
DISSERTATION 

CONFIDENCE REGIONS FOR LEVEL CURVES AND A LIMIT THEOREM 

FOR THE MAXIMA OF GAUSSIAN RANDOM FIELDS 

Submitted by 

Joshua French 

Department of Statistics 

In partial fulfillment of the requirements 

for the Degree of Doctor of Philosophy 

Colorado State University 

Fort Collins, Colorado 

Summer 2009 



UMI Number: 3385155 

All rights reserved 

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted. 

In the unlikely event that the author did not send a complete manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed, 

a note will indicate the deletion. 

UMT 
Dissertation Publishing 

UMI 3385155 
Copyright 2009 by ProQuest LLC. 

All rights reserved. This edition of the work is protected against 
unauthorized copying under Title 17, United States Code. 

ProQuest* 

ProQuest LLC 
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346 



COLORADO STATE UNIVERSITY 

July 9, 2009 

WE HEREBY RECOMMEND THAT THE DISSERTATION PREPARED UNDER 

OUR SUPERVISION BY JOSHUA FRENCH ENTITLED CONFIDENCE RE

GIONS FOR LEVEL CURVES AND A LIMIT THEOREM FOR THE MAXIMA 

OF GAUSSIAN RANDOM FIELDS BE ACCEPTED AS FULFILLING IN PART 

REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY. 

Committee on Graduate Work 

F. M Breidt 

Robin M. Reich 

jLJ^S/ &~ (9^ 
Advisor Richard/A 

f-. 
/Davi 

U 
avis 

Department Chair F. Jay Breidt 



ABSTRACT OF DISSERTATION 

CONFIDENCE REGIONS FOR LEVEL CURVES AND A LIMIT THEOREM 

FOR THE MAXIMA OF GAUSSIAN RANDOM FIELDS 

One of the most common display tools used to represent spatial data is the 

contour plot. Informally, a contour plot is created by taking a "slice" of a three-

dimensional surface at a certain level of the response variable and projecting the slice 

onto the two-dimensional coordinate-plane. The "slice" at each level is known as a 

level curve. 

Consider a Gaussian random field {Z(s) : s 6 £>}, where s is the location in 

the continuous two-dimensional region of interest P e l 2 . The level curve for the 

process Z at level u is defined to be Iu = {s : Z(s) = u}. From the observed data 

z(s{),..., z(sN), one can predict Z(s) for any location s G V using kriging or some 

other procedure, and then construct the estimated level curve Iu = {s : Z(s) = u] as 

an approximation of Iu. We present two methods for constructing confidence regions 

for the level curves of a contour plot. 

The first method proposed is an extension of Lindgren and Rychlik (1995) and 

Wameling (2003b) based on level crossings. A series of rectangular confidence re

gions are constructed along Iu which should individually intersect the true level curve 

with high confidence. The boxes extend in directions perpendicular to the estimated 

level curve and the widths of the boxes are chosen so that the edge of each box 

touches the neighboring box and there are no gaps between the boxes along the esti

mated level curve. The heights of the boxes are chosen by simulating realizations of 

i i i 



Z(s)\z(si), • • • > Z(SN), and then taking the appropriate quantiles of the set of nearest 

level crossings for the realizations. The heights of the boxes give insight into the 

approximate distance between the estimated level curve and the true level curve. 

The second method constructs a confidence region for Iu through hypothesis 

testing, adjusting the critical value to control the simultaneous Type I error rate. Our 

goal is to construct a confidence region S for the true level curve such that F(IU C 

S) > 1 — a. Instead of finding S directly, we adopt a different approach and find a set 

R which does not intersect Iu with high confidence, so that ¥({RC\Iu} = 0) > 1 — a. 

Consequently, the set S = Rc will satisfy our goal since P(JU C Rc) > 1 — a. The 

region R is constructed by testing H0 : Z(s) = u versus Ha : Z(s) ^ u, and taking 

R to be the union of all s for which we conclude that Z(s) ^ u. Using kriging, we 

construct a test statistic which has a standard normal distribution. The critical value 

is adjusted to control the simultaneous Type I error rate through empirical simulation 

of the test statistic. 

We conclude by introducing a limit theorem for the distribution of the maxima 

of a triangular sequence of stationary Gaussian random fields on an nxn lattice. The 

result is an extension of the work presented by Hsing et al. (1996) to two dimensions. 

The result was motivated by the desire to control the simultaneous Type I error rate of 

hypothesis tests at locations on an n x n lattice where the test statistics are Gaussian 

and correlated. Under certain dependence and limiting conditions we show that the 

maximum of the random fields exhibits extremal clustering in the limit. Consideration 

is then given to the use of this result in approximating P(max1<ij<n Zitj < u), where 

{Zij} is a stationary Gaussian random field on a square nxn lattice of equally spaced 

locations. 

Joshua French 
Department of Statistics 
Colorado State University 
Fort Collins, Colorado 80523 
Summer 2009 
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Chapter 1 

INTRODUCTION 

1.1 Defining a Contour Plot 

The display of three-dimensional data is an important aspect of spatial data 

analysis. A common display tool used in the representation of spatial data is the 

contour plot. Informally, a contour plot is created by taking a "slice" of a three-

dimensional surface at a certain level of the response variable and projecting the slice 

onto the two-dimensional coordinate-plane. The "slice" at each level is known as a 

level curve. The process of creating a contour plot is shown in Figure 1.1. 

More formally, suppose we have a response surface z(x, y) and wish to display a 

contour plot of z(x, y) corresponding to levels Ui,... ,un over a region of interest V. 

The contour plot is created by plotting individual level curves IUl,..., IUn over the 

domain P , where a level curve Iu is defined to be 

Iu = {(.x,y)eV:z(x,y) = u}. (1.1) 

The contour plot is a simple and effective way to understand the behavior of the 

response variable over the region of interest. 

Subsequent discussion will focus on the level curves of a random field {Z(s),s G 

V}, where s represents location in the two-dimensional region of interest V C M2. 

Consequently, the level curve /„ for the response Z at level u is defined to be all 

locations s such that Z(s) = u, i.e., 

Iu = {seV: Z(s) = u} . (1.2) 
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X 
(a) Slicing the response surface. 

(b) Level curves in three-dimensions. 

(c) Level curves projected onto the two-
dimensional region of interest. 

Figure 1.1: Creating a contour plot for a three-dimensional surface. The response 
surface is sliced at specified response levels and the slices are projected onto the 
two-dimensional coordinate plane. 
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1.2 Uncertainty in Contour Plots 

There are generally two types of error at work in a contour plot. In a typical 

spatial setting we observe our response variable Z at a small number of locations 

S\,...,sN. Because interest lies in the response value at other locations in P , the 

observed responses z(si),... ,Z(SN) are used to predict Z throughout the region of 

interest. Denote the prediction of Z at location s by Z{s). Contour plots are usually 

constructed from the interpolated response surface {Z(s), s e T>}. The first error type 

we see in a contour plot is the classical prediction or interpolation error, Z(s) — Z(s). 

There will nearly always be a discrepancy between the actual value of Z(s) and the 

predicted response value Z(s) = u for s G Iu. The other related type of error is the 

discrepancy in the locations of the estimated level curve Iu = {s £ V : Z(s) = u} 

and the true level curve Iu = {s G V : Z(s) = u}. This has sometimes been referred 

to as spatial or horizontal error (cf. Wameling and Saborowski (2001) and Wameling 

(2003a)). 

In many settings the response value at a specific location is not of primary inter

est. Instead, researchers may wish to identify regions having a certain characteristic 

of interest. For example, we may want to find all locations where the response variable 

is greater than a certain value, or all locations where the response variable is within a 

certain range of values. Expressed formally, we may wish to find { s G D : Z(S) > u} 

or {s G V : u\ < Z{s) < u2}. In both cases, the level curve is the boundary of these 

regions, so it is of special interest. An example of this is found in the production of 

weather-related maps in the field of atmospheric science. The Storm Prediction Center 

in Norman, Oklahoma monitors severe weather across the United States. Short-term 

forecasts of severe weather and convective weather outlooks are supplied to the public 

on a regular basis. One of the graphics supplied in these outlooks when appropriate 

is a "probabilistic tornado graphic" which is simply a contour plot of the probability 

that a tornado forms within 25 miles of a location. The probabilistic tornado graphic 
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Figure 1.2: Probabilistic tornado graphic. A probabilistic tornado graphic is a con
tour plot of the probability that a tornado forms within 25 miles of a point. The 
probabilities have been converted to percentages in the graphic. 

for April 8, 2006 (a period of severe weather in the Eastern United States) is shown 

in Figure 1.2. In this case, researchers are interested in finding regions where the 

probability is high that a tornado forms within 25 miles of the region. Given the se

riousness of having a tornado form in an area unexpectedly, it is of great importance 

to accurately locate the true level curves of the probability surface in order to pro

vide warnings and alerts to the appropriate agencies. Other disciplines where contour 

plots are commonly used include meteorology, oceanography, ecology, engineering and 

many others. 

Although contour plots are commonly used to display spatial data, little consid

eration has been given to the uncertainty of the level curves in contour plots. Lindgren 

and Rychlik (1995) stated, "The accuracy of level curves seems to have received no 

attention in the theoretical literature, even if it should be of considerable interest 
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from a practical point of view." In the next section we will describe methods cur

rently used to assess the accuracy of contour plots. Our research will supplement the 

current tools by presenting new approaches to construct confidence regions for the 

level curves of a contour plot. 

1.3 Existing Methods for Constructing Confidence Regions for Level 
Curves 

1.3.1 Confidence Bands for Level Curves of Smooth Gaussian Fields 

The first theoretical approach for assessing the uncertainty in contour plots ap

pears to have been done by Lindgren and Rychlik (1995). As stated in their paper, 

their aim was "to present a numerically accurate method to calculate confidence lim

its for level curves " To quantify the precision of the estimated contours, they 

build confidence bands along the estimated contours that individually intersect the 

unknown true contour with a calculable probability. 

Lindgren and Rychlik model the response surface using a Gaussian random field 

{Z(s), s £ V C R2} with E (Z(s)) = 0 and covariance function 

C(s,t)=cov(Z(s),Z(t)), s,teR2. 

Conceptually, their method requires no additional assumptions, but to derive specific 

results, they subsequently assume that Z is stationary and that the covariance func

tion is isotropic and twice-differentiable. Random measurement error is allowed so 

that observed values may be realizations of 

Zobs(s) = Z(s) + e, 

where e is a Gaussian random variable independent of location with mean zero and 

variance of. Regardless of whether measurement error is present, confidence limits 

are constructed for the level curves of the true response process Z. 

Lindgren and Rychlik assume response values z(s{),... ,Z(SN) have been ob

served at locations S\,...,SN £ 2?, where Sk represents the coordinates (sk,x,Sk,y)-
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Under a squared error loss function, the best linear predictor of Z(s) given the ob

served data z(si),... ,Z(SN) is the simple kriging predictor Z(s). The covariance 

between Z(s) and Z(t) is nonstationary and we denote it as C^(s, t). The reconstruc

tion error at location s is given by rj(s) = Z{s) — Z(s), where rj(s) has mean zero and 

covariance function Cg (•,•)• 

Lindgren and Rychlik make inference on r](s) + Z(s) = Z(s) by defining an alter

native definition of a level curve using the concept of level crossings. We define level 

crossings and upcrossings following the presentations given by Cramer and Leadbetter 

(1967) and Lindgren (2004). 

Suppose that x(s) is a continuous function such that x(s) is not identically equal 

to u in any interval. 

Definition 1.1. x is said to have an upcrossing of the level u at s0 if there exists 

e > 0 such that x(s) < u in (s0 — e, s0], and x(s) > u in [s0, s0 + e). 

Definition 1.2. x is said to have a crossing of the level u at s0 if for every neighbor

hood of s0, there exists si and s2 such that (x(si) — u)(x(s2) — u) < 0. 

As defined in (1.2), the standard definition of a level curve Iu is the set of all 

locations s such that Z(s) = u. The alternative definition supplied by Lindgren 

and Rychlik is that a level curve /„ is the union of all crossings of the level u by 

the response surface Z when traveling along all possible straight lines in the region 

of interest V. A similar definition holds for the level curve /„ of the reconstructed 

response surface Z. This concept is illustrated in Figure 1.3 (a). The accuracy of 

the contour plot can be judged by how closely the level crossings along sections of 

the predicted surface Z represent the level crossings along the sections of the realized 

surface Z. 

Suppose that s0 € Iu- Define T(s0) to be a line in V going through s0 at an angle 

#o perpendicular to Iu at s0. A visual representation of T(SQ) is shown in Figure 1.3 
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(a) A level curve can be be constructed by (b) T(s0) is a line going through s0 € Iu at 
taking the union of the level crossings for all an angle perpendicular to /„ at s0. 
possible straight lines in the region of inter
est. The closed curve is a level curve. 

Figure 1.3: Illustrations of the alternative definition of a level curve and T(s0)-

(b). Any point on the line T(SQ) can be parameterized by 

S0(T) = (s0,x + TCOs(do),s0ty + Tsm(90)), 

where r G E. Similarly, the functions Z and rj can be respecified in terms of points 

along T(s0) so that 

Z0(T) = Z(S0(T)) 

and 

TJ0{T) = T){S0(T)). 

The goal of Lindgren and Rychlik is to find an interval along T(s0) that intersects the 

true level curve with high probability. This is accomplished using the first upcrossing 

intensity. The first crossing intensity along T(so) in the interval [—T\,T2[ is defined 

as 

Ao"(-ri) r2) u) = ^(VO{T) + Z0{T) has a u-upcrossing for T E [T2>T2 + dr2] 

and T)(T) + ZQ(T) ^ u for all r G [—TIT2]). 
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Thus, P,Q(—TI,T2, U) is the probability that starting at location so(—TL) and continuing 

along T(s0) in the direction of So^ ) , the first upcrossing of the process 770(7-) + Z0(T) 

occurs at sofa). Define 

f(s0, a) = {s0(r), -C<T < c : /XQ"(-C, C, W) = 1 - a}. 

Using the alternate definition of the level curve, we see that P(T(s0, a)C\Iu) = 1 — a. 

Numerical methods are used to find the appropriate confidence interval size for each 

interval individually. 

The resulting intervals clarify the amount of error in our estimated level curves 

Iu. Individually, the probability that each interval intersects the true level curve Iu is 

1 — a. No adjustment is made for multiple comparisons. In general, the widths of our 

intervals give us insight into the approximate distance between the estimated level 

curve and the true level curve. Wider intervals indicate that the estimated level curve 

is more likely to be further from the true level curve. An example of the resulting 

intervals is shown in Figure 1.4. 

1.3.2 Confidence Bands for a Broader Range of Processes 

Wameling and Saborowski (2001) point out drawbacks of the confidence interval 

method proposed by Lindgren and Rychlik (1995) for determining the accuracy of 

contour plots: 

• Data are often not normally distributed and positively skewed data sets are 

more common. 

• The confidence intervals produced using this method are limited to symmetric 

intervals, but it seems likely that the confidence bands should be asymmetric 

for level curves of extreme values. 

• The confidence intervals are constructed individually and do not take into ac

count the multiple comparison problem. 
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Figure 1.4: Confidence bands for the true level curve. Confidence bands extending 
perpendicular to /„ should intersect the true level curve /„ with high probability. 
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We point out that the first two drawbacks are not necessarily major. Data can often 

be transformed to approximate normality using a simple transformation. Also, though 

the ability to construct asymmetric intervals may be useful, it is not clearly shown 

by Wameling and Saborowski that asymmetric confidence intervals are substantially 

better than symmetric confidence intervals. The most significant objection is that 

no adjustment is made for multiple comparisons; however, this is not addressed by 

Wameling and Saborowski. 

In response to the drawbacks mentioned, Wameling and Saborowski propose a 

method for constructing asymmetric confidence intervals for the true level curve which 

does not require Z to be a Gaussian random field through conditional simulation of the 

process {Z(s) | z(s\),..., Z(SN)}. The only explicit assumption used in this method 

is that an appropriate simulation algorithm exists for approximating realizations of 

{Z(s) | *(si) , . . . ,z(sw)}. 

As in Section 1.3.1, for s0 G Iu we define T(s0) to be a line in V going through s0 

at an angle 9Q perpendicular to /„. Any point on the line T(s0) can be parameterized 

as 

S0(T) = (sOtX + TCOs(do),soty + Tsm(0o)). 

Wameling and Saborowski make use of the fact that as T(s0) extends away from s0 

it will intersect the true level curve when it crosses the level u. The following steps 

are proposed for constructing a confidence interval for Iu along T(so). Simulate M 

realizations of Z(s) = Z(s) \ z(si),... ,Z(SN) along T(so) and record the crossing 

closest to s0- Denote the location of the closest crossing for the ith realization as £J£{n. 

This location will correspond to r^in such that 

*mL = so + 7it(cos0,sin0). 

These steps are illustrated in Figure 1.5. In Figure 1.5 the estimated response Z(s) 

along T(s0) is shown by a dashed line. The estimated response Z(s) crosses the level 
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Figure 1.5: Finding the closest level crossings. To construct confidence intervals of 
the appropriate size we must simulate realizations of Z(s) = Z(s) \ z(si),..., z(s^) 
(shown as a solid black line) and find the level crossing closest to s0. 

zero at s0- Three realizations of Z{s) along T(s0) are shown as solid lines. The 0-

crossing closest to s0 for each realization is marked by a triangle. After finding the 

nearest level crossing t^jin for each realization, compute ra/2 and ri_a/2, the a/2 and 

1 — a/2 quantiles of {r^[n, i = 1 , . . . , M}. The line segment stretching from s0(Ta/2) 

to SO(TI_Q/2) should intersect the true level curve with approximate confidence level 

I —a. The resulting intervals will look similar to the ones produced by Lindgren and 

Rychlik (1995). 

1.3.3 Measuring accuracy via individual confidence levels 

Polfeldt (1999) assesses the accuracy of a contour plot by calculating individual 

confidence levels throughout the region of interest. Polfeldt assumes that the response 

process Z has been observed at locations {si,..., s^} 6 T>, so that for any location 

s £ V, we are able to predict responses Z(s) and calculate the associated prediction 

error <r2(s). 



12 

From the prediction surface Z we construct a contour plot for levels U\ < • • • < up. 

Ignoring the problems at locations along the boundary of V, any point s will lie 

between two contours for levels Ui and Uj (assume it; < Uj). Implicitly, our belief is 

that the true response Z(s) is between the values Ui and Uj. Polfeldt measures how 

well the contour plot represents the distribution of the response process Z over the 

domain of interest by calculating the probability 

p(s) = F(ui < Z(s) < Uj). 

Under the assumption that Z is Gaussian, this probability can be easily calculated. 

Contour plots in which p(s) tends to be high represent the distribution of the 

process Z better than plots in which p(s) is low. When p(s) is low, it indicates that 

it is uncertain whether the level curves Ui and Uj are in the "correct" location, i.e., it 

is not clear whether the level curves Ui and Uj correctly separate the locations where 

Z(s) < Ui from the locations where Z(s) > Uj. When p(s) is high, we can have 

greater confidence that the estimated level curves accurately represent the behavior 

of Z at that location and that Z(s) takes a value between Ui and Uj at s. An image 

plot of p(s) is shown in Figure 1.6; the predictions Z(s) and the prediction error <5"2(s) 

were calculated using simple kriging and the levels under consideration were U\ = 6 

and u2 = 12. 

