Further Development and Testing of a Second-Order Bulk
Boundary Layer Model

by
Captain Richard D. Krasner

Department of Atmospheric Science
Colorado State University
Fort Collins, Colorado

David A. Randall, Principal Investigator







FURTHER DEVELOPMENT
AND TESTING OF A SECOND-ORDER
BULK BOUNDARY LAYER MODEL

by

Captain Richard David Krasner

Research supported by the
National Aeronautics and Space Administration
under Grant number NAG1-1137
and by the
Office of Naval Research
under Contract number N0014-91-J-1422

Department of Atmospheric Science
Colorado State University
Fort Collins, CO

May 1993

Atmospheric Science Paper No. 528



TYAMGOITYIA AR T 1Y
AFGHO-T7ODAL A 5O DVITETT GFA
JAAQOW HRT AT YALTVTOH ANF

LI

wnprdt s ekl sl 9V ifih e

Wi vl L - o, SeRA
vrst Ly deipienhd 29697 el Fovuspa e A et
TELIOE Lamor L) e
T "If “Tikds
iFagbeal WAL e W
Pt | o= hg EOV Tedmen ruet = el

et i pamda Yo i ol
eilm o 1] ".rl'.l?_. b da’)
€ - uiinD ~af

2T gakt

! N O 13“‘] sgn-r':}'d AN



ABSTRACT

A one-layer bulk boundary layer model is developed following earlier work by
Randall and Moeng. The model predicts the mixed layer values of the potential
temperature, mixing ratio, and u- and v-momentum. The model also predicts the depth of
the boundary layer and the vertically integrated turbulence kinetic energy (TKE). The
TKE is determined using a second-order closure that relates the rate of dissipation to the
TKE. The fractional area covered by rising motion (G) and the entrainment rate (E) are
diagnostically determined.

The model is used to study the clear convective boundary layer (CBL) using data
from the Wangara, Australia boundary layer experiment. The Wangara data is also used
as an observation base to validate model results. A further study is accomplished by
simulating the planetary boundary layer (PBL) over an ocean surface. This study is
designed to find the steady-state solutions of the prognostic variables.

The model clearly illustrated the features found in a CBL. The diurnal trend of the
PBL depth was accurately reproduced. This included rapid growth during mid-morning,
quasi-steady-state conditions during the afternoon, and an evening transition.

In the ocean study, the prognostic variables converged to their equilibrium values at
about the same time. This is in contrast to an earlier study using similar conditions where
the adjustment time for the PBL depth was considerably longer than for the other
prognostic variables. This discrepancy was due to the different entrainment
parameterizations used in each study. In the ocean study, the entrainment rate became
very large during the initial portion of the simulation, whereas in the earlier study the
entrainment rate remained small and constant throughout.

The TKE became very large during the mid-morming when rapid PBL growth was
occurring. This large TKE indicated that the PBL was very turbulent due to the vigorous
convection that was taking place. The fractional area covered by rising motion, G,
reached its minimum at this time; a further indication of the intense convection.
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The gradients of the mean potential temperature and mean mixing ratio were
determined. These gradients were large at the start of the simulation when the PBL was
unmixed. The gradients decreased rapidly as turbulence mixed the PBL during mid-
morning. The gradients were near zero in the afternoon indicating that the PBL was now
well mixed.

A two-layer model was developed to address the problem of large gradients obtained
in the one-layer model. This model produced the same results for the prognostic
variables as the one-layer model. The gradients determined by the model were near zero.
The mean potential temperatures and mixing ratios at the two levels in the model were
then initially perturbed to study the effects of varying the dissipation time scale. A
certain range of values of the model parameter related to the dissipation time scale
allowed the large induced gradients to approach zero in a reasonable time.

The following items were presented for the first time in this thesis:

(1) A positive entrainment rate parameterization which assumes a balance between
buoyancy production and dissipation of turbulence kinetic energy.

(2) A negative entrainment rate parameterization that allows the PBL depth to
decrease late in the day when buoyancy production is no longer sufficient to maintain the
turbulence.

(3) A fully implicit finite difference equation for the TKE (when the entrainment rate
is positive) solved as a cubic equation. The square of the solution that is always real is
assigned to the TKE.

(4) Results for both the Wangara and Ocean studies showing the fractional area
covered by rising motion, convective mass flux, updraft and downdraft properties of 8
and g at the surface and PBL top, dissipation rates of 8 and q at the surface and PBL top,
dissipation time scale, and gradients of 8 and 7.

S) Results and comparison for the Wangara study of two surface bulk transfer
coefficients, one dependent on the surface velocity and the other on the turbulence kinetic
energy.
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(6) A two-layer model which predicts 8 and 7 at two levels.

(7) Equations that determine the upward turbulent fluxes of 6 and q in the interior of
the PBL. These equations are used to obtain 8 and 7 in the two-layer model.
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1. Introduction

l.a. Statement of Problem

The planetary boundary layer (PBL) exerts a significant influence on the earth’s
weather and climate. The large-scale atmosphere feels the effects of the PBL during the
development and growth of thunderstorms with relatively short time scales (= 1 hour),
and over the entire time scale spectrum including long periods (10’s - 100’s of years)
when global climatic change occurs. The predominant source of energy to drive the
general circulation is the ocean. Surface fluxes of heat, moisture, and momentum over
the oceans are transported to the free atmosphere through the PBL. These fluxes play a
vital role in transforming the earth’s climate over time. The turbulent eddies in the PBL
are the means by which this energy is transmitted from the ocean to the free atmosphere
where it interacts with the general circulation. Since the PBL is intimately tied to the
evolution of the climate, an accurate representation of the PBL is required to correctly
make predictions of the future climate using a general circulation model. The only way
to accomplish this is to develop a model that predicts the state of the PBL using
parameterizations.

The surface fluxes of heat, moisture, and momentum are not the only important
parameters to consider. The fluxes of these quantities over the entire depth of the PBL
should also be included because they affect the general circulation. The total water vapor
in the PBL represents the latent heat available to drive the general circulation. Another
parameter, the PBL depth, besides denoting the amount of mass contained within the
PBL, gives insight into whether clouds are present. As the PBL depth increases, moisture
can penetrate higher into the atmosphere, eventually reaching the lifting condensation
level where clouds will form. Finally, one can obtain some information about the
fractional cloud amount by predicting the fractional area in the PBL that rising motion
covers. Clouds play a key role in the climate because they affect the radiation budget by
reflecting solar radiation that the earth's surface would otherwise absorb, therefore,
knowledge of the amount of cloud coverage is crucial to climate prediction.



1.b. Definition of Second-Order Bulk Boundary Layer Model

The bulk boundary layer model presented is further development of the work
completed by Randall, Shao, and Moeng(1992). The model is 1-dimensional and
employs a second-order turbulence closure, and a "bulk" approach to parametrically
represent boundary-layer structure. Prediction equations are used to compute the
boundary layer depth (Apy, in terms of pressure), mixed layer values of u- and v-
momentum (uy, and vy,), potential temperature (8,), mixing ratio (qm), and turbulence
kinetic energy (em). This model also diagnoses the entrainment rate (E) and fractional
area covered by rising motion (6), which allows the determination of fractional cloud
amounts. Figure 1.b.1 depicts the domain of the model. Subscript S- denotes the earth's
surface, S the top of the ventilation or surface layer, B the base of the entrainment layer
or the top of the PBL, and B+ the top of the entrainment layer or the level just above the
top of the PBL. Both the surface and entrainment layers are infinitesimally thick
(indicated by the stippling in figure 1.b.1).

Entrainment Layer

Surface Layer

Figure 1.b.1: Domain of Bulk Boundary Layer Model.



1.c. Literature Review

Deardorff (1974a) completed a three-dimensional numerical study of the heated PBL
where he determined the mean structure and height of the PBL. His study utilized data
from Day 33 of the Wangara Experiment: Boundary Layer Data (Clarke et al., 1971).

His model included grid-volume averaged equations for the momentum, potential
temperature, and mixing ratio. The potential temperature equation included a term for the
temperature change due to the divergence of the long-wave radiative flux. Deardorff also
utilized subgrid transport equations (%E’]}f %W %ﬁ Eb-r —g—@’_cf ; and%_ﬁ)
for the subgrid Reynolds stresses. He assumed that the terrain was flat and the surface

temperature and surface roughness were horizontally homogeneous.

The surface momentum flux was prescribed using the surface-layer formulations of
Businger et al. (1971) and the surface layer integrals of Paulson (1970). The surface heat
and moisture fluxes were computed using the subgrid transport equations. The model
was initialized using data beginning at 0900L on Day 33. '

Deardorff's model overestimated the calculated rate of growth of the mixed layer
height between 1200-1500L. He attributed this overestimation to the lack of large-scale
vertical motion in the model. Thus, the model mixed layer height was also overestimated
during the afternoon. At 1200L the model predicted 1030 meters, while the actual height
was 1010 meters. At 1500, the model height was 1400 meters and the actual height was
only 1200 meters. The maximum model height was 1500 meters at 1800L and the
maximum actual height was 1280 meters.

Yamada and Mellor (1975) completed a simulation of the diurnally varying
planetary boundary layer and compared it with Days 33-34 of the Wangara data. Their
model differed from Deardorff's by using ensemble mean closure instead of subgrid-scale
closure. They used their level 3 model which required the solution of only 2 out of 10
differential equations for turbulence moments (turbulence kinetic energy and temperature
variance).

Yamada's model underestimated the height of the PBL by about 300 meters during
the afternoon hours. This discrepancy was due to the uncertainty in the observed values
of the mean vertical wind. They concluded that accurate data for the thermal wind and



mean vertical wind are necessary to obtain realistic simulations for the mean winds and
temperature.

Suarez et al. (1983) developed a parameterization for the PBL to be used in the
UCLA General Circulation Model. Their work provides some of the basis for this thesis.
The parameterization used a mixed-layer approach where the discontinuities in
temperature and moisture at the top of the PBL were modeled using jumps. They utilized
a modified o-coordinate and bulk equations for the PBL.

Based on the earlier work by Deardorff (1970, 1972, and 1974a,b), the PBL depth
was determined using a prognostic equation. Deardorff showed that entrainment was
vitally important in the determination of the PBL depth and that the PBL depth affected
the bulk Richardson number, which in turn was related to the stability dependence of the
surface transfer coefficients.

The modified o-coordinate was used to allow the varying depth of the PBL to be
included into the GCM. In the conventional 6-coordinate system, surfaces follow the
earth's topography. In the modified G-coordinate system, the earth's surface and the PBL
top are both coordinate surfaces. This allowed the PBL to be more effectively coupled to
the large-scale dynamics. Also, the detailed structure that occurs at the PBL top where
the jumps are did not have to be resolved by the GCM grid since the structure was at the
interface of the two lowest GCM layers in the modified G-coordinate system.

The bulk equations at the PBL top related the flux of a quantity to the product of the
entrainment rate and the change (jump) of the quantity across the top interface. Surface
bulk formula were determined using similarity theory formulated by Businger et al.
(1971), just as Deardorff used. Since the fluxes at the PBL top use the entrainment rate,
it had to be parameterized in terms of the prognostic variables. This parameterization
was based on separating the buoyancy and shear terms into positive and negative
production. The entrainment rate was then given by positive production minus negative
production minus dissipation.

Randall et al. (1992) developed a second-order bulk boundary-layer model. This
model matches the fluxes associated with the convective mass flux with the surface or
ventilation mass flux and the entrainment mass flux. The model also provides the first



physically based means to determine the fractional area covered by rising motion, G.
Finally, the model allows the "well-mixed" assumption to be relaxed.

This thesis is a continuation of the work done by Randall et al. (1992). A new
entrainment parameterization is introduced based on the sums of the buoyancy and shear
production terms. A surface transfer coefficient is calculated based on the predicted
turbulence kinetic energy. Results are shown using the diagnostics developed in
Randall's bulk model including the convective mass flux and the fractional area covered
by rising motion. Finally, a two-layer model is developed and tested.



2. Description of One-Layer Model

2.a. Equations

This chapter provides detailed derivations of the prediction equations used by the
model. Table 2.a.1 provides a summary of the final equations used, the assumptions
made in the derivations, and the boundary conditions applied to simplify and solve the
prognostic equations.

Tensor notation is used throughout the derivations with the subscript j referring to
one of the components of momentum or Cartesian coordinates (u=uj, v=us, w=us3, X=X,
y=x2, z=X3, where subscripts i, j, or k are used with the values 1, 2, or 3).



Table 2.a.1: Model Equation Summary.

Equation

Conservation of Mass
2.a.1)

Assumptions

Top B.C.

Surface B.C.

(4p,)
——2L=-Ve v, )+
L) ve(tp.r.)
gE
u-Momentum * Boussinesq o Turbulence * Horizontal
(2.a.2) vanishes homogeneity
o Shallo.w
E _ convection ° Momcr_ltum * No mass
% = (—us*-—u”'—)- - flux vanishes crosses earth's
ot P4z, « Viscous effects surface
2 ignored » Momentum
P Fron [Vl % flux atlevel B |« Louis (1979)
AT 9 P vanishes if E<0 | surface
i and — of | momentum flux
f(va-v,) o parameterization
perturbation
quantities zero
» Mixed layer
values of v, p,
and Az used
« Horizontal
homogeneity
v-Momentum « Same as u- e Same as u- » Same as u-
(2.a.3) momentum momentum momentum
equation equation equation
% B E(V'!,+ "Vm) B
a  p.dz,
p 2mel"m|vm
pMAZM
£ — 1,




Table 2.a.1:

Model Equation Summary (continued).

Equation Assumptions Top B.C. Surface B.C.
Potential Temperature e Same as e Turbulence e Same as
(2.a.4) momentum vanishes momentum
' equations equations
a2 except: * Heat flux except:
20, M + vanishes
ot p.4z,, » Molecular * Louis (1979)
5 conduction and | Heat flux at surface heat-
Pgcd l"m]ﬂm—mm (5 -0 ) radiation level B vanishes | moisture flux
0.74p, Az, s= “m/| divergence if E<0 parameterization
ignored
» Mixed layer
value of 9 also
used
e No phase
changes of water
Moisture e Same as e Turbulence e Same as
(2.a.5) momentum vanishes potential
equations _ temperature
E(7. - except: e Moisture flux
or PnAz, » Source-sink
2 term assumed to | ¢ Moisture flux
Pyd |v'"|ﬁ"“"'"°""- (573 -q ) be a mean at level B
0.74p,4z,, ~ ™| forcing and vanishes if E<0
equal to zero
» Molecular
diffusion
ignored
» Mixed layer
value of q also
used
¢ No clouds




Table 2.a.1: Model Equation Summary (continued).

Equation Assumptions Top B.C. Surface B.C.
TKE (E>0) e Same as + TKE vanishes | No mass
(2.2.6) momentum crosses earth's
equations e Vertical surface
de g except: turbulent flux of
7’"= (S§+B-Ee, - TKE at top equal | » Vertical
4p, * Viscous to value at turbulent flux of
D) dissipation term | surface TKE at surface
approximated equal to value at
* Pressure top
e Gravity waves | correlation at top
neglected zero (due to e Pressure
neglect of correlation at
¢ Mixed layer gravity waves) | surface zero
value of TKE (turbulence
also used * Vector vanishes)
momentum,
p ( F, )5* constant hea_t, and * Vector
ek - moisture fluxes | momentum flux
In surtace. lay vanish constant in

and is parallel to
wind

* F decreases
linearly in
entrainment
layer and is
parallel to wind

in

% 9?!1 5"

¢, TF,,

p

b

* Fy =
m

* Ratio of Fy,
and pressure
approximately
linear

.0.2 =£@_

a,
(second order
closure)

surface layer and
1s parallel to
wind

» Momentum
vanishes

» Horizontal
homogeneity

 Louis (1979)
surface heat-
moisture flux
parameterization




Table 2.a.1: Model Equation Summary (continued).

Positive Entrainment
(2.a.8)

b
E= —t
Poven T+ b,RI)

» No clouds

» Turbulence
required to mix
newly entrained
air

< Balance

between buoyant §

production and
dissipation of
TKE

Negative Entrainment
(2.2.9)

» No clouds

o Turbulence

1—- weight required to mix
E= -(———L)-( B,+ newly entrained
€, air
8~D) » Local rate of
change of TKE
neglected

2.a.(1) Conservation of Mass

The mass conservation equation is expressed by

Pp Apy;) _
&+ > =0.

]
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Equation Assumptions Top B.C. Surface B.C.
TKE (E<0) e Same as TKE | Same as TKE |+ Same as TKE
(2.a.7) (E>0) except: (E>0) except: (E>0)
de e Production of | Vector
m 8 . g
B weight( B, + TKE weighted | momentum,
4p, based on heat, and
8 D) contribution due | moisture fluxes
to local change | vanish at level B
and entrainment | and above since
production E<0

(2.a.(1).1)




This equation is not used directly (the form of this equation listed in Table 2.a.1 is used to
predict the boundary layer depth), but is used to derive the other conservation equations.

