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ABSTRACT 
 
 

HYDRAULIC CHARACTERISTICS OF FEEDLOT MANURE IN AN ANAEROBIC LEACHATE BED REACTOR 
 

Concentrated animal feeding operations (CAFOs) use the practice of optimizing space for the 

raising of livestock.  By implementing space-saving techniques, these operations end up with large 

quantities of waste on small parcels of land.  One way to utilize the waste is to integrate an anaerobic 

digester into the waste management approach of a CAFO.  Anaerobic digesters efficiently break down 

waste while creating an energy source.  

 In the Midwestern United States, water is in abundance, and therefore can be added to 

continuously stirred reactors or other anaerobic digestion technologies.  In semi-arid climates, such as in 

Colorado, water is a treasured commodity.  A new technology is being investigated to limit the need for 

water addition in anaerobic digestion.  Water is trickled through a column of manure creating leachate.  

Leachate is continuously recycled though the leachate bed reactor, and then flows to a compositing tank 

and ultimately to a high rate anaerobic digester where methane is produced.  This method has been 

used in manure, food and landfill applications.  In many cases, clogging occurs either initially or after 

some digestion has occurred, and the pore space decreases.  The objectives of this research were to gain 

a better understanding of what additives will aid in better flow through manure and to develop a 

method to characterize hydraulic flow through a column of manure. 

Intrinsic permeability (k) was measured with respect to compressed air as the permeant fluid on 

a homogenized sample of feedlot manure.  The impact of compression, bulking agents (straw and wood 

chips), sieving out small fragments, and dispersion media were compared on the basis of the measured 

k.  Applied force, or compression, had the greatest impact on k because the tested manure was greater 

than 30% air by volume.  Straw showed the greatest increase in k of feedlot manure compared to wood 

chips and particle sieving.   
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After determining which substrate combination would be best suited for liquid flow, 

experiments based on the mean residence time (  ) were set up.  No substrate was added in these 

experiments, because the behavior of the manure was uncertain.  Water with an oxidation reduction 

potential (ORP) of less than -500 mV was used to mimic anaerobic conditions.  Three replicate columns 

were constructed and operated for six weeks.  Three tracer tests, each with a hydraulic loading rate of 

0.88 m/d, using sodium bromide (NaBr) as the tracer salt were conducted for three replicate columns.  

Variability in effluent concentrations and flows was observed in the columns, which was expected due to 

variability in packing within the column.   

The average    was approximately 6 hours.  Also, the majority of the tracer (60% of the output) 

leached from the columns in less than one pore volume.  Thus, the columns likely experienced 

preferential flow in that large pulses of water would exit at random times and the majority of the tracer 

exited the column in less than one pore volume.  Tailing of residence time distribution curves and 

inability to recover all injected salt indicates the likelihood of dead zones within reactors.  A ratio 

(further referred to as ratio R) of the superficial velocity to the hydraulic loading rate was calculated.  

The ratio R was greater than one for every tracer test indicating that water flows through the column 

slowly.  This indicates retardation through the column consistent with the observation of tailing in 

residence time distribution curves, also indicating the presence of dead zones.  The free drain volume 

was a small fraction of the pore volume in the total column.  The fact that so few pore volumes exited 

the column indicates severe retardation within the column that can be attributed to dead zones.  Each 

tracer test also showed that very few pore volumes exited the column.  This could possibly indicate a 

retardation in flow. 
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1.0 INTRODUCTION 

1.1 Research Justification 

Concentrated animal feeding operations (CAFOs) only account for 5% of all animal feeding 

operations (Ag Census, 2007), but contain 50% of all the animals in feeding operations (Gurian-Sherman, 

2008).  The livestock industry is a profitable industry, but results in generation of a large amount of 

waste (Gurian-Sherman, 2008).  Unlike human waste generated in urban areas, there are limited 

financial resources available to support on-farm waste management (Gurian-Sherman, 2008).  The high 

organic content of the waste renders it challenging to efficiently treat using conventional aerobic 

treatment approaches such as continuously stirred or plug flow reactors (Demirer and Chen, 2005). 

 Anaerobic digestion (AD) is a process to stabilize high-strength wastes while creating an energy 

source (Demirer and Chen, 2005).  Several studies have been performed to evaluate the economic 

feasibility of anaerobic digestion of agricultural wastes for energy production (Andersson et al. 2002, 

Demirer et al. 2005, Demirer and Chen 2008, Hills et al. 1981).   The key factors which impact economic 

feasibility include transport of the methane gas, efficiency of the methane conversion to electricity, and 

the current cost of electricity in the area of study. The data show that digestion is economic in some 

locations, and not in others (Svensson, 2007).   

 Anaerobic digestion requires four processes (Demirer and Chen, 2005).  The first is hydrolysis 

(liquefying solids to soluble monomers) followed by two acid stages, and finally methanogenesis.  

Hydrolysis is the slowest of the four stages in anaerobic digestion due to the complexity of manure 

(Myint et al. 2009).  A common procedure is to place the manure in a moist environment to enhance the 

remaining three stages of digestion (Demirer  and Chen, 2008).  

 Many CAFO operations are located in semi-arid climates due to relatively large land 

requirements (Miller and Berry, 2005).  These regions tend to have fewer people and more open space.  

In wetter climates, and limited dairy operations in Colorado, CAFO operations use water to flush or 
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scrape the concrete floors of the operation.  Typical management practices for CAFOs in Colorado 

include scraping with a machine, leaving the livestock in outdoor corrals where waste is collected 

periodically and placed in large piles, or flushing pens periodically with water (Sharvelle et al., 2011).  In 

arid regions, water is too valuable of a resource to use on waste treatment.    

To avoid using water in digestion, a new technology is being developed in which water trickles 

through manure producing a leachate.  This leachate then is recycled through the process, feeding the 

system with an already-soluble food source (see Figure 1.1).  Diemirer and Chen (2008) have had some 

success with this process.  However, they also report an issue related to the water not flowing through 

manure.  For leachate-reactor AD systems to be successful, hydraulic flow through manure must be 

better understood and optimized. 
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Figure 1.1. Proposed Anaerobic Digestion Process (Loetscher 2012) 

1.2 Research Objective 

The objective of this research was to identify the best methods to create improved hydraulic 

characteristics in a leachate reactor containing dry lot collected manure.  Several methods were utilized 

including the addition of bulking agents as well as liquid distribution media.  Intrinsic permeability (k) 

was utilized to gain an initial understanding of the factors that greatly impact flow through dry lot 

collected manure.  In addition, tracer tests were conducted on operating leachate-reactor columns to 

characterize the hydraulics. 
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In porous media, the hydraulic conductivity (K) is determined to better understand flow through 

the media.  This determination typically requires completely saturating the sample with water.  With 

manure, maintaining hydraulic flow under complete saturated conditions generally is not possible, since 

the manure becomes a slurry, which tends to prevent water passage.  That is when the manure 

becomes a slurry, the manure is viscous and water ponds on top due to lack of pore space, 

characteristics that are similar to those of fresh manure.  To bypass the need for complete saturation 

while still gathering data on multiple substrates, testing was conducted to determine based on air as the 

permeant fluid.   
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2.0 BACKGROUND AND LITERATURE REVIEW 

 

2.1 Anaerobic Digestion 

Feedlots are in abundance in the Midwestern and Western United States, and produce large 

amounts of waste each year (Gurian-Sherman, 2008).  An operation has to remove 1.8 metric tons of 

manure per head of cattle each year from the lot (Sweeten and Reddel 1979).  Cows are used for dairy 

production, which has a similar problem with the elimination of so much waste (Sharvelle and 

Loetscher, 2011).  Collection and disposal of this waste can cost between 12 and 20 percent of the total 

operation budget for a feedlot (Gurian-Sherman, 2008).  It is difficult to use the raw waste as fertilizer 

due to the high pathogen population (Demirer and Chen, 2008).  The mountains of waste that are 

generated in these facilities cause many environmental problems such as odor, dust, greenhouse gas 

emissions, and water contamination (Miller et al. 2005).  Ammonia and sulfur are frequently found in 

manure and can cause severe odor problems (Mackie et. al 1998).  Of note is that  manure can be 

stabilized through anaerobic digestion or composting to have lower pathogen communities. 

Many ideas have been introduced to deal with animal waste management.  The waste can be 

treated like municipal waste, by means of filtration, aeration, and nutrient removal.  Most animal 

operations do not have the resources available to go to such great lengths for no financial benefit 

(Gurian-Sherman, 2008).  The most common practice for waste management is composting (De Baere, 

1984).  Another approach to stabilize manure is to anaerobically digest it.  Anaerobic processes take 

much more time to stabilize waste than the municipal approach to wastewater (aeration), but create an 

energy source while using minimal amounts of energy to complete the process (Demirer and Chen, 

2008). 

The anaerobic process has four main components: hydrolysis, acidogenesis, acetogenesis, and 

methanogenesis (Demirer and Chen, 2008).  The hydrolysis step involves converting solids to soluble 
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monomers, and is usually seen as the rate-limiting step in digestion of manure (Chen et al. 2008) due to 

the fact that the food for cows is tough to break down to begin with, what they cannot digest is even 

more difficult to hydrolyze.  The acidogenesis and acetogenesis steps create volatile fatty acids, but also 

produce carbon dioxide (CO2).  Methanogens utilize the CO2 as an electron acceptor to produce 

methane (CH4).  Each process has a negative feedback loop meaning that the byproducts of each step 

are toxic to organisms which perform the same function (Chen et al., 2008).  If one step in the process is 

limited, the other three will also be limited.  Hydrolysis is considered the rate limiting step in the process 

when manure is the substrate being utilized because lignin and other challenging compounds to break 

down are abundant in manure (Chen et al. 2008).  To aid in faster hydrolysis rates, water is often added 

to dry substrates to encourage already soluble components to separate from solids and become 

biologically available for the acidogens, acetogens and methanogens (Demirer et al. 2005).  Many 

manure management practices add water to the manure to simplify transport of the material to 

lagoons. 

Anaerobic digestion is beneficial in that it is a net-energy producing method for treating waste, 

as opposed to aerobic treatment, which is a net-energy consuming approach.  The end products of 

anaerobic digestion are common additives to agricultural areas.  These products include humus and 

other nutrient-rich compounds which can be used in agricultural and park environments.   

2.2 Review of Anaerobic Digestion Technologies 

Several types of anaerobic digestion exist.  The correct technology depends greatly on the 

substrate (Nallathambi 1997).  The most commonly used technology is completely mixed digestion, or a 

continuously stirred tank reactor (CSTR) (Sharvelle and Loetscher, 2011).  In a CSTR, the feed is 

continuously added to the reactor which has a propeller or other form of mixing agent that does not 

involve aeration.  Typically CSTRs use between 5-10% solids substrates (Sharvelle and Loetscher, 2011).  

This process is beneficial because there are no stagnant zones and it is relatively easy to implement.  
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Another continuously-fed digestion process is plug-flow.  In the reactor, a plug of waste is added to the 

process.  Plug-flow reactors are generally used with materials having 11-14% solids (Sharvelle and 

Loetscher, 2011).  These conventional methods are not appropriate for the high solids content in the 

waste tested (Demirer and Chen, 2005). 

Other commonly used technologies are high rate reactors such as upflow sludge blanket (3-7% 

solids) and fixed film reactors (less than 3% solids; Sharvelle and Loetscher 2011).  In the upflow sludge 

blanket a layer of sludge is allowed to grow at the bottom of the reactor.  Waste is pushed upwards 

through the system where anaerobes eat away at the “blanket”.  In attached growth systems, the 

anaerobes grow on a media which allows them more stability due to the fact that they do not exit the 

reactor unless they detach from the biofilm.  