1.3.4 Credible Bands for Level Curves 

Bayarri et al. (2008) use credible bands to assess the accuracy of a contour plot 

in their paper dealing with risk assessment of natural hazards. Bayarri et al. seek to 

model volcanic behavior as a function of two input variables. There is special interest 

in the critical event contour of the input space, which is a level curve separating 

catastrophic events from benign events. 

The response surface is a deterministic function of the input variables calculated 

by a complex computer model. Because this computation is prohibitively expensive, 
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Figure 1.6: An image plot of p(s) = P(6 < Z(s) < 12). The accuracy of a contour 
plot is better when p(s) tends to be high over the region of interest. 

a Bayesian model is used to approximate the computer model. The true critical event 

contour is approximated by the critical event contour of the median of the posterior 

predictive distribution. To reflect the uncertainty in the approximation of the critical 

event contour, 90% credible bands are provided by finding the critical event contours 

for the 0.05 and 0.95 quantiles of the posterior predictive distribution. However, 

Bayarri et al. do not clarify the sense in which these bands are "credible" bands. A 

typical credible region contains an object of interest with known probability. The 

credible bands provided by Bayarri et al. reflect the uncertainty of the estimated 

critical event contour, but it is not clear that these bands contain the true contour 

with probability 0.90. The credible bands provided in one of the figures actually cross 

each other; this seems unreasonable if the bands actually contain the true critical event 

contour with high probability. 

1.3.5 Related Work 

Several papers apply the results previously discussed. Lindgren and Rychlik 

(1996) use their method discussed in Lindgren and Rychlik (1995) to construct con

fidence bands for level curves of sparsely observed images. Wameling (2003a) uses 
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the method presented in Wameling and Saborowski (2001) to find confidence bands 

for the level curves of yearly precipitation in the lower part of Saxony, Germany. 

Cullman and Saborowski (2005) use indicator kriging and the method presented in 

Polfeldt (1999) to approximate the conditional probability given the observed data 

that a random process fails to exceed a response level of interest at specified locations. 

1.4 Outline of Dissertation 

Chapters 2 and 3 will present two methods for constructing confidence regions 

for level curves. The method presented in Chapter 2 is an extension of Lindgren 

and Rychlik (1995) and Wameling and Saborowski (2001). Instead of constructing 

confidence bands along the estimated level curve, an approach using confidence boxes 

(rectangular confidence regions) is proposed. Chapter 2 begins with a brief overview of 

spatial interpolation, continues with a description of the proposed method, and then 

concludes with empirical results of a small simulation study. Chapter 3 presents an 

approach to construct a confidence region for the true level curve which addresses the 

multiple comparison problem. This method models the response surface as a Gaussian 

random field and constructs the confidence region using hypothesis testing. The 

critical value is adjusted to control the simultaneous Type I error of the hypothesis 

tests. The chapter begins with an explanation of how hypothesis testing can be 

used to construct this confidence region, describes a simulation method to estimate 

the critical value needed to control the simultaneous error rate, and then confirms 

the validity of this approach using a simulation study. After this, discussion will be 

given to additional error criteria which might be considered in combination with this 

approach. 

In Chapter 4 these two methods will be applied to three different data sets; the 

first two are simulated data sets designed to highlight the differences in the methods, 

while the last data set is related to heavy metal contamination in the Swiss Jura. 
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Chapter 5 introduces a limit theorem for the distribution of the maximum of a 

triangular sequence of stationary Gaussian random fields. The result is an extension 

of the work presented by Hsing et al. (1996) to two dimensions. The result was 

motivated by the desire to control the simultaneous Type I error rate of hypothesis 

tests at locations on an n x n lattice where the test statistics are Gaussian and 

correlated. Consideration was given to using this result to approximate the critical 

value of the hypothesis tests discussed in Chapter 3, but the approximation was 

typically conservative and application of this result needs further exploration. Under 

certain dependence and limiting conditions we show that the maximum of the random 

fields exhibits extremal clustering in the limit. Consideration is then given to the use 

of this result in approximating P(max1<iij<n Zitj < u), where {Zitj} is a stationary 

Gaussian random field on a square n x n lattice of equally spaced locations. 

Concluding remarks and discussion of future work will be given in Chapter 6. 



Chapter 2 

CONFIDENCE BOXES 

2.1 Introduction 

In this chapter we extend the work of Lindgren and Rychlik (1995) and Wamel-

ing and Saborowski (2001) to construct rectangular confidence regions along the es

timated level curve which individually intersect the true level curve with high prob

ability. We call these rectangular regions "confidence boxes". The confidence boxes 

extend perpendicular to the estimated level curve and each box is constructed so that 

the outside edges of each box will touch the edges of adjacent boxes and there are 

no gaps between boxes. In general, the only conditions necessary to use the method 

proposed in this chapter are that the random field is continuous almost surely and can 

be simulated given the observed data. However, for practical purposes we will also 

assume that the random process is Gaussian and stationary. Additional processes 

may be considered, but simulation becomes more difficult outside of the Gaussian 

case. 

There are some advantages of our approach over its predecessors. The first is 

that the assumptions are weaker than those assumed by Lindgren and Rychlik (1995) 

(since we do not assume differentiability of the random field) and are consistent 

with the assumptions of Wameling and Saborowski (2001). The method presented 

in this chapter is valid for any continuous process which can be simulated given 

the observed data. The second advantage is that the approach presented in this 

chapter helps to fill in the "gaps" between confidence bands. As seen in Figure 2.1, 
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Figure 2.1: Gap between confidence bands. While confidence statements can be 
made about locations perpendicular to the estimated level curve at s{ and s^, no 
such statement can be made about S3. 

confidence intervals built along Iu leave gaps along Iu where no confidence statement 

is made. Suppose that confidence intervals have been constructed perpendicular to 

Iu at two points s* and s£ £ At- Consider making a confidence statement about 

the location of the true level curve in directions perpendicular to Iu for a point S3 

between s* and s^. It seems reasonable that the confidence interval at this point 

would be similar to the ones at si and s%, but no formal statement can be made 

using the previous methods without constructing an additional confidence interval. 

The proposed method overcomes this problem by constructing the boxes so that the 

outside edges of each box touch the edges of the adjacent boxes. Every point on 

the estimated level curve will be associated with a confidence box, so every point on 

the estimated level curve will have an associated confidence statement. In this case, 

the confidence statement is not about the particular point, but about the confidence 

box associated with the point. Specifically, individually for each confidence box the 

probability that the true level curve passes through the box should be 1 — a. 
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We continue this chapter by going over some basic ideas and concepts related 

to the interpolation of spatial processes. We will then describe the procedure for 

constructing the confidence boxes. This chapter will conclude with a small simulation 

study which confirms that the empirical confidence levels of our confidence regions 

are similar to the nominal levels. 

2.2 Interpolation of Spatial Processes 

2.2.1 Characterizing Spatial Variation 

Consider a random field {Z(s)}, where s is the location of Z in V C R2. Typi

cally, Z(s) is decomposed into the sum 

Z(s)=m(s) + Y(s), 

where ra(s) is a smoothly varying trend function that captures the large scale variabil

ity of Z and Y(s) is a mean zero random function capturing the small scale behavior 

of Z. 

The process Z is said to be second-order stationary if it satisfies the following 

properties: 

1. The mean of Z is constant so that E(Z(s)) = ^ for all s. 

2. The variance of Z is finite, and for any s £ R 2 and displacement vector h G IR2, 

we have Cov(Z(s), Z(s + h)) = C(h). 

If the covariance does not depend on direction, the spatial variation is said to be 

isotropic. In this case, the displacement vector h may be replaced by the distance 

|h|. Hereafter, we use the term "stationary" to refer to a second-order stationary 

process. 

The covariance function of a process gives us insight into its continuity and 

differentiability. Since we will be concerning ourselves with Gaussian processes, we 
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present results related to the continuity and differentiability of Gaussian processes. 

A stationary Gaussian process is continuous almost surely if its covariance function 

C(h) = C ( 0 ) - K | h | / 3 + o(|h|/3), a s h ^ O , 

where K > 0 and 0 < (3 < 2. Similarly, a stationary Gaussian process is continuously 

differentiable if 

-C"(h) = -C"(0) - K\h\a + o(|h|Q), 

where K > 0 and 0 < a < 2. The conditions for continuity almost surely are satisfied 

for almost all covariance functions encountered in applied probability (cf. Lindgren 

(2004, p. 25)). However, it is common for continuous processes to not be continuously 

differentiable. 

A necessary (but not sufficient) condition for a process Z to be continuous al

most surely is that C(h) —> C(0) as h —* 0. In practice, our observed responses 

may be measured with measurement error. In this case, our observed responses are 

realizations of 

Zobs(s) = Z(s) + e, 

where e is a Gaussian random variable independent of location with mean zero and 

variance r2 . In these cases, the empirical covariance function will exhibit a nugget 

effect in which C(h) is discontinuous at zero. We emphasize the fact that the un

derlying random field is always assumed to be continuous almost surely. Even when 

measurement error is present in the observed responses, interest lies in the behavior 

of the underlying continuous random field Z. 

Some common covariance functions in geostatistics include the Gaussian, spher

ical, exponential, and Matern covariance functions. These covariance functions are 

parameterized in terms of several parameters: the partial sill a2, the range parameter 

(f>, the nugget r2 , and in the case of the Matern covariance function, an additional 

smoothness parameter v. The partial sill a2 represents the variance of Z(s), i.e., 
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a2 — Var(Z(s)). The nugget is the variance of the random measurement error. The 

variance of the observed responses is a2 + r 2 when measurement error is present. 

The parameter 0 models the dependence of the random field. When <f> is larger, the 

dependence between neighboring locations is greater (in our parameterization). The 

smoothness parameter v models the smoothness of the underlying random field. The 

process becomes smoother as v increases. 

We now specify the forms of the Gaussian, spherical, exponential, and Matern 

covariance functions. For simplicity, we assume isotropic covariance functions. We 

include the variance r2 of the measurement error in the parameterizations with the 

understanding that this is zero when no measurement error is present. The Gaussian 

covariance function is defined by 

(a2 + T2 ifh = 0 

^ H a ' e x p f - g l ifAX). 

C(h) = < 

Processes having Gaussian covariance functions will have infinitely differentiable sam

ple paths. The spherical covariance function is given by 

(a2 + T2 ifh = 0 

* 2 ( i - S + ! ( Y ) 3 ) i f o < ^ < 0 

0 tfh>4>. 

The exponential covariance function is given by 

V + T2 ifh = 0 

a 2 e x p ( - ^ J i f / i > 0 . 

Processes having spherical or exponential covariance functions are not smooth enough 

to have differentiable sample paths. The last covariance function we mention is the 

Matern covariance function. The Matern covariance function can be parameterized in 

several ways, but we follow the parameterization given in Stein (1999). The Matern 

covariance function is parameterized by 

V + T2 if ft = 0 

W = ^ 2 / H 

C(h) = 
* 2 ( t ) V ( - | ) i f»>0, 
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where Ku is modified Bessel function of the second kind. Random fields having 

the Matern covariance function are f ^ ] (the ceiling function of (u — 2)/2) times 

differentiate (cf. Paciorek (2003, p. 44)). 

2.2.2 Kriging 

Kriging predictors are commonly used to interpolate spatial data. Kriging pre

dictors make use of the way a process varies through space, usually modeled through 

either a covariance or semivariance model, and are optimal in the sense that they are 

unbiased and minimize the mean squared error of prediction. 

As with most forms of classical kriging, the covariance function of Z(s) is assumed 

to be known. In practice, the parameters are estimated empirically and then used 

as if they were the true values. This estimation process is described in a number of 

excellent resources such as Chiles and Delfiner (1999), Schabenberger and Gotway 

(2005), Cressie (1993), Goovaerts (1997), Banerjee et al. (2004), Stein (1999), and 

Webster and Oliver (2007), and will not be discussed here. 

Assume that the random field has the form 

Z(s)=x(s)'P + Y(s), 

where x(s) is a vector of explanatory variables associated with s, (5 is a vector of fixed 

constants, and Y{s) is a mean zero random function with covariance function C(-). 

The kriging prediction at location s is given by 

Z(s) = A'Z, 

where Z' = [Z(si) , . . . , Z(SJV)] and A' is a vector of weights chosen to minimize 

E(Z(s) — Z{s))2 and ensure that E(Z(s)) = E(Z(s)). Special cases of kriging in

clude: 

1. Simple kriging when (3 — 0 for all s. 
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2. Ordinary kriging when x(s) is a vector of ones for all s and ft is unknown. 

3. Universal kriging for more general x(s) and /3. 

In general, one can assume that (3 = 0 without added difficulty. Ordinary and univer

sal kriging are computationally identical to simple kriging after the generalized least 

squares estimate of the mean is subtracted from the observed responses. 

2.3 Details of Constructing Confidence Boxes 

The goal of the method proposed in this chapter is to construct a set of rectan

gular regions such that the probability that the true level curve intersects each region 

individually is quite high. Denoting the zth confidence box by Si, our desire is to 

construct Si such that 

P(Z(s) = u for some s e S-) > 1 - a. 

We will do this using the concept of level crossings and modifying the ideas of Lindgren 

and Rychlik (1995) and Wameling and Saborowski (2001). 

The approach presented in Wameling and Saborowski (2001) is more flexible 

and straightforward than that of Lindgren and Rychlik (1995) and will be the start

ing point of our approach. As summarized in Section 1.3.2, the basic approach of 

Wameling and Saborowski (2001) is: 

1. Use kriging to construct estimated level curves Iu. 

2. Along transects perpendicular to Iu, generate a large number of realizations of 

the process Z(s) given the observed data z(si),..., Z(SN) (an example of this 

was shown in Figure 1.5). 

3. Find the level crossing nearest to Iu for each realization. 

4. Use this information to construct confidence bands of the appropriate size. 
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Figure 2.2: Closeup of confidence boxes extending from the linear approximation of 
the estimated level curve. 

Our approach is similar, except that in step two, we generate realizations of Z(s) given 

the observed data in rectangular regions stretching perpendicular to the estimated 

level curve. The procedure we follow will be illustrated through several figures and is 

described in detail below. 

First, kriging is used to construct the estimated level curves Iu in our domain 

of interest V. Next, we wish to simulate realizations of Z(s) given z(s\),... z(sN) 

in rectangular regions perpendicular to /„. The width of each box is chosen so that 

the edge of each box touches the neighboring box and there are no gaps between the 

boxes along the estimated level curve. In practice, Iu will be a linear approximation 

of the set {s : Z(s) = u}. Thus, the approximation will be a set of line segments 

and we denote the set of line segments comprising this linear approximation by {Li}, 

where L, represents the ith transect. A convenient way to choose the widths of the 

rectangular regions is to associate a rectangular region with each line segment of the 

linear approximation. The width of the zth rectangular region then corresponds to 

the length of the associated line segment L;. This relationship is shown in Figure 2.2. 

Care must be taken in choosing the proper length of the transects making up the linear 

approximation of Iu. Choosing the length of the line transects to be a fixed distance 
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Figure 2.3: Angle associated with line segment Lj. Angle 0; is the angle perpendicular 
to line segment L{. 

can create problems. If the lengths of the transects are too small, then the confidence 

boxes will be narrow and look similar to confidence bands. If the lengths are too 

long, then the linear approximation may not be an adequate approximation of Iu. 

Additionally, since the true level curve may intersect a confidence box at any location 

in the box, a wide confidence box may yield little insight into the location of the true 

level curve. For this reason, we prefer a linear approximation which allows the lengths 

of the transects to vary. For the analysis done in this dissertation, the contourLines() 

function in the R software package provided a suitable linear approximation of the 

estimated level curve. 

For each line segment Lj, we will generate M realizations of Z(s) given 

z(si),... Z(SN) in a rectangular region -Bj(r1,r2) perpendicular to Li (this will be 

done independently of the realizations for other regions). Let Oi represent the angle 

in relation to the x—axis which is perpendicular to segment Li, as shown in Figure 

2.3. Define te(s,r) to be the location a distance of r away from s at angle 9. More 

formally, 

te(s, T) = (SX + T COS(0), sy + T sin(0)), 
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Figure 2.4: A graphical display of PJ(TI, r2). Bj(ri, r2) is a rectangular region stretch
ing a distance of T\ and r2 from line segment Lj. 

where sx and sy represent the x— and y—coordinates of s. Let s^i and si>2 represent 

the two endpoints of line transect Li and let 

Pi,i = tei(
si,i,Ti), 

Pi,2 = tei(Siti,T2), 

P»,3 =tei(Si)2,T2), 

Pi,4 = t0i(Si,2,Ti), 

denote points at distances T\ and r2 and angle 0, away from the endpoints of Lj. 

Bi{TX,T<2) is the rectangular region extending distances of T\ and r2 from line seg

ment Li. Thus, .BJ(TI,T2) is the rectangular region bounded by line segments Pi,iPi,2, 

Pt,2Pi,3, Pi,zPi£, and Pi,4Pi,i. PJ(TI ,T 2 ) is illustrated in Figure 2.4. Note that typi

cally, T\ is a negative value while r2 is a positive value. Because we cannot generate 

observations at every location in Pi(ri ,r2), we choose to generate realizations at lo

cations along three transects in each rectangular region. Two of the transects run 

along the edges of each rectangle, while the other transect runs along the center of 

the rectangle, as shown in Figure 2.5 (a). 
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(a) Realizations of Z{s) given z(si),..., Z(SN) 
are simulated at locations falling on three tran
sects running perpendicular to the estimated 
level curve. The estimated level curve is rep
resented by the dashed line. 

(b) The realized responses are interpolated in 
the rectangular region to produce a surface. 
The dashed line represents the estimated level 
curve. 

(c) After interpolating the realized surface over 
the grid of locations, we construct the level 
curve of the realized process. The realized level 
curve is shown as a thick black line. 

(d) After interpolating the realized surface and 
constructing the realized level curve, we locate 
the nearest level crossing on the realized level 
curve and measure its distance to the estimated 
level curve. 

Figure 2.5: Process of constructing confidence boxes. 
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After generating a realization of Z(s) given z(si),... ,Z(SN) at the points along 

the three transects, we interpolate the realized responses over the rectangular region 

to get a response surface looking something like the one shown in Figure 2.5 (b). 

Having constructed the realized response surface, our next step is to find the location 

nearest to the estimated level curve where the response surface crosses the response 

level u. To do this, we first construct the level curve of the realized process as shown 

in Figure 2.5 (c). After constructing the realized level curve, we locate the point on 

the realized level curve which is closest to Iu (which corresponds to the level crossing 

nearest to the estimated level curve) and measure the distance between this point 

and the estimated level curve. This is depicted in Figure 2.5 (d). Note that this 

distance will always be measured at an angle perpendicular to the estimated level 

curve. Denote the minimum distance for the j th realization in rectangular region i 

as Titj, and denote the set of nearest level crossing distances for the ith rectangular 

region as T^in = { r ^ } ^ . 

An empirical confidence box of the appropriate size for rectangular region i is 

given by Bi(r\2, T[_a,2), where r\2 and T\_a,2 denote the a/2 and 1—a/2 quantiles of 

T^in. Since a u-\evel crossing occurred in the region Bi{Tl
a,2,T\_a,2) in (1 — a) x 100% 

of the realizations of Z(s) given z(si),..., z(s^), we expect that the true level curve 

Iu will intersect the region -Bj(r^,2,r1
l_Q/2) with approximate confidence level 1 — a. 

