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ABSTRACT OF DISSERTATION

THE EVOLUTION AND STRUCTURE OF COMPOSITE MESO-ALPHA-SCALE
CONVECTIVE COMPLEXES

The CSU Regional Atmospheric Modeling System (RAMS) data assimila-

tion and analysis package is implemented to study the evolution and the

structure of composite Meso-Q-scale Convective Complexes (MCCs). Seven

years of North American MCC cases are sampled and normalized into seven

evolutionary sub-periods according to the temporal life-cycles of the

storm systems.

The composite MCC shows some general features, such as the lower-

tropospheric convergence and cyclonic vorticity associated with the

upper-tropospheric divergence and anticyclonic vorticity during the

MCC's initial to mature stages, the cold-core structure in the upper

troposphere, and the characteristic warm core at middle levels. The

low-level convergence, aligned with the intensified cyclonic vorticity,

lifts and extends to the middle troposphere at the mature stage. A

middle-level jet-like inflow is accompanied by a strengthening middle-

level convergence which reaches its maximum intensity at the MCC's

mature stage. This middle-level jet-like inflow, located slightly above

the melting layer and near the lowest e level which might reinforce thee

downdraft.

The vorticity budget of the composite MCC shows that the residual

of grid-scale vorticity exhibits a vorticity sink in the lower tropo-

sphere and reaches its maximum intensity at the MCC mature stage. On

the other hand, a mid- to upper-level vorticity source exists during the

MCC early and dissipation stages. The imbalance can be attributed to
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the removal of vorticity-rich air from low levels and its upward tran-

sport and deposition aloft by convection.

The composite MCC exhibits a apparent heat source of 10-200 day-1

at about the 400 mb level and a moisture sink of -9 to -140 day-1

equivalent heating below the 700 mb level throughout most of the MCC

life-cycle. The water vapor bUdget of the composite MCC indicates that

water vapor is mainly provided by MCC-scale convergence and the atmos-

pheric storage term. At the MCC mature stage, the precipitation effi-

ciency reaches 113~ such that the moist atmosphere provides an extra 13~

from its storage, which is accumulated from the MCC early stages.

A hypothesized MCC evolution obtained from this composite stUdy

suggests that for system development to occur, the low-level convergence

must be aligned horizontally with the cyclonic vorticity pattern in the

presence of larger Convective Available Potential Energy and/or smaller

vertical wind shear.

Ming-Sen Lin
Dept. of Atmospheric Science
Colorado State University
Fort Collins, Colorado 80523
Fall 1986
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1.0 INTRODUCTION

During the months of June. July. and August. a period of the year

when daytime convective precipitation might be expected to dominate.

more than 601t of all precipitation falls between the hours of 2000 and

0800 local time within an area covering Nebraska. Kansas. Iowa. and

northern Missouri (U. S. Weather Bureau and U. S. Corps of Engineers,

1947). Althougb some investigators have assumed that certain physical

mechanisms must act to trigger storms in situ, satellite imagery clearly

illustrates the frequent movement of meso-a-scale convective complexes

(MCCs) across tll.is region during the nighttime (e.g., Maddox 1980, 1981;

Bosart and SandE~s 1981; Cotton et al., 1983a).

MCCs are Ule source of many summertime severe weather events across

North America. Maddox et ale (1979) found that significant flash floods

in the eastern t;wo-thirds of the U. S. often occur during the nighttime

hours of the sUJllmer season, and they suggested that MCCs are largely

responsible for this nocturnal flash flood phenomenon. A climatology of

heavy precipitaUon events investigated by Crysler et a1. (1981) also

showed that heavy precipitation events in Missouri and Illinois had a

maximum frequenclY near local midnight -- the time when MCCs normally

reach their mature stage. Despite the benefits of significant rainfall.

a variety of severe convective phenomena, including hailstorms,

tornadoes, elect;rical storms, and high winds, accompany MCCs and may

inflict a broad range of damage on industry. commerce. and agriculture

thrOUghout the High Plains during the summer season.
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Moreover. quantitative precipitation forecasts assoc:Lated with MCCs

have been a particularly difficult problem for operational numerical

weather prediction models. Maddox et a1. (1981) claimed~hat even if

synoptic-scale predictions are essentially correct. corre:3ponding

forecasts of the resul ting weather can still fail miserably. They found

that LFM model predictions not only did not correctly fOrl!Cast the

impact of organized. intense convective storms on the SOO mb level

vorticity and 200 mb level wind fields. but they also pro'V'ided very poor

quantitative precipitation predictions while the MCC developed. The

problem of forecasting and understanding the development. movement. and

eventual demise of intense convective weather systems has been

considerably complicated by the fact that the spacing of conventional

upper air observations has been far too coarse to observe the life-cycle

of such systems adequately. For instance. the separation of rawinsonde

stations is about 400 lcm. but the atmospheric circulatio[ls and features

associated with MCC convective weather are on the scale clf 10-S00 lcm.

These scales are usually detected by satellite or radar. but are not

clearly defined by the traditional rawinsonde data set alone.

As to the predictability of MCCs. there still exist some

controversies. Cotton (1983) noted that it is possible t;hat "once the

synoptic scale conditions set up a region which is ripe j'or the genesis

of HCC' s. any random set of diurnally-forced convective Elvents could

lead to the explosive development of an MCC." If indeed this is the

case. then the prediction of the genesis is likely to be a tractable

problem for us. However. "if it is necessary to predict the initiation

and evolution of the meso-~-scale disturbances. their mel:-ging processes.
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etc.", then the prediction of MCC genesis represents a major challenge

to meteorologistll.

The research described herein is an attempt to understand the

physical process~!s of the MCC evolution via a composite study. The

fundamental assmmption is that a composite analysis technique can be

used to detect the dynamic and thermodynamic mechanisms which control

the MCC life-cycle. It was postulated that an MCC forms in an

environment with synoptic- to meso-a-scale forcing having sufficient

moisture and pot1itntial instability to generate convective clouds and to

provide for thei]' up-scale development. Thus, MCCs result from quasi­

stationary trontiu or upslope flow which could produce the widespread

lifting needed t4) release existing potential instability. Furthermore,

some mesoscale mitchanisms are needed to concentrate the favorable high

moisture content and potential instability within a mesoscale region for

MCC initiation and development.

A background review of MCC climatology, evolution, and structure is

summarized briefly in Chapter 2. Data analysis and composite techniques

are described in Chapter 3. In Chapter 4, the detailed MCC's

climatology, kinematic structure, dynamics, and thermodynamics obtained

from the composite study are presented. The evolution of the MCC's

bUdgets are examined in Chapter S. Some favorable conditions which were

hypothesized to affect MCC genesis and development are then discussed in

Chapter 6. A conceptual model of MCC evolution is presented in Chapter

7; and finally, conclusions and recommendations are given in Chapter 8.



2.0 BACKGROUND

\

A rigorous dynamical definition of the MCC has yet to be adopted.

The term, MCC, first defined by Maddox (1980), refers specifically to a

system ot intense convection which is characterized by a. particularly

large, long-lived, cold-topped, and quasi-circular thick stratiform

cloud as observed by satellite. Thus, MCCs represent a relatively

consistent, better-defined, and probably more significant subset of

mesoscale convective systems (MCSs), a term that is defined only

generally by the scientitic community as referring to any system of

intense convection which is organized on the mesoscale.

2.1 MCC climatology

What are some of the climatological characteristics, ot MCCs?

According to Maddox's (1981) definition of an MCC, the areal extent of

•infrared (IR) temperature i -32oC and i-530 C must be 2. 100,000 and 2.

50,000 km2, respectively, tor a period 2. 6 hours. Furth.ermore, the

eccentricity (minor/major axis ratio) of the cloud shield must be L 0.7

at the time of maximum size. Based on these areal and temporal

criteria, he found that about one-third ot the MCCs he E~amined (23 of

71 cases) had their origins over the Rocky Mountains or their eastern

slopes (such systems are referred to as "orogenic" in 1~his study,

i.e., "mountain-born"). The other two-thirds ot his M(:Cs (48 ot 71

• From an enhanced MB curve described by Clark (1983), the value
should be -530 C instead ot -52oC
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cases) initiated over the Plains. The preferred location for MCC

occurrence was over the south-central states during April to June. As

the warm season progressed. the favored region shifted slowly northward;

by July and Augu;:lt the systems primarily affected the north-central

states.

In addition. Maddox found that the average times of occurrence of

the MCC' s first ·~hunderstorms. MCC initiation. maximum extent. and

•termination were 2000. 0145. 0730. and 1230 GMT • respectively (1400.

1945. 0130. and 1()630 LT. respectively). He empbasized tbat tbe first

tbunderstorms typically developed during tbe afternoon, and an average

of 16.5 bours el,!psed between tbe development of tbe first tbunderstorms

and the beginniD.l~ time tbat the MCC decayed. In tbe same study. he

noted tbat tbe ~,erage area of cloud top temperature ~ -32 °c at maximum

extent was 300 X 103 km2 •

2.2 Simllaritie;s and differences between MCCs and otber MCSs

Meso-a-scall' (Orlanski. 1975). convectively-driven weather systems

can be furtber classified according to their pbysical cbaracteristics

and organization as "linear types" and "circular types". Bosart and

Sanders (1981). I~ddox and Doswell (1982). and Wetzel et a1. (1983)

suggested tbat the continental middle-latitude MCC was in many large-

scale aspects mOl:"e akin to tbe oceanic tropical cloud cluster (Williams

and Gray. 1973; auprecht and Gray. 1976; Gray and Jacobson. 1977; Frank,

1978; McBride anet Zebr. 1981; Tollerud and Esbensen 1985; Lee, 1986)

tban to the mes~-a-scale mid-latitude squall line. They confirmed that

MCCs and tropical cloud clusters have similar structures such as

• 1,ocal Central :Standard lime (LT) is 6 h earlier than the univer-
sal time convent'lon used throughout this paper.
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overshooting top echoes and thick stratiform precipitation clouds shield

associated with the middle to upper tropospheric mesoscale updrafts.

They also demonstrated that these two systems exhibit a general

convergence throughout the lower to middle troposphere, and they showed

that a narrow layer of relatively strong divergence centered around 200

mb level is associated with the storm outflow. Wetzel et ale (1983)

noted that both systems attained their maximum upward vertical motion in

the upper troposphere. Maddox (1981) pointed out that MeCs, like

tropical cloud clusters, exhibit a warm core in the middle to upper

troposphere related to cumulus heating plus strong subsidence warming.

Gray and Jacobson (1977) and McBride and Gray (1980) preflented evidence

and showed that tropical cloud clusters reach maximum intensity in the

early morning; McAnelly and Cotton (1986) found similar f'esults for

MCCs. Moreover, Wetzel et a!. (1983) emphasized that MCC:s and tropical

cloud clusters generally exist in an enVironment having cL weak north to

south temperature gradient, such that meridional sensibln heat transport

is slight and the system is quasi-barotropic. In gener~., it is fair to

conclude that MCCs are something of a hybrid but are bas:Lcally more like

tropical cloud cluster systems than mid-latitude linear nystems.

When contrasting MCCs with other MCSs, Maddox (1981., 1983), FritSCh

and Maddox (1981), Sanders and Emanuel (1977), and Ogura and Liou (1980)

revealed that MCea had distinctly different dynamical stl:,ucture and

characteristics from the squall line. Often, strong for,~ing by vigorous

baroclinic waves with embedded surface fronts and jet st:reams forces

primarily squall-line-type organized convection. To soml! extent, the

pre-frontal squall line and the MCC represent opposing e:ads of the

spectrum of mesoscale system types. In general, a severl! pre-frontal
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squall line system is associated with a strong vertical wind shear

throughout the l,::>wer- to middle-atmosphere and with the line of active

convective cells oriented perpendicular to the lower-level wind shear

(Klemp and Wilhelmson. 1978). This contrasts to an MCC which occurs in

a weakly sheared environment and in which the active convective cells

are aligned in a variety of patterns (e.g•• arc-shaped or popcorn

convection pattern described by Leary and Rappaport. 1983) including

parallel to the :~id-level steering winds (Maddox. 1981). Furthermore.

pre-frontal squall lines are commonly associated with a stronger inflow

in the lower troposphere and outflow in the upper-level troposphere than

are MCCs. The squall line also has significantly drier air (low e ) ine

the mid-level of the troposphere. and are found to be vertically tilted

upshear.

2.3 Synoptic- to meso-p-scale features during MCC evolution

A frequent question related to MCCs is why do "look-alike"

synoptic settings sometimes support development of an MCC. but sometimes

not. What are the major dynamic and thermodynamic factors controlling

the gensis and development of MCC's? The evolution of an MCC from its

initiation through maturity to decay involves not only the synoptic- to

meso-a-scale. bu.t also the finer meso-p-scale features.

Conceptually. the evolution of any MCS depends on at least four

components: moisture content. conditional and potential instability.

lifting mechanisms. and the up-scale development (organization) of

neighboring meso-p-scale convective elements.

2.3.1 Moisture content

The importa.nce of low-level moisture convergence to the amount and

intensity of convective rainfall is well known (e.g•• Frank. 1978;
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Ulanski and Garstang, 1978; Tripoli and Cotton, 1980; Tae) and Simpson,

1984) • Frank (1978) found that large-scale convergence precedes the

formation of MCSs observed in the GATE area by several h(lurS. He

suggested that the large-scale convergence favors the buUdup of mid­

level moisture which allows the convection to survive th.~ drying

influences of entrainment. Ulanski and Garstang (1978) J'evealed that

surface convergence patterns nearly always precede the dl~velopment of

convective radar echo for periods as long as 90 minutes over southern

Florida. They suggested that the most crucial factor in determining the

amount of rainfall produced by a given storm was the siz,e of the area of

surface convergence. Based on investigations begun by Culverwell

(1982). Cotton et ale (1983a) investigated an episode of 1977 in which

MCCs occurred on 8 consecutive days. They found that the presence of a

deep moist atmosphere. that is. a lov-level flow of high moist content

associated with a mid-level flow of monsoon-like circula.tion. helped to

sustain the MCCs.

In order to efficiently support the large-scale mo:i.sture content to

develop an MCS. much of the moist inflow needs to be nar'rowed into

meso-a- to meso-~- scaled regions. This prooess is performed through

some forcing mechanisms (discussed in Seotion 2.3.3) su(m that a narrow

favored region is provided tor helping MCC development. For instance,

Banta (1984) and Banta and Barker (1984) claimed that a "leeside

convergence zone" propagated eastward from the Rockies against the

prevailing upslope flows and was deemed to be responsible for the

initiation and maintenance of cumulus cloud resulting ill the development

of MCS. Toth and Johnson (1985) also found that the mesoscale

convergence zone to the lee ot mountain barriers. operating on both the
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scales of ridge/valley and Rocky Mountain barriers/eastern High Plains.

acted as a triggEiring mechanism for late afternoon thunderstorms.

Purdom and Marcun (1982) postulated that cumulus-scale moisture

convergence resulting from cloud mergers or from the intersection of

thunderstorm ouU'low boundaries could contribute to the concentration of

moisture content for up-scale development.

2.3.2 Cond:Ltional and potential instability

Wallaoe and Hobbs (1977) stated that potential (oonveotive)

instability ooowrs when the top part of a moist air layer oools muoh

more rapidly thrt)ugh dry adiabatio lifting than the bottom part, and the

lapse rate quiokly becomes destabilized. Therefore. suffioient lifting

may oause the l~,er to become oonditionally unstable, even if the entire

sounding is relatively stable to begin with. On the other hand, if the

actual lapse rate of the atmosphere lies between the saturated adiabatic

lapse rate and the dry adiabatic lapse rate, a paroel of air that is

lifted sufficiently far above its eqUilibrium level will become warmer

than its environment and behave as conditionally unstable. Fritsch and

Chappell (1980) oaloulated the Qonveotive Available lotential Inergy

(CAPE, i.e •• the positive area of an environmental sounding) and found

that it is closely related to the intensity of oumulus convection or

conditional-instability. On a larger scale. Maddox and Doswell (1982)

showed that for MCCs the strong large-soale, low-level warm advection

was pronounced Ilear 700 mb level, and they pointed out that the unstable

air to the south and east of an MCC aocounted for MCC development.

Maddox (1981) claimed that the mesoscale convective systems whioh

developed within a relatively weak and stagnant large-scale setting were

usually olosely linked to the eastward progression of a weak middle
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tropospheric short-wave trough which transported cool air aloft to

destabilize the atmosphere. These studies imply that the formation of a

mesoscale convective system is favored by processes which transport warm

moist air into the lower level or cold dry air into the \.l.pper level of a

particular region and concentrate the potential instability into a

mesoscale area.

2.3.3 Lifting mechanisms

The elegant review by !manual and Sanders (1983) s\JE;gested that

some kind of synoptic to mesoscale lifting mechanisms wer'e imperative

for an organized convective system to be formed from spoz'adic cumulus

and to develop into a long-lasting system. The followi~: forcing

mechanisms were considered to represent some of the poss:Lble candidates.

(a) Baroclin1c frontal system: Maddox (1983) lllustJ'ated from his

composite study that MCC formation took place within a r1agion of

preexisting weak frontal forcing which provided a region of low-level

convergence. In fact. 47" of the cases of MCCs studiedoy Merritt and

Fritsch (1984) were found to occur along or adjacent to ii stalled

frontal zone. However. Wetzel!!..Al. (1983) did emphasi:ze that an MCC

was a quasi-barotropic system which transported little stansible heat

meridionally. Although an MCC might be compatible with a certain amount

of baroclinicity. it is believed that the MCC would be modified rapidly

as baroclinicity increases. Particularly. given a strong vertical wind

shear. the convection tends to organize itself more into either the

classical squall-line structure studied by Palmen and Newton (1969) or

the more comma-shaped cloud patterns described by Reed (1979).

(b) Mid-level short-wave trough: Maddox (1981) ind1.cated that the

initiation and development of an MCC is closely tied to the eastward
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progression of a weak middle-tropospheric short-wave trough. He even

illustrated that the advancing mid-level short wave associated with

positive vorticity advection could serve solely as a forcing mechanism

without the accoDpaniment of a surface front.

(c) Upper jet streak and low-level jet (LLJ): Because the warm air

advection caused by the low-level jet and the cold air advection caused

by the upper jet streak both provide a destabilizing influence conducive

to the occurrencf~ of thunderstorms, both jets have been connected to MCS

initiation in th.e literature since Newton (1950). Moreover, the moist

air advected by '~e LLJ provides a source of conditional instability.

Uccellini and Jollnson (1979) and Brill.!.L.il. (1985) further confirmed

that the couplinn of an upper jet streak and LLJ is sometimes

responsible for 1~he initiation of a mesoscale system. Matthews (1983)

concluded that wbat he called a mesosynoptic event was favored in the

vicinity of maximum lifting associated with upper jet streak divergence

in the entrance (right rear quadrant) and exit (left front quadrant)

regions. Howevez', it has been rather clearly shown that the nocturnal

precipitation maJl:imum is related to the LLJ(Means. 1952; Blackadar.

1957). Although the strength of the MCC is usually modulated by the

moisture and momentum source of the LLJ (Maddox, 1985), the inertial

oscillation cause,s the LLJ to veer with time but the convergence into

the system to decrease; hence, the MCC decreases in intensity and often

dissipates by the early morning.