Two less conventional methods of digestion are two-stage and dry digestion (Demirer and Chen, 

2008).  Two-stage digestion is recommended for agricultural substrates.  In this process, hydrolysis and 

acid production occur in the first stage and methanogenesis happens in the second.  The process is 

usually done in batches so as to avoid overloading the system.  More gas is produced using this system 

due to the inhibition of byproducts.  Normally byproducts adversely impact the following step in 

digestion (the byproducts of acetogenesis negatively impact methanogenesis).  Two-stage digestion 

requires a large area to accommodate both reactors.  It is also limited by the hydrolysis rates because 

this is the first step that jump starts the second reactor.  Dry anaerobic fermentation is useful for 

substrates that have a large percentage of solids (over 25%), such as manure in an arid environment 

(Demirer and Chen, 2008).  Dry fermentation takes a very long time for substrates that have slow 

hydrolysis rates.  With no aid from additional water, this process can require long reaction periods and 

thus very large reactors. 
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2.3 Manure Management Practices in the Arid West 

In Colorado, the dairy industry collects manure using different methods compared to other parts 

of the U.S. (Sharvelle and Loetscher, 2011).  In eastern and mid-western areas, water is in abundance 

and dairies can flush barns to eliminate waste.  In arid climates, dry lots are applied where manure is 

scraped (Sharvelle and Loetscher, 2011).  Manure on a dry lot excreted at 10-14% solids can lose 

moisture in an arid climate resulting in more than 90% solids at the time of collection.  As mentioned, a 

waste containing over 25% solids is best suited for a two-stage process.  With a solids content as high as 

90%, water is needed to enable the hydrolysis process (Sharvelle and Loetscher, 2011). 

A new technology is being developed to anaerobically digest manure by utilizing a multi-stage 

process, including a leachate bay reactor.   

2.4 Proposed Multistage Anaerobic Digestion Technology 

Figure 1.1 (Section 1.1) shows the basic schematic of what the proposed multi-stage anaerobic 

digestion technology includes.  The basis of the technology is to take a small amount of water (fresh 

water or wastewater) and apply it in an even distribution manifold at the top.  The water drips into a 

column of manure.  This will allow all the soluble organics to be leached from the waste.  At the bottom 

of the column will be a collection system for leachate. 

Following the leachate bay reactor is a compositing reactor or a leachate storage tank.  The final 

stage is a high rate anaerobic digestion reactor, such as a fixed film or upflow sludge blanket reactor.  

Leachate is not only recycled through the leachate bay reactors, but also through the compositing tank.  

The separation of the hydrolyzed leachate from the solid manure allows acido/acetogenesis to occur.  In 

the high rate reactor, microorganisms are retained in the system resulting in decreased hydraulic 

retention time and increased methane production. 

Some have used a similar approach to the multistage high solids reactor in landfills (Reinhart 

1996, ten Brummeler 2000) and manure (Demirer et al. 2008).  Many systems in Europe use a similar 



9 
 

technology for food waste.  GICON® created a technology called Harvest that uses a two-stage 

technique to create biogas in which the first stage uses “hydrolysis percolators” to create soluble 

products followed by anaerobic digestion chambers for gas production. CH2M Hill invented a similar 

technology called SWANA Evergreen.  In this process, the food waste is co-digested with wastewater 

sludge in a two-stage system using percolation in the first stage as well.  More technologies include the 

BEKON process, BioFirm™ which includes co-digestion of many substrates and recycled leachate, and 

the Kompoferm® process. 

A common problem persists in all leachate bed based systems; after time the system does not 

pass water (Svensson et al. 2007, Andersson et al. 2002, and Beaven et al. 2005).  This phenomenon has 

commonly been attributed to biological growth clogging liquid pathways.  However, clogging can 

happen instantaneously with manure due to the formation of a slurry.  A common solution is to add 

bulking agents.  Some have tried adding pistachio shells (Myint and Nirmalakhandan, 2009).  Others 

have attempted adding straw (Svensson et al. 2007 and Andersson and Bjornsson 2002).  The purpose of 

these bulking agents is to try and keep the manure from becoming a slurry by opening channels for 

water to flow. 

Clogging not only stops the production of leachate, it also decreases the organic content of 

leachate collected from the system.  Mass transfer is limited when flow is hindered through a system 

(Myint et al., 2009).  This means that the flow of water aiding in the hydrolysis process is not sustained, 

and the production of soluble monomers will remain limited.  The cascading impact is that the 

methanogens in the second stage of the system are limited.  Hydraulics directly relate to the hydrolysis 

efficiency of the system.  If more soluble compounds are extracted and recycled, then the extent of 

hydrolysis will increase.  The understanding of dead zones and preferential flow in a system allows for a 

better understanding of leachable materials.  If the substrate has many dead zones, hydrolysis will be 

limited. 
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2.5 Background on Characterization of Liquid Flow through Porous Material 

Preferential flow was first used to describe the seepage of liquid through fissured rocks 

(Barenblatt et al. 1960).  Gerke (2006) defines “preferential flow comprises all phenomena where water 

and solutes move along certain pathways, while bypassing other volume fractions of the porous soil 

matrix.”  That is to say preferential flow describes the flow through macropores in soil that speed 

transport.  Coppola et al. (2009) states there are four components of preferential flow: 1. preferential 

flow occurs in real macropores, 2. it also occurs in inter-aggregate pores, 3. can be affected by fingering 

along the wetting front, and 4. can be due to special irregularities in the soil or “temporal dynamics” in 

wettability.  All four of these phenomena may occur in leachate bed based AD systems, including the 

high solids process described in Section 2.4.  The heterogeneity of the matrix and the inter-particle 

pores create a non-uniform flow through the porous media.  The wetting front is also non-uniform due 

to the fact that water does not move through the entire substrate at a uniform rate.  That is some 

pockets move water through faster than others, creating preferential flow in certain areas along the 

wetting front.  Preferential flow in intra-particle relationships has been observed in landfill leachate 

systems as well (Oni 2009). 

Understanding preferential flow is difficult in manure.  As discussed, it is impossible to 

completely saturate manure while maintaining hydraulic flow, and measuring suction along the wetting 

front of such a heterogeneous material is nearly impossible.  There is no way to ensure the wetting front 

is measured along the entire matrix.  However, tracer tests give some indication of the matrix inside a 

medium. 

Tracer tests have been used for many applications including soil, landfill, and biotrickling filter 

systems.  There are several approaches to tracer tests.  The purpose is to inject a foreign substance into 

the substrate and see how long it takes for the entire injected mass to exit the system.  Dyes and/or 

soluble salts are commonly used as the injection media.  In landfills, dyes have been found to have little 
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recovery from the system (2%) due to sorption (Oni 2009).  Salts, usually a bromide or chloride 

compound, are more commonly used for substrates with high sorption affinity (Oni 2009).  Bromide is 

most commonly used since it is not as common as chloride naturally in soil or manure.   

Most disciplines describe a breakthrough curve (BTC) as the curve of the concentration of 

injected tracer exiting the substrate over time.  For many tracer systems, this discharge flows at a 

constant rate.  What is most important with non-uniform soils is the cumulative mass that exits the 

system over time (Shackleford 1995). 

Many have documented solutions and pore matrix models for landfills and soils (Andersson et 

al. 2002, Beaven et al. 2005, Butter et al. 1989, ten Brummeler 2000, Oni 2009, Phelan et al. 1996, 

Reinhart 1996, Rosqvist and Destouni 2006, Svensson et al. 2007).  Each has a different approach to 

describing such a complex matrix that is not easily visible.  From all of these documents, one message is 

clear; modeling a 3-dimensional matrix for porous media is challenging.  The inability to completely 

saturate the media and an ever-changing hydraulic gradient make it impossible to get a snapshot in time 

that represents the entire matrix (Wu et al., 2012). 

2.6 Hydraulic Characterization of Liquid Flow through Waste Material 

In soils, permeability values are measured by completely saturating a sample and adjusting the 

hydraulic gradient to move water through.  This approach is not possible in landfill or manure substrates 

because they degrade over time, and manure creates impermeable slurries when it is completely 

saturated.  However, some soils concepts can be applied to landfill systems that operate similarly to 

manure systems. 

Some researchers have evaluated degradation of landfill material over time.  This not only 

decreases the hydraulic conductivity, but also the strength of the waste (Reddy et al. 2009 and Vilar and 

Carvalho 2004).  The composition of the material impacts the degradation (Reddy et al. 2011), and 

smaller fragments tend to degrade faster than larger fragments. 
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Landfill systems can experience rapid settling due to this degradation and compression of void 

spaces (Olivier et al. 2006, and Reddy et al. 2011).  This rapid settlement can lead to clogging.  Some 

have reviewed methods of deterring clogging in landfill systems (Fleming and Cullimore 1999, Valencia 

et al. 2009, and Yu and Rowe 2011).  Valencia et al. (2009) studied various configurations of porous 

layers in the landfill: gravel on the bottom, mixed within the system, and no gravel at all.  It was found 

that the system with gravel mixed in was the most successful.  The other systems clogged within a year.  

Olivier et al. (2006) discovered that particulates and microbes were the main reason for clogging in the 

gravel at the bottom of the system.  Yan Yu and Kerry Rowe (2011) used sand as the drainage layer, 

which was less successful than only gravel due to the lack of pore space.  However, the system did show 

an increase in permeability with increasing amounts of sand.  Like landfills, manure degrades with time, 

creating smaller pores for flow.  Manure also contains a lot of air and can settle rapidly, decreasing the 

pore space.  The addition of a bulking agent would be necessary in manure systems for the same reason 

it is necessary in landfill systems. 

2.7 Addition of Bulking Materials to Waste Products 

Research in Sweden (Andersson et al. 2002; Svensson et al. 2007), is looking toward renewable 

energy from waste products due to increasing oil prices and attempting to lower greenhouse gas 

emissions.  Digestion of agricultural waste has not been as heavily analyzed as landfill digestion.  This 

group of scientists (Andersson et al. 2002; Svensson et al. 2007) is investigating the addition of bulking 

agents such as straw in landfills to enhance digestion.  The data suggest that straw is an affordable and 

beneficial addition to anaerobic digestion (Andersson et al. 2002; Svensson et al. 2007).  Straw increases 

gas production by providing an extra carbon source that is more biologically available than manure.  

However, the straw also serves as a “particulate and biofilm filter” (Svensson et al. 2007).  In these 

experiments, straw was used to aid in anaerobic digestion, and an increase in permeability was found as 

an additional benefit.  
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Several studies have shown an increase in methane production of manure with straw addition in 

stratified bed reactors (Hills et al. 1981, Møller et al. 2004, Wujcik and Jewell 1980).  However, little is 

known about how it affects the permeability of leachate bay reactors packed with manure.  Based on 

the data from Sweden (Andersson et al. 2002; Svensson et al. 2007), straw appears to be more 

beneficial than harmful.  However, not all agricultural areas have access to straw.  Myint et al. (2009) 

added pistachio-half-shells to increase the porosity of their digestion process.  Data suggest that the 

addition of bulking agents is necessary to prevent clogging in anaerobic leachate bed reactors (Myint et 

al. 2009, Andersson et al, 2002, Svensson et al. 2007).  Adding a bulking agent that also increases 

degradation of waste is most beneficial to the system. 

In general, research shows that clogging does occur in landfill systems and that the addition of 

straw was beneficial.  Straw aids not only in better gas production but also in maintaining pore space 

over time.  Straw seems to be a reasonable bulking agent that degrades well.  As mentioned previously, 

gravel was mixed in a landfill system (Valencia et al. 2009).  This works well, but requires the addition of 

a non-degradable bulking agent. 