2.a.(2) Conservation of Momentum

The Navier-Stokes equation is

& . Fu. (Aeg) 2 &
_”'_:-5"‘?”8’“';»35 ﬁ&x”( P )ax.axf

=t 2.2.2).1)

J

where f is the coriolis parameter (2£2sin), €, is the alternating unit tensor where

+lfori=1andj=
€;=q~1fori=2andj=1
0 fori=j,

u is the dynamic viscosity coefficient, p is the density, and A=-2p/3. The incompressible
form of (2.a.(2).1) is

2
‘;‘: +u %f_ =-8,8+ fe,u, - ﬁgdr %%. 2.2.2).2)

[

Equation (2.a.(2).2) is multiplied by the density (split into mean and perturbation parts
when multiplied by g, constant otherwise: the Boussinesq approximation) to give

—| oy ou, - o ’u,
p[ “§+ ; g] ==pb;;8~ P 6.8+ Pfe;su; - %"" ﬂa"%- (2.2.(2).3)

! 4

Next, (2.a.(2).3) is divided by the mean density to obtain

ou,  ou, 1 7’
-37+ U, 8x' ==0,,8- £ =0,;8+ fe;u; ——%+ V—a:: ! (2.a.(2).4)
o g R it g
where v = i/ p is the kinematic viscosity. For shallow convection %— = -l

approximation is then applied to (2.a.(2).4) which yields

11



ou, . 1 ’u,
-ét-l-.*.uj%:_gulig—{%] :|+f8|”u —;%+ ? , (2.a.(2).5)

v l J

Now, equation (2.a.(2).5) is multiplied by p and is added to u; multiplied by the
continuity equation to get

ou__ B ow_ APw) [ (8
p & = ul: at pu} . ul ax} pal'j g gw g
. (2.2.(2).6)
- i O o B
+Pfe;;5u; p%g{"’ PV"""J?
Equation (2.a.(2).6) is then put into flux form,
Apu)  oPuw;) _ { (6’} :| =
S -Po,;| g—| = |8 |+ Pfe;su; -
or ox; 0, o
g v (2.a.2).7)
S A e B
]68): ar;

Only the horizontal momentum equations (i=1, 2) are considered, the geostrophic wind
definition is used, and viscous effects are ignored. Then, (2.a.(2).7) becomes

o pu;) il a(ﬁu,-uj)
ot ox

i

+ f)'fs,-ﬁ[uj —(:tj)gl i (2.a.(2).8)

where the g subscript denotes a geostrophic wind component. The wind components are
next split into mean and perturbation parts to give

o ox; 2.2.(2).9)

The split is not necessary for the geostrophic component since this component is a
constant. Equation (2.2.(2).9) is then simplified using the method of Reynolds averaging.

12



Consider an instantaneous quantity, A, which is split into a mean and perturbation
component (A and A’). The mean component of A represents either the time, space, or
ensemble average of A, and the perturbation component represents positive or negative
deviations from this average. If A=A +A’, then (A) = (ﬂ) orA=A+A’. The

last equality can only be true if A’ =0 This just states that the sum of positive deviations
from the mean equals the absolute value of the sum of the negative deviations, thus the
net sum of the deviations is zero. Reynolds averaging is accomplished by applying the
above result to quantities split into mean and perturbation parts. Stull (1991) provides a
detailed discussion of Reynolds averaging. Equation (2.a.(2).9) then becomes

o pr pum,+puu;) _ [
(&)z_a( . )+pf£53[uj—(uj)s]. (2.2.2).10)

The u-component of 2.2.(2).10) is

J(pw) _ _d(pum) o(puv) d(puw)

d “ 7 ? 2.a.(2).11

Apdd) Apdv) Apaw) _,_ (22.(2).11)
g & A%

Horizontal derivatives of perturbation quantities are neglected because
A(horizontal flux) P A(vertical ﬂux). Equation (2.a.(2).11),

Ax, Ay Az
without these terms, is next vertically integrated from the lower surface in the boundary
layer, zs_, to just above the boundary layer top, zg,+ which yields

Ax = Ay >> Az, thus

r a((,;*:r f 5'17 J 9(10“ ipE?) , _
J- 3(9“’) ']”f(_ﬁ’:?{zldz+ 2.2.(2).12)
| m’.ﬁf(v—vg)a‘z

I=Ig.

Equation (2.a.(2).12) is then transformed using Leibniz’s rule to give

13



ol ” Aol . dzs_
5:;[ pudz = p(t, z, )u(t, z3,) a‘; (& z. )62 2, ) aj

zmzp,

_-é; I puudz+ f)'(f, zB+)LT(t, ZB+)£T(L ZB+) a;;+ =

=z¢

p(t, z)u(e, zs_ )a(e, ZS')%_% j P vdz +
oz

ﬁ( L, Zps )]'_“(t' 284-)‘—’(?’ ZB+) S

5

(2.a.(2).13)

where the mixed layer values (denoted by subscript m) of v (the v-component of the

wind), the density, and the boundary layer depth have been used to simplify the
integration. Since turbulence vanishes above the boundary layer, p(t, zg, Ju'w’(t, zg,) is

Next, the terms at height B+ and at height S- are combined to give

3 025, 02, 025, —
5! |:{a;+ua;+v5;—-w]]—

(2.a.(2).14)

where the function notation has been dropped. The terms inside the square brackets
represent the entrainment mass flux, E, across the B+ and S- surfaces respectively. The
S- surface is the earth’s surface, where the entrainment mass flux is zero (the individual

terms are not necessarily zero, but their sum must be zero since no mass can cross the

14



earth’s surface). Equation (2.a.(2).14) then simplifies to

Tp'mz = Eil,, -V o Taﬁﬁdﬁ (PUW ), + puf(Ve=v,)42,, (22.(2).15)

i &
& H =g

where the second term on the right hand side is a combination of the fourth and fifth
terms in equation (2.a.(2).14). Now, the first term and the divergence term are integrated
using mixed layer values as was done for the coriolis term to give

Abdilie) g, ¥ o [u,purt2.)+(5T7) 4

prﬂf(vm-vs)dzw’

or

pmAzm-C?u_m = EEBi- —Uu

> M— Ve(u,p,v,A4z,)+

" (2.2.(2).16)
(P, + put (v =,

The derivative in the second term on the right hand side of the lower equation of
(2.a.(2).16) can be expressed in terms of the entrainment mass flux into the top of the
boundary layer. This is shown by Figure 2.a.(2).1.
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(1) Entrainment brings mass
into PBL top at local point

Local Point

(2) Mass flux converges \
at local point \ P hocal
N Vi
_ N\
\
(PmAzn); - e BN
Area of Area of
more mass less mass

(3) Area containing more mass is
advected into local point by the
velocity

Figure 2.a.(2).1: Processes Which Cause Local Change in Mass.

The local mass flux ((p,Az, ), ) changes due to: (1) the entrainment of mass into the
PBL top (E), (2) horizontal convergence of mass flux (-p, Az, (V oy _ ) et ) @0 (3)
horizontal advection of mass flux (-v, ¢ V(p,Az,) weat)-  Inerefore,

Hlln) L gz, (Vo) a0 V(putc)

equation of (2.a.(2).16) gives.

Substituting this into the last

local”

pmAzm %‘t_’"_ — EITB*- -um[E o pmdzm(v b vm)-— vm 4 V(pmAzm)]

-Veo(u,p,v,42,)+ (ﬁW)s_ +Puf(Vn =V, )2z,
or using the vector identity u,V ¢(p,v,4z,) =u,p,4z2,(V *v, ) +u,v, *V(p,.4z,),

ou,

Pz

m

=Eu,, —Eu,+u,Ve(p,Az,v,)

Y (U, ¥, 42,) + (PUW)_+ Pof (Ve =V, )A2,.,

or
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uliz, o= BTy, —t,) 1,7 o (0,0, 2,) -1,V o (p.0,,) -

p.Az, v, *Vu + (EW)S_ + pmf(vm ~¥ )A:f:m,

or

ou = e
A at’" = E(#,, —u,)-p,Az,v, o Vu, + (pu w )s

+pmf(vm - vg).dzm.

A
ks . (2.2.(2).17)

Horizontal homogeneity is assumed in the last equation of (2.a.(2).17). This
eliminates the second term on the right hand side. Then this equation is divided by the
mixed layer density and boundary layer depth to give

A, _ E@p=,) (P,
e (;i Az“ )+ pMAz: + £V =) (2.2.(2).18)

m
The local rate of change of the mixed layer u-momentum component is due to the
entrainment flux of momentum through the boundary layer top, the surface flux of
momentum, coriolis-pressure gradient effects, and momentum divergence. The v-
component equation is derived in the same manner and is

Py _ Epy=va) , (P7W),,
= (;i Az: ), g flu,~u,): (2.2.2).19)

Chapter 3 provides details of the parameterization of the surface momentum fluxes.
The equations with the included parameterization are

My _ By, =) P FronlVultin | o _
Sy i +f(va=,), (2.2.(2).20)

and

¥y _ E(g,=v,)  Pp@FronlVulVen

T p palz,

f(u, —u,), 2.a.2).21)

m

17



where p,,. is the surface air density, a’ is a drag coefficient, F,, is an empirical

mom

function which is dependent on a bulk Richardson number, and vm| is the magnitude of

Fi 4 " 4 and12
the mixed layer horizontal velocity (|v,,,| = (u;, +v ) ).

2.a.(3) Conservation of Potential Temperature

The conservation equation for moist static energy is

oh  oh dFh 1 %,

Uit 4, , 2.2.(3).1
7 TR R @a.3).1)

where h =c_ T +gz+L,q is moist static energy (L, is latent heat of vaporization of
water and q is the water vapor mixing ratio), v, is the kinematic molecular diffusivity for
moist static energy, ¢, the specific heat for moist air at constant pressure, and Q, the
component of net radiation in the jth direction. This equation is then multiplied by the
mean density and is added to the product of h and the continuity equation which gives

oh F - on Opw) _ #n 13
S0 R T e e il —_— L 2.4.(3).2
p&-" 8!‘ pu)axj 3xj +pv.‘|&’; Cp&tj ( a() )
Now, equation (2.2.(3).2) is put into flux form,
Aph) __oPuh) - &h_ 130,
. el o)t 2.a.03).
= PR <l (2.2.3).3)
Next, equation (2.a.(3).3) is expanded into mean and perturbation parts to give
o) , apr)__apER)_apnK)_olpf)_ofpur)
o ot &rj 8J:j 3xj f
_- . (2.a.(3).4)
pV. o'k +pv azh'-.i'..an _ian
P TP T T &

After Reynolds averaging, equation (2.a.(3).4) becomes

18



(2.2.3).5)

The horizontal derivatives of the perturbation quantities are neglected using the
same scaling argument presented in section 2.a.(2), then equation (2.a.(3).5) is vertically
integrated ignoring molecular conduction and radiation divergence which gives

= 3(ph), _ - olpuk) < o(pvh), ~r opwh),
:=.[, & T _:3-[ ax T =z @ ) :s[ aZ ’
' = 2 o (2.a.(3).6)

Leibniz's rule is then applied to (2.a.(3).6) to yield

__a_zzh‘—_ T (}284- .- aZS— _imz"——- b~ &3+ _
= p de = phi =2~ ph—=—— :=_[fuhdz+ puh =
-0z 0 — oz —~dzz
pith—=—-— | pVhdz + pvh -2+ - pvh —= - 2.2.(3).7
- PRt pTh— 2.2.3).7)
PWh(t,2,, )+ Pwh(t,z,.) = Pwh (t,2,,) +
b’?(r, 2s.)

The second to last term in (2.2.(3).7) is zero because turbulence goes to zero above the
boundary layer. The terms at the bottom and top of the boundary layer are then combined

to give

g. J‘;ﬁfdz = E{ﬁ(&; +Eaz"* +Vaz3* -WJ:|-
oz

h s'+§az“ +\Taz”‘ -w |- (2.a.(3).8)
A 7T B

2°7¢ d L 77

?a;z:zspu hdz - gﬁ_[:)v hdz + (pw h )

19



As described in the previous section, the terms in the brackets represent the
entrainment mass flux across the PBL top and surface respectively (where the surface
terms add to zero because no mass can cross the earth's surface). The horizontal
derivative terms are combined as in the last section, and then equation (2.a.(3).8) reduces
to

%FJZ'%E dz=Eh,, -V Fj%ﬁidz +(pWr'), .

=14 =zq

(2.2.(3).9)

The integrals are then evaluated using mixed layer values,

a mhmAzm - —_—7’
_(_F’T_l = Ehy, -V o (h,p,v,42,)+(pwH)_,
or
PMAZ,,. % = EEB+ i hm i(_ejardz_m) =~ (hmp"'v"’Az"") *
(ﬁw)s-’

or employing the same vector identity and expression for the entrainment used to obtain
equation (2.a.(2).17),

P4z, = = E(hy, - h,)- p, Az, o Vh, +(pWH)_ . (2.a.(3).10)

Now, horizontal homogeneity is assumed in (2.a.(3).10) which eliminates the
third term on the right hand side. Then the entrainment terms are combined, and the
equation is divided by the mixed layer density and boundary layer depth which gives

on, E(h,

- E(h8+ —hm) b (EW)S-
ot p.Az p. Az,

m m

(2.a.(3).11)

The equation for the mixed layer potential temperature (with no phase changes of
water) is based on the above equation. It is obtained by replacing the moist static energy
by the potential temperature and including the surface heat flux parameterization
presented in Chapter 3 to give
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a& — E(g‘g"' — 9’“) + pfffazlvmlﬂear—mﬁrmg
&  p,dz, 0.74p, Az,

(65--8,,) (2.a.(3).12)

where 4’ is the same drag coefficient used in (2.a.(2).20), vm| is defined as in the

is a similar function to F.

mom *

previous section, and F,,

af=moisiure

2.a.(4) Conservation of Moisture

The conservation of total water is given by
S
i, a@).1)
P

where v, is the molecular diffusivity for water and S, is a net precipitation source-sink

term. This equation is then multiplied by the mean density and is added to the product of
g, and the continuity equation to yield

d(pu, 2
J

Equation (2.2.(4).2) is next put into flux form,

pa) __dPwa) . 3%
&; _ &; + pv"'&x_fer 5. (2.2.(4).3)

Equation (2.2.(4).3) after expanding into mean and perturbation quantities becomes

Pz, , Apa)__ONpa)_dpa)_dlpsa) _dpua)
(2.a.(4).4)
3%, d%q]

where the source-sink term, §_ , is assumed to be a mean forcing. This equation is then

Reynolds averaged to give
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— + ol .

Assuming S, =0 (no precipitation leaving or falling into an air parcel), neglecting

molecular diffusion, and neglecting horizontal derivatives of perturbation terms,
(2.a.(4).5) becomes, after vertical integration,

2=2,, ) z*z,, =25, )
f (P‘?r) = | ey ( u‘?:) = (!g,%) ;
I=2I,. I=2Ig =1,

=i J(pw =2, J\ pw'q,
.[a( QI) J' (pazq)j

(2.a.(4).6)

This equation is analogous to (2.a.(3).6). Following the derivation from the previous
section, (2.a.(4).6) simplifies to

8(q, )m ” E(E?-m- i (q")m) 3 (ﬁm)s-
or P4z Pndz

(2.a.(4).7)

m m

In the absence of clouds, g, = ¢ (water vapor mixing ratio). Then, equation (2.a.(4).7) is

used with q and the same parameterization for the surface moisture flux as was used for
the surface heat flux, to give

@ﬂ_ - E(asd- - qm) + plfcahlvmlﬁleat—miﬂuu (-—- )

-q,). 2.2.(4).8
or p. Az, 0.74p, Az, e~ )

2.a.(5) Turbulence Kinetic Energy (TKE) Equation
Equation (2.a.(2).5) is expanded into mean and perturbation parts (except for the

l:g - (-g_-"-]gJ term which has already been expanded when making the Boussinesq

v

approximation) to give
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Equation (2.a.(5).1) is then algebraically expanded which yields

i@:—%-ujaﬁ}-u'au"-ujaﬁf_ujauf_ l3g+6l3 g_; +
x T a & & & & 8,

1 m
= 3 +Vv Vi

feij30; + feijzu; -

This equation is then Reynolds averaged and simplifies to

ou, W0m, W’ _ 1 82'
3!+:}x o =_|'.i'g+f8|‘j3uj_ B 2

(2.a.(5).1)

(2.a.(5).2)

(2.a.(5).3)

Next, the continuity equation for turbulent fluctuations is multiplied by «’ and Reynolds

’

(
averaged which gives u’'—= = 0. This term is added to the last term on the left hand side

v c?x
of (2.a.(5).3). This sum is then put into flux form,

at}- s i33+f£;13‘_‘,:‘_5§+v?-

|

55, ) L

Now, (2.a.(5).4) is subtracted from (2.a.(5).2) which leaves

R e

u; , 9uk)
V"é'x—?'f' . 5

4 J

o _ _ o y I, ou; 9' /
J g + fsl}'3u p =R

P

Equation (2.a.(5).5) is next multiplied by p2u which gives

23
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I T A S Y S ("
p2u,-§—=—p,?.uju,-;j—p2ul-uj§j-p2u,uj—j+p25‘-3u{b_-:]g+
2 s (22.5)6)
P2 fesufu, — P22 BE o TV ()
* P ox; o7 oo

The Reynolds averaged continuity equation, using mean density, is then multiplied by
(#)° and added to (2.a.(5).6) which results in

B a2 0PE) o
p2ui =t + ()" = = -p2u;ul —- - (u]) - p2uju; —+~
a Mo, x; I,
' 6'
P2uju;—++ p20;3u {—5—"—}3+p2f£,;3u,u1 (2.a.(5).7)
j
:ap " =9 a(u‘uf)
22L—+p2
pa PPN TP

- - Pp2uu - pu LR
ot ax} - J ) 8x}
P26, ;3u; g—; +P2fe; 341" = ;—72“—;—’ + I)'Zm-’ﬂ + (2.a.(5).8)
i 1 Gv I - 5 &t ] arf
8(u{u’)
=
p ul &

S
The perturbation continuity equation (——%’;—‘-’l = (), derived by using mean density

J
in the continuity equation, expanding this equation into mean and turbulent momentum

parts, and subtracting the Reynolds averaged expanded equation from the expanded
equation) is multiplied by (u.-’)z and added to (2.a.(5).8). The result is then put into flux

form,
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pte]_ dpmr] _ . aw dps]

ox; ¢ ox; ox;

I Ry & .

p26; 3u,{=ng + P2 fe;3uu; = pZ—ﬁ-z + p2vy; Ejz- + (2.a.(5).9)

7

p2u,-—g-x:’-i'—)-.