2.4 Simulation Study 

The goal of the method presented in this chapter is to construct rectangular con

fidence regions Si along the estimated level curve such that each individual confidence 

region intersects the true level curve with high probability (no confidence statement 

is made regarding the simultaneous probability). We will check whether the empirical 

confidence levels of our confidence regions are similar to the desired confidence levels 

through a small simulation study. 
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2.4.1 General Description of Simulation Procedure 

We first generate a realization of the response variable Z over a fine grid of 

locations in the domain of interest V. The realized response surface is interpolated 

over V and the level curve for this realization is constructed. The level curve of the 

realized surface will be used as the true level curve /„ for comparison purposes. 

From this realized true surface, we randomly sample N locations and use the 

corresponding responses as our observed responses z(si),... ,Z(SN). The observed 

responses are used to make kriging predictions over a grid of densely spaced loca

tions in the domain of interest. These predictions are interpolated over V, and from 

this we produce a linear approximation of the estimated level curve Iu using the 

contourLines() function in R. 

For each line segment Li which makes up the linear approximation of /„, we 

simulate M realizations of Z{s) given z(si),... Z(SN) at locations along three transects 

in the region 5i(ri,T2). The nearest level crossing is determined for each realization, 

and the set of nearest crossing distances is used to determine the appropriate size of 

the ith confidence region Si. After constructing each confidence region Si, we check 

whether the true level curve intersects the ith confidence region. 

This procedure will be performed for numerous realizations of the "true" level 

curve. As an overall measure of performance, we calculate the proportion of confidence 

boxes intersecting the true level curve across all realizations of Z. 

2.4.2 Specifics of Simulation Procedure 

We assume that Z has mean zero, variance a2 = 1, and nugget r 2 = 0. Simula

tions were performed using both the spherical and exponential covariance functions. 

For each covariance function we ran simulations using range parameters <fi = 2, 5, 

and 10. The procedure can be performed using smaller values of 0, but the weaker 

dependence typically results in longer simulation times. The covariance functions 
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(a) Spherical covariance functions used in the (b) Exponential covariance functions used in the 
simulation procedure. simulation procedure. 

Figure 2.6: Covariance functions of simulation procedure. 

used in the simulations, relative to the size of the domain, are shown in Figures 2.6 

(a) and (b). 

Following the example of Wameling (2003b), we assumed the region of interest 

V to be a square region of size [0,20] x [0,20]. The initial unconditional realization 

of Z was generated at locations on a grid of size 200 x 200, and the response surface 

was interpolated over these locations. The true level curve was constructed for the 

level u = 1. 

From the initial set of realized locations, we randomly selected N = 200 locations 

to use as our observed responses z(si),... ,z(s2oo)- For each realization of Z, we 

constructed the estimated level curve I\ using both simple and ordinary kriging. 

To determine the appropriate size of the ith confidence box Si, 100 realizations 

of Z(s) given z(si),..., z(s2oo) were produced in -Bj(ri, r2). ra/2 and Ti_a/2 were then 

chosen according to confidence level 0.90. 

A confidence box is "successful" if the true level curve passes through the confi

dence box. For a confidence level of 0.90, approximately 90 percent of the confidence 
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Table 2.1: Empirical confidence level of confidence boxes. 

covariance function 
spherical 
spherical 
spherical 

exponential 
exponential 
exponential 

<f> 
2 
5 
10 
2 
5 
10 

sk 
.91 
.89 
.91 
.90 
.90 
.89 

ok 
.91 
.90 
.90 
.90 
.90 
.88 

boxes should intersect the true level curve. For each combination of covariance func

tion and range parameter, we generated 20 realizations of the true level curve I\. 

In each realization, there were typically 100 or more confidence boxes. The empiri

cal confidence level of our method was determined by calculating the proportion of 

confidence boxes intersecting the true level curve across all realizations. 

2.4.3 Results 

This empirical confidence levels for each covariance function are provided in Ta

ble 2.1. The type of kriging used when constructing the confidence boxes is specified 

by "sk" for simple kriging and "ok" for ordinary kriging. The empirical confidence 

levels were close to the intended level of 0.90 in all cases. In addition to the empir

ical confidence level calculated across all realizations, we also looked at the success 

rate of the confidence boxes in each realization. More specifically, we looked at the 

proportion of boxes that "successfully" intersected the true level curve in each real

ization. We noted that though the confidence boxes are constructed independently 

of one another, there is still correlation between the boxes of the same realization. 

When the estimated level curve for a particular realization is a poor approximation 

of the true level curve, it will likely lead to a lower success rate for the confidence 

boxes of that particular realization. Conversely, when the estimated level curve of a 

realization approximates the true level curve well, it is likely that the success rate of 

the confidence boxes for that particular realization will be higher than the nominal 
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confidence level. Typically, the success rate of the confidence boxes for individual 

realizations of the true level curve was within 0.05 of the confidence level 0.90. 



Chapter 3 

HYPOTHESIS TESTING 

3.1 Introduction 

In this chapter we present an approach for the construction of a confidence region 

for the level curve Iu of a Gaussian random field. The confidence region will be 

constructed through hypothesis testing, adjusting the critical value of the test to 

control the familywise error rate (FWER) through empirical simulation of the test 

statistic. 

We would like to construct a confidence region S for the level curve /„ such that 

P(-7u ^ S) > 1 — a. Instead of finding S directly, we will try to find a set R which 

does not intersect Iu with high probability, i.e., R such that F({IU D R} = 0) > 1 — a. 

Consequently, the set S = Rc will satisfy our goal since P(/u C Rc) > 1 — a. 

Suppose we observe responses z(si),..., Z(SN) of a single realization of a Gaus

sian random field Z, where S\,... ,SN are locations in the two-dimensional region of 

interest V C R2. We assume the random field with known mean fi (without loss 

of generality we take // = 0) is stationary and has continuous sample paths almost 

surely. The region R is formally constructed by testing for each s, H0 : Z(s) = u 

versus Ha : Z(s) ^ u. The region R is then the union of all s for which we conclude 

that Z(s) ^ u. 

To construct a test statistic, we define 

Z(s) = E(Z(s)\Z(Sl),...,Z(sN)), 



33 

and 

<J2(S) = E(Z(s) - Z{s)f. 

Thus, 

and is a convenient choice as test statistic. Since Z is Gaussian with mean zero, Z 

corresponds to the simple kriging predictor. 

Our confidence region will fail to contain the true level curve when any Type I 

error is made in our hypothesis tests. In order to control the confidence level of our 

confidence region, we will need to control the familywise error rate (FWER) of our 

hypothesis tests. A Type I error can only be made when Z(s) = u, and thus, only 

at locations s G Iu. To control the FWER at significance level a, we should only 

reject H0 and conclude that Z(s) =fi u when |Z'(s)| > Ca, where Ca is a critical value 

chosen so that 

P(sup |Z ' (s ) | >Ca) =a. (3.1) 

There are two main difficulties in calculating Ca. First, the level curve Iu is 

random and unknown. Second, {Z'(s)} is a nonstationary Gaussian random field; 

problems involving the extremes of Gaussian random fields are typically difficult to 

solve and are more difficult when the random field is nonstationary. 

A natural approach to dealing with the first difficulty is to find C* ,2 such that 

P ^ s u p Z ' ( S ) > C ; / 2 ^ = a / 2 . (3.2) 

C*a,2 will be a conservative approximation of Ca, but is easier to approximate since 

we no longer have to consider the behavior of the level curve /„. There are two 

reasons that C* ,2 will be a conservative approximation. The first reason is that we 

are considering the distribution of Z'(s) for all s G T> instead of s G Iu- The second 

reason is because a realization of {Z'(s),s G V} may have extreme positive and 
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negative values occur simultaneously. Suppose that P(sup s e P Z'(s) > C*a,2] = a/2. 

Then 

p ( s u p | Z ' ( S ) | > C : / 2 ) 

= P ( { i n f Z'(s) < - C ; / 2 | U {supZ'(S) > C £ / 2 j ) 

= p(mf z'(s) < -c; / 2) +p(^supz'(s) > c*a/2") 

-p({mf z'(s) < -c*a/2j n |supz'(s) > c ^ } ) 

<a. 

Approximating (3.2) may still be difficult in principle since {Z'{s)} is nonstationary. 

To overcome this difficulty, instead of considering the behavior of the nonstation

ary random field {Z'(s)}, one might consider the behavior of a stationary Gaussian 

random field as an approximation. 

The behavior of the extremes of Gaussian random variables has long been of 

interest. Theory related to the excursion probability 

YsupZ(t) >uj F( supZ(t) >u), (3.3) 

has a rich literature history, where Z is a real-valued Gaussian random field over some 

domain of interest T (which may be continuous or discrete and multidimensional). 

For a helpful overview of results related to the extremal behavior of Gaussian random 

fields, see Adler (2000) and Chapters 2 and 4 of Adler and Taylor (2007). There have 

been many approximations of (3.3) given in the literature. The theoretical papers 

have generally treated only stationary processes over smooth Euclidean domains and 

have never been able to identify the precise level of accuracy for the approximations 

(cf. Adler and Taylor (2007, p. 350)). Typically, computations for nonstationary and 

non-differentiable processes become "prohibitively complicated, and, if doable, then 

only in very special cases," (cf. Adler (2000, p. 41)). Since {Z'(s)} is nonstationary 
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and not necessarily differentiable, there does not appear to be any method that easily 

allows us to estimate C"a,2. Recently, Adler (2008) presented an approximation of (3.3) 

which does not require stationarity or isotropy a priori. An explicit, relatively simple 

result was provided for stationary, isotropic, twice-differentiable Gaussian random 

fields when T c M.d for d > 1 and certain regularity assumptions are met. Though 

the process Z'(s) does not meet the assumptions needed to use this explicit result, 

we did explore using the result to estimate C* ,2 (and thus gain an approximation 

for Ca). As discussed in Section 3.4, this estimate of C*/2 is often not an accurate 

approximation of Ca and is typically quite conservative. It is possible that the ap

proximation could be improved if the nonstationarity of Z' were taken into account. 

However, an explicit result for the nonstationary case was not provided by Adler and 

it is not clear whether a calculable expression is obtainable. Another approach we 

considered was to approximate Ca using the main result in Chapter 5 regarding the 

behavior of the maxima of a triangular sequence of stationary Gaussian random fields. 

The conditions needed for this result are relatively mild, and Gaussian processes hav

ing common covariance functions such as the Gaussian, spherical, exponential, and 

Matern all satisfy the conditions. However, this approximation was also typically 

conservative and further exploration needs to be done regarding the use of this result 

in approximating Ca. 

Given the difficulties in estimating Ca, an expedient way to find the proper crit

ical value is through simulation. Because of the difficulties outlined above, care must 

be taken in the simulation process and the details of the simulation are described 

below. We will continue this chapter by first describing a simulation procedure which 

can be used to estimate Ca. This is followed by results of a simulation study which 

validates the method proposed in this chapter by checking the empirical confidence 

level of confidence regions constructed using this method. Next, we briefly compare 

the estimates of Ca obtained using the excursion probability approximation in Adler 
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(2008) (for the stationary, isotropic, twice-differentiable case) with the estimates ob

tained through simulation. Lastly, since it may be unnecessarily strict to control 

the simultaneous Type I error rate of the hypothesis tests, we finish by discussing 

alternative error criteria which may used. 

3.2 Proposed Method of Simulation for Estimating Ca 

It is clear from (3.3) that in order to properly estimate Ca we must consider 

the distribution of {Z'(s), s e Iu}. Thus, there are two main elements to consider in 

correctly estimating Ca through simulation: 

1. Proper simulation of Z'. 

2. Properly modeling the randomness of the true level curve Iu. 

As previously mentioned, we assume that Z(s) is a stationary Gaussian random 

field which is continuous almost surely. Without loss of generality, we assume that 

the mean of Z is zero. Under these assumptions, the predictor Z{s) = E(Z(s) \ 

Z(s i ) , . . . , Z(SN)) corresponds to the simple kriging predictor 

Z(s) = Z 'E - 1 ^ , 

where Z' = [Z(si),... ,Z(SN)], S is the N x N covariance matrix of Z, and ĉ  = 

[cov(Z(s), Z(si)),..., cov(Z(s), Z(SN))]. Correspondingly, the kriging variance o2(s) 

is given by 

a2(s)=E(Z(s))2-c'si:-
1cs. 

We wish to model the behavior of Z'(s) given the observed responses z(si),..., z(s^). 

Because Z(s) and a(s) are deterministic functions, the random behavior of Z'(s) 

comes from the random response value Z(s). The observed responses give us infor

mation about likely response values of Z(s). Thus, instead of considering uncondi

tional realizations of Z{s) to model the variability in the potential responses of Z(s), 
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we should only consider the ensemble of conditional realizations given the observed 

data. Denoting the conditional random variable Z(s)\z(si),... ,Z(SN) by Z(s), we 

can explore the behavior of Z'(s) by generating realizations of 

Z{s) - Z(s) 
a(s) • 

Next, we deal with the challenge that Iu is unknown and random. As previously 

stated, observed responses z(si),... ,Z(SN) give us insight into likely responses of 

Z(s). Similarly, realizations of Z(s) — Z(s) \ z{s\),... ,Z(SN) give us insight into 

plausible locations of Iu. Define Iu = {s : Z(s) = u}. Figure 3.1 compares the true 

level curve of a realization of Z with the level curves /„ resulting from five realizations 

of the conditional random field Z. Iu tends to be located fairly close to Iu and it seems 

reasonable to use realizations of Iu to approximate the behavior of Iu. 

The last thing we need to consider in our estimation of Ca is how we use the 

distribution of l^7^)! to find the appropriate critical value. Recall that we desire 

Ca such that P(supse /u |Z'(s)| > Ca) = a. Hence, Ca should be greater than the 

sup{|Z'(s)|,s (= /„} with probability 1 — a. Replacing Iu by Iu, our critical value 

should be estimated by considering the maximum of {|Z'(s)|,s 6 Iu} for each real

ization, and then taking the (1 — a) quantile of these values. 

Combining all of the previous information, we propose the following method for 

estimating the critical value Ca: 

• Generate realizations of the conditional field Z(s) throughout the domain V. 

• For each realization, construct Iu = {s : Z{s) = u}. 

• In each realization, calculate the standardized prediction error 

\u-Z(s) {|Z'(fl)|, * €/„} = { ,s e lu >. 
a(s) 

• Find the maximum of {|Z'(s)|,s G Iu} for each realization. 

• Calculate the (1 — a) quantile of the set of maxima from the previous step and 

use it as the estimate of Ca. 



38 

o 

ir> H 

o H 

^ . 1 ' -*^f O** 

5 10 

x 

15 20 

Figure 3.1: A comparison of the true level curve and realized level curves. The true 
level curve Iu is shown along with the level curves Iu from five realizations of Z(s) 
given z(si),...,z(sN). 
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3.3 Validation of Proposed Method 

Having outlined a method for constructing our confidence region S and a simu

lation procedure to estimate Ca, we proceed by verifying that our method produces 

confidence regions of the appropriate confidence level. 

3.3.1 General Description of Validation Procedure 

In order to test the effectiveness of our method, we first generate a realization of 

a Gaussian random field for a fixed covariance function over a very fine grid in our 

domain V. The realized response surface is interpolated over V and the level curve 

for this realization is constructed. For comparison purposes the level curve of this 

interpolated surface is used as the "true" level curve Iu. 

From this realized "true" surface we randomly sample N locations and note the 

corresponding response. These sampled responses will be used as our observed re

sponses z(s\),... ,Z(SN). The observed responses are used to calculate kriging pre

dictions over a fine grid of locations in the domain of interest, as well as to calculate 

the associated kriging error. For each of these locations we construct the test statistic 

Using the procedure described in Section 3.2, we approximate the distribution 

of {|Z'(s)|,s £ Iu} through simulation and estimate our critical value Ca. Using our 

estimated critical value Ca and the previously calculated test statistics, we construct 

a rejection region R = {s : \Z'(s)\ > Ca}. Our confidence region then becomes 

S = Rc. If the true level curve Iu is contained in our confidence region S, then the 

simulation is considered a success. Our procedure should produce a confidence region 

that contains the true level curve in approximately (1 — a) x 100% of the realizations 

of the "true" response surface. 
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3.3.2 Specifics of Validation Procedure 

In order to test the effectiveness of our method we looked at validation results 

for Gaussian, spherical, and exponential covariance functions. Since Z1 will have 

a standard normal distribution regardless of the covariance function of Z, we fixed 

the mean of Z to be zero, the partial sill a2 — 1, and the nugget r2 = 0 across all 

simulations. For each covariance function we ran simulations using six different values 

of the range parameter </>: 0.1, 0.5, 1, 2, 5, and 10. To check whether our method 

worked for level curves having different response values, results were determined for 

levels curves when u was equal to 0, 1, and 2. 

In order to maintain consistency with the validation simulations performed for 

the confidence boxes method proposed in Chapter 2, we once again let the domain of 

interest be a square region of size [0,20] x [0,20]. The square region was first divided 

into a regular grid of 255 x 255 squares. The initial unconditional realization of Z was 

generated at the vertices and center points of the squares, and the response surface 

was interpolated over these locations. 

Prom the original set of locations we randomly selected 200 locations to use as 

our observed responses z(si),..., z(s2oo)- Using the procedure described in Section 

3.2, we empirically estimated the critical value Ca using 100 realizations of {Z'(s)} 

for a equal to both 0.05 and 0.10. 

To make construction of the confidence region more manageable, V was divided 

into small, equal sized pixels. The center of each pixel is taken to be a good repre

sentative of the process over the pixel and the hypothesis test H0 : Z(s) = u versus 

Ha : Z(s) ^ u was performed at the center of these pixels. The confidence region S 

was taken to be the union of all pixels for which the null hypothesis was not rejected 

at the center point. This grid of pixels was typically of size 256 x 256, but increased 

up to size 600 x 600 for the Gaussian covariance function. After constructing the 

confidence region for each realization of Z, it was determined whether the confidence 

region contained the "true" level curve. 
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For each combination of covariance function and range parameter we generated 

100 realizations of the true level curve Iu. We assessed the performance of our method 

by calculating the proportion of realizations in which the confidence region contained 

the true level curve. 

3.3.3 Simulation Results for Hypothesis Testing 

The results of our simulations are presented for each covariance function indi

vidually in the form of a table. The measurement of interest is the proportion of 

realizations in which the confidence region contained the true level curve. This mea

surement is provided for each possible combination of the range parameter (f>, the 

confidence level of the region, and the value u of the level curve under consideration. 

Each row of the table indicates the results for a different value of 0. The first three 

columns of results are for the levels u = 0, 1, and 2 respectively at the 0.90 confidence 

level. Similarly, the last three columns of results are for the 0.95 confidence level. 

The empirical confidence levels should be close to 0.90 for the first three columns of 

results and close to 0.95 in the remaining columns. 

Results for Spherical Covariance Function 

The confidence regions for the spherical covariance function consistently attained 

empirical confidence levels close to the desired confidence levels. As shown in Table 

3.1, across all values of (j) and u the empirical and desired confidence levels of our 

confidence regions were fairly close. Some of the individual results were slightly high 

or low, but there is no overall pattern of liberality or conservativeness among the 

results. 

Results for Exponential Covariance Function 

The validation results for the exponential covariance function were similar to the 

results for the spherical covariance function. The results are shown in Table 3.2. Once 
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Table 3.1: Simulation results for spherical covariance function. 