As a matter ot fact, Maddox (1980, 1983) and Wetzel et ale (1983)

have explained that the LLJ could provide a mechanism tor focusing the

moisture, mass, and heat into a narrow zone; then the mechanism induces

sufficiently large vertical motion to release the convective
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instability. which benefits initiation or intensification of the

mesoscale system. Bosart and Sanders (1981) proposed a Dlechanism in

which a transverse circulation in the lower tropospheric jet gave

positive feedback between the convection and the warm moj.st air feeding

it. In addition, the nocturnal LLJ could serve as a cororeyor belt and

provided a steady, high-speed influx of low-level moisture just above

the nocturnal inversion.

(d) Topography: Although there still exists some suspicion that MCC

formation could be directly initiated by the convergence ot dry Rocky

Mountain westerly downslope flow with potentially unstable southerly

flow off the Gulf of Mexico (or with easterly diurnal upslope flow),

there is no doubt that steep topography plays a role in promoting the

onset ot severe weather events. The pervasive feature of local hot

spots, arising from peculiarities ot the rugged terrain (Cotton et al.,

1983a). triggers convection in Colorado and with it the potential for

development into an MCC. Topography is also capable of inducing some

local wind circulations thermally or mechanically, such as daytime

upslope tlow, nocturnal downslope tlow, and mountain leEI waves. These

local wind systems may ultimately lead to the formation ot Mess

(Tripoli, 1986).

(e) Gravity wave interaction: Gravity waves can in1~eract with

convective systems synergistically, sometimes producing convection, but

usually convection can initiate gravity waves. Uccellilli (1975), tor

instance, has shown that gravity waves can initiate cororective storms.

Also, Tripoli (1986) implicated gravity oscillations in the forcing of

meso-~ convective elements.
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(t) Outtl~r boundary and density current: Purdom (1976) and Purdom

and Marcus (198~:) used satellite imagery to show that oollisions of the

thunderstorm outflow boundaries from previous convection could be

responsible tor initiation of new convection and tor subsequent

thunderstorm fOI'mation. Additionally. the density current (Charba.

1974). produced when a cold shallow pool ot air spreads laterally by the

force of gravit3r and lifts relatively warm air as it moves. could torce

convection and :serve as a meso-~ or meso-a discontinuity for developing

a mesoscale sys1;em.

(g) SymmetJ-ic instability: Nehrkorn (1985) used. a Wave-CISIe model

as the basis to show that symmetric instability could contribute

significantly tl) developing a mesoscale mode with a maximum growth rate.

2.3.4 Up-:lcale development of neighboring meso-,-scale elements

Besides th,e aforementioned moisture content. conditiona! and

potential insta1ollity. and lifting mechanisms. preexisting meso-~

systems are nec,essary for the initiation and development or the MCC.

Indeed. these meso-, systems provide the mid-level heat source from

which the mid-level cyclonic circulation could spin up (Tripoli. 1986).

Cotton et ale U983a) interred the eXistence of a mountain-related wave

disturbance which provides an organizing influence on convection. They

hypothesiZed that solar heating along the Rocky Mountain barrier and/or

in the Great Basin generates a convectively-reinforced wave disturbance

which organizes convection on the meso-a-scale over high Plains.

Wherever this eastward-propagating wave disturbance overlaps low-level

conditions capable of supporting moist deep conveotion on the mesoscale.

looally generated meso-p olusters converge and organize themselves as an

MCS. thereby reinforcing the deep-tropospheric wave disturbance.



14

McAnelly and Cotton (1986) concluded that MCCs orig:1.nating on the

High Plains often develop from the growth. interaction. B.nd merger of

multiple discrete meso-~ convective clusters. These mesc,-~ components

tend to originate along larger meso-a-scale features. suclh as the

eastern slopes of the Rockies. surface troughs and frontn. extensive

mesoscale outflow boundaries. and axes of residual convec:tion and mid­

level moisture. In fact. they emphasized that the regioll of most

intense meso-JS convective development and rapid MCC grow1~h occurred near

the point where two such meso-a features intersect.

Some processes thought to account for the merger of meso-~-scale

elements are:

(a) Storms decoupling from the surface: Schmidt (1985) studied a

pair of CCOPE meso-JS-scale storms and hypothesized that if the second

storm was decoupled from the frictional surface by a cool surface layer.

it might catch up with the first storm and result in a merger.

(b) Rear storm acceleration: Rockwood et ale (1984). in their study

of a dual MCCs case. found that whenever the rear storm accelerated

under the strong steering-level flow but the antecedent storm

decelerated under the weak steering flow due to the resultant blocking

of the storm ahead: it could cause a merger process.

(c) Mesocyclogenesis mechanism: Fritsch and Chappell (1980)

demonstrated that certain configurations of convective eLctivity might

produce fOCUsed areas of forced subsidence warming aloft.. The warming

in turn would then cause an increase of thickness aloft. which creates a

favorable circulation for mesocyclogenesis and an enhanc:ement of the

convection growth (Song, 1986). This mesolow area would be favored for

the merger of meso-~-scale elements.
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(d) Collisif)n of thunderstorm outflow boundaries: Purdom and Marcus

(1982) showed thi:l.t either the outflow boundary of the previous

thunderstorm con~ective lines or arc cloud lines might collide and

merge, giving rise to intense convective development. Rockwood et ale

(1984) presented a dual MCC case stUdy and found that an intense meso­

~-soale circulat10n resulted when the westward-moving outflow boundary

from the first MCC collided with the eastward-moving flow from the

seoond MCC and intensified the seoond MCC. Tao and Simpson (1984) found

from their two-dimensional, multi-cell model that the most unfavorable

environmental conditions for cloud merger are (1) weakly unstable

stratification of the atmosphere and (2) weak large-scale lifting. They

further pointed out that the dominant cloud merger mechanism is the

cumulus downdraft and its associated cold outflow.

(e) Conveotion aot with upslope flow: Tripoli (1986) pointed out

that the low-level oonvergenoe between thermally generated slope flows

and large-scale wind flows oould aot to initiate mountain oonvective

systems.

2.3.5 Val'iations of moisture content, conditional and potential

inatab111ty, and lifting meohanisms during the MCC MCC

lite-cycle

Moisture cClntent, oonditional and potential instability, lifting

mechanisms. and up-scale development (organization) of neighboring

meso-~-scale elE!D1ents are favored overall during the initial and growth

stages of MCCs, but these four oomponents are unfavorable during the

decay stage. For instance, at the initial stage, low-level southerly

flow provides a large-scale influx of moisture concentrated into a

mesoscale tOngUI! of moist air (12-16 g kg-1) from the Gulf of Mexico to
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the eastern portion of the yenesis Begion (GR) (Maddox, 1981). He also

found that the atmosphere was distinctly moist over the eastern portion

of the GR up to 500 mb level, which delineated a high moisture content.

A distinct pocket of potentially very unstable air was present over the

Plains. In his study, the other critical conditions include a

pronounced LLJ (850 mb level wind speed > 20 kts) and an upper jet

streak embedded within a weak middle tropospheric trough.

During the mature stage of an MCC, the aforementionEld conditions

seem to be effective and even more significant. For eXailple, Haddox

(1981) pointed out that the absolute moisture content in(~eased

significantly at low layers while the MCC reached its ma1~urity. Moist

air (RH > 85'-) was transported vertically to 500 mb leveJl through the

convective towers. The stability analysis showed a much more stable air

mass over the MCC .Region (MR) resulting from precipitati()n

stabilization, although forcing mechanisms were still st:rong enough to

temporarily overcome the stability but the MCC gradually decayed. Also,

the differential radiational cooling near the boundary or the MCC's

dense cloud shield and surrounding clear areas might act to enhance the

meso-circulations and to prolong the life of the system. Some

intriguing features over the MR were pronounced, such as a substantially

veering wind at 850 mb level, an amplified LLJ resulting from both the

advance of the short-wave trough and inertial oscillation, an apparent

low-level warm advection, and a distinct middle- to uPPElr-level warm

ridge.

Up to the decay stage of an MCC, there are significlant changes

related to the four processes favoring storm development~. The system

itself progresses into an increasingly unfavorable enviJ'onment for deep
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convection which inevitably leads to the demise of the MCC. For

example. such erwironments are characterized by: 850-700 mb layer cool

advection. absence of a pronounced LLJ at 850 mb level. a pronounced 500

mb level short...,.rave trough <1.e•• baroclin1city is too strong). and 300

mb level up-gradient flow associated with a less pronounced anticyclonic

jet streak.

2.4 MCC structt~e

Recently. s:cientific. engineering. and numerical modelling

technology has ~~ogressed enough to make it feasible to simulate

mesoscale convec:tive systems. Modelling results from Fritsch and

Chappell (~980), Fritsch and Maddox (1981), Perkey and Maddox (1985),

Zhang and Fritsch (1985), and Tripoli (1986) have shown the possibility

of using a numerical model to make inferences about the dynamical

structures and evolution of a middle-latitude convective system.

Nevertheless, the major findings concerning MCC structure are still

deduced from observations. Maddox (1981) performed an objective

analysis of composite meteorological conditions attendant to ten MCC

weather systems. Some of the more important aspects of the structure of

the mature MCC weather system are as follows:

(a) MCC relative inflow enters the system from all sides within

the lower half of the troposphere (especially near 700 mb level);

however, the system is not directly coupled to the surface layer.

(b) MCC relative flow at middle levels is quite weak. since the

system is moving nearly with the middle tropospheric flow. In the upper

troposphere, reb.tive flow diverges around the system and is much

stronger downwind than upwind. Occasionally. mid-level jets of lowee
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air can be seen entering the storm (Wetzel ~., 1983; Gamache and

Houze, 1985; Chen, 1986).

(c) The strongest convective elements often occur ~r1thin the

right-rear quadrant of the system, occasionally assuming line

orientations parallel to the system's direction of movemont.

(d) A large region ot lighter precipitation and shc*ers also

occurs, usually to the left of the region of intense comlection, within

the area of mean mesoscale ascent.

(e) The MCC occurs within a region of strong warm advection and

significant convergence at the nose of a southerly low-l,evel Wind

maximum.

(f) The system is cold-core within a shallow bound,ary layer,

warm-core through much of the mid-troposphere, and then cold-core again

in the upper troposphere.

(g) The thermal structure produces a mesohigh within the boundary

layer, a mesolow just above the mesohigh, and an upper tropospheric

mesohigh capping the system. The mesolow acts to enhanc:e inflow into

the system, while the upper mesohigh tightens the height gradient along

the northern edge of the system and helps an intense anUcyclonically­

curved outflow jet streak to form.

Cotton et a!. (1983a) and Wetzel ~. (1983) invElstigated various

meso-,-scale aspects of an MCC within the context of itfl convective to

meso-A-scale evolution and found a structure similar to Maddox (1981),

but they also found that:

(h) Mid-level divergence fields show a convergencl!/divergence

couplet centered upwind of MCCs and separated by an eas1~/west 11ne of

null divergence. This feature is found to be a man1fes'~ation of a
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cross-contour flc~ toward higher heights, which seems to represent the

rigorous adjustmEmt process as mid-level air encounters the "obstacle"

of the MCC.

(i) MCCs dovelop vertical velocities comparable in magnitude to

developing middltrlatitude winter cyclones, but without any of the

characteristic fl!atures associated with cyclogenesis, such as decreasing

surface pressure and northward transport of sensible heat.

From vortic:Lty studies, Bosart and Sanders (1981) found that

(j) An MCC develops in association with a cyclonic circulation of

substantial inteltlsi ty in the lower and middle troposphere, and an

anticyclonic cirf~ulation in the upper troposphere.

2.5 MCC-related precipitation pattern

The precipitation produced by an MCC is largely confined to the

meso-~ convective features. An analysis of their hourly precipitation

characteristics by McAnelly and Cotton (1986) revealed a consistent,

well-defined precipitation life-cycle relative to the MCC's satellite

appearance. Generally, the precipitation rate increased throughout the

initial development stage and reached a peak near the meso-a

"cellular" apPElarance. During the cellular stage, the volumetric rain

rate of the MCC reached a well-defined maximum; then shortly atter this

maximum, the MCC reached its maximum size and lost its organized meso­

a-scale "cellular" appearance. The active rain area continued to

expand for a shclrt time, indicating a prolonged, weakening mesoscale

circulation.

Kane~. (1985), stUdying the precipitation characteristics of

mesoscale convecitive weather systems, found that most of the heavy

precipitation oClcurred between the time of MCC initiation and
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maturation. They further disclosed that, in the right rear Quadrant,

96.. of the events produced 2. 26 mm of rain over 58,000 kJIi2 and 85" of

the events produced 2. 51 mm of rain over 23,000 km2 • Also, they noted

that every MCC produced 1 26 mm of rain over an average a.rea of 112,000

km2 , and 9S'J1 of the events produced 2. 51 mm of rain over an average area

of approximately 34.000 lcm2 • Maddox (1981) showed that t;he composite

MCC produced an average precipitation of 20 mm in an aver'age rain rate

of 1.66 mm/h.

2.6 MCC energy and moisture bUdgets

Very few kinetic energy studies have considered the subsynoptic

scale, mainly due to the lack of appropriate data, as indicated by

Fuelberg and Jedlovec (1982). The kinetic energy bUdget:3 of an MCC

studied by Maddox (1981) showed that the residual term rnsulting from

all the subgrid effects including friction was very large. and the

physical interpretation very difficult because the tempol'al evolution of

these systems was extremely non-steady. Fuelberg and Pr:Lnty (l984)

studied the kinetic energy budget ot meso-~-scale severe storms and

showed that the mesoscale wind maximum formed in the upp!r troposphere

on the poleward sides of convective areas, whereas speed;3 decreased

south of the storm region. They further explained that there existed a

strong generation of kinetic energy north of the storm ~r cross-contour

flow, this being the primary mechanism by which the upper-level jet was

formed. By the same token, there was a strong destructi,on of kinetic

energy south of the storm.

In terms of the moisture bUdget, Maddox (1981) revealed that during

the genesis period a significant increase in water vapor in the lower

level results from vapor convergence. At the time of the MCC, a
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significant ratEl of increase in the amount of moisture from the surface

up to SOO mb level results from advection and convergence. After the

system has deca3red. advection is counteracted by divergence in lower

levels. while the converse is true in the mid-level troposphere. Maddox

showed that the MCC system processed nearly twice as much water vapor as

was supported bJr its large-scale environment. probably through the

localized regiol1s of strong lOW-level inflow.

2.7 Problems to be solved

Based on this review. it is apparent that there is a number of ways

in which Maddox's (1983) composite analysis could be extended. These

posibllities ar'El as tollows:

(1) The cOIDposite data sample he employed could be expanded to

include a stati:,tically representative number of cases (Maddox's results

are based on only 10 systems).

(2) The methodology tor compiling data trom ,(lenes1s .Region, HCC

.Region and .D.eca;V' .Region (GR. MR. and DR ot his study) needs to be

refined. Maddolt simply assumed OOZ to be the MCC generation stage. 12Z

to be the matur'El stage. and OOZ of the next day to represent the decay

stage. This approach can be refined to increase the temporal resolution

by normalizing the MCC life-cycle and diViding it into more sub-periods.

(3) Maddox's MCC relative tlow calculation simply assumed the

analysis grid to move at the average velocity ot his ten systems. He

adopted the systems' motions as determined by tracking the centroid of

the -320 C cloud shield during a 6-hour period, centered upon the time of

the MCC's maxim.um extent. Such averaging ot system motion has serious

problems when the system undergo a curved or accelerated/decelerated
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motion. Therefore, it can be improved by taking the benufits of ample

data and precise MCC tracks.

(4) More detailed dynamic and thermodynamic structw:-es in the

context of finer temporal and spatial resolutions can be improved to

produce a more thorough understanding of the HCC.

In this comprehensive study, it is attempted not only to compile a

large amount of data for composite analysis, but also to categorize the

MCC's life-cycle into 7 sub-periods. Based on these composite

structures. we can create some hypothetical favorable conditions for HCC

genesis and development as well as develop a conceptual model for MCC

evolution.

2.8 Summary

In this background chapter. the results obtained ilL previous

studies of MCCs were briefly reviewed. It is suggested that the

definition of a "classical" MCC should meet the coOOit:Lons f'or areal

extent and shape of the thick stratiform cloud shields as discerned from

IR satellite images. It is also recognized that the MCC: is in many

large-scale aspects more akin to the tropical cloud clulster than to the

pre-frontal. mid-latitude squall line system. Indeed, UCCs are somewhat

of a hybrid system. but they are basically tropical in 11ature.

distinctly differing from the sqUall line by having weak vertical wind

shear. weak baroclinicity, and absence of the pronounced lower to middle

tropospheric dry layer.

Furthermore. in this chapter we discussed the importance and

variations of' the four controlling factors concerning the evolution of'

any MCS. namely moisture content, conditional and poteDtial instability,

lifting mechanisms, and the up-scale development (orgaD,ization) of
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neighboring mesc'-~-scale convect!ve elements. Next. the MCC kinematic

structure. dynamic and thermodynamic features. and MCC-related

precipitation patterns were considered to reveal the relevant

characteristics of MCC evolution. Mention was also made of the

controversies surrounding the predictability of MCCs and its important

contribution to kinetic energy and moisture budgets. Finally. an

approach to reflne the previous research and to understand MCC evolution

via a composite analysis were presented.



3.0 PROCEDURE

The philosophical approach of this research is to t=ploy an

objective analysis technique that will produce a compos:Lte of the

synoptic- to meso-a-scale structure of an MCC during it:! evolution.

3.1 Objective definition of an MCC

In this study. Maddox's (1981) definition of an MCI:: was slightly

modified by using the -SSoC IR temperature area as the :901e basis for

identification. Although Maddox (1980) used both -S20 C and -5SoC IR

temperature areas as criteria for his composite analysi,s, analyses of

hourly precipitation data by McAnelly and Cotton (1986) and Kane et ale

(1985) strongly suggested that the -5SoC area correlated well with the

active rainfall rate and appeared to be the core of the MCC. On the

other hand, the -S20 C area was largely indicative of thick stratiform

cloud. Therefore, based on these definitions of the -S30 C area. the

"in1tiation" of the mature MCC is defined as when the contiguous area

Within the -SSoC IR isotherm first exoeeds 50,000 km2 • An MCC is

considered to have reached its "maturity" when this aI'ea attains its

largest size. It "ends" or "dissipates" when this aJ:"ea again becomes

less than 50,000 km2•

3.2 Objective analysis and data assimilation

Daley (1984) pointed out that the main purpose of an objective

analysis scheme is to implement a method for reducing the data errors

and increasing the data resolution for further data asflimilation. The

observational data usually contain errors which could Joesul t from
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(1) problems with observing the system due to level of technical

competence differ,ence, instrument difference, and practice variance, or

(2) problems with communication due to coding and electronic

features.

In addition co these errors, the distribution of observational data

is USUally non-un.Lform in space and time. Principally, by employing the

objective analysis, we are trying to

(1) minimize the error through data-checking procedures and

(2) increase the data resolution through special data ingestion and

interpolation procedures.

3.2.1 Objective analysis selection

Objective an.alysis provides numerical algorithms and methods used

in the estimatioIl of atmospheric state variables on 3- or 4- dimensional

regular grids frcm data available at discrete locations and times.

There is one generalized representation of an analysis process for which

all individual schemes can be considered as linear transformations

thereof. During the objective analysis, the instrumental or

transmissional nClises and scales which are not considered of interest

are filtered out.

