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ABSTRACT 
 

 Dryland winter wheat (Triticum aestivum) cropping systems dominate most of the 

agricultural landscape in Colorado’s semi-arid eastern plains. Since this area’s climate is 

characterized by frequent heat and drought, it is important to maximize water use 

efficiency to make agricultural lands as productive as possible. Adding a spring crop in 

rotation with winter wheat intensifies the rotation, increasing water use efficiency by up to 

37%. Recent research has explored further intensifying this rotation by adding an oilseed 

crop into a wheat – spring crop – fallow rotation during the fallow period. Ideally, the 

oilseed crop acts as a cover crop for part of the season and leaves enough time at the end of 

the season to regenerate water in the soil profile before planting wheat in the fall. The oil 

from this crop can be used to produce on-farm biofuels, offsetting petroleum diesel costs 

without displacing high-value food crops. Additionally, the meal from this crop acts as a 

value-added byproduct by providing feed for livestock.  

 Since traditional oilseeds such as soybean (Glycine max) and rapeseed (Brassica 

napus) do not perform well in Colorado, several alternative oilseeds have been tested to 

assess whether they can fill this niche. Camelina (Camelina sativa) has shown great 

potential, with high oil content and inherent resistance to many biotic and abiotic stressors. 

Other potential oilseeds include Brassica juncea and Brassica carinata, but both of these 

species have exhibited longer life cycles and lower yields than camelina.  

 A major challenge to camelina production in Colorado is a susceptibility to heat 

stress during reproductive periods. Both short periods of intense heat stress and longer 

periods of mild heat stress can cause floral and seed abortion, resulting in reduced yield. In 

the current study, a quantitative trait locus (QTL) approach is used to identify heat and 
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drought tolerance mechanisms and yield components, explore the extent of pleiotropy, 

epistasis, and linkage, and identify promising lines for study or production. 

 Genetic resources for camelina are becoming more readily available and a newly 

developed genetic map with improved marker density was used for QTL discovery. 

Replicated field trials were performed during the 2014 growing season in Fort Collins and 

Greeley, Colorado, under differential irrigation treatments at each site to collect phenotypic 

data on a variety of traits. Sixteen new QTL were discovered from this data, along with nine 

QTL using data from Colorado trials of the same population in 2009 and 2010 performed 

by Enjalbert (2011). Seven QTL were discovered for yield, however, no QTL were found in 

more than two environments, indicating a lack of stable QTL for this trait. This was in 

contrast to results from Enjalbert (2011) where stable QTL for yield across environments 

were detected using the original, mainly AFLP generated, genetic map by Gehringer et al. 

(2006). This underscores the high amount of variation that can be caused by environment. 

QTL for other traits, such as plant height and days to flowering, were detected that were 

more robust, however, no QTL were detected with either data set that spanned more than 

three environments. Two loci were identified that affected multiple traits, supplying 

evidence of either pleiotropy or close linkage of genes. Several RIL performed well in 

multiple environments, indicating potential for production in Colorado, however, these 

lines were not in common with previous studies, so further trials will be needed to confirm 

consistently stable yields.  

 In addition to the camelina QTL study, a two-year variety trial of Brassica carinata 

was performed in Fort Collins, CO during the 2013 and 2014 growing seasons under 

limited and full irrigation. Collaboration with the private Canadian oilseed company 
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Agrisoma Biosciences spurred interest in reevaluating the potential of this alternative 

oilseed in Colorado cropping systems. Agrisoma Biosciences developed early flowering and 

early maturing germplasm that performs well in the Canadian prairie and is interested in 

testing their germplasm in new regions with potential for production. The company 

provided six lines for the trial, five experimental lines and one commercial check cultivar.  

 Mean flowering time was over 13 days longer than previously tested African 

accessions that had been deemed too late flowering to be competitive in Colorado’s climate. 

Mean yields were low as well, at 669 kg ha-1. The commercial check cultivar, A100, 

outperformed all of the experimental lines, with a mean yield of 1081 kg ha-1 across 

environments. With a wide margin between the other lines and A100, this commercial 

cultivar was clearly more successful than any of the experimental lines. However, yields of 

this one cultivar were not sufficiently impressive to recommend on-farm testing of the 

crop.  
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CHAPTER 1: 

LITERATURE REVIEW 

 

COLORADO DRYLAND CROPPING SYSTEMS 

 Coloradoans plant more acres to winter wheat (Triticum aestivum) than any other 

crop, accounting for more than 2.3 million acres of the 4.7 million acres dedicated to 

commodity crops (Clark, 2013).  According to the most recent National Agricultural 

Statistics Service report, Colorado ranks as the 5th highest winter wheat producing state in 

the United States, generating $305,532,000 in the 2013 season (Clark, 2013).  To grow 

winter wheat in the semi-arid environment of Colorado, a fallow period is required to 

maintain consistent yields. This is generally achieved by one of two rotational schemes, i.e. 

by a wheat-fallow rotation or a wheat-spring crop-fallow rotation.  

 In a wheat-fallow rotation, wheat is planted in the fall and harvested the following 

mid-summer. This would be followed by a year of fallow and planted the next fall. In a 

wheat fallow system, one wheat crop is harvested every other year. In a wheat – spring 

crop – fallow rotation, Colorado farmers add a spring-planted crop to the rotation, such as 

maize (Zea mays), sunflower (Helianthus annus), or proso millet (Panicum miliaceum). 

Intensifying the cropping rotation in this manner can increase water use efficiency (WUE) 

by 37% (Peterson and Westfall, 2004). This is important because 75% of the precipitation 

in the Great Plains falls from April to September, which months experience frequent high 

temperatures and low relative humidity (Peterson and Westfall, 2004). Not surprisingly, 

much of this water is lost to evaporation and runoff. Annual precipitation in the eastern 

plains of Colorado is generally low, ranging from less than 305 mm in the Arkansas valley 
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to almost 460 mm in the northeastern and southeastern corners of the state (Doesken, 

2014).  Consequently, it is very important for dryland farmers to maximize use of water for 

cropping whenever possible.   

 Recent research has begun to explore whether growing a short-season spring 

oilseed crop in lieu of a fallow season could further intensify Colorado cropping systems.  

An ideal crop would be cold tolerant so it can be planted early, drought and heat tolerant, 

and early maturing to leave time to regenerate water in the soil profile before wheat is 

planted in September.  Several industrial oilseed crops fit this niche, most notably rapeseed 

(Brassica napus), camelina (Camelina sativa), Indian brown mustard (Brassica juncea), and 

Ethiopian mustard (Brassica carinata). All of these crops have known food and industrial 

uses, but it has been proposed that using this niche in a winter wheat cropping system to 

create on-farm biofuel is an attractive and economically viable option (Keske et al., 2013).  

 Of these species, spring-type camelina is the most promising crop to integrate into a 

Great Plains winter wheat cropping system (Enjalbert, 2011; Enjalbert et al., 2013).  

Camelina has a remarkably short growing season, reaching full maturity around 80 days 

(Jewett, 2015). It is a cold tolerant crop that yields best when planted early in the spring. 

With an optimal germination temperature of 3.3°C and a sensitivity to heat during 

flowering, it has been shown that a delay of planting from March to April will result in a 

25% reduction in yield (Ehrensing and Guy, 2008). Therefore, it is best to plant camelina as 

early as weather allows, both to maximize yield and to leave as much time as possible to 

prepare the land and regenerate water in the soil profile before fall planting of wheat. In 

this way, a successful oilseed harvest can be obtained without displacing high-value food 

crops. Much of the opposition to using arable land for biofuel crops stems from the 
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argument that the crops displace food, which is commonly known as the “food versus fuel” 

debate, but this innovative crop rotation allows farmers to gain an additional crop without 

having to sacrifice acreage that would be devoted to other crops. Additionally, adding an 

oilseed to the rotation adds a cover crop during part of the fallow season, which reduces 

weed competition and soil erosion (Clark, 2012).  

 

ON-FARM BIOFUEL PRODUCTION 

 Liquid fuels represent a significant portion of agricultural input expenses. Over 30.5 

million gallons of fuel oil was sold specifically for on-farm use in Colorado in 2013 alone 

(EIA, 2013). This leaves farmers at the mercy of foreign energy markets, which can 

translate to unexpected fluctuations in energy input costs. Some farmers are responding to 

this issue with a will to produce their own fuels. This gives farmers greater control of their 

energy inputs, ensuring supply during times of shortage or high-prices and offsetting 

standard operating costs (Keske et al., 2013). How much savings a farmer will garner is 

dependent on usage and fluctuations in the oil market, but it has been demonstrated that 

growing camelina during a fallow season is an economically viable model, particularly 

when diesel prices are high (Keske et al., 2013).  

 Making several types of plant-based biofuels is possible with an oilseed crop, but the 

simplest fuel to produce on-farm is straight vegetable oil (SVO). Simply crushing seed, 

filtering, and collecting the resultant oil produces this type of fuel (Lakshminarayanan, 

2014). It is possible to further process the oil, via transesterification, to make biodiesel. 

This will make the fuel more similar to petroleum diesel, but has the disadvantage of a loss 

of energy during processing and producing environmentally unfriendly byproducts such as 
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glycerol (Jewett, 2013). Production of high quality biodiesel requires equipment and 

expertise that a farmer may not have, thus requiring an investment of time and money, or 

the expense of a third-party processor. For making straight vegetable oil, crushing costs are 

relatively negligible. Farmers can opt to purchase a small-scale crushing device, i.e. a 

hydraulic press, or transport their seed to a local crushing facility where it can be turned 

into oil for a nominal charge. Colorado crushing facilities can be found in Stratton, Costilla 

County, and Rocky Ford (Enjalbert and Johnson, 2011).   

 There are known issues with running SVO in an unmodified diesel engine. Fuel 

properties, most notably viscosity, can be significantly different in SVO compared to 

petroleum diesel (Drenth et al., 2014). Engine modifications, such as adding a fuel line 

heater, may be made to improve the performance of SVO in a diesel engine. However, a 

common and practical method of bringing fuel properties closer to petroleum diesel is fuel 

blending, which can involve blending SVO with any number of thinning agents such as 

gasoline, petroleum diesel, biodiesel, ethanol, methanol, etc. (Drenth et al., 2014; Ramadhas 

et al., 2004). Engine modifications, blending, and other SVO concepts are extensively 

covered in the literature and well reviewed by Ramadhas et al. (2004). A recent variation 

on SVO blending, called a triglyceride blend (TGB), has shown promise at Colorado State 

University as a simple method of improving SVO fuel properties (Drenth et al., 2014). 

Loosely, blending SVO with a less viscous fuel (not petroleum diesel) creates a TGB. In 

concurrent research and for the purpose of this chapter, however, TGBs will be defined 

more narrowly as a 3:1 volumetric ratio of SVO to E10 gasoline (Drenth et al., 2014). This 

makes an attractive fuel for farmers because unleaded gasoline is readily available, 

miscible and stable with SVO without a surfactant, is inexpensive and has high energy 
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content (Drenth et al., 2014). Blends of this type are also an attractive alternative to 

biodiesel because they are quickly made, amenable to continuous processing, cold tolerant 

(do not gel at cold temperatures), do not require a catalyst, and do not produce associated 

waste products (Dunn and Bagby, 2000).  

 Initial results of camelina and B. carinata TGB engine tests are promising. Across the 

board, TGBs consumed less fuel than their biodiesel counterparts, with a higher thermal 

efficiency. TGB combustion characteristics and engine performance were also found to be 

similar to biodiesel (Drenth et al., 2014). This is not to say that TGBs are perfect fuels. TGBs 

were found to produce higher emissions than biodiesel, specifically carbon monoxide, non-

methane hydrocarbons, volatile organic compounds, and formaldehyde (Drenth et al., 

2014). Despite a slight increase emissions compared to biodiesel, TGB emissions were still 

typical compared to traditional oilseed-produced fuels, i.e. fewer emissions than petroleum 

diesel (Drenth et al., 2014). More studies will be required to assess the long-term effects of 

TGBs on diesel engines, but, due mainly to ease of production, TGBs are a very attractive 

solution for farmers looking to become more energy independent without requiring an 

investment in equipment or engine modifications.  

 The market for SVO and TGBs remains relatively underdeveloped. Because of this, 

on-farm production of biofuels is currently relegated to early adopters and farmers who 

are willing to pay a premium for energy security and independence (Keske et al., 2013). 