Spherical 
Conf. Level 

(f)\u 
0.1 
0.5 

I—
I 

2 
5 
10 

.90 
0 

.94 

.93 

.93 

.88 

.87 

.92 

1 
.89 
.89 
.88 
.89 
.92 
.91 

2 
.92 
.90 
.88 
.87 
.97 
.90 

.95 
0 

.96 

.99 

.97 

.94 

.93 

.96 

1 
.92 
.96 
.94 
.93 
.95 
.96 

2 
.93 
.95 
.94 
.93 
.99 
.93 

Table 3.2: Simulation results for exponential covariance function. 

Exponential 
Conf. Level 

(j)\u 
0.1 
0.5 
1 
2 
5 
10 

.90 
0 

.93 

.86 

.92 

.89 

.93 

.91 

1 
.92 
.94 
.91 
.91 
.91 
.87 

2 
.95 
.90 
.92 
.90 
.87 
.88 

.95 
0 

.98 

.93 

.95 

.94 

.95 

.96 

1 
.98 
.95 
.94 
.96 
.95 
.96 

2 
.97 
.96 
.96 
.96 
.92 
.91 
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Table 3.3: Empirical confidence levels for Gaussian covariance function. 

Gaussian 
Conf. Level 

(f)\u 
0.1 
0.5 
1 
2 
5 
10 

.90 
0 

.90 

.86 

.63 

.73 

.75 

.84 

1 
.85 
.90 
.76 
.75 
.89 
.95 

2 
.91 
.90 
.91 
.81 
.90 
.96 

.95 
0 

.98 

.89 

.69 

.86 

.84 

.89 

1 
.92 
.92 
.86 
.85 
.95 
.96 

2 
.93 
.93 
.92 
.90 
.94 
.99 

again, the empirical and desired confidence levels are fairly close across all values of 

<t> a n d u. 

Results for Gaussian covariance function 

The confidence regions for the Gaussian covariance function were not as reliable 

as the confidence regions for the other two covariance functions. The overall results 

are shown in Table 3.3. The empirical confidence level is sometimes much lower than 

the intended confidence level. However, the method actually performs better than 

Table 3.3 indicates. Visual results indicate that the confidence regions for the true 

level curve are too small by a small margin. Figure 3.2 shows a 90 percent confidence 

region for a level curve generated from a Gaussian random field having a Gaussian 

covariance function with 0 = 5. The confidence region S is indicated in grey while 

the solid line indicates the true level curve for this particular realization. The figure 

clearly shows that the confidence region does an excellent job at finding the true level 

curve; however, the confidence region is slightly too small and the true level curve 

strays slightly outside the confidence region. One of the locations where the level 

curve strays outside the confidence region is indicated by an arrow. An alternative 

measure of the effectiveness of this method is the proportion of the true level curve 

contained in the confidence region. This proportion is calculated by finding the length 

of the level curve contained inside the confidence region and dividing it by the total 
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Figure 3.2: Confidence region for the true level curve. A 90 percent confidence region 
is shown in grey while the true level curve is given by the solid line. The true level 
curve strays slightly outside the confidence region. The arrow indicates a region where 
the level curve strays outside the confidence region. 

length of the level curve. If this proportion is high, then for practical purposes, the 

confidence region is successful in containing the true level curve. Histograms of this 

proportion for 95 percent confidence regions are shown in Figure 3.3 for Gaussian 

covariance functions with range parameter 4> = 1, 2, 5, and 10 for the level u — 0. It 

is seen from these histograms that the proportion of the true level curve contained by 

the confidence region is extremely high for nearly every realization of the level curve, 

and fully contained in a majority of the realizations. Thus, though the hypothesis 

test method does not consistently attain the desired confidence level for the Gaussian 

covariance function, the confidence regions produced by the method contain nearly 

the entire level curve with high probability. 

General Discussion of Results 

The hypothesis test method appears to be reasonably successful in constructing 

a confidence region containing the true level curve at the appropriate confidence level. 

This method is very stable for the spherical and exponential covariance functions, but 

more sensitive for the Gaussian covariance function. The empirical confidence level 
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Proportion of Lev©I Curve Contained in Confidence 
Region, u= 0 , Confidence Level=95°» 

Proportion of Leva I Curve Contained inConfidence 
Region, icO .Confidence Leveb95°* 

0.9965 0.9970 0.9975 0.9980 0.9985 0.9990 0.9995 1.0000 

Simple Kriging 

(a) Histogram for Gaussian covariance function (b) Histogram for Gaussian covariance function 
with 6 = 1. with 6 = 2. 

Proportion of Level Curve Contained inCordide nee 
Region, u=Q .Confidence Lovob9S*. 

Proportion of LevelCurve Contained In Confide nc 
Region, u= 0 , Confidence Levob35% 

0.96 0.97 

Simple Kriging 

0.96 

Simpie Kngi 

(c) Histogram for Gaussian covariance function 
with <j> = 5. 

(d) Histogram for Gaussian covariance function 
with 4> = 10. 

Figure 3.3: Histograms of the proportion of the true level curve contained in the 
corresponding confidence region, (a)-(d) are histograms of the proportion of the 
true level curve contained by the corresponding confidence region for one hundred 
realizations of the true level curve. 
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was typically close to the desired confidence level regardless of the range parameter 

for the spherical and exponential covariance functions. Confidence regions produced 

using the Gaussian covariance function did not always attain the nominal confidence 

level, but did contain a large proportion of the true level curve with high probability. 

Results seem to indicate that a reasonable estimate of Ca can be obtained using only 

100 realizations of {Z'(s)}. 

Size of Confidence Region in Relation to the Covariance Function, Depen
dence, and Level 

There is a relationship between the precision (or geographical area) of the confi

dence region and the covariance function, dependence, and response level considered. 

The confidence regions are typically more precise for smoother covariance functions. 

In this case, the confidence regions are generally more precise for the Gaussian covari

ance function and less precise for the exponential and spherical covariance functions. 

The confidence regions also tend to be more precise when the range parameter <fi is 

larger. This pattern was consistent across simulations for the Gaussian, spherical, and 

exponential covariance functions. In Figure 3.4 we see 90 percent confidence regions 

constructed for the spherical covariance function using different values of the range 

parameter 0. The rejection region is shown in black and the confidence region in 

white, while the solid lines represents the true level curve for u = 1 for this particular 

realization of the random field. Notice that for 0 = 0.1, the confidence region makes 

up almost the entire region of interest (the rejection region is difficult to see because 

of the scale of the figure). However, as the range parameter 4> increases, we clearly see 

that the confidence regions become smaller and tighter around the true level curve. 

Lastly, the confidence regions tend to become more precise as the level u increases. 

To display this relationship, we constructed confidence regions for level curves at 

levels u = 0, 1, and 2 for random fields having a spherical covariance function with 

<72 = 1, 4> — 5, and r2 = 1. We compare the relationship between the precision of 
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(a) Result for <j> = 0.1. (b) Result for cj> = 0.5. 

(c) Result for cf> = 1. (d) Result for 4> = 2. 

* 

v J\: 

(e) Result for (f) Result for cj> = 10. 

Figure 3.4: Comparison of confidence regions constructed for varying degrees of de
pendence. 90 percent confidence regions for the true level curve are shown in white 
and the rejection regions are shown in black. The true level curve under consideration 
is represented a solid line. 
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(a) u = 0. (b) u = 1. (c) « = 2. 

Figure 3.5: Relationship between response level of level curve and precision of con
fidence region. The confidence regions were constructed for the spherical covariance 
function with </> = 5. The level u of the true level curve is specified in each figure. 

a confidence region and the response level u of the level curve in Figure 3.5. When 

the response value of a level curve is more extreme, we can expect that there will 

be fewer locations having response values close to this level and it will be easier to 

exclude locations from our confidence region. This pattern is clearly demonstrated in 

Figure 3.5 as the level u increases. 

3.4 Use of Adler (2008) to Estimate Ca 

As mentioned in Section 3.1, consideration was given to using the excursion 

probability approximation for isotropic Gaussian random fields presented in Adler 

(2008) to approximate Ca. Adler provides a simple, closed form expression for the 

excursion probability when the covariance function of the random field is isotropic, the 

domain of interest is a rectangle, and a few additional assumptions are met. We seek 

to find Ca such that P(supse /u |Z'(s)| > Ca) — 1 — a. We will explore approximating 

Ca by C*/2 such that P(supseI? Z(s) > C*/2) = 1 — a/2, where Z(s) is a stationary 

Gaussian random field on a rectangular domain of interest with an isotropic covariance 

function. The additional conditions necessary to use Adler's approximation are all 

generally met in our current setting, except that Z(s) must have twice-differentiable 

sample paths almost surely. Because of this, we restrict our consideration to the case 

where Z has a Gaussian covariance function; Z is not differentiable for the spherical 
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Table 3.4: Estimates of C* ,2 using a stationary, isotropic approximation of Z'. 

<p 
0.1 
0.5 
1 
2 
5 
10 

u .05 
5.13 
4.43 
4.02 
3.72 
3.26 
2.79 

°.025 
5.27 
4.59 
4.27 
3.92 
3.42 
3.04 

and exponential covariance functions. Under the assumptions that the domain of 

interest is a [0,20] x [0,20] region and the covariance function of Z is isotropic Gaussian 

with a2 = 1 and r2 = 0, the excursion probability 

P(supZ(s) > c 
\sev 

c + ^ )e a + l - $ ( c ) , 

where 

A2 = 

(2TT)3 /2 

&*c{h) 

2TT 
(3.4) 

dx? 

and $(•) is the cumulative distribution function of a standard normal random variable. 

Our estimate of C* ,2 will be c such that P(supse:D Z(s) > c) = a/2. An estimate of 

C*/2 was obtained for <j> = 0.1, 0.5, 1, 2, 5, and 10 and a = 0.05 and 0.10. Results 

are shown in Table 3.4. 

To assess the accuracy of this approximation in estimating Ca, we compared the 

estimates in Table 3.4 to estimates of Ca obtained via simulation. An important 

consideration is that the value of Ca is dependent on the distribution of Z'', which 

is in turn dependent on the locations of the observed responses z(s\),..., Z(SN)- In 

order to take this into account, estimates of Ca were obtained for 20 independent 

realizations of a Gaussian random field Z. The level curve under consideration for 

each realization was for the level u — 2. For each of these realizations, 200 responses 

were randomly selected and used to estimate C.io and C.05 through the simulation 

process outlined in Section 3.2. Boxplots of the resulting estimates are shown for 

4> = 0.1, 1 and 2 in Figure 3.6. Individual estimates of Ca are shown as dashed 
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estimates of C0., 

2.0 2.5 3.0 3.5 4.0 4.5 5.0 

(a) Estimates of d o for 0 = 0.1. 

f 

1 ! 
k i 
m i 

* ! 
M 
1 

estimates of C 0 1 I 

! 

(c) Estimates of d o for <f> = 1. 

estimates of C0 

(e) Estimates of d o for 0 = 2. 

estimates of C005 

2.5 3.0 3.5 4.0 4.5 5.0 5.S 

(b) Estimates of C.05 for 0 = 0.1. 

estimates of C0 

4 5 6 7 8 9 10 

(d) Estimates of C.05 for 0 = 1. 

estimates of C005 

3.5 4.0 4.5 5.0 

(f) Estimates of C.io for 0 = 2. 

Figure 3.6: Estimates of C.io and Cos- The estimates were obtained via simulation 
for processes having Gaussian covariance functions with a2 — 1 and r 2 = 0. The 
range parameter (f> is specified in each figure. 
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vertical lines. Comparing the individual estimates computed via simulation to the 

estimates using the approximation of Adler, we see that the individual estimates are 

often quite different than the Adler approximation. When 0 = 0.1, the estimates of 

C.io and C.05 obtained using the approximation of Adler were nearly always extremely 

conservative compared to the simulated estimates. With the exception of one large 

outlier, the simulation estimates of C.io ranged from 2.08 to 2.61, which is well below 

the estimate of 5.13 calculated using Adler's approximation. Results are similar for 

C.05. For 0 = 1 , the simulation estimates were often considerably different than the 

estimates obtained using the approximation of Adler. While the estimates of C.io 

and C.05 for the Adler approximation were 4.02 and 4.27 respectively, the simulation 

estimates ranged between 3.39 to 9.81 for C.io and 3.51 to 10.29 for C.05. For 0 = 2, 

the simulation estimates were typically smaller than the Adler estimates for both 

d o and C.05, though there were a few simulation estimates which were noticeably 

higher than the estimates obtained using the result of Adler. In general, it does 

not appear that an accurate approximation of Ca can be obtained using the current 

version of the approximated excursion probability. However, as previously noted, the 

result provided in Adler (2008) does not require stationarity a priori; the isotropic 

approximation was used because it is very easy to calculate. If a similar result can 

be derived for the nonstationary case, then that approximation may produce more 

accurate estimates of CQ. 

3.5 Future Alternative Error Criteria for Consideration 

The true location of a level curve can be of great importance. A level curve may 

be the boundary separating a region with a high risk of severe weather from a region 

with moderate risk. A level curve may separate locations where air pollution levels are 

acceptable versus dangerous in a particular county. It may separate contaminated 

locations from uncontaminated locations in hazardous waste cleanup. With these 

settings in mind, it is important that the confidence regions are precise (i.e., have 
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small geographical area). An accurate confidence region which is not very precise 

may not be helpful in practice. 

Consider the hazardous waste example previously mentioned. The level curve 

separates dangerous locations from safe locations. It is important that cleanup occur 

at all contaminated locations for the safety of the community. However, it is also 

important that cleanup not be performed unnecessarily at safe locations to conserve 

time, money, and resources. If the geographical area of the confidence region for the 

level curve is large, the cleanup may prove too costly to attempt or there may not be 

enough resources to accomplish the cleanup. 

The error rate controlled by the hypothesis test method is the well known fami-

lywise error rate. Suppose that we are performing multiple hypothesis tests. Define 

Vn to be the number of tests that reject H0 when H0 is in fact true. The familywise 

error rate (FWER) is F(Vn > 0) and typically controlled so that F(Vn > 0) < a. In 

our specific situation, we inverted hypothesis tests to construct a confidence region 

for the true level curve. By controlling the FWER at a for our tests, we were able 

to construct confidence regions that contained the true level curve with approximate 

probability I —a. Benjamini and Hochberg (1995) point out that controlling the fam

ilywise error rate can dramatically reduce the power of a test in comparison to the per 

comparison error rate (controlling the Type I error rate for each test individually). 

In our setting, controlling the FWER may result in including a large proportion of 

non-null locations in our confidence region. Benjamini and Hochberg also point out 

that in many settings, control of the FWER is not really needed. 

Probably the best known alternative to the FWER is the false discovery rate 

(FDR) proposed by Benjamini and Hochberg (1995). Define Rn to be the num

ber of rejected hypotheses among M hypothesis tests. FDR controls E(Vn/Rn), the 

expected proportion of false discoveries among the M hypothesis tests. This error 

criterion is quite popular because it can offer substantial gains in power compared to 

situations where FWER is controlled. Unfortunately, this criterion does not appear 



53 

to be useful for controlling the error rate of the hypothesis tests in our current setting. 

In practice, our confidence region is constructed by pixelating the domain of interest 

and performing a hypothesis test at the center point of each pixel. When a pixel is 

included in our rejection region, our belief is that the true level curve does not pass 

through that pixel. Thus, we may define a "false discovery" to be the inclusion of 

a pixel in our rejection region when in fact the true level curve passes through that 

pixel. In general, the number of pixels through which the level curve passes will be 

small relative to the total number pixels. In other words, the proportion of pixels 

intersecting the level curve is generally small. If the proportion of pixels intersecting 

the true level curve relative to the total number of pixels is expected to be less than 

a, then one could include all pixels in the rejection region and still control the FDR 

(since the proportion of false discoveries would be less than a). Thus, the usefulness 

of this error criterion is questionable when seeking to construct confidence regions for 

the true level curve. 

An alternative error criterion which should be more useful in our current setting 

is related to the per comparison error rate (PCER, cf. Dudoit et al. (2004)). The 

PCER controls the expected proportion of Type I errors in a multiple testing problem. 

When constructing confidence regions, it would be useful to ensure that our confidence 

region can be expected to contain a large proportion of the true level curve. In 

other words, when conducting hypothesis tests at locations on the level curve, the 

proportion of Type I errors made should be relatively small. If we can control the 

expected proportion of Type I errors at locations on the level curve, we can construct 

a confidence region which is expected to contain a large proportion of the true level 

curve. A similar error criterion which should be useful is one in which the probability 

is high that the confidence region contains a large proportion of the true level curve. 

If we were able to control an error criterion of this type, we can have high confidence 

that our confidence region contains a large proportion of the level curve. This is a 
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desirable characteristic for our confidence regions since a confidence region may not 

be useful if the proportion of the level curve contained in the confidence region is low. 



Chapter 4 

APPLICATION AND COMPARISON OF METHODS 

4.1 Introduction 

We will apply and compare the box method proposed in Chapter 2 with the 

hypothesis testing method proposed in Chapter 3 to three different data sets. The first 

two data sets are simulated, while the third data set is real data related to heavy metal 

concentrations in the Swiss Jura. For each of the three data sets, the dimensions of the 

confidence boxes were determined using 1000 realizations of the conditional process 

Z(s) | z(si),..., Z(SN) and the critical value used in the hypothesis test method was 

estimated using 100 realizations of the random field {Z'(s)}. All confidence regions 

were constructed to satisfy a confidence level of 0.90. 

4.2 Application to Simulated Data 

The simulated data sets are similar to Example 1 in Lindgren and Rychlik (1995). 

For the first data set, we simulated 20 observations from a Gaussian random field hav

ing mean zero and an isotropic exponential covariance function with a2 = 1 and range 

parameter 0 = 1 . The second data set was obtained by adding random "measure

ment" error to the responses of the first data set. The random errors were generated 

independently from a Gaussian random variable having mean zero and variance 0.2. 

Thus, the covariance function for the responses of the second data set is exponential 

with a2 = 1, (J) = 1, and r2 = 0.2. The covariance function of the first data set is 

shown in Figure 4.1. By comparing the results for these two data sets, we can assess 
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Figure 4.1: Covariance function used to generate simulated data. The covariance 
function used to generate the simulated data is exponential with a2 = 1 and 4> = 1. 

the impact of the nugget on the confidence regions produced by the two methods. 

For both simulated data sets the level curve of study was for the level u = 1.25, and 

the estimated level curve was constructed using simple kriging. 

The results for the simulated data sets can best be summarized visually. The 

results of both methods for the first data set are shown in Figure 4.2 (a) and for the 

second data set in Figure 4.2 (b). Before comparing the results for the two figures, 

we note that the estimated level curve is different for the two data sets because of 

the measurement error in the second data set. 

There are two notable features of the results in Figures 4.2 (a) and (b). The first 

is that the union of the confidence boxes is much smaller than the confidence region 

produced using the hypothesis test method. This is expected since the confidence re

gion produced by the hypothesis test method controls for multiple comparisons while 

the confidence boxes are constructed independently of each other and no multiple 

comparison adjustment is made. The next notable feature of the figures is that for 

both methods, measurement error leads to larger confidence regions. The confidence 

regions in Figure 4.2 (a) for both methods are noticeably smaller than the corre

sponding confidence regions in Figure 4.2 (b) when the responses are observed with 
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Figure 4.2: Application of methods to simulated data. 

measurement error. For the confidence boxes method, the measurement error in the 

observed responses of the second data set causes the variability in the realizations 

of Z(s) | z(si),..., z(s2o) to be greater than when no measurement error is present. 