According tCI Daley (1984), there are five kinds of objective

analysis methods used in operational numerical analysis schemes. In

this research, WE~ adopt the Barnes (1973) objective analysis method

which is a succe:lsive correction method. Generally, the successive

oorrection method does not take into account the redundancy of

information. and it does not minimize the data error either. The scheme

itself is simple. and no matrix inversion is involved; therefore, it is

computationally :Lnexpensive, which makes it attractive.
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3.2.2 Barnes objective analysis

The Barnes (1973) objective analysis scheme, similar in some

respects to the Cressman (1959) method, uses weighted averages of

observed data to determine two-dimensional distributions of interpolated

values at grid points. The scheme interpolates fields in an iterative

fashion, and the attained convergence is a function of wavelength and

the number of iterations.

Barnes assumes a continuum of observations regardiIC f(x,y), and

filters these data according to their distance from an a~bitrary point

(x,y). That is,

g(x,y) = I~n~ f( x + r case , y + r sine) w(r,k:) r dr de, (1)

where r,e are distance and position angle, and the weig1:lting function is

w(r,k) = ( 1/ 4 n k) exp( - r 2 / 4 k), (2)

where k is an arbitrary parameter. We wish to determino the

relationship between the observed value f and the weigh1~ed average value

g at the same point. That is,

g(x,y) = D(a,k) f(x,y), (3)

where D(a,k) is the response function and is wavelength·-dependent.

Compared to the Cressman (1959) method, Barnes' me'~hod has four

advantages:

(1) The weight factor can be chosen prior to the a:rlalysis so that

pattern scales supportable by the data distribution will be revealed.
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(2) The influence of data can be extended any distance without

changing the weight function and the response characteristics.

(3) Small-s'oale irregularities are adequately suppressed by this

technique, so that further smoothing by application of additional

numerical filters is not necessary.

(4) The desired pattern resolution can be achieved in two passes,

instead of the flOur or more required with Cressman's technique, thus

effecting a modest saving in computer time.

Achtemeier (1986) rurther analyzed this successive correction

technique for a limited-area dataset and revealed some important points:

(1) Data boundaries have an impact on the objective analysis by

reducing the amplitude of long waves and shifting the phase of short

waves.

(2) The distance that boundary effects intrude into the interior of

the grid is inversely proportional to the weighting function shape

parameter.

(3) The boundary effects intruded into the interior of the analysis

domain a distance equal to the average separation between observations.

Therefore, in the analysis of the limited-area dataset used in

this study, data were acquired over a larger domain in order to minimize

the impacts of the boundaries' intrusion on the data field. For this

reason, weighting coefficients for the Barnes scheme were chosen so that

a 1500 km wavelength (after convertion of the 4k value to the equivalent

wavelength, personal communication with Craig Tremback) retained 9a.

response (Fig. 3.1) while retaining less than 201 of the amplitude of

500 km wavelength features was retained so that undesired noise was

filtered out. iLlso, a grid of 160 latitude by 160 longitude within a
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600 latitude by 600 longitude area was analyzed to prevent boundary

contamination.

3.2.3 Data assimilation and analysis

A package of data assimilation and analysis programs (Cotton et

sA., 1983b) has been designed and developed as part of the CSU iegional

Atmospheric Modeling ~stem (RAMS) to give a general and flexible data

analysis system which produces data sets that can be used for synoptic­

to meso-scale analysis. The updated version of the package has the

ability to assimilate data from several sources: the National

Meteorological Center's (NMC) 2.,0 latitude-longitude mandatory level

pressure data, NMC mandatory and significant level rawinsonde reports,

and U.S. Air Force 10 or 30' average surface elevation data.

The data assimilation procedure is as follows:

(a) Access NMC 2.,0 pressure level data: these are originally

hemispheric fields which are reduced to a domain and grid spacing that

are specified by the user.

(b) Interpolate the NMC pressure level data onto the isentropic

surfaces: interpolation combines the transformed NMC data with the

surface elevation data to form a complete, synoptic-scale, 2.,0

latitude-longitude isentropic data set on the user-specified grid.

(c) Access the rawinsonde reports and interpolate onto the

isentropic surfaces: options exist at this point to include specifying

only a certain number of the NMC reports, eliminating any of the NMC

reports, or including any special observations and bogus data at the

analysis time which were not included in the NMC data set.

(d) Objective analysis: objective analysis could be done within the

same or different resolution horizontal latitude-longitude grid. This
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grid could be coarser than 2.50 for synoptic studies. or finer

resolution for mesoscale analysis or model initialization. The

objective analyses are done on the isentropic surfaces using the Barnes

technique (details described in Section 3.2.2). utilizing both the

selective rawinsonde reports and the 2.50 resolution data as

observations. Optionally. the rawinsonde reports may be either

exclusively or partially included in the objective analyses if the data

coverage is adequate.

(e) Enhanced isentropic data set on latitude-longitude grid: this

final product can be further analyzed and plotted or used as the initial

conditions for a numerical model.

This data assimilation package was employed for each MCC case

individually in the isentropic surface. It was then feasible to

composite groupings of MCCs either in isentropic or other vertical

coordinates. Because the MCCs frequently form over the Rockies and then

move onto the High Plains over varying topography. the sigma-p

coordinate (the surface and the tropopause pressure are'chosen as lower

and upper boundaries) is finally selected as the vertical coordinate for

compositing, similar to McNab's (1976) budget study.

3.3 MCC composite analysis

In this section, the philosophy and the technique of composite

analysis is outlined.

3.3.1 The philosophy of composite analysis

The idea of the composite algorithm used herein mainly follows from

Gray et ale (1982), who have successfully carried out tropical composite

analyses. They realized from experience that the best method of

analyzing an atmospheric phenomenon from observations is to perform
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detailed, quantitative case studies of a large sample of similar systems

and then to statistically compare the cases. This provides information

on both the mean characteristics and the variability of individual

systems. Frequently, however, the observations have insufficient

resolution to adequately depict perturbations created by a single

disturbance,

One method of improving spatial data resolution is the compositing

of data from weather systems showing similar behaVioral characteristics.

A composite analysis of a number of similar well-defined systems can

present a clear, meaningful representation of the perturbations

generated by such a weather system. A disadvantage or the method is

that it tends to damp the magnitude of features present in individual

situations so that characteristics of the composite system generally are

not as intense as in the specific cases.

3.3.2 Composite analysis of temporal behavior of MCCs

The objective of this research is basically to expand and refine

the results of Maddox's (1981, 1983) MCC composite studies. Generally

speaking, his composite results were very coarse in temporal resolution,

i.e., GR is similar to our pre-MCC and initial stages, MR to decay

stage, and DR to about 10 hours after dissipation stage. The working

hypothesis is: given enough MCC cases, their natural variability with

respect to their time of occurrence will provide 0000 and 1200 GMT

observations at many points along the generic MCC life-cycle for the

standard upper-air observing times of 0000 and 1200 GMT. By compositing

these observatiol1lS into several time brackets spanning the system life­

cycle, it is proposed that one can define the meso-a- to synoptic-scale

life-cycle of MCCs.
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Eight years (1977-1984) of MCC cases have been screened from data

archived by Maddox's group at NOAA/WRP in Boulder. The detailed

procedure of screening MCC cases is described in AppendiJc A. which also

contains the basic characteristics and tracks of individual MCC cases.

This study focuses on the MCCs occurring in June, July. and August; such

a focus attempts to minimize the influences of strong baroclin1city as

distinguished from the usual barotropic nature of the summer season.

The first seven years of data are utilized for the composite sample, and

the last year is reserved for testing the conceptual model originally.

However, we found that there were not enough cases in certain MCC sub­

periods for statistical significance; therefore some of the last year's

data were also used for sampling. The cases have been screened

according to how large and "classical" the MCC appears and by

considering nearby meso-~- to meso-a-scale activity as undesirable

"contaminants" to the meso-a environment of the MCC. According to an

individual case's evolution, duration, size, cellular cb.aracteristics,

and proximity to other mesoscale convection, each MCC was graded

according to a subjective "MCe purity scale" with ten ~O to 9)

categories for compilation purposes. For example, category 9 is

reserved for the perfect MCC case, characterized by a large maximum

cloud-shield size, a long mature duration, an ideal "cellular"

appearance, little environmental contamination, and a clear evolution

through its life-cycle. By the same token, category 0 1s reserved for

MCC case haVing a complex or "messy" evolution, an irregular

"cellular" appearance. a short-lived mature diuration, and/or small

clOUd-top areal coverage at maximum extent. The "MCC purity scale" is
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then used to distinguish between the organized MCCs (category 5 to 9)

and the marginal MCCs (category 0 to 4).

Due to the natural variability of MCC's, some systems may be at, or

two-to-four hours after or before MCC maturity at the time of standard

1200 GMT soundings are taken. Likewise, some systems may be at, or

within several hours of initiation at the time of 0000 GMT. If a

significant amount of MCC samples are compiled. each sub-period of MCC

may occur within one and one half hours of either 0000 or 1200 GMT.

Thus. a composite model of an MCC life-cycle can be obtained even though

high time resolution soundings may· be lacking (see Tables 3.2 and 3.3).

Based on the "normalized" MCC temporal life-cycle. each MCC was then

stratified into seven sub-periods: pre-MCC. initial. growth. mature.

decay. end (dissipation). and post-MCC. The classification scheme 1s

summaried in Table 3.1. Because the NMC pressure-level and rawinsonde

data are only available at 0000 and 1200 GMT. cases selected for the

same sub-period are always limited to either 0000 or 1200 GMT. in order

to eliminate the diurnal variations discussed by Gray and Jacobson

(1977). Each SUb-period of the MCC life-cycle is roughly 2.5-3.0 hours

long. Here. an extra period about 12 hour prior to the MCC initial

stage is also included (i.e •• MCC-12h) so as to be able to examine

whether some synoptic conditions tend to occur prior to MCC initiation.

The MCCs' specific characteristics for these eight SUb-periods are

outlined in Table 3.2. Also. characteristics of the "marginal MCCs"

sample set (detailed discussion in Section 4.1) are summarized in Table

3.3. Here. the position of each MCC's initial stage is used for the

earlier "MCC-12h" stage in order to examine the presence of

preexisting conditions. Since the individual MCC case may last more
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Table 3.1. MCC life-cycle classification

Sub-period Temporal Center of Sub-period

MCC-12H 10-15 hours before INITIAL
sub-period

PRE-MCC 3 hours be.fore INITIAL
sub-period

INITIAL shield area 2. 50 x 1<f km2

of i -530 C IR temperature

GROWTH Mid-point between INITIAL and
MATURE sub-periods

MATURE Maximum areal extent of region
with i -530 C IR temperature

DECAY Mid-point between MATURE and
DISSIPATION sub-periods

DISSI. shield area .i 50 x 1<f km2

of i -530 C IR temperature

POST-MCC 3 hours atter DISSIPATION
sub-period

Remarks

Consists of data taken from
the 12Z sounding (06 LT)

Consists o.f data taken from
the OOZ sounding (18 LT)

Consists of data taken from
the OOZ sounding (18 LT)

Consists of data taken from
the OOZ sounding U8 LT)

Consists of data taken from
the 12Z sounding (06 LT)

Consists of data taken from
the 12Z sounding (06 LT)

Consists of data taken from
the 12Z sounding (06 LT)

Consists of data taken from
the 12Z sounding (06 LT)

than 12 hours from its pre-MCC to post-MCC stages, each of the MCC case

can provide both of 0000 and 1200 GMT data for the di.f.ferent MCC sub-

periods. Therefore, the total number of cases shown in Tables 3.2 and

3.3 usually exceed the real number of MCC cases.

The analysis procedure then utilizes the objective analysis and

assimilation package of the CSU RAMS mentioned in Section 3.2.3. Each

synoptic time (0000 and/or 1200 GMT) associated with an MCC has been

grouped into one o.f the seven sub-periods. The initial isentropic

objective analysis was done over a domain of 600 latitude-longitude,

centered on the storm. with the purpose of displaying features within a

central 160 latitUde-longitude subgrid (Fig. 3.2).
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Table 3.2. Characteristics of Organized MCCs grouped into sub-periods
for 1977-1984 sample.

MCC PRE- POST-
Sub-period -12H MCC INIT. GROW. MAT. DECAY DISSI. MCC TOTAL

00 or 12 GMT 12 00 00 00 12 12 12 12

No. or cases 22 12 31 8 8 17 20 18 136

Mean Rating '1.3 6.5 6.8 7.0 6.5 6.8 6.5 6.8 6.8

HCC latitude 42.3 42.2 42.3 42.4 42.3 42.2 41.9 41.6 42.2

HCC longitude 98.1 99.6 98.1 96 .5 94.9 93.5 91.8 89.8 95.3

Table 3.3. Characteristics ot Marginal HCCs grouped into SUb-periods
tor 1977-1984 sample.

MCC PRE- POST-
Sub-period -12H MCC INIT. GROW. MAT. DECAY DISSI. MCC TOTAL

00 Or 12 GMT 12 00 00 00 12 12 12 12

No. or cases 14 8 12 3 4 7 11 11 70

Mean Rating 2.7 2.4 2.7 2.0 2.8 2.9 2.3 2.8 2.6

MCC latitude 39.8 39.8 39.8 39.7 39.7 39.5 39.2 38.9 39.5

MCC longitude 98.2 99.5 98.2 97.3 96 .4 95.2 93.8 92.4 96 .4

First. each HCC case has been subdivided and normalized according

to its lite-cycle. regardless ot the HCC's movement or the ambient mid-
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Fig. 3.2. A representative domain ot the analysis field at the
initial stage. I denotes the domain ot 160 latitude
by 160 longitude, and illustrates the domain ot
600 latitude by 600 longitude.
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level wind (called the non-rotated case). Maddox (1981. 1983) observed

that HCC is tended to move with the mean flow in the 700-500 mb layer.

The HCC's dynamics may also be modulated by the environment in which the

HCC is embedded. In order to consider this influence. the entire

analysis domain was first rotated and oriented along the path of HCC

movement before the compositing procedure was performed. In the

"rotated" case. the x-axis is positive along the MCC track (usually

nearly west to east). with the or1gin placed at the HCC's centroid. The

positive y-axis 1s 900 counterclockwise from positive x (approximately

north). The MCC track-relative velocity components were denoted by u

and v in the x and y directions. respectively, as per conventional

usage. Therefore, a positive value of u represents an along-MCC-track

flow from the rear side. while a positive value of v indicates a cross­

MCC-track flow from the r1ght flank.

With the analyses generated for all of the MCCs in any given sub­

period. two general composite analysis approaches were then followed.

The first of these was to spatially average or composite the individual

analyses. employing filtering techniques to eliminate smaller-scale

noise and to maintain large-scale and mesoscale features. This approach

is analogous to Maddox's (1981. 1983) composite studies. except that it

provides a better time resolution of the MCC life-cycle by using seven

sub-periods rather than his two. Thus. the composite evolution of such

fields as horizontal and vertical winds. vorticity, divergence. mixing

ratio. equivalent potential temperature, instability index, Richardson

number. etc•• can be examined. Because of the case-to-case variability

of the synoptic settings (e.g•• shear, jet-stream strengths and

orientations. etc.). however. it is expected that any spatial averaging
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scheme would severely reduce the mean amplitude of the perturbation

features that are seen for the individual cases. Therefore, the second

analysis approach involves a statistical treatment of the individual

data sets, but they are still grouped by composite sub-period. In this

method, spatial fields were first averaged or integrated over the MCC

region for each individual case, to produce such variables as area­

integrated convergence, divergence, vorticity, wind fields,

thermodynamic variables, etc. These individual case representative

values were then averaged, with the result retaining much of the

amplitude information (this refers only to such variables as weighted

convergence, weighted divergence, etc., it should not make any

difference in regard to variables averaged over grid points, i.e., non­

weighted) that is lost in the spatial campositing due to the spatial

variation is generally greater than the individual case variation.

Watson and Blanchard (1984) used a similar method to evaluate the area­

averaged divergence and found that it was closely related to the area

rainfall collected during the Florida Area Cumulus Experiment (FACE).

3.4 Summary

In this chapter, the principal approach of compositing the synoptic

to meso-m-scale structure of MCC evolution via an objective analysis

technique was described. First of all, comparing the different kinds of

objective analysis methods used in recent numerical analysis schemes, we

found that the successive scheme correction is simple and involves no

matrix inversion; therefore computation is inexpensive for the

successive correction scheme. Based on this advantage, the Barnes

(1973) objective analysis was adopted and implemented in the RAMS data

assimilation package. For a full analysis, the accessed NMC pressure
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level data are first interpolated onto isentropic surfaces; then the

rawinsonde reports are accessed in order to carry out an objective

analysis over a finer resolution for detailed mesoscale analysis. Seven

years of MCC cases based on a modified definition are compiled and each

individual HCC ie, ranked into one of ten categories; each HCC's temporal

life-cycle is 21=:10 normalized into seven sub-periods. Finally, with the

analyses collectEld from all of the MCC's for a given sub-period, two

general compositE~ analysis approaches are performed in the sigma-p

coordinate. i.e. J grid-point cOlllpositing and area-average method.

The major tnsks of this comprehensive study are illustrated by a

flow chart shown in Fig. 3.3. The detailed dynamic and thermodynamic

analyses will be discussed in Chapter 4. Then, the vorticity, heat, and

moisture budgets are presented in Chapter 5.
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Row Chart of Research Algorithm

Sample
19n-l983

MCC cases

Each case.
Access

NMC pressure
level data

Each case II

Interpolate
to isentropic

surface

Each case

Blend
rawinsonde

with NMC data

Each case II

Objective
Analysis

t
continued

Fig. 3.3. Flow chart of study methodology.
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Composite
into 7 sub-periods
in siCJfT1o-p surface

Each I'iod

Dynamic and ­
thermodynamic
fields analysis

Conceptual model

of
MCC evolution

Each iod

Vorticity I heat
and moisture
budgets

Anqlysis
In

area average

Fig. 3.3. Flow chart of stUdy methodology (Continued).



4.0 MCC CLIMATOLOGY. KINEMATIC STRUCTURE. DYNAMICS. AND THERMODYNAMICS

The primary objective ot this chapter is to address in detail the

climatology. kinematic structure. dynamics, and thermodynamics of MCC

evolution via a composite study.

4.1 MCC climatology derived from the composite study

Before we become deeply involved in the detailed analyses of the

composite results, we present some statistics for the MCC sample

utilized in this research.

Enhanced IR satellite imagery during June to August of 1977-1984

has been compiled to develop an MCC climatology. Although the image set

was far from complete. images encompassing life-cycles of 134 MCCs were

collected. Detailed information concerning these systems are documented

in Table A.l of Appendix A. Based on this information. certain specific

"MCC purity scale" categories were then assigned according to some

selection criteria. Table 4.1 shows that for the eight-year MCC

developmental sample. the first thunderstorms typically developed during

the afternoon (2041 GMT). and the development into an organized MCC

usually did not occur until early evening (0214 GMT). An average of

16.1 hours elapsed between first thunderstorm development and the time

that the MCC terminated. The size of these systems was indeed huge with

3an average cold-cloud shield area (TBB i -32oC) of more than 301 X 10

km2 at the time of maximum extent. Centroid track coordinates for

individual MCCs are presented in Table A.2. with the basic information

of Table A.l indicating that MCCs are likely to be responsible for the
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Table 4.1 Statistics of Mesoscale Convective Complexes during

1977-1984.

11me Cloud-top area at

(GMT) max1mum extent

(x 103 km2)
Firat Cell. cell.