Camelina and B. carinata oil have not been approved by the Environmental Protection 

Agency (EPA) for on-road use, so the market will remain restricted to on-farm use unless 

federal rules change.  
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 Another major component to making an intensified oilseed rotation profitable is the 

use or sale of the meal that is left over after pressing the seed. Camelina meal has been 

approved by the United States Food and Drug Administration (FDA) for blending in feed for 

chickens, cattle, and swine (Church, 2014) and is known to be a highly nutritious feed. 

Camelina meal is high in protein (~40%) and fiber (10 to 12%) and also raises levels of 

omega-3 fatty acids in chicken meat, as well as eggs laid by chickens that fed on camelina 

meal (Ryhanen et al., 2007). Although the feed certainly has value, there is no established 

market for camelina meal in Colorado. This means that a farmer will need either to have his 

or her own livestock to consume the meal, or to find another farmer who is looking for a 

meal supplement. However, the value of the camelina meal is such that it behooves the 

farmer to find a buyer rather than to turn the meal into compost.  

 

CAMELINA SATIVA 

Origin, Life Cycle, and Physical Characteristics 

 Camelina (Camelina sativa) is known historically as gold-of-pleasure and false flax, 

but is generally recognized today by its one word moniker. Archeological excavations in 

Europe and Scandinavia show direct evidence of cultivation of this crop dating to 1500 B.C. 

(Zubr, 1996). This evidence corroborates the idea that northern Europe represents the 

evolutionary center of origin for the species (Jewett, 2015), however, a genetic diversity 

study by Ghamkhar et al. (2010) suggested that Russia or the Ukraine was a genetic 

diversity “hotspot” and a potential center of origin as well. Camelina gained traction over 

many centuries as a food and oil crop in Europe, reaching its peak production in France in 

the 19th century (Frölich and Rice, 2005). Camelina was eventually displaced in European 
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agriculture by higher yielding crops, namely rapeseed and wheat (Triticum aestivum), 

becoming largely relict by the mid 20th century (Kagale et al., 2014). Interest in camelina 

has recently been revived due to its potential as a food crop high in omega-3 fatty acids 

(Zubr, 1997) and as a low-input industrial oilseed with significant applications for biofuel, 

jet fuel, and high-value biolubricants (Kagale, 2014).  

 The plant itself is a small-statured (~1 m at maturity), cruciferous-type plant that is 

typically grown as a spring-seeded annual (Guy et al., 2013). Fall-seeded-type camelina, 

which requires vernalization, is available, but these types have not been found to be 

suitable for Colorado agriculture due to increased insect and drought pressure in the fall 

and winter, when compared to spring habit camelina (Jewett, 2013). Initial growth forms a 

rosette of leaves, which later forms an erect stalk. This stalk will form an elongated raceme 

inflorescence, with pale yellow flowers that are mainly self-pollinated (Zubr, 1997; Guy et 

al., 2013). Camelina plants are almost entirely autogamous, with an estimated 0.01-0.28% 

outcrossing rate (Walsh et al., 2012). Tear-shaped pods will form at the flower sites, which 

hold up to 18 seeds per pod (Guy et al., 2013). The seeds are remarkably tiny, even among 

the Brassicaceae, with 1000 seeds ranging from 0.8-1.8 g (Zubr, 1997).   

 Camelina seeds contain a high amount of lipids with a total oil content ranging from 

32 to 46% of total seed weight (Vollman et al., 2007). This oil is prized for its unusually 

high levels of linolenic acid (35 to 40%). Common oilseed crops such as rapeseed or 

soybean (Glycine max) only contain around 8% of this compound. Linolenic acid is an 

omega-3 fatty acid that is typically only found in high quantities in linseed (Linum 

usitatissimum) and fish oils (Crowley and Frölich, 1998). Because of this characteristic, 

camelina oil has potential to lower cholesterol in humans, as well as having a wide variety 
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of industrial applications, from cosmetics to low-emission biofuels (Vollman et al., 2007). 

Although camelina has shown promise as a health supplement, it is not currently approved 

for human consumption in the United States (Lakshminarayanan, 2014). 

 

Camelina Agronomy 

 The small seed size of camelina requires a shallow planting depth for best 

emergence, with a target depth of 6.3 mm below the soil surface (Enjalbert and Johnson, 

2011). As previously mentioned, it is important to plant camelina as early in spring as 

weather allows, preferably in late February or March. A wheat drill may be used to direct 

seed the camelina, if the desired depth of no more than 12 mm can be achieved, or the seed 

may be broadcast (Enjalbert and Johnson, 2011). A seeding rate of 5.6 to 7.8 kg ha-1 is 

recommended, with higher rates corresponding to less optimal conditions or anticipated 

weed pressure (Enjalbert and Johnson, 2011; Jewett, 2013). Cost of camelina seed is 

relatively low compared to major crops, averaging $4.40 per kilogram (Enjalbert and 

Johnson, 2011). Camelina fertilizer requirements are minimal as well. Generally, 2-2.7 kg of 

available nitrogen will produce 45 kg of seed yield, but no fertilizer may be required if the 

previous crop has left adequate residual nitrogen in the soil (Hulbert, 2012). As with any 

crop, a soil analysis is recommended before planting to ensure proper nutrient levels.  

 Another benefit of growing camelina, compared to other more common oilseeds, is a 

natural resistance to flea beetles (Phyllotreta cruciferae) and disease. Flea beetles are 

endemic to Colorado and cause significant yield losses in rapeseed and other Brassica crops 

(Johnson et al., 2008). Camelina’s resistance to flea beetles and some fungal infections is 
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attributed to natural defensive compounds, including quercetin glycosides and 

phytoalexins (Onyilagha, 2012; Browne et al., 1991).  

 Harvest of a camelina crop should occur when the pods and at least some of the 

stem of the plant have ripened to a yellow-brown color (Enjalbert and Johnson, 2011). 

Harvesting earlier than this can cause several problems, including immature seed and 

green stems binding the moving parts of machinery. Later than optimal harvesting times 

will result in excessive shattering, either in the field or during cutting. The crop is generally 

direct-harvested with a combine, however, swathing is an option as well. Swathing would 

generally be used in the event of uneven maturity or excessive weeds and may be 

performed when the crop is approximately 65% mature (Lafferty, 2009).  

 A wide range of yield has been reported for camelina. A study of camelina yields 

across 18 location/year environments, in four precipitation zones in Washington, showed 

variation from 100 to 3,795 kg ha-1, with an average yield of 1,213 kg ha-1 (Guy et al., 2013). 

Research at Colorado State University has also shown a wide yield range of 336 to 1,794 kg 

ha-1, with a mean yield of 1,383 kg ha-1 (Enjalbert, 2011; Enjalbert et al., 2013) and a 

proposed dryland yield target of 1,344 kg ha-1 for farmers with tested varieties (Enjalbert 

and Johnson, 2011). A separate CSU trial evaluated 15 genotypes of camelina in 12 limited 

irrigation and dryland environments in Montana, Washington, and Colorado (Jewett, 2013). 

Yield varied dramatically in this study as well, from 123 to 2,037 kg ha-1, with a mean yield 

of 813 kg ha-1. Clearly, much variation has been observed for yield under drought and heat 

conditions. 
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Challenges of Camelina Production in Colorado 

 Although camelina has some natural advantages over better-known oilseed crops, it 

retains its fair share of challenges. One major issue is a susceptibility to heat stress during 

flowering. During yield trials in Colorado, locations that experienced very high 

temperatures (>32°C) during flowering resulted in large-scale floral abortion, lack of seed 

fill, and early ripening, which translated to drastically lower yields (Enjalbert, 2011; Jewett, 

2013). During the Jewett (2013) study, heat stress was noted as a major factor in 

determining yield. In almost every environment that reported low yields of less than 

500 kg ha-1, heat stress days (maximum daily temperature over 32°C) comprised 22% or 

more of the growing season. The analysis of yield data for these trials showed that latitude 

and temperature more strongly influenced yield than precipitation, indicating that heat 

stress may play a more important role in camelina yield than drought stress (Jewett, 2013).  

 Weed control remains an issue as well. Camelina is sensitive to residual sulfonylurea 

herbicides, such as Ally, Amber, and triazine, which are commonly used in wheat cropping 

(Enjalbert and Johnson, 2011). Additionally, only one herbicide, sethoxydim or Poast, is 

approved for weed control in camelina. This may be applied at any point during the life 

cycle of camelina since it only affects grasses, but does not control common broadleaf 

weeds (Lafferty et al., 2009). Tillage or application of an herbicide like glyphosate directly 

before planting will help to control weeds, as will good stand establishment (Enjalbert and 

Johnson, 2011).  

 Lastly, awareness and marketing of the crop remain a challenge. Even though 

awareness of camelina as a industrial oilseed crop is growing (Kagale, 2014), significant 

investments in cultivar improvement and infrastructure will be required to make the crop 
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attractive to risk-averse farmers. Lack of an established market for camelina meal also 

reduces the probability that farmers can grow camelina profitably (Keske, 2013). However, 

early adopters can create their own fuel and feed their own livestock, circumventing the 

need for an established market.  

 

Genetic Resources for Camelina 

 Genetics-based approaches for the improvement of camelina have only recently 

been tapped.  Since interest in camelina waned until the 21st century, the plethora of 

quantitative genetics and molecular breeding techniques that have been applied to major 

crops, like maize, are yet to be fully exploited (Kagale et al., 2014). Genomic characteristics 

that are well established in other crops are only beginning to be elucidated in camelina. For 

instance, number of chromosomes and ploidy level has been subject to variation among 

accessions, ranging from 2n=12 to 2n=40 (Francis and Warwick, 2009), with the most 

common count being 2n=40 (Warwick and Al-Shehbaz, 2006). The first high-quality 

reference genome sequence was published in 2014 (Kagale et al.) and represents a 

significant step forward in understanding the genome of this crop. This study confirmed 

that camelina is a hexaploid, presumably through an initial tetraploidization event, 

followed by a subsequent hybridization event. These hybridization events are presumed to 

have happened relatively recently, some 5,000-10,000 years ago, corresponding to the 

domestication of major crops like rapeseed, wheat, and cotton (Kagale et al., 2014). It was 

also confirmed that camelina is genetically very similar to the model species Arabidopsis 

thaliana and even more closely to Arabidopsis lyrata. Although implementing quantitative 

genetics approaches to improve camelina will be similarly challenging as in other hexaploid 
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crops, like wheat, identifying close synteny and collinearity with thoroughly researched 

Arabidopsis species will be a boon to understanding genetic control of complex traits 

(Kagale et al., 2014).  

 A small number of QTL studies have been performed on a camelina mapping 

population developed at the University of Geissen, identifying QTL for agronomic traits 

(Gehringer et al., 2006) and drought resistance (Enjalbert, 2011). The mapping population 

for these studies was developed from a cross of two registered German cultivars, ‘Lindo’ 

and ‘Licalla’ (Deutsche Saatveredelung, Lippstadt, Germany), to produce 186 recombinant 

inbred lines (RIL) by single-seed descent. A genetic map was also developed for this 

population by Gehringer et al. (2006), comprised of 157 amplified fragment-length 

polymorphism (AFLP) markers and three simple-sequence repeat (SSR) markers. In this 

initial study, 36 significant QTL were identified for seed yield, oil content, fatty-acid 

composition, plant height, and thousand seed mass. The following study by Enjalbert 

(2011) identified 29 significant QTL for seed yield, drought tolerance, and oil quality traits. 

Of these QTL, six were the same as those discovered by Gehringer et al. 

 A high-density genetic map was recently developed for this same population, using 

genome-wide SNP markers, by an international team led by Canadian scientist Dr. Isobel 

Parkin (Singh et al., 2015). Using an Illumina GoldenGate single nucleotide polymorphism 

(SNP) array, 533 SNP markers were mapped, along with 46 previously mapped SSR 

markers, to create a genetic map consisting of 579 loci. This represents a significant step 

forward in mapping resolution and these markers will provide useful tools for genomic 

improvement of this crop (Singh et al., 2015). 
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 A limited number of studies have been performed on the genetic diversity present in 

the camelina gene pool. The populations studied have divided into two to four groups with 

varying degrees of subgrouping (Vollman et al., 2005; Ghamkhar et al., 2010; Singh et al., 

2015). The overall consensus seems to be that a high amount of phenotypic diversity can 

be observed, but that a relatively low amount of genetic diversity is present and groupings 

by molecular marker do not divide by geographical center of origin, as one might expect 

(Singh et al., 2015). If more conclusive details of the genetic diversity present in this species 

are desired, more research into this subject will be necessary.  