2.8 Summary 

The literature shows that preferential flow and clogging are prevalent in food waste, municipal 

solid waste, and manure.  Some have tried the addition of other substrates such as pistachio shells or 

straw to overcome clogging.  Others have tried adding gravel to the effluent to maintain pore space in 

the effluent.  Two-stage AD systems must maintain a steady flow to be effective.  Hydrolysis depends on 

the transfer of fluid through the manure.  If the hydrolysis step is limited, every other step is also 

limited.  The flow through a column is the basis of the high solids digester. Little work has been done to 

characterize hydraulic flow through manure in a leachate bed reactor, particularly since researchers 

have not determined approaches to sustain liquid flow through manure long enough to enable complete 

hydrolysis.  
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3.0 ESTIMATION OF INTRINSIC PERMEABILITY IN MANURE 

 

3.1 Introduction 

 As explained in Section 2.5, traditional methods for characterizing hydraulic properties in soil 

are not appropriate for analysis of manure because flow cannot be maintained in completely saturated 

conditions.  Therefore, understanding the hydraulic characteristics, specifically the hydraulic 

conductivity, is challenging.  Since water could not be used to saturate manure samples, compressed air 

was used as the saturating medium and as the permeant fluid.  With a completely air saturated sample, 

the intrinsic permeability, k, could be determined.  The resulting comparison of values of k was useful in 

terms of providing a better understanding of which substrate combinations should be used in future 

experiments when liquids, instead of gases, would be applied to the leachate reactor.  Thus, air was 

passed through a column of manure with varying loading and bulking agents.  The value of k was 

determined, and the various values of k based on different testing conditions were compared to 

establish trends and provide conclusions of the observed behaviors. 

3.2 Methods 

3.2.1 Experiment Setups 

 In the experiment, 299 columns of waste material with varying compression and bulking agents 

were placed in the testing apparatus.  The experiment involved applying compressed air to the top of 

columns and testing for the pressure differential across the columns under constant flow rate 

conditions.  The columns then were saturated completely with air, and k was determined.  For most 

experiments, three columns were tested simultaneously for analysis of each addition of bulking agent 

and energy applied.  The straw additions were 0%, 0.05%, 0.1%, or 0.2% by weight.  Each of the straw 

weight additions were exposed to 0, 23, or 49 J/m2 energy. That is to say three experiments (nine 

columns in total, three triplicates) were created for each straw addition: one set of columns with 0 J/m2 
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energy applied, a second set of columns with 23 J/m2 energy applied, and a third set of columns with 40 

J/m2 energy applied.  Three more experiments were performed for the 0.05% straw addition: the first 

set of columns with 0 J/m2 energy applied, the second with 23 J/m2 energy applied, and a third set with 

49 J/m2 energy applied and so on.  The wood chip additions were, 0%, 0.5%, 1%, or 2% by weight. 

Similar to the columns packed with manure straw, column containing wood and manure was exposed to 

0, 23, or 49 J/m2 energy.  The manure was also exposed to 0, 12, 23, 37, 49, 116, 233, and 544 J/m2 

without any bulking agent addition.  Sieving separated the manure fragments based on 6 sieves with 

sizes in order of 6.68 mm, 3.32 mm, 2.38 mm, 0.98 mm, 0.5 mm, 0.295 mm, and the pan.  The sample 

collected in each sieve was only exposed to 49 J/m2 energy. 

3.2.1.1 Sample Collection and Homogenization 

Samples of manure were collected from the JBS Five Rivers Cattle Feeding, LLC in Kersey, CO.  

The first sample was collected in March of 2011.  A representative sample was collected from the top 

and bottom of each pile of manure as well as from each area of the feedlot.  The samples then were 

sieved to separate smaller and larger fragments using a 19-mm (0.75-in) sieve.  The small samples were 

subdivided into four equal parts by weight.  The larger fragments were shredded in a wood chipper (3 

horsepower, Harbor and Freight, Fort Collins, CO) and distributed evenly by weight with the smaller 

fragments.  This process is similar to what would be used in the field.  Larger fragments would be 

chopped by an industrial composting chipper to allow for a food source that is more biologically 

available material.  The combined smaller and larger fragments were mixed by hand while being placed 

in the sample storage buckets.  Each of the four even parts of mixed smaller and larger fragments was 

evenly distributed into 19-L (5-gallon) storage buckets.  This stored sample was then loaded into the 299 

columns used in this section of the study. 
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3.2.1.2 Waste Characterization 

The waste characterization methods were similar to those used for soil (ASTM D4906 for total 

solids and ASTM D2369 for volatile solids).  The total solids (TS), volatile solids (VS), and specific gravity 

(Gs) were all determined for the combined smaller and larger fragment samples described in Section 

3.2.1.1.   

Total solids were determined by evaporating liquid from the sample (5-10 g) in an aluminum pan 

(76.2-mm (3-in) diameter aluminum pan, VWR) in an oven set at 110⁰C for 2-h to 6-h (Thelco Lab Oven, 

Precison).  The pan containing the sample was weighed before and after the drying process and the TS 

was calculated in accordance with the following equation: 

       
        

             
      3.1 

 
Volatile solids were determined by removing the sample from of the 110⁰C oven and placing it 

in a separate oven set at 550⁰C for 30 min.  The VS was calculated using the following equation: 

       
                    

                    
      3.2 

  
Specific gravity was performed using a 500-mL volumetric flask.  The weight of the flask was 

recorded, and approximately 50 g of sample was added.  The weight of the combined flask and sample 

was recorded.  The flask then was filled to 500 mL, and the final weight was recorded.  The flask was 

sealed on top with a stopper and needle through the top.  The needle was connected to a vacuum that 

operated for 36-48 h to eliminate air in the sample.  Equation 3.3 shows how specific gravity (Gs) was 

calculated. 

   
                  

                       
 3.3 

 
3.2.1.3 Column Construction  

The columns used for the majority of the intrinsic permeability testing will hereby be referred to 

as the “intrinsic permeability testing columns” or IPTC columns are shown in Figure 3.1.  These columns 
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were used for the intrinsic permeability tests because they are easy to load, easy to move from loading 

zones to the compressed air line, and are proportional to the size of fragments that were added.  Other 

columns were used for liquid flow experiments to be described in Chapter 4.  The IPTC were constructed 

from a 0.58-m (approximately 2-ft) tall, 73.5-mm (3-in) diameter, Schedule 40 (Sch. 40) PVC pipe.  At 

each end of the pipe was a coupling, with a slip fitting at one end and a threaded fitting at the other 

end.  A Sch. 40 PVC cap was threaded into a bushing that was glued to each end.  This allowed for easy 

access from both ends of the column.  Both end caps had two holes.  In each hole was a 3.2-mm (0.125-

in) stainless steel NPT to barb fitting, called a portal.  A portal with a ball valve was used for sampling or 

controlling flow.  On the bottom cap only one hole was exposed so the bottom of the column could be 

assumed to be at atmospheric pressure.  The top cap had both holes open; one for compressed air to 

enter and the other for a pressure differential measurement (see Section 3.2.1.4).  At the bottom of the 

column was a 50-mm2 mesh (MSC Supply). 

 

Figure 3.1. Intrinsic Permeability Testing Columns 

3.2.1.4 Intrinsic Permeability Testing Apparatus 

Figure 3.2 illustrates how compressed air was passed at a constant rate through a reservoir of 

water with a valve on one of the top portals.  The reservoir of water is necessary for the air to build up 
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pressure.  The columns were not constructed to be air tight, so air will just flow through the column 

without any back pressure, taking much longer to build up the pressure in the column of manure.  The 

second portal on the top cap was connected to a flow meter.  The bottom of the column was connected 

to an overflow bucket approximately 5.8m (approximately 20 ft) above the column of water.  This 

bucket was utilized for overflow from the reservoir.  It was mainly used in start-up.  The compressed air 

then flowed to the top of the column filled with manure.  The bottom of the manure column was open 

to the atmosphere.  A stopper was placed in the second portal to place a needle attached to a 

monometer, which measured the pressure at the inflow side of the column which is the same as the 

pressure drop across the specimen due to the fact that the outflow is exposed to the atmosphere.  The 

gas was allowed to flow for several minutes before a measurement was taken.  A needle attached to a 

monometer was placed in the stopper in the top cap to obtain the pressure differential across the 

column (see Figure 3.2).  It was assumed the bottom of the column was at atmospheric pressure 

because one of the portals was left open.  The reading out of the monometer was the total pressure 

across the column. 

The column was left for a minute to attempt to completely saturate the column with water.  

Then the needle attached to the monometer was placed in the top portal.  The monometer responded 

to the pressure in the column. 

Measuring the pressure differential was challenging using a traditional monometer.  The 

markings on the monometer were not accurate enough, and the pressure differential was too small to 

move the water a measurable amount.  Therefore, a monometer was made at an angle of 20⁰ with 

0.635 cm (¼ in) glass tubing.  It was filled with deionized water.  The pressure would build up in the 

manure column.  This pressure would push the water in the manometer.  Pressure was measured by 

using the conversion of 1 cm of H2O is 98.1 Pa.  The IPTC columns were filled with manure (see the 

Section 3.2.1.5 for loading techniques). 
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Figure 3.2. Intrinsic Permeability Testing Schematic (Figure Not to Scale) 

 
The calculation of intrinsic permeability was needed after collecting all the data.  Equation 3.4 is 

the definition of intrinsic permeability.  It utilizes the conductivity.   

  
   

   
 3.4 

 
where:  k = intrinsic permeability (m2), K = conductivity (m/s), µ = dynamic viscosity of fluid through the 

column—air (1.8741 Pa*s), ρ = fluid density—air density at standard pressure and temperature (1.18 

kg/m3), g = gravitation constant (9.81 m/s2). 

However, hydraulic conductivity cannot be found in manure because it is challenging to 

completely saturate the sample.  Therefore, Darcy’s equation was used to define the conductivity. 

  
 

   
 3.5 

 
where: K = conductivity (m/s), Q = flow of fluid (Air) (m2/s), i = gradient (m), A = cross sectional area of 

flow (m2). 
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Substituting the definition of conductivity (Equation 3.5) into the equation for intrinsic 

permeability (Equation 3.4), the result is Equation 3.6. 

  
   

       
 3.6 

 
However, only pressure head and elevation head have an impact on this system: there is no 

velocity and the height difference was considered negligible.  The definition of pressure head is 

Pressure/(density*gravity), which eliminates the existing density*gravity term.  Therefore, the gradient 

becomes dimensionless by dividing the change in pressure by length.  Equation 3.7 is the final equation 

used to estimate k. 

The assumptions used in the calculations were based on bulk values in the gaseous phase of the 

manure.   

  
     

    
 3.7 

 
where:  µ = dynamic absolute viscosity of air (1.8741 Pa*s), Q = air flow rate (m3/s), l = length of manure 

in column (m), A = cross sectional area of column (m2),  P = change in pressure (Pa).  This equation has 

been derived from the air-flux equation (Corey, 1986). 

3.2.1.5 Compression 

Experiments were conducted where k was determined for compressed manure.  The objective 

was to evaluate the hydraulic characteristics through manure in a natural state.  Also, the columns that 

will be used in the field (full scale implementation) will be tall, resulting in compression of manure at the 

bottom of the reactors.   

The columns were loaded in lifts.  A lift is a term used in soil practices (Standard Proctor Test 

ASTM D-698 and Modified Proctor Test ASTM D-1557) to describe a set amount of porous material 

placed in the experimental apparatus to ensure even loading.  Each lift was 100 mm for the IPTC 

columns.  That is to say the manure was added in 100-mm increments.  The 100-mm increments were 

measured by placing a meter stick at the bottom of the column, loading the lift, compressing it using a 
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combination of dynamic and static compaction practices, and placing the meter stick again in the 

column.  The meter stick was placed on top of each compressed lift to measure the next 100 mm.  For 

the intrinsic permeability experimentation apparatus columns, after 100 mm was placed in the column, 

it was placed in the compression apparatus (Figure 3.3).  The bottom had a fitted area made of wood so 

it would not be on the ground and break during compression.  The top of the column was supported by 

plumber’s tape.  The columns were compacted using a combination of static and dynamic compaction.  