Because the variability in the conditional process is greater, the confidence boxes 

must extend farther to ensure that the boxes intersect the true level curve at the 

appropriate confidence level. For the hypothesis test method, the measurement error 

causes the kriging variance to be larger throughout the domain of interest. Thus, the 

test statistic Z'(s) = \Z(s) — 1.25|/<r(s) tends to be smaller, and it becomes more 

difficult to reject the null hypothesis that the response value at a location is different 

than u = 1.25. 

4.3 Application to Jura Data 

The third example in this chapter involves data collected by the Swiss Federal 

Institute of Technology in a 14.5 km2 region in the Swiss Jura. Concentrations of 

cadmium, cobalt, chromium, copper, nickel, lead, and zinc in the topsoil were mea

sured at 359 locations; additional covariates related to land use and geology were also 
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Figure 4.3: Map of sampled locations for Swiss Jura data. 

measured. A map of the sampled locations is shown in Figure 4.3. Our analysis will 

focus on the nickel variable (Ni) measured in parts per million (ppm). The sampling 

and experimental details of this data are described in Atteia et al. (1994) and Webster 

et al. (1994). 

We begin by checking whether the Jura data satisfies the conditions necessary 

to use the two proposed methods. The necessary conditions are that the data come 

from a Gaussian distribution and also be stationary. We first check whether the data 

appears to come from a Gaussian distribution. A histogram of the nickel variable, 

shown in Figure 4.4 (a), is positively skewed and does not appear to follow a Gaussian 

distribution. In the description of the sampling design found in Atteia et al. (1994), we 

learn that the observed locations are a combination of locations on a regular grid and 

nested sampling locations. Preferential sampling can skew the results of exploratory 

data analysis (cf. Goovaerts (1997, p. 76, 77)), so we continue by dividing the 

observed responses into locations on the regular grid and nested locations. Plotting 

these responses on an image plot of the nickel variable, shown in Figure 4.4 (b), we see 

that the responses at nested locations tend to be lower than responses at locations on 

the regular grid. For more formal confirmation of this observation, the kernel density 

58 
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Figure 4.4: Exploratory plots for Jura data. 
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estimates of the nickel variable were plotted for the two types of locations, as shown in 

Figure 4.4 (c). The density estimates clearly indicate that lower valued responses are 

observed more commonly at the nested locations. The responses at nested locations 

give the impression that the nickel variable is non-Gaussian, whereas the values at 

locations on the regular grid are much closer to a Gaussian distribution. Because the 

nested locations can skew analysis, for the purpose of assessing normality we proceed 

by working with only data values found at locations on the regular grid (cf. Goovaerts 

(1997, p. 79)). To normalize the data at regular grid locations, we considered the 

Box-Cox transformation 

proposed by Box and Cox (1964), where y = (yi, • • • ,yn) is the original data vector 

under consideration. A power parameter value of 1.15 brings the data at regular lo

cations to approximate normality, as shown by the normal probability plot in Figure 

4.4 (d). We proceed under the assumption that the nickel variable follows a Gaus

sian distribution after performing a Box-Cox transform with A = 1.15. Subsequent 

analysis is performed on the transformed data. 

To check whether the data is stationary, we must check that the mean is constant 

and that the covariance is finite and depends only on a displacement vector h. To 

verify that the mean appears constant over the region of interest, we constructed an 

image plot of the transformed data (not shown). The resulting plot was very similar 

to the one shown in Figure 4.4 (b). There was no clear indication of a long range 

trend in the data, and as done by Atteia et al. (1994), we assume a constant mean 

over the domain of interest. To check to whether the covariance was finite and did 

not depend on the absolute locations, we plotted directional variograms at angles 0°, 

45°, 90°, and 135°, where a variogram is a plot of the distance h against an estimate 

of |Var(Z(s + h) — Z(s)). These are shown in Figure 4.5 (a). The variograms level off 

as the distance increases, so it is reasonable to assume finite covariance. Because the 
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Figure 4.5: Spatial variation of Jura data. 

structure of the directional variograms is similar in each direction, we can conclude 

that the covariance is isotropic. 

Following the recommendation of Stein (1999), we fit a Matern covariance model 

to the data and estimated the corresponding parameters using Restricted Maximum 

Likelihood (REML). The estimated covariance function is shown in Figure 4.5 (b) 

and the best fitting covariance model is given by 

0.293 

C(h) = 155.39 
h 

/C, 0.293 
h 

, h>0, (4.1) 
.0.427/ V 0.427. 

where the partial sill a2 = 155.39, the range parameter 0 = 0.427, the smoothness 

parameter v = .293, and the nugget r2 = 0. The smoothness parameter is quite 

small, so the underlying Gaussian process is believed to be quite rough. The process 

will not be differentiable since the smoothness parameter v < 3. 

Having verified the appropriate assumptions and estimated the covariance func

tion of the data, we proceed by implementing our methods. Because the true mean 

is unknown for this data, we estimated the mean using REML, and then used this 

mean as if it were the true mean. The REML estimate of the mean was 27.9. Simple 
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Figure 4.6: Confidence regions for 745 for the Jura data. 

kriging was performed over the domain of interest using the covariance specified in 

(4.1), and the prediction surface was used to construct the estimated level curve I45 

(the value 45 is around the 93rd percentile of the transformed data). Using the two 

different methods to construct confidence regions for the true level curve results in 

the confidence regions shown in Figure 4.6. 

The estimated level curve /45 appears at many locations in the lower half of 

the domain of interest. As might be expected, the confidence boxes are substantially 

smaller than the confidence region constructed using the hypothesis test method. The 

confidence boxes are fairly tight around the estimated level curve and it is reasonable 

to conclude that responses values of 45 lie very close to the estimated level curve. The 

confidence region for the hypothesis test method is larger and includes a large portion 

of the domain of interest. Because the underlying process is so rough (rougher than a 

process with exponential covariance function), the kriging variance tends to be high 
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throughout the domain of interest (typically 20 or greater), making it more difficult 

to conclude that the response value at a location is different than u = 45. 

The confidence regions produced by the two methods give complementary infor

mation about the Jura data. If one is interested in finding some locations having a 

response value of 45, the confidence boxes indicate that these locations can be found 

close to the estimated level curve. On the other hand, if one is interested in finding 

all locations where the response value is 45, based on the available information, the 

search region must be much larger. 

4.4 Comparison of the Two Methods 

Having described and applied both the confidence box and hypothesis test meth

ods for constructing confidence regions for level curves, we now elaborate on some of 

their strengths and weaknesses. 

One of the strengths of the confidence box method is that the confidence boxes 

are often relatively small, especially in comparison to the confidence regions produced 

by the hypothesis test method. When we are only interested in getting a general idea 

of the uncertainty in our estimated level curves, the confidence boxes may be more 

useful than larger confidence regions controlling a stricter error criterion. Another 

strength is that the confidence boxes can often be constructed in a short period of 

time. Though the actual time will depend on factors such as the covariance structure, 

response level of the level curve, and the size of the domain of interest, the confidence 

boxes require less computational effort. The main weakness of the confidence box 

method is that it fails to adjust for multiple comparisons. Though this could be done 

by using a Bonferroni-like adjustment, the resulting boxes would be extremely wide 

and likely be of little practical use. Another weakness is that the confidence box 

method only produces boxes around the estimated level curve and may not find parts 

of the true level curve not near the estimated level curve. It is very plausible that 

part of the true level curve may reside in regions where predicted responses are close 
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to the level u and the mean squared prediction error is relatively high. However, since 

the estimated level curve may not be near this region, one may never know that part 

of the level curve may be in this region. 

One of the most obvious strengths of the hypothesis test method is that it con

structs a confidence region for the entire level curve. When someone is interested in 

the location of the entire level curve, the hypothesis test method is more appropriate 

than the confidence box method which only requires that the confidence boxes inter

sect the level curve with high probability. Another advantage of the hypothesis test 

method is that it can "find" the level curve in places where the confidence box method 

cannot. If part of the true level curve is in a region far from the estimated level curve, 

it is likely the confidence boxes will never intersect the level curve in this region. 

However, by taking into account both the predicted response and the mean squared 

prediction error, the confidence region produced by the hypothesis test method will 

contain this part of the level curve with high confidence. One of the weaknesses of the 

hypothesis test method is that construction of the confidence region requires more 

computational effort than construction of the confidence boxes. It took about 15 min

utes to construct a confidence region for the hypothesis test method on a computer 

with a Pentium IV processor running at 2.4 GHz. Another downside of the hypoth

esis test method is that it is limited to Gaussian processes. Because many data sets 

do not follow a Gaussian distribution, it will not always be appropriate to use this 

method. Another weakness of the hypothesis test method is that the error criterion 

might be unnecessarily strict. Controlling the Type I error rate for the entire level 

curve can lead to large confidence regions. As discussed in Section 3.5, methods using 

alternative error criteria may be more useful in some situations. 



Chapter 5 

THE ASYMPTOTIC DISTRIBUTION OF THE MAXIMA OF A 

TRIANGULAR SEQUENCE OF GAUSSIAN RANDOM FIELDS 

5.1 Introduction 

In this chapter we develop theory related to the asymptotic distribution of the 

maxima of a triangular sequence of Gaussian random fields satisfying certain condi

tions. This result is an extension of the result in Hsing et al. (1996) to two dimensions. 

The behavior of the extremes of Gaussian random variables has long been of 

interest. Theory related to the excursion probability 

PfsupZ(t) > u ] , (5.1) 

has a rich literature history, where Z is a real-valued Gaussian random process 

over some domain of interest T (which may continuous or discrete and multidi

mensional). One-dimensional results include those by Rice (1944), Berman (1964), 

Rootzen (1983), and Hsing et al. (1996). For a helpful overview of research involving 

the extremal behavior of Gaussian random fields before 2000, one may consult Adler 

(2000). More recent research includes Takemura and Kuriki (2002, 2003); Taylor et al. 

(2005), and Taylor (2006), which are important works leading to a very general result 

by Adler and Taylor (2007) for the probability in (5.1) when T C Rd, for d > 1. 

Our goal in this chapter is to extend the results of Hsing et al. (1996) to the 

two-dimensional setting and approximate (5.1) when T is an n x n lattice in R2. 

As stated in Hsing et al. (1996), the objective of their paper is to, " . . . develop an 
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asymptotic theory for the extremes of a normal sequence which addresses the issue 

of clustering." They consider a triangular array of standard normal random variables 

£n,i5 i — 0,1,2, . . . , and n = 1,2,3,..., such that for each n, {£ra,i, i > 0} is a stationary 

normal sequence. Each row is weakly dependent so that for fixed n, the extremes of 

£n,i) • • • > £n,N do not cluster as N —• oo, but on the other hand, as the row number n 

increases, the correlation between neighboring observations increases to one so that 

local dependence cannot be ignored in the limit. Under certain conditions on the 

covariance function pnj = E(£nij£n)j+j), and assuming that 

(1 — pnj) logn —> Sj G (0, oo] for all j > 1 as n —> oo, 

where Sj is some function depending on j , Hsing et al. (1996) show that 

lim P( max £„_$ < un(x)) — exp(—^exp(—#)), —oo < x < oo, 
n—>oo i=l , . . . ,n 

where 

•d = F(E/2 + \/%Wk < 8k for all k > 1 such that 4 < oo), 

with 

V 2 log n v 8 log n 

The quantity t9 is called the extremal index and depends on a standard exponential 

random variable E which is independent of the Wk, a Gaussian sequence with mean 

zero and correlation 

EiWiWj) 
Si + Sj - 6\i-j\ 

2y/S~iS~ 

Using analogues of the conditions in Hsing et al. (1996) for random fields, and mak

ing some additional assumptions, we are able to produce a similar result in two-

dimensions. 
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5.2 Motivating Example 

Consider a Gaussian random field {Y(s)}, where s represents location in the 

domain, and assume that Y(s) has isotropic correlation function exp(—h2/4>2). 

Suppose we rescale the domain by y/logn in the x— and y—directions. Define 

Yn{s) = Y(s/y/logn). Then 

covv(Yn(s),Yn(t)) = cor r (y ( S / v
/ io i^ ) , r ( i /V / io i^ ) ) 

( Is ~ * l 2 

= e xP ~la\ 
\ (pl log n 

For fixed n, the process Yn(s) is just an isotropic random field. However, as n —• oo, 

the correlation structure of Yn(s) satisfies the conditions necessary to use the limit 

result in Hsing et al. (1996). 

5.3 Setup 

Let Xn = {£ij>}"j=i be a stationary Gaussian random field on an n x n lattice, 

with £ij in having mean zero and variance one. ^ ^ is the random variable located at 

position (i,j) of the lattice. Assume the covariance function of Xn is isotropic and 

let pijtn denote the correlation between two random variables separated by i units in 

the horizontal direction and j units in the vertical direction. By isotropy, we have 

that pi^n = E(^k^k+i,i+j,n)- Define l i m ^ ^ l - piJin) logn = 5ij, where 5id is some 

function of i and j . 

We define Mn to be the maximum of the n x n lattice of stationary random 

variables, i.e., 

Mn = max(Xn) 

= max{6j,n}" i=i-

Lastly, we define 
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V2 log n V 8 log n 

a normalizing sequence used in subsequent results. For ease of notation, un(x) will 

generally be denoted as un, except when the exact value of x is important. 

5.4 Main Results 

The main theorem of this chapter, stated below, describes the limiting distribu

tion of the maximum of a stationary Gaussian random field on an n x n lattice. 

Theorem 5.1. Let Xn = {&j,n}"j=i be a stationary Gaussian random field on an 

n x n lattice, with £jJ in having mean zero and variance one. Assume the covariance 

function of Xn is isotropic and let pij<n denote the correlation between two random 

variables separated by i units in the horizontal direction and j units in the vertical 

direction. Define 

Aa,n = {l,...,qn}
2\{{l,2,...,a}x{l}}, 

Ga,m,n = {(i, j) G A*,n : |i — o:| and (j - 1) < m} , 

*la,m,n •/*a,n \^-J'a,m,rc) 

and let pn = o{n), ln = o(pn), and qn=pn + L-

Assume that: 

(Al) pitjtn > 0, 

(A2) plfiin > piJin for all (i,j) G {0,1, 2 , . . .}2\{(0, 0)}, 

(A3) ( l - p y , n ) l o g n ^ ^ G ( e , o o ) forall(i,j) G {0,1, 2 , . . ,}2\{(0,0)} and 

some e > 0, 

(A4) lim sup \piJn\ logn = 0, 
n—*oo r— -
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(A5) 525!2>! - . o, 
qnn

2 

(A6) uniformly for all a, 

E
_ 2 P\i-c\,j-l,n (\0pn) ^i-clj-l.n 

U 1+P\i-"\,J-hn V ° ^ = 
.. — _ __ / i 2 

{i,j)eHa,m,n V ^ | i - a | J - l , n 

m—>oo n—»oo 

Then 

where 

lim P(max{^ J > }"- = 1 < wn2) = exp(-i?exp(-x)), 
n—>oo " 

0 = F(E/4 + ^ijWij < Sij, (i,j) 6 K^ , 

if = {N x {0}} U { Z x N } , 

E is a standard exponential random variable, and {Wjj} «s a mean zero, variance 

one, Gaussian random field independent of E with correlation 

nWi.Wkl) = Sij + Su-Sv-M-^ ( 5 . 2 ) 

Theorem 5.2. Let p(h) be an isotropic, monotonically decreasing correlation function 

satisfying 

(i) p(h) = 1 - C\h\0 + o(\hf) as h 10 , for some 0 < 0 < 2, 

(ii) 0 < p(h) < Ke~h<x for some constants K,a > 0 and all h > 0. 

Suppose Xn is a mean zero, variance one Gaussian random field on an n x n lattice 

with isotropic correlation function given by 

Then the conclusion of Theorem 5.1 holds. 

Proof. Let ln = (logn)1/'fl(loglogn)2/a and pn = (logn)2//3. We proceed to verify 

conditions A1-A6 of Theorem 5.1. 
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Verification of condition Al : 

Pn(h) > 0 since p(h) > 0. 

Verification of condition A2: 

First, we note that the distance h between any two random random variables 

separated by % horizontal units and j vertical units will have the form h — Cy/i2 + j 2 , 

where c > 0. Denote the h corresponding to specific i and j by hij. Because (i, j) G 

{0,1, 2 , . . .}2\{(0,0)}, we have that hitj = Cy/i2 + j 2 >c = cVl2 + 02 = hh0. Since 

p(h) is monotonically decreasing, we have 

pn(h,o) = Pifl,n > Pi,j,n = Pn(hi,j), for all (i,j) G {0,1,2,. . .}2\{(0,0)}. 

Verification of condition A3: 

Notice that 

1 - Pn(h) = 1 - p(n
 h„m) ~ C^-. H v ' H\(\ogny/0j logn 

Thus, (1 — pn(h)) logn —> C\hf. Again noting that h = CyJ(i2 + j2) for some c > 0, 

{i,j) G {0,1,2,...}2\{(0,0)} implies that h > c and that C\hf > C\cf G (0,oo). 

Verification of condition A4: 

Notice that 

sup pn(h) log n = sup p(h) log n 
h>ln h> In / ( l o g n ) 1 / " 

< sup Ke~h" log n 
h>ln/(logny/P 

< is -(loglogn)2+loglogn 

-»0 . 

Verification of condition A5: 

Since qn ~ pn, we have 

~ > (J 
<?„n2 n 2 
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Verification of condition A6: 

To simplify our derivations, we note that pn(h) = p|j_a | j_1; r i, where h 

cyj\i — a\2 + (j — l )2 . Without loss of generality, assume c—1. 

Case 1: Assume that /i/(logn)1//3 > e. Then 1 — pn{h) > e* > 0 and we have that 

a pn(h) „ 

Thus, the sum in question is bounded by 

— £ * — E * 

n _ 9 n 
( l j )6Ha ,m,n 

- • 0 . 

Case 2: Assume that h/{\ogn)1^ < e. Then for e small, 

(l-5)——<l-p[- r r ^ <(1+«J); 
log n \ (log ny/P ) log n ' 

where S > 0 is small. Without loss of generality, assume C = 1. Hence, 

a Pn(M 

ogn) ^pnco 
n ^w> —fa y -

1 - P n W 

oi-pnW (logn)1+'>™(>> 
< H, ^1+PnCO V & ' 

V( l + p n( / i ) ) ( l -p n( / i ) ) logn 

exp - ( 1 - d ) - lognlexpl — — loglogn 
< V log^ / \l + pn{h) ; 

y/(l-8)hP 

< Ke-Wh-Wexpl(1 + ^ ) ^ l 0 f l 0 g W > l 

< Ke-^h-M, 
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where b > 0. Thus, making the substitution h = y/\i — a\2 + (j — l)2 , the sum in 
question is bounded by 

e-( | i -a | a+a-l) a)" / a6 

i=m+l i=ro+l j *m ^+iUVWT]W 
OO / QO \ y OO \ 

i=m+l v i=m+l ' .7=1 

since 

"2 2J 

Noting that (5.3) goes to zero as m —> oo, we see that 

Pn(h) 

E
g l - P n W ( l o g n ) 1+Pn(h) 

Tl 1+PnW — = 

.. .... _ . „ /1 _ „2 fM m—>oo n—>oo >/l - P2nW 
0. 

a 

Remark 1. Condition (ii) o/ Theorem 5.2 can be relaxed, but a different choice of ln 

would be needed. 