  

BRASSICA CARINATA  

Origin and History 

 The cultivation of Brassica carinata, a.k.a. Ethiopian mustard, Abyssinian mustard, 

or gomenzer, is an ancient practice dating back to 4,000-5,000 B.C. (Taylor et al., 2010; 

Alemayehu and Becker, 2002). The plant is traditionally used as a food crop for its edible 

leaves and oil from the seeds. B. carinata is well adapted to the Ethiopian highlands and, 

until recently, was rarely cultivated elsewhere (Taylor et al., 2010). Like the other two 

amphidiploid Brassica species, B. napus and B. juncea, B. carinata was the product of a 

spontaneous hybridization event between two diploid progenitor species (Zuo et al., 2014). 

These events have been well characterized in the now famous Triangle of U (U, 1935). U 

showed that B. carinata (2n = 4x = 34, genome BBCC) was formed from the hybridization of 

Brassica nigra (2n = 2x = 16, genome BB) and Brassica oleracea (2n = 2x = 18, genome CC). 

The economically important species B. napus (2n = 4x = 38, genome AACC) shares half of its 

genome with B. carinata. B. napus is well adapted to moist, cool areas in northern (and very 
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southern) latitudes, but performs poorly in hotter and drier regions (Taylor et al., 2010). 

Because of this, B. carinata is increasingly being researched as a possible drought tolerant 

oilseed crop, intended for production in more arid regions.  

 

Agronomic Characteristics and Practices 

 The physical features of B. carinata are similar to B. napus or B. juncea and an 

untrained eye would not be able to distinguish the species. Plants emerge from the soil as 

cotyledons, which grow into rosettes. Single stalks bolt from the rosette and initiate 

flowering. Predominantly self-pollinated flowers form elongated siliques, which contain 

seeds along both sides of a thin membrane. Plants are ready for harvest when the stems 

change from green to brown (Agrisoma, 2014).  

 Agronomic practices, for all intents and purposes, are the same as spring rapeseed 

and are well documented. Equipment for planting and harvesting rapeseed is sufficient to 

manage a B. carinata crop without any modification. B. carinata is amenable to no-till 

systems, but stubble should be managed, so as to not interfere with planting depth. A 

consistent depth of 1.3-2.5 cm should be maintained for best stand establishment 

(Agrisoma, 2014). An ideal seeding rate to aim for is 86 to 183 plants per square meter, 

depending on seedbed conditions (Agrisoma, 2014). Several herbicides and insecticides 

have been approved for use on B. carinata. A complete list of approved pesticides is 

contained in the Agrisoma Resonance Carinata Production Manual, which is available at 

www.agrisoma.com (Agrisoma, 2014). Fertility requirements are similar to other Brassica 

species, with a target nitrogen rate of 112 kg ha-1, adjusted for soil analysis results. B. 

carinata is sensitive to seed-placed fertilizer, so any banded fertilizer should be placed at 
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least 2.54 cm away from seeds. Direct combining of plants with a wheat or rapeseed 

combine is the best way to harvest B. carinata, although swathing is an option if uneven 

maturity is observed.  

 

Development and Testing of Modern Brassica carinata Varieties 

 Initial trials of Ethiopian varieties of B. carinata performed poorly in the rapeseed 

producing regions of Canada, mainly due to an average extra 19 days to maturity (Getinet 

et al., 1996). It was concluded, however, that B. carinata had many positive attributes, 

including insect, disease, and drought tolerance and could become a new oilseed or protein 

crop if earlier maturing varieties could be identified or developed. An initiative by 

Agriculture and Agri-Food Canada (AAFC) resulted in the development of several “early to 

maturity” or ETM strains of B. carinata (Taylor et al., 2010). These strains still took 5-7 

days longer than rapeseed to mature, but represented a significant improvement over the 

10-14 day margin exhibited by the base populations, with no observed loss in yield (Taylor 

et al., 2010). This was the start of a “real” B. carinata oilseed industry in Canada and, later, 

the United States. 

 Rapeseed is cultivated in small quantities in Colorado, but a lack of sufficient cold 

tolerance, a sensitivity to heat, and a susceptibility to flea beetles make the crop 

unattractive to local farmers (Johnson et al., 2008). Taking a cue from the Canadian 

researchers, trials of B. carinata were run at Colorado State University to evaluate its 

potential compared to other alternative dryland oilseed crops. Although the B. carinata 

plants produced large amounts of biomass, seed production was poor and it was 

determined that camelina was a much better adapted crop for Colorado’s eastern plains. 
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The poor performance of B. carinata was attributed to a lack of adaptation, late flowering, 

and flea beetle damage (Enjalbert et al., 2013). After these trials, B. carinata research at 

Colorado State University was suspended. 

 In early 2013, interest in B. carinata was renewed by collaboration with a private 

Canadian company. Mechanical engineering PhD candidate, Aaron Drenth, was looking for 

vegetable oil feedstocks to perform engine tests and made contact with the private 

company Agrisoma Biosciences. Agrisoma is a Saskatoon, Saskatchewan-based 

biotechnology company that specializes in renewable, B. carinata diesel and jet fuels. The 

company is a leader in the industrial oilseeds field and collaborates with many institutions, 

private and public. Agrisoma provided B. carinata oil for engine testing and during those 

negotiations expressed interest in evaluating some of their new, early-maturing lines of 

B. carinata in Colorado. This began a new round of evaluation of B. carinata as a potential 

alternative oilseed for dryland agriculture.   
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CHAPTER 2:  

QUANTITATIVE TRAIT LOCUS (QTL) MAPPING OF HEAT AND DROUGHT TOLERANCE 

TRAITS AND YIELD COMPONENTS IN CAMELINA SATIVA 

 

SUMMARY 

 New genetic resources are being developed for camelina (Camelina sativa) due to its 

potential as a specialty food, feed, and fuel crop. Previous research at Colorado State 

University identified camelina as an alternative oilseed with potential for production 

during the fallow period of dryland winter wheat (Triticum aestivum) cropping systems, 

which will increase water use efficiency and allow the production of on-farm biofuel 

without displacing valuable food crops.  

 One of the major challenges experienced when growing camelina in Colorado is 

susceptibility to heat stress. High temperatures (>32°C) during reproductive periods can 

cause widespread floral abortion and yield loss. This study explored genetic mechanisms of 

heat and drought tolerance and yield components using a quantitative trait locus (QTL) 

approach and explored the extent of pleiotropy, epistasis, and linkage among QTL, and 

identify promising lines for study or production. Only two previous QTL studies have been 

published about camelina, both using the same ‘Lindo x Licalla’ recombinant inbred line 

(RIL) population (n=186) as the current study. These two studies explored agronomic 

traits and drought tolerance and used the original genetic map developed by Gehringer et 

al. (2006), comprised of 154 amplified fragment length polymorphism (AFLP) markers and 

3 simple sequence repeat (SSR) markers. The current study makes use of an improved, 
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high-density genetic map, consisting of 579 loci, 533 single nucleotide polymorphism (SNP) 

markers and 46 SSR markers.  

 The population was evaluated in four Colorado environments in 2014, two well-

watered and two drought stressed. QTL analysis was conducted with Rqtl, using a genome-

wide significance level of p<0.05. In addition, phenotypic data from Enjalbert (2011) was 

analyzed for QTL using the current marker data. 

 Twenty-five QTL were detected, 16 using data from the current study and nine using 

data from Enjalbert (2011). Seven QTL were detected for yield, however, no QTL were 

found in more than two environments, indicating a lack of stable QTL for this trait. The QTL 

discovered for days to flowering and plant height that were more robust, but no QTL were 

detected in every environment. Two loci were detected that were associated with multiple 

traits, indicating pleiotropic effects or close linkage. No evidence of epistasis was detected 

using Hayley-Knott regression. Several lines from the population performed well in 

multiple environments, showing promise for production. However, none of these lines 

were in common with high performers from previous studies, indicating a large effect of 

environment on performance of individual lines.  

 

INTRODUCTION 

 Interest in camelina (Camelina sativa) has been rekindled in recent years due to its 

potential as a nutritional food crop, high in omega-3 fatty acids (Zubr, 1997), and as a low-

input industrial oilseed that is amenable to production of biofuels, jet fuel, and high-value 

biolubricants (Kagale et al., 2014).  Camelina has performed well as a dryland crop in semi-

arid environments (Angelini et al., 1997) and has been shown to be more adapted to 
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cropping in colder and drier climates than the more common commercial oilseed crop, 

canola (Brassica napus). This is largely attributed to an innate tolerance to biotic and 

abiotic stress factors (Singh et al., 2015).   

 Weather conditions in Colorado’s eastern plains are challenging for any dryland 

crop production. The weather in this region is characterized by frequent drought, low 

humidity, and seasonal high temperatures, which can result in soil evaporation commonly 

exceeding precipitation (Peterson and Westfall, 2004). The most economically important 

commodity crop in Eastern Colorado is winter wheat (Triticum aestivum) (Clark, 2013), 

which requires a fallow period to maintain consistent yields. Recent research on alternative 

cropping systems at Colorado State University has shown promising results, indicating that 

growing camelina as an on-farm biofuel crop during the early part of a fallow period, 

particularly in a wheat-spring crop-fallow rotation, can be a sustainable and economically 

attractive option (Keske et al., 2013). By intensifying wheat-based crop rotations, water use 

efficiency is improved (Peterson and Westfall, 2004) and food crop acreage is not displaced 

by an industrial oilseed. This will theoretically enable farmers to produce their own fuel for 

use on-farm and offset petroleum diesel costs, while gaining a higher degree of energy 

independence.  

 Although it may seem that fuel production is beyond the scope of a typical family 

farm, turning camelina into a diesel substitute can be a simple and straightforward process.  

Crushing camelina seed with a hydraulic press and filtering the resultant oil produces a 

straight vegetable oil (SVO), which may be used in a diesel engine with minor modifications 

(Drenth et al., 2014, Lakshminarayanan, 2014). To avoid the need for engine modifications, 

the oil may be blended at a rate of 3:1 volumetric ratio of SVO to E10 unleaded gasoline to 
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create a triglyceride blend (TGB) with improved fuel characteristics (Drenth et al., 2014). 

These types of fuels are easy to produce and do not require specialized equipment or 

caustic chemicals. In addition, after pressing the camelina seed for oil, the leftover camelina 

meal is a valuable byproduct, as it is a livestock feed high in protein and omega-3 fatty acids 

(Ryhanen et al., 2007). 

 While camelina is frequently praised for its stress tolerance and multitude of uses, 

formidable challenges to production in Colorado remain. The most notable of these 

challenges include stand establishment under dry spring conditions, weed control, and 

susceptibility to heat stress during flowering. Yield trials in Colorado have shown that 

when very high temperatures (>32°C) occur during flowering, yields can be drastically 

affected due to large-scale floral abortion, lack of seed fill, and early ripening (Enjalbert, 

2011; Jewett, 2013). Hence, breeding for heat stress tolerance is an important goal for 

improving yield stability of camelina in Colorado. This can be challenging because heat 

stress response is an interplay of physiological and phenological responses throughout the 

ontology of a species that are deeply tied to drought stress responses (Wahid et al., 2007). 

Since heat and drought stress tolerance are both complex, quantitative traits, 

understanding the genetic mechanisms that confer tolerance provides information for 

targeted crop improvement. 

 Since camelina had fallen out of production before its potential as an industrial 

oilseed was recognized, genetic resources were not exploited in this crop as in major 

commodity crops and its agronomic and breeding potential remains largely untapped 

(Kagale et al., 2014). However, new genetic resources are being developed for camelina at a 

rapid pace. Nguyen et al. (2013) produced the first attempt at sequencing the camelina 
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seed transcriptome, while Kagale et al. (2014) published the first high-quality reference 

genome sequence the following year. Two previous QTL studies have been performed on a 

camelina recombinant inbred line (RIL) population (Lindo x Licalla, n=186) developed in 

Germany at the University of Giessen. The original study identified QTL for agronomic 

characters and also produced the first genetic map of camelina, comprised of 157 amplified 

fragment-length polymorphism (AFLP) markers and three simple-sequence repeat (SSR) 

markers (Gehringer et al., 2006). The following study identified QTL for drought tolerance, 

yield, and oil quality traits using the same genetic map (Enjalbert, 2011). Singh et al. (2015) 

recently developed a new genetic map for this same population, which offers improved 

mapping resolution. This map utilizes more reliable single-nucleotide polymorphism (SNP) 

markers and a smaller number of SSR markers and covers 579 loci. The current study 

utilized the original RIL population, combined with the improved power of the higher-

density genetic map, to detect new QTL. 