CategorY ~ .BIDk~ 1AL. JJI.h ID5l IaL.~. IDsl i-52°C i-32°C

Overall 134 5.S 2041 0214 0736 1248 0449 0625 0836 186.2 301.0

OroseDie 32 6.8 1942 0140 0727 13050444 0546 0833 18'.7 2!11.2

PlaiDa 29 6.6 2256 0250 0815 1306 0513 0711 0'17 211.6 336.5

Organized MCca '0 6.7 2044 0210 074713050452 0632 0847 204.4 325.4

Mar.ina! MeCa 44 2.4 2034 0223 0713 12140448 0610 0813 147.1 251.5

• 2Vershooting Top

nocturnal maximum in thunderstorm and precipitation frequencies over the

central U.s. (Wallace, 1975).

The mean characteristics of separate sets of orogenic1 and Plains

MCCs were compiled as suggested by George (1979) in an attempt to

discern the impact of geographical origin on MCC evolution. The

orogenic MCC (or WHCC) is defined to be a system which initiates west of

1
Following McAnelly and Cotton (1986), we introduce orogenic,

literally meaning "produced by mountains," as a more prec1se re­
placement for orographic, literally meaning "describing moun­
tains. "



44

1000 Wlongitude. while the Plains MCC (or EMCC) is defined to initiate

east of 9SOW longitude. Table 4.1 indicates no significant differences

between these two systems. except that the Plains systems exhibit a

broader cloud shield but shorter life-cycle.

The MCC developmental sample can also be stratified into two groups

called marginal MCCs and organized MCCs according to the ranked purity

scale of each MCC (see Section 3.3.2 and Appendix A); notice that the

organized MCC is chosen when its purity rate is greater than or equal to

5. Table 4.1 indicates some significant differences between these two

groups; in particular. organized MCCs are longer-lived and larger in

cloud shield coverage than are marginal MeCs. The tracks of 67

organized MCCs (during 1977-1983) used in the composite sample are

depicted in Fig. 4.1a. and the tracks of 39 marginal MeCs (during 1977­

1983) are illustrated in Fig. 4.1b. Moreover. the composite tracks of

each sub-period for organized (marginal) MCCs are shown in Fig. 4.2a

(Fig. 4.2b). We see that the tracks of the organized MCCs favored a

narrow channel across northern Nebraska and northern Iowa. but the

tracks of the marginal MCCs covered a broaden channel. with a southward

shift to Kansas and Missouri. Furthermore. Table 4.1 summarizes some

gross features of the organized MCCs versus marginal MCCs used in the

composite study. Generally speaking. it illustrates that the composite

organized MCCs has initiated by about 0210 GMT (2010 LT) and terminates

near 1305 GMT (0705 LT); these times are similar to those found by

Maddox (1983).
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Fig. 4.1a. Tracks ot organized MCCs during 1977-1983. The
track ot each MCC is based on 3-hour centroid positions
shown in Table A.2. and the number associated with each
track is the MCC case number trom Table A.l. S denotes
the MCC initial stage. E the dissipation stage.

Fig. 4.1b. As in Fig. 4.1a. except tor marginal MCCs.
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F1I. 4.2a. The composite tracks for each sub-period of organized
MCCs during 1977-1983. The tracks are based on the
average positions of the MCCs for each sub-period from
Fig. 4.1a. The number "1" denote. pre-HCC stage,
"2" the initial stage. "3" tbe growth stage. "4"
the mature stage, "5" the decay stage, "6" the
dissipation stage, aDd "7" the post-MCC stage.

Fig. 4.2b. As in Fig. 4.2a. except for marginal HCCs.
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4.2 Evolutionary variations of MCC moisture content. conditional and

potential instability. lifting mechanisms. and the up-scale

development (organization) of neighboring meso-p-scaleconvective

elements.

In the following sections. we will discuss in detail the results of

compositing MCC evolution.

4.2.1 Moisture content evolution

The spatial and temporal distributions of mixing ratio. equivalent

potential temperature. mid-level mixing ratio. llux ,gonvergence

available moist static jlnergy (FCE). and moisture advection have been

composited to identifY the energy source and sink of an evolving MCC

system. Fig. 4.3a shows a tongue of high moisture values (10 g kg-1) at

850 mb level which curves north-northwestward from the Gulf of Mexico

into the south to southeast portion of the threat area (i.e., Nebraska

and Kansas) at the MCC-12h stage. The west-east cross section of the

mixing ratio distribution along the future MCC's centroid (Fig. 4.4)

clearly shows that this high moisture air is brOUght into the sloping

threat area. As the MCC evolves. these discernable high moisture­

content features are gradually sharpened and narrowed into a mesoscale

region. Wetzel (1973) suggested that the moisture injected into middle

levels by mountain convection moving over the plains during the

afternoon (the pre-MCC stage in this study) could further destabilize

the atmosphere and stimulate convection such that a selective focus for

another set of deeper meso-p convective elements could develop.

By the time the MCC has reached its initial stage, the continued

support of abundant moisture can be seen from the distribution of mixing

ratio at 8S0 mb level (Fig. 4.3b). The time evolution chart (Fig. 4.5)



MIXING RATIO

F1g. 4.3a. Analys1s of 850 mb level mix1ng rat10 and w1nd vectors
at the MCC-12h stage. The length of the background
w1nd arrows 1s proport1onal to the w1nd speed and the
and the w1nd arrows PO!~t dowW1!!i. "+" marks the MCC
centro1d. Un1ts: g kg and m s •

MIXING RATIO

5.'",'"-
6-

g kg-I

-

Fig. 4.3b. As 1n Fig. ~i3a, exce~I for the 1nit1al stage.
Un1ts: g kg and m s •
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42.3- N MIXING RATIO

100

o,-+--+---r-i---t--+-+--o
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300

78.881.6 84.2111.3116. 105.' 1()().5 15.1

*
Fil. 4.4. Mixing ratio along the west-east cross-section through

the MCC centroid at the MC~i12h stqe. +- denotes the
MCC centroid. Units: I kl •

MIXING RATIO CHANGE 9 kg-I

H

~
0.32-.J:I

E-CL

~

MCC LIFE CYCLE
Fig. 4.5. Heilbt-time plot of the mixing ratio difference from

ita corresponding value at the MCC-12h stage. The
mixing ratio field is obtained by applying a '-grid­
point area average over a 60 X 60 lat.-long. domain
every SO mb. The central point or tbe 9-POi~r average
is located at the MCC centroid. Units: g kg •
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of moisture change (compared to MCC-12h sub-period) indicates that the

moisture content increases with time within the lower troposphere,

fueling MCC development; moisture content reaches its maximum value at

the growth stage (secondary maximum at decay stage). A 3 X 3 grid-mesh

areally-averaged (60 X 60 domain centered at the MCC centroid) has been

frequently used in this study as a kind of spatial representation of any

parameter related to the MCC property. The slightly decreasing of

moisture content at the mature stage reflects the drying effect of the

precipitation-induced downdraft. However, the positive anomaly of

moisture content in lower to middle levels spans the HCC's early life-

cycle, in part due to the action of cumulus convection embedded within

the MCC. ClOUd-top and/or lateral detrainment Of water and ice from

convection updrafts into the environment appear to be the most likely

causes of this moistening.

Fig. 4.6 depicts the time evolution Of the equivalent potential

temperature profile. It clearly illustrates that the e distributione

possesses a secondary maximum close to the surface throughout the MCC's

early stages and a minimum in middle levels at the HCC mature stage.

The low-level convergence (discussed in Section 4.4.2) of this higher ee

air is conducive to the convection burst. Incidentally, the extremely

high ge values at upper levels are due to lower pressure rather than to

increased moisture content. The low-level, high ge air is crucial to

supporting the initiation and maintenance of a mesoscale system, while

the middle tropospheric (SOO mb level) minimum of e indicates that thee

potential instability is conducive to driving the mesoscale downdraft.

Gamache and Houze (1985) found a minimum of e is located at about 700e

mb level in their stUdy of a tropical squall line. However, Ogura and
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Fig. 4.6. Height-time plot of tbe equivalent potential
temperature <ge ). The ge field is obtained by applying
a 9-grid-point are. average over a 60 X ,0 lat.-long.
doaain every 50 ab. Units: K.
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Liou (1980) found that the environmental atmosphere ahead of the squall

line shows the minimum of e located at the SSO mb level. It is note

clear whether this difference in the height of the e minimum is due to
e

fundamental differences between SQuall lines and MCCs or whether it

results from regional differences.

The plan view of e at 850 mb level during the initial stage (Fig.e

4.7) indicates that the warm, moist air is gradually concentrated into a

narrowing mesoscale region over the upstream side of the threat area.

Winkler and Charba (198S) showed that MCS-induced heavy precipitation

occurs at the southern edge of the steepest north-south gradient of

surface ge and immediately to the north of a center of maximum surface

ee. Meanwhile, the ee distribution at SOO mb level (Fig. 4.8) shows

that the relatively cold, dry air (compared to low-level atmosphere) is

enhanced as the MCC develops and reaches minimum magnitude at the MCC

mature stage.

The literature review in Chapter 2 suggests that the relatively

high mid-level (averaged 700-400 mb layer) moisture content in MCCs may

be a significant difference between MCCs and squall lines. Indeed Fig.

4.9 indicates that a concentration of 700-400 mb layer moist air

corresponds closely to the center of subsequent MCC initiation,

partially due to the vertical advection of moisture from lower layers

via deep convection. A more moist mid-level atmosphere will inhibit the

mid-level entrainment of the dry air. thereby the moist enVironment can

stimulate the deep convection. The time evolution of the middle-

tropospheric (700-400 mb layer) mixing ratio (Fig. 4.10) further shows a

tendency to increase as the system evolves, and it exhibits a maximum

magnitude at the MCC growth stage resulting from vertical transport by
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K

Fig. 4.7. Analysis of 850 mb level equivaleBt potential
temperature (&e)_tnd wind vectors at the initial stage.
Units: K and II s •

K

Fig. 4.8. Analysis of SOO lib level equiValent potential
temperature (&e)_tnd wind vectors at the mature stage.
Units: K and II S •
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700-400 MB MIXING RATIO

Fig. 4.9. Analysis of the average 700-400 mb layer mixing ratio
and wind vectors at the initial stage. The layer mean
mixing ratio and wind vectors are calculated by
aver!,ing over_y grid points every '0 ab. Units:
gkg andas.

700-400 mb MIXING RATIO
4.3,-----r---,----,---,..---,----,

4.2

4.1

3.5

3.4L.----..JIN'-I--....L---M~A~T:-----I'-----:EN=D--....

MCC LIFE CYCLE

Fig. 4.10. Time evolution plot of the average 700-400 mb layer
mixing ratio. The error-bar represents one plus/minus
stan~trd deViation of the 9-point average. Units:
g kg •
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deep convection and horizontal advection of moist air by the ambient

wind.

Indeed, large-scale circulations supply the moist air through

horizontal advection for MCC genesis and development, as can be seen

from Fig. 4.11. The change with time of the moisture advection field,

shown in Fig. 4.12a, clearly illustrates that the low-level positive

moisture advection into the threat area spans most of the MCC's life-

cycle, except very close to the surface during the MCC's mature stage.

This diagram also shows that the maximum positive moisture advection

occurs at about the 700 mb level during the MCC's growth stage, when

meso-p convective elements and meso-y convection coexist. The eVolution

of the total moisture flux distribution (moisture advection plus

moisture convergence), shown in Fig. 4.12b, illustrates the close

linkage between moisture content and MCC evolution. Whenever the

moisture support is substantially reduced (e.g., MCC decay stage), the

system will weaken. In addition, the !lux £onvergence of available

moist static ~nergy (FCE) has been calculated at the top of the boundary

layer in an attempt to evaluate the concept of frictional CISK (cf.

Koch, 1985). FCE is defined as follows.

where VpBL is the horizontal wind vector averaged within the planetary

boundary layer and (ae /az) is the vertical gradient of eqUiValente

potential temperature over the second lowest data-available layer. It

follows that low-level moisture convergence within a potentially

unstable air mass and horizontal advection of moist static instability

are the two component processes that can contribute to a net positive
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MOISTURE ADVECTION

Fig. 4.11. Analysis of 700 mb level moisture advecti~~ and !lnd_
1vectors_it the initial staae. Units: 10 g kg s

and as.
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MOISTURE ADVECTION
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Fig. 4.12a. Height-time plot of the moisture advection. The
moisture advection field is obtained by applying a 9­
grid-point area average over a_!O I 6~lla~1-long.
domain every SO mb. Units: 10 g kg s •

FLUX CON. MIXING RATIO

Fig. 4.12b. As in Fig. 4.12a. except for the moi!3ure a~Iec~ion

plus moisture divergence. Units: 10 g kg s •
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flux convergence of available moist static energy. Fig. 4.13 shows that

FCE exhibits a peak value (negative value of Eq. (1» at the pre-MCC

stage, but that it still maintains a high magnitude (negative FCE)

before the MCC grows to continuously support the system development.

4.2.2 Conditional and potential instability evolution

The conditional instability calculation can be clearly addressed by

the Qonvective Available lotential Inergy (CAPE), which is defined as

the positive energy of a parcel rising from the surface through the

extent of the cloud (Moncrieff and Miller, 1976). In a practical sense,

it is evaluated from the kifting ~ndensation kevel (LCL) to the

Iquilibrium ~evel (EL) where the lifted parcel is no longer warmer than

its environment. Besides CAPE, the vertical cross-section of the

temperature advection field can also help in identifying the warm or

cold advection -- a signal of conditional instability. Some static

stability indexes, e.g., total totals index, the vertical gradient of

ee' moisture deficiency (McQueen and Pielke, 1985), bulk Richardson

number, and the so-called slantwise convection Richardson number

(Emanuel, 1981, 1985) have also been examined to clarify the evolution

of conditional or potential instability.

After the pre-MCC stage (behaves as a meso-y- to meso-p-scale

circulations), the surface begins to cool, and CAPE is reduced

drastically (Fig. 4.14). This early reduction feature indicates that

the rate of CAPE dissipation by deep convection is greater than the flux

of low-level energy supply. The plan view of CAPE distribution (Fig.

4.15) at the MCC initial stage shows that the maximum CAPE is located

upstream of the threat area; this favors MCC build-up. The triggering

of deep convection in MCCs is usually accomplished by destabilization
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Fig. 4.13. Time evolution plot or the rlux convergence energy.
The value_~8 ~bt!~ned tor a 9-grid-point average.
Units: 10 • s •
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Fig. 4.14. Time evolution plot or CAPE.
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Fig. 4.15. Analysis of CAPE distribution and the 850 mb lev~l -2
wind ve~iors at the initial stage. Units: 10 m s
and m s •
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processes such as strong low-level moisture convergence and differential

temperature advection which steepens the temperature lapse rate.

Indeed. the temperature advection field portrayed in Figs. 4.16a-b

indicate that the MCC region experiences low level strong warm advection

at the initial stage and reaches maximum value of 340 C day-l at the MCC

maturity. However. the warm advection feature is substantially reduced

and even becomes a cold advection pattern at the MCC dissipation stage

(Fig. 4.17).

Notice that the total totals index (defined as follows:

TT = TsSO + TdSSO - 2TSOO ) exhibits an early maximum (Fig. 4.18) of

magniyude SOoC which indicates that a distinct pocket of unstable air

has narrowed into the mesoscale region before the MCC forms. The total

totals index value is generally high before the MCC growth stage. Any

value of total totals index > 44 indicates a favorable environment for

deep convection. i.e•• warm moist air present at 850 mb level and cold

air at SOO mb level. The secondary maximum for total totals index that

occurs at the mature stage reflects the low-level moistening produced by

precipitation plus the mid-level cooling resulting from the intrusion of

low ee air (Fig. 4.6). Moreover. another parameter. the vertical

gradient of ee' can be evaluated by the difference in ee between low and

middle levels. This quantity may indicate the strength of mesoscale

updrafts and downdrafts. Fig. 4.19 shows an early maximum in the

vertical gradient of e at the pre-MCC stage; it then tapers off. mainlye

due to the decreased low-level supply after the MCC reaches maturity.

The short-term recovering of e noticeable at the growth stage (about 6e

hours after the pre-MCC stage) suggests that a meso-p-scale wave

disturbance (wavelength about 100 km and period about 4-6 hours) does
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TEMPERATURE ADVECTION

Fig. 4.16a. Analysis of 700 mb level tEilllperature advectio~sand -1
wind ve£jors at the initial stage. Units: 10 K s
and m s •

TEMPERATURE ADVECTION

----
---;:n--J--h~~~ 2..

Fig. 4.16b. As in Fig~S4.16!1 except f~r the mature stage.
Units: 10 K sand m s •
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Fig. 4.17. Height-time plot ot the temperature advection. The

value is obtai!!!d tO~1a 9-grid-pOint average every SO

mb. Units: 10 K s •
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MCC L1FECfCLE

Fig. 4.18. Time evolution plot of the total totals index

distribution. The value is obtained for a '-grid-point

average. Units: K.
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exist which bears some resemblance to Tripoli's (1986) Rocky Mountain

convection cycle simulation. This kind of disturbance frequently

appears in the following analyzed fields; it may result from the

inadequate sample size of the composite MCC.

The difference between the saturated equivalent potential

temperature (6es) and the equivalent potential temperature (6e) gives

the magnitude of moisture deficiency. The vertical integral of this

quantity shows how moist the troposphere is through the depth of

potentially unstable atmosphere; the more positive its value, the less

moisture is available in the layer. Fig. 4.20 indicates that the

moisture deficiency reaches its maximum magnitude before the MCC forms

(pre-MCC sUb-period) because of the drying effect of the early deep

convection in lower layers (note that the convective activity prevails

mainly before the MCC growth stage). After the MCC initial sub-period,

the moisture deficiency decreases, reflecting the fact that the

moistening process is performed through moisture convergence and

vertical transport by meso-~ convective elements.

Based on the encouraging work of Weisman and Klemp (1982, 1984) in

discriminating thunderstorm types, the bulk Hichardson number [CAPE

(wind shear)-l] was calculated. The typical environmental value of the

bulk Hichardson number for MCCs herein ranges in the hundreds;

comparable values have been found by Bluestein and Jain (1985) for

multicellular storms. However, this number exhibits a maximum value at

the MCC's initial stage; it then falls off during MCC growth and mature

stages. The time evolution of the bulk Hichardson number (not shown) is

basically dependent upon the distribution of CAPE; wind shear variations

are too weak to control the distribution of bulk H1chardson number.
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Fig. 4.19. Time evolution plot of the vertieal difference of
the equivalent potential temperature. The value 1s
obtained tor a 9-grid-point average. Unite: K.
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Fig•••20. Height-time plot of the moisture defioienoy. T~e

value is obtained tor a 9-grid-point average. ~nits: K.
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The slantwise convection instability (Emanuel, 1985; Thorpe,1986)

was also examined (not shown) to evaluate its applicability to MCC

evolution. However, slantwise instability only marginally exists in the

upper troposphere at the mature and dissipation stages -- the time when

the upper-level anticyclonic vorticity and inertial instability mostly

develop.