The load was dropped on the columns, using the weight of the compacting device similar to a static 

compactor.  However, the wood was inserted between each lift, similar to a dynamic compactor.  A 

wooden circle made from plywood that fit exactly inside the 73.5-mm diameter top was lowered into 

the column.  The circle was mounted on a 12.7-mm (0.5-in) copper pole.  Also on the pole was a piece of 

19-mm (0.75-in) Sch. 40 PVC with a string set to raise the pipe 127 mm and gym weights making the 

total weight dropped equal to 1.6 kg.  To ensure the energy applied per unit area remained consistent in 

the IPTC columns, the string height was set to 170 mm and the weight on the PVC pipe was 2.65 kg to 

maintain the same J/m2 values used in the intrinsic permeability tests. 

One lift (100 mm tall) was loaded in the column and set in the apparatus with the wooden circle 

inside.  The PVC pipe with the weights and string would slide up and down the copper pipe to the height 

of 127 mm or 170 mm set by the string.  The 127 mm height was used to maintain a specified 

compression (J/m2) in the IPTC columns and the 170 mm height was used to maintain the same specified 

compression (J/m2) in the mean residence time experiments (see Chapter 4).  The PVC pipe was then be 

dropped, letting the only force that acted on it to be gravity.  Depending on the experiment, the weights 

were dropped a specific number of times to change the amount of energy applied (Table 3.1).  Equation 

3.8 shows how the compression was calculated.   

        3.8 

where: C = compression (J), w = weight dropped (kg), h = height dropped (m), n = total number of drops. 
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The total number of drops (n) refers to the number of drops per lift multiplied by the number of 

lifts to give the total number of drops.  There was some variability in the number of lifts due to the 

natural variability of the packing matrix of manure.  Therefore, for easier analysis, the number of lifts 

was rounded to the nearest whole number.  Table 3.1 shows the total number of drops, after being 

rounded to the nearest whole number.  The joules of energy applied were then averaged for each value 

of total number of drops.  Figure 3.3 shows the compressing apparatus.   

The volume of air that was compressed out of a sample was calculated by taking the difference 

in the volume from before compression and after compression for one lift.  It was assumed that all the 

volume lost was air due to the fact that no moisture visibly left the column and all solids were contained. 

Table 3.1. Number of Drops and Corresponding Joules of Energy Applied to the Column per Unit Area. 

Total Number 
of Drops 

Energy 
(J/m2) 

1 12 

2 23 

5 49 

10 116 

20 233 

40 543 
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Figure 3.3. Compression Apparatus 
 

 

3.2.1.6 Bulking Agents, Particle Size Selection, and Liquid Distribution Media 

The bulking agents used in this experiment were straw and wood chips.  Wood chips and straw 

were thoroughly mixed into the manure at 0%, 0.5%, 1%, and 2% by weight.  This did result in a larger 

volume of straw being added compared to wood chips.  Volume was not used as the basis of 

measurement because it is difficult to measure volume of such different substrates.  Each of the 

compositions was tested at 0 J/m2, 23 J/m2, and 49 J/m2 of applied compression.  Straw was added in 

the same percentages by weight at the same compression values. 

In an attempt to understand why manure clogs so rapidly, the smallest fragments (<4 mm) were 

removed from the manure.  A different set of sieves were used, allowing even smaller fragments to be 

removed compared to the sorting techniques.  The intent was to open more void space for water to 

pass.  Particle distribution was determined by selecting 6 sieve sizes: 6.68 mm, 3.32 mm, 2.38 mm, 0.98 
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mm, 0.5 mm, 0.295 mm, and the pan.  The samples were distributed among the sieves.  Each sieve was 

weighed, and k of each sample was found by placing it in a column and running the intrinsic 

permeability test. 

Media was added to the top of some of the columns (80 of the 299 columns and all of the 

columns in Chapter 4) to improve liquid distribution throughout.  For these experiments, 40 mm gravel 

was added to the top and bottom of the columns.  The gravel was approximately 10 mm in diameter on 

average. 

3.3 Results and Discussion 

3.3.1 Waste Characterization 

The volume and mass of the solids, water, and air in the homogenized sample were analyzed 

two weeks after the sample was collected.  Figure 3.4 shows the phase diagram for the manure sample.  

The percentage of solids by volume (Vs) is 38.46%, the percentage of water by volume (Vw) is 29.59%, 

and the percentage of air by volume (Va) is 31.95% before compression.  The percentage of mass that is 

solids (Ms) is 61.54%, the percentage of water by mass (Mw) is 38.46%, and the percentage of air by 

mass (Ma) is assumed to weigh nothing.  The specific gravity was determined to be 2.08. 

 

 
Figure 3.4. Phase Diagram for Manure Samples 

 
The phase diagram shows a large percentage of the manure mass is solids.  Therefore, feedlot 

manure is an excellent candidate for multi-stage digestion.  Of note is that the samples were collected 
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from a feedlot during the spring, when water content is generally higher than summer and fall months.  

Therefore, manure added to a leachate bed reactor in the field may have even higher solids content 

than manure added for these experiments. There is no limit to total solids for operation of the proposed 

multi-stage anaerobic digester.  The volume of air is for an uncompressed sample.  While preparing the 

specific gravity experiment, the manure was aerated as it was loaded into the flask.  The volume of air 

value reported in the phase diagram does not correspond to the volume of air that was utilized during 

the rest of the experiments.  The volume of air was decreased by 57.3% when 49 J/m2 of energy were 

applied.  This further indicates the need for exploration of the impact of compression (Reddy et al. 

2009). 

3.3.2 Determination of Intrinsic Permeability 

3.3.2.1 Compression  

The relationship between the amount of energy applied and k found by measuring the pressure 

differential across a column filled with compressed air was investigated (Figure 3.5).  Table 3.2 shows 

the change in height of the manure in the column based on the energy applied, resulting in a loss of air.  

Figures 3.5A, 3.5B, and 3.5C demonstrate impacts of compression on intrinsic permeability.  The first 

shows how an increase in energy applied per square meter decreases permeability based on energy 

applied, bulk density and porosity.  Figure 3.5D demonstrates how density increases and porosity 

decreases with the addition of energy applied to the sample.  This concept helps define the elimination 

of air in samples as they are compressed. 

The trend shows a small amount of energy has a large impact on k, but large energy loads have 

no greater effect than the small loads.  Based on this result, it was decided that columns loaded for 

evaluating liquid flow through manure would have 49 J/m2 applied energy (see Chapter 4).  The energy 

application saved time by not having to compress samples numerous times, but also is considered 

representative of a sample in an actual operating reactor.  While a large standard deviation was 
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observed in non-compressed samples, it decreased for samples experiencing more than, or equal to, 49 

J/m2.  The variability in the compression and intrinsic permeability data can be attributed to the air 

voids.  The uncompressed manure contains 31.95% air.  This means that the packing configuration will 

vary drastically every time a column is packed (Higdon and Ford 1996).  This explains variability in 

compacted samples.   

Table 3.2. Manure Heights and Volumes Before and After Compression 

 
Average Height (cm) Average Volume (cm3) 

Energy 
Applied(J/m2) 

Pre 
Compression 

Post 
Compression 

Pre 
Compression 

Post 
Compression  

0 60.0 60.0 456.0 456.0 

12 60.0 51.2 456.0 389.2 

23 60.0 50.7 456.0 385.5 

37 60.0 51.6 456.0 391.8 

49 60.0 50.3 456.0 398.5 

116 60.0 49.2 456.0 359.1 

233 60.0 48.7 456.0 350.4 

544 60.0 48.6 456.0 324.5 
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Figure 3.5A. Compression Effects On Manure in Terms of Energy Applied 

 

 
Figure 3.5B. Impact of Bulk Density from Compaction on Intrinsic Permeability 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

1.4 

0 100 200 300 400 500 600 

In
tr

in
si

c 
P

e
rm

ea
b

ili
ty

, k
 (

m
2
) 

Energy Applied per Unit Area, E (J/m2) 

0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

1.2 

1.4 

2.00 2.20 2.40 2.60 2.80 3.00 

In
tr

in
si

c 
P

e
rm

ea
b

ili
ty

, k
 (

m
2
) 

Density, ρ (g/cm3) 



28 
 

 
Figure 3.5C. Impact of Porosity on Intrinsic Permeability 

 
Figure 3.5D. Change In Porosity and Density Compared to Energy Applied per Unit Area 

 
No water exited the columns during compaction, indicating the volume decrease was due 
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impact and a lot of compression is not necessary.  Manure can be compacted easily.  Once it is 

compacted, it is difficult to compact it more. 

The compressed samples were in a completely dry environment, and experiments were 

performed within several minutes, leaving no time for biodegradation.  In an operational reactor, air 

voids decrease over time due to biological activity and the creation of more fine fragments (Fleming and 

Cullimore, 1999).  Therefore, compression should help to replicate conditions in a manure column after 

some time has passed rather than only when the column has just been loaded with fresh manure.  

3.3.2.2 Bulking Agents  

No upward trends were observed between the amount of wood chips added and k (Figure 3.6). 

The permeability goes down as the amount of wood chips added increases when no energy is applied.  

Wood chips are not permeable, and the more that were added, the lower the permeability became.  

Again, the standard deviation was large for all the samples which were compacted with less than 49 

J/m2.   

Figure 3.7 shows how straw addition impacted k.  When no straw was added (0% by weight), 

compaction had a large impact on intrinsic permeability.  However, with 0.1% and 0.2% by weight straw 

addition, data indicate that straw increased k values for samples experiencing 23 J/m2 compression, 

while increase in straw did not impact k for those samples where 49 J/m2 was applied . 

The wood chips were chopped to create a more comparable ratio of the size of wood chips to 

the column, but still did not enhance intrinsic permeability the way straw did.  Straw creates channels in 

the manure that serve as a particulate filter (Svensson et al. 2007).  The wood chips are simply too dense 

to aid in k.  However, these experiments were only conducted in the gaseous phase.  It is possible wood 

chips would help initiate bio-degradation or provide structure to a complicated matrix when the liquid 

flow through a column is used. 
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Overall, the straw and wood chips did not have a notable impact on k.  Ten times the amount of 

wood cheeps needed to be added to have a similar impact as straw by percentage by mass.  However, 

research shows that straw aids the digestion process (Andersson et al. 2002, Svensson et al. 2007 Hills et 

al. 1981, Møller et al. 2004, and Wujcik and Jewell 1980).  Further investigations on the benefit of straw 

and other bulking agents would be beneficial to inform decisions on whether bulking agents should be 

added.  However, these preliminary results indicate that use of straw may be more beneficial than wood 

chips to improve hydraulic conductivity through manure. Intrinsic permeability is, however, only an 

indicator of actual hydraulic characteristics. 

An attempt was made to explore the relationship between the volume of air in each 

compressed sample and observed k.  However, during the experimental set up, the percentages of 

straw and wood chips were switched.  That is to say, a specific gravity test with 0.1% by weight wood 

chips and 1% by weight straw was performed.  Therefore, the data were not utilized, and the plot was 

not created. 

 

 
Figure 3.6. Impact of Wood Chip Addition on Permeability 
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Figure 3.7. Impact of Straw Addition on Permeability 

 
3.3.2.3 Elimination of Small Manure Fragments 

Large fragments typically have more void space, and therefore a higher hydraulic conductivity.  

An attempt was made to determine if hydraulic conductivity of manure could be improved by excluding 
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This means that removal of fragments less than 4 mm in diameter does increase permeability, however 

the difference is not statistically significant at the 95% confidence interval.  Of note the larger fragments 

make up the smallest portion of the sample (Figure 3.8).  For example, elimination of fragments less 

than 6.7 mm resulted in elimination of 68% of the manure on average.  An economic analysis would 

need to be conducted to determine feasibility for such fragment separation.  If large fragments were to 

be separated, an industrial sieve would be recommended for full scale application.   