Remark 2. The following covariance functions satisfy the conditions of Theorem 5.2: 

(i) Gaussian with (3 = 2, 

(ii) exponential with (3=1, 

(iii) spherical with (3 = 1, 

(iv) Matern with (3=1 when v € (0,1) and with (3 = 2 when v > 1. 
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5.5 Approximation of Maximum on a Fixed Domain 

We would like to use the limiting result in Theorem 5.1 to approximate the 

maximum of a stationary Gaussian random field on an n x n lattice in a fixed domain. 

Specifically, we would like to approximate 

PI max Zij < u 
\l<i,j<n 

where {Z^j} is a stationary Gaussian random field on a square nxn lattice of equally 

spaced locations in a fixed domain, and Zitj represents the random variable at position 

(i,j)- Letting {Zj}f=1 represent a stationary Gaussian sequence of random variables, 

both Hsing et al. (1996) and Hannig and Marron (2006) suggest that instead of using 

the limiting Gumbel distribution to approximate P(maxt=ii...)n Zj < u), the Gaus

sian power distribution $(w)1?n should instead be used. The reasoning behind this 

approach is that the Gaussian power distribution converges to the limiting Gumbel 

distribution and the empirical fact that the Gaussian power distribution often per

forms better than the limiting Gumbel distribution. Thus, instead of directly using 

the result in Theorem 5.1 to approximate the probability in (5.4), we instead wish to 

use the approximation <fr(u)^n , where 

•Q = p f £ /4 + yj^SijWij < hj, (i,j) G K\ , (5.5) 

and 

K = {Nx { 0 } } U { Z x N } . 

Except in some special cases, there are no explicit expressions for $ and we must 

estimate this value using simulation. 

5.5.1 Structure of Simulation 

The accuracy of the proposed approximation is considered over a region V of 

size [0,20] x [0, 20]. Our goal is to approximate P(maxi<jj<n Ziti < u) over a n n x n 

(5.4) 
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Figure 5.1: The relationship between Sij and a 3 x 3 grid of squares in V. The 
random variable Zitj is located at the center point of the square in position i of the 
x—direction and position j of the y—direction. 

lattice contained in V. Dividing V into a n n x n grid of squares, the random variable 

Zij is located at the center point of the square in position i of the x—direction and 

position j of the y—direction. This relationship is illustrated in Figure 5.1 for a for a 

3 x 3 grid of locations. 

Suppose that the random field {Zij} has isotropic covariance function /?(•) satis

fying the conditions of Theorem 5.2. In order to come up with a standard with which 

to compare our approximation, we empirically simulated P(maxi<y<n Zij < u) us

ing 1000 realizations of a random field {Zij} having covariance function p(-). The 

estimate of P(maxi<,j<n Zitj < u) is then given by the proportion of realizations 

for which maxi<ij<n{Zij} < u. This quantity will be referred to as the empirical 

probability. We approximate the probability in (5.4) using the Gaussian power dis

tribution $(w)'?"2, where d is the estimate of d obtained via simulation. Details of 

the simulation used to estimate fl are given below. 
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5.5.2 Estimating # 

We would like to approximate •& by 

0 = P(E/4 + fajWu < SiJt (i,j) E K^j (5.6) 

where 

K = {{l,...,q}x{0}}u{{-q,...,-2,-1,,0,1,2,...,q}x{l,...,q}}. 

Because we cannot estimate d using an infinite set K as defined in (5.5), we substitute 

a finite set K in its place. We first generate a realization of {Wij,(i,j) 6 K}, 

where each Wij ~ N(0,1) and the correlation between random variables is given in 

(5.2). Next, a realization of a standard exponential random variable E is generated 

independently of the {Wij}. Lastly, the quantity E/A+ -J^SijWij is compared to 5y 

for all (i,j) G K. The estimated value of i? is given by the proportion of realizations 

for which the event {E/A + \/\SijWij < 5{j, (i,j) € K} occurred. 

Due to time and resource considerations, the value of q was chosen to be either 

15 or 25. The estimation of •& was computationally expensive for large values of q and 

the speed of the simulation also depended on the covariance function /?(•). The value 

of q was chosen accordingly. More information about this is given in Section 5.5.3. 

5.5.3 Covariance Functions and Other Details 

Three isotropic correlation functions were considered in the simulations: Gaus

sian, spherical, and exponential. Letting h denote the distance between the two 

random variables under consideration, the Gaussian correlation function is given by 

p(h) = exp(-/i2 /02), h>0, (5.7) 

the spherical correlation function is given by 

/ 9 ( / i ) = ( 1 ~ 2 ^ + ^ © 3 ) l M ) ( / i ) ' H-°' (5'8) 
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and the exponential correlation function by 

p(h) = exp(-h/</>), h > 0. (5.9) 

For each covariance function we looked at estimating P(maxi<jj<n Zij < u) for 

n = 12, 36, 108, and 324. These values of n were chosen because the locations of {Zitj} 

for the 12 x 12 lattice of locations is a subset of the locations of the 36 x 36 lattice, the 

locations of the 36 x 36 lattice are a subset of the locations of the 108 x 108 lattice, 

and so on. Thus, observations from a realization of {Zjj} over the 324 x 324 lattice 

could be used as the observations for lattices of size 108, 36, and 12. Consequently, 

this reduced the amount of time needed to complete each simulation. 

In order to see how the accuracy of our approximation changed with the degree 

of dependence among {Zij}, we looked at the accuracy of our approximations for 

0 = 0.1, 0.5, 1, 2, 5, and 10 (except for the spherical covariance function where <f> — 0.1 

was not considered due to time constraints). In order to get a sense of the level of 

dependence for the differing correlation functions, we have provided comparisons in 

Figures 5.2 (a)-(c). The Gaussian correlation function tends to exhibit the strongest 

local dependence and the spherical correlation function the least. 

Similar to the motivating example in Section 5.2, we imbed our fixed domain 

random field into a triangular array of random fields. Following the example in Hannig 

and Marron (2006), a natural way of doing this is to assume that c = £/(logn)1///3, 

where c is the horizontal/vertical spacing of the lattice locations for the random 

variables of the fixed domain random field, t > 0 is some constant, and (logn)1///3 is 

a scaling sequence determined by the covariance function. 

The last detail of the simulation procedure which should be discussed is the size 

of K in our simulations. As previously noted 

K = {{l,...,q}x{0}}U{{-q,...,-2,-1,0,1,2,...,q}x{l,...,q}}. 

The value of q for simulations having Gaussian or exponential covariance functions was 

chosen to be 25. The value of q for simulations having spherical covariance functions 
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Figure 5.2: A comparison of spatial dependence for various correlation functions. 
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was 15. The reason for this is that simulations for the spherical covariance function 

took longer to run, and the value of q was lowered to reduce the time necessary to 

complete the simulations. 

5.5.4 Summary of results 

Graphical results of the simulations are provided in Appendix A at the end of 

this dissertation for select combinations of the covariance functions and the range 

parameter </>. In these figures the empirical probability described in Section 5.5.1 

is shown as a solid line and labeled "empirical". The approximation is shown as a 

dashed line and labeled "approximation". To more easily assess the accuracy of the 

approximation in the upper tail of the distribution, we have provided lines running 

horizontally at probabilities of 0.90 and 0.95. 

Summary of results for Gaussian covariance function 

The results for simulations involving the Gaussian covariance function are shown 

at the beginning of Appendix A. 

The approximation works best when n and 0 are both small. When both n and (f> 

are small the approximation appears to be a fairly accurate estimate of the empirical 

probability for all u. However, as <f> increases, the accuracy of the approximation 

begins to decrease for larger n. Once 0 = 2, 5, and 10, the approximation for n = 324 

or n = 108 does not become accurate until far in the upper tail. The approximation 

performs poorly when both n and (j) a r e large. For smaller n, the approximation does 

moderately well in the upper tail when 4> is close to one or two, but begins to lose 

accuracy as (p increases. Regardless of the value of n or 0, the approximation tends 

to be a conservative approximation of the empirical probability. 

Summary of results for spherical covariance function 

The results for the spherical covariance function are shown after the results for 

the Gaussian covariance function in Appendix A. The results of these approximations 
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are more mixed than the results for the Gaussian covariance function. Looking at 

the approximation across all u, the approximation tends to perform better when n is 

small. The approximation is liberal for small <j) and large n, but tends to get better 

as 4> increases. The best approximation of the tail probability occurs when both 0 

and n are large. On the other hand, the approximation seems to fluctuate between 

liberal and conservative for larger values of <j> and smaller n. 

Summary of results for exponential covariance function 

Similar to the results of the Gaussian covariance function, the approximation 

for the exponential covariance function is most accurate when n and 4> are both 

small. However, when n is small, even for larger values of 4> the approximation 

is a relatively good estimate of the empirical tail probability. For larger n and 4>, 

the asymptotic approximation is conservative and does not accurately estimate the 

empirical probability until far into the upper tail. 

5.5.5 A Brief Comparison with Adler (2008) 

Adler (2008) proposes a method of approximating the excursion probability of 

a wide range of random processes. One of the specific results he provides is an 

approximation to 

p(supZ(£) > u ) , (5.10) 

where Z is a centered Gaussian random process satisfying certain assumptions over a 

rectangular parameter space T which is bounded in IR^. The approximation we have 

proposed in this chapter can be used to approximate 

P( max Zij >u], (5.11) 

where {Zij} is a Gaussian random field on an n x n lattice in a bounded region of 

interest P e l 2 . When n is large and the domain V is equivalent to the parameter 

space T, it seems reasonable to use the estimate of the excursion probability in (5.10) 
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proposed by Adler as an approximation of (5.11). Thus, we will compare the ap

proximation of (5.11) proposed in this chapter with the estimate of (5.10) proposed 

by Adler when n is large and taking T to be the same region as V. As mentioned 

in Section 3.4, Adler's result requires the random field to be twice-differentiable. Of 

the three covariance functions discussed in this chapter, only the Gaussian covariance 

gives processes meeting the required conditions. Thus, we will only compare the ap

proximations for the Gaussian covariance function. Additional details about Adler's 

approximation are provided in provided Section 3.4, as well as the explicit expression 

used to approximate the excursion probability when T is a rectangle in E2 and the 

covariance function of Z is isotropic and Gaussian. 

For our comparison, we let the domain P be a [0, 20] x [0,20] region and as

sumed that the lattice of locations in V was of size 324 x 324. In order to have a 

standard of comparison for the two approximations, we simulated 1000 realizations 

of {^ij}fjii and estimated the excursion probability empirically. Following the same 

details specified in Sections 5.5.1-5.5.3, we proceeded to estimate (5.11) using the ap

proximation proposed in this chapter, and then estimated the same probability using 

Adler's method. The results are shown in Figures 5.3 (a)-(d) for four different values 

of the range parameter 0. Horizontal lines are provided at vertical positions of 0.05 

and 0.10 for reference. 

Except for situations where the range parameter is small (e.g., 0 = 0.1 or 

0.5), the approximation proposed by Adler is closer to the empirical estimate of 

P(maxi< ij<nZ(sij) > u) than the approximation proposed in this chapter. Unless 

the range parameter 4> is small, when n is large, it is better to use Adler's approx

imation of (5.10) to estimate the excursion probability in (5.11) for the Gaussian 

covariance function. Another benefit of Adler's method is that the approximation is 

a simple calculation which can be computed instantly; one does not need to perform 

any numerical or simulation procedures to obtain the estimate. 
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5.5.6 Overall results 

In general, the proposed asymptotic approximation of 

P( max Z(sij) < u) (5.12) 
l < i j < n 

works best when n and </> are small. The approximation also appears to be useful 

in estimating the upper tail of P(max1<ij<nZ(St,j) < u) when n is large and 0 is 

moderately large for both the spherical and exponential covariance functions. The 

approximation does not accurately estimate the upper tail for the Gaussian covariance 

function when both n and 4> are large. When n is large (and the lattice is very dense 

within the domain T>), the simulation results discussed in Section 5.5.5 indicate that 

a better estimate can be obtained using the approximation in Adler (2008). Though 

the result presented by Adler is actually estimating 

P(supZ(s) <u), (5.13) 

it can be expected that for smooth random fields and relatively dense lattices in V 

that (5.12) and (5.13) will have similar values. 

In general, the accuracy of the asymptotic approximation seems to decrease as 

the range parameter 0 increases. The is consistent with the results of a simulation 

study performed by Wilhem (2002). In this study, Wilhelm compared the asymptotic 

estimator proposed in Hsing et al. (1996) (having the form $(it)ni?) to two other 

estimators of the maxima of a stationary sequence of Gaussian random variables. 

None of the approaches gave reliable answers for highly dependent stationary series. 

Since our proposed asymptotic approximation $(u)n ^ is very similar to the estimator 

proposed by Hsing et al., it is not surprising that our approximation is also less reliable 

as the dependence in the random field increases. 

The proposed approximation tends to work best in the upper tail when u is large. 

This is consistent with the limiting result in Theorem 5.1 since we are considering the 
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limiting distribution of P(M„ < un2), where un2 —> oo as n —> oo. It seems reasonable 

then that the asymptotic approximation also would perform better for larger values 

of u. 

Conceptually, it seems that the asymptotic approximation proposed in this chap

ter should work better for large values of n. To the contrary, it was somewhat sur

prising that the asymptotic approximation typically performed better for smaller n 

than for densely spaced lattices where n was large. The explanation for this apparent 

inconsistency appears to be the difficulty in accurately approximating $ when n is 

large. The accuracy of d is more important when n is large since the value of $ has a 

greater impact on the value of the approximation $(w)n tf than when n is small. The 

approximation of $ depends on 

K = { { l , . . . , g } x { 0 } } U {{-</,. . . , - 2 , - 1 , 0 , 1 , 2 , . . . , q}x{l,...,q}}, 

where q E N. Computational limitations did not allow q to get much bigger than 30 

in our simulations, which does not appear to be large enough to consistently obtain 

a good approximation of i9 when n is large. As the size of K increases (i.e., as q 

becomes larger), the value of # will monotonically decrease. We previously noted 

that the asymptotic approximation tends to be conservative for the Gaussian and 

exponential covariance functions when n is large. The approximation will become 

less conservative when d is smaller. Because d should decrease as the size of K 

increases, we can expect that the approximations would become more accurate for 

larger n if the simulation procedure for estimating d was performed using larger sizes 

oik. 

5.6 Proof of Theorem 5.1 and Complements 

5.6.1 Preliminaries 

It is not possible to directly follow the argumentation of Hsing et al. (1996) when 

trying to extend their result to two dimensions. The main reason is that their result 
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depends on the work of O'Brien (1987), which is not applicable in our situation. To 

extend the result of Hsing et al., we will first need to create some of our own tools 

and then use them to get the desired extension. 

As in Theorem 5.1, we define sequences pn = o(n), ln = o(pn), and qn = pn + ln-

We also define rn = n(pn + In)'1 = nq~l. These definitions will stay consistent 

throughout the sequel. 

For fixed n, we have previously defined Mn = max{^ J ] n}" J = 1 , the maximum of a 

stationary Gaussian random field on an n x n lattice. For simplicity, we define Mqn to 

be the maximum of a qn x qn subset of this random field, i.e., Mqn = max{£,J)n}?j=1. 

At times, we will need to consider the maximum of a subset of the random variables 

of Xn. Thus, we define 

To describe M^.y^^ in more detail, suppose we have a lattice of random variables 

with a columns (the number of rows is not required to equal a) having the same 

covariance structure as Xn. ^ujytki) represents the maximum of the following set of 

random variables: 

• All random variables with vertical position j which have horizontal position 

greater than or equal to % and less than or equal to a. i.e., the set of variables 

• All random variables with vertical positions i + 1, % + 2 , . . . , / — 1. 

• All random variables with vertical position / which have a horizontal position 

between 1 and k, inclusive, i.e., the set of variables {£i,/,„,£2,z,n, • • • ,£.k,i,n}-

A visual representation of the set M(
5
3 1v(2 6) is shown in Figure 5.4. Also, it will be 

useful to define the following equivalence relationship. For j < I define 

M(a+i,Mk,i) = M(
a
lii+1):(fc,0. (5.14) 
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Figure 5.4: A visual representation of M?3ly,2.6y 

To complete this section of introductory information, we conclude by presenting 

Corollary 2.2 of Li and Shao (2002), which is used extensively in this chapter. 

Corollary 5.3 (Corollary 2.2 of Li and Shao (2002)). Letn>3 and let (£, 1 < j < n) 

be standard normal random variables with covariance matrix R — (r^). Assume that 

rtj > 0. Then 

p(fite<«}V( n fo^}) 
\j'=l ' ^m<j<n 

<p(n {&<«>) 

<p(p{c-<«})p( n ti^u}) 
\ j ' = l \ r a < i ' < n ' 

X 
m n 

i=l ,j=m+l 

7T 

7T — 2arcsin(rjj) 
exp(-tt2/»"y) 

/or 1 < m < n — 1 and u > 0. 

5.6.2 Bounding P(M„ < v ) 

In this section, we develop bounds on P(M„ < un2) that will later be used in the 

proof of Theorem 5.1. 

Lemma 5.4. Assume condition Al of Theorem 5.1. Then 

P(Mg n < un2)r* < P(Mn <un2). 
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Figure 5.5: A visual approach to Lemma 5.4. The original set of n2 random variables 
on a lattice of size n x n i s first broken into n/qn blocks of size qn x n, and then each 
of these blocks is broken into squares of size gn x gn. 

Proof. To complete this proof, we will use the left-hand side of Corollary 5.3. The 

initial set of n2 random variables is first broken into n/qn = rn blocks of random 

variables of size qn x n. Each of these blocks is then further broken into rn squares of 

random variables of size qn x qn. This process is illustrated graphically in Figure 5.5. 

Through direct application of the left-hand side of Corollary 5.3, we have that 

P(Mn < un*) > P(Mj1 ) : ( 9 n > n ) < un2)r". 

Similarly, we see that 

P ( M ( t l ) : ( 9 n , n ) < « n 0 > W , , < U r f ) ' 

Combining these two facts, it follows that 

P(Mn < un*) > F{Mqn < un2)r 

D 

Lemma 5.5. Assume conditions A1-A5 of Theorem 5.1. Then for large enough n, 

P(Mn < un2) < F(Mqn < un,f»-»2(l + o(l)). 

Proof. We will prove this upperbound for P(M„ < u) by breaking our n x n lattice 

of random variables into blocks of random variables of size qn x qn, and using the 
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right-hand side of Corollary 5.3. To complete this proof, we will introduce notation 

that will only be used in the proof of this particular lemma. Define 

M;W» = \ / M("a+1,,);(nJ) V \ / ^l j) : (nj) . 
J = l j=a+l 

More descriptively, M„ ' is the maximum over all random variables in the nxn 

lattice of random variables, excluding a section of size a x b in the lower left-hand 

corner. Noting that log(7r/(7r — 2arcsin(r))) < log(l/(l — r)) for r > 0, from the 

right-hand side of Corollary 5.3 we see that 

P (M n <M n 2 ) 

< F(Mqn < un2)¥{M-^^^ < un2) 

{
In Qn <in n , .. \ / o 

y^y^y^ y^ ios(i lexpf——— 
^ ^ f c ? , 4 ^ 1 V1 — P|i-*I.L/-*l,™y V P\i~k\,\3-Hn 

qn Qn n 9n ( 1 \ / u2
2 \ 1 

il^lk^+lil y1' P\i-k\,\3-l\,nJ \ P\i-k\,\j-l\,nJ } 

Let p* = sup^j^ pij,n and p' = supmax(i j )> /n piJtn. 

