisfy the theoreti
alrequirements of stati
 and dynami
 stability analysis.6.1.2 Stati
 Stability AnalysisIn this se
tion, we will assess the stability of neuro-
ontrol system using both �-analysis and IQC-analysis. �-analysis is an optional software toolbox o�ered withthe Matlab 
ommer
ial software pa
kage. Simulink, also part of the Matlab toolbox
olle
tion, allows 
ontrol engineers to depi
t 
ontrol systems with blo
k diagrams.We 
onstru
t several of these Simulink diagrams in this 
hapter. Figure 6.4 depi
ts123



the Simulink diagram for the nominal 
ontrol system in Task 1. We refer to this asthe nominal system be
ause there is no neuro-
ontroller added to the system. Theplant is represented by a re
tangular blo
k that implements a dis
rete-time statespa
e system. The simple proportional 
ontroller is implemented by a triangular gainblo
k. Another gain blo
k provides the negative feedba
k path. The referen
e inputis drawn from the left and the system output exits to the right.
Sum
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Figure 6.4: Task 1: Nominal SystemNext, we add the neural network 
ontroller to the diagram. Figure 6.5 shows the
omplete version of the neuro-
ontroller in
luding the tanh fun
tion. This diagram issuitable for 
ondu
ting simulation studies in Matlab. However, this diagram 
annotbe used for stability analysis, be
ause the neural network, with the nonlinear tanhfun
tion, is not represented as an LTI system. Constant gain matri
es are used toimplement the input side weights, W , and output side weights, V . For the stati
stability analysis in this se
tion, we start with an a
tor net that is already fullytrained. The stati
 stability test will verify whether this parti
ular neuro-
ontrollerimplements a stable 
ontrol system. In the next se
tion on dynami
 stability, wedemonstrate how we ensure stability while the a
tor net is training.Noti
e that the neural network (in blue) is in parallel with the existing proportional
ontroller; the neuro-
ontroller adds to the proportional 
ontroller signal. The otherkey feature of this diagram is the absen
e of the 
riti
 network; only the a
tor net isdepi
ted here. Re
all that the a
tor net is a dire
t part of the 
ontrol system while124
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Figure 6.5: Task 1: With Neuro-Controllerthe 
riti
 net, more of a meta-system, does not dire
tly a�e
t the feedba
k/
ontrolloop of the system. The 
riti
 network only in
uen
es the dire
tion of learning for thea
tor network. Sin
e the 
riti
 network plays no role in the stability analysis, thereis no reason to in
lude the 
riti
 network in any Simulink diagrams.Figure 6.6 shows the the LTI version of the same system. Re
all from Se
tion 4.2that we repla
e the nonlinear tanh fun
tion with 
 
omposed of a known �xed partand an unknown un
ertainty part. The upper path represents the �xed part (0:5)while the lower path implements the unknown un
ertainty (�0:5). The un
ertaintyis represented in Simulink by the 
ir
ular input-output blo
ks.Again, we emphasize that there are two versions of the neuro-
ontroller. In the�rst version, shown in Figure 6.5, the neural network in
ludes all its nonlinearities.This is the a
tual neural network that will be used as a 
ontroller in the system.The se
ond version of the system, shown in Figure 6.6, 
ontains the neural network
onverted into the LTI framework; we have repla
ed the nonlinear tanh hidden layerwith LTI un
ertainty. This version of the neural network will never be implementedas a 
ontroller; the sole purpose of this version is to ensure stability. Be
ause thisversion is LTI, we 
an use the �-analysis tools to 
ompute the stability margin of the125
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Figure 6.6: Task 1: With Neuro-Controller as LTILTI system. Again, be
ause the LTI system overestimates the gain of the nonlinearityin the non-LTI system, a stability guarantee on the LTI version also implies a stabilityguarantee on the non-LTI system.The next step is to have Matlab automati
ally formulate the LFT, and then toapply �-analysis. The Matlab 
ode for this step is shown in Appendix A. The Simulinkdiagram of Figure 6.6 is given as input to the Matlab �-analysis 
ommands. Re
allfrom Se
tion 3.8 that ��(M) 
omputes the re
ipro
al of the smallest perturbationthat will 
ause the system to be unstable. The only un
ertainty (perturbation) in thesystem originates in the neural network hidden layers. Re
all we have also normalizedthe un
ertainty to have a maximum norm of 1. After normalization, if �(M) is
omputed to be less than unity at all frequen
ies, then our system is guaranteed tobe stable. In fa
t, we would like � to be signi�
antly less than unity, be
ause thisindi
ates that our system is very stable (the 
loser to 1, the 
loser to instability) andthe smaller � value gives us extra \room" in whi
h to adjust the network weights. Wewill be adding additional un
ertainty in the dynami
 stability se
tion and we wouldlike to have extra \stability room" for adjusting network weights during learning.Figure 6.7 shows the results of the � 
omputation plotted by frequen
y. Re
all that�-analysis operates by 
omputing the � value on a frequen
y by frequen
y basis. As126



seen in Figure 6.7, � attains a maximum of approximately 0:128 whi
h is signi�
antlyless than 1; our system with neuro-
ontroller is very stable.
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Figure 6.7: Task 1: �-analysisRe
all that IQC-analysis (integral quadrati
 
onstraints) is an additional toolfor stability analysis [Megretski and Rantzer, 1997a; Megretski and Rantzer, 1997b;Megretski et al., 1999℄. IQC is a non-
ommer
ial Matlab toolbox whi
h arrives atequivalent stability guarantees using di�erent methods. For IQC-analysis, we makesome slight 
hanges to the \LTI-version" of the Simulink diagram. Figure 6.8 de-pi
ts the Simulink diagram ready to perform IQC stability analysis on Task 1. Thenonlinearity of the neural network is simpli�ed by the single IQC blo
k labeled oddslope nonlinearity. IQC provides a number of blo
ks for di�erent types of un
ertain-ties. The performan
e blo
k is another IQC blo
k that must be in
luded in all IQCSimulink diagrams.When we run the IQC 
ommands, the automated software exe
utes a feasibilitysear
h for a matrix satisfying the IQC fun
tion. If the sear
h is feasible, the systemis guaranteed stable; if the sear
h is infeasible, the system is not guaranteed to be127



stable. IQC does not produ
e the frequen
y-by-frequen
y result of �-analysis; insteadit simply responds with a single feasible/infeasible reply. We apply the IQC 
ommandsto the Simulink diagram for Task 1 and �nd that the feasibility 
onstraints are easilysatis�ed; the neuro-
ontroller is guaranteed to be stable. This reaÆrms our resultsobtained with �-analysis. See Appendix A for details on the IQC software 
ommands.
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Figure 6.8: Task 1: With Neuro-Controller as LTI (IQC)At this point, we have assured ourselves that the neuro-
ontroller, after having
ompletely learned its weight values during training, implements a stable 
ontrol sys-tem. Thus we have a
hieved stati
 stability. We have not, however, assured ourselvesthat the neuro-
ontroller did not temporarily implement an unstable 
ontroller whilethe network weights were being adjusted during learning.6.1.3 Dynami
 Stability AnalysisIn this subse
tion we impose extra limitations on the learning algorithm in order toensure the network is stable a

ording to dynami
 stability analysis. In Chapter 4 wedeveloped a \stable reinfor
ement learning algorithm"; in Se
tion 5.5 we detail thesteps of the algorithm. Re
all this algorithm alternates between a stability phase anda learning phase. In the stability phase, we use �-analysis or IQC-analysis to 
omputethe maximum allowed perturbations for the a
tor network weights that still provide128



an overall stable neuro-
ontrol system. The learning phase uses these perturbationsizes as room to safely adjust the a
tor net weights.To perform the stability phase, we add an additional sour
e of un
ertainty tothe Simulink diagrams of the previous se
tion. In Figure 6.9 we see the additionalun
ertainty in the green se
tion. The important matri
es are dW and dV . Thesetwo matri
es are the perturbation matri
es. In our previous analysis, we 
ombine allthe entries into one matrix 
alled BP . In this Simulink diagram, we must divide BPinto its two parts: one for the a
tor net input weights, W , and one for the a
tor netoutput weights, V . An in
rease or de
rease in dW implies a 
orresponding in
rease orde
rease in the un
ertainty asso
iated with W . Similarly we 
an in
rease or de
reasedV to ena
t un
ertainty 
hanges to V .The matri
es WA, WB, V A, and V B are simply there for redimensioning thesizes of W and V ; they have no a�e
t on the un
ertainty or norm 
al
ulations. Inthe diagram, dW and dV 
ontain all the individual perturbations along the diagonalwhile W and V are not diagonal matri
es. Thus, Whxn and dWhnxhn are not di-mensionally 
ompatible. By multiplying with WA and WB we �x this \dimensionalin
ompatibility" without a�e
ting any of the numeri
 
omputations. Similarly withV and dV .The stability phase algorithm intera
ts with the Simulink diagram in Figure 6.9 to�nd the largest set of un
ertainties (the largest perturbations) for whi
h the systemis still stable. As a result of this pro
ess, we now possess a very 
riti
al pie
e ofinformation. We are now guaranteed that our 
ontrol system is stable for the 
urrentneural network weight values. Furthermore, the system will remain stable if we 
hangethe neural network weight values as long as the new weight does not ex
eed the rangeR spe
i�ed by the perturbation matri
es, dW and dV ( formally 
alled BP ). In otherwords, we alter network weight values and are 
ertain of a stable 
ontrol s
heme aslong as the 
hanges do not ex
eed R. In the learning phase, we apply the reinfor
ement129
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Figure 6.9: Task 1: Simulink Diagram for Dynami
 �-analysislearning algorithm until one of the network weights ex
eeds the range spe
i�ed bythe additives.
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 IQC-analysisWe have an additional Simulink diagram for dynami
 stability analysis with IQC.We use an STV (Slowly Time-Varying) IQC blo
k to 
apture the weight 
hange130



un
ertainty. This diagram is shown in Figure 6.10. Other than the di�erent Simulinkdiagram, the IQC dynami
 stability algorithm operates in exa
tly the same way as�-analysis. We simply use IQC-analysis to 
ompute the stability of the network forea
h set of perturbations spe
i�ed in dW and dV .6.1.4 SimulationWe fully train the neural network 
ontroller as des
ribed in Se
tion 6.1.1 and Se
-tion 6.1.3. After training is 
omplete, we pla
e the �nal neural network weight values(W and V ) in the 
onstant gain matri
es of the Simulink diagram in Figure 6.5. Wethen simulate the 
ontrol performan
e of the system. A time-series plot of the simu-lated system is shown in Figure 6.11. The top diagram shows the system with onlythe proportional 
ontroller 
orresponding to the Simulink diagram in Figure 6.4. Thebottom diagram shows the same system with both the proportional 
ontroller andthe neuro-
ontroller as spe
i�ed in Figure 6.5. The blue line is the referen
e input r.The green line is the plant output y. The red line is the 
ontrol signal u.The system is tested for a 10 se
ond period (1000 dis
rete time steps with asampling period of 0.01). We 
ompute the sum of the squared tra
king error (SSE)over the 10 se
ond interval. For the proportional only 
ontroller, the SSE = 33:20.Adding the neuro-
ontroller redu
ed the SSE to 11:73. Clearly, the reinfor
ementlearning neuro-
ontroller is able to improve the tra
king performan
e dramati
ally.Note, however, with this simple �rst-order system it is not diÆ
ult to 
onstru
t a bet-ter performing proportional 
ontroller. In fa
t, setting the 
onstant of proportionalityto 1 (Kp = 1) a
hieves optimal 
ontrol (minimal 
ontrol error). We have purposely
hosen a suboptimal 
ontroller in this 
ase study so that the neuro-
ontroller hasroom to learn to improve 
ontrol performan
e.
131
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Time (sec)Figure 6.11: Task 1: Simulation Run6.2 Detailed Analysis of Task 1In this se
tion, we provide a more thorough analysis of Task 1. Spe
i�
ally, we presenta detailed analysis of the neuro-dynami
s and the traje
tory of weight updates. Wealso provide a dis
ussion of how the \stability" part of the algorithm a�e
ts thereinfor
ement learning part. This analysis is possible be
ause of the simple dynami
sinvolved in Task 1; we 
annot perform this analysis with the other three 
ase studiesbe
ause of the higher order dynami
s. This analysis is the primary motivation forin
luding Task 1 in our 
ase study despite the un
hallenging 
ontrol problem thistask presents. 132



6.2.1 A
tor/Criti
 Net AnalysisIn order to provide a better understanding of the nature of the a
tor-
riti
 design, wein
lude the following diagrams. Re
all that the purpose of the 
riti
 net is to learnthe value fun
tion (Q-values). The two inputs to the 
riti
 net are the system state(whi
h is the 
urrent tra
king error e) and the a
tor net's 
ontrol signal (û). The
riti
 net forms the Q-values, or value fun
tion, for these inputs; the value fun
tion isthe expe
ted sum of future squared tra
king errors. In Figure 6.12 we see the valuefun
tion learned by the 
riti
 net. The tra
king error e is on the x-axis while thea
tor network 
ontrol a
tion û forms the y-axis. For any given point (e; û) the height(z-axis) of the diagram represents the expe
ted sum of future squared tra
king errors.We 
an take \sli
es", or y-z planes, from the diagram by �xing the tra
kingerror on the x-axis. Noti
e that for a �xed tra
king error e, we vary û to see a\trough-like" shape in the value fun
tion. The low part of the trough indi
ates theminimum dis
ounted sum squared error for the system. This low point 
orrespondsto the 
ontrol a
tion that the a
tor net should ideally implement. We use the troughgradient to do ba
k propagation for the a
tor net. The surfa
e gradient in the 
riti
net is used to provide training exemplars for the a
tor net.It is important to keep in mind that the 
riti
 network is an approximation to thetrue value fun
tion. The 
riti
 network improves its approximation through learningby sampling di�erent pairs (e; û) and 
omputing the resulting sum of future tra
kingerrors. This \approximation" a

ounts for the bumpy surfa
e in Figure 6.12. Aftermore training, the surfa
e smoothes as it be
omes 
loser to the true value fun
tion.This is also why it is important to have a faster learning rate for the 
riti
 networkthan for the a
tor network. Be
ause the value fun
tion learned by the 
riti
 networkdire
ts the updates of the a
tor network, we must be able to learn the gradient of the
riti
 network faster than the a
tor network 
hanges its weight values.The a
tor net's purpose is to implement the 
urrent poli
y. Given the input of133
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Figure 6.12: Task 1: Criti
 Net's Value Fun
tionthe system state (e), the a
tor net produ
es a 
ontinuous-valued a
tion (û) as output.In Figure 6.13 we see the fun
tion learned by the a
tor net. For negative tra
kingerrors (e < 0) the system has learned to output a strongly negative 
ontrol signal. Forpositive tra
king errors, the network produ
es a positive 
ontrol signal. The e�e
tsof this 
ontrol signal 
an be seen qualitatively by examining the output of the systemin Figure 6.11.Note, these diagrams are only possible be
ause of the extraordinary simpli
ity ofthis 
ontrol task. Be
ause this 
ase study has �rst order dynami
s, the system hasonly one internal state variable, the tra
king error e. With only one internal state,the output of the a
tor network 
an be viewed in a two-dimensional plot while theoutput of the 
riti
 network is 
aptured with a three-dimensional surfa
e plot. Thisvisualization is not possible with the higher-order tasks in the next three 
ase studies.134
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Figure 6.13: Task 1: A
tor Net's Control Fun
tion6.2.2 Neural Network Weight Traje
toriesFrom our dis
ussion in previous se
tions, we know that the learning algorithm is arepetition of stability phases and learning phases. In the stability phases we 
omputethe maximum additives, dW and dV , whi
h still retain system stability. In thelearning phases, we adjust the neural network weights until one of the weights ex
eedsits range spe
i�ed by its 
orresponding additive. In this se
tion, we present a visualdepi
tion of the learning phase for an agent solving Task 1.In order to present the information in a two-dimensional plot, we swit
h to aminimal a
tor net. Instead of the three tanh hidden units spe
i�ed earlier in this
hapter, we use one hidden unit for this subse
tion only. Thus, the a
tor networkhas two inputs (the bias = 1 and the tra
king error e), one tanh hidden unit, andone output (û). This network will still be able to learn a relatively good 
ontrol135