 The main objectives of this research are to (1) identify QTL for traits associated with 

heat and drought tolerance and yield components using a newly developed, high-density 

genetic map;  (2) assess epistatic, pleiotropic, and linkage effects within the RIL population; 

and (3) identify lines of camelina with potential for local production, breeding, or genetic 

research.  

 

MATERIALS AND METHODS 

Plant Materials 

 Two registered German camelina varieties, ‘Lindo’ and ‘Licalla’ (Deutsche 

Saatveredelung, Lippstadt, Germany) were crossed to produce F1 plants, from which a total 
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of 186 RIL were derived by single seed-descent to the F6 generation.  The parents used in 

the cross exhibited variation in seed yield, thousand seed mass, plant height, fatty-acid 

composition, and seed-oil content (Gehringer et al., 2006), as well as drought tolerance and 

oil quality characteristics (Enjalbert, 2011). Aliquots of seed from the RIL population were 

acquired from Dr. Isobel Parkin at Agriculture and Agri-Food Canada (AAFC) in Saskatoon, 

Saskatchewan.  Seed was increased to field quantities during winter 2013/2014 in CSU 

greenhouse facilities, using pollination bags to ensure self-pollination.  

 

Environments  

 Two locations were chosen to evaluate performance of the RIL population. One 

location was Colorado State University’s primary research farm, the Agricultural Research 

Development and Education Center (ARDEC). This facility is on the northeast edge of Fort 

Collins, Colorado at latitude 40.65 and longitude -105.00, with an elevation of 1,557 m and 

average annual precipitation of 408 mm. The soil texture at this location is a sandy clay 

loam. ARDEC is equipped with an overhead linear sprinkler irrigation system, which was 

used throughout the study.  

 The second location was at the Limited Irrigation Research Farm (LIRF) in Greeley, 

Colorado. LIRF is a United States Department of Agriculture-Agricultural Research Service 

(USDA-ARS) research site. This facility is in northern Greeley at latitude 40.45 and 

longitude -104.64, with an elevation of 1,427 m and average annual precipitation of 373 

mm. The soil texture at this location is a sandy loam. Sprinklers were used to germinate 

seeds at LIRF and then drip line tubing was installed by hand, with drip tubes running in 

between the two rows of each plot. Weather data for both locations were obtained from the 
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Colorado Agricultural Meteorological network (COAGMET) and the National Oceanic and 

Atmospheric Administration (NOAA) National Climatic Data Center (NCDC). 

 Seedbed preparation was as similar as possible at both sites. The soil was disked 

and approximately 39 kg ha-1 of nitrogen in the form of urea and 2.34 L ha-1 of the herbicide 

Sonolan (ethafluralin) were incorporated into the soil with a roller harrow before planting. 

The soil was then smoothed with rakes and furrows were made by hand to achieve a 

planting depth of approximately 6.3 mm. A uniform seeding rate was used of 0.8 g 

(approximately 643 seeds) per square meter. 

 

Experimental Design 

 Two side-by side experiments were grown at each site, one fully irrigated to avoid 

serious moisture stress throughout the season and one with limited irrigation to provide a 

moderate level of drought stress. For each experiment, a Latinized row-column design was 

implemented. Two-row plots, 1.5 m in length, were hand-planted for each of the 186 RILs 

as well as three occurrences of each parent, acting as checks, for a total of 192 plots in each 

block. Each parent was entered in triplicate to obtain accurate estimations of parental trait 

values. Individual plots, with bordering space included, were 2 m long and 0.5 m wide. The 

planted rows were 1.5 m in length, leaving 0.5 m in between ranges to allow access for data 

collection. The two rows of a plot were spaced 0.2 m apart with 0.3 m between adjacent 

plots.   

 Two replications of the experiment were planted, for a total of four blocks (two fully 

irrigated and two with limited irrigation) at each site. The fully irrigated treatments 

received 25.4 mm of irrigation weekly, unless there was 25.4 mm or greater rainfall in a 
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given week. The limited irrigation treatments were mostly rain-fed. After germination, 

these treatments were irrigated once to establish seedlings and then not again, unless the 

plants were visibly drought stressed, i.e., wilting. If wilting was observed, a half-rate (12.7 

mm) irrigation was applied as “rescue irrigation”.  

 

Data Collected 

 Days to flowering (DTF) were calculated as the number of days between the date of 

planting and the date when 50% of the plants in a given plot showed at least one open 

flower. Days to maturity (DTM) were similarly calculated as the number of days between 

the date of planting and the date when 50% of the plants in a given plot reached 

physiological maturity. A plant was considered to be physiologically mature when the main 

stem of the plant changed from green to brown.  

 Plant height (PLHT) was measured from the soil surface to the highest point of the 

plant at maturity to the closest centimeter. Five plants were randomly chosen per plot and 

measured to estimate plant height. Five pods per plot were also randomly sampled to 

estimate seeds per pod (SPP).  

 At the end of the season, plots were hand-harvested with rice knives, cutting plants 

at the soil surface. Plants were placed into paper bags and air-dried before weighing. Plant 

biomass (BIOMASS) was considered to be the dry mass of all aboveground plant matter 

from each plot at harvest. Plots were meticulously weeded by hand throughout the season 

and directly before harvest to avoid weeds confounding weed and biomass measurements.  

The plants were mechanically threshed, using an Almaco (Nevada, IA) SBT thresher, to 

separate the seed from the rest of the plant biomass. After cleaning, the seed was weighed 
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to determine total seed yield (YIELD). A harvest index (HI) ratio was calculated from these 

terms as (YIELD/BIOMASS).  Thousand seed mass (TSM) was also measured, by weighing 

1000 randomly sampled seeds from each plot.  

 Weather data collected for the growing season from COAGMET included 

precipitation, maximum daily temperature and minimum daily temperature. From these 

data several other parameters were calculated, including number of heat stress days (HSD, 

days during the growing season where maximum temperatures exceeded 32°C), %HSD 

(number of HSD/total number of days in season) and total growing degree-days (GDD), 

calculated as ((Tmax+Tmin)/2)-Tbase with Tbase=4.4°C (McMaster and Wilhelm, 1997) for each 

day and then a sum was taken over the season.  

 Dr. Jean-Nicolas Enjalbert (2011) adapted a method from rapeseed literature to 

determine threshold temperatures that affect camelina performance, specifically oil profile 

and vegetative growth (Baux et al., 2008). The parameters for HSD, as previously defined, 

were adopted from Enjalbert (2011).  

 

Genetic Maps 

 Two genetic maps have been developed for the Lindo x Licalla camelina RIL 

population. Gehringer et al. (2006), who published the first QTL study on this population, 

developed the first genetic map. This map is comprised of 157 AFLP markers and three 

Brassica SSR markers. The markers were organized into 20 linkage groups, which 

supported the reported chromosome count of n=20. The markers were distributed over a 

total length of 1,385.6 cM, with 8.6 cM average distance between markers.  
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 Singh et al. (2015) published a higher-density genetic map for this same population. 

This new map represents a significant improvement in mapping resolution, covering 579 

loci. Of these, 533 are SNP markers and 46 are SSR markers. The 579 markers covered a 

total of 1,808.7 cM on 20 linkage groups and were distributed at an average of one locus 

per one Mb of genome sequence. Extensive details on how this map was developed can be 

found in Singh et al. (2015). Both maps were used in the analysis of this study, with the 

Singh et al. (2015) map being the primary source for QTL discovery and the Gehringer et al. 

(2006) map used for comparison to previous studies.  

 

Statistical Analyses 

 The genetic map developed by Singh et al. (2015) utilized 180 RIL. Consequently, 

the analysis of phenotypic data includes measurements of all 186 lines and both of the 

parents, while the QTL analysis only includes 180 lines. Phenotypic data were analyzed 

using the statistical web-based program SAS Studio (SAS Institute, Inc., Cary, NC). The 

PROC MIXED function of SAS was used to create a mixed model, with treatment, location, 

row, and column as fixed effects and genotypes as random effects. To account for spatial 

variation, an anisotropic spatial power model was applied to calculate adjusted LSMEANS. 

The LSMEANS were then used to generate Pearson correlation coefficients among the traits 

using the PROC CORR function of SAS, as well as in the subsequent QTL analysis. Due to 

significant variation among locations and treatments, each treatment at each location was 

analyzed as a separate environment, for a total of four environments. Broad-sense 

heritability for means over environments was calculated by hand for all traits, using 

variance components from the SAS function PROC VARCOMP with the ‘method=REML’ 
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option, according to a formula provided by Clay Sneller from the Ohio State University 

(personal communication) adapted from Hallauer et al. (1988) for plot-mean data. The 

broad-sense heritability formula is as follows: 

 Heritability =  

In this formula, σ2G represents genotypic variance, σ2 represents error variance, σ2GE 

represents genotype x environment variance, r represents replications, and e represents 

number of environments.  

 QTL discovery was performed using the add-on library Rqtl for the statistical 

analysis software R, version 3.1.2 (R Foundation for Statistical Computing, Vienna, Austria). 

A penalized likelihood approach was used on QTL and pairwise interactions to control false 

positive rates (Broman et al., 2003; Manichaikul et al., 2009). Logarithm of Odds (LOD) 

thresholds were determined for each trait by permutation analysis, using a 5% type I error 

rate and 1000 permutations. Model selection for QTL was performed using Haley-Knott 

regression (Haley and Knott, 1992). Multiple QTL terms detected during Haley-Knott 

regression provided evidence of multiple QTL affecting the trait, while interaction terms 

were indicative of epistasis. Each locus was tested for interaction with pairwise 

comparisons across the marker set. QTL with significant LOD scores are reported according 

to environment unless otherwise indicated.  
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RESULTS 
 
 
Environmental Conditions 

 Growing seasons in Colorado’s eastern plains are characterized by frequent heat 

and drought and the 2014 season was no exception. Weather data for the overall growing 

season at each location is provided in Table 2.1, along with a breakdown of precipitation by 

month in Table 2.2.  

 As is typical in a Colorado summer, high temperatures were experienced 

sporadically and average daily maximum temperatures at both sites were similar to 30-

year averages. The long-term average for Fort Collins from April to August is 25.54°C and 

the 2014 season average daily maximum temperature was 25.35°C. Similarly, the long-

term average for daily maximum temperature in Greeley is 25.97°C and the 2014 season 

average was 26.27°C. Heat stress during reproductive periods was of interest, so Figure 2.1 

and Figure 2.2 show the average maximum temperatures during reproductive stages and 

the proportion of heat stress days during those times. Extreme heat stress was minimal 

during flowering, with more severe stress during early and late seed fill.  

 Precipitation was less typical than temperature, with certain months experiencing 

severe drought and other months experiencing far higher than average rainfall. April was a 

particularly dry month, with the Fort Collins site reporting 6.70% of average rainfall and 

Greeley reporting 34.81% of the monthly average. However, July was an 

uncharacteristically wet month, with Fort Collins receiving 144.92% of average rainfall and 

Greely receiving an astonishing 307.75% of the long-term average. Overall, the growing 

season at ARDEC experienced a higher than average level of drought, while LIRF had a 

wetter than average season.  
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 At both sites, irrigation was performed once in the beginning of May to establish the 

seedlings and rescue irrigation was performed during a particularly hot and dry stretch in 

June when plants were visibly heat and drought stressed. 

 

Phenotypic Analyses 

ANOVA and Simple Statistics 

 Since treatments and locations were statistically significantly different, at the 

p=0.001 probability level, for the majority of traits, each location/treatment combination 

was analyzed as a unique environment, for a total of four environments. These four 

environments were ARDEC limited irrigation (ARDEC Dry or AD), ARDEC full irrigation 

(ARDEC Wet or AW), LIRF limited irrigation (LIRF Dry or LD), and LIRF full irrigation (LIRF 

Wet or LW). An analysis of variance (ANOVA) was performed over these four environments 

that displayed significant differences, at the p=0.001 probability level, between the 

genotypes and environments for all traits studied. Results of the ANOVA, as well as 

coefficient of variation (CV), trait means, and heritability can be found in Table 2.3. 