4.2.3 Lifting mechanisms evolution

Although the large-scale environment may provide certain lifting

mechanisms, the crucial issue is still whether there exist some sort of

"mesoscale organizers" which favor a particular location under the

umbrella of synoptic-scale support in the MCC breeding ground. Thus, a

"mesoscale organizer" is responsible for helping to narrow and overlay

highly moist air with conditional or potential unstable air within a

mesoscale region. The following mechanisms are thought to be the

possible "mesoscale organizers" because these mesoscale features

ultimately serve as local forcing mechanisms or triggers to release the

preexisting potential instability.

(a) Low-level jet: The calculated wind component at 850 mb level

(Figs. 4.21a-c) verifies that the low-level jet (LLJ) is located on the

upstream side of the MCC centroid throughout the MCC life-cycle. These

wind components also show that the LLJ veers with time and exhibits

maximum intensity during the MCC mature stage. The strongest wind of

the LLJ usually occurs on the south side of the threat area, which

provides the convergence of mass, moisture, and heat for the MCC. The

LLJ is closely tied to the MCC's evolution because it supplies the

necessary heat, moisture, and momentum needed to increase kinetic and

thermodynamic energy. Maddox (1985) investigated low-level wind
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WIND SPEED

Fig. 4.21a. Analysis ot horizontal w1nd components tor_ihe 850
mb level at the init1al stage. Units: liS.

ms-I

Fig. 4.21b. As 1n F1g._t.21a, except for the growth stage.
Un1ts: m s •
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Fig. 4.21c. As in Fig._1.21a, except tor the mature stage.
Units: liS.
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variations in AIMCS and found that the LLJ was located at 0.6 km above

ground level and reached its maximum intensity of 16 m s-1 during 08-12

GMT (roughly the MCC mature to dissipation sub-period in this study).

(b) Upper-level jet: MCCs tend to occur on the anticyclonic side

of a broad, weak, westerly jet stream (Maddox,1981). Generally

speaking, the MCC centroid is located relatively to the right rear side

of the upper-level jet (Figs. 4.22a-4.22c). This configuration more or

less matches the favorable location of the "entrance zone" criterion

as suggested by Uccellini and Johnson (1979) and Matthews (1983).

(c) Mid-level "jet-like" inflow: The mid-level "jet-like"

inflow or rear inflow jet is found at about 600 mb in the vicinity of

the upstream side of the MCC centroid (Fig. 4.23a). Storm-relative

inflow occurs at the rear of the MCC. and this inflow usually exists

around the melting level (Fig. 4.23b. very close to the transition level

as defined by Knupp, 1985). It is generally thought that the mid-level

inflow jet in tropical (Houze and Rappaport. 1984) and mid-latitude MCSs

(Ogura and Liou, 1980) feeds the mesoscale downdraft beneath the

stratiform cloud layer. However. this rear inflow jet may be a

manifestation of the mid-level convergence created by enhanced

convective heating above the melting level as suggested by Orlanski and

Ross (1984); the heating could be in response to radiative

destabilization and ice-phase-related heating (Cotton and Anthes, 1986).

Moreover. as suggested by Chen (1986). the mid-level jet may feed into

and mix with the low-level up-down downdraft (Knupp, 1985). Knupp and

Cotton (1986) suggested that the mid-level inflow jet may enhance

surface convergence due to the increased downshear branch of this up­

down downdraft near the surface. Raymond and Wilkening (1985) also
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Fil. 4.22a. Analysis ot horizontal wind eoaponents tor_ihe 200
mb level at the initial stage. Unita: m a •
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Fig. 4.22b. As 1n Fig._f.22a. except fer the mature stage.
Units: liS.
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ms-I

Fig. 4.22c. As in Fig._t.22a, except for the dissipation stage.
Units: m s •
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Fig. 4.23a. Analysis of horizontal wind components fO~lthe 600

mb level at the growth stage. Units: m s •

TEMPERATURE

13.0mts-
K

Fig. 4.23b. Analysis of temperature field for the 600 mb level

at the growth stage. Units: K.
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found in their thunderstorm study that the mid-level inflow fed

downdrafts rather than updrafts.

(d) Low- to mid-level short-wave trough: The 700 and 500 mb levels

geopotential height fields indicate that a significant synoptic-scale to

mesoscale trough occurs nearby and southwest of the MCC centroid at the

MCC growth stage (Fig. 4.24; see also Section 4.4.1). This also

suggests that localized mid-level enhancement of moisture content and

vorticity could occur through the trough forcing.

(e) 700 mb level confluent flow: The 700 mb level wind vector at

the MCC initial stage (Fig. 4.25) clearly demonstrates that confluent

flow is focused into the vicinity of MCC centroid. The confluent

asymptote acts to concentrate the mass and moisture conducive to upward

motion. In fact. this level usually fills with high-moisture-content

air and experiences maximum evaporation conducive to the development of

the mesoscale updrafts and downdrafts. The confluent flow feature found

here is similar to that found in the dual MCC settings studied by

Rocketwood et ale (1984). McAnelly and Cotton (1986) also revealed from

the analysis of several MCC cases that individual meso-p convective

elements tended to follow the 700 mb level confluent flow and merge to

form an MCC. Based on some field forecasting experiences of Cotton and

McAnelly (personal communication) during the AIMCS and o-K Pre-STORM

periods. this low-level confluent flow seems to be a very powerful tool

for MCC prediction.

(f) Upper-level diffluent flow: By the same token. the significant

upper-level tropospheric diffluent flow induces vertical motion and

leads to lower stratospheric air intrUding into the upper troposphere.

Fig. 4.22a depicts this unique upper-level diffluent flow at the MCC
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m

Fig. 4.24. Analysis ot geopotential height and horizontal wind
components for t~! 500 mb level at the initial stage.
Units: m and m s

GEOPOTENTIAL HT. m

Fig. 4.25. Analysis ot horizontal wind components tor the 700
mb level at the initial stage. Units: m s-l.
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initial stage; this feature is present up to the MCC mature stage (Fig.

4.22b).

4.3 Kinematic structure of MCC evolution

The kinematic structure of an MCC can be clarified by calculating

the system-relative flow fields. The MCC velocity is determined either

from the detailed MCC track (see Table A.2) or from the average mid­

level flow near the MCC centroid, and this velocity is subtrated from

the ground-referenced (or Eulerian) grid-point velocity values to give

system-relative (or Lagrangian) velocities.

4.3.1 System-relative flow fields

The calculation of a relative flow field helps to represent the

real impact of MCC inflows and outflows relative to the system motion.

The unique structures deduced from the system-relative motion are

addressed in comparison with the basic "rotated-case".

As seen in Fig. 4.26, a relative easterly flow of 12-16 m s-l

streams into the storm in advance of the MCC in the lower levels,

similar to Gamache and Houze's (1982) squall-line observations during

GATE. It also shows the presence of a relative westerly flow of 7 m s-l

in the upper levels from the rear side whioh spans the MCC's later

life-oycle. However, the mid-level inflow increases by 4.4 m s-l

between the initial and growth stages and reaches its maximum intensity

at the MCC's growth stage (of. Fig. 4.27). The wind component in this

diagram was obtained from the 3 X 3 grid-mesh areally-averaged oentering

at one grid-point west of the MCC centroid; the approach attempts to

identity the sources of flow. When the wind component was calculated

from the same method but centering at one grid-point east of the MCC

centroid; the mid-level flow (not shown) is much less than the mid-level
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Fig. 4.26. Height-tiM plot or the cOllposited value of the wind
component along individual MCC tracks. The wind is
obtained by applying a '-arid-point area average over
a 60 X ~ lat.-long. domain every 50 mb. The
coordinate baa been rotated along the MCC track: a
positive u-value represents a tail wind. Unitl:. a-1•



77

inflow shown in Fig. 4.27. In addition, Fig. 4.28 (same as Fig. 4.27,

except centerated at one grid-point south of the HCC centroid) of

relative v-component flow illustrates that a strong southerly flow at

850 mb level prevails over the HCC's southern flank (cf. also Fig.

4.21a-c) compared to a weaker southerly flow over the northern flank at

the lower levels (not shown). Meanwhile, system-relative northerly flow

in the upper-level troposphere is much stronger over the northern flank

than the southern flank. exporting the outflow toward the energy sink

region to the south. Combining the system-relative flow components

illustrated in Figs. 4.27 and 4.28 gives a picture of the flow entering

the MCC primarily in advance of the system and from its right flank.

The moist inflow to the MCC provides a means of overcoming any slight

negative buoyancy and raising the conditionally unstable air to its

level of free convection.

The outstanding flow feature at 700 mb level is the pronounced

cyclonic vortex in the relative flow sense (indicated in Fig. 4.29a).

Above 650 mb level, the flow becomes increasingly divergent and

anticyclonic. This is most obvious at 200 mb level (see Figs. 4.29b and

4.29c), where the flow is strongly anticyclonic and divergent. For the

most efficient overturning of air within the cellular circulation, the

upper branch of the cellular circulation moves slightly faster than the

mean tropospheric flow and is a mainly diffluent and divergent region

(Fig. 4.30). Generally speaking, diffluence of the upper-level wind is

a common feature in both tropical and mid-latitude convective systems

having extensive stratiform cloudiness.
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Fig. 4.28. Height-time plot ot the v-component change compared
to its corresponding value at the MCC-12h stage. The
wind is obtained by applying a 9-grid-point area
average over a 60 X 60 lat.-long. domain every SO mb.
The central point ot the 9-point average is locat~~ one
grid point south ot the MeC centroid. Units:. s •



79

VORTICITY

Pig. 4.2'.. Analysis or the vertical component or relative
vortioity and the horizontal wind components !:ir ~~e

700_fb level at the initial stage. Units: 10 s aDd
II s •

VORTICITY

Pig. 4.2'b. As in F1g~64.~". excep~lror the 200 mb level
Units: 10 s and m s • •
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Fig. 4.30. He1gbt-t1.. plot ot the divergence t1eld relative to
tbe MCC track. The horizontal coordinates bave been
rotated along the MCC track so that positive u and v
values represent winds from tbe rear and right tlank
ot the MCC. respectively. The divergence field is
obtained by applying a 9-gr1d-po1nt area average over
a !~ X_fo lat.-long. domain every 50 mb. Units:
10 s •
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4.4 Dynamics and thermodynamics of MCC evolution

In this section. the detailed dynamics and thermodynamics of MCC

evolution are discussed. One thing which should be kept in mind is that

the cumulus convection prevails in the early MCC stages. while the thick

stratiform cloud shield dominates the MCC region after its growth stage.

Therefore. the features of dynamics and thermodynamics related to the

MCC composite system are more or less due to the meso-y- and meso-Jl­

scale during the early MCC life-cycle but primarily result from the

meso-Jl- and meso-a.-scale in the later stages of the MCC life-cycle.

When we sampled MCC cases from the satellite imagery, we found that the

ambient wind modulates the structure of the MCC cloud shield and alters

the dynamics of the MCC system. Therefore, we consider the case with

the entire domain of analysis was rotated along the MCC movement as a

control case. The detailed dynamics and thermodynamics of the control

composite MCC case are addressed in the entire Section 4.4.

4.4.1 Vertical profiles of geopotential height, temperature, and

horizontal wind field

The composite chart of the surface relative vorticity (Fig. 4.31a)

implies that a synoptic-scale frontal zone oriented in a NE-SW direction

is situated along the MCC centroid at the time or MCC initiation. This

figure should be compared with the divergence pattern (Fig. 4.31b);

which indicates that tbe co~ergence zone is associated with the frontal

forcing mechanism. A similar configuration was also found by Winkler

and Charba (1985) in tbeir investigation of heavy precipitation events.

They indicated that the threat area occurs just northwest of the axis of

a strong surface southerly wind maximum and northeast of a maximum of

the strong surface moisture convergence. The horizontal display of
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VORTICITY

Fig. 4.31a. Analysis ot the vertical coaponent ot surtace
relative vorticity and the surtace horizontal wind
components relati!l t~lthe Mee !rack at the initial
stage. Units: 10 s and as.

DIVERGENCE

Fig. 4.31b. As in Fig. 4.31a, zxceyt fOr the surtace divergence
field. Units: 10- s- and a s-1.
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geopotential height field at the MCC growth stage (Fig. 4.24) indicates

that certain mesoscale to synoptic short-wave troughs accompanied the

MCC in the mid-level troposphere. The presence of an advancing trough

near the MCC's centroid implies that baroclinicity exists which may

serve as a lifting mechanism. The above discussions confirm the fact

that the entire composite MCC life-cycle is linked to the eastward

progression of a weak. mid-tropospheric. meso-a-scale short-wave trough

as suggested by Maddox (1983). Incidentally, the geopotential height

and wind contours appear to ref'lect the presence of both the short-wave

and a local perturbation so that the location of' the trough is not

precisely defined. Moreover, the domain average of meridional sensible

heat transport has been oaloulated in an attempt to verifY whether MCCs.

like tropical cloud clusters, are primarily barotropio. Consistent with

the results obtained by Wetzel~. (1983), Fig. 4.32 shows that this

meridional heat transport has a small magnitude. implying that the MCC

is akin to tropical cloud clusters in this aspect.

In order to examine the thermodynamio structure of the MCC. the

corresponding temperature fields are displayed. Fig. 4.33a indicate

that the MCC exhibits a oold-core struoture in the upper troposphere to

lower stratosphere at the mature stage as suggested by Maddox (1983).

This cold-core f'eature near the MCC oentroid reflects the persistent

meso-a-scale lifting and the longwave radiational cooling. Fig. 4.33b

shows that the MCC possesses a warm-oore structure in most of the mid­

to upper-level troposphere resulting from the heating released by deep

convection plus subsidenoe warming.

The time evolution of the average temperature field (Fig. 4.34)

clearly demonstrates the feature of four layers of' temperature anomaly
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Fig. 4.32. As in Fig. 4.17. eZC!~t tha~lthe winds are system­
relatiYe. Units: 10°C. •



TEMPERATURE

86

K

Fig. 4.33a. Analysis of temperature and horizontal wind components
tor_ihe 200 ab leYel at the _ture at.... UD1ta: I ancl
II a

TEMPERATURE
31.6 mIl-

K

Fig. 4.33b. As in Fig. 4.33a~lexcePt for the 300 lib level.
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Fig. 4.34. Height-time plot of the temperature change compared
to its corresponding value at tbe MCC-12b stage. The
diurnal temperature variations was excluded. The
temperature field is obtained by applying a 9-grid­
point area average over a 60 X 60 lat.-long. domain
every SO mb. Units: K.
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pattern. The layer below 800 mb level shows a warming trend throughout

the entire MCC life-cycle (the diurnal temperature variations have been

removed before the temperature change is calculated). This warmer

temperature is probably due to the warm temperature advection (discussed

later) in the early MCC stage. since the warming by adiabatic

compression in the mesoscale downdraft offsets the cooling by

evaporation of raindrops once the MCC reaches its maturity. In fact,

Johnson and Young (1983) found a similar lower-tropospheric warming in

their investigation of MCS. They argued that the diabatic processes of

melting and evaporation in the lower troposphere yield a negative

heating. but the atmospheric response is a warming due to the adiabatic

warming overcompensating evaporative cooling beneath the stratiform

clouds.

Just above the lower tropospheric warming layer. a very deep

cooling layer is present. which extends from 800 mb to 500 mb level.

Because the MCC exhibits a mean upward motion (Fig. 4.39a) in this

layer. the adiabatic cooling probably prevails. The cooling also

cancels much of the convective heating in this layer. Note that this

cooling is enhanced after the MCC reaches maturity when the mesoscale

downdraft prevails; it also explains the much deeper cooling layer found

in the MCC's mature stage. Other factors which possibly explain or

contribute to this low- to mid-level cooling were suggested by Gamache

and Houze (1985). The cooling may have been the result of negatively

buoyant cloud-top air being detrained from the tops of the relatively

shallow convective cells. However. Rosenthal (1980) pointed out that if

the base of a mesoscale updraft becomes unsaturated as a result of the

convergence of dry air into its base, then dry stable ascent will occur
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and produce a cool layer at the base of the mesoscale updraft of thick

stratiform cloud.

Above the cool layer described, an upper tropospheric layer of warm

air is located between the SOO mb and 200 mb levels. Apparently, this

warm layer is associated with the mesoscale updraft of thick stratiform

cloud, embedded deep convection, ice-phase latent heating, subsidence

warming, and adiabatic cooling of mean upward motion. Above this warm

layer, the region is characterized by a cooling trend. This cooling

feature may be explained by either convective overshooting of individual

cumulonimbus clouds or by the divergence of longwave radiative flux at

the top of the stratiform cloud as suggested by Johnson and Kriete

(1982). Fritsch and Brown (1982) also revealed that adiabatic cooling

due to mesoscale ascent can alone account for the observed cooling

aloft. Their calculations suggested that cooling by detrainment from

convective towers actually reduces the cooling effect by mesoscale

ascent because mesoscale subsidence warming occurs in response to the

convective updrafts.

As far as the horizontal wind distribution is concerned, the low­

level jet at 850 mb level increases in speed slightly (compared to pre­

MCC stage) and veers to a more southwestern flank of the MCC region at

the initial stage (Fig. 4.21a). Thus, a LLJ is a recurrent feature of

the MCC's precursor environment which impinges upon the MCC region. The

flow at 700 mb level has strengthened into a west-southwesterly jet over

the mature MCC region. The veering of the low-level wind at the mature

stage (Fig. 4.21c) presumably reflects both the advancing short-wave

trough and the inertial oscillation induced by the rapid reduction of

eddy viscosity at nightfall. This LLJ has weakened atter the MCC decay
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stage, thus reducing the supply of warm moist fuel to the system. The

200 mb level flow (Fig. 4.22b) shows an intensified jet streak

downstream and to the north side of the MCC centroid (which reaches a

maximum intensity at MCC maturity). Moreover, at the mature stage, the

maximum u-component deceleration is slightly upwind of the MCC centroid

(Fig. 4.35) due to the "obstacle blocking" effect caused by the

mesohigh aloft. The west-east cross-section of the u-component at MCC

maturity suggests that the distance from maximum to minimum wind speeds

is on the order of 600-800 km, i.e., the MCC horizontal scale. This

eVidence, along with the meridional extent of the thick stratiform

cloud, suggests that while the upper short-wave trough signal does

affect the values of the u-component, some of the deceleration is of MCC

origin.

4.4.2 Divergence field at various levels

The traditional Kuo scheme (Kuo, 1965, 1974) of cumulus

parameterization states that the total convective heating is

proportional to the low-level large-scale moisture convergence.

Therefore, it may be inferred that low-level convergence should be

crucial to the MCC's evolution. Indeed, Frank (1978) revealed that the

lnterlropical ~onvergence Zone (ITCZ) could provide the large-scale

convergence which precedes the formation of tropical mesoscale

convective systems. However, Houze et al. (1981) indicated that

regional circulations such as land breezes can also be a source of

substantial large-scale, convergence-forced mesoscale systems.

The divergence field was altered according to O'Brien's (1970)

scheme. This scheme is based on the simple hypothesis that the

divergence errors increase vertically as a linear function of pressure.
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A similar mass-adjustment scheme has been successfully used in a study

of a tropical squall line by Gamache and Houze (1982). The composite

areally-averaged divergence and the areally-averaged divergence change

(compared to the MCC-12h stage) are depicted in Figs. 4.36a and 4.36b.

respectively. Areally-averaged divergence values are first obtained for

each MCC case by applying a 9-grid-point average of rotated winds. The

arithmetic mean of the divergence for the sample cases is then

calculated for each composite MCC sub-period. We can see from Fig.