fun
tion. Refer ba
k to Figure 6.13 to 
onvin
e yourself that only one hidden tanhunit is ne
essary to learn this 
ontrol fun
tion; we simply found, in pra
ti
e, thatthree hidden units often resulted in faster learning and slightly better 
ontrol.For this redu
ed a
tor net, we now have smaller weight matri
es for the inputweights W and the output weights V in the a
tor net. W is a 2x1 matrix and V isa 1x1 matrix, or s
alar. Let W1 refer to the �rst 
omponent of W , W2 refer to these
ond 
omponent, and V simply refers to the lone element of the output matrix.The weight, W1, is the weight asso
iated with the bias input (let the bias be the �rstinput to the network and let the system tra
king error, e, be the se
ond input). Froma stability standpoint, W1 is insigni�
ant. Be
ause the bias input is 
lamped at a
onstant value of 1, there really is no \magni�
ation" from the input signal to theoutput. The W1 weight is not on the input/output signal pathway and thus there isno 
ontribution of W1 to system stability. Essentially, we do not 
are how weight W1
hanges as it does not a�e
t stability. However, both W2 (asso
iated with the inpute) and V do a�e
t the stability of the neuro-
ontrol system as these weights o

upythe input/output signal pathway and thus a�e
t the 
losed-loop energy gain of thesystem.To visualize the neuro-dynami
s of the a
tor net, we tra
k the traje
tories ofthe individual weights in the a
tor network as they 
hange during learning. Theweights W2 and V form a two-dimensional pi
ture of how the network 
hanges duringthe learning pro
ess. Figure 6.14 depi
ts the two-dimensional weight spa
e and thetraje
tory of these two weights during a typi
al training episode. The x-axis showsthe se
ond input weight W2 while the y-axis represents the single output weight V .The traje
tory begins with the blue 
olorings, progresses to red, green, magenta, andterminates with the yellow 
oloring. Ea
h point along the traje
tory represents aweight pair (W2,V ) a
hieved at some point during the learning pro
ess.The 
olors represent di�erent phases of the learning algorithm. First, we start136
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Figure 6.14: Task 1: Weight Update Traje
torywith a stability phase by 
omputing, via �-analysis or IQC-analysis, the amount ofun
ertainty whi
h 
an be added to the weights; the resulting perturbations, dW anddV , indi
ate how mu
h learning we 
an perform and still remain stable. The bluepart of the traje
tory represents the learning that o

urred for the �rst values of dWand dV . The blue portion of the traje
tory 
orresponds to the �rst learning phase.After the �rst learning phase, we then perform another stability phase to 
omputenew values for dW and dV . We then enter a se
ond learning phase that pro
eedsuntil we attempt a weight update ex
eeding the allowed range. This se
ond learningphase is the red traje
tory. This pro
ess of alternating stability and learning phasesrepeats until we are satis�ed that the neural network is fully trained (more 
ommentsabout this in the next se
tions). In the diagram of Figure 6.14 we see a total of �velearning phases (blue, red, green, magenta, and yellow).137



6.2.3 Bounding BoxesRe
all that the terms dW and dV indi
ate the maximum un
ertainty, or perturbation,we 
an introdu
e to the neural network weights and still be assured of stability. IfW2 is the 
urrent weight asso
iated with the input e, we 
an in
rease or de
rease thisweight by dW and still have a stable system. W2+dW and W2�dW form the range,RW2 , of \stable values" for the input a
tor weight W2. These are the values of W2for whi
h the overall 
ontrol system is guaranteed to be stable. Similarly V � dVform the stable range of output weight values. We depi
t these ranges as re
tangularboxes in our two-dimensional traje
tory plot. These boxes are shown in Figure 6.15.

−1 −0.5 0 0.5 1 1.5
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Weight W2

W
ei

gh
t V

Trajectory of Actor Network with Stability Regions

Figure 6.15: Task 1: Traje
tory with Bounding BoxesAgain, there are �ve di�erent bounding boxes (blue, red, green, magenta, and yel-low) 
orresponding to the �ve di�erent stability/learning phases. As 
an be seen fromthe blue traje
tory in this diagram, training progresses until the V weight rea
hes the138



edge of the blue bounding box. At this point we must 
ease our 
urrent reinfor
e-ment learning phase, be
ause any additional weight 
hanges will result in an unstable
ontrol system (te
hni
ally, the system might still be stable but we are no longerguaranteed of the system's stability { the stability test is 
onservative in this respe
t).At this point, we re
ompute a new bounding box (red) using a se
ond stability phase;then we pro
eed with the se
ond learning phase until the weights violate the newbounding box. In this way the stable reinfor
ement learning algorithm alternatesbetween stability phases (
omputing bounding boxes) and learning phases (adjustingweights within the bounding boxes).It is important to note that if the traje
tory rea
hes the edge of a bounding box,we may still be able to 
ontinue to adjust the weight in that dire
tion. Hitting abounding box wall does not imply that we 
an no longer adjust the neural networkweight(s) in that dire
tion. Re
all that the edges of the bounding box are 
omputedwith respe
t to the network weight values at the time of the stability phase; these initialweight values are the point along the traje
tory in the exa
t 
enter of the boundingbox. This 
entral point in the weight spa
e is the value of the neural network weightsat the beginning of this parti
ular stability/learning phase. This 
entral weight spa
epoint is the value of W2 and V that are used to 
ompute dW and dV . Given that our
urrent network weight values are that 
entral point, the bounding box is the limit ofweight 
hanges that the network tolerates without forfeiting the stability guarantee.This is not to be 
onfused with an absolute limit on the size of that network weight.We will return to address this point further in the next subse
tions.The green traje
tory reveals some insightful dynami
s. The green portion of thetraje
tory stops near the edge of the box (doesn't rea
h it), and then moves ba
ktoward the middle. Keep in mind that this traje
tory represents the weight 
hangesin the a
tor neural network. At the same time as the a
tor network is learning, the
riti
 network is also learning and adjusting its weights; the 
riti
 network is busy139



forming the value fun
tion. It is during this green phase in the training that the 
riti
network has started to mature; the \trough" in the 
riti
 network has started to form.Be
ause the gradient of the 
riti
 network dire
ts the weight 
hanges for the a
tornetwork, the dire
tion of weight 
hanges in the a
tor network reverses. In the earlypart of the learning (red and blue traje
tories) the 
riti
 network gradient indi
atesthat \upper left" is a desirable traje
tory for weight 
hanges in the a
tor network. Bythe time we en
ounter our third learning phases in the green traje
tory, the gradientin the 
riti
 network has 
hanged to indi
ate that \upper-left" is now an undesirabledire
tion for movement for the a
tor network. The a
tor network has \over-shot" itsmark. If the a
tor network has higher learning rates than the 
riti
 network, then thea
tor network would have 
ontinued in that same \upper-left" traje
tory, be
ause the
riti
 network would not have been able to learn qui
kly enough to dire
t the a
tornet ba
k in the other dire
tion.Further dynami
s are revealed in the last two phases. As 
an be seen from themagenta and yellow traje
tories, the a
tor network weights are not 
hanging as rapidlyas they did in the earlier learning phases. We are rea
hing the point of optimaltra
king performan
e a

ording to the gradient in the 
riti
 network. The point of
onvergen
e of the a
tor network weights is a lo
al optima in the value fun
tion of the
riti
 network weights. We halt training at this point be
ause the a
tor weights have
eased to move and the resulting 
ontrol fun
tion improves performan
e (minimizestra
king error) over the nominal system.This two dimensional plot of the traje
tory enables us to demonstrate some ofthe 
riti
al dynami
s of the stable reinfor
ement learning algorithm. The plot showshow the weights adjust during a typi
al reinfor
ement learning session. More im-portantly, by super-imposing the bounding boxes, the relationship between a \pure"reinfor
ement learning algorithm and the dynami
 stability proof is demonstrated.We show that the bounding boxes represent the 
urrently known \frontier" of safe140



neural network weight values { those weights whi
h implement stable 
ontrol in thea
tor network. We also use this diagram to show how the 
riti
 network a�e
ts thelearning traje
tory of the a
tor network weights. The dis
ussion to this point pro-vides a reasonable overview of the neuro-dynami
 details of the stable reinfor
ementlearning algorithm. However, there are some subtle implementation issues whi
h are
riti
al to the operation of the algorithm. In the remainder of this subse
tion weaddress a number of these more subtle issues. Namely, we dis
uss the details of 
om-puting dW and dV , how to de
ide when to stop training, and how the traje
toriesand bounding boxes might di�er for other 
ontrol problems.6.2.4 Computing Bounding BoxesDuring the stability phases, we 
ompute the maximum perturbations, dW and dV ,whi
h 
an be added to the a
tor neural network's input and output weights whilestill guaranteeing stability for the overall 
ontrol system. Ea
h individual 
hange toan entry in dW (or in dV ) will a�e
t the stability 
al
ulations of �-analysis and IQC-analysis. Given a 
urrent set of neural network weights (W;V ), we use �-analysis to�nd out how mu
h total un
ertainty the system 
an handle. We 
an then distributethis total un
ertainty among the various elements of dW and and dV 1. As a 
onse-quen
e of these multiple degrees of freedom, we now must �nd a method for sele
tingthe individual entries of the additive matri
es dW and dV .It is 
riti
al to note that how we sele
t entries for dW and dV has absolutelyno impa
t on the ultimate weights that the a
tor neural network learns; this point isspelled out expli
itly in Se
tion 6.2.5 below. Instead, our sele
tion of the perturbationmatri
es will impa
t only the eÆ
ien
y of our algorithm; the impa
t arises in the1In reality, �-analysis does not work this way. We 
annot 
ompute a total amount of un
ertaintyand then go ba
k to redistribute it among dW and dV . Be
ause � is largely a boolean test (T =stable, F = not stable), we 
an only presele
t dW and dV and then use � to test their stabilitystatus. A possible dire
tion of future resear
h would be to develop a � tool that works in this way.141



number of 
omputationally expensive stability phases that must be exe
uted. Byjudi
ious 
hoi
e of how we distribute un
ertainty among dW and dV , we 
an make thelearning algorithm faster 
omputationally, but we 
annot 
hange the weight updatetraje
tory formed during learning.Refer ba
k to the bounding boxes of Figure 6.15. In this �gure, we have twoweights of interest, W2 and V . The matrix dW has two entries, dW1 and dW2 
orre-sponding to the two entries in W . Similarly, dV has one entry 
orresponding to theone entry of V . We have already indi
ated that W1, whi
h is tied to the bias inputterm, has no e�e
t on the stability 
al
ulations. Thus dW1 is ignored or set to 0.We now possess two degrees of freedom in sele
ting un
ertainty for neural networkweights: dW2 and dV . These two additive matrix entries are two \dials" that we
an turn to adjust the amount of un
ertainty asso
iated with their respe
tive neuralnetwork weights. If we 
ompute � for the Simulink diagram and the result is less thanunity (indi
ating stability), then we are permitted to in
rease one or both of thesedials. Conversely, if � indi
ates instability, we must de
rease the dials { de
rease theamount of weight un
ertainty. We 
an also in
rease one dial, say dW2, while simul-taneously de
reasing the other dial, dV , in order to rea
h the same �-analysis result.In general, �, whi
h produ
es our stability result, is not an expli
it fun
tion availablefor introspe
tion; that is, we 
annot �gure out exa
tly how mu
h to turn a parti
ulardial in order to rea
h a desired stability result. Instead, we must simply set the dials(set the levels for dW and dV ) and then re
ompute � to as
ertain the result. It isvery mu
h a set-and-test pro
edure.Looking ba
k at the traje
tory of Figure 6.15, we see how these \dials" 
ome in toplay. Re
all that dW2 is the amount of un
ertainty asso
iated with the W2 weight onthe x-axis; W2�dW2 forms the left and right edges of the bounding boxes. Similarly,V � dV2 form the upper and lower edges of the bounding boxes. The relative size ofdW2 vs dV determines the \shape" of our bounding boxes. Large dW2=dV produ
e142



wide and short boxes while small dW2=dV result in tall, narrow boxes. We 
an turnthe dW2 and dV knobs to rea
h any desired re
tangular shape that we wish. Roughly,though not exa
tly, the area of the re
tangle remains somewhat 
onstant due to the� stability 
omputations; the larger the area of the re
tangle, the 
loser to instability.The purpose of the stability phase is to �nd the largest area re
tangle whi
h is stilljust barely stable.One obvious question now remains: how do we set dW2 in relation to dV ? Dowe want tall, skinny boxes or short, wide boxes? The answer depends on the futuretraje
tory of the network weights. If the a
tor net training results in weight 
hangesonly to V and notW2, then we would want tall skinny boxes to maximize the amountof un
ertainty asso
iated with V and minimize the amount of un
ertainty asso
iatedwith W2. However, we would not know this a priori and thus 
annot predi
t howfuture learning might progress 2.For the work in this dissertation, we sele
t the following method of relating dW2to dV . We set the ratio of dW2=dV to the ratio of W2=V and we keep dW2 and dV inthis ratio throughout a stability/learning phase. On
e the ratio has been set, we 
anthen in
rease or de
rease the total amount of un
ertainty by multiplying dW2 and dVby the same 
onstant. The larger the 
onstant, the more total weight un
ertainty,and the 
loser to system instability. The stability phase of ea
h learning episode is amini-sear
h to �nd the largest su
h 
onstant that just barely retains system stabilityguarantees. Keeping dW2=dV equal to W2=V has an intuitive appeal, be
ause it �xesthe relative amount of learning available to ea
h weight equal to the relative 
urrentsize of ea
h weight (small amounts of learning allowed for small weights, large amountsof learning allowed for larger weights). We do not 
laim that this is the optimal way2A
tually, there are several ways in whi
h we might try to predi
t future learning. Two of theminvolve extrapolating from the 
urrent learning traje
tory, and looking at the 
urrent gradient in the
riti
 network. These and other options are dis
ussed in Chapter 7 on future resear
h dire
tions.143