Environment and genotype were determined to be highly significant variables, with no 

evidence of genotype by environment interaction. 

 To provide a more nuanced view of trait values, a table of simple statistics was 

generated from LSMEANS and broken down by environment. These statistics include trait 

means, minimum and maximum values, and parental values, all of which are reported in 

Table 2.4 and Table 2.5. These statistics highlight the transgressive segregation that is 

evidenced in this population. For every trait measured, maximum and minimum values 

were well outside of the ranges exhibited by the parental genotypes. Performance of 
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parental genotypes is important in the context of a RIL population because genetic 

diversity in a RIL population is strictly dependent on the divergence of the two parents for 

traits of interest. Indeed, some of the measured traits exhibited large differences. For 

instance, Licalla produced an average of 2,180 kg ha-1 more biomass than Lindo under 

limited irrigation and 1,878 kg ha-1 more biomass under full irrigation. Licalla also 

produced an average of 264 kg ha-1 more seed yield than Lindo under limited irrigation and 

224 kg ha-1 more seed yield than Lindo with full irrigation.  

 

Physiological Traits 

 The RIL exhibited a wide range of values for dry plant biomass, from as low as 

5,096 kg ha-1 under limited irrigation conditions at ARDEC and up to 15,661 kg ha-1 under 

full irrigation at LIRF. As would be expected, larger amounts of biomass were produced 

under full irrigation on average, with the highest mean biomass of 11,531 kg ha-1 observed 

in the fully irrigated treatment at LIRF. This corresponded to the highest total of 

precipitation and irrigation of any environment studied. Environment and genotype were 

both highly significant for biomass and heritability was calculated to be 0.50.   

 Plant height was the most highly heritable trait measured, with a heritability of 0.78. 

Mean plant heights were higher at LIRF than at ARDEC, with taller plants in the respective 

irrigated treatments.  

 

Phenology Traits 

 The number of days to flower was another trait with a high heritability at 0.75. A 

low CV% of 2.61% was calculated for this trait as well. The mean number of days it took to 
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reach flowering across environments was 59.04 days. The environment that induced 

flowering the fastest was LIRF Dry, with a mean DTF of 55.50 days. The most delayed 

flowering was observed at ARDEC Dry, with a mean DTF of 63.59 days.  

 The amount of time that it took to reach physiological maturity was also hastened at 

LIRF. Under limited and full irrigation, it took 93.62 days and 94.04 days to reach maturity, 

respectively. A striking difference was observed at ARDEC where the limited irrigation 

treatment took 114.27 days to reach maturity and the full irrigation treatment took 111.07 

days on average. The lowest CV% of all traits, 2.40%, was calculated for this trait. The 

heritability of DTM, however, was lower than DTF with a calculated heritability of 0.54. The 

timing of late season rains induced an indeterminate flowering response in many of the 

lines at ARDEC in both treatments. This caused later maturity dates and some missing data 

for this trait.  

 

Seed Traits 

 Seed yield was relatively high in this study, with a mean yield of 1,270 kg ha-1 across 

all environments. A high amount of variation was observed for this trait, especially at 

ARDEC where both the lowest yield of 351 kg ha-1 and the highest yield of 2,908 kg ha-1 

were measured in the limited and fully irrigated treatments, respectively. A high CV% of 

31.27% reflected this high variability. The heritability of the trait was still quite high, 

however, at 0.67.  

 Seeds per pod ranged from 3.86 to 14.78, with the maximum and minimum counts 

both coming from the limited irrigation treatment at ARDEC. The lowest amount of 

heritability was observed for this trait with a value of 0.44. This was the only trait that did 
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not show a significant difference of replication within environments, indicating a higher 

amount of uniformity within environments, but the high CV% of 32.02% indicates a high 

amount of variation among environments. 

 Thousand seed mass averaged 1,243.00 mg across all environments. Means for TSM 

were lower under limited irrigation and higher with full irrigation. There was a range of 

slightly more than 1,000 mg with the lowest TSM in the environment with the least 

precipitation and irrigation, 836.00 mg at ARDEC Dry, and the highest TSM in the 

environment with the most precipitation and irrigation, 1,858.00 mg at LIRF Wet. 

Heritability for this trait was moderate at 0.58. 

 Harvest index was a calculated trait, rather than a directly measured trait, 

represented as a ratio of seed yield to total biomass. The heritability for this trait was 0.75, 

which is among the highest calculated, as well as being higher than the heritability of both 

of the traits from which it was derived. In general, harvest index was low, ranging from 

0.06 to 0.21 and a mean over environments of 0.12.  

 
 
Correlation Among Traits 
 
 A correlation analysis was performed to describe relationships among the variables 

in all environments. Four tables were created to show trait correlation coefficients and 

significance level within each of the four environments. Tables 2.6 and 2.7 show 

correlations for both full and limited irrigation treatments at ARDEC and LIRF, respectively. 

Two additional tables were created to visualize correlations across irrigation treatments. 

Table 2.8 shows correlations of all measured traits by irrigation treatment at ARDEC and 

Table 2.9 shows correlations of all measured traits by irrigation treatment at LIRF.  
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 Yield showed a strong, positive correlation with biomass in all four environments, 

from 0.73 to 0.89 (p<0.0001). A strong, negative correlation with days to flowering was 

also apparent, ranging from -0.34 to -0.84 (p<0.0001). A surprising result was that seed 

yield was also significantly positively correlated to days to maturity, from 0.20 to 0.42, 

(p<0.0001) in all four environments. This indicates that an earlier flowering date and a 

later maturity date are both associated with higher yields. Yield was positively correlated 

with both thousand seed mass (r=0.25 to 0.68, p<0.0001) and seeds per pod (r=0.17 to 

0.21, p<0.05). The stronger correlations with thousand seed mass show that higher seed 

mass was more of a contributing factor to yield than more seeds per pod.  

 In general, correlations were much stronger within environments than across 

environments. Although statistically significant correlations were observed for each trait 

with its counterpart in other environments, the results support analyzing each of the four 

environments separately. 

 

Promising Genotypes 

 Four lines from this RIL population, SSD 10, SSD 177, SSD 87, and SSD 138, were 

previously identified as having potential for production in Colorado under both irrigated 

and dryland cropping systems (Jewett, 2013). However, ranking lines based on yield in all 

four environments did not identify any of these lines among the top performers. A full list 

of the 10 highest and lowest yielding lines in each environment can be found in Tables 2.10 

and 2.11. Of the highest yielding lines, only one line was present in more than two 

environments. SSD 65 was ranked among the top five yielding lines in three environments, 

AD, LD, and LW. Other lines with potential are SSD 57, which ranked as number 2 at AD and 
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number 1 at AW and SSD 212, which ranked as the third highest yielding line at both LD 

and LW. Performance of the previously identified lines was extremely variable, both among 

lines and across environments. 

 

QTL Analysis 

 A logarithm of odds (LOD) threshold from 2.74-3.12 was determined significant to 

detect QTL in this study at the genome-wise probability level of 0.05. The LOD scores were 

developed using a permutation analysis of 1000 permutations of the phenotypic data for 

each trait in each environment. Using these LOD thresholds, 16 QTL were identified from 

the current study. A summary of the QTL discovered and their effects can be found in 

Table 2.12. Additionally, data from Enjalbert (2011) was analyzed against the newly 

available genetic map (Singh et al., 2015) to detect nine more QTL. A summary of those QTL 

can be found in Table 2.13. The data from Enjalbert (2011) was also collected from four 

environments, ARDEC Dry 2009 (AD09), ARDEC Wet 2009 (AW09), ARDEC Dry 2010 

(AD10), and ARDEC Wet 2010 (AW10). For the purpose of this thesis, QTL analysis of data 

from Enjalbert (2011) was restricted to traits in common with the current study. For more 

details on experimental design and data analysis from that study please refer to Enjalbert 

(2011). 

 

QTL for Biomass and Plant Height 

 One significant QTL was detected in the AW environment for biomass on 

chromosome 9 at position 80.0, associated with marker Cs114391p534. This QTL accounts 

for 9.08% of the variation observed in the trait.  
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 QTL were detected in three environments for plant height in this study. A QTL on 

chromosome 2 at position 48.0, corresponding to marker Cs111492p1088, was detected at 

AD, accounting for 9.73% variation in height. Another QTL was detected on chromosome 2 

that was present in both LD and LW. That QTL was located at position 63.0 in the LD 

environment and position 65.0 in LW, both associated with marker Cs18343p1410. These 

loci accounted for 8.90% and 10.15% of the variation observed for plant height at LD and 

LW, respectively. QTL for other traits were also detected at this locus, including a QTL for 

yield in AW, harvest index in AW, and thousand seed mass in AW09. Another QTL for plant 

height was also detected in AW10. This QTL is on chromosome 13 at position 50.0, 

associated with marker Cs101470p1312, and accounts for 7.82% of the trait variation in 

that environment.  

 

Days to Flowering QTL 

 A two-QTL model best explained variation in days to flowering at AD. A QTL on 

chromosome 7, position 38.4, associated with marker Cs12365p1897 and another QTL on 

chromosome 20, position 49.0, associated with marker Cs104210p1429, together 

explained 20.45% of the variation in days to flowering at that location. The QTL on 

chromosome 7 was also detected in the environment LD, explaining 12.15% of the trait’s 

variation. A different locus on chromosome 7, position 17.0, associated with marker 

Cs94681p1024, explained 11.33% of the variation in days to flowering at LW.  

 Three QTL were also detected for this trait in the Enjalbert (2011) data. Two QTL in 

AD09 were detected on chromosomes 10 and 11, at positions 29.0 and 145.8, 

corresponding to markers Cs15186p639 and Cs117396p287. Together, these two QTL 
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explained 20.24% of the variation observed in this trait in this environment. A single QTL, 

explaining 8.54% of trait variation was detected in AW09 on chromosome 7, position 43.0, 

associated with marker Cs108120p486. Due to its close proximity to the QTL detected in 

AD and LD for the same trait, it is likely that this is the same QTL. This locus is also detected 

as a QTL for yield in LW. 

 

QTL for Yield 

 Three QTL were detected for yield in the current study. No significant QTL were 

detected under limited irrigation, but QTL were detected in both fully irrigated 

environments. A two-QTL model explained 15.32% of the variation in yield at AW. One QTL 

was on chromosome 2, position 63.0, associated with marker Cs18343p1410. The other 

QTL was on chromosome 20, position 61.0, associated with marker Cs101720p130. A third 

QTL for yield was detected in LW on chromosome 7, position 36.3, associated with marker 

Cs196712p213. This QTL explained 7.82% of the observed variation in the trait.  

 Four QTL for yield were also detected in the Enjalbert (2011) data, one in each of 

the four environments. A QTL on chromosome 11, position 140.0, at marker 

Cs109651p703 explained 9.73% variation in yield in AD09. This QTL had a positive 

additive effect, where “aa” alleles contributed 91.33 kg ha-1 to yield. Interestingly, the other 

three QTL all exhibited a negative additive effect, where “aa” alleles decreased yield by 

41.67 kg ha-1, 5.50 kg ha-1, and 61.67 kg ha-1 in AW09, AD10, and AW10 respectively. The 

QTL detected in AW09 is on chromosome 10, position 83.7, associated with marker 

*CS5G225. The other two QTL are both on chromosome 19, at positions 5.0 and 14.0, 

associated with markers CE_16501.184 and Cs119319p333 for environments AD10 and 
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AW10. Given the close proximity of the two QTL for yield from AD10 and AW10, it is 

possible that this is the same QTL.  

 

QTL for Thousand Seed Mass and Harvest Index 

 Two QTL were detected for thousand seed mass in the 2014 study and one was 

detected in the Enjalbert (2011) data. The two QTL from 2014 were both detected in fully 

irrigated conditions. One was detected on chromosome 7, position 72.0, at marker 

Cs132446p317 in the AW environment and the other was detected in the LW environment 

on chromosome 16, position 48.0, at marker *CS1G57. The QTL explained 8.19% and 

8.01% trait variation at AW and LW, respectively. The third QTL was also detected under 

full irrigation at AW09 on chromosome 2, position 63.0, at marker Cs18343p1410, 

explaining 11.60% of trait variation. 