These sieves are commonly used for composting and are typically 12.5-25 mm (0.5-1 in).  They 

are typically used after the compost has been produced.  This size is larger than the sieves used in the 

lab, but would serve a similar purpose.  The smallest fragments would be added to compost piles, and 

the larger fragments could be digested.  This could possibly hinder digestion because smaller fragments 

may be the most accessible to the microorganism community , thus initiating hydrolysis.  Of note is that 

none of these samples were compressed.   

 
Figure 3.8. Effect of Fragment Size on Permeability where Fragments Retained in the Sieve Were 

Loaded Into the Column (Hanif 2012) 
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It is possible small manure fragments are the cause of clogging when liquid is supplied to 

manure columns (Svennson et al. 2007, Fleming and Cullimore 1999, and  Yu and Rowe 2011).  The 

particulates fall into the pore space, blocking liquid flow.  This can take years (Fleming and Cullimore 

1999), but these experiments were completed in a matter of weeks.  Another possibility is that the small 

fragments are necessary as easily degradable material in order to grow a microbial population that can 

break down the large fragments during liquid flow through a column. Again, liquid flow experiments 

would need to be conducted to determine if this is the case. 

3.4 Conclusions 

Based on previous research and the permeability data, straw is recommended as a bulking 

agent.  Wood chips do not show potential to increase the flow through a column of manure.  Fragment 

size did impact k, however the difference was not statistically significant (P>0.05) and removal of small 

fragments requires removal of a large percentage by mass of the manure.  This approach does not show 

promise for large scale application. Compression was the main contributor in change to k values. 

A better system should be implemented for the intrinsic permeability tests.  If the apparatus is 

left without use for several days, many parts have to be reconstructed.  The water in the column is 

unpredictable.  At times it would shoot out the top of the system, and others it would not.  A pre-

compressed water column should be utilized that is continuously filled with fresh water.  A monometer 

allows water to flow through it easier should also be implemented.  The entire experiment takes almost 

an hour to reach equilibrium. 
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4.0 MEAN RESIDENCE TIME EXPERIMENTS 

 

4.1 Introduction 

The experiments conducted to determine intrinsic permeability using compressed air flow 

through manure columns provided some useful preliminary information about approaches to improve 

liquid flow through manure.  However, experiments also need to be conducted with liquid flow in 

manure leachate columns to validate that data. Based on the data collected in the intrinsic permeability 

experiments, it was decided to utilize a compression of 49 J/m2, and that bulking agents (straw in 

particular) were a possible option for increasing intrinsic permeability.  In this chapter, water was 

applied to manure columns via trickle flow and manure was not completely saturated.  Data on the 

performance of the leachate bed reactor in terms of efficiency of organic solubilization into leachate are 

presented by Asma Hanif in her M.S. thesis. The focus of work presented here is to evaluate the 

hydraulic conditions in leachate bed reactors.  

Tracer tests give an indication of the time it takes for one molecule of water to leave the system.  

This is called the mean residence time (  ).  The experiments also give an indication of the flow regime 

through the column.  The presence of dead zones and channelized flow can be identified based on these 

tests. Tracer tests were conducted at various times (Day 2, Day 9, and Day 53) of the 60 days of 

operation.  Leachate bed reactors were packed with manure to evaluate potential changes in hydraulics 

over time. 

4.2 Methods 

4.2.1 Experiment Setup 

 Three columns filled with only manure (no bulking agents were utilized), a 20-mm layer of sand 

on top, and 40-mm layers of gravel at the bottom and top of the column (see Section 4.2.1.2 for 

specifics on column loading) were used in the following experiments.  The experiment started with 
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water that had a low oxidation reduction potential (ORP) (-300 to -500 mV) that was trickled through a 

column of manure (see Section 4.2.1.3 for creation of low ORP water).  After the low ORP water passed 

through the column successfully, the hydraulic characteristics were analyzed.  The analysis included 

tracer tests performed throughout the experiment duration, liquid holding volume, and free drain 

volume both of which were performed after the duration of the entire experiment.   

4.2.1.1 Sample Collection and Homogenization 

During the course of the year of this study, Five Rivers purchased a large chipper (Bently 

Agrowdynamics).  A chipper such as the one applied here would likely be applied in large scale 

applications of a leachate bed reactor.  Manure in the field can vary from microscopic diameters to 

several meters in diameter.  Samples for this experiment were collected in August of 2011.  Samples 

were collected from a pile at Five Rivers Cattle Feeding that had been chipped, and were not necessarily 

representative of the entire feedlot unlike samples collected for the intrinsic permeability experiment 

(Chapter 3).  A pile had been created of already chipped manure, but the owner could not identify 

where it came from.  Therefore, the duration of manure storage prior to sampling is unknown. The 

duration of storage may have impacted ease of biodegradability, where manure stored for a longer 

period may have had less biodegradable constituents.  Using this manure from the chipper, however, 

decreased sorting time from one week for 20 buckets to 5 h for 60 buckets, since there was no need to 

separate the small fragments and pulverize the rest.  The product from the chipper was manure 

fragments smaller than 50-mm (2-in) in diameter.  The sample was distributed into 4 equal parts by 

weight.  Each section was evenly distributed among 5 gallon buckets.  Each bucket was considered 

homogeneous and representative of the entire chipped pile. 

4.2.1.2 Column Construction 

The mean residence time experimentation apparatus columns had a similar structure with two 

removable caps as described for the intrinsic permeability experiments (Section 3.2.1.3).  However, the 
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columns were made from Plexiglas.  One advantage of these columns is that they are transparent, 

enabling visual observation of experiments.  The caps were not made of PVC, but were a rubber ring 

enclosed by a yellow plastic cap (caps by Cherne® 8” Gripper Mechanical Plug #270-288 patent # 

4,493,344).  A large bolt was placed in the middle with a wing nut to tighten the cap.  Five holes were 

present in the top cap to create an even distribution of water (see Figure 4.1 and 4.2).  Each hole had a 

bulk head with a needle valve.  The bottom cap only had two holes.  As in the IPTC columns, one of the 

holes was closed at all times.  The columns measured approximately 7.46-m (3-ft) tall with a diameter of 

0.2-m (7.9-in). 

 
Figure 4.1. Cap Diagram 

 

 
Figure 4.2. Top Cap Inside a Column  
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4.2.1.3 Low Oxidation/Reduction Potential (ORP) Water 

Clean water added to the leachate bed reactor needed to be anaerobic to adequately represent 

the conditions in an actual leachate bed reactor operating as part of a multi-stage anaerobic digester for 

processing manure.  The apparatus used in this experiment attempted to eliminate as much dissolved 

oxygen as possible from water, while not adding so many chemicals that the anaerobes would not 

survive.  A combination of nitrogen gas and aluminum were used to reduce the ORP (Figure 4.3).  The 

process started by heating reverse osmosis (RO) water (Siemen’s RO Filters) to 40⁰C (Heater by 

Tempco).  The RO reservoir was approximately 9.2 m (30 ft) above the heater.  The RO water was 

siphoned to the heater.  At the outlet end of the heater was a 12.7-mm (0.5-in) chlorinated polyvynal 

chloride (CPVC) pipe that ran up to the same grade as the RO reservoir.  Just after the heater, nitrogen 

gas (Organomation Associates, Inc. N-EVAP™ 111 Nitrogen Evaporator) entered the CPVC pipe for two 

purposes: to sparge some of the oxygen out of the water as well as lift the water back up to the RO 

elevation.  A 12.7-mm (0.5-in) CPVC tee was inserted 6.1 m (20 ft) above the heater so the unutilized 

nitrogen gas could escape to the atmosphere as well as the sparged oxygen.  From the teed off line, a 

12.7-mm (0.5-in) barb was placed for a vinyl tubing line.  

Approximately 6.1 m (20 ft) above the heater, the 12.7-mm (0.5-in) vinyl line filled with heated, 

nitrogen sparged water, entered a 203.2-mm (8-in) diameter Sch. 40 PVC pipe with a Sch. 40 PVC cap on 

one end.  The cap had two 12.7-mm (0.5-in) barbs.  The vinyl line connected to one of the barbs at the 

bottom of the cap.  This barb connected to a 19-mm (0.75-in) CPVC tube.  The water would come up 

through the tube and react with 0.1 M sodium hydroxide (NaOH) to raise the pH.  The second barb at 

the bottom of the cap connected to another 203.2-mm (8-in) diameter PVC tube with a cap that had 

only one barb at the bottom.  The water entered the bottom of the second cap and immediately came in 

contact with non-valent aluminum.  When introduced to warm and high pH water, the aluminum 

created aluminum hydroxide (AlOH), taking the remaining dissolved oxygen out of the water.  The final 
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step before the outlet was to neutralize the pH with 0.1 M hydrochloric acid (HCl), dosed in at the same 

rate as the NaOH.  The water maintained an ORP of approximately -300 to -500 mV and a pH between 

7.5 and 8.0.  The idea and much of the construction of the ORP tank was derived from Lucas Loetscher. 

 

 
Figure 4.3. Water ORP Reduction 

4.2.1.4 Plumbing 

From the second column in the ORP reactor, the water was siphoned back down to the heater.  

From there, it had one of three fates: a primer line, a nutrient-dosed line, and a direct line to the 

columns (non-nutrient dosed).  Some columns were dosed with nutrient and some not (for more 

information, see Asma Hanif’s thesis), however the focus of data reported here was on the columns 

without nutrient dosing.  To create the three influent tubes, the original tube had a tee to create the 

priming line.  The priming line was used to recreate the siphon if the water was turned off for some 

reason.  A second tee was then placed to distinguish the nutrient-dosed from the non-nutrient dosed 

line (Figure 4.4).  All plumbing lines were Kuritech 6.4-mm (0.25-in) vinyl tubing. 
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The common manifold influent line entered through a raised floor to the temperature-

controlled room.  The room was made from insulation with an R rating of 6.5 (Therma Sheath-3), 

measuring 2.4 m3 (8 ft3).  Figure 4.5 shows the 25.4-mm (1-in) Sch. 40 PVC supports with 3-way tees in 

the corners used to maintain the structure of the insulation room.  An extra support ran across the 

ceiling.  The floor of the room was a piece of insulation on the bottom with a 12.7-mm (0.5-in) thick 

piece of plywood.  The room floor was nailed to the lab floor for safety.  In two places, the floor had a 

hole: one for all electricity and water inlets, another for water and electricity outlets.  This created a 

temperature efficient room.  Two space heaters were placed on either side of the columns and set to 

maintain a temperature of 95⁰C.  The heaters had internal thermostats that kept the temperature 

constant.  A light was also kept in the room.  Both the heaters and the light were kept on at all times. 

Columns were placed on a platform approximately 0.3 m (1 ft) off the ground.  The platform had 

a support for two sets of columns with a hole between the supports for drainage.  A set of three 

columns was set on each support: nutrient dosing and non-nutrient dosing.  The main influent tubing 

containing the water entered the room through the raised floor and entered a distribution manifold to 

evenly distribute the reduced ORP water to each of the three columns (Figure 4.6).  Immediately 

following the manifold, each influent tube was equipped with a tracer injection line in which the ORP 

water could be turned off, and the tracer injection could easily be injected into the columns.  After the 

tracer lines, each line went through a rotameter to read the flow rate of water (Figure 4.5).  The 

rotameters were read by the operator and used to adjust flow to maintain a 2 mL/s flow (hydraulic 

loading rate of 0.88 m/d) with a needle valve.  The water then entered the even distribution caps at the 

top of the columns.   



40 
 

 

Figure 4.4. Schematic of New Technology (Hanif 2012) 

Dosing 

Dosing 



41 
 

 

Figure 4.5. Inlet Manifolds, Rotameters, Inlet Distribution Caps (Left) and Outlet Manifold (Right) 
(Hanif 2012). 

 

 
 

Figure 4.6. Outside of Temperature Controlled Room (Left) and Inside with PVC Supports (Right) (Hanif 
2012). 