to assign dW2 and dV ; other possibilities are mentioned in the 
on
luding 
hapter.This method has the other advantage that it is easily s
alable to the more 
ompli
atedtasks with more states and larger neural network weights.6.2.5 E�e
ts on Reinfor
ement LearningA drawba
k of the bounding-box imagery is that one often as
ribes more restri
tivepowers to the bounding box than a
tually exist. It is 
riti
al to note that the boundingbox does not ne
essarily form an absolute limit on the size of ea
h network weight.We must distinguish the lo
al limits imposed on neural network weights by ea
hbounding box from the absolute limits on neural network weights imposed by stability
onsiderations.For example, suppose we start with an initial point in the weight spa
e (an initialset of network weights), 
ompute the bounding box using �-analysis, and then plot thebounding box on our two-dimensional traje
tory diagram. This bounding box formsa lo
al limit on how mu
h weight 
hanges we 
an tolerate before going unstable. Intruth, we may be able to tolerate mu
h larger weight 
hanges, but from our 
urrentperspe
tive at the initial weight point, we 
an only ensure stability up to the edgeof the bounding box. We then exe
ute one reinfor
ement learning step to make onesmall in
remental adjustment to the network weights. We thus have a se
ond pointin the weight spa
e. These two points, the initial weights and the new weights, formthe �rst two points in our network weight traje
tory. After this �rst learning stepis 
omplete, we 
ould re
ompute a new bounding box by exe
uting a new stabilityphase (more � 
al
ulations). This se
ond round of stability 
al
ulations will resultin di�erent values for dW and dV and thus form an entirely new bounding box. Itis probable that this new bounding box en
loses \safe" areas of the two-dimensionalweight spa
e that were not en
losed in the �rst bounding box. Thus, we have addedto the overall region of network weight values that implement stable 
ontrollers. This144



overall safe region is the absolute limit on neural network weight values. In pra
ti
e,we do not exe
ute a stability phase 
al
ulation at ea
h learning step, be
ause stabilityphases are 
omputationally expensive operations. Instead, we 
ontinue to learn untilwe rea
h the 
urrently known limits of the safe weight range, that is, until we hit theedge of our bounding box. Then we are for
ed to return to the stability phase if wedesire to make any further weight updates.Figure 6.16 illustrates a number of 
riti
al points regarding the intera
tion of thestability phases and the reinfor
ement learning phases. In the 
enter of Figure 6.16 is asmall bounding box drawn in bla
k. There is an initial traje
tory (also in bla
k) whi
hstarts at the 
enter of the bounding box and moves toward the lower right 
orner. Thebounding box is 
omputed during the stability phase. The initial weight point (W2; V )in the 
enter of the bounding box is used for the �-analysis 
omputation. The result ofthe stability phase is the pair (dW2; dV ) whi
h form the side and top/bottom portionsof the bounding box, respe
tively. The result of the � 
omputation is the largestamount of un
ertainty that the network 
an tolerate from our 
urrent perspe
tiveat the initial weight point (W2; V ). We may be able to tolerate more un
ertainty,but we 
annot as
ertain this by �-analysis performed on the 
urrent weight point(W2; V ). In fa
t, if we sele
t other initial weight points we will generate additionalbounding boxes. It is the overall union of all bounding boxes that truly indi
ates theentire s
ope of the \safe" network weight values: those network weight points whi
himplement stable 
ontrol.In Figure 6.16 we have arti�
ially drawn this global safety range as a red 
ir
le.For real 
ontrol tasks, it is unlikely that this region is the shape of a 
ir
le; we havemerely drawn it as a 
ir
le for simpli
ity. This region is real in the sense that insidethe 
ir
le are network weights whi
h implement stable 
ontrol and outside the 
ir
leare network weights whi
h do not implement stable 
ontrol. We 
ould perform anumber of stati
 stability tests for (W2; V ) points; those points inside the 
ir
le would145
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Figure 6.16: A
tor Network Weight Spa
e: Stability and Performan
e ImprovingRegionspass the stati
 stability test while those weight points outside the 
ir
le would failthe stati
 stability test.Although the global stable region exists, it is entirely possible that the networkweights may never rea
h the edge of this red 
ir
le during learning; all the boundingboxes might fall well within the interior of the 
ir
le. In fa
t, the traje
tory inFigure 6.15 is su
h an example where all our bounding boxes fall well within theinterior of our stability region. We dis
uss the situation in whi
h learning does 
ausethe traje
tory to approa
h the edge of the global stability region at the end of thissubse
tion.There is a se
ond region in Figure 6.16 whi
h is also of interest. Show in the bluere
tangle is the performan
e improving region. Again, the true performan
e improving146



region is not likely to be re
tangular in shape. In this region are the set of all neuralnetwork weights whi
h provide improved 
ontrol (smaller total tra
king error) over thenominal system without the neuro-
ontroller. The interior points of this region formimproved neuro-
ontrollers, the exterior points implement worse performing neuro-
ontrollers, and the border points implement the same level of 
ontrol performan
e asthe nominal system 3. There exists a point (or points) within this region that providesthe best tra
king performan
e possible. This point is the set of a
tor network weightswith optimal performan
e.There are numerous ways in whi
h these two regions 
an intera
t. The size, shape,and overlap of the regions is determined by the 
ontrol task and by the neural networkar
hite
ture. One su
h possible arrangement is for the performan
e-improving regionto be a subset of the stable region; all network weights whi
h improve the tra
kingperforman
e are also stable. The other possibilities are presented in the following listin whi
h SR is the stable region, PR is the performan
e-improving region, and OPis the optimal performan
e point:1. SR � PR2. PR � SR3. SR \ PR = ;4. SR \ PR 6= ;; OP 2 SR5. SR \ PR 6= ;; OP =2 SR6. SR = ;7. PR = ;3As a te
hni
al point, the origin is the point where all the network weights are zero whi
his, essentially, the nominal system. Thus the origin is always on the border of the performan
e-improving region. 147



For the third 
ase, we have the unfortunate situation where the performan
e-improving region and stable region are disjoint, there will be no neural networkweights whi
h are both stable and provide improved 
ontrol 4. Cases (4) and (5)above are illustrated in Figure 6.16 where the two regions overlap, but are not 
on-tained within ea
h other. Here we must distinguish the 
ase where the point ofoptimal performan
e is or is not within the stable region. There are also the spe
ial
ases where the stable set is empty (5); this o

urs if there are no possible neuralnetwork weight values whi
h will implement a stable 
ontroller. The other possibility(6) is that there are no neuro-
ontrollers whi
h will improve the tra
king performan
eover the nominal system; this would have been the 
ase if we had used an optimal
ontroller (Kp = 1) for example Task 1.Finally we 
ome to the main fo
us of this subse
tion: bounding boxes do not a�e
tthe traje
tory of weights en
ountered during learning. Essentially, the reinfor
ementlearning part of the algorithm is oblivious to the existen
e of the bounding boxes.The network will sequen
e through the same set of weight values during learningwhether there are bounding boxes or not. The only ex
eption to this rule is whenthe bounding boxes happen to abut the global stability region (red 
ir
le). Only thendoes the \stability" part of the algorithm a�e
t the \reinfor
ement learning" part ofthe algorithm. We dis
uss this spe
ial 
ase immediately below. Consequently, howwe 
hose bounding boxes will not a�e
t what the network is able to learn, be
ausewe are not a�e
ting the weight traje
tory formed during learning. The 
hoi
e of howwe make bounding boxes only a�e
ts how often we must re-
ompute new boundingboxes.What happens as learning progresses and takes the weight traje
tory 
lose to theedge of the global stability region? The �rst thing that happens is the 
ontrol system4Te
hni
ally they 
annot be 
ompletely disjoint due to the trivial 
ase of the origin whi
h isalways \in" both sets. 148



edges 
loser and 
loser to an unstable operating point; there will be less room forun
ertainty be
ause more un
ertainty will push us over the edge of guaranteed sta-bility. As a result, the perturbations (dW2; dV ) 
omputed during the stability phasewill be smaller and smaller. Thus the area of the bounding box de
reases. In thelimit as the weight traje
tory approa
hes the edge of the global stability region, theperturbations and the area of the bounding box go to zero. It is at this point that nofurther learning 
an o

ur. This is the only instan
e in whi
h the \stable reinfor
e-ment learning algorithm" di�ers from a regular reinfor
ement learning algorithm. Infa
t, this is the ideal situation, we would like learning to pro
eed without interferen
euntil learning attempts to push the neuro-
ontroller into a point where the overallsystem is not guaranteed to be stable.6.3 Case Study: Task 2, A Se
ond-Order SystemThe se
ond task, a se
ond order mass/spring/dampener system, provides a more
hallenging and more realisti
 system in whi
h to test our neuro-
ontrol te
hniques.On
e again, a single referen
e input r moves sto
hasti
ally on the interval [�1; 1℄; thesingle output of the 
ontrol system y must tra
k r as 
losely as possible. However,there are now fri
tion, inertial, and spring for
es a
ting on the system to make thetask more diÆ
ult than Task 1. Figure 6.17 depi
ts the di�erent 
omponents of thesystem.We use the same generi
 blo
k diagram for Task 2 ex
ept that we must keep in mindthat the plant now has two internal states (position and velo
ity) and the 
ontrolleralso now has an internal state.
149
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Figure 6.18: Task 2: Nominal Control SystemThe dis
rete-time update equations are given by:e(k) = r(k)� y(k) (6.5)u(k) = Kpe(k) + Z Kie(k) (6.6)Kp = 0:01 Ki = 0:001 (6.7)x(k + 1) = � 1 0:05�0:05 0:9 �x(k) + � 01:0 �u(k) (6.8)y(k) = � 1 0 �x(k) (6.9)Here, the nominal 
ontroller is a PI 
ontroller with both a proportional term andan integral term. This 
ontroller is implemented with its own internal state variable.The more advan
ed 
ontroller is required in order to provide reasonable nominal
ontrol for a system with se
ond-order dynami
s as is the 
ase with Task 2. The
onstant of proportionality, Kp, is 0:01, and the integral 
onstant, Ki, is 0:001. On
e150



again, we have purposely 
hosen a 
ontroller with suboptimal performan
e so thatthe neural network has signi�
ant margin for improvement.6.3.1 Learning Agent ParametersThe neural ar
hite
ture for the learning agent for Task 2 is mostly identi
al to thatused in Task 1. Here we have an a
tor network with two inputs (the bias term and the
urrent tra
king error) and one output (the appended 
ontrol signal). We retain thethree hidden units be
ause, in pra
ti
e, three tanh hidden units seemed to providethe fastest learning and best 
ontrol performan
e.Again, for training, the referen
e input r is 
hanged to a new value on the interval[�1; 1℄ sto
hasti
ally with an average period of 20 time steps (every half se
ond ofsimulated time). Due to the more diÆ
ult se
ond-order dynami
s, we in
rease thetraining time to 10,000 time steps at learning rates of � = 0:5 and � = 0:1 for the
riti
 and a
tor networks respe
tively. Then we train for an additional 10,000 stepswith learning rates of � = 0:1 and � = 0:01.6.3.2 SimulationIn Figure 6.19, we see the simulation run for the se
ond order task. The top portionof the diagram depi
ts the nominal 
ontrol system (with only the PI 
ontroller) whilethe bottom half shows the same system with both the PI 
ontroller and the neuro-
ontroller a
ting together. The blue line is the referen
e input r and the green lineis the position of the system (there is a se
ond state variable, velo
ity, whi
h isnot depi
ted). Importantly, the Ki and Kp parameters are suboptimal so that theneural network has opportunity to improve the 
ontrol system. As is 
learly shown inFigure 6.19, the addition of the neuro-
ontroller 
learly does improve system tra
kingperforman
e. The total squared tra
king error for the nominal system is SSE = 246:6while the total squared tra
king error for the neuro-
ontroller is SSE = 76:3.151
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Figure 6.19: Task 2: Simulation Run6.3.3 Stability AnalysisIn the previous se
tion, we demonstrate the ability of the neuro-
ontroller to improve
ontrol performan
e. In this se
tion, we address the stability 
on
erns of the 
ontrolsystem. In Figure 6.20 we see the Simulink diagram for dynami
 stability 
ompu-tations of Task 2 using �-analysis. This diagram is ne
essary for 
omputing themaximum additives, dW and dV , that 
an be appended to the a
tor neural networkweights while still retaining stability. These additives are 
omputed anew for ea
hpass through the stability phase. Then, during the learning phase, the a
tor net istrained via reinfor
ement learning until one of the weight 
hanges ex
eeds the safetyrange denoted by the additives. The �nal weights used to produ
e the simulation152



diagram in Figure 6.19 were learned using this �-analysis Simulink diagram.
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Figure 6.20: Task 2: Dynami
 Stability with �-analysisWe also repeat the learning with IQC-analysis to arrive at similar results. TheSimulink diagram for IQC is shown in Figure 6.21. For IQC-analysis, we again makeslight modi�
ations to the Simulink diagram su
h as the IQC performan
e blo
k, theIQC odd-slope nonlinearity blo
k and the IQC slowly time-varying blo
k. Using theIQC stability 
ommand, the optimizer �nds a feasible solution to the 
onstraint prob-lem; thus the system is guaranteed to be stable. Again, this reinfor
es the identi
alstability result obtained with �-analysis.We perform three di�erent training s
enarios with Task 2. The �rst two trainings
enarios involve the stable reinfor
ement learning algorithmwith �-analysis and IQC-analysis, respe
tively. In the third training s
enario, we train with only reinfor
ementlearning and no stability analysis. All three training s
enarios result in similar 
ontrolperforman
e; all three produ
e similar weights for the a
tor network. The bottomhalf of Figure 6.19 depi
ts the stable training episode using �-analysis but the other153
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Figure 6.21: Task 2: Dynami
 Stability with IQC-analysistwo s
enarios produ
e almost identi
al simulation diagrams. However, there is oneimportant di�eren
e in the three s
enarios. While all three s
enarios produ
e a stable
ontroller as an end produ
t (the �nal neural network weight values), only the stable�-analysis and IQC-analysis s
enarios retain stability throughout the training. Thestand-alone reinfor
ement learning s
enario a
tually produ
es unstable intermediateneuro-
ontrollers during the learning pro
ess.For the stand-alone reinfor
ement learning s
enario (the one without the dynam-i
 stability guarantees) we demonstrate the a
tor net's instability at a point duringtraining. Figure 6.22 depi
ts a simulation run of Task 2 at an intermediate pointduring training (the red shows the other state variable, velo
ity, and the teal repre-sents the 
ontrol signal, u). Clearly, the a
tor net is not implementing a good 
ontrolsolution; the system has been pla
ed into an unstable limit 
y
le, be
ause of the a
tornetwork. Noti
e the s
ale of the y-axis 
ompared to the stable 
ontrol diagram of Fig-ure 6.19. This is exa
tly the type of s
enario that we must avoid if neuro-
ontrollersare to be useful in industrial 
ontrol appli
ations. To verify the instability of thissystem, we use these temporary a
tor network weights for a stati
 stability test. �-154



analysis reports � = 1:3 and the IQC-analysis is unable to �nd a feasible solution.Both of these tests indi
ate that the system is indeed unstable. Again, we restate therequirement of stability guarantees both for the �nal network (stati
 weights) and thenetwork during training (dynami
 weights). It is the stable reinfor
ement learningalgorithm whi
h uniquely provides these guarantees.
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Time (seconds)Figure 6.22: Task 2: Unstable Simulation RunIn summary, the purpose of Task 2 is to 
onstru
t a 
ontrol system with dynami
sadequately simple to be amenable to introspe
tion, but also adequately 
omplex tointrodu
e the possibility of learning/implementing unstable 
ontrollers. We see inthis task, that the restri
tions imposed on weights from the the dynami
 stability155