We will split the sums in (5.15) into those sets where 1 < \i — k\, \j — l\ < ln 

and those where the max(|i — k\,\j — l\) > ln. Consider the qn x qn block of random 

variables associated with Mqn. Denote this block by A. Denote the random variables 

associated with Mn ' '^Qn'qn' by B. Notice that there will be less than 2lnqn random 

variables in A that are within a distance of ln units of the random variables in B. For 

each of these variables in A, there are at most 3 ^ random variables in B that will be 

within a distance of /„ units. Thus, 6^<?n is an upper bound for # { ^ 

B : \i — k\,\j — l\ < ln}. This is illustrated in Figure 5.6. Conversely, there will be 

less than n2 — q\ random variables in B that will be at least ln units away from the 
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Figure 5.6: The number of variables separated by /„ units in A and B. Region A is 
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are within ln units of B. For each of these variables in A, there are no more than 3/£ 
random variables in B that are within L units. 
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q\ random variables in A. Applying these facts to (5.15), we see that 

P(Mn < un2) 

< P(M9n < un.)nM-{l'mqn>qn) < un2) expj Y, l o s ( r Z - r ) e x p ( - ^ 2 ) + 

+ 2. "Hwje xvf 
max(\i-k\,\j-l\>ln

 X K 7 X r 

< P(M9n < u)F(M-{1'1):{Qn'qn) < un2) 

x e x p / e ^ l o g ^ ^ - ^ ) exP(-u '2) + tinHog{j^) e X p ( " ^ ) }• (5>16) 

We will continue by breaking off blocks of size qn x qn from the original nxn matrix 

of random variables and applying Corollary 5.3. Following this pattern and referring 

back to (5.16), we have that 

P(Mn < un2) 

< F(Mqn < u ^ ^ 2 expUrlllqn\og(-^\ exp(-^2) 

= P(M9n < u*)^-1? exp{orlllqnlog(j^) exp(-^2) 

+n^(ih)^(-f)}- (5-17) 
Remembering that p' = supmax(y)>/n Pij,n, condition A4 gives us that p' = o( l / logn), 

and hence 

We can also see that 

ulA^-^( u2
n2-4p'logn 

exp I —-j- I n = exp 

exp 

P ' J V P' 
<2 ~ O( l ) 

P' 

< exp(-u2
n2 - o(l)) 

-> 0. (5.19) 
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Next, we notice that 

exp( -u^) = exp(-41ogn + log(21ogn) + 0(1)) 

< K*g, (5.20) 

for some constant K. Using (5.20), we see that 

logn 
rlllqn\og(^—\ exp(-<2) < K rll3

nqn log \ - ^ \ 
n4 

- t fSl^logf _JL_), (5.21) 
qnn

2 \ 1 - p* ) 

since rn = n/qn. By condition A2, we know that p* — sup^ , j < l n Pij,n = Pi,o,n- Thus, 

from condition A3, we have that for large enough n and some e > 0, 

(1 -p*) logn = (1 -pi,o,n)logn 

> e / 2 . 

Hence, for large enough n, (1 — p*)"1 < 2\ogn/e and 

Combining (5.21) and (5.22), we see that 

4(l°gn)2 

tf**^) «,(-*)<*«*£? 
- • 0, (5.23) 

by condition A5. Using (5.18), (5.19), and (5.23), we see that 

expUr2
nl

3
nqn\og( —— J e x p ( - ^ 2 ) + n

4 l o g ^ ^ — - J e x p U ^ U 

= exp{o(l)} 

= l + o(l). (5.24) 

Lastly, combining (5.17) and (5.24) gives us that 

P(Mn < un2) < P(M9n < un,f"-V2(l + o(l)). 

D 
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Lemma 5.6. Suppose 1 < b < a and define A = { 1 . . . , a} x { 1 , . . . b} \ {(a, b)}. Then 

P(M(i,l):<«.6) > «) = P ^ M > «) + E P ( ( ^ > > « ) n ( M ( V l j ) : ( a ) 6 ) < « ) ) . (5.25) 

Furthermore, if b < a, then 

a b 

P((Mfi,i):<.,« > «)n(Affli6+1):(a>a) < «)) = E E p ( ( ^ > > «)n(M5+1J):(aia) < «)). 

(5.26) 

Proof. The main trick used in this proof is to intersect the initial probability with 

the event {(£ij,n > u) U (&,.?> < M)} f° r the appropriate (i,j), and then to break 

up the probability by summing over the disjoint events. We will start with position 

(hj) — (a,b), and then continue to decrement the i position until we reach the first 

position of the row. We will then continue by decrementing the j position by 1 (to 

get 6 — 1) and then continuing this pattern starting in position (a, b — 1). We will 

first prove the latter assertion in the case when b < a. We have that 

p((M{
a

1)1):(a,6) > u) n (M?ltb+1):M < U)) 

= P((^(ai,l):(a,6) > «) n (M(
a
1>6+1):(aia) < U) 0 (Ub,n > V,)) 

+ P((M(°lil):(ai6) > u) n (Mf1)6+1):(a]a) < u) n (£aA» < «)) 

= P((£a,6,n > ") n (M(
a
li6+l):(a,«) < W)) 

+ P((M (
a

M ) : ( a_u ) > u) n (M(
a
a>6);(a)a) < n)). (5.27) 

To clearly see the unfolding pattern, we continue by intersecting the last term in 

(5.27) with the event {(£ij> > u) U (&,,,> < «)} for (i,j) equal to (a — 1,6). Thus, 
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we see that 

P((M(
a

lil):(a,6) > u) n (M?lM1):M < «)) 

= P((&,6,„ > U) PI (M (
a

1 ; b + 1 ) : ( a , a ) < «) ) 

+ P((M(°1>1):(a_li6) > u) n (M(
a
a!b):(aia) < w) n (£a_iA„ > u)) 

+ P((^(ai,l):(a-l,6) > «) n (M (
a

a!6) : (a>a) < U) n (eo-l,6,n < u) ) 

= P ( ( ^ , „ > «) n (M?1M1):M < u)) 

+ P ( ( e « - l , 6 , n > w ) n ( M (
a

a i 6 ) : ( a i a ) < U ) ) 

+ P((M(
a

u):(a_2ib) > n) n (M(
a

a_li6):(aia) < «)). 

Continuing to intersect the last term with {(£ij,n > u) U (&,_,> < w)} for the appro

priate (i,j) and then simplifying, this pattern gives us that 

a b 

P((M(i.l):<«,6) > «) n (M(l6+l):(a,a) < «)) = E E P ( ^ » > ^ R ( ^ + 1 J):(a,a))) • 
i=l j=l 

Hence, (5.26) is proved. 

We will now look at the more general situation when 1 < b < a. Conditioning 

on the event {(&j,n > u)U (£y,n < u)} similar to before, we note that 

PWi,i ) : ( a )6) > y) = nUb,n > u) 

+ P((M(
a

M):(o_li6) >u)n (£,An < u)) 

= ntaAn > U) 

+ P((e«-i,b,„ > u) n (M(
a
ai6):(aj6) < u)) 

+ P((M(
a
1]1);(Q_2)6) > u) n (M(

a
a_u):(a)6) < «)) 

= P(£a,6,n > U) 

,6):(a,6) < « ) ) 

+ P((£a-2,6,n > U) PI (M (
Q

a_1)6);(0ib) < «) ) 

+ P((M(°1)1):(a_3i6) > u) n (M(
a

a_2i6):(ai6) < «)). 
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Continuing this pattern and intersecting the last term with {(£ij,n > u)U (£y,n < u)} 

for the appropriate (i,j) in row b, we have 

P(M(
a
1)1):(a,6) > u) 

o - l 

= P(£a,6,n 
2 = 1 

+ H(M*i,iY<aj>-i) > «) n (M(%):(a,6) < «)). (5.28) 

Using (5.26), we have 

P((M ( l i l ) : ( a j6_1) > u) n (Mft 
,6):(a,6) <«)) 

a 6-1 

= Yl E P((^J> > U) n (M«+l^):(°.6) ^ W)) • (5-29) 
i=l j=\ 

Substituting the equality from (5.29) into the latter portion of (5.28), we see that 

o - l 

- P(£a,6,n > M) + X>((&,6,» > U) 0 (M(
a
i+1]6):(0i6) < U)) 

i=l 
a 6-1 

i=\ j = l 

= P ( ^ a , 6 , n > « ) + Y, P ( ( ^ > > U ) n ( M ( m j ) : ( a , 6 ) < « ) ) -
(JJ)eA 

n 

Lemma 5.7. 

p(M9n > wn2) > gn j > ( ( & , i , n > un2) n (M*; l i l ) : (9 r i )9n) < v ) ) . 
i = l 

Proo/. First, noting that P(M9n > una) = P(M(
<7

1
n
1).(gn9n) > wn2) and defining Q = 

{ 1 , . . . , qn}
2 \ {(qn, qn)}, Lemma 5.6 gives us that 

F(Mgn > un2) = P(^n,,n,„ > un2) + Y p((6j,n > un2) n (Mj"+lj.):(gn>gn) < u„2)). 
(i,j)eQ 



94 

We next note that for all (i,j) G Q, by stationarity, 

P((6,i.» > «n>) n (Mf+M):(gngn) < u„2) < P((a J> > M n (Mf+1.):(gngn) < un2)), 

(5.30) 

and that 

P ( & n , l , n > « n 0 n ( M j 2 ) ; ( g n ! 9 n ) < Un2) < P ( ^ , , „ , n > U n 2 ) . (5 .31) 

For horizontal position 1 < % < qn, we use the inequality in (5.30) for each vertical 

position 2 , . . . , qn to see that 

£P((6.,n > «»0 n (M?+l,i):(9„^) < «»0) 
3 = 1 

> 9nP((ei.i,n > M„0 n (Mf+11):(?ngn) < un2)), (5.32) 

and the inequality in (5.31) to see that 
qn-l 

£ P ( ( U j > > M 0 (Mj j + 1 ) : ( g n g n ) < U„2)) +P(e9n,9n,n > Un2) 
3=1 

> 9nP((e,„,i,« > M n (Mj 2 ) : ( q n 9 n ) < Wn2)). (5.33) 

Obtaining inequalities like (5.32) and (5.33) for all 1 < i < qn, we have 

nU,,n,n > Un2) + J2 H(kj,n>Un2)n(M%j+iy{qnqn)<Un2)) 

(i,j)e<9 

In 

> QnY^H^iXn > Un.) n (Mf+11):(gn9n) < U.,0). 

• 

Lemma 5.8. 

P(Mgn > un2) <PnjrF{(thl,n > un2) n ( M j + M ) : ( g n ) M < «n2)) + o f e ) . 
i=l ^ ' 

Proof. Similar to the technique used in Lemma 5.6, we will intersect the event {Mqn > 

un.) with the event { ( A ^ + 1 ) : ( f t , ^ ) > «»») U (Mj p n + 1 ) : ( g n ( ? n ) < «n2)}. We will then 
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break up the probability in question by summing over the disjoint events. Thus, we 

have 

F(Mqn > un2) 

= F((Mq
{lmqn,qn) > «n0 n (Mjpn+1): (^n) > un2)) 

+ P((M(tl):(W„) > ««0 n (M(lV+l):(9„.„) < «n0)- (5-34) 

Notice that M?" , lW„ „ s is the maximum over a qn x ln block of variables with qn 

horizontal positions and qn — pn = ln vertical positions. Thus, the distribution of 

M(T,Pn + l):(«n,9n) ^ ^ ^ " ^ ^ M(tl):(W»)" U s h l S ^ f&Ct ^ (5"34)' ^ ^ ^ 

P(M9ri > Wn2) = P(Mj 1 ) : ( 9 n / n ) > un2) 

+ F((M(t i) :^,Pn) > ^) n ( A ^ + i w * . ^ ) < ««»))• (5-35) 

Also, notice that 

• 9n in 

P(M(f 1):(W„) > «»0 = P U U ^ > «n! 

< /„<7„P(£l,l,n > V ) 

= —^n P(^i,i,„ > w„2). 

Using the fact that 

n(l - $(un(x))) -» exp(-x)) 

= 0(1), 

we have 

p (M5; 1 ) : ( f a , l B ) >«nO<o(^) . (5-36) 
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Combining (5.35) and (5.36) gives us 

F(Mqn > un2) < P((Mj1 ) : ( 9 n ) P n ) > un2) n ( M j p r i + 1 ) : { ^ n ) < un2)) +OflnQn 

n2 

(5.37) 

Prom Lemma 5.6 we know that 

qn Pn 

By stationarity, we see that for (i,j) G { 1 , . . . , qn} x { 1 , . . . , p n } , 

P ( ( ^ n > « n 2 ) n ( M f + 1 , ) : ( ( ? n i g r i ) < n n 2 ) 

< P( (^+ i ,n > un2) n (MJ; lpn+1):(gn9n) < un2)). (5.39) 

Once again appealing to stationarity and carefully noting the sizes of the regions in 

question, we see that 

P ( ( 6 * . + I . » > «n0 n (MJ;1>Pn+1):(?n,gn) < M ) 

= P((fc,i.n > M n (Mf+11):(9n/n) < nn2)). (5.40) 

Fixing the horizontal position to be i, we use (5.39) and (5.40) to see that 

Pn 

£p((6j,n > «n0 n (MJ;1J):(^n) < «*)) 

< pnP(te,l,n > Un2) n (Mf+la):(/n)9n) < U n 2)) . (5.41) 

Applying the inequality in (5.41) for each 1 < i < qn, we have 

9n Pn 

EEp((^> >w-2)n (K^M^n) ^u^)) 
i = l j = l 

< P n j > ( ( £ M , „ > v ) n (M«"+lil):(tni9n) < «„»)). (5.42) 

1=1 

Combining the information in (5.37), (5.38), and (5.42), we see that 
In / i 

F(Mqn > Un2) < P n j > ( ( & , l , n > Un2) n (M«"+li l ) : (Jni9n) < Un2))+0' nq' 
n2 

i = l 

• 
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Lemma 5.9. Assume conditions A1-A5 of Theorem 5.1. Then for large enough n, 

1 -P» JX(&,1,» > «n») n (M^hl):{qnM < Un2))+0\ 
1=1 

< P(Mn < un2) 
Qn 

<(l- qn £ P ( ( 6 , I , „ > v ) n (Mf+11):(gn9n) < «„>))) 

Proof. Using Lemmas 5.4 and 5.8, we have that 

F{Mn < un2) 

> ¥(Mqn < un*y« 

> ( l ~Pnf;P((6.1,n > «„») n (M^l):{qnM < Un,))+0(1^ 
^ i=l ^ 

Similarly, using Lemmas 5.5 and 5.7, we see that 

'•nHn \ 

Kn*J 

( r n - l ) 2 

\ rn 

) 

+ 0(1). 

F(Mn < un2) 

<P(M g n < W „ 2 ) ( r " _ 1 ) 2 ( l + o(l)) 

< (1-9nEP((ai,n>«)n(Mf+1)1):(?n)(?n) < t t))) " (i + o(i)). 

D 

5.6.3 Convergence Results 

Now that we have constructed bounds for P(M„ < un2), we need to prove certain 

convergence results for use in the proof of Theorem 5.1. 

Lemma 5.10. Let 

K c {N x {0}} U {Z x N} 

be a bounded set. Assume condition A3 of Theorem 5.1. Then for fixed x, 

lim P( max ^ n < u„2 | £0,o,n > un2) 
i—>oo \(i,i)eK / 

V(E/4 + fyijWij < Sij, (i,j) e K") 



98 

where E is a standard exponential random variable and {Wij} is a mean zero, vari

ance one, Gaussian random field with correlation 

E{WijWkl) = kj+^ S _ 

Proof. First, we determine that 

P(&J,n < Un2, (j,j) E K | £0,0,n > Un2) 

i -$K2) 
/»oo 

= / p(&j,« < un2, (i,j) e K I £0,o,n = wn2 + y/un2) 
Jo 

<j>(un2+y/un2) 
x — ay 

Un2(l - $(una)) 
/•OO 

= / P ( ^ J , n < «na , (i,j) £ A" | £0,0,n = U„2 + J / / t i n a ) 
JO 

0 ( ^ n a +VlUn*) (f>(un2)/un2 

(f>(un2) 1 - $(fXn2) 

P ( & j , n < «n2, («, j ) 6 # | fo.O.n = Un2 + y/un2) 

"x-(--4)x^5d!" (5-43) 
Let {r]itjin, (i,j) £ K} denote random variables with distribution given by the condi

tional distribution for 

{£i,j,n, (i,j) € K I (f0,0,n = Un* + y/Uni)} . 

Then 

where 

and 

(rhj,n,{i,j)eK)T^N(fjL,i:), 

P = (Pi,j,n(Un2 + V/Un*), (hj) ^ KY 

S = (p\i-k\,\j-l\,n - Pi,j,nPk,l,n)(i,j),(k,l)eK-
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Define Z^^n to be the standardized r)i^n so that 

ViJ,n - Pij,n(Un* + V/Un?) 
Zi,j,n — 

\A - Plj,n 

Thus, 

where 

(ZUjtn,(i,j)eK)T~N(0,R) 

p _ I P\i-k\,\j-l\,n Pi,j,nPk,l,n 

. Y C1 ~ Pf,j,n)(1 _ Pl,l,n)/ (i,j),(k,l)eK 

Standardizing r/ijn , we obtain 

P ( 6 j , n < Un2, (i,j) e K I £0,0,n = U„2 + J//«nO 

= P(^, j ,n < Un2,(i,j) E K) 

(5.44) 

Since un2 ~ 2\/logn, we see from condition A3 that 

<2(1-Pij,n) ^ s ^ ( 5 4 5 ) 

We also see from condition A3 that pijtU = 1 — j ^ + o ( j ^ ) and /0yin —> 1, giving 

us that 

(/0|i_fc|,|j-j|,n - Pi,j,nPk,l,n) l o S n = 0 O S n ~ fy-fcl.lj-ll + 0 ( X ) ) 

- ( , o g n - ^ + 0(l))(l-AL + a(^)) 

= ^ i j + 8k,i - 5|i_fe|,|j-2| + - p — - + o ( l ) J ' "w ' logn logn 

—• 5j j + 5fc)j - ^i-fcUj-zi, (5.46) 

and 

(! - P?j,n) logn(l - p\M) logn = (1 - #,,•„) logn(l - pM,n) logn 

X ( l + p i j , „ ) ( l + /5fc,i,n) 

- 4 ^ , , . (5.47) 
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We use (5.46) and (5.47) to show that 

n 7 / v ry \ P\i-k\,\j-l\,n — Pi,j,nPk,l,n 
^{^i,j,n^k,l,n) — i 

^(1-Ph,n)(l--Pll,n) 

_^ 8i,j + Sk,i - <?|i-fc|,|j-t| 

Remembering that p i j i n —> 1 and using (5.45) and (5.48) with (5.44), we have 

(5.48) 

~*p (!+\l¥^jWi>j - kj>(ij) G * ) • (5-49) 
Via l'Hopital's rule we also see that 

Cf)(un2)/Un2 
1. (5.50) 

1 - $(u„2) 

From equations (5.43), (5.44), (5.49), (5.50), and the dominated convergence theorem 

we see that 

lim P(&j,„ < un2, (i,j) G K I £0,0,7* = Una + y/wnO 
n—>oo 

= / lim P(&j,„ < wn2, (i,j) G if I £0,o,n = «n2 + y/u„2) 

/ V2 \ 0(w„2)/wn2 

- ^ p ( y / 4 + ^6ijWitj < 6ij, (ij) G A exp(-2/) dy 

= P ^ / 4 + y | ^ W y < 6iJt (ij) G K^j, 

where E is a standard exponential random variable independent of Wij. 