 
Water trickled through the column (containing manure) and exited the bottom cap.  The 6.4-mm 

(0.25-in) tubing from the outlet had a 3-way valve to allow the sample to be dumped, or collected in a 

plastic carboy.  After the valve, the effluent vinyl tubing lines each entered another manifold to bring all 

the effluent lines to one hose.  The hose exited the room through the raised floor to a drainage basin 
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below the temperature controlled room.  Inside the basin was a sump pump, which moved water to a 

1,000-L storage tank.  Periodically, the storage tank would be emptied by gravity to another storage tank 

on a truck and emptied at Colorado State University’s manure storage facility located on the Foothills 

Campus.  The majority of construction on the temperature controlled room and plumbing was done by 

Asma Hanif. 

4.2.1.5 Column Loading 

The columns were loaded with manure (no bulking agent) as described for intrinsic permeability 

experiments (Section3.2.1) with 49 J/m2 of compression applied to each 100 mm lift. Figure 3.3 can be 

used to show the compression apparatus.  The apparatus had similar characteristics to the IPTC columns 

described in Chapter 3, just on a larger scale: a wooden circle to fit the inside of the 192-mm column as 

well as a pole to support the apparatus, a PVC pipe with string and a weight.  The number of drops as 

well as the J/m2 were kept consistent between the columns discussed in Chapter 3 and Chapter 4.  To 

maintain these parameters, a different height and weight was used in the columns discussed in Chapter 

4.  In Chapter 3 a weight of 1.558 kg were lifted 127 mm while 2.646 kg was lifted 170 mm in Chapter 4.  

All columns described in this chapter were exposed to 49 J/m2.   

After several failed attempts at liquid flow through a column with only gravel at the top and 

bottom of the columns, a new approach was successfully implemented (see Figure 4.7).  Three columns 

were used for analysis to create triplicates.  Each column had an even distribution cap to allow flow 

through the entire column.  Beneath the cap lay 40 mm of gravel.  Beneath the 40-mm of gravel lay 20 

mm of sand to enhance liquid distribution of flow prior to entering the manure column.  The gravel was 

Quickrete Gravel in a 22.7 kg (50 lb) bag purchased from Home Depot with an average dimeter of 10 

mm.  The “sand” was a crystallized glass with uniform diameter.  A 50 mm2 mesh (MSC Supply) was 

placed underneath the sand layer to allow more liquid distribution.  The columns had 0.70-m of manure 

that was compacted with 49 J/m2 of energy in lifts of 100 mm.  Each lift had a layer of 50 mm2 mesh 
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between it to ensure structural stability and allow for flow pathways within the substrate.  Bulk density 

was not measured because the compressed samples were impossible to extrude from the column 

without changing the energy applied.  At the bottom of the manure were another 40 mm of gravel, 

followed by a final 50 mm2 mesh to prevent gravel entering the effluent tube, and a single outflow for 

leachate collection (Figure 4.7). 

 
 

Figure 4.7. Schematic and Photo of Column 
 

4.2.1.7 Tracer Tests 

Three tracer tests were conducted through the course of the 6 week experiment.  One was done 

the second day of the experiment to try to gain an understanding of the hydraulics shortly upon 

initiation of liquid flow through the columns.  The second was performed a week later on Day 9.  The 

third tracer test was done once it was determined no more digestion could occur in the columns based 

on stabilization of the effluent COD content (Day 53).   

Rhodamine dye was attempted in a previous tracer test, but the dye absorbed too much to be 

effective as indicated by very low mass recovery of rhodamine input.  The rhodamine dye was used in 9 
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previous experiments on landfill leachate systems (Oni et al. 2009).  The bromide salt was dissolved to a 

concentration of 5 g/L in RO water.   A 10 mL dose was added to the tracer injection line for a mass 

addition of 50 mg.  Usually potassium bromide is used in tracer tests to ensure the sodium will have no 

negative impacts on the hydraulics of the substrate.  However, potassium bromide was not as readily 

available and the original concentration of sodium in manure is 1.1 g/L (Fang et al. 2011).  This means 

the initial mass of sodium was approximately 1.02 kg (2.25 lbs) in one column of manure.  Only 50 mg 

were added in each tracer test.  Such a small plug followed by 20 mL/min of reduced ORP water for 36-h 

suggests the impact of the sodium was negligible.  However, it is recommended that all future 

experiments should be conducted with potassium bromide.   

The injection was monitored over a 36-h period.  The duration of monitoring was based on 15 (5 

triplicates) preliminary tests that showed a minimum of 60% of the mass injected or more leached.  

Bromide is present in the waste material, and to account for this a leachate sample was collected the 

night previous to the experiment for estimation of a baseline concentration of bromide.  During the first 

3 h, samples were collected every hour.  For the following 6 h (hours 3-9), samples were collected every 

30 min.  This was done so that a large number of samples would be available near the expected time of 

peak concentration leaching.  After hour 9, the frequency returned to every hour for another 3 h (hours 

9-12).  At hour 12, the frequency decreased to samples every 2 h for another 2 samples (hours 12-16).  

From hour 16 to the end of the test (hour 32) samples were collected every 4 h.  For the third tracer test 

(Day 53) samples were collected every hour for the first 8 h, and every 2 h until hour 14.  After that, 

sampling followed the pattern described above. 

In previous experiments, water was observed to exit the columns in periodic plugs rather than at 

a consistent flow rate.  Therefore, instantaneous samples were deemed not meaningful and samples 

were collected as composites instead the samples were collected over the entire time between 

sampling times as opposed to instantaneous sampling.  The impact of inconsistent flow is that the 
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effluent concentrations become variable.  That is to say varying effluent flow rates flush the tracer 

inconsistently, rendering instantaneous sampling obsolete.  The observed flow out of the columns was 

not the same as the flow supplied to the columns. By compositing the samples, the variable 

concentrations were compiled over time to evaluate whether the columns do not experience drastic 

differences in concentration over the 36 hour period.   

At each sampling interval, the volume leached over the sampling period was recorded, thus 

providing an estimate of flow out of the columns.  The conductivity was also taken to estimate how 

much salt had exited the column.  The bulk sample collected over the sampling interval was collected in 

a carboy under the 3-way valve.  The carboy was then weighed, shaken to ensure a mixed sample, and a 

10-20 mL sample was placed in a sample tube to be analyzed for bromide.  After the tracer test, samples 

were stored in an 11⁰C room until they could be analyzed using ion chromatography (IC) (Metrohm 861 

Compact IC with a 0.45µm filter).   

Tracer tests were conducted in three replicate columns.  All samples from the Day 2, Day 9, and 

Day 53 tracer tests from Column A were analyzed to gain a detailed understanding of what had 

occurred.  All of the samples from Column A, Column B, and Column C were analyzed by IC in the Day 53 

tracer test.   In order to not waste resources, ten samples (45% of the 23 samples collected in the 36-h 

experiment) were analyzed from Column B and Column C for the Day 2 and Day 9 tracer tests.  To figure 

out how much of each sample to add to the IC injection number, the total volume leached over the time 

interval was calculated.  The percentage of volume of each individual sample was calculated as a 

percentage of the total volume leached for each time interval.  This volume was the percent of each 

individual sample that was added to the IC injection number and run through the IC machine. 

Residence time distribution (RTD) curves were calculated based on tracer test data where E(tMi) 

is the probability that 100% of mass applied will exit over the sample time interval (Equation 4.1) 

       
     

  
 4.1 
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where: E(   ) = residence time distribution function (h-1), tMi = midpoint time in the composited sample 

time interval (h), Qi = flow over the sample time interval (averaged because it is a composite sample) 

(L/h), Ci =concentration of sample collected over sample time interval (mg/L), MT = Total mass exiting 

the column during the tracer (mg). 

 These equations differ from traditional RTD determination in that typically the concentration at 

a discrete time t is utilized.  Here, samples were composited due to high variability of effluent flow rate.  

Based on E(t),    can be calculated by Equation 4.2. 

                           4.2 
 

where:    = mean residence time, E(t) = residence time probability distribution, tMi-1 = time at the 

midpoint of the previous sampling interval.  

Figure 4.8 demonstrates the observed surges in effluent flows.  The point where the sample is 

shown on the graph is the midpoint in the time interval of the composite sample.  A plastic carboy 

(approximately 22.7 L (5 gallons)) was utilized to collect the effluent from the columns.  The 3-way valve 

at the effluent was turned from draining to the effluent manifold to draining for sampling.  At the end of 

each time interval, the carboy was weighed.  It was assumed that the leachate had the same density as 

water.  This is how the volume leached was calculated.   

 After each carboy was weighed, a sample was taken for IC analysis.  The carboys were then 

emptied into the drainage basin where regular flow ends.  Each carboy was rinsed with tap water before 

being put back under the column.  While the carboy was being sampled, emptied, and rinsed, another 

carboy was placed under each column so in order to avoid losing any flow or tracer. 

 



47 
 

 
Figure 4.8. Day 2 Effluent Flow Over the 36 Hour Experiment 

 
 The data were also analyzed based on the percentage of the tracer plug injected exited the 

column.   It was decided that the cumulative mass would be evaluated.  The way this was calculated was 

the total mass that was injected, called Mass I, was assumed to be 100% of what could possibly exit the 

column.  The mass of the first time interval (concentration reading from the IC multiplied by the effluent 

volume during that time interval), called Mass X, was added to the mass of the second time interval, 

called Mass Y.  The sum of these numbers was called Mass Z.  Mass Z was then divided by the Mass I to 

give the percent accumulated in the effluent over the entire time period.  The mass of the third interval, 

Mass N, was then added to Mass Z to create Mass F.  Mass F was then divided by Mass I to get the 

percentage of total injected mass that had exited the column up until the end of the third time period. 

The process continued until the all of the time intervals were added.  The final percentage is how much 

mass leached from the column divided by how much mass was initially injected. 

 The hydraulic loading rate (HLR) remained constant throughout the entire experiment.  Equation 

4.3 shows how HLR is a function of flow into the column and the cross sectional area to receive that 

flow. The HLR is representative of the velocity of water that moves through the column. 

0 

2 

4 

6 

8 

10 

12 

14 

16 

18 

20 

0 5 10 15 20 25 30 35 40 

Fl
o

w
 (

m
L/

m
in

) 

Time (h) 

Column A 

Column B 

Column C 



48 
 

    
   

 
 4.3 

 
where:     = (m/d), Qin = flow of water into the column (20 mL/min), A = cross sectional area of the 

column (0.032 m2).  .  Equation 4.4 shows the calculation of the ratio R.  This ratio is a ratio of the 

superficial velocity to the HLR.  The HLR (0.88 m/d) is representative of the velocity of water to the 

column assuming the flow is distributed through the entire cross sectional area of the column.  If the 

ratio R is greater than one, the flow distribution is evenly distributed.  If the ratio R is less than one, the 

flow is not evenly distributed and moves rapidly through the column due to preferential flow paths.  

  
  

   
 4.4 

 
where R = ratio R and SV is the superficial velocity.  The SV is calculated in Equation 4.5. It is a function 

of the mean residence time for each tracer test and the length in the column.  This calculation assumes 

uniform flow through the column. 

   
  

 
 4.4 

Where L = length of the column (m). 

4.2.1.8 Free Drain Volume 

An experiment was designed to understand how much volume will drain after water is no longer 

being delivered to the system.  This helps to understand how much liquid flows through the system 

during operation.  Water was turned off at the end of the six week period.  The water leached out was 

collected until no water drained in a 30 minute period.  This experiment ran for 55 h and 12 min.  That is 

to say it took 55 h and 12 min from the time water stopped being delivered to the column to when it 

stopped draining for a 30-min period.  

4.2.1.9 Liquid Holding Volume 

Liquid holding volume was determined to understand how long it takes ponded water to drain 

through the column.  The 3-way valve was shut off and the columns were filled with water.  The water 

ponded approximately 40 mm deep and was allowed to drain so that each column had water flowing 
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out the bottom, or the entire column was wet and draining.  The 3-way valve was closed a second time 

and the columns were once again filled with water to approximately the 100 mm mark above the gravel.  