analysis are ne
essary to keep the neuro-
ontrol system stable during reinfor
ementlearning.6.4 Case Study: Distillation Column Control TaskThe primary obje
tive of this 
ase study is to illustrate the true advantage of thestable reinfor
ement learning algorithm. Let us brie
y review the motivation of thealgorithm as we dis
uss how this 
ase study demonstrates the e�e
tiveness of a neu-ral network based, learning 
ontroller with stability guarantees. Re
all the importantdistin
tion between the a
tual physi
al system being 
ontrolled (the physi
al plant)and the mathemati
al model of the plant used to 
onstru
t a 
ontroller. The mathe-mati
al model will have di�erent dynami
s than the plant, be
ause the model is LTI(linear, time-invariant) and be
ause the model is limited in the a

ura
y with whi
hit 
an reprodu
e the dynami
s of the true physi
al plant. Controllers designed forthe LTI model may not perform well, and worse, may be unstable when applied onthe physi
al plant. This is the fundamental diÆ
ulty that robust 
ontrol is aimedat solving. However, also re
all that robust 
ontrol sa
ri�
es some performan
e as atrade-o� for guaranteeing stability on the physi
al plant. The stable reinfor
ementlearning 
ontroller of this dissertation seeks to regain some of the lost performan
ewhile still maintaining stability.In 
ontrol appli
ations, we again emphasize the distin
tion between the true phys-i
al plant being 
ontrolled and the mathemati
al model of the plant used to design a
ontroller. Re
all that an LTI mathemati
al model is 
onstru
ted to approximate theplant; then a stable 
ontroller is designed for the model. Be
ause there is a di�eren
ebetween the physi
al plant and the mathemati
al model, the 
ontroller will operate d-i�erently on ea
h system. If the di�eren
e is slight, then the 
ontroller should provideex
ellent tra
king performan
e for both the model and the physi
al plant. However,if the di�eren
e between plant and model is not negligible, then the 
ontroller, whi
h156



is designed for and hen
e operates well on the model, may provide poor performan
ewhen implemented on the physi
al plant. In addition to the performan
e issue, the
ontroller may provide unstable 
ontrol on the physi
al plant.The tools of robust 
ontrol were developed to solve these model/plant di�eren
eproblems. Robust 
ontrol introdu
es un
ertainty into the plant model so that themathemati
al model approximates not only the physi
al plant, but a whole 
lass ofpossible physi
al plants. By spe
ifying values for the un
ertainty parameters, themodel approximates some spe
i�
 physi
al plant parti
ular to those parameters. Ifenough un
ertainty is built into the model, then there will ne
essarily be some spe
i�
set of parameters whi
h exa
tly implements the dynami
s of the true physi
al plant.It is not important that we 
ompute these exa
t parameters (in fa
t, it is impossible),it is only important that this set of parameters exists for our mathemati
al model.The se
ond step in robust 
ontrol is to design a 
ontroller whi
h provides the bestpossible 
ontrol performan
e for the entire set of possible parameterized plants. Thatis, the 
ontroller is designed to work well with all possible physi
al plants that 
an bespe
i�ed by the model. Furthermore, robust 
ontrol also guarantees the stability ofthe 
ontroller when implemented on any physi
al plant that 
an be realized by someset of un
ertainty parameters from the model.Figure 6.23 illustrates the di�eren
e between plant model and physi
al plant.Imagine that we 
an depi
t a plant as a point in plant-spa
e; the physi
al planto

upies one parti
ular point in plant-spa
e. The plant model, without un
ertainty,o

upies another point in plant-spa
e. Be
ause the model is LTI and be
ause ourapproximation has limited a

ura
y, the model point and the plant point are typi
allydi�erent. In robust 
ontrol we add un
ertainty to the plant model. Now the modelspe
i�es not a parti
ular point in plant-spa
e, but an entire region in plant-spa
e.Ea
h parti
ular set of values for the model un
ertainty parameters spe
i�es one pointin this model region. This region is depi
ted as the 
ir
le around the plant point in157



Figure 6.23; it is the set of all possible realizable plants from the mathemati
al model.If the un
ertainty is large enough (the 
ir
le is wide enough), then the true physi
alplant is a member of the set of realizable plants { the mathemati
al model 
overs thephysi
al plant.
Plant
Model

Physical
Plant

Uncertainty 
RegionFigure 6.23: Mathemati
al Model vs Physi
al PlantRobust 
ontrol a
hieves its stability guarantees at a 
ost. Ne
essarily, the modelun
ertainty must be large enough to be 
ertain that the physi
al plant is 
overed bythe model. Often the model is overly 
onservative in that it spe
i�es plants with moreunstable 
ontrol dynami
s than exist in the real physi
al plant. As a result of beingoverly 
onservative, the robust 
ontroller must sa
ri�
e a degree of aggressiveness;this 
ontroller must lose some of its tra
king performan
e in order to ensure stability.The stable reinfor
ement learning algorithm regains some of this lost performan
ewhile still retaining the stability guarantees.The distillation 
ontrol 
olumn will bring all these issues to the forefront. As this
ase study is a bit lengthy and 
omplex, we break the analysis down into the followingsteps. First, we dis
uss the dynami
s of the distillation 
olumn pro
ess and show why158



it is a diÆ
ult 
ontrol problem. We then present a de
oupling 
ontroller, a typi
alapproa
h to solving this 
ontrol problem, and show why the de
oupling 
ontroller failsto solve this 
ontrol problem; namely, the di�eren
es between the LTI model and thephysi
al plant make the de
oupling 
ontroller ine�e
tive. A robust 
ontroller is thendesigned and we see how the robust 
ontroller addresses the short 
omings of thede
oupling 
ontroller. Finally, we apply the stable reinfor
ement learning 
ontrolleron top of the robust 
ontroller; the reinfor
ement learner is able to regain some of thelost performan
e margin sa
ri�
ed in the robust 
ontrol design.6.4.1 Plant Dynami
sFigure 6.24 is Skogestad's depi
tion of the distillation 
olumn [Skogestad andPostlethwaite, 1996℄. Without 
on
erning ourselves with the rather involved 
hem-istry, we summarize the dynami
s of the distillation 
olumn. The two output vari-ables, y1 and y2, are the 
on
entrations of 
hemi
al A and 
hemi
al B, respe
tively.We 
ontrol these 
on
entrations by adjusting two 
ow parameters: u1 = L 
ow andu2 = V 
ow. The referen
e inputs, r1 and r2, and the outputs are s
aled so thatr1; r2; y1; y2 2 [0; 1℄.Again, we model the distillation 
olumn pro
ess with the blo
k diagram in Fig-ure 6.25. Sin
e the distillation 
olumn has two outputs and two 
ontrol variables, weuse a 2x2 matrix to 
apture the dynami
s of the plant, G. Skogestad has sampled areal distillation 
olumn to arrive at the following LTI model:
G(s) = 0� 87:875s+1 �86:475s+1108:275s+1 �109:675s+1 1A (6.10)

Y (s) = G(s)U(s) (6.11)
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Figure 6.25: Distillation Column Pro
ess: Blo
k DiagramSin
e we implement the neuro-
ontroller using a digital system, we approximate Sko-gestad's 
ontinuous-time plant given above with the following dis
rete-time, statespa
e system: x(k + 1) = Ax(k) +Bu(k) (6.12)y(k) = Cx(k) +Du(k) (6.13)where 160



A = � 0:99867 00 0:99867 � B = � �1:01315 0:99700�1:24855 1:26471 �C = � �0:11547 00 �0:11547 � D = � 0 00 0 � (6.14)See [Skogestad and Postlethwaite, 1996; Phillips and Harbor, 1996℄ for details on 
on-verting from 
ontinuous-time plants to dis
rete-time plants. The sampling interval,k, is one se
ond. In order to see why this is a diÆ
ult 
ontrol problem, Skogestad
omputes the singular value de
omposition of the plant, G. We 
an ignore the 175s+1term in the denominator and 
ompute the SVD of only the numerator of G:
Gnum = 0� 87:8 �86:4108:2 �109:6 1A (6.15)

Gnum = � 0:625 �0:7810:781 0:625 �� 197:2 00 1:39 �� 0:707 �0:708�0:708 �0:707 � (6.16)From the SVD, Skogestad points out that inputs aligned in opposite dire
tions ([0:707,�0:708℄T ) produ
e a large response in the outputs (indi
ated by singular value of197.2). Conversely, inputs aligned in the same dire
tion ([�0:708, �0:707℄T ) produ
ea minimal response in the output (singular value = 1.39). The distillation 
olumnplant is highly sensitive to 
hanges in individual inputs, but relatively insensitive to
hanges in both inputs. Control engineers 
all this plant ill-
onditioned meaning theratio of the largest and smallest singular values is mu
h larger than unity. Thus, thisplant is a rather 
hallenging 
ontrol problem.Here again we return to the distin
tion between the plant model and the phys-i
al plant. The system, G, given by Equation 6.10 is a model of a physi
al plant.Skogestad 
olle
ted data on the steady-state behavior of a real distillation 
olumnand then 
onstru
ted G as an LTI model to approximates the physi
al plant. There161



are two primary reasons why the model and the physi
al plant will di�er. First,the model must be LTI to apply the robust 
ontrol design tools; the physi
al plantalmost 
ertainly 
ontains some non-LTI dynami
s. Se
ond, be
ause a �nite amountof data has been 
olle
ted from the physi
al plant, our model only approximates thephysi
al plant; Skogestad sele
ts the type of LTI model and the model parametersfor a statisti
al best-�t with the given plant data. But, the model will never be anexa
t �t for the physi
al plant.In order to apply the robust 
ontrol design tools, we must in
orporate un
ertaintyinto the plant model so that the model 
overs the dynami
s of the physi
al plant.Skogestad, who has the original data set available, sele
ts the type and amount ofun
ertainty appropriate for this model. Multipli
ative un
ertainty is in
orporated toea
h input 
ontrol path, u1 and u2, in the amount of � 20% gain. Figure 6.26 showsthe system with 20% gain un
ertainty on ea
h input.
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Figure 6.26: Distillation Column Model with Input Gain Un
ertaintyKeep in mind that we will never know the true dynami
s of the physi
al plant.We 
an, however, be 
ertain that the dynami
s of the physi
al plant 
an be exa
tlymat
hed by 
hoosing a possibly time-varying fun
tion whi
h in
reases/de
reases theinput path by a maximum of 20%. The size of the un
ertainty, � 20% on the inputpath, is typi
al for a 
ontrol problem like the distillation 
olumn.At this point, we would design a 
ontroller using the LTI model with un
ertainty.Then we implement the 
ontroller on the real distillation 
olumn to test its e�e
tive-162



ness on the physi
al plant. However, we do not have the distillation 
olumn available(nor did Skogestad) and thus we 
annot test our 
ontroller on the real system. In-stead, we 
onstru
t a se
ond model of the system to represent the real system. Tosimulate our physi
al distillation 
olumn, we use the original model G and then am-plify input u1 by 20% while de
reasing input u2 by 20%. Noti
e this falls withinthe bounds of the un
ertainty and thus should be 
overed by any 
ontroller designwhi
h a

ounts for the un
ertainty in the original LTI model. In summary, we design
ontrollers on the original LTI model G and then test the 
ontrollers on the simulatedphysi
al plant given by Gju1 ! 1:2u1; u2 ! 0:8u2.We present three 
ontrollers for the distillation 
olumn task. The �rst two 
on-trollers, given by Skogestad, are a de
oupling 
ontroller and a robust 
ontroller. Thedi�eren
e between the LTI model and the [simulated℄ physi
al plant demonstrates theproblems with 
onventional 
ontrol te
hniques. Skogestad's robust 
ontroller solvesmany of the problems with the de
oupling 
ontroller. It is apparent that Skogestadsele
ted this 
ontrol problem spe
i�
ally to motivate the approa
h of robust 
ontroldesign. The third 
ontroller we present is learned with our stable reinfor
ement learn-ing s
heme. Here we show that the learned 
ontroller o�ers the same advantages asthe robust design and is able to a
hieve slightly improved tra
king performan
e.6.4.2 De
oupling ControllerNow that we have shed light on the plant G and its 
hallenging dynami
s, we presentSkogestad's de
oupling 
ontroller [Skogestad and Postlethwaite, 1996℄. The de
ou-pling 
ontroller uses advan
ed te
hniques representative of 
urrent approa
hes to
ontrol design. The 
ontroller de
ouples the two inputs in order to over
ome theill-
onditioned nature of the plant. Simply, the de
oupling 
ontroller will invert thedynami
s of the plant in attempt to have input u1 a�e
t only output y1 and inputu2 a�e
t only output y2. The de
oupling 
ontroller is essentially the inverse matrix163



G�1. The details of the de
oupling 
ontroller are given as:Kde
up(s) = 0:7s G�1(s) = 0:7(1 + 75s)s � 0:3994 �0:31490:3943 �0:3200 � (6.17)We implement Skogestad's de
oupling 
ontroller and plot its dynami
 responsewhen applied to the LTI model. Figure 6.27 shows the plant response to a step
hange in one of the inputs. As seen in the diagram, the output y1, shown in red,qui
kly rises to tra
k the step 
hange in the input u1 = 0! 1, shown in blue. Outputy2 (
yan), has been \de
oupled" from input u1 and thus remains 
onstant at y2 = 0.The de
oupling 
ontroller appears to serve this diÆ
ult 
ontrol task well.
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Figure 6.27: Step Response: LTI Model with De
oupling ControllerNoti
e that the de
oupling 
ontroller perfe
tly inverts the LTI model of the plant164