 Three new QTL were also discovered for harvest index in the current 2014 study. 

One QTL was detected at AD and two at AW. The single QTL in AD was on chromosome 6, 

position 51.0, associated with marker Cs49966p165 and explained 7.96% of the variation 

in harvest index. A two-QTL model best explained trait variation at AW, with a LOD score of 

6.68 and 15.54% of the phenotypic variation attributed to the model. A smaller effect QTL 

was on chromosome 2, position 56.0, at marker Cs18343p1410, while a larger effect QTL 

was detected on chromosome 6, position 42.5, at marker *CS2G88. It is possible that, due to 

a reasonably close proximity, the QTL on chromosome 6 in AW is the same QTL detected in 

AD for the same trait.  
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Pleiotropy, Epistasis, and Linkage 

 There were several QTL that were co-located in the same or very close positions for 

multiple traits. The QTL on chromosome 2, near position 63.0, were detected for plant 

height, yield, and harvest index in the 2014 data and for thousand seed mass in the 

Enjalbert (2011) data. Another QTL, on chromosome 7, near position 38.4, was detected for 

days to flowering in AD, LD, and AW09, as well as for yield in LW. It is impossible to tell, 

without further fine mapping efforts, whether or not these are single genes with pleiotropic 

effects, or multiple closely linked genes.  

 Scans for epistatic effects were performed during the Haley-Knott regression for 

QTL model selection, where all pairwise marker interactions were tested. Under this 

framework, interactions of QTL would be indicative of epistasis. However, there was no 

significant QTL interactions detected, so it was determined that there was no evidence of 

epistasis occurring for any of the traits measured.    

 

DISCUSSION 

 In previous studies, heat and drought stress during reproductive periods have had a 

dramatic negative effect on camelina yields (Enjalbert, 2011; Jewett, 2013).  Although heat 

and drought stress were not as severe in the 2014 growing season as in previous seasons, 

the effect of drought stress is evident in the differential yield, biomass, and thousand seed 

mass observed between the limited irrigation and full irrigation treatments at each 

location. Heat stress response can be more difficult to quantify. Heat and drought are also 

tied to one another, so separating the effects of the two in the field is a challenging task. 

Angadi et al. (2000) noted that heat stress is an exceptionally important and understudied 
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abiotic stress and that both short periods of extreme temperatures during reproductive 

stages and longer periods of milder temperature stress throughout the season can have 

significantly negative impacts on yield. Additionally, the threshold used for heat stress days 

(>32°C) was adapted for camelina by Enjalbert (2011) from a Baux et al. (2008) study, 

where effects of temperature on fatty acid composition and vegetative growth were of 

prime interest. Other studies in Brassica species have reported lower temperature 

thresholds for yield loss, such as Morrison and Stewart (2002), who determined that 

temperatures above 27°C negatively impacted yield in Brassica crops. Perhaps future 

studies will determine a more precise heat stress threshold for camelina, but it is widely 

acknowledged that temperate field crops are under heat stress during much of their 

growing season and that yield losses are due to a combination of heat stress and other 

abiotic and biotic stress factors (Angadi et al., 2000).  However, heat stress is known to 

reduce flower numbers, flower fertility, and a plant’s ability to support seed and pod 

growth (Morrison and Stewart 2002), so identifying genetic sources of heat tolerance in 

camelina is an important goal for future breeding programs.  

 The primary objective of this study was to identify QTL for traits associated with 

heat and drought tolerance and yield components and 25 previously unknown QTL for six 

different traits were identified.  Two of the QTL identified in the 2014 data were also 

identified in the Enjalbert (2011) data. No single QTL was detected across all 

environments, suggesting that environmental factors significantly influence gene 

expression. Because of this, any QTL utilized from this study will require further 

verification of efficacy before implementation in a breeding program. Furthermore, this 

research is at the beginning of exploring heat and drought stress response in camelina. 
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Additional studies will need to be performed, assessing heat and drought response at 

various growth stages across controlled and field environments. Development of RIL 

populations with parents that are divergent for heat and drought stress response 

specifically would also help to elucidate these traits.  

 In the current study, seven QTL were identified for yield, with the most successful 

two-QTL combination accounting for 15.32% of variation in yield, i.e., conferring a yield 

boost of 86 kg ha-1. However, this combination was detected under full irrigation, so other 

QTL may be more appropriate to improve yield for dryland production via marker-assisted 

selection.  

 Another trait that may have more breeding potential than yield per se is days to 

flowering. In all environments, days to flowering had a strong negative correlation with 

yield, indicating that earlier flowering lines produced higher yields. This correlation was 

stronger in both fully irrigated environments than in the limited irrigation environments, 

which may indicate this is more of a heat escape response than a drought escape response. 

With five different QTL identified for this trait and a high heritability (0.75), a combination 

of molecular breeding and traditional breeding methods may be used to further shorten 

days to flowering.  

 Two QTL were identified that have potential pleiotropic effects and/or close linkage. 

One of these QTL can be found on chromosome 2, in the region around 63 cM. This QTL 

significantly affected plant height, yield, thousand seed mass, and harvest index. Although 

yield and harvest index are directly related and all of the traits share some degree of 

correlation, it is highly unlikely that this same QTL would be detected for several different 

traits in different environments by chance. This suggests that a single locus is influencing 

43 
 



multiple traits and exhibiting pleiotropy, or that multiple loci controlling plant and seed 

development are in close linkage on chromosome 2. The other locus that was detected for 

multiple traits was on chromosome 7, near 38.4 cM. This QTL was significant for days to 

flowering in AD, LD, and AD09, and for yield in LW. This locus confers a robust effect on 

days to flowering, with a less stable pleiotropic effect on yield. Again, it is not possible to 

say with any degree of certainty whether this is one locus or multiple closely linked loci. 

Although the genetic map used in this study represents a significant advance in resolution 

compared to the Gehringer et al. (2006) map, it is only comprised of 579 loci. This number 

is very small compared to the maps available for major crops that are comprised of many 

thousands of SNP markers. Extensive fine mapping would need to be performed to identify 

individual genes controlling these complex traits.  

 Lastly, this study identified the 10 highest and lowest yielding lines in a variety of 

environments. Unfortunately, the four lines previously identified as being consistently high 

yielding lines (Jewett, 2013) did not appear in the top 10 lines from the 2014 

environments. Additionally, one of those lines, SSD 138, turned up in the lowest yielding 

list, with the eighth lowest yield observed at AW. This underscores the dramatic effect of 

environment on trait expression. However, the lines that performed well, or poorly, across 

multiple environments may warrant more study. SSD 65 was in the top five yielding lines in 

three out of four environments and had a mean yield of 1,890 kg ha-1 across all four 

environments. Conversely, SSD 113 was in the 10 lowest yielding lines in three out of four 

environments, with a mean yield of 688 kg ha-1 across all four environments. More analysis 

of these outliers could act as an additional genetic resource to enhance understanding of 

specific allelic combinations (haplotypes) that contribute to, or detract from, yield stability. 
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In the short term, SSD 65 is worth testing more extensively to determine whether it is 

appropriate for production in Colorado without further breeding efforts. 

 Although genetic resources for camelina are coming online more rapidly in recent 

years, there is still much work to be done before camelina regularly outperforms other 

industrial oilseeds and is recognized as anything other than a niche crop. Few universities 

perform research on this crop and even fewer private companies devote resources to the 

species. There are, however, some positive aspects to camelina’s underexploited nature. 

Close synteny and collinearity has been identified between camelina and well-researched 

Arabidopsis species (Kagale, 2014). The extensive genetic resources available for 

A. thaliana and A. lyrata can be mined to identify and manipulate agronomically important 

genes in camelina. Combined with new genomic sequence data, powerful resources are 

available to would-be researchers and breeders. And unlike major crops, camelina has not 

been extensively bred and exploited.  

 This underutilization of camelina may be viewed as a great opportunity. Whether 

the objective is to improve yield, oil quality traits, herbicide tolerance, or resistance to 

abiotic and biotic stress, the potential for making genetic gains remains mostly untapped. 

The scope of production in Colorado is small, with only a handful of early adopters willing 

to try the crop in on-farm trials. Camelina has great potential as a biofuel crop and specialty 

foods crop, but reliably high-yielding varieties for Colorado’s eastern plains are not 

available. Effort and resources are required to realize the potential of this little known crop. 

Hopefully, breeding efforts will increase alongside the exciting genetic research that is 

being performed on this crop to elevate its status beyond an academic curiosity and secure 

camelina a place among the more widely cultivated oilseeds.
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Table 2.1: Cultural and environmental conditions for the 2014 growing season at the 
Agricultural Research Development and Education Center (ARDEC) in Fort Collins, CO and 
the Limited Irrigation Research Farm (LIRF) in Greeley, CO. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Table 2.2: 2014 growing season precipitation and long-term average precipitation at the 
Agricultural Research Development and Education Center (ARDEC) in Fort Collins, CO and 
the Limited Irrigation Research Farm (LIRF) in Greeley, CO. 
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Table 2.3: Analysis of variance (ANOVA) results, coefficient of variation, mean, and broad-sense heritability estimates for the 
Lindo x Licalla camelina recombinant inbred line (RIL) population grown at Fort Collins and Greeley, Colorado in 2014. 
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Table 2.4: Lindo x Licalla camelina recombinant inbred line (RIL) population descriptive statistics compared to parental values 
in a trial conducted at Fort Collins, Colorado in 2014. 
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Table 2.5: Lindo x Licalla camelina recombinant inbred line (RIL) population descriptive statistics compared to parental values 
in a trial conducted at Greeley, Colorado in 2014. 
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Table 2.6: Trait correlations of a Lindo x Licalla camelina recombinant inbred line (RIL) population grown at Fort Collins, 
Colorado in 2014. 
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Table 2.7: Trait correlations of a Lindo x Licalla camelina recombinant inbred line (RIL) population grown at Greeley, Colorado 
in 2014. 
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Table 2.8: Trait correlations between limited irrigation and full irrigation treatments of a Lindo x Licalla camelina recombinant 
inbred line (RIL) population grown at Fort Collins, Colorado in 2014. 
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Table 2.9: Trait correlations between limited irrigation and full irrigation treatments of a Lindo x Licalla camelina recombinant 
inbred line (RIL) population grown at Greeley, Colorado in 2014. 
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Table 2.10: Top 10 yielding lines from a Lindo x Licalla camelina recombinant inbred line 
(RIL) population grown at Fort Collins and Greeley, Colorado under limited and full 
irrigation in 2014. 
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Table 2.11: Ten lowest yielding lines from a Lindo x Licalla camelina recombinant inbred 
line (RIL) population grown at Fort Collins and Greeley, Colorado under limited and full 
irrigation in 2014. 
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Table 2.12: QTL results and effects for a Lindo x Licalla camelina recombinant inbred line 
(RIL) population grown at the Agricultural Research Development and Education Center 
(ARDEC) in Fort Collins, CO and at the Limited Irrigation Research Farm (LIRF) in Greeley, 
CO in 2014. 
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Table 2.13: QTL results and effects for a Lindo x Licalla camelina recombinant inbred line 
(RIL) population grown at the Agricultural Research Development and Education Center 
(ARDEC) in Fort Collins, CO in 2009 and 2010 (Enjalbert, 2011) using a newly available 
genetic map (Singh et al., 2015). 
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Figure 2.1: Average daily maximum temperatures, with percentage of heat stress days (HSD, days with maximum temperature 
>32°C), during reproductive growth stages of a Lindo x Licalla camelina recombinant inbred line (RIL) population at Fort 
Collins, CO in 2014. 
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Figure 2.2: Average daily maximum temperatures, with percentage of heat stress days (HSD, days with maximum temperature 
>32°C), during reproductive growth stages of a Lindo x Licalla camelina recombinant inbred line (RIL) population at Greeley, 
CO in 2014. 
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Figure 2.3: Approximate chromosomal locations of QTL detected in a Lindo x Licalla camelina recombinant inbred line (RIL) 
population during the 2014 growing season at the Agricultural Research Development and Education Center (ARDEC) in Fort 
Collins, CO and at the Limited Irrigation Research Farm (LIRF) in Greeley, CO. 
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Figure 2.4: Approximate chromosomal locations of QTL detected in a Lindo x Licalla camelina recombinant inbred line (RIL) 
population, grown at the Agricultural Research Development and Education Center (ARDEC) in Fort Collins, Colorado in 2009 
and 2010 (Enjalbert, 2011), using a newly available genetic map (Singh et al., 2015).
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CHAPTER 3:  

BRASSICA CARINATA AS A POTENTIAL OILSEED BIOFUEL CROP IN COLORADO 

 

SUMMARY 

 Ethiopian mustard (Brassica carinata) has traditionally been cultivated as a food 

crop in Ethiopia and neighboring countries, seeing little commercial production elsewhere 

in the world. In recent years, researchers have turned to B. carinata as an industrial oilseed 

with the potential to thrive in more arid conditions than more widely cultivated Brassica 

species. Canadian breeding programs, public and private, have attempted to adapt this crop 

to North America, with the intention of cultivating the crop in regions that are not favorable 

for Brassica napus. There have been some successes in this arena and there is now a niche 

B. carinata industry in Canada.  

 Research in Colorado has explored whether B. carinata could perform well as a 

rotation crop in dryland winter wheat (Triticum aestivum) cropping systems with potential 

for on-farm biofuel production. B. carinata did not perform as well as other Brassicaceae 

crops Brassica juncea and Camelina sativa due to susceptibility to flea beetles (Phyllotreta 

cruciferae), later flowering, and lower yields, so research was discontinued on B. carinata 

and more resources were devoted to the higher performing oilseeds. In collaboration with 

Agrisoma Biosciences (Saskatoon, Saskatchewan, Canada), we have evaluated early-

maturing B. carinata. Agrisoma Biosciences provided early flowering and early maturing 

germplasm for us to evaluate under Colorado conditions. 