The valves were turned to flow to a carboy, and the water was allowed to exit the column.  The height 

difference was calculated over time (see Figure 4.9) by drawing a line directly onto the column and 

documenting the time the line was drawn.  The volume leached out over the experiment was recorded. 

 
Figure 4.9. Free Drain Volume Experiment 

4.3 Results and Discussion 

4.3.1 Tracer Tests 

Liquid distribution media (sand and gravel combination) proved to dramatically enhance flow.  

Four full scale experiments were put together previous to this experiment set and failed within a week 

prior to the addition of sand.  Other researchers have struggled to maintain flow through manure for 

more than a week (Myint and Nirmalakhandan, 2009).  Here flow was sustained for six weeks.  The 

average influent flow was maintained at a constant 20 mL/min.  The sand created a dispersion surface 

that was essential for the manure to accept the water.  Further investigations are necessary to fully 

understand how this worked.  Visually the sand dropped into channels at the commencement of water 

flow.  It appeared as though this was the beginning of channelized flow.  The manure seems to need a 

highly permeable substance to get water flowing due to variability along the wetting front (Coppola et 

al. 2009). 
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Channelized, or non-uniform, flow occurred in every column and every test as shown in Figures 

4.8 and 4.10.  Figure 4.8 shows the initial tracer test, and the Figure 4.10 shows flows for the next tracer 

a week later.  The effluent flow is much larger during the Day 9 tracer test compared to the Day 2 tracer 

test.  This could be attributed to start up conditions.  The column was wet, but not every flow path had 

been utilized by the time the tracer started.  This could also be preferential flow; the water may have 

been trapped in various pores and needed more time to flow through. 

 

 
Figure 4.10. Sporadic Flow Through Each Column During Day 9 Tracer Test 

 
Tailing of the curves was noted in all cases (Figures 4.11A, 4.11B, 4.12A, and 4.12B).  Such tailing 

is characteristic of plug flow with dispersion.  Tailing here is also likely a result of channelized flow and 

interaction between free flowing liquid and dead or stagnant zones, indicating preferential flow 

channels (Coppola et al. 2009) over the course of the tracer study.  

According to Coppola et al. (2009), preferential flow has four characteristics: (i) preferential flow 

in real macro-pores, (ii) preferential flow in inter-aggregate pores, (iii) fingering due to the instability on 

the wetting front; and (iv) preferential flow due to spatial irregularities or temporal dynamics in soil 

wettability.  All four of these characteristics were likely in these systems.  The non-uniformity of the 

wetting front creates a preferential pathway for the water to flow.  This pathway is utilized until it 
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erodes and collapses.  Then the column fills with water until a new channel is created.  Water still drips 

from the previous channel, but only due to the sponge-like characteristics, or inter-aggregate pores, that 

still drip. 

The data from the Day 2 tracer had a much higher concentration of bromide compared to the 

Day 9 tracer (Figure 4.11A) and inability to observe a comprehendible RTD peak in column B.  Slight 

traces of bromide can be found in manure and flush out with the initial flush of tannins.  It appears that 

this tracer test was conducted before the system had time to totally flush.  The background bromide 

concentration was 14.4 mg/L in the initial leachate sample.   This concentration was too high to discern 

elution of bromide input from the tracer test.  It would appear as though the peaks are when 

channelized flow flushes.  When comparing the concentration data to the flow data, there is a parallel 

between when concentration has a high peak and when flow experiences a peak.  The data from this 

test are considered invalid.  However Figure 4.10A shows the initial concentration at 0 mg/L as well as a 

bell curve trend.  

 
Figure 4.11A. Concentration Over Time Leached During Day 9 Tracer Test 
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Figure 4.11B. Concentration Over Pore Volumes Leached During Day 9 Tracer Test 

 
 When observing the differences between the Day 9 (Figures 4.10A and 4.10B) and Day 53 tests 

(Figures 4.11A and 4.11B) one can note that a higher concentration left earlier in the experiment in the 

Day 53 tracer test, but the peak was not as drastic as in the Day 9 tests.   The Day 53 tracer test showed 

that it takes many more pore volumes for the tracer to exit the column.  However, when compared to 

the cumulative mass figures, more mass exited over the 36 h experiment in the Day 53 tests.  These 

concepts most likely show a retardation of flow due to dead pore spaces.  These areas allow flow in, but 

not out.  In a complicated matrix such as manure, these zones are common (Rosqvist and Destouni 

2000).  The dead zones trap the tracer.  The more frequent the dead pore spaces, the less mass of the 

tracer will exit the column.   

 When looking at the concentration plots in terms of pore volumes, it appears as though the 

columns experience preferential flow.  The peak concentration occurs well before the first pore volume 

leaches from the column.  However, the number of pore volumes leached to reach the maximum 

cumulative mass leached is more than one for every experiment.  Table 4.1A shows how the peak 

concentration occurs before one pore volume exchange and 4.1B demonstrates how the maximum 
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cumulative mass leached occurs after one pore volume.  This lends to the explanation that dead zones in 

the manure are causing a portion of the tracer to exit the column well after the peak has exited.  

 On that note, in the all of the tracer data there are large fluctuations in concentration after the 

peak concentration exits, supporting the idea that some tracer does not exit with the peak 

concentration.  Some of the tracer appears to follow a different path that experiences a slower flow 

rate. 

Table 4.1A. Number of Pore Volumes to Reach Peak Concentration 

Tracer Column 

Peak 
Concentration 

(mg/L) 

# Pore Volume 
Exchanges 

Day 9 

A 16.16 0.641 

B 3.65 1.03 

C 6.51 0.59 

Day 53 

A 9.32 0.23 

B 5.74 0.24 

C 2.49 0.47 

 
Table 4.1B. Number of Pore Volumes to Reach Maximum Cumulative Mass 

Tracer Column 

Max. Cumulative 
Mass (%) 

# Pore Volume 
Exchanges 

Day 9 

A 95% 1.58 

B 29% 1.29 

C 48% 1.14 

Day 53 

A 89% 1.56 

B 76% 1.59 

C 34% 1.02 
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Figure 4.12A. Concentration Over Time Leached During Day 53 Tracer Test 

 

 
Figure 4.12B. Concentration Over Pore Volumes Leached During Day 53 Tracer Test 
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leached over a time interval.  The mass was then divided by the total mass injected to the columns.  The 

first time interval mass was added to the second interval mass and divided by the initial injection mass 

0 

2 

4 

6 

8 

10 

12 

14 

16 

18 

0 5 10 15 20 25 30 35 

C
o

n
ce

n
tr

at
io

n
(m

g/
L)

 

Time (h) 

Column A 
Column B 
Column C 

0 

2 

4 

6 

8 

10 

12 

14 

16 

18 

0 0.5 1 1.5 2 2.5 

C
o

n
ce

n
tr

at
io

n
(m

g/
L)

 

Pore Volumes 

Column A 
Column B 
Column C 



55 
 

and so on for all the time intervals.  In tracer studies, it is rare to observe 100% of the injected mass.  

The percentages shown here are consistent with the literature where 55-70% recovery was achieved 

(Rosqvist and Destouni 2000 and Oni 2009), excluding Column B in the second tracer and Column C in 

the third tracer.  It is expected that tracers at least 55% of tracers applied will be leached.  However, due 

to preferential flow, it is possible that salt became trapped in a dead zone or was absorbed by an 

aggregate and kept in the inter-aggregate pores.  These salts may take days to exit, or could stay locked 

up in the dead zones (Coppola et al. 2009). Given the difficulty in maintaining consistent flow through 

manure columns (Myint and Nirmalakhandan, 2009 and Demirer and Chen, 2008) and the inconsistent 

outflow observed (Figures 4.11-4.12) in these studies, the mass recovery is considered acceptable to 

determine    in the columns. 

 Column A consistently discharged more mass over the entire 36 h experiment than any other 

column (Figure 4.11-4.12).  This phenomenon does not start, however, until the experiment has run for 

7 hours.  It was the closest to the distribution manifold, which probably means it received the most 

consistent flow of ORP water.  Columns B and C both operated with notable variability.  However, they 

had fewer samples analyzed.  Column C was the farthest from the manifold, but seemed to have 

received relatively consistent flows.  A device ensuring continuous constant flow to the columns should 

be used in future studies. 

 The plots of pore volumes show that the majority of the tracer exited the column before an 

entire pore volume had exited the column.  The Day 9 and Day 53 tracer tests both had their peaks 

occur between 0.5 and 1 pore volumes.  This could possibly be attributed to channelized flow and leads 

to the speculation that preferential flow is present in the columns. 
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Figure 4.13A. Percent Cumulative Mass in Day 9 Tracer Over Time 

 

 
Figure 4.13B. Percent Cumulative Mass in Day 9 Tracer Over Pore Volumes 
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Figure 4.14A. Percent Cumulative Mass in Day 53 Tracer Over Time 

 

 
Figure 4.14B. Percent Cumulative Mass in Day 53 Tracer Over Pore Volumes  
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the Day 9 and Day 53 tracers.  As mentioned in Section 4.2.1.7, if the ratio R is greater than one, the flow 

distribution is evenly distributed.  If the ratio R is less than one, the flow is not evenly distributed and 

water moves rapidly through the column.  Table 4.2 shows that the ratio R is greater than one for all 

cases, indicating that the flow is evenly distributed across the column and in many cases retarded, likely 

due to presence of dead zones as previously discussed.  However, a small HLR was applied to the 

columns.  It is possible with a higher HLR the columns would show a less uniform flow.  Upon visual 

inspection flushes of leachate would leave the column in a short time frame.  It is possible that the flow 

is evenly distributed over a long period of time, but in the interim, the column experiences a retardation 

in flow due to the presence of dead zones. 

Day 53 had a    value of 9.1 hours, while Day 9 had a    value of 5.7 hours.  There was also slightly 

more variability in the Day 9 tracer.  The standard deviation is 1.8 for Day 9, while for Day 53 the 

standard deviation is 1.7.  This shows that the time it takes for a molecule of water to pass through the 

column gets smaller as the experiment continues.  It was thought that with biological growth and the 

consumption of the large fragments, the    value would decrease over time.  That is to say more 

biological growth would occur and clog the system over time.  

Table 4.2.    and R for Each Tracer 

 

A paired, 2 tail, t-test was conducted for the data from the Day 9 tracer as compared to the Day 

53 tracer.  The null hypothesis assumed that the Day 9 tracer    value was significantly smaller than the 

Day 53 tracer   .  A t-test was chosen to evaluate the significance of the difference between the Day 9 

Tracer # Column

Mean 

Residence 

Time (hr)

Superficial 

Velocity 

(cm/hr)

Average  

(hr)

Standard 

Deviation
Ratio R

A 9.0 7.5 2.035913

B 7.2 9.5 2.555643

C 10.9 6.6 1.77387

A 5.6 12.2 3.296891

B 7.4 9.2 2.493385

C 4.1 17.5 4.71935

9.1

5.7

1.8

1.7

2

3
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and Day 53    values because the data showed a normal distribution and a null hypothesis was defined.  

The t-test gave a probability of 0.24, indicating that the Day 9 tracer a slightly larger    was observed, but 

the difference was not statistically different at the 95% confidence interval.  The difference could 

possibly come from channelized flow.  Channels are built and over time they get larger, allowing more 

flow to pass through the column faster.  This may not always be true, but seems to be the case in the 

columns tested. 

 Tracer injections were also difficult.  The plumbing was added after the system was constructed 

and was not built as well as it could have been.  It is possible that not 100% of the tracer entered the 

column.  Pressure would build up in the tracer injection line, and a little bit of the tracer would get 

rejected and sprayed all over the heated room at the initial injection.  This would partially explain low 

recovery values.  Manure also absorbs salts well.  Additionally, it is possible that some of the salt stayed 

in the column locked up in the aggregate or in dead zones.  Unfortunately the bromide concentration 

was not recorded in the manure at the end of the experiment due to budgetary constraints.  However, 

the recovery of bromide was consistent with what the literature states (Oni 2009). 