• 
Lemma 5.11. Fix a G {1 , . . . gn}, 2/ > 0 and lei m G N. Define Aatn, Ga,m,n, and 

Ha,m,n os in Theorem 5.1, and assume conditions A3 and A6 of Theorem 5.1 are 

satisfied. Then for (i,j) G Ha^n and large enough m,n, 

Un2 - P\i-a\,j-l,n(Un2 + Vl^-n?) 

Y 1 ~ P\i-a\,j-l,n 

> 0 . 
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Proof. Nearly identical to the observation in the proof of Theorem 2.1 in Hsing et al. 

(1996), we see that 

E
_ 2 ' - " | i - a | , j - l , n (\Qffn)~ l + P | i - a | , j - l , n 

n l + P | i - a | , j - l , n ^ ° ' 

{i,J)eHa,m,n V ^|»-a|j"-l,n 

E
_ 2

1 P|i-a|,j-l,n n 0 g n) 2( 1+P|i-a | , j - l ,n) 
n i+PH-al.j-l.n V & y 

(M)e//c,,m,n y C1 - Pfi-Q|J-l,J l 0 § n 

\ V^ ( oi 1 ~ P\i-a\,j-l,n\ 1 
> V exp -21ogn——!—^ 

> y - exp(-2(l-p|<-a | J-_1 | W)logn) 

~(iJ)tSL.m.n ^ ( l - P i i - a i j - L O l o g n 

If there exists e > 0 such that 

\ / ((1 - p|i_a|j-i,n) logn) - 1 > e, 

for all m, n, then from (5.51) we have that 

_ p\i—a\,j — l,n 

E
_ 2 W | « - a | j - l , n ( l o g w ) > + P | i - a | . i - l . n / J 

/ 7 3 ^ ~ V 2 
(l,j)EHa,m,n y X ^|j_a|j_lin 

contradicting condition A6. Thus, for large enough m and n, 

V ((1 - />|i-Q|j-i,n)logn) * < e, 

giving us that 

lim limsup \f ((1 - P|«-a|j-i,«) logn) x = 0, (5.52) 
m—>oo n_>0o 

(ij)e#a,m,n 

and implying that for any 5 > 0 and (i,j) G Ha,mtn, 

(1 — p|j_Q|j_i)logn > 5 for large enough m and n. (5.53) 

Using a proof by contradiction, we will now show that for large enough m and n, 
uni - p|t_Q|J_lin(^n2 + y/un2) 

Y 1 ~~ P\i-a\,j-\,n 
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Suppose that 

Then 

"n* - p\i-a\J-l.niUn2 + VlUrA_ <Q , g ^ 

Y 1 P\i-a\,j-l,n 

0>Un2- p\i-a\j-itn(un2 + y/un2) 

= Un2(l - /3|i_a|,j —l,n) - P\i-a\,j~l,ny/u„2 

>Un2(l- p\i-a\,j-l,n) - y/un* 

> Ul*(X - P\i-a\,j-l,n) ~y. 

Noting that un2 ~ 2\/\ogn and picking B > y, we have from (5.53) that for large 

enough m and n, w^2(l - p\i-a\j-i,n) > AB > y and u£2(l - p\i-a\j-\,n) - V > 0, 

contradicting the assumption in (5.54). Hence, for large enough m and n, 

{un2 + y/un2) 

\fl ~ P\i-a\j-l,n 

a 

Lemma 5.12. Fix a G {1 , . . .qn} and let m G N. Define Aa>n, Ga,m,n, o,nd Ha^m,n 

as in Theorem 5.1, and assume conditions A3 and A6 of Theorem 5.1 are satisfied. 

Then 

lim limsupPJ M (£W n > un2) | fQ l n > un2 ) = 0. 

Proof. The proof of this result is similar to the proof of Theorem 2.1 in Hsing et al. 

(1996). Using the argument from Lemma 5.10 we see that 

~ / M U (&•*> > u«2) I &M,n = M«2 + ^ / u " 2 ) 
,m,n 

x exp l-y- ^ 2 ~ ) dy. (5.55) 
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As in Lemma 5.10, we assume {?7ij,n, (hj) £ Ha>mtn} has the same distribution as 

{€i,j,n, (hj) € # a ,m,n | (£a,l,n = «n2 + y/un2)} . 

Then 

(*7ij,n, («, J) € Ha^n)
T ~ JV(^, E), 

where 

A* = (P\i-a\,j-l,n(Un2 + Vlurfl), (hj) G #a,7n,n) 

and 

£ = (/)|i_fc|,|j-/|,n - P|i-a|,j-l,nP|fc-a|,i-l,n)(ij),(fc,/)eHQ,m,n-

Define ^ j , n to be the standardized r\ij,n so that 

7 _ ^ J . n ~ P\i-a\,j-l,n(un2 + y / ^ 2 ) 
Z»J,n - r 

Y P\i-a\,j-l,n 

Then 

(Zitj,n,(i,j) e Ha>mtn)
T ~ N(0,R) 

where 

r. _ ( P\i-k\,\j-l\,n — P\i-a\,j-l,nP\k-a\,l-l,n \ 

^ Y ~~ P\i-a\,j-l,n)(l ~ P\k-a\,l-l,J / (i,j),(k,l)€K 

Using this with (5.55), we have 

P ( U (&J> > u«2) I &M,n > M"2 ) 

/

oo 

, = 0 

( y2 

~ / exp - y 

x 
,rn,n y ^ | i —a[, | j—1,71 

To prove this lemma, it suffices to show that for each fixed y0 > 0, 

rvo 
lim limsup / exp(—y) 

Jo 

U I Zi>i>n > r 2 
'(ij)eHo.m V Y X P | » - « | j -

m—>oo n—»oo 

xpf U (z^ >Un2" ^/-;^-1;K2 + y /^2 )")) dy = o. (s.se) 
1 — 1,71 
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First, we notice that 

p f I I (z > Un2 ~ P\J-<x\>i-^(u"2 + V/Un*)\ 

\ * , j ) e t f a , m , n y ^ ~ P\i-a\,\j-l\,n ' 

(i,j)eHa,m,n \l 

(un2 +y/un2) 
(5.57) 

r\i-a\,j-l,n 

Lemma 5.11 gives us that for large enough m and n, 

^ T I 2 P\i—a\,j — l,n 

V 1 ~~ P|i-a|j-l,n 

so we use the inequality 1 — <b(x) < x~lcf)(x) for x > 0 (cf. Adler and Taylor (2007, 

p. 9)), to obtain that 

^ n 2 P\i—a\,\j—l|,n 

(un2 +y/un2y P ( ^ i j ' , n > 

Y 1 Pfi-a|,|i-l|,n 

, ^ n 2 - P | i - a | , | j - l | , n ( « n 2 + y / « n 2 ) 

Y 1 Pfi-a|,|i-l|,n 

- 1 

.. i ( Uv-Pv-ew-ia^ + vM', , (558) 

- l , n 

We will first bound the exponential part of (5.58). Notice that 

u, ,2 - P\i-a\,j-l,n(un2 + y/un2) 

y 1 - P|i_Q |j-i )? l 

2 

| 2 / i \2 , ' |i—<*|J—1,»» o / i \ i 
I U n 2 U - P | i - a | j - l , n j H ~3 M 1 ~ P | i - a | J - l , n J P | i - a | j - l . n 
\ M n 2 / 

> U. 

Pi,j,n 

2 P|i—a\,j—l,n ^yP\i—a\,j — l,n 

1 + P | i - a | , j - l , n 1 + P | i - a | , j - l , r i 

>(41ogn-log(21ogn))^—P | '~ a | ' j~1 'n + C, (5.59) 
1 + P\i-a\,j-l,n 

since w 2̂ = 4logn - log(21ogn) + 0(1) (cf. Hsing et al. 1996, p. 682), where C 

is some constant (not necessarily positive) depending on x and y. Thus, letting K 
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denote some positive constant, (5.59) gives us 

1 (un2 - p | j _ a | j _ i i n ( u n 2 + y/un2)^ 
exp 

Y 1 P\i-a\,j-l,n 

< exp(-\((4logn - log(2logn)) * P ^ ^ n + C 

g 1 ~ P | i - a | , j - l , n 1 ~ P | i - a | , j - l , n 

< Kn 1+"ii-«i,j-i.n logn2(1+pii-ai.J-1."). (5.60) 

Next, we bound the denominator in (5.58). Starting with the last part of (5.59), we 

have 

(41ogn - log(21ogn)) |~P | i -Q | J - 1 'w + C 

> ( l - ^ - « | j _ i , „ ) Q ( 4 1 o g n - l o g ( 2 1 o g n ) ) ) +C 

3 
>4( l -P | i - «U- i , n ) logn + a (5.61) 

Prom (5.53) in Lemma 5.11, we know that for large enough m and n, 

3 1 
4(1 - Pfi-a|j-i,n) logn + C > - (1 - pl_a{J_hn) logn. (5.62) 

Combining (5.58)-(5.62), we see that 

un2 ~ P\i-a\,j-l,n 
(un2 +y/un2) PI Zid > 

Y 1 P\i-a\,j-l,n 
1 ~ p | i - q | , j - l , n 

2
1 - P | i - q | , j - l , n l o g n

2 ( 1 + P | i - a | , j - l , n ) 
1 + P | i - a | , j - l , n 2 < Kn 1+pii-«iJ 

^(l-pjUi^Jlogn 

n 1~p|i—a|,j —l,n 

A n " 

_ P|i — a|,j — l,n 

_2
1-P[»-a | , j - l ,n f l 0 g n ' ) l+P|i-a|,j-l,n 

I 1+P\i-a\,j-l,n 

y1 ~ P\i-a\,j-l,n 

Thus, by condition A6 we have 

E Tof <7 ^ Un2 ~ P\i-alJ-lAUn2 + y/un2) 

V iJ'n / 2 
(i,j)eHa,m,n X y 1 P|i_a|,j-l,n 

^|t—a],lj —l|,n 

E
_ 2

1 P | i -a | , l J - l [ ,n (\0ffn) l+P\i-a\,\j-l\,n 

Kn l+P|i-a|,b-l|,n V ° ' 

(i,j)€Ha,m,n y l ~ P\i-a\,\j-l\,n 
-»• 0. (5.63) 
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Using the dominated convergence theorem with (5.56), (5.57) and (5.63), we see that 

ryo 
lim limsup / exp(-y) 

X 

\iJ)€Ha,m,n ^ y 1 _ P\i-a\,j-l,n 

a 

5.6.4 Proof of Theorem 6.1 

Proof of Theorem 5.1. In light of conditions A1-A6, we use Lemmas 5.5 and 5.7 to 

see that 

P(Mn < wn2) 

< P ( M g n < u n 2 ) ( r " - 1 ) 2 ( l + o(l)) 

< ( 1 - 9 - E F ( ( ^ n > « ) n ( M j Q + 1 ) : ( q n ! 9 n ) < u ) ) ) " (l + o(l)), (5.64) 

where rn = n/qn. Next, we restructure the inner part of (5.64) to see that 

In 

g„X>(&,« .n > un*) n (MJQ+I): (9ngn) < Wn2)) 
Q = l 

n2P(6,a,n > «„*) 1 
f « 9n a = 1 

E'^lMft.*) ^ ^ I &."." > "»')' (5-65) 

giving us that 

P(Mn < un2) 

.(, n2P(6,Q ,n>^) 1 y ^ , , ^ . , , ^ ^ V r n _ 1 ) \ n^ 
\ ' n Hn Q = 1 / 

(5.66) 

Our immediate goal is to show that 

Qn 

1 _'?" 

lim lim — V P(M,9" l H o g)<un2\ ^,Q)„ > un2) = 0. (5.67) 
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Letting MGa,m,n = rnax ( i J ) e G Q m n {&,,,•„} and MHamn = max ( i j ) e / / a m n {^ j , n } , the 

result in (5.67) follows from showing 

1 Qn 

lim lim - V F(MGa m n < un2 \ £liQ,n > un2) = 0 (5.68) 
m—>oo n—»oo Q„ *—» 

^ n a = l 

and 
i Qn 

lim lim sup — V F(MHa m n > un2 | & > u„2) = 0. (5.69) 
m->oo n ^ o o g n ^ - f 

By Lemma 5.12, each summand in (5.69) converges to zero, and hence, the average 

converges to zero. Turning to (5.68), observe that 

Qn 

1 _<?n_ 

- J > ( M G w i < un2 Ki, 
Q = l 

m 

= — ] > ^ P ( M G „ < w„2 I f1)a,n > wn2) 

1 

a = m + l 

+ - Y, F(MGa,m,n < Un* | £l,a,n > «n2)- (5.70) 

Notice that for a, j3 G {m + 1, m + 2 , . . . , qn — m}, the sets Ga^n and Gp,m,n have 

identical structure, and because of stationarity we have 

^ n 2 | s i ,ct ,n 

> Un2) = F(MGj3m^ < Mn2 | £l,/3,n > «n2)- (5-71) 

Thus, defining 

^m = { { - m , . . . , m} x {0 , . . . , m}} \ { { - m , . . . , 0} x {0}} , 

we see that for a G {m + 1, m + 2 , . . . , qn — m}, 

^ n 2 | <,l,a,n > V ) = V(MKm < un2 | ^0,o,n > V ) . (5.72) 
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Combining (5.70) and (5.72) we see that 
-1 HTl 

—y>(MGQ]m,n < Un21 fliQin > Un2) 

1 m 

= — V P ( M G a i m n < un2 | £1>Q,n > un2) 

' Qn ~ m-F{MKm < un2 | £0,o,r> > un2) Qn 

1 . g " . 

+ - ^ P ( M G Q i m i „ < Un2 | ei,Q,n > « n 0 - (5-73) 
a=(jn-m+l 

The first and last sums in (5.73) go to zero since both sums are less than mq~x —> 0 

and 

lim lim — P(MKm < un2 | £0)0in > una) = #, 
TO—»oo n—»oo (Jin 

from Lemma 5.10. Thus, 

q-n 

lim lim — S~] P ( M G Q m n < un2 | ̂  n > u„2) = #. 
m—>oo n—>oo fiL, ̂ — ' 

y n a=l 

Since 

n(l - $(«„)) - e"*, (5.74) 

we have from (5.66) and (5.67) that 

limsupP(Mn < un2) < e-*
e~x. (5.75) 

n—»oo 

On the other hand, combining Lemmas 5.4 and 5.8 gives us that 

P(Mn < un2) 

> F(Mqn < un2)r» 

> ( l - P n £ p ( ( 6 , a , „ > un2) n (M%a+1):M < ^ a ) ) + o ( ^ ) ) "• (5-76) 

Similar to (5.65), we see that 

Q = l 
n2 

? nn2P(6,a,n > «n0 1 ^ l n > / / , W I . ^ x l , . N . 1 „ (U 

rl Qn 
(5.77) 
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Using an argument nearly identical to the one used to get (5.67), we have that 

n^°° <ln Q = 1 

By assumption, pn ~ qn, so as in establishing (5.75), we obtain 

l iminfP(M n<u„ 2) > e - t f c - x . (5.79) 
n—>oo 

Combining (5.79) and (5.75) gives the desired result. 

• 



Chapter 6 

CONCLUSION AND FUTURE WORK 

We have introduced two new methods for constructing confidence regions for 

level curves. The first is an extension of Lindgren and Rychlik (1995) and Wameling 

and Saborowski (2001) and constructs rectangular confidence regions in directions 

perpendicular to estimated level curves. The dimensions of these regions are chosen 

using simulation of the response process conditional on the observed data. Each 

confidence box should individually intersect the true level curve with confidence level 

I —a. The second method constructs a confidence region which contains the true level 

curve with confidence level 1 — a. The confidence regions are constructed through 

multiple hypothesis testing using a test statistic derived from simple kriging. The 

critical value of the tests is adjusted to control the simultaneous Type I error rate 

and is estimated via simulation. Lastly, we have presented a limiting result for the 

distribution of the maxima of a triangular sequence of stationary Gaussian random 

fields on an n x n lattice. Under certain dependence and limiting conditions, we were 

able to show that the maximum of the random fields exhibits extremal clustering in 

the limit. 

There are several ideas related to the construction of confidence regions for level 

curves that can be explored for future work. One topic for exploration is a practical 

way to implement a multiple comparison adjustment for the confidence box method. 

One approach would be to "blur" the confidence boxes by connecting the vertices 

of the confidence boxes to produce a single confidence region. It seems unlikely that 

this confidence region would contain the entire level curve with high confidence, but it 
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may be useful in controlling an alternative error criterion such as the probability that 

the confidence region contains a large proportion of the level curve. Another topic 

for future research is to look into alternative approximations for the critical value 

controlling the simultaneous Type I error rate of the hypothesis tests. As previously 

discussed, Adler (2008) presents an approximation to the excursion probability of a 

Gaussian random field which does not require stationarity or isotropy. It might be 

possible to use this approximation to conservatively estimate the appropriate critical 

value. The major advantage of this would be that the critical value could be esti

mated using a closed form expression instead of a comparatively lengthy simulation. 

An additional topic which may be considered for further study is the use of alterna

tive error criteria in the construction of confidence regions using the hypothesis test 

method. Currently, this method is designed to ensure that the entire level curve is 

contained in the confidence region with high probability, but alternative error criteria 

may also be appropriate and yield smaller confidence regions. 

There are open problems related to the limiting theorem given in Chapter 5 which 

also deserve consideration. Except in rare, artificial situations, we do not know of any 

situations where $ is easy to calculate. One could explore other covariance functions 

satisfying the appropriate conditions to see whether a simple calculation of $ may be 

found. Additionally, one might explore the details of accurately and efficiently esti

mating -d. Another open problem is whether one can weaken the conditions necessary 

to obtain the result in Theorem 5.1. Six conditions were necessary to obtain the re

sult in Theorem 5.1; the analogous result in Hsing et al. (1996) required only three of 

these conditions. Study could be given to whether these additional conditions could 

be removed. Of particular interest would be the removal of the condition that the 

correlation function must be non-negative. This condition was necessary to use the 

normal comparison inequality in Li and Shao (2002), which was used in some of the 

lemmas of Chapter 5. If another technique for bounding was used, it may be possible 

to eliminate this condition. 



Appendix A 

APPENDIX: FIGURES FOR CHAPTER 5 SIMULATIONS 

We conclude this dissertation by providing graphical results for the approxima

tion results described in Section 5.5 for P(maxi<jj<n Zij < u), where {Zitj} is a 

Gaussian random field on an n x n lattice in a [0,20] x [0,20] region of interest. The 

empirical estimate of this probability is shown as a solid line, while the approximation 

is shown as a dashed line. The results are shown for n = 12, 36, 108, and 324 and n is 

noted in the caption of each figure. Figures A.1-A.4 are the results for the Gaussian 

covariance function when <fi = 0.1, 0.5, 1, and 2. Figures A.5-A.9 are the results for 

the spherical covariance function when <fi = 0.5, 1, 2, 5, and 10. Lastly, Figures A. 10-

A.13 are the results for the exponential covariance function when <f> = 0.1, 0.5, 1, and 

2. Horizontal lines at probabilities 0.90 and 0.95 have been provided for reference. A 

summary of these results is given in Section 5.5.4. 
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Figure A.12: Approximation for exponential covariance function with 0 = 1. 
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