Equation (2.a.(5).9) is next Reynolds averaged to give
=7 | e 7 AD | =1 N |
] dm] gz {7
=- - P2uju; —-~ —f
¥ o ) % (2.a.(5).10)

6. wop . 0%

p2 :3“1[ )8"' p’feq.?ut“_; p’:_'*' p2vu; 5.2
9., P 8):,» 3xj

Equation (2.a.(5).10) is simplified in the following manner. First, the second to

o\u
last term (pressure perturbation term) is rewritten as [—2-5] (c?.rp ) ;5p_ i

Next,

the repeated indices are summed over which eliminates the coriolis term in (2.a.(5).10)
and the last term in the expression above (which converts the pressure term to divergence

form). Since TKE is defined as & = O.S(u +v' +w ) it is appropriate to sum over the

repeated indices here. Finally, the last term (viscous dissipation term) is rewritten as
9 (u”

5"“‘3?")"2’3"{%

J i

iz

] . The first term in this expression is the molecular diffusion of

velocity variance. This variance changes slowly with distance in the boundary layer with
typical values for the first term on the order of 10-1! kg m-! s-3. Considering an eddy 0.1
meters in diameter with a velocity that changes by 0.01 meters per second across the
eddy, the instantaneous shear across this eddy is .1 s"1. The shear becomes larger for
smaller eddies. Using this value, the second term is on the order of 10-6 kg m!s3. For
smaller eddies this term would be larger. Thus, the first term in this expression is several
orders of magnitude less than the second term and can be ignored. These results are then
applied to (2.a.(5).10) which, after dividing by 2, gives
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dpe) _ dpuE) _——om o(pue) __ (48
x &x; pucu;axj axj + P03 gv 8
S (2.a.(5).11)
our)
2,

’

2
where € = b‘v(j} . Equation (2.a.(5).11) is simplified by neglecting horizontal

J

derivatives of perturbation terms. This gives

3(55)= 3(Pu€)_3(pve)_3(pwe)_§a?éﬁ_‘. 8(p'7é)

o ox dy oz T o, Jz
(2.a.(5).12)
5 (WLG:) e a(w’p') e
6 oz ‘

v

Now, this equation is integrated from level S- to B+ (see figure 1.b.1)

“ape) T d(pme) T o(pve) T d(pwe)
J' o “J;_ = dz—:;[s- = dz——:;[s_ = ds-
g ,6@'-?7‘ dz - jﬁﬁ(p;—e) dz + 2.2.(5).13)

ZT 5-*——“(“?:) gdz- ZT' -—a(?) dz - zT;: dz.

=g I=zg. I=Ig.

Leibniz’s rule is used to transform (2.a.(5).13) to
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x x ¥
E[ﬁ(ag* +a‘93;- +v‘9§,— -w]]
a 1=2y, z-:,.
—Ezl’[—)ue dz - -é-;z"[fve dz+
& *_(we) _— (2.2.(5).14)

-Ip”&x‘dz-b- I,B
TAT, AT, T,

oz oz

=24 =15 =15

This equation is similar to (2.a.(2).14), where the bracketed portion of the first
two terms on the right hand side is the entrainment mass flux across the B+ and S-
surfaces. The first term is zero because the turbulence kinetic energy vanishes just above
the PBL top, and the second term is zero because the entrainment mass flux across the
earth's surface is zero. The seventh term on the right hand side, which represents the flux
divergence of TKE, is zero because the vertical turbulent flux of TKE is equal at the top
and bottom of the PBL, hence the vertical integration of this quantity is zero. Finally, the
second to last term on the right hand side (pressure correlation term) is zero since
turbulence vanishes at the surface, and if gravity waves (that remove TKE from the top of
the PBL) are neglected. Equation (2.a.(5).14) is then rewritten, using the hydrostatic

%P

lation (— = -pg),
rcauon(az pPg)

2=z, =25, z=z,,

E" dz=-Ve jepvdz- I Fog dz - J FO% dz +

=14 1=z 1=z

T (B e T

6,

v

97
PR
(2.2.(5).15)

where F, = pv u,F, = =pvV, and F, = pv w’ are each three components of the turbulent

momentum flux (also known as the Reynolds stress). The subscript v (for vector) is used
instead of w in the last equality because this quantity will be called the vector momentum
flux. The first and second integrals are simplified by using the mixed layer values for the
density, TKE, and momentum which gives
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d(p.e,4z,)

X =-Ve(e,pv.4z,)— J F, oi dz -

_:s

I F, .g dz+F_fs [E 0-—}4p+

Ll P=Ps.

T T

v 3"3

or

ap,e.4:,) =—ep. AZ,,.(V ° pm) -v, e V(emp,,,Azm)

or
—2=J:S_ F, -g a‘z-:;[s_ F, -% dz + (2.2.(5).16)

w-p, P"?s ) ] =2y,
(F; *— ap}ip ( ] dp - Isdz
P=Ps. P=Pse =15
The shear term is then simplified by breaking the integration up into Surface
layer, mixed layer, and entrainment layer components. For the surface layer, the flux is
constant and parallel to the wind (either both quantities are negative or positive, therefore,

the product and integration of the product are positive). The wind increases from zero at
S- to its mixed layer value at S. Therefore,

P=Ps =
STapa;"Smfaceiayer =_|(Ep)5| _[ ﬂl’“dp.

or 2.a.(5).17)

STop of Surface Layer = I('Fv )5 va I'

The negative sign in the first equation of (2.a.(5).17) is needed because the limits of
integration were reversed, but as was stated above, the result (second equation) is
positive. For the mixed layer, the wind is equal to its mixed layer value, thus there is no
shear here. In the entrainment layer, the flux is assumed to decrease linearly from its
value at B to zero at B+. The wind changes from its mixed layer value at B to another
value at B+. Again, the wind and flux are assumed to be parallel. Then,
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pp’&v
W T e

STap of Entrainment Layer e EI

P=Ps
or (2.a.(5).18)
1 i
STop of Entrainment Layer — E|(Er )ahdﬂ - -Z_Eldvl ’

where |A7| = 7,.| - [7,,| and (F,), = ~E|A¥]. The second equality in 2.a.(5).18) is valid
because the flux of momentum into the top of the boundary layer is due to entrainment of
air from the free atmosphere when there is wind shear through the entrainment layer.
This flux is zero if the entrainment rate is less than zero or if there is no wind shear. The
second equality is obtained in the following manner. Neglecting fluxes due to radiation
and clouds, the rate at which mass is added to the PBL from the free atmosphere (FA) is

given by gE. For any arbritary variable, A, the upward turbulent flux of A is denoted by
Fa. The continuity of the total flux at level B, assuming (F,),, =0, is

—EA,, =—EAy +(F,),. The flux added to the PBL from the free atmosphere must equal

the total flux within the PBL which consists of the flux within the PBL due to mass
entrainment and the flux within the PBL due to upward turbulence transport. The
transition of A at the PBL top is modeled as a jump given by 4A = A;, — A;. Using this
in the flux continuity equation gives (F,), =~EAA. If A=v then the second equality is
obtained. Next, horizontal homogeneity is assumed in equation (2.a.(5).16), except for
the second term which contains the mean divergence. This eliminates the third, fourth,
and fifth terms in this equation. Then, (2.a.(5).17) and (2.a.(5).18) are summed with the
result substituted into (2.a.(5).16) to give

Ao g o o) Lot fE
P=Ps- ro’ (23..(5).19)
I p—= ( u ) —dp- Ie dz.
P=Pge 9" p =1,

The buoyancy term can also be simplified by using an approximation for the flux
of virtual dry static energy. The buoyancy term is written

B= P=I {P ok 9’)dep,

V)

v
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or using F, =pw'é’,

P=PpPs- P=Ps- C TF I
B = —_=—— = ""'—""'—':
j dp C _I PT,
P=Pg. " P p=ps. ”'
¢ TF,
where 6_ = gt
m 9'“
P=Ps- P=ps-
F.
=R [ Frgpon [ Ly, (2.2.(5).20)
CP P=Pg. p P=Pp

Since the pressure does not change that much in the PBL and the flux of virtual dry static
energy varies linearly, their ratio is nearly linear, and the last integral in (2.a.(5).20) can

be simplified to
F F
B=£[( w)s +( v)a Ap,.. 2.2.(5).21)
2| ps Ds

Now, the definition of the flux of virtual dry static energy from (2.a.(5).20) is used in
2.a.(5).21) to get

K |:CP‘(?—-V)S(F9- )s 3 CP(T")B(F" )3 ]AP,,.,

p.!l'em pBBm

or using Poisson's equation,

G B

or
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) . X 2
orusing F, =F,+(6,,) 6F,, where 8 = 138 = 10%;5;- =0.608,

B=5A&j[&)‘[(ﬂ)s+(6m),.6(fa;)1

2 po Ps
- (2.2.5).22)
+(Pi)r (Fo)s "'(9»-)»5(}:;)3
b, )| Ps ,
where (F,), (F,), =-EAG, (F,) , and (F,), =-EAq are the PBL surface and PBL top

heat and moisture fluxes respectively. The PBL top fluxes of heat and moisture are
defined in the same manner as the mass flux into the PBL top. Chapter 3 contains the
details of the surface heat and moisture flux parameterizations.

The dissipation term is modeled by using a second-order closure assumption.

Im
I=Ig,

The vertically integrated dissipation rate is D = js dz = p,o’, where G is the dissipation

1=z

velocity. Closure is obtained by assuming the square of ¢ is proportional to the vertically

averaged TKE, ¢” = fi‘—, where a, =0.163 based on Deardorff’s (1974) results. The
q,

vertically integrated dissipation rate is then related to the vertically averaged TKE by

ol

D=p, ("—m} . (2.2.(5).23)

The TKE equation is finally written

a(p mem Azm

5 =-e,p,42,(Vev,)+S+B-D,

or

Azmpmj= = +pmAzm(Vovm)]+S+B—D,
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or using the hydrostatic relation and since the term inside the brackets is the entrainment,

de, g

ot

(S+B-Ee, - D), (2.2.(5).24)

where S is given by (2.a.(5).17) and (2.a.(5).18), B by 2.a2.(5).22), and D by 2.a.(5).23).
The entrainment rate is determined in the following section.

2.a.(6) Entrainment Rate Equations

Entrainment is the mechanism that brings unmixed free-atmosphere air into the
top of the PBL. This air becomes mixed by the existing turbulence in the mixed layer
causing the mixed layer to grow. The entrainment rate is positive if free-atmosphere air
is being brought into the top of the mixed layer. It is zero if no air is transported across
the PBL top. If air is being removed from the top of the mixed layer then the entrainment
rate is negative and the mixed layer is decaying. Because the previously described
prognostic equations require knowledge of E, it must be parameterized to solve these
equations. Since turbulence is required to mix newly entrained free-atmosphere air, E is
considered proportional to the square root of the TKE. This is the basis for the
parameterization described in section 2.a.(6)(a). This parameterization is used when the
entrainment rate is determined to be positive.

If there is no turbulence, then the TKE and E will equal zero. The existence of

turbulence alone, however, does not guarentee that E will be positive. Table 2.a.(6).1
summarizes the conditions that determine the sign of E.
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Table 2'.a.(6).1: Sign of E Based on B+S and Bo+So.

Sum of Buoyancy and Shear Computed with E=0
(where 0 < fraction £1)

Sum of Buoyancy and B, + S, < fraction *D B, +S, > fraction*D
Shear
Case 1 Case 2
E<0 E>0
B+S < fraction * D (B<B, .. EB, <0; since
EB, =0if E <0, E must
be greater than zero and
B, must be less than zero
Case 3 Case 4
E>0 E>0
B+S > fraction * D (B> B, .. EB, > 0; since
EB, =0 if E <0, E must
be greater than zero and
B, must be greater than
zero)

These conditions are checked during each time step of a model run. If E is determined to
be less than zero during a given time step, then the negative parameterization described in
section 2.a.(6)(b) is used to compute E.

During rapid growth, the TKE and E become large. Since the dissipation rate is
proportional to the TKE, it also becomes large. It is possible for the sums of B+S and
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‘Bo+Sp to be less than D which would cause a large entrainment rate to suddenly become
negative. There are two ways to prevent this from happening. One way is to seta
threshold of E such that when E is currently greater than this threshold it is calculated
using the positive parameterization regardless of the value of the sums. A better way is to
check the sums against a fraction of the dissipation (as indicated in Table 2.a.(6).1),
where this fraction is set as a tunable parameter. A proper selection of this parameter will
prevent the sums from being less than the fraction of the dissipation during periods of
rapid PBL growth. Table 2.a.(6).1 is discussed further in section 2.a.(6)(b).

During the late afternoon, before sunset, the clear convective boundary layer over
land has reached a quasi-steady-state. At this point the surface buoyancy flux rapidly
approaches zero with the loss of daytime heating. Both the entrainment rate and TKE are
small compared to their values in the mid-morning (during the rapid growth of the PBL).
At this point, a balance has occurred in the TKE equation Since there are no processes to
generate a significant amount of TKE at this time of day, the local rate of change of the
TKE is small and can be neglected. The sign of the entrainment rate then depends on the
sum of the buoyancy and shear terms. If this sum is small enough the entrainment rate
will be negative.

There are contributions to the buoyancy and shear production from the surface
and PBL top. The contributions from the PBL top depend on the sign and magnitude of
the entrainment rate. Since the entrainment rate determines how fast mass is brought into
the top of the PBL, mass will cross the free-atmosphere PBL top interface only when the
entrainment rate is positive. Thus, if the entrainment is zero or less then there will be no
contribution to the buoyancy or shear production at the top of the PBL. With positive
entrainment, buoyancy production at the top of the PBL can be positive or negative
depending on the gradient of temperature and moisture here. The shear production at the
PBL top is always non-negative. It is positive if the entrainment rate is positive and there
is wind shear across the top of the PBL, and it is zero if either the wind shear is zero or
the entrainment rate is zero or less. Therefore, the sum of the buoyancy and shear
production (with surface and top contributions) along with the sum of the buoyancy and
shear production at the top of the PBL must be considered to determine the sign of the
entrainment rate.
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2.a.(6)(a) Positive Entrainment

From Breidenthal and Baker (1985), the positive entrainment rate formula
without clouds is

b;
E=pp.le, —L1—, 2.a.(6)(a).1
. gA8 Az, . .
where Ri = —(E)—-—— is the relevant Richardson number, and b; and b, are constants
m Vem

determined as follows. For a strong inversion, b,Ri >> I, and (2.a.(6)(a).1) reduces to

E = ppfen b—f;'q—l.- (2.2.(6)@).2)

Now, substituting the expression for Ri into (2.a.(6)(a).2) gives

b, gEAB,Az,
L= : (2.2.(6)(@).3)
b, a'::'.B(em)v(em)j‘fir '

Using the famous “0.2” formula, EAB, = O-Z(Fe, )S (see Randall, 1984), (2.5.(6)(a).3)

becomes
b _ 02e(F, )4z, (2.2.(6)(@).4)
b, pa(em)v(cm)”i. - |

Next, a balance is assumed between buoyant production and dissipation of TKE. The
buoyancy term is written in a slightly different form from (2.a.(5).22), and the dissipation
is given by (2.a.(5).23). This balance is then written

E Azm 312
E(_iégr;_ = pm(e_m) : (2.2.(6)(a).5)

Since py =p,, and (8,,), =6, (2.2.(6)(a).5) can be substituted into (2.a.(6)(a).4) to
obtain
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b _ (L-zj.)%. ~6.10. (2.2.(6)(a).6)

b, (01) E
Now, in the no inversion limit (Ri=0), (2.a.(6)(a).1) reduces to
E = pgle,b;. (2.2.(6)(a).7)

Deardorff (1974) found by large-eddy simulation that

1/3
E LAz,
--—-—jl , (2.a.(6)(a).8)
S

1/3
s g(Fﬂ, )S A‘""’m g A i i
where w =| ——=——| s the convective velocity scale of Deardorff (1970). Using

(2.2.(6)(2).5) and (2.a.(6)(a).8) (where p, = p,, = pp), (2.a.(6)(a).7) becomes

13
by = oz[ﬁm} ~0.624. (2.2.(6)@.9)

Finally, from (2.a.(6)(a).6), one obtains b, = 0.102.

2.a.(6)(b) Negative Entrainment

Assuming the entrainment rate and TKE are small compared to their values
during rapid PBL growth, the local rate of change of TKE is small and can be neglected
in the TKE equation to give

0=—-Fe,+S+B-D. (2.a.(6)(b).1)

The sign of the entrainment rate then depends on the sum of the buoyancy and shear
terms. Solving for E in the above equation gives

_S+B-D
e L

m

E (2.2.(6)(b).2)
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where E>0 if (S+B)>D. There are four possible cases for determining -thc sign of E. The
buoyancy and shear terms are first written

B=B,+EB and =S5, +ES, (2.2.(6)(b).3)

where the zero subscript indicates the surface contribution to the buoyancy and shear (as
if E were zero), and the one subscript is the contribution to the buoyancy and shear at the
top of the PBL due to entrainment (as if the surface fluxes were zero). The buoyancy
and shear terms (B and S) are then computed assuming E>0. Then, the surface
contributions to the buoyancy and shear (Bg and Sp) are computed and summed. These
sums are compared to arrive at one of the four possible cases listed in Table 2.a.(6).1.