 The six lines tested took over 13 days longer to flower than unadapted African 

accessions that were previously evaluated. Mean yields of the trial across environments 
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were 669 kg ha-1, which was also lower than the mean yields from previous trials. The 

commercial check cultivar used in the study, A100, outperformed all of the experimental 

lines by a wide margin with a mean yield of 1081 kg ha-1. A lack of phenotypic diversity 

among the six lines did not allow for significant differences to be detected for the majority 

of traits measured. Although the cultivar A100 performed impressively compared to the 

other experimental lines of B. carinata, its yield and length of its life cycle were not 

sufficiently attractive compared to other alternative oilseeds to warrant continued 

research at this time.  

 

INTRODUCTION 

 Ethiopian mustard (Brassica carinata), a.k.a. Abyssinian mustard, or gomenzer, has 

traditionally been cultivated as a food crop in the highlands of Ethiopia for its edible leaves 

and oil. Despite high levels of glucosinolate and erucic acid, locals value the crop for its high 

yields compared to other oilseed crops that are amenable to cultivation in the same 

ecological niche (Teklewold and Becker, 2005). Commercial production of B. carinata is 

limited outside of Ethiopia and neighboring countries, but an inherent tolerance to abiotic 

and biotic stresses under semi-arid conditions, combined with potential for biofuel 

production, phytoremediation, food and animal feed, medicine, and specialty fatty acids 

and chemicals, have given researchers worldwide reason to critically study this species 

(Taylor et al., 2010; Teklewold and Becker, 2005; Chen et al., 2011).  

 In Colorado, dryland winter wheat (Triticum aestivum) cropping systems cover 

more than 2.3 million acres (Clark, 2013), mainly on the semi-arid eastern plains. Typical 

dryland wheat production uses a wheat-fallow rotation, where wheat is planted in the fall 
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and harvested the following mid-summer. This would be followed by a year of fallow and 

planted the next fall, harvesting one crop every other year. A common alternative uses a 

wheat – spring crop – fallow rotation, where Colorado farmers add a spring-planted crop to 

the rotation, such as maize (Zea mays), sunflower (Helianthus annus), or proso millet 

(Panicum miliaceum). This increases water use effieciency over a traditional wheat-fallow 

rotation. Brassicaceae oilseeds have been identified as having potential to intensify these 

crop rotations by replacing the fallow portion of the rotation, further improving water use 

efficiency and creating a sustainable source of biofuel (Enjalbert et al., 2013, Peterson and 

Westfall, 2004). Adding an oilseed crop into a rotation during what would typically be a 

fallow period lowers production costs while eliminating competition with food crops 

(Keske, 2013). An assessment of various Brassicaceae oilseeds in Colorado praised B. 

carinata for its large seed size, but ultimately found it to be unsuitable for dryland 

production due to susceptibility to flea beetles (Phyllotreta cruciferae), later flowering, and 

lower yields than other alternative oilseeds (Enjalbert et al., 2013). After this study, 

research on B. carinata was suspended while other oilseed research continued.  

 In 2013, collaboration with Agrisoma Biosciences (Saskatoon, Saskatchewan, 

Canada) began with a common interest in advancing sustainable biofuel research. After 

providing oil for a study on engine performance and emissions of industrial oilseeds 

(Drenth et al., 2014), a dialogue began about new, early flowering and drought resistant 

lines of B. carinata that Agrisoma Biosciences was developing. From this relationship, new 

interest in B. carinata as an alternative oilseed emerged and it was agreed that a two-year 

trial would assess the adaptability of short-season B. carinata in Colorado. 
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 The aims of this research are to (1) assess the field performance of six lines of B. 

carinata in Colorado’s semi-arid environment under limited and full irrigation; (2) 

determine if any particular lines perform well and have potential for local production; and 

(3) examine relationships among various yield components and physiological traits to 

identify characteristics correlated with favorable yield and/or drought tolerance.  

 
MATERIALS AND METHODS 

Plant Materials 

 Agrisoma Biosciences provided all seed for this trial. Five experimental lines were 

provided that had been previously identified as having early flowering and early maturing 

qualities in Canada. Since Agrisoma Biosciences is a private company, pedigree information 

was not provided and molecular analysis was not performed to respect the company’s 

intellectual property. The five lines provided were as follows: 080814EM, 110994EM, 

110999EM, 111010EM, and 110996EM. In addition, a commercial cultivar developed by 

Agrisoma Biosciences, A100, was provided as a check.  

 

Environmental Conditions 

 During the 2013 and 2014 growing seasons, trials were conducted at the 

Agricultural Research Development and Education Center (ARDEC) in Fort Collins, 

Colorado. This facility is at latitude 40.65 and longitude -105.00, with an elevation of 1,557 

m and average annual precipitation of 408 mm. The soil texture at this location is a sandy 

clay loam. ARDEC is equipped with an overhead linear sprinkler irrigation system, which 

was used throughout the study. Weather data for ARDEC and Fort Collins were obtained 
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from the Colorado Agricultural Meteorological network (COAGMET) and the National 

Oceanic and Atmospheric Administration (NOAA) National Climatic Data Center (NCDC). 

 Seedbed preparation included disking the soil and incorporating approximately 

39 kg ha-1 of nitrogen in the form of urea and 2.34 L ha-1 of the herbicide Sonolan 

(ethafluralin) with a roller harrow. Agrisoma Biosciences’ production manual (2014) 

recommends a target plant density from 86 to 183 plants per square meter, with the high 

end recommended for challenging conditions. So the high rate was used to calculate 

seeding rate, overseeding by approximately 45% to account for any issues with 

germination or seedling mortality. This led to a final seeding rate of approximately 325 

seeds per square meter or 3,253,392 seeds per hectare. During the 2013 season, Sevin XLR 

Plus (Carbaryl) was applied twice, at a rate of 0.85 L ha-1, to control flea beetles. For the 

2014 season, seed was treated with Prosper (Clothianidin (21.75%), Carboxin (3.81%), 

Trifloxystrobin (0.544%), Metalaxyl (0.408%), 1,2-Propanediol, Titanium dioxide), which 

was sufficient to control flea beetle damage.   

 A second trial location was planted in 2014 in Rocky Ford, Colorado (latitude 38.05, 

longitude -103.72). Unfortunately, crop failure was experienced due to a major rain and 

hailstorm, so no data was collected from this location. 

 

Experimental Design 

 This study utilized a Randomized Complete Block (RCB) design with two 

treatments, limited irrigation (Dry) and full irrigation (Wet).  Seven row plots were 

machine planted with a wheat drill and each plot was 4.57 m long and 1.89 m wide. Spacing 

between ranges was 1.52 m, while spacing between adjacent plots was 0.30 m. Each 
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genotype was replicated three times in each treatment for a total of six blocks, three with 

limited irrigation and three fully irrigated. The fully irrigated treatments received 25.4 mm 

of irrigation weekly, unless there was 25.4 mm or greater rainfall in a given week. The 

limited irrigated treatments were mostly rainfed. If the plants were visibly drought 

stressed, i.e., wilting, a half-rate (12.7 mm) irrigation was applied as “rescue irrigation”. 

 

Data Collected 

 

Weather Data 

 Weather data was collected for the growing season from COAGMET including 

precipitation, maximum daily temperature and minimum daily temperature. From these 

data several other parameters were calculated, including number of heat stress days (HSD, 

days during the growing season where maximum temperatures exceeded 29.5°C (Morrison 

and Stewart, 2002)), %HSD (number of HSD/total number of days in season) and total 

growing degree-days (GDD), calculated as ((Tmax+Tmin)/2)-Tbase where Tbase=4.4°C 

(McMaster and Wilhelm, 1997) for each day and summed over the season.  

 More resources were available during the 2013 growing season, so more extensive 

collection of phenotype data on subsampled plants was performed in addition to the plot 

level traits. Only plot level traits were measured during the 2014 growing season.  

 
Plot Level Traits 

 Days to flowering (DTF) were calculated as the number of days from the date of 

planting to the date when 50% of the plants in a given plot showed at least one open 

flower. Days to maturity (DTM) were similarly calculated as the number of days between 
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the date of planting and the date when 50% of the plants in a given plot reached 

physiological maturity. A plant was considered to be physiologically mature when the main 

stem of the plant changed from green to brown.  

 At maturity, the height of the first branch (BRHT) was measured, from the soil 

surface to the base of the first branch off of the main stem, on five random plants per plots 

and the mean of these measurements represent height of first branch. Plots were direct 

harvested with a Wintersteiger Nurserymaster Elite (Ried im Innkries, Austria) small plot 

combine and the seed was collected, cleaned, and weighed to determine seed yield. 

Thousand seed mass (TSM) was also measured, by weighing 1,000 randomly sampled 

seeds from each plot.  

 

Subsampled Plant Traits 

 In 2013, five plants per plot were chosen at random, when a plot was scored for 

flowering and tagged for more extensive data collection. For each of these plants, height 

(PLHT) was measured from the soil surface to the highest point of the plant, during 

flowering, to the closest centimeter. A mean of these measurements was calculated to 

represent plant height of each plot. Number of branches (NOBR) and number of leaves 

(NOLV) were counted for these subsampled plants as well. Five flowers were collected 

from each plot and dissected in the lab. Ovule counts were performed manually under a 

microscope and pollen viability was determined via imaging techniques as described in 

Mudd and Arathi (2012).  

 During late flowering to early seed fill, number of total flowers and pods was 

counted (FLPD), along with number of total aborted flowers and pods (ABORT). A 
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calculated trait was derived from these floral counts to estimate reproductive success (RS), 

calculated as a percentage, (FLPD/FLPD+ABORT)*100. The tagged plants were then 

harvested by hand and dried in an oven at 60°C for five days. The dried plants were 

weighed to obtain an estimate of dry biomass (PLBM). Two pods from each of the five 

subsampled plants, for a total of 10 pods per plot, were opened and the seeds were counted 

manually. Mean number of seeds per pod (SPP) was calculated from the manual seed 

counts by plot. The plants were then threshed by hand to determine individual plant seed 

yield (PLYLD) and a harvest index (HI) ratio was calculated from these terms as 

(PLYLD/PLBM).   

 

Statistical Analyses 

 Phenotypic data were analyzed using the statistical web-based program SAS Studio 

(SAS Institute, Inc., Cary, NC). The PROC MIXED function of SAS was used to create a mixed 

model, with environment and replication as fixed effects and genotype as random effects. 

Least squares means were obtained for the traits from these models for each trait using the 

LSMEANS option. Pearson correlation coefficients among least squares means for all traits 

were calculated using the PROC CORR function of SAS. Broad-sense heritability on a plot-

mean basis combined over environments was calculated by hand for all traits, using 

variance components from the SAS function PROC VARCOMP with the ‘method=REML’ 

option, according to a formula provided by Clay Sneller from the Ohio State University 

(personal communication) adapted from Hallauer et al. (1988) for plot-mean data. The 

broad-sense heritability formula is as follows: 
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 Heritability =  

In this formula, σ2G represents genotypic variance, σ2 represents error variance, σ2GE 

represents genotype x environment variance, r represents replications, and e represents 

number of environments.  