{ not the physi
al plant. The dynami
s of the physi
al plant are unknown and thuswe 
annot design the de
oupling 
ontroller to exa
tly invert the physi
al plant. Asshown in Figure 6.27, we expe
t the performan
e of the de
oupling 
ontroller to beex
ellent on the LTI model. The hope is that the physi
al plant has dynami
s similarenough to the LTI model that the 
ontroller will perform well on the physi
al plantalso.Figure 6.28 depi
ts the step response of the de
oupling 
ontroller on the simulatedphysi
al plant. Although the de
oupling 
ontroller performs well on the plant model,the tra
king performan
e of the de
oupling 
ontroller on the physi
al plant is ratherpoor. Output y1 rises to a lofty height of 6.5 before de
aying ba
k to its desired valueof 1.0. Even worse, output y2 ro
kets up past 7.0 before dropping ba
k to 0; the\de
oupling 
ontroller" is 
learly not de
oupling anything in the physi
al plant.The poor performan
e of the de
oupling 
ontroller on the real plant is a result ofthe de
oupling 
ontroller being highly tuned to the dynami
s of the LTI model; itexploits the model's dynami
s in order to a
hieve maximal performan
e. Even thoughthe dynami
s of the physi
al plant are very 
lose (20% un
ertainty on the inputs is nota substantial un
ertainty), the de
oupling 
ontroller's performan
e on the simulatedphysi
al plant is quite di�erent. The plant's ill-
onditioned nature 
omes ba
k tostrike us here; it is fundamentally a diÆ
ult 
ontrol problem and the un
ertainty willrender \optimal designs" like the de
oupling 
ontroller non-robust.6.4.3 Robust ControllerTo address the problems en
ountered when the de
oupling 
ontroller is implementedon the physi
al plant, Skogestad designs a robust 
ontroller [Skogestad and Postleth-waite, 1996℄. Here we dupli
ate Skogestad's work in designing a robust 
ontrollerusing the Matlab �-synthesis toolbox [Balas et al., 1996; Skogestad and Postleth-waite, 1996℄. The resulting robust 
ontroller is an eighth order (8 internal states)165
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Figure 6.28: Step Response: Physi
al Plant with De
oupling Controller
ontroller that is too 
omplex to pro
ess analyti
ally. We implement the robust 
on-troller and see that good performan
e is a
hieved for the LTI model (Figure 6.29)and the simulated physi
al plant (Figure 6.30).It is important to note that the robust 
ontroller does not mat
h the perfor-man
e of the de
oupling 
ontroller on the LTI model. On
e again, this is be
ausethe de
oupling 
ontroller exploits dynami
s in the plant model to a
hieve this extraperforman
e. The robust 
ontroller is \prohibited" from exploiting these dynami
sby the un
ertainty built into the model. Thus, the robust 
ontroller will not performas well as a 
ontroller optimally designed for one parti
ular plant (su
h as the LTImodel). However, the robust 
ontroller will perform fairly well for a general 
lass of166
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Figure 6.29: Step Response: LTI Model with Robust Controllerplants whi
h possess dynami
s similar to the LTI model. In summary, we sa
ri�
e amargin of performan
e for the robustness of a robust 
ontroller.One of the 
riti
isms of robust 
ontrol is that the performan
e sa
ri�
e might belarger than ne
essary. A degree of 
onservativeness is built into the robustness designpro
ess in order to a
hieve the stability guarantees. The stable reinfor
ement learning
ontroller of the next subse
tion attempts to regain some of this lost performan
e.6.4.4 Stable Reinfor
ement Learning ControllerNext, we apply the stable reinfor
ement learning 
ontroller with the goal of regainingsome of the performan
e lost in the robust 
ontrol design. We add a neuro-
ontrollerto the existing robust 
ontroller to dis
over the non-LTI dynami
s whi
h exist in the167
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Figure 6.30: Step Response: Physi
al Plant with Robust Controllerphysi
al plant but not the LTI model. The neuro-
ontroller learns, via reinfor
ementlearning, while intera
ting with the simulated physi
al plant. In e�e
t, the reinfor
e-ment learner dis
overs more information about the dynami
s of the physi
al plantand exploits this extra information not available to the robust 
ontroller.In the previous 
ase studies, the state information of the system is small. Task1 had just one state variable (x the position) while Task 2 had three state variables(position/velo
ity in the plant and a state variable for the 
ontroller). Furthermore,the dynami
s of these �rst two 
ase studies were simple enough that the neuro-
ontroller 
ould learn good 
ontrol fun
tions without using all the state information;only the tra
king error was required (whi
h is 
aptured in the position state variable168



mentioned above). For the distillation 
olumn, the state of the system is quite large.To 
apture the full state of the system at any point in time we require the following:� the two referen
e inputs: r1 and r2� the internal state of the robust 
ontroller: 8 states� the internal state of the plant: x1 and x2There are a total of twelve state variables. To train on the full state informationrequires a a
tor net with 13 inputs (one extra input for the bias term) and a 
riti
 netwith 14 inputs (two extra inputs for the \a
tions" of the a
tor net). These networksneed an extraordinary amount of memory and training time to su

eed in their neuro-
ontrol role. This issue is addressed in Chapter 7. Consequently, we sele
t a smallsubset of these states for use in our network. To the a
tor net, we use the two tra
kingerrors (e1; e2 { whi
h, again are essentially dupli
ates of the 
on
entrations x1; x2) asthe two inputs to the a
tor neural network. The a
tor network has two output unitsfor the 
ontrol signals û1 and û2. We sele
t four hidden units for the a
tor network asthis proved to be the most e�e
tive at learning the required 
ontrol fun
tion qui
kly.The 
riti
 net is a table look-up. It is a four dimensional table with inputs ofthe state (e1; e2) and the a
tion (û1; û2). The resolution is ten for ea
h dimensionresulting in 104 \entries" in the table. The a
tor-
riti
 network is trained for 500,000samples (representing 500,000 se
onds of elapsed simulation time) during whi
h oneof the two referen
e inputs (r1; r2) is 
ipped f0! 1; 1! 0g every 2,000 se
onds. Thelearning rates are � = 0:01; � = 0:001 for the 
riti
 and a
tor networks, respe
tively.We perform two training runs. The �rst training run 
ontains no robust stability
onstraints on the neuro-
ontroller. Reinfor
ement learning is 
ondu
ted withoutregard for bounding boxes and dynami
 stability analysis. As a result, the a
tornetwork implements several unstable 
ontrollers during the non-robust training run.An example of su
h a 
ontroller is shown in Figure 6.31. We 
ondu
t a �-analysis169



stati
 stability test on these parti
ular a
tor network weight values and �nd � = 1:2.Re
all, � > 1 implies unstable behavior. This 
ompares with the � = 0:22 a
hievedfor the �nal weight values obtained during the stable training run dis
ussed below.
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Figure 6.31: Perturbed Distillation Column with Unstable Neuro-
ontrollerIn the se
ond training run, we use the full stable reinfor
ement learning algorithm.Using �-analysis for our dynami
 stability test, we transform the distillation 
olumninto the Simulink diagram in Figure 6.32. By using the dynami
 stability theorem, weguarantee that the neuro-
ontroller learned via reinfor
ement learning will never pro-du
e an unstable 
ontrol situation. After training is 
omplete, the network improvesthe tra
king performan
e as shown in Figure 6.33. Compare this result to the robust
ontroller alone in Figure 6.30. Although the two graphs seem similar, the addition170



of the neuro-
ontroller improves the mean square tra
king error of 0.286 with therobust 
ontroller to 0.243. This is 
learly a distin
t gain in tra
king performan
e ofapproximately 15%.
32

1 K

eyeV

K

dW

K

dV

K

WB

K

WA

K

W

K

VB

K

VA

K

V

y(n)=Cx(n)+Du(n)
x(n+1)=Ax(n)+Bu(n)

Robust Controller

Mux

Mux1
0.5

−1

0.5

y(n)=Cx(n)+Du(n)
x(n+1)=Ax(n)+Bu(n)

Distillation Column

1

32

1

Figure 6.32: Simulink Diagram for Distillation ColumnIn the following table, we summarize the tra
king performan
e of various 
on-trollers by measuring the sum squared tra
king error.Sum Squared Tra
king ErrorPlant Model Real PlantDe
oupling Controller 1:90x10�2 6:46x10�1Robust Controller 2:57x10�1 2:86x10�1Neuro-Controller Not Appli
able 2:43x10�1In summary, the de
oupling 
ontroller performs quite well on the plant model,but its performan
e on the physi
al plant is una

eptable. We would expe
t similarresults from \optimal 
ontrol" methods su
h as H2 optimal design and H1 optimaldesign [Skogestad and Postlethwaite, 1996℄. The robust 
ontroller does not perform171
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Figure 6.33: Perturbed Distillation Column with Neuro-
ontrollernearly as well as the highly optimized de
oupling 
ontroller on the LTI model. How-ever, when applied to the physi
al plant, the robust 
ontroller halves the tra
kingerror of the de
oupling 
ontroller. Even more impressive than the redu
tion in tra
k-ing error is the signi�
antly better step response of the robust 
ontroller. (CompareFigure 6.28 and Figure 6.30, be wary of the 
hanged y-axis in Figure 6.28). Finally,we add the neuro-
ontroller. By applying the stable reinfor
ement learning algorith-m, the system retains stability and we are able to improve the tra
king performan
eover the robust 
ontroller by 15%. It should be noted that we en
ounter 
onsider-able diÆ
ulty in a
hieving this performan
e gain; mu
h of the diÆ
ulty is attributedto the massive learning experien
e and sensitive dependen
e on learning algorithmparameters. These problems are explored in the 
on
luding 
hapter (see Chapter 7).172



6.5 Case Study: HVAC Control TaskThe HVAC (Heating, Ventilation, and Air Conditioning) problem is a diÆ
ult 
ontrolproblem re
eiving mu
h attention in re
ent and past resear
h. The present methodsfor 
ontrol are satisfa
tory in most 
ases, but there is signi�
ant room for improvemen-t, both in terms of human 
omfort and parti
ularly energy savings. HVAC systemsare highly nonlinear with widely varying dynami
s at di�erent operating points. It isdiÆ
ult, if not impossible, to 
onstru
t LTI models of the system whi
h exhibit dy-nami
s similar to the physi
al plant dynami
s. Su
h systems also in
ur highly variablegains at di�erent operating points. The di�erent 
omponents of an HVAC system,(heating 
oils, fans, dampers, et
) are highly intera
tive and 
annot be modeled asisolated units. HVAC systems depend heavily on unpredi
table s
heduling; 
hangesin weather 
onditions and unpredi
table human a
tivities 
ontribute to the diÆ
ultyof the HVAC problem. Traditional adaptive 
ontrol te
hniques are often ine�e
tive,be
ause these te
hniques make assumptions about the underlying dynami
s of thesystem and the form of the system.There has been some su

ess with the introdu
tion of neural networks into the H-VAC 
ontrol s
heme sin
e the networks ex
el at dis
overing the unmodeled, nonlineardynami
s. There has also been some initial su

ess using reinfor
ement learning algo-rithms to further tune the 
ontrol pro
ess. This resear
h suggests that neuro-
ontrolis well-suited for the HVAC 
ontrol problem [Anderson et al., 1996℄.The resear
h for this dissertation is 
on
urrent with a three year National S
i-en
e Foundation grant to study the appli
ation of robust 
ontrol and reinfor
ementlearning to the HVAC 
ontrol problem [Anderson et al., 1998℄. In this HVAC study,we are 
onstru
ting an a
tual physi
al heating 
oil as a laboratory for neuro-
ontroltesting. This is among the �rst attempts at implementing neuro-
ontrol s
hemes onreal physi
al HVAC hardware. At the time of this writing, the heating 
oil 
onstru
-tion is still in progress and is not available for testing. Future experiments with the173



heating 
oil hardware are dis
ussed in Chapter 7. Figure 6.34 depi
ts hardware ofthe heating 
oil experimental laboratory when it will be 
ompleted in the future.
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Figure 6.34: HVAC Hardware LaboratoryIn lieu of hardware experiments, we 
onstru
t a nonlinear software model of thesystem. We adopt a heating 
oil model from Underwood and Crawford and then alterthe parameters to �t our hardware [Underwood and Crawford, 1991℄. The nonlinearmodel exhibits many of the HVAC diÆ
ulties dis
ussed above and is therefore suitablefor testing and 
omparing di�erent 
ontrol s
hemes in
luding those whi
h are neuralnetwork based and those whi
h are designed a

ording to robust 
ontrol prin
iples.Thus, this 
ase study is tested with the nonlinear software model and not on thephysi
al HVAC system.6.5.1 HVAC ModelsIn this subse
tion, we present the detailed nonlinear software model used for theexperiments for this 
ase study. The heating 
oil (plant) has three internal statevariables, three external state variables, and one input variable.The three external state variables are the temperature of the air at the intakedamper, Tai, the temperature of the water at the input 
oil, Twi, and the 
ow rate174



of the air moving through the du
t, Fa. The two temperatures are determined byambient environmental 
onditions and the air 
ow rate is 
onstant and determined bythe fan and the du
ts. None of these three state variables 
hange due to our 
ontrols
heme, hen
e we 
all them external state variables.The single plant input variable is the valve setting on the water 
oil. By 
hangingthe valve setting, we 
an in
rease or de
rease the 
ow rate of the water in the heating
oil. Indire
tly, we also a�e
t the output air temperature, be
ause the 
ow rate of thewater determines how mu
h thermodynami
 energy 
an be delivered from the boilerto the heating 
oil in the du
t. The valve setting, an input to the plant, is the outputfrom the 
ontrollers.The three internal state variables for the system 
hange as a result of the valvesetting. The 
ow rate of water, Fw, is obviously dire
tly a�e
ted by the valve setting.In turn, this also a�e
ts the temperature of the water leaving the 
oil, Two, andultimately the temperature of the air leaving the 
oil, Tao. Tao is the state variablethat we desire to 
ontrol. Our 
ontrol performan
e is determined by how 
losely theoutput air temperature tra
ks the referen
e signal, whi
h, in the HVAC 
ase, is thedesired thermostat setting or the set point.The dis
rete-time, dynami
, nonlinear, HVAC model is spe
i�ed by the followingupdate equations:Fw = 6:72x10�10u3 � 2:30x10�6u2 + 2:18x10�3u; (6.18)Two = Two + 0:649FwTwi � 0:649FwTwo� 0:012Twi � 0:012Two + 0:023Tai + 0:104FwTai� 0:052FwTwi � 0:052FwTwo + 0:028FaTai� 0:014FaTwi � 0:014FaTwo; (6.19)
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Tao = Tao + 0:197FaTai � 0:197FaTao+ 0:016Twi + 0:016Two � 0:032Tai+ 0:077FaTwi + 0:077FwTwo � 0:015FwTai+ 0:022FaTwi + 0:022FaTwo � 0:045FaTai+ 0:206Tai(k�1) � 0:206Tai; (6.20)
where u is the valve setting and Tai(k�1) refers to the air input temperature on theprevious time step.To 
onstru
t traditional and robust 
ontrollers for the system, we must also derivean LTI model. Due primarily to the 
omplex dynami
s of HVAC systems, a singleLTI model is not adequate for approximating the dynami
s of the nonlinear system.Consequently, we limit ourselves to 
onstru
ting an LTI model that is reasonablya

urate for only a limited operating range (around a set point temperature withstati
 environmental variables). We use a Taylor Series expansion about the desiredoperating point to 
onstru
t the LTI model of the system. Re
all, we use the LTImodel for designing 
ontrollers and then use the nonlinear model (instead of thehardware) for testing the stability and performan
e of the 
ontrollers. The followingparameters spe
ify the operating point for the Taylor Series expansion:u = 972:9 FW = 0:2785 (6.21)Two = 55:45 Twi = 78:0 (6.22)Tao = 45:0 Tai = 12:0 (6.23)The resulting linear model is spe
i�ed by:Fw = 0:2785� (3:863x10�4(u� 972:9)); (6.24)Two = 93:5445(Fw � 0:2785) + 0:792016(Two � 55:45) + 55:45; (6.25)176