If Case 1 occurs then the entrainment rate is determined using the negative
production formulation. This is accomplished by partitioning the TKE equation into a
weighted contribution of the local rate of change of TKE and a weighted contribution of
the production of TKE due to entrainment. Equation (2.a.(5).24) is split into two
equations (where B=Bg and S=Sy since E<0),

g"'Ap, % = weight(B, + S, - D)

and (2.2.(6)(b).4)
(1-weight)(B, + S, - D)

eﬂl
where 0 < weight <1. If the weight is set to one then the sum of the above equations is
just (2.a.(5).24). The TKE is first determined using the top equation in (2.a.(6)(b).4), and
then the entrainment rate is determined using this new value of the TKE and the bottom
equation in (2.a.(6)(b).4).

2.b. Initialization

The model requires that certain variables, including prognostic variables, be
initialized before time-stepped predictions are made. Chapter 4 provides a brief
description of the Wangara data set used to initialize the land simulations. For land, four
data files are used that include: three hourly sounding data which includes temperatures
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and mixing ratios at various pressure levels, hourly sounding data which includes u and v
wind components at various heights, hourly ground temperatures, and hourly u and v
geostrophic wind components. Prognostic variables initialized over land are obtained by
interpolating between two data periods based on the model start time (e.g., with a start of
1030L, temperatures and mixing ratios would equal the sum of one-half of their values at
the 0900L and 1200L sounding times), and by interpolating between data levels (heights
or pressures) where appropriate. Table 2.b.1 summarizes the prognostic variables that are
initialized for simulations over land or water.

Table 2.b.1: Summary of Prognostic Variable Initializations.

Prognostic Variable

Land Initialization

Water Initialization

Mean pressure

Initialized based on

Assigned an initial

thickness data and start time | value
of model run
Mean u and v wind | Initialized from data | Computed as one-
components half sum of surface
wind and wind at
top of PBL
Mean potential Initialized from data | Assigned an initial

temperature

value

Mean mixing ratio

Initialized from data

Assigned an initial
value

Turbulence kinetic
energy

Assigned an initial
value

Assigned an initial
value
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Table 2.b.2 contains the constants that must be set at the start of a simulation.




Table 2.b.2: Summary of Constants.

Constant Land Value Water Value Use
Time step (At) 60 seconds 60 seconds Compute prognostic
equations
Sea surface N/A 289°K Compute surface
temperature potential

temperature, surface
mixing ratio, and
surface density

Mixing ratio at top | Not a constant: 1 g/kg Compute virtual
of PBL interpolated between potential
two sounding temperature at top of
periods PBL, buoyancy, and
mean mixing ratio
Potential N/A 4° K/km Compute potential
temperature lapse . temperature at top of
rate above the PBL PBL |
Surface u and v N/A 2m/s Compute u and v
wind components wind components at
top of PBL
Wind lapse rate N/A 5 m/s/km Compute u and v
above the PBL wind components at
top of PBL
Geostrophic u and v | Not constant: ug=-10 m/s Compute mean u
wind components | interpolated between | v,=0 m/s and v wind
two sounding components
periods

2.c. Top Boundary Conditions

As shown by figure 1.b.1, the model domain is bounded at the top by the free
atmosphere and at the bottom by the earth's surface. Top boundary conditions are applied
at the PBL top-free atmosphere interface, and surface boundary conditions are applied at
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the PBL bottom-earth surface interface. Lateral boundary conditions are not required
with the assumption of horizontal homogeneity.

Turbulence in the mixed layer results in uniform prognostic variables within the
layer (i.e., 8 >6_,q9—>q,, e—>e,, u—>u,, v—v, ). This turbulence also mixes free-
atmosphere air that is entrained into the top of the PBL. The first and very important top
boundary condition that the model requires is that the turbulence becomes zero at the
interface between the PBL top and the free atmosphere. This boundary condition is used
to simplify the prognostic equations. Zero flux at the interface is the boundary condition
that leads to (F,), = —EAA (described in section 2.a.(5)). The next boundary condition
is applied to the flux of A at level B, not at the interface, when the entrainment rate is less
than zero. This flux is zero when the entrainment rate is less than zero because no mass
enters the PBL top when E<0. The model uses this boundary condition to set the fluxes
of heat, moisture, and momentum across the PBL top to zero whenever the entrainment is
less than zero. The remaining top boundary conditions are applied to the TKE equation.
Since TKE is a measure of the turbulence, the TKE also vanishes at the interface. The
next boundary condition applies to both the top and bottom. The vertical turbulent flux
of TKE at the top is equal to its value at the surface. The final top boundary condition is
that the pressure correlation term vanishes at the top of the PBL when gravity waves are
neglected.

2.d. Surface Boundary Conditions

The earth's surface acts as physical barrier at the bottom of the PBL. Complications
arise in applying surface boundary conditions when the surface is heterogeneous and
varies orographically. The first surface boundary condition is horizontal homogeneity.
The next boundary condition is that no mass can cross the earth's surface. These two
boundary conditions are used with all the prognostic equations. The equality of the
vertical turbulent flux of TKE at the top and bottom is the third surface boundary
condition. The remaining boundary condition is the loss of turbulence at the earth’s
surface. This, along with the neglect of gravity waves mentioned above, eliminates the
pressure correlation term in the TKE equation. Table 2.a.1 lists the boundary conditions
used with the prognostic equations.



3. One-Layer Model Time Schemes

3.a Surface Heat-Moisture and Momentum Flux Parameterizations

The parameterization scheme developed by Louis (1979) is well suited to this model.
The parameterization is complicated enough to accurately represent the effects of
boundary layer fluxes over long periods, but not too complicated to preclude rapid
computer solutions even with lengthy simulations. This is especially important in
incorporating this model into a general circulation model where very long simulation
periods are required. The parameterization also fits well with the boundary layer being
represented by one or two levels, and the assumption that the fluxes vary linearly with
height from the surface to the PBL top (the top may be constant, or in this case
prognostically determined by the model). The description of the boundary layer by this
model is sufficiently detailed to prevent incorrect feed-back from occurring. Accurate
feed-back is necessary because this paramc'terization relates the magnitude of the fluxes
to the prognostic variables. Finally, since the model depends on both buoyant and shear
driven turbulence, the parameterization should simulate both of these processes. Louis'
parameterization accomplishes this by requiring that the diffusion coefficients not only
depend on the wind shear, but also the static stability of the atmosphere.

The parameterization scheme is based on Monin-Obukhov similarity theory. The
Monin-Obukhov scale height is given by

0wl

L= G
kg®.

(3.a.1)

where u, = /|| is the scaling velocity, k the Von Karman constant, g the acceleration
of gravity, and 6. =-w'6’/u. the scaling temperature. The integrated flux profile

relationships give

u=i"k-[zn(zfz,, )=V (2/ L)+ W (2,1 L)), (3.2.2)
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and
A8 = —R%-[!n(zlzo )= Wsearmoisture( 2! L)+ W nasmoisnre (20 1 L)) (3.a.3)

where z is the surface height (set to 10 meters in the model), zy the roughness height, y
are Businger's functions for momentum and heat-moisture, R is a constant equal to 0.74,
and A8 =6,_- 6, (the opposite of Louis' definition, hence the minus sign in (3.a.3)).

Substitution of (3.a.2) and (3.2.3) into (3.a.1) results in

_ B [In(2/2)) = Y on(2/ L) + Vseur-maisnwe(%0 ' L] (3.2.4)
A8 [In(2/2)) = Wpom (21 L)+ W pon(2o/ L))
The momentum and heat flux formulations are then determined in the following
manner. First, the square of the scaling velocity is solved for from (3.a.1). This gives

b SO (3.2.5)
7]
Next, (3.a.4) is substituting into (3.a.5) to get
u.Z B ku29° [lﬂ(z.i’ zﬂ) i me(z ;L).‘- !)Vkmr—moismu (ZO '!:L)] . (33..6)
A8 [In(2/2y) =W po(2/ L)+ W (2o L))
Then, equation (3.a.3) is used to convert (3.2.6) to
ul =a’w’F,, (z/2,L), (3.2.7)
kZ
where a’° = ———— is the drag coefficient, and F a function dependent on z, zg, and L.
[in(z/2,)]
The Monin-Obukhov scale height is related to the bulk Richardson number,
Riy = _égize_, which can be inferred from (3.2.4), therefore F is also dependent on z, zo,
U
and Riy. Thus, the surface momentum flux is
ps WU ==ps Ul =—p;_a’u’F,, (2/2,,Ri). (3.a.8)

Similarly, the surface heat and moisture fluxes are
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ps—azuAthear—molkwe(z / ZO’ RIB )
R

Ps WO =—ps_u.b. = (3.2.9a)

and

e ‘ulgF, . ,RI
ps’ qur - __ps-u-q. - pS—a qu hea.l'—;m'mu (Z ‘, zﬂ IE) ) (3.a.9b)

The model uses (*) =, (&*)__ =Py, and(u), =,

the above equations.

Louis computed the momentum and heat-moisture functions numerically.
Analytical formulae were then fit to the functions. The analytical formulae eliminate the
need to perform an iterative calculation during each time step. For unstable conditions
(when Riy <0)

- . . (3.2.10)
1+ dRiy|

12
where b=9.4, ¢, = 7.4a3b[-z- i) . The function for the
_ "

12
J 2 AN Chrpr i =9 .3a3b(

neutral and stable cases (Riy; 20) is

29

F = 4 (3.a.11)

(1+b'Ri,)”

where b’ =4.7.

3.b. Conservation of Momentum

The conservation of momentum equations (2.a.(2).20) and (2.a.(2).21) are
approximated by a forward time scheme for the first, 101st, 201st, 301st, etc., time steps,
and by a leap-frog time scheme for all other time steps. This is illustrated in figure 3.b.1
below. Periodically using a forward time step prevents any large divergence from
building up in the solutions produced by the leap-frog time steps.
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F: Forward Time Step
L: Leap-Frog Time Step

Fl 12 L4... L100 F101 L102.. L....

L1 L3... L99 L101... L...

Leap-Frog Scheme
starts over here

Figure 3.b.1: Conservation of Momentum Time Scheme Flow Diagram

The forward time difference schemes for (2.a.(2).20) and (2.2.(2).21) when E>0 are

Ap  @’F, utlve!|  AtE(ug, —u”
u‘: =u;-f+4{f-(v;—1 —Vg)_ p;fc mom~"m|" m ( B m)
pmAzm pmAzm i
or
ur! +Atf(v:," -vs)+—-——AIE:;*
“:’ " At ZF n=1| Pz ' (3-b-1)
a \4
1+ psfc mom|" m b AIE
[ p,4z,
and
Atp_a’F. vl AtE(v,, -V"
v:' =v;-f_M(u:.—1_ug)_ p;_fc mom " m| m + ( B+ m)
pMAzm pmAzm *
or



vl = Arf (u )+ Al

v,: = v = — pu_.. (3.b.2)
a v
1 + p.rfc mom|” m . AIE
pﬂlAzm pl!IAzll‘l

For E<0, equations (3.b.1) and (3.b.2) reduce to

i = s +Arf(v:,“ —vs)

. (3.b.1a)
At ZF n—1
I"" psfea mom vm
pnAz,
and
vl = Af (' ~u
vh == ’f(zF vn_ﬁ). (3.b.2a)
a
I+ psfc mom| m

Pndz,,
The pressure gradient/coriolis terms are represented explicitly (n-1), while the divergence
and flux terms are represented implicitly (n). Fully implicit representation would require
solving two equations in two unknowns simultaneously. The partially implicit
representation is used to simplify solving the equations and still maintain stability. Initial
condition data (see section 2.b.) is used for the values at n-1 for the first time step. The
values computed by the previous leap-frog time step are used as initial conditions (n-1
values) for the forward time step computations at time steps 101, 201, 301, etc.

The leap-frog time difference schemes for (2.a.(2).20) and (2.a.(2).21) when E>0 are

24tp.. a’Fu™' ™!l 24tE(u,, —u’"’
Wy =+ 20 (v - v, ) - Bl Comlte I |+ (49, — ")
P4z, P4z,
or
Wt 246 (v —v,)+ -—-——-ZA“Z;‘“
T e == (3.b.3)
I+ ps_ft mom|” m + AtE
Pnlz, Pz,
and

45



2& aIF n+l| _n=1I ZAIE - n+l
vt v =20 -, - 2P ] 200 )
pmAzm pmAzm
or
24ta°F. v+
vl 200 (-, ) + = k- +2‘4‘i‘2’8+
vl = - f:",*—"‘ Puln (3.b.4)
- 24p a’F,,, v, o 2AtE
For E<0, 3.b.3) and (3.b.4) become
W+ 24 (v -y
i i— Mz( - ,f_), : (3.b.3a)
1+ "mp.sfca me v.-n
pMAzM
and
r 24ta’F, vi!
vl = 200 (ul, - u, ) + =
vl = e Puin (3.b.42)
I"I’ ZArpsfca anmlvm

[
Here again, the pressure gradient/coriolis terms are represented explicitly (n), and the
divergence and flux terms are represented implicitly (n+1). After the values at n+1 are
computed during a leap-frog time step, the values at n-1 are updated to the values at n and
the values at n are updated to the newly computed values at n+1, before the next leap-frog
time step.

3.c. Conservation of Potential Temperature

aem - E(é-s"' ~ 9"') =% psfcazlvm

F : =
Equation (2.2.(3).12), raononnt (8. - 6,,), is

a‘ pmAzn 0'74pmAzm
rewritten as
2, gE = gV (=
2= 6,,-6,)+ 6,_-6,), (3.c.])
= ag, O 0n) oy (B mn)
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p#‘cazlvm IE:m:—maismu
0.74
(implicit) time scheme is used to represent (3.c.1). This scheme is unconditionally stable

where V = is the ventilation or surface layer mass flux. A backward

and has first order accuracy. The finite difference form of (3.c.1) when E>0 is then

8EA: gVAt

o' =0+ : (6. -02")+ r (65 -62").
or
e;+ii“"§h+i‘;‘”§s_
9::! - m m . (3.0.2)
| SEA gV
@ﬂ @m
When E<0 @.c.2) reduces to
o+ 845
! = ;";;’— (3.c.22)
1+ g _

Equations (3.c.2) and (3.c.2a) were used for the ocean simulations.

A prescribed surface heat flux was used for the Wangara simulations. Following André
et al. (1978), the surface heat flux is approximated from Day 33 of the Wangara data as a
sine wave (Figure 3.c.1)

M} (3.c.3)

0,=(0),. sfn[ L -

where Q, is the kinematic heat flux in units of K ms°1, (Q,)___ the maximum value of the
heat flux set t0 0.18 K m s-1, and ¢, is the current simulated model time in minutes. The
surface heat flux is then obtained by multiplying Q, by the surface air density to give

units of K kg m2 s-!, The maximum downward heat flux at night was set to 0.005 K m
sl(=6Wm2).
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Wangara Day 33 Prescribed Heat Flux
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Figure 3.c.1: Prescribed Wangara Day 33 Surface Heat Flux From André et al. (1978)

Using the prescribed heat flux for Wangara, equations (3.c.2) and (3.c.2a) become

. gEAt At
em + £ 98+ * ip pS-QO
n+l — m n-__g
4p,,
and
o™ =6 + % ps.0,. (3.c.42)

3.d. Conservation of Mixing Ratio

The time scheme equations for the mixing ratio are developed in the same manner as
the equations for the potential temperature. A backward (implicit) scheme is also used to
 represent equation (2.a.(4).8) rewritten similar to (3.c.1). Then, when E>0, the mixing
ratio time difference equation is

.  QEAt _  gVAr _
Q:u e q8+ + qs-
g e P (3.d.1)
Jpde O
4, 4p,
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When E<0, 3.d.1) becomes

g gVAra
qH = .:_._%_S:. ‘ (3.d.1a)
’ 1+8 L
4p,,

Here, the Louis (1979) heat-moisture surface flux parameterization was used for both the
Wangara and ocean simulations.

3.e. Turbulence Kinetic Energy

The time difference form of equation (2.a.(5).24) is written

n+l 2 - n J
(s7'40,) Vén = < Lo E(B,+S5,)+B,+S,-Ee*' - D, Be.D)
- pm n+.f3 n+l b}
D= ,f d E=pgye, ——,
or using @) _3_ e, an Psvén (1+b,Ri)

’ n+J'2_ nz
(g“’Apm)_%_Z_ =p8,Je:'” (_b-’._....(BJr +SI)+BD +S, -

1+ b,Ri)
, p 3 (.e2)
! n+l 1 n+l - m n+l
p3 em (1+b2Rl)em 3 ); em .
1

After rearrangement, (3.e.2) becomes
Ap b, |
3
eﬂ'l'l’ + m pm; i pB 1 eﬂ*'f -
" gAt [(a,)’ P (1+bRi)| VT

-1
psb(B, +S)| _p, Psb T _
(I+b.R) |(a)”  (+bR0)| Vo (3..3)

2 -1
CCTHY I
Ap,g

(a,)" " (1+b,Ri)
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This is a backward (implicit) finite difference equation just as was used for the potential
temperature and mixing ratio equations, however, it is also a cubic equation whose three
roots (one always real, other two complex conjugates or real) are equal to e’*'. When

E>0 the model solves this cubic equation and the square of the solution that is always real
is assigned to e~

When the entrainment rate is less than zero, the TKE at the next time step is
determined by applying a backward (implicit) scheme to the top equation of

Q.a.(6)(b).4), g”'Ap,, % = weight(B, + S, - D), where D = P ~Je e, Here the

(a,)2

dissipation is written in partially implicit form so the finite difference scheme can be
solved without using a cubic equation. As with the forward scheme used for the
momentum equations, this partial implicit representation still provides a stable solution.
Thus, the equation for the TKE with E<0 is

el —e”  weight 2

At g4p, (@)

or

4 weightAt (B, + s,)

et = § P (3.e.3a)
N weightAtp, /e’

gAp,, (a: )E

m
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4. Simulations

A short description of the Wangara dataset is provided in the next section. The
Wangara data is used to validate the model and study the clear convective boundary
layer. The last section in this chapter briefly describes the ocean experiment. The ocean
simulation is designed to study steady-state conditions in the PBL.