4.36a that the MCC is generally characterized by a layer of convergence

up to 650-700 mb level and divergence above that throughout its early

life-cycle. The low-level mass convergence not only provides the

necessary large-scale moisture convergence. but also enhances the growth

of meso-y- or meso-p-scale convective elements and promotes their merger

with other cells. The supporting convergence gradually deepens the

moisture layer and provides an environment of enhanced potential

instability. However. low-level convergence increases prior to the

pre-MCC stage. indicating a lag between boundary-layer forcing and the

formation of significant convection.

By the time of MCC maturity. the layer of convergence has deepened

to the 400 mb level and exhibits convergence center at 500 mb level.

while the layer of divergence aloft has strengthened coherently with its

center located at the 200 mb level. The deeper inflow convergence is

needed for intensification of the cyclonic rotation similar to that

found in tropical cyclone formation (Lee. 1986). The vertical extent of

the convergence zone also implies that the MCC is organized on the

meso-p- to meso-a-scale rather than cumulus-scale in order to

efficiently stabilize the environment. Nevertheless. a low-level region
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of divergence is also evident below 850 mb level during MCC maturity,

presumably due to the development of a meso-high as a result of the

evaporation of precipitation.

After an MCC passes maturity, the layer of mid-tropospheric

convergence weakens associated with the weaker mesoscale updrafts, but

the system redevelops a low-level convergence zone. It is not uncommon

to detect severe weather phenomena during an MCC's dissipation period,

resulting from this supporting low-level convergence and conditional or

potential instability, especially in the southern flank of an MCC.

Indeed, Merritt and Fritsch (1984) suggested that although an area of

light precipitation slowly expands to conform to MCC dimensions, the

strongest echoes occurred preferentially along the MCC's southern flank

in some MCCs. Ultimately, the region of upper tropospheric divergence

reaches its maximum intensity very close to the time of MCC dissipation.

Thus, there is about a 6-hour lag (two sub-periods) between the time of

peak low- to mid-level convergence and the subsequent peak in upper­

level divergence, similar to that found in the tropical cloud clusters

described by Frank (1978). The divergence pattern calculated by

Tollerud and Esbensen (1985) for GATE cloud clusters exhibits

similarities to results presented here.

Because the average divergence of the MCC pre-storm environment can

mask changes in divergence caused by the MCC circulation, the change in

divergence was calCUlated relative to the MCC-12h stage. We can see

from Fig. 4.36b that during the early stages of the MCC life-cycle, the

low-level convergence substantially increases in association with

developing mid-level and upper-level divergence. This kind of

divergence feature is similar to the divergence pattern over the
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convective region of a tropical squall line as described by Houze and

Rappaport (1984). Once the MCC reaches maturity and undergoes the later

stages of its life-cycle, the low-level and upper-level divergence has

intensified, accompanying an intensified mid-level convergence zone. In

fact, these divergence characteristics bear a strong resemblance to the

divergence pattern of the trailing stratiform region in Houze and

Rappaport's study.

In order to test the statistical significance of the composite

divergence field, the median divergence field was also calculated. This

was done by first applying a 9-grid-point average to the divergence

field for each individual HCC case. The median value (Hie et al., 1975)

of the HCC cases in each sample was then obtained for each HCC sub­

period. We can see that the pattern of the median divergence field

(Fig. 4.36c) is generally consistent with the average or composite

divergence field (Fig. 4.36a). Hote again the upward translation of the

convergence maximum between the initial and mature stages as well as the

pronounced lower tropospheric divergence during the mature stage. This

consistency of the divergence pattern between the median and mean cases

and the comparable magnitudes of the two diagrams strengthens our

confidence that essential features of the composite field is being

accurately depicted. The change in the median divergence field relative

to the HCC-12h stage was also calculated. We can see from Fig. 4.36d

that during the early MCC lifetime, the low-level convergence

substantially increases in association with developing mid-level and

upper-level divergence. This again is similar to the corresponding

average divergence change field (Fig. 4.36b).
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The vertical distribution of average divergence during the MCC

life-cycle is presented in Fig. 4.37. We can see clearly that

convergence is confined within the lower troposphere during the initial

stage. but that mid-level convergence develops and reaches a maximum

intensity during the mature stage at about 400 mb. As far as the

upper-level troposphere is concerned. Fig. 4.37 shows an increase in

divergence at about 200 mb until the dissipation stage. In fact. the

divergence pattern presented here bears some resemblance to the

divergence pattern of a tropical cloud cluster (Gray et al •• 1982; Lee.

1986).

Time evolution plots of the average divergence at selected levels

are presented in Figs. 4.38a-4.38c. Notice that the 850 mb divergence

(Fig. 4.38a) which results from mesoscale downdrafts develops in the

growth stage and reaches its maximum intensity at the mature stage.

Because the standard deviation (Nie et al •• 1975) of the average

divergence is small compared to the mean value. it appears that the

lower-level tropospheric divergence due to mesoscale downdrafts seen in

Fig. 4.38a is a statistical significant one. Fig. 4.38b indicates that

the mid-level convergence intensifies and attains a maximum intensity at

the mature stage. presumably due to the upward translation of the

mesoscale heating. In spite of a relatively large but still acceptable

standard deviation. the persistent average divergence feature at the 200

mb level. shown in Fig. 4.38c. is evident. It is noteworthy that the

maximum divergence at the dissipation stage is a significant feature.

This delayed upper-level divergence is one distinguishing feature

between the MCC and the tropical cloud cluster.
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arithmetic mean ot the MCC sample is then calculated
tor each composite MCC sub-period. The error bars
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Fig. 4.38b. As in F1g~64.~fa. except for the 500 mb level.
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Fig. 4.38c. As in Fig~64.~fa. exoept tor the 200 mb level.
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4.4.3 Vorticity field at various levels

The composite areally-averaged vorticity and the areally-averaged

vorticity change (compared to MCC-12h stage) are shown in Figs. 4.39a

and 4.39b, respectively. We see from Fig. 4.39a that the environment of

the MCC is generally characterized by cyclonic vorticity below 800 mb

throughout the MCC lifetime with a maximum at the 700 mb level during

the growth stage. It seems that the MCC's internal dynamics start to

playa more important role as the lOW-level vorticity increases to some

extent and the MCC becomes organized. Above the 700 mb level, the MCC

is basically characterized by anticyclonic flow which reaches a maximum

intensity at the 200 mb level towards the end. of the MCC life-cycle.

Since the average vorticity of the MCC pre-storm environment can

mask changes in vorticity caused by the presence of the MCC, the change

in vorticity was then calculated relative to MCC-12h stage. As seen in

Fig. 4.39b, a region of positive vorticity tendency bUildup between the

450 and 650 mb levels which probably results from the positive vorticity

advection induced by the mid-level trough is evident during the later

stages of the MCC life-cycle. Consistent with the areally-averaged

vorticity distribution in Fig. 4.39a, cyclonic vorticity increases

slightly (Fig. 4.39b) below the 850 mb level while substantial

anticyclonic vorticity increases occur near the 200 mb level from the

time of the MCC growth stage until the MCC decay stage. The major

increase in cyclonic vorticity occurs near the 550 mb level. Combining

the vorticity and divergence patterns, the feature of offset in the

peaks of convergence (Fig. 4.36a) and vorticity (Fig. 4.39a) near middle

levels (500 and 650 mb level, respectively) bears some resemblance to

the squall line structure studied by Ogura and Liou (1980).
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Fig. 4.39a. Height-time plot or the mean relative vorticity.
The horizontal coordinates bave been rotated along
the MCC MCC track so that positive u and v values
represent winds from the rear and right flank of the
MCC. respectively. The vorticity field is obtained
by averaging MCC cases_!ve!:I 50 mb tor each
sub-period. Units: 10 s •
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12h stage. Units: 10 s •
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In order to assess the statistical significance of the relative

vorticity composite. the median relative vorticity and the change of

median relative vorticity are presented in Figs. 4.39c and 4.39d.

respectively. We can see that the pattern of the median relative

vorticity field (Fig. 4.39c) is generally consistent with the average

relative vorticity field (Fig. 4.39a) in the upper troposphere with a

maximum anticylonic vorticity present at the 200 mb level. However. in

the lower troposphere, the median relative vorticity profile exhibits an

earlier maximum in cyclonic vorticity during the initial stage at about

700 ab (in contrast to the maximum cyclonic vorticity which occurs at

the growth stage in Fig. 4.39a). Also, the median relative vorticity

shows intensive anticyclonic vorticity in the lower troposphere during

the decay stage. The change in the median relative vorticity field was

calculated relative to the MCC-12h stage. We can see trom Fig. 4.39d

that the low-level cyclonic vorticity increases during the initial stage

in response to the low-level convergence, while the upper-level

anticyclonic vorticity maximizes at the dissipation stage.

The vertical distribution of average relative vorticity during the

MCC life-cycle is presented in Fig. 4.40. We can see clearly that the

cyclonic vorticity is confined within the lower troposphere both before

and after the initial stage. Notice that the mid-level anticyclonic

vorticity decreases after the initial stage. implying the presence of a

developing cyclonic vorticity which is masked by pronounced anticyclonic

vorticity in the initial fields. As far as the upper-level feature is

concerned, Fig. 4.40 exhibits an increase of the relative anticyclonic

vorticity field until the dissipation stage at about 200 mb consistent

with the divergence field (Fig. 4.37).
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Time evolution plots of the average relative vorticity at selected

levels are shown in Figs. 4.41a-4.41c along with error bars based on the

standard deviation of the relative vorticity values for each level and

sub-period. Notice that the 700 mb cyclonic vorticity (Fig. 4.41a)

which results from the enhanced convergence attains a maximum intensity

at the growth stage. Thereafter, the vorticity, an average. becomes

anticyclonic but the variability is so large that a clear trend is not

discernable. Possibly, the relative vorticity ot an MCC system 1s more

or less determined by the environment. Fig. 4.41b indicates that the

mid-level cyclonic vorticity intensifies and attains a maximum intensity

at the growth stage, presumably due to the upward translation of the

mesoscale heating and convergence. Although the standard deviation of

the relative vorticity is relatively large compared to the mean relative

vorticity Value, the persistent average anticyclonic vorticity feature

at 200 mb level can be seen in Fig. 4.41c. It is note worthy that the

pronounced anticyclonic vorticity of this level during the decay and the

dissipation stages is significant. Again, this delayed" upper-level

anticyclonic vorticity is consistent with the upper-level divergence

discussed earlier field (Fig. 4.38c).

The genesis potential, defined as the relative vorticity difference

between lower and upper levels (Gray et al., 1982). could serve as an

indicator of the efficiency of energy import versus export as well as

atmospheric ventilation. Emanuel (1983) described this feature of

strong vertically differentiated vorticity as a system's "dynamic

flywheel" effect, such that the persistent action of an ensemble of

convective elements is able to store the energy on a large scale, which

in turn supports the convection. The more persistent the low-level
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Fig. 4.41a. Time evolution plot of the average relative
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cyclonic and upper-level anticyclonic flow remains (i.e., the low-level

cyclonic vorticity field aligned with the upper-level anticyclonic

vorticity pattern), the more likely is the development of convective

elements to release the potential instability. Fig. 4.42 shows that the

time evolution of the genesis potential field matches the evolution of

the MCC cloud shield.

4.4.4 Vertical motion field

The vertical motion field as assessed from the kinematic method

(i.e•• integration of the continUity equation) is a diagnostic tool to

examine the net response of the atmosphere to the sum total of

convective- to synoptic-scale lifting mechanisms present. Therefore.

the presence of vertical motion is a demonstration of the existence of

forcing mechanisms. After applying a mass-adjustment scheme (O'Brien.

1970) to the divergence calculation. the vertical velocity (w) presented

in this section was diagnosed kinematically. The lower boundary

condition w = 0 was used at the p = 1000 mb level. and the upper

boundary condition w = 0 was applied at the p = 100 mb level. The

calculated composite vertical motion represents the combined effects of

average convective-scale. mesoscale. and large-scale vertical motions.

The areally-averaged composite vertical motion and areally-averaged

vertical motion change (compared to MCC-12h stage) are illustrated in

Figs. 4.43a-4.43b. We can see from Fig. 4.43a that the strongest

average upward motion is centered near 700 mb level early in the

system's life-cycle. This may be attributed to the low-level

convergence which reflects the dominant contribution from deep

convection. Although the individual convective updraft maximum may

extend up to the 400 mb level, this phenomenon of developing an
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areally-averaged low-level maximum in upward vertical motion during the

early growth stage is commonly observed in tropical cloud clusters

(Frank, 1978; Tollerud and Esbensen, 1985; Lee, 1986) and tropical

squall lines (Houze and Rappaport, 1984; Gamache and Houze, 1985).

However, Houze (1982) has shown that mesoscale anvils contribute to a

peak in the convective heating in the mid to upper troposphere, whereas

the peak due to cumulus heating is found in the mid to lower

troposphere. The peak upward vertical velocity reaches values up to

2.37 ~b s-1 (205 mb day-I) as the system evolves into the mature stage.

This is due to the combined effects of deep convection and increased

up-scale development of meso-~-scale convective elements. Usually, the

strongest vertical transport of moist static energy is due to the meso-y

convective motions and meso-~ elements. Later in the MCC life-CYcle,

the upward motion maximum gradually shifts upward to the 400 mb level

while mesoscale updrafts prevail as a distinguishing characteristic of

the thick MCC stratiform cloud shield. The upward translation of the

vertical motion center is a result of the elevation in heating (see

Section 5.2.2).

Kinematically, the mid-level convergence contributes to the

development of the large upward velocities within the thick stratiform

cloud canopy; these are tied together through the continuity equation.

Molinari and Corsetti (1985) incorporated the cloud-scale and mesoscale

downdrafts into a cumulus parameterization scheme in their simulation of

an MCC. They reported that the upward motion maximum shifted to 400 mb

level as the system matured, suggesting that upper-level heating

generated the mid-level convergence and maintained the mesoscale anvil

updraft. A similar upper-tropospheric maximum in upward motion has been
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seen in composite analyses as well as in individual case studies of

mature non-squall tropical cloud clusters (Frank. 1978; Tollerud and

Esbensen. 1985). A feature which is not so evident in the tropical

clusters. however. is the deep layer of downward motion below 700 mb

level at the time of MCC maturity. Even during the dissipation stage.

the small upward velocity (through cancellation) in the lower

troposphere reflects the presence of the mesoscale downdraft as

suggested by Zipser (1969. 1977) and Gamache and Houze (1982).

The height-time diagram for vertical motion change (Fig. 4.43b)

indicates that the upward motion has not only intensified in the lower

troposphere during the early MCC life-cycle but has also strengthened in

the upper troposphere after the MCC growth stage. It also shows that

downward motion develops below the 500 mb level after the MCC growth

stage and that this downward motion extends to the entire troposphere by

the MCC dissipation stage.

The vertical distribution of the average omega field during the MCC

life-cycle is shown in Fig. 4.44. We can see clearly that mean upward

motion prevails throughout the entire troposphere during the MCC life­

cycle except for the lower tropospheric downward motion at the MCC

mature stage. Notice that the level of the maximum upward motion lifts

from 700 mb at the initial stage to 400 mb at the mature stage.

4.5 Comparison of the impact of geography on MCCs

In this section. the difference between the composite pairs

constructed for orogenic and Plains MCCs are discussed.

4.5.1 Comparison between orogenic MCCs and Plains MCCs

A comparison of the mean characteristics or orogenic and Plains

MCCs permits the examination of the impacts of geography on their
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evolution. The fundamental causes which result in dynamical differences

between the ensuing orogenic MCCs and Plains MCCs basically arise from

the differential characteristics of the atmospheric background in which

the MCCs are embedded. McAnelly and Cotton (1986) argued that the

orogenic MCCs (WHCC) are usually formed from mountainous "hot spots"

or from the intersections of multiple meso-~-scale discontinuities.

while Plains MCCs (!MCC) are more or less linked to a unique meSO-a- to

meso-~-scale discontinuity. The time-height cross-sections of mixing

ratio (Figs. 4.45a-b) and ge (not shown) indicate that WHCCs exhibit

earlier maxima of moisture content and energy supply at the growth stage

in contrast to EMCCs' maxima at their mature stage. In addition. the

CAPE profiles shown in Figs. 4.46a-b illustrate that the WHCCs generally

have larger values of CAPE during their early life-cycle than the EMCCs.

It may be inferred that. for the WHCC case, a more random or chaotic

pattern of meso-~ convective elements consume less of the provided

potential energy than EMCC case. The strong support from abundant

moisture content and a highly potentially unstable environment possibly

associated with multiple forcing mechanisms allows the WHCC to be a

longer-lasting system.

The wind field distribution of these two systems (Figs. 4.47a-d)

has several intriguing features. The WHCC's wind field is characterized

by a weaker westerly and stronger southerly wind component, while the

EMCC is associated with intensified northwesterly flow instead. These

configurations imply that a WHCC is favored or is likely to occur on the

western flank of an upper-level ridge while an EMCC is most likely to be

found on the eastern flank. The EMCC's stronger westerly component may

be due either to the orientation or to the strength of the eastern flank
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Fig. 4.45a. Height-time plot of the mixing ratio difference from
its corresponding value at the MCC-12h stage tor the
orogenic MCCs case. The mixing ratio field is obtained
by applying a 9-grid- point area average OV!i a 60 X 60

lat.-long. domain every SO mb. Units: g kg •
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Fig. 4.45b. As in Fig. ~i45a. except for the Plains MeCs case.
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of the ridge. The temperature advection fields depicted in Figs. 4.48a

and 4.48b support the above arguments. THe WHCC experiences widespread

warm advection throughout its life-cycle; on the other hand. the EHCC is

characterized by mid- to upper-level cool advection after the growth

stage once it lags behind the trough. Moreover. the temperature change

fields (not shown) also reflect the temperature advection pattern such

that the WHCC is characterized by low- and upper-level warming while the

EMCC is dominated by widespread cooling. In fact. the 1200 GMT data

prior to the MCCs' initiation which was used to compare the MCC

formative backgrounds shows that the nascent WHCC's centroid is located

at 1040 west longitude on average in contrast to the EMCC's centroid

Which is located at 970 on average. The former position lies along the

eastern slope of the Rocky Mountains about 1.5 km above mean sea level.

the latter is near the central Plains at an elevation of 0.5 km or SO

above mean sea level. Therefore. it is relatively easier for the WHCC

(originated at elevated surface compared to EMCC case) to encounter

warmer air which at least partly explains the warming trend.

The areally-averaged divergence field of the composite WHCC (Fig.

4.49a) indicates that the pronounced boundary-layer convergence has

widened and lifted to mid-level (maxima near 700 mb and SOO mb levels)

by the mature stage. then remains steady for the rest of its lifetime.

In comparison. the EMCC's areally-averaged divergence field (Fig. 4.49b)

shows a less intense convergence throughout its life-cycle. These

configurations support the hypothesis of greater long-lasting low-level

convergence support for the WHeC than the EMCC. In response to the

divergence distributions. the vertical motion field of the WMCe (Fig.

4.49c) possesses a stronger upward motion maximum near 650 mb level at



121

WMCC TEMP. ADV.

i-Q.

o

-~

Fig. 4.48a. Height-time plot ot the temperature advection tor
the orogenic MCCs case. The value is Obta!~ed t~~ a 9­
grid-point averaae every 50 IIlb. Units: 10 IC s •

EMCC TEMP. ArN.