Tao = 0:8208(Tao � 45:0) + 45:0 + 0:0553(Two � 55:45)+ 7:9887(Fw � 0:2785): (6.26)6.5.2 PI ControlAs PI 
ontrol is a dominant trend in the HVAC industry, we 
onstru
t a PI 
ontroller(proportional plus integral) using state-of-the-art tuning laws [Co
k et al., 1997℄. Thetra
king performan
e of the PI 
ontroller when implemented on the nonlinear modelis shown in the top time-plot of Figure 6.35a. The 
ontrol performan
e is quite goodas the the PI 
ontroller has been �nely tuned to suit this parti
ular nonlinear model.The PI 
ontroller we used is given by:
u = 8<: 670 if u < 670Kpe+ R Kide if 670 < u < 14001440 if 1400 < u (6.27)where Kp = 135 and Ki = 13. As indi
ated by the equations above, the 
ontrollerhas hard limits at 670 and 1400 to re
e
t the maximum valve opening and minimumvalve opening, respe
tively.6.5.3 Neuro-
ontrolIn 
onstru
ting a reinfor
ement learning 
ontroller for the heating 
oil, we must de-
ide whi
h state variables to in
lude as input signals to the neuro-
ontroller. ThePI 
ontroller re
eives only the tra
king error, e (whi
h is essentially the same as theinternal state variable Tao). There are other state variables governing the dynami
s ofthe plant; there is extra information in these state variables that 
ould be exploitedby a 
ontroller to provide better 
ontrol performan
e. We must de
ide whi
h statevariables to use as inputs to the neuro-
ontroller. By in
luding more state variables,we provide extra information to the 
ontroller; this information may or may not beuseful for improved 
ontrol performan
e. However, additional 
ontrol inputs require177
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Figure 6.35: HVAC Step Responsea larger neural network and hen
e additional training time. We must make a dif-�
ult and 
omplex de
ision about whi
h subset of state variables provide the best
ombination of 
ontrol performan
e and learning speed.We 
onstru
t two di�erent neuro-
ontrollers. In the �rst agent, we use minimalstate information of the plant and system; spe
i�
ally, we submit only the tra
kingerror as input to the a
tor network. In e�e
t, this agent 
an only learn to improvethe 
ontrol by adjusting the P (proportional) 
omponent of the existing nominal PI
ontroller. The se
ond agent operates on the tra
king error and the three internal
178



sum squared tra
king errorPI Controller 5:26x10�1Neuro-Controller 1 5:28x10�1Neuro-Controller 2 5:18x10�1Table 6.1: Tra
king Performan
estate variables of the nonlinear model: Fw, Tao, and Two 5.To arrive at the ideal size neural network (number of hidden layers) we test severaldi�erent 
on�gurations and �nd the following ar
hite
tures to be the best in termsof learning and 
ontrol performan
e. Spe
i�
ally, ten hidden units are used in thea
tor net for ea
h neural network. We in
rease the number of learning trails to twomillion with small learning rates. The �rst neuro-
ontroller, with only the tra
kingerror and bias as inputs, uses a 10x10 table look-up for the 
riti
 net. The se
ondneuro-
ontroller, with a total of four inputs, uses a four dimensional table with aresolution of 10 in ea
h dimension (10x10x10x10).The sum squared tra
king error of ea
h of the 
ontrollers is shown in Table 6.5.3.The �rst neuro-
ontroller, with only the tra
king error as input, is not able to improvethe 
ontrol performan
e over the nominal PI 
ontroller alone. The se
ond neuro-
ontroller, with the full state information of the plant, is able to improve 
ontrolperforman
e over the nominal PI 
ontroller by a slim 1.5%.Figure 6.35 shows the step response of the se
ond neuro-
ontroller (with full stateinformation); it is virtually identi
al to the step response of the nominal PI 
ontrollerin Figure 6.35. This neuro-
ontroller learns to produ
e no output 
ontrol signal formost 
ases. Only during a step transition in the referen
e input, the neuro-
ontrolleroutputs a very small 
ontrol signal to be added to the PI 
ontrol signal. The neuro-5For these experiments we hold the ambient, external state variables 
onstant179




ontroller output is shown in Figure 6.35.There are several important aspe
ts of this 
ase study worthy of brief dis
ussion.First, the nominal PI 
ontroller provides fairly good tra
king performan
e already.PI 
ontrollers have been used in 
ontrol appli
ations for mu
h of the re
ent past; 
on-sequently, there are many ex
ellent \tuning laws" available to a
hieve relatively good
ontrol performan
e. Again, due to system dynami
s, we 
annot a
hieve \perfe
t"
ontrol de�ned as a zero tra
king error. Be
ause the PI 
ontroller is near optimal,there is little room for the reinfor
ement learning neuro-
ontroller.Se
ond, the �rst neuro-
ontroller with only the tra
king error as input does notimprove 
ontrol performan
e over the PI 
ontroller alone. We should expe
t this sin
ethe neuro-
ontroller is essentially attempting to �nd a better proportional 
omponentfor the PI 
ontroller; by a
ting only on the tra
king error, the neuro-
ontroller isaugmenting the proportional term in the PI 
ontroller. We expe
t the PI tuning lawsto identify the nearly optimal proportional term already. Hen
e, there really is noexpe
tation for 
ontrol performan
e improvement by the �rst neuro-
ontroller a
tingon the proportional term alone.Third, this 
ase s
enario is somewhat of an apples and oranges 
omparison. Asin the distillation 
olumn 
ase study, we should augment a robust 
ontroller withour stable reinfor
ement learning agent. Instead, here we attempt to augment thePI 
ontroller. Although this PI 
ontroller does appear to implement stable 
ontrol,we are not mathemati
ally guaranteed of the 
ontroller's stability properties as isthe 
ase with a nominal robust 
ontroller. This 
ase study ni
ely illustrates thisfundamentally di�erent approa
h to 
ontrol. The PI 
ontroller is tuned for optimalperforman
e at the expense of stability guarantees. Typi
ally, the 
ontrol designerwill then \ba
k o�" the aggressiveness of the PI 
ontroller; this usually results in astable 
ontrol s
heme but we are still not guaranteed of this result. In robust 
ontrol,we start with a mathemati
al guarantee of stability and then attempt to �nd the best180




ontroller. The stable reinfor
ement learning algorithm is an attempt to improve
ontrol performan
e over an already robust 
ontroller, not a non-robust 
ontrollerlike this PI 
ontroller.As a fourth point, we note that the se
ond neuro-
ontroller applied to the heating
oil uses additional state information that is not available to the PI 
ontroller. Byexploiting this extra information, the neuro-
ontroller may be able to implementbetter 
ontrol performan
e. However, the addition of more state variables to a neuro-
ontroller might not always be the best solution; it may be the 
ase that a betterperforming 
ontroller 
an be found by using fewer state variables. The reason forthis 
ounter-intuitive relationship is that the added state information in
reases the
omplexity of the feedba
k loop whi
h, in turn, allows more possibilities for unstable
ontrol. This may limit the size of neural network weights in order to guarantee
ontrol. Essentially, by using fewer state variables we may have less instability todeal with and hen
e have greater 
exibility in the neuro-
ontroller. This issue isrevisited in the 
on
luding remarks of Chapter 7.As a 
on
luding remark on this 
ase study, we might ask ourselves the question, ifthe PI 
ontroller provides ex
ellent 
ontrol performan
e, then why are we interested inapplying our robust neuro-
ontrol s
heme to this task? The primary reason involvesthe di�eren
e between the real physi
al plant and the plant model. The physi
al plantwill have di�erent (and unknown) dynami
s from the plant model. We still \tune" aPI 
ontroller for the physi
al plant, but we expe
t the performan
e of this 
ontrollerto be substantially less than the performan
e of the PI 
ontroller on the plant model.Essentially, there is likely to be more room for improved 
ontrol performan
e whenthe physi
al plant is involved. Our resear
h group will test this hypothesis when theheating 
oil laboratory 
onstru
tion is 
omplete. The other 
ru
ial distin
tion, whi
his mentioned above, is that the PI 
ontroller has no mathemati
al guarantee of stablebehavior. 181



Chapter 7Con
luding Remarks
7.1 Summary of DissertationThe primary obje
tive of this dissertation is a theoreti
al result in whi
h we 
ombinereinfor
ement learning and robust 
ontrol to implement a learning neuro-
ontrollerguaranteed to provide stable 
ontrol. We dis
uss how robust 
ontrol over
omes sta-bility and performan
e problems in optimal 
ontrol whi
h arise due to di�eren
es inplant models and physi
al plants. However, robust 
ontrol is often overly 
onservativeand thus sa
ri�
es some performan
e. Neuro-
ontrollers are frequently able to a
hievebetter 
ontrol than robust designs, be
ause they have nonlinear 
omponents and areadaptable on-line. However, neuro-
ontrol is not pra
ti
al for real implementation,be
ause the diÆ
ult dynami
 analysis is intra
table and stability 
annot be assured.We develop a stati
 stability test to determine whether a neural network 
ontroller,with a spe
i�
 �xed set of weights, implements a stable 
ontrol system. While a fewprevious resear
h e�orts have a
hieved similar results to the stati
 stability test, wealso develop a dynami
 stability test in whi
h the neuro-
ontroller is stable even whilethe neural network weights are 
hanging during the learning pro
ess. We also provethe 
orre
tness of both the stati
 and dynami
 stability tests.A se
ondary obje
tive of this dissertation is to demonstrate that the theoreti
alresults 
on
erning neuro-
ontrol stability are pra
ti
al to implement in real 
ontrolsituations; the implementation of our stable neuro-
ontroller does not violate any of182



the assumptions in the proofs of stati
 and dynami
 stability. The dynami
 stabilitytheorem leads dire
tly to the stable reinfor
ement learning algorithm. Our algorithmis essentially a repetition of two phases. In the stability phase, we use �-analysisor IQC-analysis to 
ompute the largest amount of weight un
ertainty the neuro-
ontroller 
an tolerate without being unstable. We then use the weight un
ertaintyin the reinfor
ement learning phase as a restri
ted region in whi
h to 
hange theneural network weights.A non-trivial aspe
t of our se
ond obje
tive is to develop a suitable learning a-gent ar
hite
ture. In this development, we rationalize our 
hoi
e of the reinfor
ementlearning algorithm, be
ause it is well suited to the type of information available inthe 
ontrol environment. It performs the trial-and-error approa
h to dis
overing bet-ter 
ontrollers, and it naturally optimizes our performan
e 
riteria over time. Wealso design a high-level ar
hite
ture based upon the a
tor-
riti
 design in early rein-for
ement learning. This dual network approa
h allows the 
ontrol agent to operateboth like a reinfor
ement learner and also a 
ontroller. We address neuro-dynami
diÆ
ulties pe
uliar to our 
ontrol situation; we solve these problems by sele
ting alow-level ar
hite
ture with a two-layer, feed forward, neural network as the a
tor, anda dis
rete, lo
al, table look-up network as the 
riti
.We apply our agent and stable reinfor
ement learning algorithm to four 
ase s-tudies. The �rst two 
ase studies, a �rst-order task, and a se
ond-order task, arerelatively simple 
ontrol problems. However, their simpli
ity permits a detailed ex-amination of how the stable reinfor
ement learning algorithm operates. We thenapply the agent to a 
hallenging distillation 
olumn 
ontrol task. In this task we�rst see how robust 
ontrol greatly improves upon the standard optimal 
ontrol te
h-niques. We then apply the stable reinfor
ement learning agent to the same task andimprove the tra
king performan
e by 15% over the robust 
ontroller alone while stillmaintaining stability. We also apply our agent to an HVAC model. We use this 
ase183



study as an example of where our stable learning agent might not perform betterthan other te
hniques whi
h have no stability guarantees.In spite of the su

ess we demonstrate here, the stable, reinfor
ement learning
ontroller is not without some drawba
ks. First, more realisti
 
ontrol tasks withlarger state spa
es require 
orrespondingly larger neural networks inside the 
ontroller.This in
reases the 
omplexity of the neuro-
ontroller and also in
reases the amountof training time required of the networks. For the simulated HVAC and distillation
olumn tasks, the training requires signi�
ant time on high speed 
omputers. Inreal life, the training time on a physi
al system 
ould be prohibitively expensive asthe system must be driven through all of its dynami
s multiple times. Se
ond, therobust neuro-
ontroller may not provide 
ontrol performan
e whi
h is better thanother \easier" design methods. This is likely to be the 
ase in situations where thephysi
al plant and plant model 
losely mat
h ea
h other or 
ases in whi
h di�eren
esbetween the model and plant do not greatly a�e
t the dynami
s. The distillation
olumn is spe
i�
ally 
hosen as an example, be
ause small di�eren
es between theplant and the model result in huge di�eren
es in dynami
 responses; this is the idealsituation for our appli
ation. These problems and others are addressed in more detailin the remainder of this 
hapter. We dis
uss possible ways to over
ome some ofthese problems and to more fully understand the limitations of the neuro-
ontrollerby introdu
ing dire
tions in future work.7.2 Future Work with � and IQCIn this dissertation, we use �-analysis and IQC-analysis as tools to 
ompute thestability of a system 
ontaining a neural network whi
h is re
ast as an LTI blo
k andan un
ertainty blo
k. Essentially, we use � and IQC as a litmus tests for stability {either the system is stable or it is not stable. In addition to the binary indi
ation(stable/not stable) we re
eive a little more information in the 
ase of �-analysis. This184



stability analysis tool produ
es a number whi
h gives us an approximate idea of howstable or unstable the system is 1. It is 
riti
al to note that no additional informationis produ
ed as a result of � or IQC. A very promising dire
tion of future resear
h is toinvestigate both �-analysis and IQC-analysis to see if additional stability informationis available to assist in sele
ting a neuro-
ontroller. In this se
tion we look at a fewof these 
on
epts.We examine a 
lass of issues whi
h we refer to as neural network balan
e issues.Consider the standard two-layer, feed forward neural network that we employ as thea
tor (
ontroller). It is 
riti
al to realize that there is not a one-to-one mappingbetween neural networks and output fun
tions. Two networks of exa
tly the samedimensions 
an have di�erent weight values and still produ
e exa
tly the same outputfun
tion. Similarly, networks 
an have a di�erent number of hidden units and alsostill produ
e the same output fun
tion. In some 
ir
umstan
es the neural networkfun
tions are approximately identi
al; in other 
ases, the output fun
tions are exa
tlyequivalent. We use the term neural network balan
e to refer to the fa
t that we 
anshu�e, or re-balan
e, the weights in a neural network to a
hieve the same outputfun
tion.Given the fa
t that we 
an a
hieve the same neural network output fun
tion withdi�erent neural networks of both di�erent sizes and the same size, we need to examinepossible motivations for sele
ting one neural network over another. From a 
ontrolstandpoint, the only 
riti
al aspe
t of the neural network is its output fun
tion. Twodi�erent networks whi
h 
ompute the same output fun
tion are equivalent from the
ontrol perspe
tive; there is no reason to 
hoose one network over another. However,from a stability standpoint there might be substantial di�eren
es in the stabilityproperties of two neural networks produ
ing the same output fun
tion. The network1With � = 1 we are just barely unstable. The smaller � is below 1, the more stable the system.The more � is greater than 1, the more unstable the system.185



whi
h is more stable is the more desirable 
hoi
e.We have 
ondu
ted a preliminary experiment along these lines. Consider thetwo-layer, feed forward, tanh hidden layer, neural network labelled as Network A inFigure 7.1. Network A has one input, one hidden unit, and one output; W1x1 = w isthe single input weight and V1x1 = v is the single output weight. We 
onvert NetworkA into an LTI blo
k with un
ertainty and then pla
e the 
onverted network into asmall feedba
k 
ontrol system. We 
ompute the stability of the feedba
k system by�nding the � value for the system.
w

w

w

v

Network A

Network B
v/2

v/2

Figure 7.1: Balan
ing NetworksWe 
onstru
t a se
ond neural network, Network B, also shown in Figure 7.1. Thisnetwork is identi
al to Network A ex
ept that it has two hidden units instead ofone. The input weight for both hidden units is w. This is the same input weight asused in Network A. Thus all three hidden units (one hidden unit in Network A andtwo hidden units in Network B) all implement the same fun
tion, or feature, at thehidden layer. The two output weights for Network B are both set to v2 . It is not hardto see that Network A and Network B produ
e exa
tly the same output fun
tion;186