4.a. Land Simulation

The Wangara dataset was compiled by Clarke et. al. (1971). It consists of 44 days of
boundary layer data from 15 July to 27 August, 1967. The data was obtained from the
area around Hay, Australia located at 34°30'S, 144°56'W. The data collection project was
given the name "Wangara", which means "west wind". Day 33 of the Wangara dataset
was used for the land simulation.

Day 33 was characterized by clear skies, negligible advection of heat and moisture,
and high pressure. The nearest front was over 1000 km away. These conditions proved
perfect for study of the clear convective boundary layer. This particular day has been
widely used in boundary layer studies because of these ideal conditions and the readily
available data.

The data includes temperature and mixing ratio soundings every three hours from
the surface to 2000 meters. Soundings of the u and v components of the wind are
provided every hour from the surface to 2000 meters. The resolution of this sounding
data is every 50 meters from the surface to 1000 meters, and every 100 meters for the
remainder. The ground temperature and the geostrophic wind are provided once an hour.
Clarke provides additional data that is not used in this model.

4.b. Ocean Simulation

The data required is minimal since steady-state solutions are sought for the ocean
simulation. A constant sea surface temperature (SST) is specified. The surface mixing
ratio is computed based on the SST. The mixing ratio at the top of the PBL is fixed. The
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initial air temperature is specified to provide a positive surface heat flux at the start of the
simulation. The surface winds and the geostrophic winds are set to constants. The
potential temperature and winds at the top of the PBL are determined based on their
surface values and constant lapse rates. Finally, a divergence is specified to balance the
entrainment rate in the PBL depth prediction equation.
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5. One-Layer Model Prognostic Results

S.a. Wangara Experiments

5.a.(1) Twenty-four Hour Simulation

A 24-hour simulation using the Wangara Day 33 data was run to predict the
diurnal variation of the prognostic variables. The dissipation fraction (see Table
2.a.(6).1) and the fraction of TKE production due to the local rate of change of TKE
when the entrainment rate is less than zero (Section 2.a.(6)(b)) were set to 0.90. The
simulation was started at 0900L with a time step of 60 seconds. A cooling rate of 2°
day-! was applied to the predicted mixed layer potential temperature. The initial PBL
depth was set to 18 mb (=120 meters). The initial TKE was set to 0.2 m? s-2. The
Coriolis parameter, f, is equal to -8.26 10-3 s-! for Wangara.

Figure 5.a.(1).1 shows the diurnal change of the PBL depth. The abscissa
indicates the number of minutes into the simulation after the start time.
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Figure 5.a.(1).1: Predicted Diurnal Az, for Wangara Day 33.

This profile is typical of a clear convective boundary layer (CBL). At the start of the
simulation during the early momning a strong inversion exists just above the surface. The
boundary layer is shallow at this time (=100 meters). The strong inversion present during
the early morning acts to suppress the buoyancy. Since buoyancy is the driving force in
CBLs, the boundary layer grows slowly during this initial stage.

As the surface heating increases, the lapse rate transitions from stable to unstable.

The air just above the surface warms enough to remove the existing low-level inversion.
Figure 5.a.(1).2 shows 8, —6,_ and 6,, — 6. The first difference is a measure of the

strength of the surface inversion and the second difference the strength of the PBL top

inversion.
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Figure 5.a.(1).2: Diurnal 8, —6,_ and 6,, —6,, for Wangara Day 33.

The surface heating becomes strong enough to remove the surface inversion after about
100 minutes. This marks the second stage when rapid boundary layer growth takes place.
At this time strong heating at the surface creates buoyant thermals which rise. The near-
surface lapse rate is now superadiabatic which results in an unstable boundary layer. This
allows the thermals to continue to rise until they reach the inversion marking the present
height of the PBL. The large amount of buoyancy at this time of day creates vigorous
mixing, hence the name mixed layer. This causes the conservative variables to become
nearly uniform with height in the mixed layer. The predicted diurnal variation of the
mixed layer prognostic variables are shown in Figures 5.a.(1).3-5.a.(1).6.
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Figure 5.a.(1).3: Predicted Diurnal 8, for Wangara Day 33.
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Figure 5.a.(1).4: Predicted Diurnal g, for Wangara Day 33.
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Wangara Mixed Layer Horizontal Velocity
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Figure 5.a.(1).5: Predicted Diumnal |v,,| for Wangara Day 33.
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Figure 5.a.(1).6: Predicted Diurnal e, for Wangara Day 33.
As the moming progresses and the boundary layer becomes deeper, growth

occurs not only due to buoyancy, but also because warm free-atmosphere air is entrained
into the top of the PBL. This air is mixed by the turbulence within the PBL causing the
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PBL to grow. Entrainment arises because of penetrative convection. This is illustrated in
Figure 5.a.(1).7.
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Figure 5.a.(1).7: Illustration of the Process of Penetrative Convection (Stull, 1991).

An air parcel in the mixed layer that is initially warmer than the mean potential
temperature is positively buoyant, and thus rises through the layer. At this point the
parcel does not require any forcing to rise. This is free-convection where the parcel gains
momentum during its trip upward. When the parcel reaches the top of the PBL, it
encounters warmer air due to the inversion that marks the transition from mixed layer to
free-atmosphere. The parcel then becomes negatively buoyant, but continues to rise into
free-atmosphere because of its momentum. This overshooting is called penetrative
convection.

Once the air parcel has lost its momentum it sinks back into the mixed layer. The
parcel carries along non-turbulent, warm, free-atmosphere air on the return trip. The
positively buoyant free-atmosphere air becomes mixed by the turbulence in the mixed
layer before it has a chance to escape. This capture and subsequent mixing of warm free-
atmosphere air is the process of entrainment. Since less turbulent air is entrained into
more turbulent air, entrainment only occurs in one direction -- down into the PBL.

Mechanical mixing caused by wind shear at the surface and top of the PBL also

causes PBL growth, but this process is less important in a clear CBL over land. This is
shown by Figure 5.a.(1).8.
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Wangara Diurnal Shear and Buoyancy
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Figure 5.a.(1).8: Diurnal B and S Wangara Day 33.

During the rapid PBL growth period, buoyancy production is an order of magnitude
larger than shear production. Both buoyancy and shear production in this figure take into
account the contribution due to entrainment when E>0. Shear production becomes
important at night when buoyancy production is negative. Shear-generated turbulence

may cause the nocturnal boundary layer to grow.

The predicted diurnal change in the entrainment rate is shown in Figure 5.a.(1).9.
By mid momning when the PBL has rapidly grown to about 1 km, the entrainment rate has
increased dramatically. This gives an indication that entrainment is an important

mechanism for boundary layer growth.
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Figure 5.a.(1).9: Predicted Diurnal E Wangara Day 33.

The rapid decrease in PBL growth marks the third stage of the diurnal transition
of the mixed layer. At this point rising thermals meet resistance upon reaching the base
of the inversion at the top of the PBL. The inversion has increased in strength as
indicated in Figure 5.a.(1).2 which makes it more difficult for penetrative convection to
occur. Buoyancy production is no longer as effective in a deep boundary layer as it was
when the PBL was shallow. The boundary layer continues to grow, however growth is
much slower. As Figure 5.a.(1).9 shows, the entrainment rate rapidly drops off by early
afternoon which coincides with the much slower growth rate of the PBL during this
period.

The final stage in the transition of the mixed layer occurs around sunset. With the
loss of daytime heating, buoyancy production rapidly approaches zero. This marks the
decay of turbulence in the mixed layer. The TKE is no longer maintained by buoyant
production, and is rapidly dissipated. The mixed layer then becomes decoupled from the
surface. Since the sum of the buoyancy and shear is now less than the dissipation, the
entrainment rate is allowed to become negative. This has the effect of "crashing" the
mixed layer.
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The mixed layer depth decreases to its preset minimum of 10 meters shortly after
sunset. The mixed layer potential temperature decreases continuously until sunrise due to
the constant downward heat flux and a constant prescribed radiative cooling. The TKE
decreases at sunset and remains at its prescribed minimum of 1 10-2 m? s-2 during the
night.

With negative buoyancy production and insufficient shear production, the
entrainment rate remains negative, but it approaches zero after sunrise when the
buoyancy production becomes positive. The boundary layer is expected to grow at night
due to shear generated turbulence and other factors. There appears to be a problem with
the negative entrainment parameterization because it does not allow PBL growth during
the night.

5.a.(2) Seventy-two Hour Simulation

The model was then run for 72 hours to test the response to repeat use of the
Wangara Day 33 data. It was expected that the prognostic variable profiles would look
very similar from day-to-day. Slight variations were considered acceptable because the
initial conditions at model start time, 0900L Day 1, would not be the same as the
predicted conditions 24 hours later, 0900L Day 2. These predicted conditions could be
considered the "new" initial conditions at the start of the second day. Figure 5.a.(2).1
shows the mixed layer PBL depth as a representative profile. The profile is consistent
from Day 1 through Day 3. Although not shown, the other prognostic variables were also
consistent throughout the simulation.
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Wangara PBL Depth During 3 Day Simulation
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Figure 5.a.(2).1: Predicted 3 Day Az, Reusing Wangara Day 33 Data Each Day.

5.b. Ocean Experiment

The ocean experiment was designed to obtain steady-state solutions since no
database was used for this simulation. The initialization of the prognostic variables is
detailed in Table 2.b.1. Constants required to initialize the prognostic variables are listed
in Table 2.b.2. A 100 hour simulation was run to allow the variables to reach
equilibrium. The PBL depth prediction equation requires a non-zero divergence to
balance a positive entrainment rate when equilibrium has been reached. The steady-state
form of this equation is

gE

; 5.b.1
i (5.b.1)

Apmz

A divergence of 4 10-6 s-! was used for this experiment.

Figure 5.b.1 shows the convergence of the PBL depth completely to its steady-state
value by 100 hours. At equilibrium, the local rate of change terms in the prediction
equations are zero. As a check, the steady-state solution for one of the prognostic
variables can be determined by setting the local term in the prediction equation to zero,
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thus obtaining an equation for the variable in terms of diagnostic variables. The solution
to this equation should equal the value of the variable predicted by the model.

Ocean Experiment PBL Depth
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Figure 5.b.1: Predicted Az, Over Ocean.

Figures 5.b.2-5.b.5 show the progression of the other prognostic variables to their
equilibrium values. The steady-state equation for the potential temperature is

. M (5.5.2)
= E+V

If E>>V then the mixed layer potential temperature will reach the temperature at the PBL
top in equilibrium. This shows that entrainment dominates. If E<<V then the mixed
layer potential temperature will reach the temperature at the PBL surface in equilibrium.
In this case, the surface heating dominates.

Using the values of the potential temperature at the top and surface of the PBL
(8,, =291.93 K and §;_ = 288.79 K), and the values of E =4.38 103 kgm2 sland V =

2.36 10-2 kg m-2 s-! at t=6000 minutes, equation (5.b.2) gives@,, = 288.79 K. This
compares almost exactly with 8, = 288.75 K at t=6000 minutes from Figure 5.b.2.
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Figure 5.b.2: Predicted 6,, Over Ocean.
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Figure 5.b.3: Predicted g,, Over Ocean.



Ocean Experiment Mixed Layer Horizontal Velocity
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Figure 5.b.4: Predicted |v,| Over Ocean.
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Figure 5.b.5: Predicted e,, Over Ocean.

According to Figures 5.b.1-5.b.5, all the prognostic variables reach equilibrium
about the same time. Schubert et al. (1979) developed a coupled, convective-radiative,
boundary layer model and performed several ocean simulations where they varied the sea
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surface temperature (SST), the divergence, or both. In one experiment, the SST was
increased instantaneously from 14°C to 16°C, and the divergence was held constant at 4
10-6 s'1. They found the adjustment time for the PBL depth to reach steady-state was
about 20 times as long as for the other prognostic variables. They concluded that the
longer adjustment time was a general feature, at least under some typical eastern ocean
situations.

In Schubert's study an important dimensionless quantity was introduced that
measured the relative importance of surface transfer and mixing across cloud top. This
quantity was adopted for the present study, except that the mixing was due to entrainment
of free-atmosphere air only since no cloud effects were included. This quantity can be
thought of as an adjustment ratio and has the form

o %z_ (5.b.3)

where Cr is the surface transfer coefficient, V the surface wind speed, D the divergence,
and zp the height of the PBL in meters. If surface transfer dominates then the ratio is
large (about 4 or 5). The surface forcings rapidly adjust the thermodynamic variables,
while the slow mixing at the PBL top causes the PBL depth to adjust slowly. If the
mixing at the PBL top dominates then the ratio is small (<1). In this case, the PBL depth
adjusts in about the same time as the thermodynamic variables.

The value of A for the ocean experiment is shown in Figure 5.b.6.
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Figure 5.b.6: A for Ocean Experiment.

The ratio was never less than about 4.5 which would indicate that the PBL depth takes
much longer to adjust than the other prognostic variables.

This discrepancy is resolved by comparing the entrainment rate in the ocean

experiment with the one used in the Schubert study. Figure 5.b.7 depicts E for the ocean

experiment.
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Ocean Experiment Entrainment Rate
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Figure 5.b.7: E for Ocean Experiment.

At equilibrium the entrainment rate was small, but for the initial portion of the simulation
the entrainment rate became very large. However, in Schubert's study the entrainment
rate remained at a constant small value for the entire simulation. The parameterization
for E used in the present experiment caused E to become large enough so that the PBL
depth adjusted rapidly.

If one assumes that the equilibrium value of E obtained in the ocean experiment was
the value of E for the entire simulation, then the adjustment time for the PBL is obtained

by solving the differential equation for the PBL depth, a?:"' =4p,(Vev,)+gE. The

solution to this equation with the divergence and E constant is

gE
Vey,

Ap, = [1-eTeeatoms |4 (2, ) e Toowbom, (5.b.4)

where ¢,_,, is the e-folding time (time for variable to decrease to 1/e of its original
value) and (4p,,) , is the initial PBL depth. As ¢,_,,,, — o the PBL depth reaches its

equilibrium value of 4p,, = Vg;E Equation (5.b.4) can be manipulated to get a relation
oy

for ¢, .-
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This relation is

G 7oA

Lt = v = (5.b.5)

The e-folding time obtained with E at its steady state value of 4.382529 103 kg m2 5!, a
divergence of 4 10-6 s-1, an initial depth of 5817.8 Pa and a final depth of 10736.5 Pa was
25.6 days. The adjustment time is approximately 3 times ¢,_,,, which is about 77 days.
This is about 18 times as long as the PBL depth actually took to adjust in the ocean
experiment which corresponds excellently with the Schubert study. This shows that the
differences in E between the present study and Schubert's study are the key to the rapid
adjustment of the PBL in the present study.
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6. One-Layer Model Diagnostic Discussion

This chapter provides a brief overview of diagnostic variables determined in the
model following Randall et al. (1992). These variables include the fractional area
covered by rising motion, o, the convective mass flux, M., plume-scale variance
transport, pw'wy’ (where \ is an arbritary scalar such as the potential temperature or

water vapor mixing ratio), value of y at levels S and B for upward and downward moving
parcels, (Wy or d)s or B, dissipation time scale, Tqis, dissipation rate of  at levels S and B,

(Wdis)s or B, vertical gradient of i/, %y surface transfer coefficients, C;, and C,.,

Richardson number, and Richardson number limits.

6.a. Convective Mass Flux Model

The scalar, y satisfies the conservation equation

? 2
%‘E) ==V o (pry) - 2 (W) +5,. 6.a.1)

where the local change and the del operator are defined on constant height surfaces, and
Sy is the source of y per unit mass per unit time. The area average of the scalar is given

by
v=yo+y,l-0), (6.a.2)

and the upward turbulent flux of y is

’

F,=pwy’ =p|(w, - %)y, -F)o +(w, - %)y, - F)I-0)]
or (6.2.3)
F,= MC(W&: -‘Vd)s

where the convective mass flux is defined as
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M, =po(1-o)(w,-w,).

(6.2.4)

The convective mass flux can not be determined by the model using (6.a.4) because the

vertical velocities of upward and downward moving parcels are not known nor predicted.

The convective mass flux can also be written in terms of the fractional area covered by

rising motion and the turbulence kinetic energy. The former is diagnostically determined

(see Section 6.¢) using the entrainment rate and ventilation mass flux which are

calculated by the model, and the latter is predicted by the model. The definition (6.a.4) is

useful, however, in developing an equation for the plume-scale variance.