END

H
as

o

-10---....'
/'1' /,.~ )

/ (L) I
I \-27.11 I 0
I "_"I /
\ I
\ /" ....""---

MAT

Mec LIFE CYCLE
INI

i-Q.

Fig. 4.48b. As in Fig~54.48!1 except tor the Plains MCCs case.
Units: 10 [s •



122

1'---::'0.5, "
I 'I \
I I

I I
I "1.0,, I

( I L \ I
, \ -1.6;, I
\ "'" I- '"' ...._.........

INI

.....-,
.......... -0.5,. ....--,

",1000 L-__L.-_----:L.-~~L___::::;;..:L...=....;;;;;::~~-.......I

MAT END
MCC LIFE CYCLE

CL

Fig. 4.49a. Height-time plot ot the mean divergence field for
the orogenic MCCs case. The horizontal coordinates
have been rotated along the MCC MCC track. The
divergence field is obtained by averaging M2~ c!!es
every SO mb for each sUb-period. Units: 10 s •

INI MAT
MCC LIFE CYCLE

END

Fig. 4.49b. As in Fig~s4.~ra. except for the Plains MCCs case.
Units: 10 s •



123

the initial stage which then gradually shifts to 400 mb level at the

mature stage. The counterpart for the EMCC (Fig. 4.49d) has significant

downward motion at the mature stage in association with an upward motion

maximum centered at about 400 mb level at the growth and dissipation

stages without the accompaniment of any upward motion center due to the

absence of mid-level convergence at the mature stage. The relative

vorticity fields (Figs 4.S0a-b) depict an early cyclonic maximum at the

growth stage for the WHCC in contrast to the EMCC whose maximum occurs

at its mature stage. These features reflect that the EMCC possesses a

more efficient "dynamic flywheel" at its mature stage rather than the

WHCC's weaker but long-lasting feature. In summary, the WHCC owes its

existence to the more moist and potentially unstable background

atmosphere under weaker steering flow over a longer period. Those

features support that the WHCC is characterized by a more random or

chaotic pattern of meso-~-scale convective elements due to the variety

of triggering mechanisms compared to the EMCC as suggested by McAnelly

and Cotton (1986).

4.6 Summary

The composite results based on a coordinate system determined by

the direction of MCC movement reveal a number of distinctive

characteristics of the MCC's structure, dynamics, and thermodynamics

during its life-cycle. It is clear that several of the contributing

factors come together and interact over the threat area several hours

before the ensuing MCC develops. Note that the synoptic-scale

circulation provides the abundant moisture and potentially unstable

environment through certain destabilization processes. The MCCs seem to

be driven by a combination of dynamic and thermodynamic processes which
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interact together. The major findings of this chapter are as follows:

1. The high horizontal ee gradient which exists near the MCC's centroid

provides the abundant fuel supply by the growth stage for system

development.

2. The CAPE reaches its maximum intensity prior to the MCC initial

stage, then tapers off due to depletion by cumulus convection. It

is suspected that the low-level jet acceleration may slightly offset

the cumulus depletion of CAPE during the initial and growth stages.

3. The divergence pattern shows convergence limited to the lower layers

in the early stages but then expanding and lifting to the middle

troposphere during the MCC's growth and mature stages. '!be upper­

level divergence increases as the system evolves and reaches its

maximum intensity very close to the time of MCC dissipation. The

presence of low-level mass convergence topped by upper-level mass

divergence couplets helps to maintain the large flows of mass

necessary to sustain the system for long periods.

4. The vorticity field analyses show the cyclonic vorticity to be

confined within the surface to 700 mb layer during most of the MCC's

evolution and the anticyclonic vortioity to be located exclusively

in the upper troposphere. This configuration basically satisfies

Emanuel's "dynamic flywheel" conceptual model for self-exciting

convection.

S. Upward motion is centered near the 700 mb level early in the MCC

life-oycle due to the dominant contribution from deep convection.

Then the upward motion maximum gradually translates upward to the

400 mb level later in the MCC life-cycle when mesoscale updrafts

prevail. However. a deep layer of downward motion below the 700 mb



127

level at the MCC's mature stage reflects the presence of concurrent

mesoscale downdrafts.

6. The mid-level "jet-like" inflow reaches its maximum intensity at

the growth stage slightly above the melting level at about 600 mb

level. This mid-level "jet-like" inflow appears to play an

important role in driving the mesoscale downdraft and enhancing the

entire cellular circulation.

7. The system-relative flow field indicates that as the MCC moves, it

is always receiving a fresh supply of moist air at low levels from

the front during the early MCC life-cycle and in turn is sending a

stream of drier upper-level air toward the rear.

8. The orogenic MCC owes its existence to more favorable moisture

content and potentially unstable environment which lasts for a

longer period than for the Plains MCC. Orogenic MCCs are also

characterized by a chaotic pattern of meso-p convective elements due

to the variety of triggering mechanisms.

9. The composite fields provide some evidence for the presence of

"mesoscale organizers" which serve as triggers to release the

preexisting potential instability. These forcing mechanisms are

crucial to the MCC's initiation and development. The most likely

"mesoscale organizers" are a low-level jet, an upper-level jet, a

mid-level "jet-like" inflow, 700 mb level confluent flow, and a

low- to mid-level trough.



s.o MCC BUDGET EVOLUTION

In this chapter. bUdgets for the vertical component of relative

vorticity. heat. and moisture are presented for the composite MCC

discussed at the beginning of the previous chapter. i.e •• the control

composite based on the selected sample of MCCs.

5.1 MCC vorticity budget

This sub-section attempts to reveal the vorticity sources and sinks

of a composite MCC. In addition. where there exists an imbalance in the

vorticity equation when applied to the MCC. the roles of deep convection

and mesoscale updrafts are discussed.

5.1.1 Vorticity budget formulation

The bUdget for the meso-a-scale vertical component of relative

vorticity (~) is given by

ft + r·\t (~ + f)

(a) (b)

+ lI)~a + (~ + f)\t.ytp •

(c) (d)

~

+ K.\fII) x all.:.. = Hap z.

(e) (f)

( 1)

where II) is the vertical velocity in the p coordinate system. and Hz. the

residual term. can be interpreted as the result of unresolved or

subgrid-scale motions. However. any noncanceling observational errors

in the terms on the left-hand side of Eq. (1) will also contribute to

Hz. The terms on the left-hand side are the (a) local change term. the

(b) horizontal and (c) vertical advection of absolute vorticity. (d)

vorticity production by convergence (or divergence term). and the (e)
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twisting term. Only those wind observations whose spatial and temporal

patterns can be recognized as probable in a statistical sense can

contribute significantly to the interpolated values at the grid points.

Thus. we must exercise caution in interpreting the budget for the

vertical component of vorticity because of the combined contributions

from the variety of scales of circulation.

S.1.2 Vorticity bUdget of the composite HCC

Figs. S.la-S.lf show the height-time cross-section of each of the

terms involved in Eq. (1). Based on the distribution ot the residual

term (Fig. S.1f). we have confirmed earlier findings of imbalance in the

vorticity equation. Generally speaking. the residual ot vorticity

exhibits a negative value in the lower troposphere from the HCC initial

stage to the post-HCC stage. This vorticity sink (negative value of

residual term) reaches its peak intensity at HCC maturity. On the other

hand. the mid- to upper-level vorticity source (positive value of

residual term) exists during the early. mature. and the dissipation

stages ot the HCC. These residuals are generally believed to result

from cumulus-scale and mesoscale circulations which are not explicitly

resolved by the budget analysis.

By examining the magnitUde of the vorticity budget terms throughout

the HCC life-cycle. we find that the divergence term (Fig. S.ld) and the

local change term (Fig. 5.1a) are basically the biggest two contributors

to the imbalance in the vorticity budget equation. followed by the

horizontal advection term (Fig. 5.1b). The vertical advection (Fig.

5.1c) and twisting terms (Fig. 5.1e) are at least one order of magnitude

less than the others. Note that since the primary source terms are on

the LHS of Eq. 5.1. a negative sign on the divergence term represents a
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contribution to cyclonic vorticity and vice versa. A visual inspection

of w and ~ in Figs. 4.43a and 4.39a shows that the relatively strong

upward motion accompanying the stratiform cloud near 400 mb level after

the HCC's growth stage is associated with a relatively strong decrease

in the relative vorticity with height. Keeping this in mind. will make

the following discussion easier to understand.

Figs. S.2a-S.2d depict the vertical distribution of the vorticity

budget terms for the pre-MCC. initial. mature. and dissipation stages.

respectively. At the pre-MCC stage (Fig. S .2a). the increase of

vorticity prevail throughout most of the troposphere. resulting fran the

local increase of vorticity itself at all levels as well as the upper­

level divergence. This imbalance implies that convective and smaller

mesoscale feature are primary contributors to vorticity production

during this stage. In the low-level atmosphere at the MCC initial stage

(Fig. S.2b) production of cyclonic vorticity by divergence is nearly

counter balanced by local changes. principally due to the localized

decrease of vorticity within the 600-700 mb layer. Upper-level

anticyclonic vorticity production results from the local changes of

vorticity. strong divergence aloft. and residual or convective-scale

effects.

Because the thick stratiform cloud associated with cloud clusters

is most evident in the growth (not shown) and mature stages (Fig. 5.2c),

it is reasonable to expect that the intensified mesoscale circulations

will amplify all the bUdget terms considerably and result in the

cyclonic production below 300 mb level and anticyclonic production above

300 mb level. The cyclonic vorticity production is attributable to

convective-scale contributions to the residual and to the intensified
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low- to mid-level convergence and the upper-level divergence. Note that

the vorticity is more or less balanced at the MCC's dissipation stage

(Fig. S.2d) in the mid-to-lower troposphere. Anticyclonic vorticity

production by divergence and the residual term lingers above 300 mb

level. however. in contrast to the other stages. The vorticity field

clearly retains a longer "memory" of the presence of the MCC than do

same of the other fields.

Analysis of west-east cross-sections of the local vorticity change

term and the divergence term (not shown) at the MCC's mature stage

reveal significant local vorticity change occurs upwind of the MCC

centroid at middle levels; the change is characterized by a low- to

mid-level increase in cyclonic and an upper-level increase of

anticyclonic vorticity. The cyclonic vorticity contribution resulting

from the convergence also appears upwind of the MCC centroid throughout

the entire low- to mid-level troposphere. The low- to mid-level

cyclonic vorticity production and upper-level anticyclonic vorticity

production in the north-south cross-section was primarily due to the

residual term. It is possible that the large-scale conditions. which

are favorable for the development of an MCC in general. enhance deep

convection along the frontal zone and hence also contribute to this

upwind feature (e.g•• the wavelength of upper short-wave trough is on

the order of 1.000 km).

The north-south cross-section of relative vorticity at the initial

stage (not shown) indicates that the anticyclonic vorticity centered at

200 mb level has intensified significantly between the MCC's initial and

mature stages. Also, the intense anticyclonic vorticity center shifts

to the north. while the weak anticyclonic vorticity center moves to the
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south. The magnitude of the southern anticyclonic vorticity is about

the same as the value of the background vorticity.

5.1.3 Comparison with other vorticity budget studies

Reed and Johnson (1974). Williams and Gray (1973). and Ruprecht and

Gray (1976) also diagnosed the large-scale vorticity budget of various

tropical systems and consistently found a large residual as indicated in

our results. The vorticity budget residuals found in the GATE study by

Esbensen et ale (1982) also show a lower-level cyclonic production and

an upper-level anticyclonic production of vorticity. Reed and Johnson

argued that the observed lower tropospheric cyclonic vorticity source

and the upper tropospheric anticyclonic source can be attributed to the

removal of vorticity-rich air from low levels and its upward transport

and deposition aloft by convection. In addition. the feature of intense

anticyclonic vorticity production to the north and the weak anticyclonic

vorticity to the south bears some resemblance to the vorticity couplet

found by Tollerud and Esbensen (1983).

5.2 MCC heat bUdget

5.2.1 Heat budget formulation

The effects of cumulus convection on large-scale circulations can

be inferred indirectly fram diagnostic budget studies (e.g•• Yanai et

Al.• 1973; Johnson. 1984; Lee. 1986). Following Yanai~•• the

apparent heat source (Q1) and the apparent moisture sink (~) of a

large-scale. motion system are writ ten as:

b .bJrl Bs'w'
Q1 • at + \!.sf" + ap = QR + L(c - e) - ap •

(d) (a) (b) (c)

(2)
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Q2!! L(~ + ff .qifi + BB~Cal}

(d) (a) (b) (c)

Bg 'w'L(c - e} + L Bp ,
(3)

where s is the dry static energy. y7 is the horizontal wind vector. Cal is

the vertical velocity. ~ 1s the radiative cooling, c and e are the

condensation and evaporation, respectively. L is the latent heat of

condensation. and q is the specific humidity. The overbar here denotes

a meso-u-scale horizontal average, and the prime indicates the deviation

from the horizontal average. Eq. (2) shows that the apparent heating

source consists of heating due to radiation. release of latent heat by

net condensation. and vertical convergence of the vertical eddy

transport of sensible heat. On the other hand, Eq. (3) indicates that

the apparent mOisture sink is due to net condensation and to vertical

divergence of the vertical eddy transport of moisture. From Eqs. (2)

and (3), we obtain

....a...(5_'_+"'--I.I~,q_'..IJ)ld_' = _ ah 'fIl'
Bp Bp •

(4)

where h'w' is a measure of the vertical eddy transport of total heat and

may be used to measure the actiVity of cumulus convection and/or

mesoscale motions. The vertical integral of Eq. (4) indicates the

required surface energy flux needed to balance the energy deficiency.

For convenience in model calculation, Molinari (1985) evaluated the

apparent heat source 1n terms of potential temperature rather than dry

static energy. Therefore. we also use e rather than a for the present

computationa, an artifice which should not significantly affect the

results obtained.
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5.2.2 Heat budget of the composite MCC

Because the domain center coincides with the MCC centroid. the

budget study is basically carried out in a Lagrangian framework. Figs.

S.3a-S.3d show the height-time cross-section of the three right-hand­

side terms of the apparent heat source (terms a. b. and c) from Eq. (2).

and the corresponding apparent heat source (Q1' term d). respectively.

Note that the term Q1 includes latent heating due to cumulus convection

and to the thick stratiform cloud of the mesoscale circulation.

Generally speaking, ~ exhibits a major heat source occurring at the 400

mb level throughout the MCC life-cycle (Fig. 5.3d). The amount of total

Q1 heating is on the order of 10-200 day-I. The magnitude of this

heating is about five times larger than the long-term averages obtained

over the large-scale domain in the tropics (Yanai et al., 1973; Johnson.

1984; Lee, 1986). and radiational cooling is therefore not dominant. In

addition, a minor low-level heat source can be seen during the early MCC

stages, when cumulus convection prevails. The upper-level heat source

reflects the heating resulting from the mesoscale updrafts, whereas the

low-level heat source indicates the significant contribution from the

convective-scale systems. On the other hand, the heat sink (equivalent

to -6 to -90 day-I) exists in the low- to mid-level troposphere after

the growth stage, as a consequence of the effects of mesoscale

downdrafts. Since the lifting condensation level is about 750 mb level.

this low-level cooling is possibly caused by evaporation of rainfall.

Both Lewis (1975) and Ninomiya (1971), who investigated case studies of

squall lines and thunderstorm systems, found a similar strong low-level

cooling due to the evaporation process. In Fig. S.3d there also exists

some extreme-upper-level cooling which may result from cloud-top
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radiational cooling, anvil evaporation, turbulent mixing of

stratospheric and tropospheric air due to overshooting cumulonimbus

tops, or inaccurate estimates of vertical motion near the upper

boundary.

In summary, the effect of cumulus convection and mesoscale

updrafts/downdrafts is to stabilize the lower and middle troposphere,

based on the Q1 profile shown here. We shall see that the local change

term (Fig. 5.3a) contributes much less to the grid-scale imbalance than

do the horizontal and vertical advection of heat: therefore, the

imbalance between the advection terms basically determines the

distribution of apparent heat source (Ql).

Moreover, the vertical distribution of the heat budget terms

involved in Eq. (2) are illustrated in Figs. 5.4a-5.4c at the initial,

mature, and dissipation stages of the composite MCC, respectively. The

common feature among these diagrams is the monotonic increase of the

vertical dry static energy advection (eqUivalent to vertical potential

temperature advection) with height. As the MCC develops, condensational

heating increases and reaches its maximum value at the MCC growth stage.

It is not surprising to find that the maximum level of the heat source

coincides with the peak upward motion (see Fig. 4.43a), because the

vertical advection term dominates the heat budget at upper levels.

However, the horizontal advection term significantly influences the heat

source (before the MCC mature stage) or heat sink (MCC dissipation

stage) in the low-level troposphere.

Figs. 5.5a-S.Sd show the height-time cross-section of the three

right-hand-side terms of the apparent moisture sink from Eq. (3), and

the corresponding total apparent moisture sink (Q2)' respectively. In
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general, Fig. S.Sd shows that a major moisture sink (equivalent to 9-140

day-I) is present below the 700 mb level throughout most of the MCC

life-cycle with the exception of a moisture source which appears near

the 900 mb level at the MCC mature stage. The low-level moisture sink

indicates the removal of heat by evaporation and downdraft processes,

whereas the low-level moisture source implies the contribution of

surplus precipitation over evaporation near the ground. The vertical

distribution of the Q2 budget terms from Eq. (3) are illustrated in

Figs. 5.6a-c at the initial, mature, and dissipation stages of the

composite MCe, respectively. The gross feature among these diagrams is

the monotonic decrease with height of each contributing moisture term

because the moisture content reaches its peak value near the ground

(with the exception of terms c and d at the mature stage). In fact, the

vertical moisture advection term principally determines the magnitude of

the moisture sink, but its contribution is partially offset by the non­

negligible horizontal moisture advection term (especially at the MCC

mature stage). Incidentally, as the bUdget area is increased from 60 X

60 latitude-longitude to 100 X 100 latitUde-longitude, the magnitUdes of

the diagnosed terms generally decrease (not shown). This behavior bears

some resemblance to the squall line investigation by Kuo and Anthes

(1984b).

Fig. S.7 depicts the height-time cross-section of the left-hand­

side of Eq. (4), which results from the activity of cumulus convection

and mesoscale updrafts/downdrafts. The radiative cooling rate is

obtained from the mean tropospheric condition, following Cox and

Griffith (1979). We see from the diagram that a heat source occurs over

a deep layer in the middle to upper troposphere, accompanied by a heat
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sink in the lower layers (with the exception at the mature stage when

the apparent moisture sink exceeds the apparent heat source in the

presence of mesoscale downdrafts). Since the mid- to upper-level heat

source is greater than the lower-level heat sink. the vertical integral

of this quantity is positive (not shown). Therefore. this implies that

an upward energy flux from the surface is required to balance the MCC

net energy production in the upper troposphere (assuming no energy flux

across the tropopause). Of course. on the time scale of MCCs. this is

not likely to occur over land. The entire heating profile illustrated

herein basically resembles the combined mesoscale heating and mesoscale

drying proposed by Johnson (1984). In particular. the maximum heat

source and minimum heat sink both occur at the MCC growth stage when

meso-~ convective elements prevail.