4.3.2 Free Drain Volume 

In trickle flow reactors it is common to determine the free drain volume.  The free drain volume 

experiment test how a volume of water leaches through the column without water addition at the top.  

In Table 4.3 the data were collected over 55 h and 12 min.  The average volume leached was 4.8% of the 

total volume in the column.  The volume leached was 7.2% of the total voids in the column as 

determined at initiation of column experiments.  The available void space at the time was unknown 

however.  It is possible the void space decreased due to biological breakdown and shearing of larger 

fragments.  However, these values do show how little water passed through the column with no 

additional water on top. 
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Table 4.3. Free Drain Volume Results 

 
4.3.3 Liquid Holding Volume 

Another common test is to observe leaching in a reactor when water is placed on top, causing a 

large differential in the hydraulic head across the column.  The columns are allowed to pond and then 

drain.  These experiments took minutes, as opposed to the free drain volume test which took days.  Data 

similar to those presented in Table 4.4 could be collected for columns operated in future experiments 

where bulking agents (straw or wood chips) are added to manure to compare hydraulics.  Each column 

started with 20 liters of water ponded on top.  Approximately 20% of the water in each column exited 

during the experiment (Table 4.4).  The data, coupled with the free drain volume data, shows that the 

difference in head across the column impacts the flow of water.  Water flowed faster when the column 

had ponded water on top.  This could potentially prove important in large scale systems.  Further 

investigations should be made into the impacts of head differential across the column. 

Table 4.4. Liquid Holding Volume Results 

 
 
 

A sealed double ring infiltrometer (SDRI) test could not be performed to measure the exact 

permeability because the samples could not be fully saturated.  If the samples could be fully saturated 

with air and water, a connection between the permeability values reported in Chapter 3 could be made.  

Another way to discover the missing connection between intrinsic permeability and hydraulic 

performance is to perform an instantaneous profile experiment.  In this experiment, tensiometers are 

placed at various elevations on the column (Chiu 2000).  These researchers tested the suction front to 

Column

Free Drain 

Volume (L)

A 0.946

B 1.036

C 0.949

Column

Average 

Draining Rate 

(cm/s) Time (min)

Volume 

Leached 

(L)

A 0.021 9.42 3.942

B 0.011 22.22 3.642

C 0.014 14.02 3.852
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estimate the permeability.  However, in the experiment mentioned, the soil was uniform and poorly 

graded.  The mentioning of uniformly and poorly graded refers to a soil that does not vary drastically in 

size.  Manure tested in these experiments was non-uniform and well graded.  The uniformity in the soil 

makes the wetting front uniform across the sample.  In the well graded material used for these 

experiments, it is possible the wetting front would need tensiometers at numerous points to model the 

porous matrix. 

4.4 Conclusion 

As far as can be determined, this is the first operation of a leachate bed reactor in this 

laboratory containing manure where liquid flow could be sustained for more than one week.  Here, flow 

was maintained for six weeks.  The sand and gravel mixture at the top of the reactors seemed to 

disperse liquid flow adequately at the top of the reactor, enabling sustained liquid flow.  Several 

hydraulic parameters were determined.  These experiments provide information on the hydraulics of 

leachate bay reactors containing manure only.  This data can be compared to data collected from 

columns containing manure and bulking agents such as straw or wood chips in the future. 

When tracer tests were conducted most of the injected salt passed through the column in less 

than one pore volume exchange.  However, tailing was observed in residence time distribution curves 

and complete mass recovery was not observed.  This indicates the presence of dead zones within the 

manure packed columns.  The ratio R was greater than one indicating uniform flow, which was 

unexpected.  The number of pore volume exchanges was less than one for each experiment over a 36 

hour period.  This indicates retardation of flow, consistent with presence of dead zones.  Also, only 20% 

of the flow exited in the equilibrium holding volume experiment.  Reactor performance could be 

enhanced by finding ways to eliminate reactor dead zones thus improving hydraulics.  Future research 

could address this issue.  The estimated value of     decreased over the duration of the experiment 
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indicating that water flows through the manure faster over the duration of leachate bed reactor 

operation. 

The free drain volume was a small portion of the total volume (4.8%) and pore volume (7.2%).  

While the experiment was being conducted, it appeared as though the water was lacking a change in 

gradient to exit the column.  It seemed as though the manure soaked up what water was in the column, 

much like it did when the manure created a slurry.  The free drain and liquid holding volume 

experiments show how little water passes through the column when no water is added to the top.  This 

lends toward the philosophy that the head differential across the column may be an important aspect to 

study. 
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5.0 SUMMARY AND CONCLUSIONS 

5.1 Intrinsic Permeability Summary 

In the Intrinsic Permeability Study, air was used as a media to flow through manure because 

manure becomes relatively impermeable when it is completely saturated.  The intrinsic permeability 

was found using an equation derived from Darcy’s Law.  Manure was compressed to simulate a full scale 

operation where manure would be stacked in tall columns in the proposed multi-stage high solids 

digestion reactor.  Intrinsic permeability was determined at various compressions.  When manure was 

compressed at less than 49 J/m2 permeability was highly variable. The variability in the compression and 

k data can be attributed to air voids.  The uncompressed manure contained 31.95% air.  This is also the 

reason behind why compacted samples have less variability.  No water exited the columns during 

compaction, indicating the volume decrease was entirely due to the reduction of air.  The main message 

from the compression data are that a little compression makes a large impact and a lot of compression 

is not necessary.  Once manure is compacted, it is difficult to compact it more. 

 While the bulking agents increased k, the impact was not notable.  Straw increased k more than 

wood chips.  However, further experimentation is needed to understand the impact on   .  

Unfortunately, there was not time to operate leachate bed reactors with liquid flow containing manure 

and straw combinations.  Straw should be used as the bulking agent of choice in future experiments 

based on the k values. 

While removing small fragments (<4 mm) showed benefit for increased intrinsic permeability, a 

large portion of fragments needed to be removed (50% at a minimum) before a real benefit to 

permeability was observed. Hydraulic studies on manure with the smallest fragments removed could be 

performed to truly understand the impact on the anaerobic digestion system. However, this process is 

not likely to show economic benefit since most of the material would not be anaerobically digested to 

produce methane. In addition, operation of the leachate bed reactors (Chapter 4) showed that liquid 
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flow could be sustained in columns with the addition of sand at the top of the reactors. The idea of 

removing small fragments from manure prior to loading manure into leachate bed reactors will not be 

investigated further.  

5.2 Hydraulic Characterization  

The dispersion media proved to be the most beneficial addition to sustain long term flow. Long 

term flow is necessary to enable sufficient hydrolysis of manure to liquid leachate such that enough 

methane can be generated from this process for economic benefit. Adequate dispersion of fluid across 

the top of the manure column prevents slurry formation.  Further investigations are necessary to fully 

understand how this works.  The sand was observed to drop into channels at the commencement of 

water flow.  It appears as though this was the beginning of channelized flow.  The manure seems to 

need evenly distributed flow to prevent slurries from forming that prevent the passage of water over 

time.  The sand that flowed into the manure column may have also helped to maintain the structure of 

the manure, enabling liquid flow through the system. 

As far as can be determined, this is the first time hydraulic parameters for trickle flow through 

manure could be characterized because this is the first time flow could be sustained for more than one 

week.  Previous experiments failed in less than one week.  The free drain volume was a small fraction of 

the pore volume in the total column.  The fact that so few pore volumes exited the column indicates 

severe retardation within the column that can be attributed to dead zones.   Also, the residence time 

distribution plots show the tracer leached from the columns in less than one pore volume.  This is 

another indication that preferential flow was present. 

The    values decreased over time.  This was the opposite of what was speculated.  It was 

thought that biological growth and degradation of the substrate would lead to less pore space and 

larger   .  However, the increase in    could possibly come from channels in the manure getting larger over 

time and allowing more flow to pass.  Tailing was observed in residence time distribution curves and 
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complete mass recovery was not observed.  This indicated the presence of dead zones within the 

manure packed columns.  The ratio R shows that the flow through the column was retarded because the 

ratio R was greater than one for every tracer test, consistent with the presence of dead zones.  If a 5-min 

experiment was done it is possible the flow would be less evenly distributed.   

The free drain and liquid holding volume experiments showed that the amount of water on top, 

or the difference in head across the column, impacted the velocity of water through the column.  With 

no water on top of the column, no water exited the column. 

5.3 Comparison of Intrinsic Permeability and Mean Residence Time Experiments 

A sealed double ring infiltrometer (SDRI) test could not be performed to find the exact 

permeability because the samples could not be fully saturated.  If manure samples could be fully 

saturated with air and water, a connection between the permeability values reported in Chapter 3 and 

the hydraulic studies in Chapter 4 could be made. 

Another way to gain this connection is to perform an instantaneous profile experiment.  In this 

experiment, tensiometers are placed at various elevations on the column (Chiu 2000).  In the 

experiment mentioned, the test is intended to determine the suction front to determine the 

permeability.  However, as mentioned previously, the soil was uniform and poorly graded, unlike the 

manure tested in these experiments.  It would be a great challenge to try and understand a uniform 

suction front across such a variable substrate. 

5.4 Future Work 

The experiments should be performed with a SDRI and tensiometers to observe the characteristics 

of the wetting front.  There is no proof that the channels in the manure clog while another is broken 

open.  This is simply speculation.  Knowledge of how the manure is getting wet and how much suction 

occurs along the wetting front is crucial to understanding the hydraulic conductivity.  When this test is 
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performed, more traditional soils methods can be implemented, and the actual hydraulic conductivity 

can be calculated with this knowledge. 

Tracer tests should be performed on manure combined with other media (straw or wood chips).  

The impact of straw and wood chip additions on intrinsic permeability was minimal, but the impact on 

the hydraulic characteristics is unknown.  It is also possible that the addition of bulking agents could 

improve the methane production of the system as well by adding a more biologically available nutrient 

source.  Both the hydraulic characteristics and the impact on anaerobic digestion should be 

investigated with additional substrates.  Tracers should also be conducted with potassium bromide as 

opposed to sodium bromide to avoid possible dehydration of the manure columns over time.   

Some improvements for future tracer tests on manure columns would be beneficial and produce 

more reliable data. The discharge manifold clogged frequently.  When the system was set to drain in the 

sample carboy, a flush of leachate would leave the column.  This made taking a grab sample difficult.  

The column had to be set to drain several minutes before a sample could be collected.  A more effective 

drainage plan should be constructed for future experiments.  Using a hose does not work well for 

drainage; it frequently kinks and does not fit well under the raised floor.  The effluent tubing also had 

problems with air locking.  To solve these problems, the manifold should be placed closer to the effluent 

and in the middle of the columns as opposed to on one side.  A smaller tube should be used for the 

effluent in order to fit under the raised floor. 

The biological impact on pore spaces should be investigated.  The quantity of substrate consumed 

as well as the intrinsic permeability after the experiment is completed is crucial.  The intrinsic 

permeability was not measured after the experiment was completed because the wet manure sprayed 

everywhere and an accurate reading could not be obtained.  Another form of finding the intrinsic 

permeability will be necessary. 
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The free drain and liquid holding volume experiments take less time than the tracer tests and 

possibly prove a valid point.  The data found during these experiments showed that the potential for 

water to move across the column increases if there is ponded water on top of the column.  Further 

investigations into the impact of the difference in head across the column should be conducted. 

Now that water will go through a column of manure, will leachate?  This is the final question that 

needs to be addressed.  The first flush of leachate is very viscous and could clog pore space or the sand 

and gravel in the column.  The next step in this research is to investigate how the leachate will impact 

hydraulics. 
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