The plume-scale variance transport is

pw ¥y’ = plo(w, - 7). -¥) +(-0)w, - #)w.-F) ],
or using (6.a.2) where w=y,

pw' 'y’ = po(l-o)I-20)(w,-w,)V¥,.-V,)

or using (6.a.3) and (6.2.4),

pw'y'y’ =(1-20) e

Equations for y, and 4 are obtained by substituting (6.2.3) into (6.a.2) after
rearrangement which gives

o {d =
Y. =‘4f+( Mj)(Fv)
and
W.z =W-'M£C-(Fw)
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6.b. Matching Convective Mass Flux with Ventilation and Entrainment Mass Flux

For the ventilation layer, the bulk aerodynamic formula used by the model is
(F,), =V (@ - 7). (6.b.1)

The ventilation mass flux can be matched to the convective mass flux at the top of the
ventilation layer (at level S) with the following assumptions: (1) The fluxes at the top of
the ventilation layer are entirely due to convective circulations, and the small-eddy fluxes
are negligible at S. This is a typical assumption in the boundary layer where the small

. . St L :
eddies are important very near the surface (viscous dissipation, Re = %— = I, where U is

the horizontal velocity, L is the length scale of the eddy, and v is the viscosity), but in
most of the surface layer the Reynolds number is large (since U and L are large and v is
small compared to their values in the viscous sublayer) and viscous effects are no longer
important. (2) The ventilation layer is thin (the model assumes the ventilation and
entrainment layers are infinitesimal). The ventilation mass flux can then be matched to
the convective mass flux at level S with these assumptions and equation (6.a.3). This
gives

V(Ws- = 'l_’s) =M (v, -V, )5- (6.b.2)

Since the small eddies are important near the surface, they will dilute air that rises
from the surface and air that descends from the interior of the PBL. To account for this
mixing, a mixing parameter, Xy, is used so that

(Wu )s - '?S - xV (y_,S— =T ll{—IS')9 (6.b.3)

where 0 < ¥, < 1. When the mixing parameter equals 1, no mixing occurs by the small
eddies and (y, ), = ¥,_. Mixing by the small eddies increases as the mixing parameter

decreases from 1. Using (6.a.2), (6.b.2) and (6.b.3) results in

2y M‘j's =1-0; (6.b.4)
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A similar matching of the fluxes in the entrainment layer at level B leads to

Mc s
E

1p—<2=a,. (6.b.5)

Now, if Mc and ¢ are assumed to be independent of height then (6.b.4) and (6.b.5) can be
combined to give

ok
I+£ﬁ
V Xe

— (6.0.6)

An equation for Mc in terms of the entrainment rate, the ventilation mass flux, and the
mixing parameters is obtained by inserting (6.b.6) into (6.b.4) or (6.b.5) which gives

_ (Erxe)V/x)
¢ (E"ZE)"'(V*‘Zv).

(6.b.7)

The model does not determine G or Mc using equations (6.b.6) and (6.b.7) because it
does not contain a parameterization for the mixing parameters. The next section presents
an equation for Mc in terms of ¢ and the TKE. This equation is equated with (6.b.7) to
deduce a parameterization for the mixing parameters where they are equal to the same
quantity. The parameterization is not applied directly by the model, but is used to
simplify (6.b.6).

6.c. Diagnostic Equations for Mc and ¢ Using the TKE

Assuming the density of air is approximately constant with height in the PBL (since
the PBL depth is typically only 1-2 km), the vertically averaged TKE (ey,) is related to
the variance of the vertical velocity by

z=2p,

a.e,p, Az = % pn [Wdz, (6.c.1)

=z
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mvz

Kinetic Energy _ 2
area area

where a3=0.316. This equation is simply

Now, the variance of the vertical velocity is written

w? =o(l-0)w, -w,)’,

or using (6.2.4),

| — z
22 MC

w = m. (602)

All the quantities on the right hand side of (6.c.2) are assumed to be independent of
height. Then, substituting this equation into (6.c.1) and integrating gives

2
= _._.2me42’
2 p.o(l-0)

M, =p,~2a,0(I-0)e, . (6.c.3)

a3empmAz

or

Once the final equation for ¢ is determined then Mc can be calculated using (6.c.3).

Setting equation (6.c.3) and (6.b.7) equal to each other results in

(E/xe)(V/ xv)) = poFao =GR (6.c.4)

(E/2e)+ (VI 2y

Then substituting for ¢ using (6.b.6) to obtain

EV

. 6.c.5
2p,ase, -

Avie =

A plausible parameterization for the mixing parameters based on (6.c.5) is then
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’ EV
Av=Xe= m. (6.c.6)

Finally with this parameterization, (6.b.6) reduces to

0 =—f. 6.¢.7)

The model calculates the entrainment rate and the ventilation mass flux, and then (6.c.7)
and (6.c.3) are used to determine ¢ and Mc.

6.d. PBL Interior Diagnostics

The balance for the variance of y in the PBL interior is written

a_," & a“ Ia y S Y
SV =2 L EE S (oW Y)- 2, ©6.d.1)

©
¥
©
¥

where the local change of the variance is due to production of variance, vertical transport
of variance, and dissipation of variance (see (6.d.3)). Advection by the mean flow has
been ignored and y is assumed to be a conservative variable. The variance is given by

F =o(l- U)(Wn = Wd)l ’

or using (6.a.3),

—,5_6(1_6)ﬁ_ 2 (6.d.2)
y= sk d.

(o

The triple correlation portion of the triple correlation term is just the plume-scale variance
transport (6.2.5). The dissipation rate used by the model is

&, =

F=a(1-o)(ﬂ ]

r&s ‘tdas MC

or
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_o(l-o)I-20)(F,
g, = ; [MJ : (6.d.3)

-

T

m : (6.d.4)

where 7, =

Equation (6.d.4) is used to calculate the dissipation time scale for  based on G and the
parameter, 7, which is set during a model simulation. The model determines the
dissipation rate of the variance of y using the lower equation of (6.d.3).

The last diagnostic to be determined in this section is the vertical gradient of .

Writing (6.d.1) using (6.d.2), the plume-scale variance transport, and the top equation of
(6.d.3) gives

i |:cr(1 - o)[f—“'-] ] = ~—2&E -

o M, p oz |
M(1-20)13[ . (B Y] |
-0} p a2{0'(1 a)[MJ ] y (6.d.5)

An equilibrium solution to (6.d.5) can be found by setting the local time derivative to
zero. The equation then contains a first order derivative in z which requires only a single
boundary condition to solve. The boundary condition is applied at level S if 6<1/2
(boundary layer driven by surface heating), and at level B if 6>1/2 (boundary layer
driven by entrainment). To satisfy both (6.b.1) (surface flux) and (F, ) =~E(¥,, = 7,)

an additional condition must be specified. Choosing %’V to be constant with height will

force the differential equation to be satisfied at both boundaries.

Using the hydrostatic equation and the conditions above, (6.d.5) becomes

Q:A}?_"_)(% " g_] - _%g_ 6.4.6)
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gMcf

o(1-o)I-20) o)

where &p, =

Then, using the surface and top fluxes as boundary conditions, the solution of (6.d.6) is

ol (2]

v . (6.d.8)
o mreg| Bl ()| 22
where o _(1-20) . ] 6.d.9)
P M| (_4_;32 ]
AP .

Equation (6.d.9) is used by the one-layer model to obtain the vertical gradient of .

Assuming o is close to 1/2 and using the binomial expansion, equations 6.d.8) and
((6.d.9)) become

(6.d.10)

and

(R),- (B4 22 m), ()] e

Equation (6.d.10) is an approximation to (6.d.8) keeping first order terms. Equation
((6.d.11) is an approximation to (6.d.9) keeping second order terms. Then, if
(F“r )S| >> |(FV)8|, which is typically true in a convective boundary layer, ((6.d.11) reduces

to
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W _ -g7 A, '
» o(l-o)dp,) ( &». J(FV)s' (6.d.12)

The vertical gradient of @ is also determined by (6.d.12) in the one-layer model.

6.e. Surface Transfer Coefficient Using TKE

The bulk aerodynamic formula, (FV )s = V(. — ¥;), can be written by specifying

the ventilation mass flux (V) using the surface density, surface wind speed, and a surface
transfer coefficient

V = psCrlv.a|- 6.e.1)

Based on Randall and Shao (1990), the ventilation mass flux can be related to the TKE by
V= pCprofe. . (6..2)

In (6.e.2), the square root of the TKE is 'acting' as the velocity. Since turbulent flux
requires TKE and V is a measure of this flux at the surface, it seems reasonable that V is
proportional to Ja . Another reason to favor (6..2) over (6.e.1) is that turbulence can
occur in the absence of a mean wind (i.e., when there is positive buoyancy production).
As long as TKE exists, (6.e.2) will determine V regardless of the value of the mean wind.
Both Ct and C;. are determined by the model using (6.e.1) and (6.€.2) respectively.

6.f. Richardson Number and Limits

The Richardson number is determined using the equation listed in Section 2.a.(6)(a).
This equation is

8 (53*‘)» -(e‘“)v 4z,
Ri= [ (9,.,),9,,. ] ; 6.£.1)

When the inversion is strong, Ri>>1 then
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£ 2] [@.),-6.)]

a 14
lim = . =0.2, 6.£2)
Ri—pee (F-"')S

where Cp, is the specific heat of air at constant pressure.

When there is no inversion, Ri=0 (see equation (2.a.(6)(a).7)) then

—_—

E '
i"m=—T—]. 6.£.3

The strong and no inversion limits are determined by the model using (6.f.2) and (6.£.3)
respectively.
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7. One-Layer Model Diagnostic Results

Results are provided covering the convective growth period of the Wangara Day 33
simulation. This period is roughly from 0900L to 1600L, and includes rapid growth of
the PBL during the mid-morning and slower growth during the afternoon. The results
point out the importance of buoyancy and entrainment in the growth of a clear convective
PBL when the PBL top is below a weak or non-existent inversion. During the afternoon
when the inversion is strong, surface heating is still significant which continues creating a
large amount of buoyancy, but this buoyancy is largely ineffective in penetrating the
inversion layer. The strong inversion layer also limits the entrainment rate. The small
amount of entrainment present is largely balanced against subsidence, hence the PBL is
quasi-steady-state during the afternoon. Results are also shown for the steady-state ocean
experiment.

7.a. Wangara Results for the Fractional Area Covered by Rising Motion

Figure 7.a.1 shows the fractional area covered by rising motion, G, as a function of
time.
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Fractional Area Covered by Rising Motion
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Figure 7.a.1: ¢ for Wangara Day 33 0900-1600L.

By mid-morning, 6<<1 which is when rapid PBL growth is occurring. After 1200L, ¢
increases steadily as convective growth begins to diminish. The fractional area exceeds
0.5 after 1520L. At this time convection is no longer significantly affecting the PBL
depth.

In Figure 7.a.2 the plume-scale variance transport of the potential temperature at
levels S and B has been overlaid with G.
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Overlay of Variance Transports and Fractional Area
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Figure 7.a.2: (pw’G’G’)S, (pw’e'e’)s, and ¢ for Wangara Day 33 0900-1600L.

It is clear from the figure that the plume-scale variance transport of 6 at level S dominates
during rapid convective growth when 6<<1. While 6<1/2, (pw’e’ﬁ“)s > 0 which

indicates the surface is transporting variance upwards. When G equals 1/2, both
(pw'a'e')s and (pw’B’B'Ll are zero. Finally, when ¢ exceeds 1/2, (pw’B’B’)s

and (pw’G’G’)B are less than zero. At this point the entrainment layer is exporting

variance downward into the PBL. This variance export balances subsidence keeping the
PBL in a quasi-steady-state.

The convective mass flux is shown in Figure 7.a.3. The minimum occurs when
0<<]1, and the maximum occurs when 0=1/2 while the TKE is still large. Mc is small
when the convection is intense because M, < ./0(I-0). As G increases and the TKE

decreases during the late afternoon, Mc decreases.
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Figure 7.a.3: Mc for Wangara Day 33 0900-1600L.

The updraft (1) and downdraft (d) properties of 8 and q at level S are depicted in

Figures7.a.4 and 7.a.5.

Updraft and Downdraft Potential Temperatures at Level S
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Figure 7.a.4: (6,), and (6,), for Wangara Day 33 0900-1600L.
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Updraft and Downdraft Mixing Ratios at Level S
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Figure 7.a.5: (g, ) and (g,), for Wangara Day 33 0900-1600L.

These figures indicate that the updrafts are warmer and wetter than the downdrafts. The
boundary layer is being heated from the surface, and the highest amount of moisture is
near the surface. Hence, the updrafts which are coming from a region that is warm and
moist, should be warm and wet compared to the downdrafts which come from a relatively
dry and cool region.

Initially the surface heating rate is greater than the surface heat transport. Thus,
rising air near the surface heats rapidly before ascending. This causes the updraft
potential temperature to increase rapidly. Eventually, the surface heat transport exceeds
the surface heating. Also, the intense heating and convection have removed some low-
level available moisture. The surface air then rises before it can be heated, and it rises in
a region of less moisture. This causes the updraft potential temperature to decrease for a
short period. Finally, when the convection becomes less intense, the heating rate again
exceeds heat transport. The moisture loss also decreases. At this point the updraft
potential temperature begins to increase, but not as rapidly because of less intense surface
heating.
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The downdraft potential temperature increases rapidly in the morning when the
heating is intense and the heat transport is rapid. Heat is brought quickly into the source
region of the downdrafts. Initially, moisture is also brought into this source region. In
the afternoon, as the surface heating decreases and moisture is carried away from the
source region, the downdraft potential temperature increases much more slowly.

Figures 7.a.6 and 7.a.7 show the updraft and downdraft properties at level B.

Updraft and Downdraft Potential Temperatures at Level B
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Figure 7.2.6: (6,), and (6,), for Wangara Day 33 0900-1600L.
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Updraft and Downdraft Mixing Ratios at Level B

Mixing Ratio (g kg™)
w
W

7 e (O I S
ZE . e RS
| T
l_llllllL[IlIIIll
0 60 120 180 240 300 360 420 480
Time (minutes)

Figure 7.2.7: (g,), and (g,), for Wangara Day 33 0900-1600L.

These properties are largely controlled by the inversion at the top of the PBL. In the
morning and afternoon when the inversion is strong, updraft air at B is cooler than
downdraft air at B. During the convective period when there is no inversion, the air from
below is rapidly heated. The updraft air at B then comes from a warmer source than the
downdraft air at B. The updraft air at B is always wetter than the downdraft air. The
updraft mixing ratio increases rapidly to a high value for a short time when the vertical
moisture transport is large during convection. Mixing brings this large value back down.
Both the updraft and downdraft mixing ratios decrease in the afternoon because the
sources of moisture from above and below decrease due to heating and mixing.

7.b. Wangara PBL Interior Results
Interior results were obtained for the convective period of Wangara Day 33 using
four different values of 7 . Dissipation rates for 6 and q and the dissipation time scale

were determined with 7 set to 1 second. These diagnostics are just 7 times their values
at 7 =1 second for other settings of 7. Figure 7.b.1 shows the dissipation time scale.
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Dissipation Time Scale
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Figure 7.b.1: 7, for Wangara Day 33 0900-1600L.

The minimum in 74, occurs during the maximum convection around 1100L when c<<1.

This is when the surface heating is the most intense and when the smaller eddies would
be the most effective. As ¢ — 1/2 during the afternoon the PBL becomes more mixed.

The variance transports decrease and the time scale for dissipation increases. When
0=1/2 at 1520L 7, — <o, hence the sharp peak in the figure.

Figures 7.b.2 and 7.b.3 contain &, and £, at levels S and B.
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Potgntial Temperature Dissipation Rates at Levels S and B
10

102

Rate (K% s

O L O O O I | |

|
0 60 120 180 240 300 360 420 480
Time (minutes)

Figure 7.b.2: (&,), and (&,), for Wangara Day 33 0900-1600L.
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Figure 7.b3: (g,), and (g, ), for Wangara Day 33 0900-1600L.

The dissipation rates are highest when the fluxes are the largest during mid-morning rapid
growth. For the potential temperature the surface flux dominates over the flux at B due to
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surface heating, thus the potential temperature dissipation rate at S is much greater than at
B. For the mixing ratio the opposite is true. The large entrainment rate present when
rapid growth is occurring causes the mixing ratio flux at B to be much greater than at S.
All the dissipation rates approach zero as ¢ — 1/2.

The next set of figures shows the gradients of 8 and 7 with height using 7 equal to
10, 100, and 1000 seconds. The gradients for 7 = I second are not included because they
are too large. The gradient profiles of 8 are in Figure 7.b.4.

Potential Temperature Gradient
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Figure 7.b.4: %3— with 7 =10, 100, and 1000 Seconds for Wangara Day 33 0930-1600L.

The gradient of 8 with 7 =10 seconds seems reasonable between 210 and 420 minutes
based on the actual Wangara temperature profile. The other gradients look plausible
during the entire period, but the gradient with 7 =1000 seconds is the most
representative. This is particularly true during the convective growth period when this
gradient indicates the potential temperature is increasing with height. Observations have
verified that the upward heat flux is countergradient (Wyngaard and Brost 1984). Based
on the Wangara data and the gradient profiles shown, 7 should be between 100 and 1000
seconds for typical convective boundary layers.

Figure 7.b.5 gives a similar set of gradient profiles for the mixing ratio.
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Figure 7.b.5 % with 7 =10, 100, and 1000 Seconds for Wangara Day 33 0930-1600L.

Here again, the 10 second profile is only reasonable during a portion of the period. The
other profiles produce good results all the time. It would seem that a 7 between 100 and
1000 seconds would work for q as well. The g gradient profiles are also consistent with
observations showing the mixing ratio decreasing with height in a convective PBL.