 
 
RESULTS 
 
Environmental Conditions 

 The weather during the 2013 and 2014 growing seasons was substantially different, 

with a more intense level of drought experienced in 2013. The 2014 growing season was 

wetter, with much of the rainfall late in the season. Monthly precipitation was nearly 

double in July and August compared to 2013. A summary of precipitation, maximum 

temperatures, and total growing degree days is presented in Table 3.1 along with a 

breakdown of precipitation by month in Table 3.2. In 2014, the abundance of late season 

rain triggered an indeterminate flowering response in all of the B. carinata lines, resulting 

in a second round of flowering as the first set of pods matured. Figure 3.1 shows an 

example of ripe pods juxtaposed with new flowers and young seed pods on the same plant. 

This response was nearly uniform across both treatments and all genotypes. Because of 

this second round of flowering, full maturity was never reached in the 2014 season. When 

the first round of seed pods began to shatter, the decision was made to harvest the study 

before major seed loss occurred. This was in contrast to the 2013 season, where 

comparatively dry late-season weather allowed the crop to dry down properly and 

harvesting was performed at an appropriate level of maturity. Pest pressure was also a 
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factor during both years. Flea beetles caused some damage during the early stages of 

growth and pesticides (Prosper and Sevin XLR Plus by Bayer CropScience (North Carolina, 

USA)) were utilized to limit this damage. Near maturity, false cinch bugs (Nysius raphanus) 

were present in all plots during both years as well, causing visible damage to siliques. No 

pesticide was applied to control the false cinch bugs since the infestation happened late in 

the season. 

 

Phenotypic Analyses 

Plot Level Traits 

 An analysis of variance (ANOVA) was performed across all environments to 

determine significance of the variables in the mixed model. Table 3.3 contains the results of 

the ANOVA, as well as the coefficient of variation (CV%), and estimates of broad sense 

heritability for the traits in common over both years of the study. There was a highly 

significant effect of environment, at the 0.001 probability level, for all plot level traits. 

There was also a highly significant genotype effect (0.001 probability for DTF, DTM, and 

YIELD and 0.01 probability for TSM) for all of these traits except BRHT. This means that 

variation in BRHT was not attributable to genotype. Heritability for BRHT was calculated to 

be 0.00, indicating that this is not a heritable trait based on the sample size and lines 

evaluated. Genotype by environment interaction was not detected for any of the plot level 

traits measured. 

 Since genotype was highly significant in the yield model and this parameter is 

important in assessing overall performance of the individual lines, pairwise comparisons of 

mean yields were performed. The results of these comparisons are presented in Table 3.4. 
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Only significant comparisons were presented in this table. Interestingly, the only significant 

differences detected among lines were when comparing A100 to the other five lines. The 

genotype A100 exhibited the highest mean yield across environments, at 1081 kg ha-1, 

ranging from 399 to 580 kg ha-1 greater than the other lines. A100 also had the highest 

yield when data was sorted by irrigation treatment. Mean yields for A100 under limited 

irrigation and full irrigation were 917 kg ha-1 and 1218 kg ha-1, respectively. 

 The mean yield of all lines across environments was 669 kg ha-1, with a heritability 

of 0.77. Overall mean yield by treatment was 495 kg ha-1 under limited irrigation and 

837 kg ha-1 under full irrigation. Days to flowering and DTM were the most highly heritable 

traits at 0.85 and 0.90, respectively. Across all environments and genotypes, it took an 

average of 73.59 days to flower and 134.14 days to reach maturity. Although pairwise 

comparisons were not significant at the 0.05 probability level across environments for DTF, 

A100 had the lowest mean in this category across environments of 71.45 days. Thousand 

seed mass had an overall mean of 3.92 g and a heritability of 0.59. Additional information 

about these traits is available in Table 3.5, which shows means, standard deviation, and 

maximum and minimum values for these traits by environment and year. As was 

previously mentioned, data for DTM was not available in the 2014 season due to 

indeterminate flowering.  

 Pearson correlation coefficients and significance levels for these traits, across all 

environments, are provided in Table 3.6. Yield was significantly negatively correlated with 

DTF (r=-0.33, p<0.01). Yield also shared a strong positive correlation with TSM (r=0.52, 

p<0.001). This means that yield was higher in lines that flowered earlier and had larger 

seed size. Height of first branch was significantly positively correlated with DTF (r=0.74, 
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p<0.001), indicating that lines that flowered later had higher first branches. Days to 

maturity shared a very strong negative correlation with thousand seed mass (r=-0.89, 

p<0.001), showing that late maturing lines exhibited reduced seed size.  

 

Subsample Level Traits 

 An ANOVA was also performed across treatments for the 2013 subsample level 

traits, the results of which can be found in Table 3.7.  The only traits for which a significant 

genotype effect was detected were HI, PLHT, and SPP. Irrigation treatment effect was 

significant for all three of these traits as well, with significant genotype by environment 

interaction for HI and PLHT. Mean HI was 0.18, with a calculated heritability of 0.84. Mean 

PLHT across treatments was 83.99 cm, with a lower heritability of 0.33. Average number of 

seeds per pod was 14.27 and heritability for the trait was 0.76. 

 Subsample level traits were combined with plot level traits from 2013 to determine 

relationships among primary and secondary traits. The Pearson correlation coefficients 

and significance level of these relationships can be found in Table 3.8. A strong positive 

correlation was detected between PLHT and DTM, (r=0.75, p<0.001), showing that taller 

plants took longer to mature. Days to maturity was also strongly negatively correlated with 

HI and TSM (r=-0.82, p<0.001; r=-0.89, p<0.001), indicating a longer time to maturity was 

correlated with a lower yield to biomass ratio and smaller seed size. Harvest index and 

TSM were highly correlated (r=0.81, p<0.001) to each other, with larger seed size 

corresponding to more favorable harvest indices. Thousand seed mass also had a strong 

negative correlation with PLHT (r=-0.80, p<0.001), where taller plants exhibited smaller 

seed size and vice versa. Another strong correlation was detected between NOLV and FLPD 
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(r=0.71, p<0.001). This correlation, however, is an artifact of randomly selected larger 

plants with more leaves also having more flower sites. Seeds per pod, POLVIA and OVCNT 

were not significantly correlated with any traits measured.  

 

DISCUSSION 

 Previous research at Colorado State University determined that B. carinata was 

inferior to other alternative oilseed crops due to a susceptibility to flea beetles, later 

flowering, and lower yields (Enjalbert et al., 2013). In a related study, Enjalbert (2011) 

evaluated a diverse set of 30 accessions of B. carinata, 94 accessions of B. juncea, and 81 of 

Camelina sativa in three environments, two dryland and one irrigated. This study reported 

mean yields of 795 kg ha-1 for B. carinata, 973 kg ha-1 for B. juncea and 1,383 kg ha-1 for C. 

sativa. The mean yield of the current study over four environments (two under limited 

irrigation and two fully irrigated) was 669 kg ha-1, which is lower than the average of the 

30 unadapted accessions tested by Enjalbert (2011). For comparison, a concurrent study of 

186 recombinant inbred lines of C. sativa, conducted at the same location in 2014, had a 

mean yield of 1,291 kg ha-1 under nearly identical conditions. Enjalbert (2011) also 

reported mean days to flowering for B. carinata under dryland and irrigated conditions as 

59.88 and 60.13 days, respectively. In the current study, mean DTF was 73.30 days under 

limited irrigation and 73.53 days under full irrigation over two years. These lines took over 

13 days longer on average to flower than previously evaluated B. carinata lines, which 

were deemed to have unacceptably long flowering times. In short, the early flowering lines 

of B. carinata from Agrisoma Biosciences do not appear to be better adapted to the climate 

of Colorado than previously tested accessions.  
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 A secondary objective was to identify any promising lines that have potential for 

local production. Among the six lines that were tested, there was a clear frontrunner. The 

commercial check variety, A100, significantly outyielded all of the experimental lines. With 

a mean yield of 1081 kg ha-1, A100 yielded 399 kg ha-1 more on average than the closest 

competing line. A100 also exhibited the earliest flowering with a mean of 71.45 days to 

flowering, although this number was not statistically significantly different from the other 

lines in the study. None of the five experimental lines stood out as better than the others, 

with few detectable differences in the primary traits. Although A100 was clearly the best 

genotype in the trial, it did not perform well enough to recommend for on-farm testing over 

other alternative oilseed crops, such as C. sativa. 

 Lastly, relationships among a variety of secondary traits were examined to 

determine if they played a role in increasing yield by heat or drought tolerance or by other 

means. The only meaningful correlation that was found with yield was a negative 

correlation with days to flowering. The Pearson correlation coefficient for this relationship 

was -0.50 in 2013 and -0.33 overall. This relationship was not surprising considering that 

escape is one of the most common heat and drought tolerance strategies. Lines that took 

longer to flower were more likely to experience heat and drought stress, which appears to 

be the case for this trial. Heat stress can also cause pollen sterility and ovule damage 

(Morrison and Stewart, 2002), but neither pollen viability nor counts of ovules were 

statistically different among genotypes or significantly correlated with any traits. It can be 

inferred from this that either the stress was not intense enough in the 2013 season to make 

either of these traits a limiting factor, or there was a roughly similar response to stress 

across the small number of genotypes studied. Mean pollen viability was 0.89, so it is likely 
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that fertile pollen was abundant despite any stress experienced. The reproductive success 

trait ((healthy flowers/all flower sites)*100) was not any more informative, with no 

significant differences among genotypes. The secondary trait of interest to Agrisoma 

Biosciences, height of first branch, did not differ significantly among genotypes. 

Additionally, it was negatively correlated, -0.39 at the 0.05 probability level, with days to 

flowering. This means that higher first branches are correlated with later flowering. 

Combined with a heritability of 0.00, this is a trait that will be very difficult to improve.  

 Agrisoma Biosciences reports mean yield of A100 from 2011 to 2013 as 

approximately 2,330 kg ha-1 (Agrisoma, 2014). While it may be possible to achieve 

consistent yields in this range in the Canadian prairie, the lines tested in this trial indicate 

that the genetics are significantly less adapted to growing in the more southern, semi-arid 

environment of Colorado’s eastern plains. There was not a great deal of genetic variation 

present among the lines for the traits measured, with only six of the 17 traits measured 

showing any type of significant effect of genotype. If research on Brassica carinata as a 

dryland oilseed crop for production in Colorado is to continue in the future, germplasm 

that has proven to yield consistently well in semi-arid environments should be a requisite 

starting point. In the meantime, oilseed research at Colorado State University will likely 

continue to focus on more promising members of the diverse Brassicaceae family.
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Table 3.1: Environmental conditions for the 2013 and 2014 growing seasons in Fort 
Collins, CO. 
 

 
 
 
 
 
 
 
 
 
Table 3.2: Comparison of 2013 and 2014 growing season precipitation with long-term 
averages in Fort Collins, CO.  
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Table 3.3: ANOVA results, coefficient of variation, and heritability estimates across 
environments for six B. carinata lines grown in Fort Collins, CO in 2013 and 2014. 
 

 
 
 
 
 
 
 
 
 
Table 3.4: Mean yield pairwise comparisons of significantly different genotypes for six 
B. carinata lines grown in Fort Collins, CO in 2013 and 2014. 
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Table 3.5: Descriptive statistics for plot level traits by environment for six B. carinata lines grown at Fort Collins, CO in 2013 
and 2014. 
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Table 3.6 Trait correlations for plot level traits across environments for six B. carinata lines 
(n=72, except for DTM (n=36)) grown at Fort Collins, CO in 2013 and 2014. 
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Table 3.7: ANOVA results, coefficient of variation, and heritability estimates across treatments for subsample level traits of six 
B. carinata lines grown in Fort Collins, CO in 2013 and 2014. 
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Table 3.8: Trait correlations and significance levels of all measured traits of six B. carinata lines (n=72, except for DTM and 
subsample traits (n=36)) grown in Fort Collins, CO in 2013 and 2014. 
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.   
 
Figure 3.1: Brassica carinata displaying late-season indeterminate flowering 
(Photo taken by Brian Campbell, ARDEC 2014) 
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