network B simply uses two hidden units instead of Network A's single hidden unit.We have taken the hidden unit in Network A and split it to form Network B's twohidden units. We then 
onvert Network B into LTI plus un
ertainty and 
ompute its� number. It turns out that the � value for both networks is identi
al. In fa
t, werepeat this experiment by forming additional networks with �ve and ten hidden unitswith output weights of v5 and v10 respe
tively. These networks also produ
e the same� value. All these networks are equivalent both in terms of their output fun
tionsand in there stability properties.The results of the above mini-experiment are not surprising; all the \re-balan
ing"was performed within the LTI blo
k and had no e�e
t on the un
ertainty. We do nothave to know mu
h about �-analysis or IQC analysis to be able to predi
t thatsplitting the output weights will have no e�e
t on the stability of a neural networkin the feedba
k system. However, a more diÆ
ult question is to ask what happensto the stability analysis when re-balan
ing is done at the input layer. There areat least two immediate variants of this 
ase. We 
ould have two neural networkswith the same number of hidden units but di�erent input/output weight values. These
ond 
ase involves networks with di�erent numbers of hidden units (and di�erentinput/output weight values). In both these 
ases, we 
ould formulate neural networksthat produ
e identi
al or nearly identi
al output fun
tions but might possess widelyvarying � values when in
orporated as part of a feedba
k system.These are key issues 
ertainly worthy of investigation. If we 
ould dis
over a re-lationship between stability and network weight balan
ing, then we 
ould sele
t net-works with fewer (or more) hidden layers in an attempt to produ
e neuro-
ontrollerswith higher stability margins. We might also dis
over a neural network weight re-balan
ing algorithm to systemati
ally adjust the network weights in an attempt tokeep the same output fun
tion but in
rease the stability margin.A separate but related issue of weight balan
ing is 
omputing a �-gradient. The187



ba
k propagation algorithm used to train the weights in the neural network performsa gradient des
ent sear
h through the weight spa
e. The gradient is provided by thevalue fun
tion in the 
riti
 network. This gradient determines the dire
tion of move-ment through the weight spa
e. There must 
ertainly also exist a stability gradientin the weight spa
e. There will be dire
tions of weight updates whi
h in
rease thestability of the system and dire
tions of weight updates whi
h de
rease the stabili-ty of the neuro-
ontrol system. By 
ombining the two gradients, we 
an train theneural network in a dire
tion that both improves 
ontrol performan
e (value fun
tiongradient) and maintains stability (stability gradient).For the a
tor network we sele
t the two-layer, feed forward neural network. Thisnetwork is both 
ontinuous and has hidden units whi
h extend globally over theinput spa
e. We opted for this network ar
hite
ture in the a
tor net, be
ause these
ontinuous/global properties are desirable for both 
omputing good 
ontrol fun
tionsand be
ause there are amenable to the stability analysis. However, other neuralnetwork ar
hite
tures are also possible. Though they are likely to introdu
e a set ofextra 
ompli
ations, these other network ar
hite
tures might have di�erent stabilityproperties. Spe
i�
ally, we believe it might be advantageous to use lo
al, 
ontinuousunits for the network su
h as those in a radial basis fun
tion network with gaussianunits. Be
ause the units do not extend a
ross large regions of the input spa
e, stability
ompli
ations might be lo
alized to some parts of the inputs spa
e; other \safer" andmore stable regions might be able to experien
e additional training without adverselya�e
ting the stability of the overall system. Certainly this issue is worthy of furtherinvestigation.Clearly the relationship between the neural network fun
tion, the neural networkstru
ture, and the 
omputation of � (and IQC) opens a veritable Pandora's Box ofunanswered questions. There is ample opportunity to extend our resear
h in thisdire
tion. These questions 
ould develop relationships and theory in new areas of188



neuro-
ontrol.7.3 Future Work with Neural Network Ar
hite
-tureWhile the primary goal of this dissertation is the establishment of the stati
 stabilitytheorem and the dynami
 stability theorem, the se
ondary obje
tive is to demonstratethat these two theorems are appli
able in pra
ti
al 
ontrol situations. Chapter 5outlines the design of a learning agent whi
h is able to a
hieve this latter obje
tive.During the agent's development, we en
ountered a number of te
hni
al problems forwhi
h we were able to �nd a solution. While these solutions over
ame our diÆ
ulties,perhaps these were not the best solutions. We return to address a few of thesediÆ
ulties and point out other, yet unexplored, alternatives for the design of thestable reinfor
ement learning agent.A number of these alternatives 
an be 
ategorized under the heading of \issueswith neural network size sele
tion". For ea
h spe
i�
 
ontrol problem, we sele
t anappropriate size for the a
tor network (and hen
e for the 
riti
 network). Here, weuse network size to refer to both the number of hidden units and the number ofinput inputs. First we address those size issues 
on
erning only the number of hiddenunits. There are valid task-spe
i�
 reasons to in
rease the number of hidden unitsand valid neural network related reasons to de
rease the number of hidden units.The primary reason to in
rease the number of hidden units in the a
tor networkis to in
orporate more fun
tion approximation resour
es in the network. To someextent, the 
omplexity of the 
ontrol fun
tion that we desire to learn with the a
tornetwork di
tates how many hidden tanh units are required within the hidden layer. Amore 
ompli
ated 
ontrol fun
tion will require more hidden units to a
hieve the samelevel of approximation a

ura
y. There are also valid reasons to keep the number ofhidden units small. Empiri
al eviden
e indi
ates that a network with more hidden189



units requires more training time to 
onverge. These issues 
ertainly are not new tothis dissertation but they do play a key role in sele
ting a good neuro-
ontroller. Anumber of good referen
es indi
ate a
tive resear
h in this area of neural networks.See [Vidyasagar, 1997; Vapnik, 1995; Vapnik, 1998℄ for a review of 
urrent resear
hin network size sele
tion, fun
tion approximation, and training time.In addition to the network size issues dis
ussed above, we have additional 
hoi
esto make 
on
erning neural network design in 
ontrol situations. These additional
hoi
es stem from the large number of system state variables in many 
ontrol systems.At any moment in time, ea
h 
ontrol system is 
ompletely identi�ed by the stateinformation in the system. This state information in
ludes state variables of the plant,state variables of the nominal 
ontroller, referen
e input signals, external disturban
einput signals, and possibly other sour
es of state information. The total number ofstate variables in a parti
ular system 
an grow to be quite large. The distillation
olumn pro
ess has a total of 12 state variables. (A
tually, there were 22 initiallyuntil we redu
ed the robust 
ontroller from 18th order to 8th order using the sysbalMatlab 
ommand).The goal of the a
tor network (
ontroller) is to use the state information to pro-du
e a 
ontrol signal that is both stable and results in good tra
king performan
e.Minimally, we use the 
urrent tra
king error as an input to the neuro-
ontroller; thisis the 
ase with the example tasks in the �rst two 
ase studies and one of the networksin the HVAC task. However, the other state variables in the system likely 
ontaininformation that 
an be used to make better 
ontrol de
isions. We 
ould in
ludea subset of the state variables as additional inputs to the a
tor network. However,all state variables are not 
reated equal. From the neuro-
ontroller's perspe
tive ofmaking sound 
ontrol de
isions, some state variables 
ontain more information thanothers. Neural networks designers fa
e a 
hoi
e of whi
h of these state variables touse in the neural network. One possibility is to use all state variables. This has the190



advantage of ensuring the network has all available information; but, this approa
his saddled with the major drawba
k of in
reased training time. Those state variablesthat do not possess 
ontrol-de
ision information will a
t as noise in the input trainingdata. This is espe
ially true if only a few of the state variables 
ontain a majority ofthe 
ontrol information. Not only does the network have to �lter through the noisyinput 
hannels to dis
over those ri
h in 
ontrol information, but the network willalso be unne
essarily larger in order to a

ommodate the extra inputs. The otherapproa
h is to 
hoose a subset of the state variables for input to the a
tor network.The 
hallenge is to �nd those state variables 
ontaining the information most relevantto making improved 
ontrol de
isions.7.4 Future Work with HVACOur results in applying stable neuro-
ontrol to HVAC are preliminary. As dis
ussed inSe
tion 6.5, we are in the pro
ess of 
onstru
ting a physi
al HVAC plant. At the timeof this dissertation work, only the HVAC plant model is available for testing. ThePI 
ontroller designed for this model already a
hieves ex
ellent performan
e. Thus,the neuro-
ontroller is unable to improve upon this performan
e signi�
antly. When
onstru
tion of the physi
al plant is 
omplete, we 
an then develop a better HVACheating 
oil model by performing empiri
al step-response studies on the physi
alplant. Then an LTI model 
an be developed from these studies. At that point, we 
anapply modern optimal 
ontrol design te
hniques as well as robust 
ontrol te
hniquesto the plant model. Upon testing them on the physi
al plant, we will be able toas
ertain whether their performan
e is a

eptable and whether a neuro-
ontroller,trained on the physi
al plant, is able to further improve 
ontrol performan
e.
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Appendix AStability Analysis Tools
A.1 �-analysisThe 
ommands here indi
ate how we used the � toolbox. Further details are availablein the 
ode listings in Appendix B.[a; b; 
; d℄ = dlinmod(0task1 mu10; 0:01); (A.1)sys = p
k(a; b; 
; d); (A.2)dlinmod is the 
ommand whi
h a
tually 
onverts the diagram into an LFT systemwhere 'task1 mu1' is the name of the diagram �le and 0:01 is the sampling period ofthe dis
rete-time plant. p
k is a Matlab 
ommand whi
h pla
es the LFT into a more
onvenient format; the LFT is stored in a variable 
alled sys.Next we will perform �-analysis on the LFT system. The following Matlab 
om-mands 
ompute � for the system:om = logspa
e(�2; 2; 100); (A.3)blk = [1 1℄; (A.4)sysf = frsp(sys; blk; 0:01); (A.5)bnds = mu(sysf; blk); (A.6)192



where om is the frequen
y range that we will 
ompute � over. blk is the format ofthe stru
ted un
ertainty; in this 
ase the un
ertainty is a 1x1 blo
k be
ause we haveonly one hidden unit in the neural network. frsp 
omputes the frequen
y response ofthe system and stores it in a ve
tor sysf. Finally mu is the 
ommand whi
h 
omputes� for this frequen
y response [Balas et al., 1996℄.A.2 IQC-analysisIQC-analysis is straight forward as all the work is done in 
onstru
ting the Simulinkdiagram. On
e the Simulink diagram is 
omplete, simply run iq
 gui with the diagramname supplied as an argument. The IQC 
ommand reads the Simulink diagram fromthe disk; 
hanges made to the open �le will not be in
orporated unless those 
hangesare �rst saved.
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Appendix BSoftware Listing
This appendix 
ontains most of the 
ode used to generate the results obtained forthis dissertation. All 
ode is written in the Matlab programming language for 
om-patability with the � and IQC toolboxes.

runit.mThis 
ommand simulates the distillation 
olumn task with the nominal 
ontrolleronly.fun
tion [x,y,u,e℄ = runit(r,AK,BK,CK,DK)%[x,y,u,e℄ = runit(r,AK,BK,CK,DK)% r is a fixed referen
e input[kk,sr℄ = size(r);[k1,k1℄ = size(AK);A = [0.99867, 0; 0, 0.99867℄;B = [-1.01315, 0.99700; -1.24855, 1.26471℄;194



C = [-0.11547, 0; 0, -0.11547℄;D = [0, 0; 0, 0℄;e = 0;x = zeros(2,sr);k = zeros(k1,sr);y(:,1) = C * x(:,1);start = 300;
for i = 1:sr-1err = r(:,i) - y(:,i);k(:,i+1) = AK*k(:,i) + BK*err;u(:,i) = CK*k(:,i) + DK*err;u(1,i) = u(1,i) * 1.2;u(2,i) = u(2,i) * 0.8;x(:,i+1) = A*x(:,i) + B*u(:,i);y(:,i+1) = C*x(:,i) + D*u(:,i);err = r(:,i) - y(:,i);if ( i > start )e = e + sum(abs(err));end;end;u(:,sr) = u(:,sr-1); 195



err = r(:,sr) - y(:,sr);e = e + sum(abs(err));
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runitnn.mThis 
ommand simulates the distillation 
olumn task with the neuro-
ontroller andthe nominal 
ontroller.fun
tion [x,y,u,e℄ = runitnn(W,V,r,AK,BK,CK,DK)%[x,y,u,e℄ = runit(W,V,r,AK,BK,CK,DK)% r is a fixed referen
e input[kk,sr℄ = size(r);[k1,k1℄ = size(AK);A = [0.99867, 0; 0, 0.99867℄;B = [-1.01315, 0.99700; -1.24855, 1.26471℄;C = [-0.11547, 0; 0, -0.11547℄;D = [0, 0; 0, 0℄;e = 0;x = zeros(2,sr);k = zeros(k1,sr);y(:,1) = C * x(:,1);start = 300;for i = 1:sr-1err = r(:,i) - y(:,i);k(:,i+1) = AK*k(:,i) + BK*err;u(:,i) = CK*k(:,i) + DK*err; 197




(1,1) = 1;
(2,1) = err(1);
(3,1) = err(2);[un, v℄ = feedf(
,W,V);u(:,i) = u(:,i) + un;u(1,i) = u(1,i) * 1.2;u(2,i) = u(2,i) * 0.8;x(:,i+1) = A*x(:,i) + B*u(:,i);y(:,i+1) = C*x(:,i) + D*u(:,i);err = r(:,i) - y(:,i);if ( i > start )e = e + sum(abs(err));end;end;u(:,sr) = u(:,sr-1);err = r(:,sr) - y(:,sr);e = e + sum(abs(err));
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both.mThis 
ommand trains the neuro-
ontroller (a
tor net and 
riti
 net) without the sta-bility 
onstraints.fun
tion [Q,W,V℄ = both(Q,q,W,V,N,a1,a2,AK,BK,CK,DK)%[Q,W,V℄ = both(Q,q,W,V,N,a1,a2,AK,BK,CK,DKA = [0.99867, 0; 0, 0.99867℄;B = [-1.01315, 0.99700; -1.24855, 1.26471℄;C = [-0.11547, 0; 0, -0.11547℄;D = [0, 0; 0, 0℄;sum_err = 0;t = 0;r = [0; 0℄;x = [0; 0℄;y = [0; 0℄;sk = length(AK);k = zeros(sk,1);for i = 1:N%
hange referen
e signalrold = r;if ( mod(i,2000) == 1 )if ( rand < 0.5 )r(1,1) = 1 - r(1,1);else 199



r(2,1) = 1 - r(2,1);end;end;err = r-y;%sum_err = sum_err + sum(abs(err));%
ompute uk = AK*k + BK*err;u = CK*k + DK*err;%
ompute un
(1,1) = 1;
(2,1) = err(1);
(3,1) = err(2);[un, v℄ = feedf(
,W,V);%random partif (rand < 0.1 ) urand = randn(2,1) .* 0.1;else urand = [0; 0℄; end;%urand = 0;un = un + urand;u = un;u(1,1) = u(1,1) * 1.2;u(2,1) = u(2,1) * 0.8;
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%remember old values for use in TD ba
kpropif ( t > 0 )qvalold = qval;a
tivold = a
tiv;end%
ompute Qb(1,1) = err(1);b(2,1) = err(2);b(3,1) = un(1);b(4,1) = un(2);[qval,a
tiv℄ = 
ompute(Q,q,b);%TD ba
kpropif ( t > 0 & sum(abs(rold - r)) == 0 )tar = 0.95 * qval + sum(abs(err));Q = learnQ(tar,qvalold,a
tivold,Q,a1);end%
ompute minimum a
tionyp = delta2(Q,q,b,3,4);[W,V℄ = ba
kprop(
,v,un,yp,a2,W,V);%update statet = t + 0.1;x = A*x + B*u;y = C*x + D*u; 201