The gradient of & was also determined using equation (6.d.12). The gradient using
(6.d.12) is independent of 7 because the 7 in the numerator of (6.d.12) cancels out with
the 7 in the denominator (part of the Jp. term). Figure x shows this gradient.



Potential Temperature Gradient Using Equation (6.d.12)
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Figure 7.b.6: %% Using (6.d.12) for Wangara Day 33 0930-1600L.

This profile looks reasonable at all times and it shows the large gradient during the
morning before the PBL has become mixed, rapid decrease in the gradient during the
mid-morning convective period, and the near zero gradient in the afternoon after mixing
has occurred.

7.c. Wangara Surface Transfer Coefficients

Figure 7.c.1 is a comparison of the surface transfer coefficient computed by using
the surface velocity with the coefficient calculated using the square root of the TKE.
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Surface Transfer Coefficients
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Figure 7.c.1: C; and C,. for Wangara Day 33 0900-1600L.

The transfer coefficient computed using /e, is about an order of magnitude larger than
the coefficient computed using [v,,| since the square root of the TKE is about 1/10 of the

surface velocity. The minimum occurs in this coefficient when ep, is at its maximum
value from mid-moring through early afternoon.

Figure 7.c.2 shows a scatter plot of C;. versus the negative of a bulk Richardson
number defined by

Rigs = -{ e~ (@) . } 7.c.)

(8.);-en
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Figure 7.c.2: Scatter Plot of C,. Versus -Rigyx for Wangara Day 33 0900-1600L.

There appears to be a relationship between C;. and the bulk Richardson number. The
figure indicates that there are two families of curves which likely means that C;. also

depends on another variable.

7.d. Wangara Calculation of Richardson Number and Limits

A plot of the Richardson number is shown in Figure 7.d.1.
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Figure 7.d.1: Ri for Wangara Day 33 0900-1600L.

The Richardson number is zero during the unstable convective growth period when there
is no inversion. At this time, the limit when Ri=0 should be 1. As the PBL becomes well
mixed during the late afternoon the inversion strengthens. The Richardson number
increases as a result. The limit for Ri>>1 should approach 0.2 by late afternoon. Figures
7.d.2 and 7.d.3 are plots of the limits.
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Richardson Number Equal to Zero Limit
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Figure 7.d.2: Ri=0 Limit for Wangara Day 33 0900-1600L.
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Figure 7.d.3: Ri>>1 Limit for Wangara Day 33 0900-1600L.

As indicated in the figure, the no inversion limit is almost exactly 1 during the rapid
growth period. During the late afternoon, the Ri>>1 limit does approach 0.2, but itis a
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little too small. This may mean that there is not an exact balance between buoyant
production and dissipation of TKE as assumed in the entrainment closure.

7.e. Ocean Experiment Fractional Area Covered by Rising Motion Results

Figure 7.e.1 is o for the ocean experiment. The initial difference between the SST
and air temperature creates an upward surface temperature flux. As a result, 6<1/2 for a
short time. In equilibrium, a negative surface heat flux is required to balance a positive
entrainment rate. Thus, in steady-state, entrainment dominates and 6>1/2. The boundary
layer would be characterized by wide updrafts with zones of narrow downdrafts.

Ocean Experiment Fractional Area Covered by Rising Motion
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Figure 7.e.1: © for Ocean Experiment.

The plume-scale variance transport of the potential temperature at levels S and B is
shown in figure 7.e.2.
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Ocean Experiment Potential Temperature Variance Transports
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Figure 7.e.2: (pw'00’), and (pw'8’6’), for Ocean Experiment.

When 0<1/2 both (pw’G’B’)s and (pw’t?'&"))B are greater than zero. They transition from

neégative to positive and back to negative when ¢ becomes less than 1/2 and then greater
than 1/2. Unlike Wangara, (pw’9’9')s never substantially dominates over (pw’9'9')8.

In steady-state, the magnitude of (pw’ﬂ'e')s is greater than the magnitude of (pw'e'e')s.

Since the transports are negative, the entrainment layer exports variance into the PBL
which balances with the dissipation at the surface.

Figure 7.e.3 shows the convective mass flux.
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Ocean Experiment Convective Mass Flux
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Figure 7.e.3: Mc for Ocean Experiment.

The convective mass flux peaks when 6<1/2 and the TKE is large. This marks the short
convective period when the PBL grows The minimum of Mc occurs when 6>1/2 and the
TKE is at its lowest value. Here the surface heat flux is negative and the entrainment rate
is at its minimum. For a brief period, the divergence is removing mass faster than it can
be replaced by entrainment. There is no convection with the negative heat flux to aid in
PBL growth. As a result, the PBL depth levels off and then decreases until the
entrainment rate increases sufficiently to balance the divergence At steady-state the TKE
and Mc are about twice their minimum values.

For Wangara, Mc was at its minimum value during the most intense convection.
The entrainment rate was about 20 times as large as the ventilation mass flux. When
E>>V, equation 6.c.7 can be approximated by

= _ (7.e.1)

The ratio of V to E, and 6 become small when E>>V. This will cause Mc to be small
even though vigorous convection is taking place and the PBL is growing rapidly. For the
ocean experiment E was only about 1.2 times V during convection. The value of ¢ was
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_ less than 1/2, but much larger than the minimum from the Wangara simulation. With ¢
near 1/2 and the TKE large, Mc was at its maximum at the same time as the convection.
Caution must be used when comparing the convective mass flux to PBL growth. Growth
may occur with a low value if the entrainment rate and ventilation mass flux are large
enough to balance subsidence and divergence.

Figures 7.e.4 and 7.¢.5 present the updraft and downdraft properties for the potential
temperature and mixing ratio at level S.

Ocean Experiment Up/Down Potential Temperatures at Level S
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Figure 7.e.4: (6,), and (6,), for Ocean Experiment.
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Ocean Experiment Up/Down Mixing Ratios at Level S
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Figure 7.¢.5: (g,), and (g,), for Ocean Experiment.

The updrafts are initially warmer and wetter. The surface heat flux transports heat
vertically which warms the downdrafts. Eventually, the downdrafts exceed the
temperature of the updrafts. When the heat flux becomes negative, 8, begins to decrease.

This causes the downdraft temperature to decrease despite the smaller positive
contribution from the negative heat flux (see equation (6.d.9)). The updraft potential

temperature also decreases, but a little more rapidly due to the combination of the
negative heat flux and decreasing ;. At equilibrium, 8;, Mc, and (F; ), are all

unchanging, hence (6,), and (6,), are also unchanging.

Unlike Wangara, the ocean supplies a constant source of moisture. This moisture is

readily transported upward in the PBL when convection is strong. This causes the PBL
to moisten with time (see Figure 5.b.6). This causes both (g,), and (g,), to increase. As

G increases it begins to have an impact on (g,), which causes (g,), to increase more

slowly until ¢ decreases again. Just as for the potential temperature, the variables that the
updraft and downdraft mixing ratio depend on are unchanging at equilibrium, thus (q“) &

and (qd )s do not change either.

The updraft and downdraft properties at level B are shown in Figures 7.e.6 and7.e.7.
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Ocean Experiment Up/Down Potential Temperatures at Level B
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Figure 7.¢.6: (6,), and (6,), for Ocean Experiment.

Ocean Experiment Up/Down Mixing Ratios at Level B
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Figure 7.e.7: (g,), and (g,), for Ocean Experiment.

The potential temperature increases with height in the ocean experiment. The updraft and
downdraft potential temperature at level B depend on changes in 8, assuming the flux

contribution is small compared to these changes. The PBL depth increases rapidly during
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the early portion of the simulation. This causes relatively large changes in 8, compared
to the flux contribution. Also, the flux contribution is small initially because it contains

Mc in the denominator which is large for about the first 1000 minutes. Therefore, the
properties are largely controlled by changes in the PBL depth. Both (6,), and (6,),

increase when Ap, increases, and they decrease when Ap,, decreases. At equilibrium,
4p,, is unchanging so (6,), and (6,), are unchanging as well.

The mixing ratio decreases with height in the ocean experiment, but the ocean

moistens the PBL through convection. The moistening dominates over drying that occurs
due to ascent. Therefore, g, increases which cause (g, ), and (g,), to increase until the

mixed layer mixing ratio reaches equilibrium. At this point g, no longer changes.
7.f. Ocean Experiment PBL Interior Results
The ocean experiment interior results were done in the same manner as Wangara

using a 7 of 1 second. These results are also 7 times their values at 7 =1 second for
other settings of 7. The dissipation time scale is shown in Figure 7.f.1.

Ocean Experiment Dissipation Time Scale
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Figure 7.f.1: 7, for Ocean Experiment.

102



The two peaks correspond to 6=1/2 (7, — ). For Wangara the minimum in 7,
occurred when o<<1. In this case the minimum occurs for ¢ = 0.95. During the
convective period 7, is about 2 orders of magnitude longer (not considering the peaks)

than for Wangara. This would indicate that dissipation was more effective for the
Wangara simulation due to the intense convection.

The next set of figures contain the dissipation rates for 8 and q at levels S and B.

Ocean Experiment Potential Temperature Dissipation Rates
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Figure 7.£.2: (g,), and (g,), for Ocean Experiment.
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Ocean Experiment Mixing Ratio Dissipation Rates
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Figure 7.£3: (g,), and (g,), for Ocean Experiment.

The initial peaks in the potential temperature dissipation rates are predominantly due to
the surface heat flux. The rates go to zero when 6=1/2. The second peak in (&), is

caused by a large negative surface heat flux and a minimum in the TKE. The minimum
in (&), that occurs at the same time is caused by a minimum in the entrainment rate. At

equilibrium, dissipation is dominated by entrainment. The inversion maintains a

temperature gradient at the top of the PBL which creates a downward flux. The small
negative heat flux at the surface results in a smaller value of (eq )S .

The large initial surface moisture flux creates the first peak in (a 3 )s. The second

peak is due to a minimum in the TKE and a relatively large surface flux. The minimum
in (84)3 at the same time is caused by a minimum in E. In equilibrium, the dissipation

rates are equal because the surface and PBL top moisture fluxes are equal. The moisture
gradient at the PBL top is greater than at the surface, but V>E.

The last diagnostics for the ocean experiment are the potential temperature and

mixing ratio gradients. Figure 7.f.4 shows the potential gradients for 7 equal to 10, 100,
and 1000 seconds. Like Wangara, the 1 second gradients were too large and are not

104



shown. The mixing ratio gradients for 100 and 1000 seconds are in Figure 7.£.5. The 10
second gradient was also too large.

Ocean Experiment Potential Temperature Gradient
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Figure 7.£.4: %29— with 7 =10, 100, and 1000 Seconds for Ocean Experiment.
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Figure 7.£.5: %with 7 =10, 100, and 1000 Seconds for Ocean Experiment.
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All the gradients show the potential temperature increasing with height and the mixing
ratio decreasing with height, except at the very beginning of the simulation. The 10
second gradients appear to be too large as was found for Wangara. A 7 between 100 and
1000 seconds seems most suitable for this type of simulation as well.
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8. Description of Two-Layer Model

The two-layer model uses the same set of equations and the same parameterizations as
the one-layer model except for the mixed layer potential temperature and mixing ratio
equations. Infinitesimal ventilation (surface) and entrainment layers are maintained with
the top of the ventilation layer still at level S and the bottom of the entrainment layer still
at level B. The mixed layer, however, is divided into 2 layers. Level 1 is within the top
layer and level 2 is in the bottom layer. The layers are divided at level I (interior). Figure
8.1 is a diagram of the two-layer model.

Entrainment Layer

Surface Layer

Figure 8.1: Illustration of 2-Layer Model.

Level 2 was set 1/4 of the way up in the mixed layer, level I in the center, and level 1
3/4 of the way up. The levels are evenly spaced for mathematical ease. The equations
used to predict the mean potential temperature and mixing ratio at levels 1 and 2 do not
require the levels to be equally spaced. These equations are developed in the next
section. Once the mean potential temperature and ‘mixing ratio are initialized or predicted
at levels 1 and 2, the mixed layer values are determined using
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0, =
2
and
s q,+q;,
qn 2

8.a. Two-Layer Potential Temperature and Mixing Ratio Equations

@8.1)

8.2)

From Randall (personal communication, 1993), the two-layer equations for the

potential temperature and mixing ratio are

-g-[(p, —ps)gj] = —V'[P;(P; - Pg)gf]""dpmg!g! +

ot
o[(F), +EB,.]

at level 1 and

251 B~V < [(ps- B - 2058
8[(5)5 ‘(Fe);]

at level 2, and

25, 2] ==V oo - pt ]+ 0. +

d(F,), + Eg.]

at level 1 and

2{(pe- 2] ==V ooy - )T)- 0.5+

8.a.1)

8.a.2)

(8.a.3)

8.a.4)

at level 2. In these equations, E,_ is the vertical velocity at level I as seen following the &-

coordinate where &, = Bs P

APM
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The € coordinate is similar to the modified 6-coordinate used by Suarez et al.
(1983). The coordinate system is designed so that the earth's surface and PBL top are
coordinate surfaces. At the earth's surface, £ =0, and at the PBL top, § = /. For

DsSPSp,, &= Ps”P  The vertical velocity, § measures how fast a § surface moves

(‘5) final pressure (‘:)wﬁaipmsm
v ;

At the earth's surface, £ is always 0 no matter how much the PBL depth changes, so Es is

0 here. At the PBL top, £ is always 1, and Eg depends on how much the PBL depth has
changed.

as the PBL depth changes, and can be given by E inal =

A more useful formula for Ef is obtained by adding the mass conservation equations

d =
for layers 1 and 2, g(f’f - Dps)= "V'["J(P: —pB)]+Apm§i +gE and

a -
b.;(ps -p)=-V .[vz(ps -p‘,)] - Ap, ¢, , together to get

—4p,+Ve(v,Ap,)-gE=0, _ o . (8.2.5)

and then using the conservation of mass for layer 2, 8.a.5), and &, = Bs ~ P 15 obtain

m

Apmgf =5;V0[(Pm -I’Z)Apm]—gth. ' (8.2.6)
The vertical velocity is simply 5, Af;’ .[ ] 5;88‘

Equations (8.a.1)-(8.a.4) can be written in advective form by using the conservation
of mass equations for the two layers. Then, assuming horizontal homogeneity, except for
the mean divergence, gives

—

(P - pa)gg-’- = 4,5(6,-8,)+§|(F), + E(s. -5)))- 8.a.7)
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(ps - p:)%—" = 4p,&(8,-8,)+¢[(F), - (F),] 8.2.8)
(7, ps)%'—"ﬁpmé(qf -7,)+ (), +E@. -7} 8.29)
(ps - p,)% = 80,57, -T)+ d(%),-(),) (8.2.10)
and £ =%f‘f’. @8.a.11)

Equations (8.a2.7)-(8.a.10) can be solved if the flux of the potential temperature and
mixing ratio at level I are known. The equations for this flux are developed in the next

section. The mean value of 0 and q at level I is just the mixed layer value of these
variables (8, =8,, q,, =7,). Equations (8.a.7)-3.a.10) can then be rewritten in terms of
8,,7,,8,,and g, using 8.1), 8.2), and the interpolation relations for 8.5 and

9sandp-

The mean potential temperature increases linearly with height, and the mean mixing
ratio decreases linearly with height. The mean value of these variables at any pressure is
given by

8(p)=a+bp (8.2.12)

and
g(p)=c+dp (8.2.13)

Equations (8.a.12) and (8.a.13) are just equations for lines where a and ¢ are intercepts,
and b and d are slopes of the lines. The slopes are given by the difference of the mean
values at levels 1 and 2 divided by the difference in pressure between levels 1 and 2. The
intercepts are then

O(p=1)=0,=a+ 9,-9 D
pP,—D;
or

a=o,  REE P (8.2.14)
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and

or

(8.a.15)

Inserting (8.a.14) into (8.a.12) and (8.a.15) into (8.a.13) gives the mean quantities at any

pressure,
6, -8,
6(p)=6,+(p-p,)—+—=
P —D;
and
2(0) =4, +(p- ) 22
p,-DP;

(8.2.16)

(8.a.17)

The interpolation relations for § and q at levels S and B are obtained by using p=ps and

p=ps in (8.a.16) and (8.a.17).