fprintf([int2str(i) '.'℄);if ( mod(i,20) == 0 ) fprintf('\n'); end;end; %outer for
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muwv.mThis 
ommand trains the neuro-
ontroller (a
tor net and 
riti
 net) with the stability
onstraints a
tivated.fun
tion [Q,W,V,Wmax,Wmin,Wt,Vmax,Vmin,Vt℄ = muwv(Q,q,W,V,N,a1,a2,muit,tra
e)%[Q,W,V,Wmax,Wmin,Wt,Vmax,Vmin,Vt℄ = muwv(Q,q,W,V,N,a1,a2,muit,tra
e)
A = [1.0 0.05; -0.05 0.9℄;B = [0; 1.0℄;Kp = 0.01; Ki = 0.001; %0.05;sum_err = 0;t = 0;r = (rand-0.5)*2; urand = 0;x = [0; 0℄;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Before we learn, make sure [W,V℄ are in mu bounds%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%maxmu = statmu(W,V);if ( maxmu > 1.0 )disp 'Warning: mu ex
eeds 1 for input matri
es W,V'disp 'Learning Halted!'return;end; 203



if ( tra
e )[h,n℄ = size(W);Wt = zeros(h,n,N);Vt = zeros(1,h,N);elseWt = 0;Vt = 0;end;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Outer Loop iterates over dW and dV -- used mu%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%for kk = 1:muit[dW,dV℄ = dynamu(W,V);dW = W.*0 + 1; dV = V.*0 + 1;Wmax = W + dW,W, Wmin = W - dW,Vmax = V + dV, V, Vmin = V - dV,j = 0;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Inner loop trains either till 
ompletion of iterations or until% we hit the mu-spe
ified boundary%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%while ( j < N & gtm(W,Wmin) & gtm(Wmax,W) & gtm(V,Vmin) & gtm(Vmax,V))j = j + 1; 204



if ( tra
e )Wt(:,:,j) = W;Vt(:,:,j) = V;end;%
hange referen
e signalrold = r;if ( rand < 0.01 ) r = (rand-0.5) * 2.0; end;err = (r-x(1));%
ompute upisum_err = sum_err + err;upi = Kp * err + Ki * sum_err;%
ompute un
(1,1) = err;[un, v℄ = feedf(
,W,V);%random partif (rand < 0.1 ) urand = randn * 0.05;else urand = 0; end;un = un + urand;u = upi + un;%remember old values for use in TD ba
kpropif ( t > 0 ) yold = y; aold = a; end205



%
ompute Qb(1,1) = err; b(2,1) = un;[y,a℄ = 
ompute(Q,q,b);%TD ba
kpropif ( t > 0 & rold == r )tar = 0.9 * y + abs(err);Q = learnQ(tar,yold,aold,Q,a1);end%
ompute minimum a
tionyp = delta(Q,q,b,2);Wgood = W;Vgood = V;[W,V℄ = ba
kprop(
,v,un,yp,a2,W,V);%update statet = t + 0.01; x = A*x + B*u;fprintf([int2str(j) '.'℄);if ( mod(j,20) == 0 ) fprintf('\n'); end;end; %outer forW = Wgood;V = Vgood; 206



end;
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setsig.mThis 
ommand initializes a sigmoid neural network.fun
tion [W,V℄ = setSIG(Nin,Nhid,Nout);%[W,V℄ = setSIG(Nin,Nhid,Nout);%remember to add 1 at input and hidden for biasW = (rand(Nhid,Nin)-0.5);V = (rand(Nout,Nhid)-0.5) .* 0.1;
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set
ma
.mThis 
ommand initializes a CMAC neural network.fun
tion [Q,q℄ = setCMAC(n,t,mins,sizes)%[Q,q℄ = setCMAC(n,t,mins,sizes)%%Initializes a 4D CMAC network with t tilings of nxn grids% mins (4,1) sized ve
tor of minimums per dimension% sizes (4,1) sized ve
tor of sizes per dimension%DIM = 2;%DIM = 3;DIM = 4;%DIM = 6;%Q = zeros(n,n,n,n,n,n,t);Q = zeros(n,n,n,n,t);%Q = zeros(n,n,n,t);%Q = zeros(n,n,t);q = zeros(n,DIM,t);for k = 1:DIMin
r(k) = sizes(k) / (n);off(k) = in
r(k) / t;end;for i = 1:tfor j = 1:nfor k = 1:DIM 209



q(j,k,i) = (j-1) * in
r(k) + (i-1) * off(k) + mins(k);end;end;end;
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ba
kprop.mThis 
ommand implements the ba
kpropagation learning algorithm for sigmoid net-works.fun
tion [W, V℄ = ba
kprop(x,h,y,yp,alpha,W,V);%[W, V℄ = ba
kprop(x,h,y,yp,alpha,W,V);% Inputs: x input ve
tor (n,1)% h hidden tanh (h,1)% y output ve
tor (o,1)% yp output target (o,1)% alpha learning rate% W input weights (h,n)% V output weights (o,h)% Outputs W, V newd2 = yp - y;dV = alpha .* d2 * h';d1 = (1 - h.*h) .* (V' * d2);dW = alpha .* d1 * x';V = V + dV;W = W + dW;
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feedf.mThis 
ommand performs the feedforward operation on a sigmoid neural network.fun
tion [y, h℄ = feedf(x,W,V)%[y, h℄ = feedf(x,W,V)% Inputs: x is input ve
tor (n,1)% W is input side weights (h,n)% V is output side weights (o,h)% Outputs: y is output ve
tor (o,1)% h is tanh hidden layer (h,1)% Note: h is required for ba
k prop trainingh = W * x;h = tanh(h);y = V * h;
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a
tivate.mThis 
ommand 
omputes the a
tivation for a CMAC network with parti
ular inputs.fun
tion a = a
tivate(q,x);%a = a
tivate(q,x);%%x is the (2,1) input ve
tor%q is the CMAC resolution ve
tor%a is the (t,2) a
tivation ve
tor[n,pp,t℄ = size(q);%DIM = 2;%DIM = 3;DIM = 4;%DIM = 6;for i = 1:t%find x dimension by sear
hing ba
kwardfor k = 1:DIMj = n;while (j > 1) & ( x(k) < q(j,k,i) )j = j - 1;end;a(i,k) = j;end;end;
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ompute.mThis 
ommand 
omputes the output of a CMAC neural network.fun
tion [y,a℄ = 
ompute(Q,q,x)%[y,a℄ = 
ompute(Q,q,x)[n,pp,t℄ = size(q);a = a
tivate(q,x);y = 0;for i = 1:t% y = y + Q( a(i,1), a(i,2), a(i,3), a(i,4), a(i,5), a(i,6), i);y = y + Q( a(i,1), a(i,2), a(i,3), a(i,4), i);% y = y + Q( a(i,1), a(i,2), a(i,3), i);% y = y + Q( a(i,1), a(i,2), i);end;
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learnq.mThis 
ommand trains the CMAC network using the TD-error.fun
tion Q = learnq(tar,
ur,a
tiv,Q,alpha)%Q = learnq(tar,
ur,a
tiv,Q,alpha)%[t1,n,t℄ = size(Q);%[t1,t2,n,t℄ = size(Q);[t1,t2,t3,n,t℄ = size(Q);%[t1,t2,t3,t4,t5,n,t℄ = size(Q);diff = (tar - 
ur) * alpha / t;for i = 1:tx1 = a
tiv(i,1);x2 = a
tiv(i,2);x3 = a
tiv(i,3);x4 = a
tiv(i,4);% x5 = a
tiv(i,5);% x6 = a
tiv(i,6);% Q(x1,x2,x3,x4,x5,x6,i) = Q(x1,x2,x3,x4,x5,x6,i) + diff;Q(x1,x2,x3,x4,i) = Q(x1,x2,x3,x4,i) + diff;% Q(x1,x2,x3,i) = Q(x1,x2,x3,i) + diff;% Q(x1,x2,i) = Q(x1,x2,i) + diff;end;
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delta.mThis 
ommand 
omputes the double gradient of the CMAC network.fun
tion d = delta(Q,q,x,k)RES = 20;[n,dim,t℄ = size(q);minn = q(1,k,1);maxx = q(n,k,1) + q(n,k,1) - q(n-1,k,1);in
r = ( maxx - minn ) / 20;mina = x(k) - in
r;maxa = x(k) + in
r;if ( mina < minn )mina = minn;end;if ( maxa > maxx )maxa = maxx;end;us = linspa
e(mina,maxa,RES);for i = 1:RESx(k) = us(i);v(i) = 
ompute(Q,q,x);end;[mv, mp℄ = min(v); 216



d = us(mp);
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diag�t.mThis 
ommand 
omputes diagonalization matri
es required for the � Simulink dia-grams.fun
tion [A,B,T℄ = diagFit(m,n)%[A,B,T℄ = diagFit(m,n)% or%[A,B,T℄ = diagFit(X)%% m,n is the dimension of a matrix X% let r = m*n% T is the r by r diagonal matrix that has ea
h% entry of X in it (a
ross first, then down)% example: X = | 3 7 | T = | 3 0 0 0 |% m=2 | 4 -1 | | 0 7 0 0 |% n=2 | 0 0 4 0 |% | 0 0 0 -1 |%% diagFit 
omputesmatri
es A and B su
h that A*T*B = X.% Produ
es test matrix T = diag(1..r) for testing.
if (nargin < 2)[x,n℄ = size(m);
lear m;m = x;
lear x;end; 218



r = m * n;A = zeros(m,r);B = zeros(r,n);for i = 1:rka = floor( (i-1)/n ) + 1;kb = mod(i-1,n) + 1;A(ka,i) = 1;B(i,kb) = 1;end;T = diag(1:r);

219



statmu.mThis 
ommand 
omputes the stati
 stability test.fun
tion [maxmu, bnds℄ = statmu(W,V)%[maxmu, bnds℄ = 
ompmu(W,V)%Computes stati
 mu%Remember to 
hange variables like% T sampling rate (0.01)% om logspa
e (-2,2,100)% filename task1_mu
nhid = length(V);blk = [nhid, 0℄;om = logspa
e(-2,2,100);set_param('task1_mu/W','K',mat2str(W));set_param('task1_mu/V','K',mat2str(V));set_param('task1_mu/eyeV','K',mat2str(eye(nhid)));disp 'Computing stati
 mu';[a,b,
,d℄ = dlinmod('task1_mu',0.01);sys = p
k(a,b,
,d);sysf = frsp(sys,om,0.01);bnds = mu(sysf,blk,'s');maxmu = max(bnds(:,1));
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dynamu.mThis 
ommand 
omputes the dynami
s stability test by 
omputing the allowableneural network weight un
ertainty.fun
tion [dW,dV℄ = dynamu(W,V)%[dW,dV℄ = dynamu(W,V)%Remember to 
hange variables like% T sampling rate (0.01)% om logspa
e (-2,2,100)% filename task1_mu[h,n℄ = size(W);[jj,h℄ = size(V);mW = n * h;mV = h * jj;dW = eye(mW);dV = eye(mV);sumW = sum(sum(abs(W)));sumV = sum(sum(abs(V)));sumT = sumW + sumV;for i = 1:hfor j = 1:nk = (i-1)*n + j;dW(k,k) = abs(W(i,j) / sumT);dV(i,i) = abs(V(i) / sumT); 221



end;end;iW = dW;iV = dV;minf = 1;maxf = 1;blk = [h, 0℄;blk = [blk; ones(mW + mV,2)℄;%blk(:,1) = blk(:,1) .* -1;om = logspa
e(-2,2,100);[WA,WB℄ = diagfit(W);[VA,VB℄ = diagfit(V);%set parameters in simulink model 'task1_mu3'set_param('task1_mu3/W','K',mat2str(W));set_param('task1_mu3/V','K',mat2str(V));set_param('task1_mu3/WA','K',mat2str(WA));set_param('task1_mu3/WB','K',mat2str(WB));set_param('task1_mu3/VA','K',mat2str(VA));set_param('task1_mu3/VB','K',mat2str(VB));set_param('task1_mu3/eyeV','K',mat2str(eye(h)));set_param('task1_mu3/dW','K',mat2str(dW));set_param('task1_mu3/dV','K',mat2str(dV));
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%Compute initial muset_param('task1_mu3/dW','K',mat2str(dW));set_param('task1_mu3/dV','K',mat2str(dV));[a,b,
,d℄ = dlinmod('task1_mu3',0.01);sys = p
k(a,b,
,d);sysf = frsp(sys,om,0.01);disp 'Computing mu';bnds = mu(sysf,blk,'s');maxmu = max(bnds(:,1));s = sprintf('mu = %f for s
ale fa
tor %f',maxmu,minf);disp(s);if ( maxmu < 1 )while ( maxmu < 1 )temp = maxmu;minf = maxf;maxf = maxf * 2;dW = iW .* maxf;dV = iV .* maxf;set_param('task1_mu3/dW','K',mat2str(dW));set_param('task1_mu3/dV','K',mat2str(dV));[a,b,
,d℄ = dlinmod('task1_mu3',0.01);sys = p
k(a,b,
,d);sysf = frsp(sys,om,0.01);disp 'Computing mu';bnds = mu(sysf,blk,'s');maxmu = max(bnds(:,1)); 223



s = sprintf('mu = %f for s
ale fa
tor %f',maxmu,maxf);disp(s);end;maxmu = temp;elsewhile ( maxmu > 1 )if (minf < 0.01)disp 'Warning: dynamu 
annot find dW,dV with mu < 1'disp 'Halt Learning'dW = iW .* 0;dV = iV .* 0;returnend;maxf = minf;minf = minf * 0.5;dW = iW .* minf;dV = iV .* minf;set_param('task1_mu3/dW','K',mat2str(dW));set_param('task1_mu3/dV','K',mat2str(dV));[a,b,
,d℄ = dlinmod('task1_mu3',0.01);sys = p
k(a,b,
,d);sysf = frsp(sys,om,0.01);disp 'Computing mu';bnds = mu(sysf,blk,'s');maxmu = max(bnds(:,1));s = sprintf('mu = %f for s
ale fa
tor %f',maxmu,minf);disp(s); 224



end;end;while ( maxmu < 0.95 | maxmu > 1 )if ( maxmu < 1 )safe = minf;minf = (maxf-safe)/2 + safe;elsemaxf = minf;minf = (maxf-safe)/2 + safe;end;if (minf < 0.01)disp 'Warning: dynamu 
annot find dW,dV with mu < 1'disp 'Halt Learning'dW = iW .* 0;dV = iV .* 0;returnend;dW = iW .* minf;dV = iV .* minf;set_param('task1_mu3/dW','K',mat2str(dW));set_param('task1_mu3/dV','K',mat2str(dV));[a,b,
,d℄ = dlinmod('task1_mu3',0.01);sys = p
k(a,b,
,d);sysf = frsp(sys,om,0.01); 225



disp 'Computing mu';bnds = mu(sysf,blk,'s');maxmu = max(bnds(:,1));s = sprintf('mu = %f for s
ale fa
tor %f',maxmu,minf);disp(s);end;dW = WA * dW * WB;dV = VA * dV * VB;
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