Then, the finite difference forms of (8.a.7)-(8.a.10) for Wangara using a backward

(implicit) scheme are

5 - gEAt(ps p,Jem L 8E(p

Ap, \ p;— P
(p pf )6(1 O')Af en+£

-

9.-|+f gEAt

2%(p, - p,) (o, - Ps)

(ps—p,)o(1-0)At =
27(!’1 Pz)
gEAt
(Pf—ps)

9 n-l-f

+ 6,, +6;,

AT

111

At
e +jp(Fe)

(8.a.18)



and

g_E_éf_gnu EEAI(P: )9 1+(P PB)GU -0)At emu
P

Apm ! Ap pl 21'-(}9; pz)

BEM put g +gEAt[pf-ps )5;”_

(P = Ps) > M, \pi-p

(p=Ps)oU-0)At g 841y , 8EAG 8.2.19)
2%(p, - p,) 2 (ps=p1)" °"°  4pa '

gat | by E) +8"

4p,, (Ps pf)( o) ;

— gEAr(ps p, }7»1 gEAt (Ps p, )‘Tnﬂ
oM -Ds 4., \ p,-p;

(Ps =P )G(I—U)A‘ g+l L gEAt _,4 + gVat 7!

gEA g™ - gEA‘[P; Ds Janu % (P: _25(3)6(1 - o)At g+

+

> g
2(p-p) | (m-ps) | 24,
gvm[&__ﬂ_;_ —n+l 85"3‘[193 Pf]an+;+(ps‘P:)GU"O')m(T;H-!_
2 ry
A, \ P —P: 4p, 2i(p, - p,)
N gvm(p p,)a..ﬂ gEAz(ps ]a' Lqvar, (a0
ZAP 4Ap,, \ p, - P; 4 ~Ds o,
QEAL ... cen
—q, +q,,
(P, ps)

1

4p,, ! Ap =D 4 P _Pz)

8VAf -q-rH-.f 3 gVAf Enu = S'VAJ' (P; -pg Janﬂ -
d
Aps-p)"  (p-p) 24p.\ps-

gvat (Pf — DPg }J—FH + a-;u Rl gEA [P; Dp ]Ef;”
A4, \ P, =P 4, \ p; =D,

(p, - py)o(l-0)At .., g VAL i BVA o

A q q p—
28(p-p)  ° 2ps-p) T (imp)
gVAL [ D, = Pp a1 gVAr p, pg e 8VAL (8.a.21)
2 qz qs-+
2Apm p S Apm (PS—P!)
gEAt _ gVAf[p; Pa) -
o e d;-+7q; -
Apm x Ap pS ; :
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The surface heat flux appears explicitly in (8.a.18) and (8.a.19) because it was prescribed
for the Wangara simulations. For the ocean simulations (8.2.20) and (8.a.21) were used
with 6 in place of 7, instead of (8.a.18) and (8.a.19), for the potential temperatures at
levels 1 and 2.

Equations (8.2.18) and (8.a.19) are two equations in two unknowns, 8, and 8,.
Equations (8.a.20) and (8.a.21) are also two equations in two unknowns, g, and g,.
These sets of equations are solved simultaneously to obtain the mean values at levels 1
and 2. The mixed layer values are finally determined using (8.1) and (8.2).

8.b. Two-Layer Model Diagnostics

Since the two-layer model predicts the mean values of 8 and q at levels 1 and 2, the
gradients of these variables were determined by using

06 SRS,

i 49 8.b.1

oz z-z Pl
and

ﬁ F: - *2 .

e % ’ 8-b.2

o 8.b2)
instead of equation (6.d.9).

The final form for the flux is obtained by truncating ((6.d.11) at first order in
Ap,, / . and substituting this into (6.d.10) at level I. This gives

()~ B2 o 222)

1 (P; _pB)(ps —p,)O'(]-O') Yy
2 g7 b

(8.b.3)

The gradient in (8.b.3) is determined using (8.b.1) or (8.b.2) and the hydrostatic relation.
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9. Two-Layer Model Results

Prognostic results for the two-layer model using the Wangara data are presented and
compared with the prognostic results from the one-layer model. Diagnostic results for the
gradients, and the mean values of 0 and q at levels S, 2,1, 1, and B are also shown. The
diagnostic results were obtained using a 7 of 1, 10, 100, and 1000 seconds.

9.a. Two-Layer Prognostic Results

Figures 9.a.1-9.a.5 show the prognostic variables using the two-layer model.

Two-Layer PBL Depth
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Figure 9.a.1: Two-Layer Az,,.
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Two-Layer Potential Temperature
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Figure 9.a.2: Two-Layer 6,,.

Two-Layer Mixing Ratio
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Figure 9.a.3: Two-Layer g,,.
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Two-Layer Horizontal Velocity
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Figure 9.a.4: Two-Layer |v,|.
Two-Layer Turbulence Kinetic Energy
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Figure 9.a.5: Two-Layer e,,.

This is no difference between these figures and the figures for the one-layer prognostic
variables. This was expected for Az,,, |v,|, and e,, which are predicted the same way in

each model. Identical values for 6, and g,, indicate that the two-layer model is
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functioning properly. Prognostic variables for the two-layer ocean experiment are not
shown, but they were also the same as the one-layer ocean experiment variables.

9.b. Two-Layer Diagnostic Results

To show the effects of varying 7, the initial values of the mean 6 and q were set to

(9} )mid = (em)am-d +3K,
(52 )im'u'ai' = (OM)m‘n‘a: -3K,

Q|

( (qn ),',,,'Ml —-1gkg A

i )im'n'al'
and

(a-?)fu.in'al = (q"‘)im'iiﬁl +1 8 kg-j' (©.b.1)
This gave a sounding where the potential temperature was initially increasing with height
and the mixing ratio was initially decreasing with height. The gradients of 0 and g were
then determined with these initial conditions and are shown in Figures 9.b.1 and 9.b.2.

Two-Layer Potential Temperature Gradient
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Figure 9.b.1: 2] with 7 = 1, 10, 100, and 1000 Seconds for Two-Layer Model.
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Figure 9.b.2: g with 7 =1, 10, 100, and 1000 Seconds for Two-Layer Model.

The gradients for 7 of 1 and 10 seconds were very small all the time. The 1000 second
gradients are the only ones that were not near zero within 60 minutes. The 100 second
gradients started out steep, but did decrease to near zero by 60 minutes. These gradients
were created by the artificial initial conditions in the mean values of 6 and q at levels 1
and 2. The actual gradients for all 75 were near zero. This and the one-layer gradients do
indicate, however, that a 7 not much larger than 100 seconds should be used.

Figures 9.b.3-9.b.6 depict the mean potential temperature soundings using 6 at
levels S, 2, 1, and B, for the different values of 7 .
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Two-Layer Mean Potential Temperatures For 1 Second
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Figure 9.b.3: Mean Potential Temperatures Using 7 =1 Second.
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Figure 9.b.4: Mean Potential Temperatures Using 7 =10 Seconds.
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Two-Layer Mean Potential Temperatures For 100 Seconds
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Figure 9.b.5: Mean Potential Temperatures Using 7 =100 Seconds.

Two-Layer Mean Potential Temperatures For 1000 Seconds
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Figure 9.b.6: Mean Potential Temperatures Using 7 = 1000 Seconds.
These figures indicate how long it took for the mean potential temperatures to adjust to

the mixed layer potential temperature. For 7 =1 second, it only took 3 minutes for
adjustment. When 7 was set to 10 seconds, the adjustment time increased to about 15
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minutes. Ata 7 of 100 seconds, the time to adjust had jumped to a little over an hour.
Also, the temperatures diverged for short periods twice. Finally, when 7 was set to 1000
seconds, the temperatures did not adjust until t=700 minutes (12 hours). There was
considerable divergence in the temperatures initially, and a small amount of divergence
from about t=240 to 300 minutes.
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10. Summary and Conclusions

A single-layer bulk boundary layer model was presented that predicts the mixed layer
values of the potential temperature, mixing ratio, and u and v momentum. The model also
predicts the depth of the boundary layer in terms of pressure (Apm) and the turbulence
kinetic energy (TKE). The TKE prediction equation was formulated using a second-order
closure that relates the dissipation velocity to the TKE. The model also diagnostically
determines the fractional area covered by rising motion () and the entrainment rate (E).

Positive and negative entrainment rate parameterizations were developed, and the one
used for a particular time step was based on the sums of the buoyancy (B) and shear (S)
production (with and without E included). A tunable parameter was used to specify a
fraction of the sums to check. This was done to prevent a large positive E from suddenly
becoming negative. A value of 0.9 for this parameter was found to produce good results.

The positive entrainment rate was parameterized by assuming that E is proportional to
the square root of the TKE. The constants in the parameterization were obtained by
assuming a balance between buoyant production and dissipation, and using large-eddy
simulation results from Deardorff (1974). This parameterization led to two Richardson
number limits, Ri>>1 (strong inversion) and Ri=0 (no inversion).

The negative entrainment rate was parameterized by assuming that E and ey, are small
compared to their values during rapid PBL growth. The local change term was then

neglected in the e, equation which led to a balance between the entrainment rate and
B+S-D

e

a weighted contribution of the local change of e, and the production of e, due to E. A
value of 0.9 was used for the simulations and produced the best results.

. A tunable parameter was then introduced to partition this balance equation into

Two simulations were run. The first simulation used the Wangara Day 33 PBL data.
The surface heat flux was prescribed using a sine approximation. The ventilation (surface)
mass flux was parameterized using the formulation from Louis (1979) and was used for the

122



surface momentum and moisture fluxes. The land simulation was initialized using the
Wangara data.

The diurnal trend of the mixed layer depth, except for night values, was accurately
depicted by the model. The model captured the slow growth early in the morning when
there was a strong inversion, rapid growth during mid-morning when the inversion broke,
slow growth during the afternoon under a quasi steady-state PBL topped by an inversion,
and rapid decay after loss of surface heating at sunset. The nocturnal PBL did not grow
slowly as expected. There appears to be a problem with the negative entrainment
parameterization at night. The shear production at night due to the nocturnal jet should be
sufficient to allow the PBL to grow even with negative buoyancy production.

Diagnostic variables to study the characteristics of a clear convective boundary layer
(CBL) were developed using the concept of the convective mass flux model. Equations
were presented for the plume-scale variance transport of a scalar, , and updraft and
downdraft properties of . Then the convective mass flux was matched with the
ventilation and entrainment layer fluxes. This was accomplished by assuming these layers
were infinitesimal, and the small-eddy fluxes at levels S and B were negligible compared
with the convective circulations. Use of the TKE then allowed the convective mass flux
and the fractional area covered by rising motion to be determined using model variables.

The features of the CBL were well illustrated by the model diagnostic results. The
model showed the dominance of buoyancy production over shear production in a CBL.
This was shown by a plot of the buoyancy production versus the shear production, and by
a plot of the plume-scale variance transport of 6 at levels S and B. The entrainment rate
was also shown to be an important mechanism, especially during rapid growth when E
became large. The intense convection typical of a CBL was indicated by <<1. The
convective mass flux was a minimum at this time, contrary to what one would expect.
However, during vigorous convection when E>>V, 6<<1, and M¢ is small because

M, =< \o(I1-0).

The updraft and downdraft properties further highlighted the CBL characteristics. The
updrafts at level S were warmer and wetter than the downdrafts. Here, the convection was
seen in terms of the surface heating rate and the surface heat and moisture transport rates.
The dominance of one of these over the other was important in determining the behavior of
the updraft and downdraft properties at the surface.
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The inversion at the top of the PBL was the controlling factor for the updraft and
downdraft properties at level B. When there was an inversion, the updraft air was cooler
and wetter than the downdraft air. When the inversion was absent, the updraft air was
warmer and much wetter than the downdraft air. This was caused by the strong convection
that rapidly transported heat and moisture upwards.

Diagnostics for the PBL interior were developed to gain further insight into the CBL.
A balance equation was presented for the variance of y. Each term in this equation was
modeled to obtain equations for the variance and dissipation rate. A dissipation time scale
in terms of the model parameter 7 was introduced. The balance equation was then solved
to get a relation for the gradient of ¥.

The dissipation time scale was found to be the shortest during the period when the
surface heating was the strongest, corresponding to the high efficiency of the small-eddies.
As expected at this time, the dissipation rates, &, and €, were at their largest values. The
dissipation rate of 0 at the surface dominated over the dissipation rate at level B. Again,
this was due to the strong surface heating present. For q, the opposite was true. The large
value of E caused the moisture flux at the PBL top to be much greater than at the surface,
especially since mixing had reduced the surface to mixed layer moisture gradient.

The gradients of  and 7 were determined using a 7 of 10, 100, and 1000 seconds.
The gradient results were matched to the Wangara data to determine the best value for 7. A
value between 100 and 1000 seconds seemed most reasonable based on the data. The 1000
second gradients showed the expected increase in potential temperature with height and
decrease of moisture with height, typical of a convective boundary layer.

A surface transfer coefficient was developed using the TKE, and was determined to be
about an order of magnitude larger than the transfer coefficient normally found in the bulk
aerodynamic formula for V. This was expected because the surface velocity was about 10
times the square root of the TKE. Using this transfer coefficient over the conventional one
has the advantage that V exists if there is turbulence, even if the surface wind is zero. This
may occur in a heated boundary layer where turbulence is generated only by buoyancy
when the surface wind is calm.
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The period when the inversion vanished was clearly indicated by the Richardson
number. The limit for Ri=0 was about 1 during this time as expected. When the inversion
was strong in the afternoon, the limit for Ri>>1 approached 0.2, but was too small. The
assumption of the balance between buoyant production and dissipation that led to the
relation for the limit when Ri>>1 may be sﬁghﬂy inaccurate.

A one-layer simulation using simple ocean data was then run to obtain steady-state
solutions. Fixed surface and top mixing ratios, sea surface temperature, surface winds,
and geostrophic winds were used. The temperature and winds at the top of the PBL were
determined by constant lapse rates. The surface fluxes of heat, moisture, and momentum
were determined using Louis (1979) ventilation mass flux formulation. A divergence of 4
10-6 s-! was used to balance E in the Apy, prediction equation.

The prognostic variables converged to their equilibrium values by 100 hours. The
steady-state form of the prognostic equation for 8 was derived. This equation was used to
compare the value of 6 with the model predicted value. The value from the equation was
only 0.04 K different from that predicted by the model.

In a study done by Schubert et al. (1979), they found the adjustment time for the PBL
depthcwas considerably longer than for the other prognostic variables when the ratio of
V
Dz, +sz8 /dt
mixing at the PBL top. The value of the ratio obtained in the present ocean simulation was
not constant, but was never less than 4.5. However, the adjustment time of the PBL depth
was the same compared to the other prognostic variables.

was about 4 or 5. This would indicate that surface transfer dominates over

This discrepancy can be explained by the different entrainment parameterization used in
Schubert's study and the present model. In Schubert's study a constant small value of E
was used, while in the present study E varied and became large during the early portion of
the simulation. The large value of E allowed the PBL depth to adjust as fast as the other
prognostic variables. This was shown by determining how long adjustment would have
taken, had E been small and constant during the entire simulation. This adjustment time
was about 77 days, which corresponds to an adjustment time for the PBL depth of about
20 times as long as the adjustment for the other variables. This agrees with the results
obtained in Schubert's study.

125



A two-layer model that predicts the mean values of 6 and q at two levels in the PBL
was then developed to address the problem of the large gradients obtained by the one-layer
model. The model was developed by equally spacing the levels for mathematical
simplicity, even though the 2-level equations do not require these constraints. This model
retains all the parameterizations used in the one-layer model. The only differences are the
determination of the mixed layer values of 6 and g, and the gradients of @ and 7.

The two-layer model produced the same results for the prognostic variables using the
Wangara data as the one-layer model. This verified that the model worked correctly. The
gradients of 8 and g were near zero for the entire simulation which differed considerably
from the one-layer model gradients. Identical results were also obtained for the ocean
experiment.

The initial values of the mean values of 0 and q at levels 1 and 2 were perturbed to
study the effects of changing 7. The gradients were found to be larger at a given time step
as 7 was increased. The gradients for all values of 7 except 1000 seconds approached
zero within 60 minutes. Also, the mean values of the potential temperatures at levels S, 2,
1, and B converged to the mixed layer potential temperature within 60 minutes for all
values of 7 exéeﬁt 1000 seconds. This result, along with the gradients from the one-layer
model, indicate that a 7 near 100 seconds is the best choice.

Following is a summary of items that were presented for the first time in this thesis:

(1) A positive entrainment rate parameterization that assumed a balance between
buoyancy production and dissipation of turbulence kinetic energy.

(2) A negative entrainment rate parameterization that allowed the PBL depth to decrease
late in the day when buoyancy production was no longer sufficient to maintain the
turbulence.

(3) A fully imp]icit finite difference equation for the TKE (when the entrainment rate is
positive) solved as a cubic equation. The square of the solution that is always real was

assigned to the TKE.

(4) Results for both the Wangara and Ocean studies showing the fractional area
covered by rising motion, convective mass flux, updraft and downdraft properties of 8
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and 7 at the surface and PBL top, dissipation rates of 6 and q at the surface and PBL top,
dissipation time scale, and gradients of 8 and 7.

(5) Results and comparison for the Wangara study of two surface bulk transfer
coefficients, one dependent on the surface velocity and the other on the turbulence kinetic
energy.

(6) A two-layer model which predicted 8 and 7 at two levels.

(7) Equations that determined the upward turbulent fluxes of 8 and q in the interior of
the PBL. These equations were used to obtain 8 and 7 in the two-layer model.

The one and two-layer models presented provide an accurate representation of the clear
CBL. The turbulence characteristics are depicted by the prognostic turbulence kinetic
energy equation. However, the PBL typically contains clouds. Future work should
include adding cloud effects to these models. This can be approached in two steps. First,
a simplified dry cloud layer should be added which would have the effect of radiatively
cooling the air above the cloud. This is a relatively simple step. Next, as a more complex
procedure, moist processes should be included. Lilly (1968) provides a means for
accomplishing these steps.

Additional work should also be done to obtain a better representation for the nocturnal
PBL. The positive and negative entrainment relations would have to be modified. The
addition of more complicated radiative processes besides a simple radiative cooling term,
and a parameterization that takes into account the nocturnal jet, may allow the PBL to grow
at night,

The convective mass flux and the fractional area covered by rising motion were
assumed to be constant with height. However, large-eddy simulations indicate that these
variables are not constant with height. Height dependent equations for these variables
should be developed. Randall et. al. (1992) provides a possible approach to accomplish
this.

The two-layer model should also be further developed with the above suggestions. In

addition, the momentum should be calculated at levels 1 and 2. Then all the prognostic
variables would be determined at the same resolution. Next, cloud effects should be added
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to allow the model to operate in a wide variety of meteorological conditions. The model
should then be modified to make predictions at multiple levels. Finally, the model should
be incorporated into the CSU GCM.
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