5.2.3 Comparison with other heat budget studies

Johnson (1984). in his study of winter monsoon cloud cluster heat

and moisture bUdgets partitioned into cumulus and mesoscale components.

found an intriguing feature. The total heating of Yanai~. (1973).

which has a peak near 450 mb level. was seen to be a consequence of two

distinctly different circulation features: 1) the mesoscale anvil. whiCh

has a heating peak near 350 mb level and a cooling peak below 700 mb

level. and 2) deep cumulus convection. whiCh produces a heating peak

centered near 600 mb level. The partitioning of the apparent moisture

sink produces qualitatively similar results. The mesoscale anvil

induces a drying peak near 350 mb level and a moistening peak (through

evaporation) near 800 mb level. Cumulus-induced drying has a peak near

750 mb level. Thus. the double-peak structure in Q2 is a consequence of

the combined but vertically separated drying effects of two distinct
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convective phenomena: mesoscale anvils and deep cumulus. These peaks

occur at the levels of maximum removal of water vapor by net

condensation in both cloud systems. Basically, Johnson's partitioning

concept is in good agreement with the results presented here; we also

found a mid- to upper-level heating due to mesoscale updrafts and a

low-level mesoscale drying resulting from mesoscale downdrafts.

Esbensen and Wang (1984) studied the heat budget of a tropical

cloud cluster and found strong convective activity with a very large

low-level moisture sink separated in height from the region where the

large-scale heating is realized during the growth stage (comparable to

our Fig. 5.5d). In the mature stage, the strong development of apparent

heating in the 500-600 mb layer (compared to 400 mb level in Fig. 5.4b)

is evidence for the development of a dynamically active anvil. In the

dissipation stage, they showed that the large-scale apparent heat source

was approximately balanced by the apparent moisture sink above the

freezing level (Fig. 5.7 shows an imbalance of weak mid- to upper-level

heating) •

Molinari and Corsetti (1985) in their simulation of an MCC showed

that the larger fraction of mesoscale precipitation strongly shifts the

heating and drying to the upper troposphere, similar to the Q1 profile

present here (Fig. 5.3d). Kuo and Anthes (1984a, 1984b), who

investigated the heat and moisture bUdgets of SESAME squall lines, also

showed an apparent heat source in the upper troposphere and, moisture

sink in the lower troposphere with magnitudes about two times larger

than the value found in this study. In addition, Akiyama (1984a, 1984b)

investigated a medium-scale cloud cluster associated with a Baiu front

in Asia. He showed that the structure of the cloud cluster during the
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early stages resembles that of an MCC; it exhibited an apparent moisture

sink in the lower troposphere and an apparent heat source 1n the upper

troposphere.

Recently, Ogura and Jiang (1985) investigated the tropospheric

heating and drying effects of an extratropical MCS. They argued that

the cloud heating effect was found not to be in balance with the large-

scale cooling due to the large-scale horizontal advection and storage

terms, which have a dominant role in the heat and moisture budgets.

Once a deep clOUd developed, it tended to dry the subcloud layer through

the process of dry downdrafts penetrating into the subcloud layer and

updrafts removing moisture frCD the subcloud layer. Based on the

evidence cited above, it is probably fair to conclude that a common

feature of MCSs is the upper-level heating source and the low-level

moisture sink.

5.3 MCC moisture budget

5.3.1 Moisture budget formulation

The water vapor budget for an MCC can be evaluated frCD the water

vapor continUity equation

P - E = - /PI00 qV.r ~ - /PI00 r.\tq~ _.!.. /P100 q !tQ.
PsfC g Psfc g at Psfc g

(1) (2) (3)

( 5)

where q is the water vapor mixing ratio, Psfc is surface pressure, and

P and E are precipitation and evaporation at the surface, respectively.

Here, we assume that no significant flux of water vapor occurs across

100 mb level and no storage term due to the phase change (included in

residual term of E). Eq. (5) states that the average rate of excess of
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precipitation over evaporation at the surface plus other residual

contributions -- evaporation of rain, etc. over the MCC area is provided

in part by convergence of the water vapor transport. and in part by a

reduction in the amount of water vapor stored in the atmosphere.

5.3.2 Moisture budget of the composite MCC

Figs. 5.Sa-S.8d shOW the height-time cross-sections of the

horizontal convergence, horizontal advection, and local decrease of

mixing ratio terms from Eq. (S) as well as the sum of these three terms,

which represents the net difference between the areal precipitation and

evaporation, respectively. Most of the synoptic-scale to mesoscale

horizontal moisture convergence (Fig. S.8a) occurs below 700 mb level.

This is due to the rapid decrease of moisture and mass convergence with

height. However, the consumption of moisture Q2 (Fig. 5.5d) is

substantial up to the 600 mb level (equivalent to 9 0 day-i) during the

mature stage. The role of synoptic-scale to mesoscale vertical motion

is to transport moisture upward to support the water vapor consumption

of an MCC. The horizontal convergence reaches a maximum value of 0.24

mm equiValent water vapor near the 750 mb level at the MCC mature stage.

For Fig. S.8b the horizontal moisture advection indicates that a

positive moisture advection maximum of 0.07 mm of equivalent water vapor

occurs near the 700 mb level during the MCC growth stage, followed by a

secondary maximum at the decay stage. Apparently, moisture advection is

relatively insignificant compared to the moisture convergence term and

the storage term (discussed later). Thus, the moisture convergence and

storage processes dominate the moisture bUdget and largely balance each

other by the MCC growth stage. Their difference is then partially

balanced by horizontal moisture advection. However, during the la'cer
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stages of the MCC evolution, the horizontal convergence term dominates

exclusively. The storage term aq/at (Fig. S.8c) shows moistening of the

large-scale environment until the MCC growth stage and drying the

atmosphere after MCC maturity (with the exception of minor moistening

near the ground during the decay stage). The maximum water vapor

storage and depletion values are 0.4 and -0.4 mm of water vapor and both

maximum occur around the 900 mb level.

Values of vertically-integrated moisture bUdget terms during the

MCC sub-periods are presented in Table 5.1. The observed composite

precipitation of each MCC sub-period was obtained from McAnelly

(personal communication) who has used the same compositing dataset as

this study. The evaporation term is the residual term obtained after

evaluating the right-hand-side terms of Eq. (5) and using the composite

precipitation data. Note that the evaporation term is the residual term

which include surface evaporation as well as evaporation of water vapor,

cloud water, and precipitation. However, it is impossible to

distinguish among the contributions of the various source of E from our

data resolution.

In fact, the primary source of water for a cumulonimbus cloud or

mesoscale convective system is the flow of water vapor into the base of

the cloud. As the air ascends and cools, the vapor is converted into

liqUid clOUd droplets and some is converted into liqUid or frozen

precipitation elements. A portion of the water rapidly falls out as

surface rainfall while some of the water is injected into the anvil

portion of the cloud where it eventually evaporates or slowly settles

out as steady precipitation. Some of the condensed water is evaporated

from the sides of the cloud due to entrainment processes. As the cloud
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decays, some of the cloud water and smaller precipitation elements will

also evaporate. Another portion evaporates in the dry subcloud layer in

low-level downdrafts.

Apparently, based on the analysis of Table 5.1, the moisture

storage term dominates the budget balance during the early and late

stages of the MCC life-cycle. This implies that any mesoscale model

simulation should consider or should have the capability to handle the

atmospheric storage process in order to assess the moisture structure of

an evolutionary system. UDtortunately, current mesoscale models (e.g.,

Anthes and Warner, 1978) usually lack this ability. BUdgetary

calculations over the MCC area indicate that water vapor is also made

available by MCC-scale convergence besides the above-mentioned storage

term, with evaporation and moist horizontal advection playing smaller

but by no means negligible roles.

The results of the water vapor bUdget shown in Table 5.1 can also be

percentages shown in Table 5.2. Of each 100 units of water vapor (sum

of the horizontal convergence, horizontal advection, and evaporation)

made available to the MCC, the calculation shows that 47 come from MCC­

scale mass convergence, 18 from MCC-scale moisture advection, and 35

from evaporation during the MCC initial stage. Of this total, 41 units

are used to moisten the atmosphere, and 59 fall as precipitation.

However, at MCC maturity, 60 units come from the mass convergence, -29

units from dry advection, and 69 units are contributed by the dominating

evaporation fram the surface, water vapor, cloud water, and

precipitation. Note that of this total, the precipitation efficiency

reaches 113~ such that the moist atmosphere provides an extra 13~ from

its accumulated storage through a number of precipitation processes.
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Table 5.1. The water vapor bUdget and its comparison with observed

precipitation during HCC volution. Units in depth

of liquid water (mm) •

1 2 3 1+2+3 Observed Calculated
-

Subperiod -q~ ~.~ -~
- - -

at P - E P E

PRE-MCC 1.505 1.227 -3.078 -0.346 0.580 0.926

INIT. 1.238 0.464 -1.060 0.641 1.549 0.908

GROW. 2.125 0.176 -0.712 1.589 2.614 1.025

HAT. 1.620 -0.781 0.348 1.187 3.017 1.830

DECAY 1.824 -0.357 -0.403 1.065 2.575 1.510

DISSI. 1.192 0.027 -0.716 0.503 1.545 1.042

POST-HCC -0.119 0.268 -1.028 -0.879 0.967 1.846

Table 5.2. The water vapor budget during HCC evolution.

Units in ".

1 2 1+2 3
-

Subperiod -qn -F·"#q :v.~ -~ P Eat

PRE-HCC 41.1 . 33.6 74.7 -84.1 15.9 25.3

INIT. 47.4 17.8 65.2 -40.6 59.4 34.8

GROW. 63.9 5.3 69.2 -21.4 78.6 3o. 8

HAT. 60.7 -29.3 31.4 13.0 113.0 68.6

DECAY 61.3 -12.0 49.3 -13.5 86.5 50.7

DISSI. 52.7 1.2 53.9 -31.7 68.3 46.1

POST-HCC -6.0 11.9 5.9 -51.5 48.5 94.1
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In fact, the atmospheric storage term (Table 5.1) has accumulated

since the pre-MCC stage to ensure the highest precipitation efficiency

once the MCC reaches its maturity. A precipitation efficiency greater

than 1001 suggests that the value of the parameter b (partition

coefficient for moistening the atmosphere) in Kuo's (1965, 1974) cumulus

parameterization scheme may be negative in the real atmosphere. It

should also be kept in mind that part of the precipitation that actually

falls from the mesoscale anvil systems is produced in cumulus updrafts

and is transferred to the anvil by the mesoscale circulation (Leary and

Houze, 1980; Gamache and Houze, 1983).

At the MCC dissipation stage, although the mass convergence

continuously provides the moisture for the system (54~), the evaporation

process still contributes a significant amount of water vapor (46~) into

the atmosphere. However, mesoscale downdrafts remove the accumulating

vapor in a highly efficient process whereby nearly 6. of the water

vapor made available by horizontal transport and evaporation falls as

precipitation. Incidentally, the decrease of the mass convergence is

offset by reduced precipitation at the post-MCC stage to such an extent

that precipitation efficiency drops to only 491.

The water vapor budget shows that evaporation contributes a high

percentage to the MCC system. This may result in part from the

assumption of no storge term of liquid- and ice-phases in Eq. (5).

Therefore, the residual term of evaporation includes the surface vapor

evaporation, evaporation of precipitation, and evaporation of oloud

water. Only a mesoscale model inclUding phase change (e.g., Tripoli,

1986) can provide the partioned contribution of the evaporation in

detail.
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5.3.3 Comparison with other moisture budget studies

Bosart and Sanders (1981) investigated the water bUdget of a long­

lived MCS in the Johnstown flood and showed that the water vapor was

provided principally by storm-scale convergence but also to a lesser

degree by atmospheric storage. They indicated that the precipitation

efficiency was nearly 901, which is similar to our result for the MCC

later stages, but with the precipitation rate about four times larger

than the value presented here. Thompson et ale (1979) investigated the

precipitation in synoptic-scale waves in the tropical Atlantic during

Phase III of GATE. They found that of 100 units of water vapor made

available, 83 units came from moisture convergence and 17 units came

from surface evaporation (more or less similar to our MCC early stage);

they also found that 6 of these units are used to moisten the

atmosphere, while 94 precipitate. However, their precipitation

efficiency of 94~ bears some resemblance to our findings at the MCC

decay stage. As an indication of the relative contribution of the

various water sinks for a severe squall line thunderstorm, Newton (1966)

estimated that between 45-53~ of the water vapor entering the updraft

reaches the ground as precipitation, while about 401 is evaporated in

downdrafts and about 101 1s injected into the anvil porton of the cloud.

In fact, his result bears some resemblance to our findings of the

contribution of evaporation.

5.4 Summary

BUdgetary calculations averaged over the composite MCC area show

that the residual of grid-scale vorticity exhibits a vorticity sink in

the lower troposphere from the initial to post-MCC stage which reaches

its maximum intensity at MCC maturity. On the other hand, a mid- to
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upper-level vorticity source exists during the early and dissipation

stages of MCC. The imbalance in the vorticity bUdget results

principally from the non-cancellation between the divergence and local

change terms.

The heat budget for the composite MCC indicates that the total

apparent heating Q1 exhibits a major heat source equivalent to 10-200

day-1 at about the 400 mb level which occurs throughout the MCC life-

cycle; there is also a minor low-level heat source during the MCC early

stages while cumulus convection prevails. However, a heat sink of

magnitude of -6 to -90 day-1 exists in the low- to mid-level troposphere

after the growth stage. Among the terms involved in the heat bUdget,

the local change term is considerably smaller than the horizontal and

vertical advections terms; thus, the imbalance between the advection

terms basically determines the distribution of the total apparent heat

source. In general, the total apparent drying Q2 shows a major moisture

sink equivalent to -9 to -140 day-1 which occurs below the 700 mb level

throughout most of the MCC life-cycle although a moisture source appears

near the 900 mb level during the MCC mature stage. Since the mid- to

upper-level heat source contribution is greater than the lower level's

heat sink, some amount of the energy flux from the surface is required

to balance the MCC net energy export in the upper troposphere.

Water vapor budget calculations over the composite MCC area

indicate that water vapor is provided by MCC-scale convergence and the

atmospheric storage term, with evaporation and moist horizontal

advection playing smaller but by no means negligible roles. Of each 100

units of water vapor made available to the MCC, 47 come from MCC-scale

mass convergence, 18 from MCC-scale moist advection, and 35 from
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evaporation of water vapor, cloud water, and precipitation at the MCC

initial stage. Of this total, 41 units are used to moisten the

atmosphere, and 59 fall as precipitation. However. during the MCC

mature stage. the precipitation efficiency reaches 113' such that the

moist atmosphere provides an extra 13~ from its storage. which was

accumulated since the early stages of the MCC. The wate:r vapor bUdget

study suggests that the atmospheric storage process is significant

enough over MCC spatial and temporal scales such that n\Derical models

could not reflect the real atmospheric processes without considering

this effect.



6.0 THE INFLUENCE OF ENVIRONMENTAL CONDITIONS ON MCC GENESIS
AND DEVELOPMENT

The primary purpose ot this chapter is to investigate some

hypothetical mechanisms tor MCC genesis and development via a composite

study. Based on an examination ot the structural. dynamic. and

thermodynamic evolution of the composite MCC presented at the beginning

of Chapter 4. together with conclusions from the bUdget studies of

Chapter S. certain MCC genesis and development mechanisms are

hypothesized.

6.1 Geostrophic adjustment process related to MCC genesis and

development

6.1.1 Geostrophio adjustment prooess

The problem of geostrophio adjustment is to determine the final

adjusted state and the transient states which ooour when atmospherio

flows mutually adjust the pressure field and the momentum field to a

state of geostrophio balance. Applioations of the geostrophic

adjustment concept to an MCC study oan be addressed as follows.

It is assumed that the latent heat release from cumulus or

mesosoale updrafts has a direot feedback to the rotational flow. Ooyama

(1982) and Frank (1983) presented the following general definition of

the Hossby radius of deformation (H'):

R' • N H I [( ~ +f)o.S ( 2 V IR + f)O.Sl. (1)
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where N is the Brunt-Vaisala frequency, H is the scale height of the

circulation, a is the relative vorticity, f is the Coriolis parameter, V,

is the rotational component of the wind, and R is the radius of

curvature. The Rossby radius of deformation is derived from

consideration of the relative resistance of the atmosphere to vertical

displacements resulting from static stability and to horizontal

displacements resulting from inertial stability. Alternatively, the

Rossby radius deformation with basic flow can be rewritten (as suggested

by Schubert, personal communication) as follows:

(2)

where Cn is the inertia-gravity wave speed of the corresponding vertical

mode.

Fig. 6.1, based on Frank (1983), defines three regimes classified

according to their horizontal length scale (L) and Rossby radius of

deformation (R'). Region I includes small-scale turbulence and

indiVidual convective cells and clouds. Region II (or the dynamically

small regime where L < R') encompasses circulations with significantly

unbalanced flow in which the divergent component is no longer a

secondary circulation and may even be the primary mode. Region III (or

the dynamically large regime where L > R') is the nearly balanced flow

regime where large-scale circulations evolve slowly, and secondary

circulations are largely controlled by the primary circulations.

During the geostrophic adjustment process for dynamically small

systems, the mass field tends to adjust to the rotational wind fields as

suggested by Schubert et ale (1980) in their barotropic modeling study.

On the other hand, t~e rotational wind fields adjust to the mass field
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for dynamically large systems. As a system develops, the localized

relative vorticity and/or 2V/B (1.e., the mean vorticity of a system)

increase comparable to f within the system area, and the mesoscale

system is stiffened by the increase of absolute vorticity and inertial

stability. In other words, the Bossby radius of deformation decreases

locally; thus, the lower scale limit for the quasi-balanced flow is

brought down closer to the mesoscale. Note that, in the tropics, a

small change in ~ or 2V/B causes a large percentage change of B'.

However, in the middle latitudes, a small change in ~ or 2V/H results in

a smaller variation of B' in contrast (due to the dominanting role of

Coriolis parameter in determining H'). If this reduction of the radius

of deformation were continued, the deterministic dynamics of the

balanced flow would begin to take over the control of the mesoscale

convection.

Moreover, Schubert and Hack (1983) applied the transformed Eliassen

balanced vortex model in a hurricane modeling study. They revealed that

the change of a system from the dynamically small regime to the

dynamically large regime implies a corresponding change in heating

efficiency and internal circulations. They further pointed out that a

relatively smaller Bossby radius signifies a stronger rotational

constraint and a relative tendency for adjustment of wind to pressure.

Additionally, Schubert and Hack proved that the terms "strong

rotational constraint" and "adjustment of wind to pressure" were

synonymous with "efficient heating". It is first necessary, however,

to decide on the representative levels of the Bossby radius of

deformation for a system. Then, we attempt to find out which physical
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processes causes a shrinking or reduction of the radius of deformation

if such a reduction occurs.

Emanuel (1983) noted that the atmospheric response to convective

heating can be divided into transient and balanced modes. Typically.

the transient response will take the form of an inertia-gravity wave

within the Hossby radius of deformation. On the other hand. the steady

response to localized heating is generally assumed to involve subsidence

and conoomitant adiabatic warming adjaoent to the heat souroe. Usually.

the atmospheric responds to oonveotive heating in a balanoed way beyond

the Hossby radius of deformation. Thus. oonveotive heating in

disturbanoes larger than H' will exoite less gravity wave energy. and

more gravity energy will be projected onto the geostrophically-balanced

flow. In fact. most of' the energy released from cumulus convection to

the system is transported horizontally and vertioally as internal

gravity wave energy. The retained portion of the heating acts to build

a meso-a-scale circulation on the scale of the Hossby radius of

deformation. Emanuel also showed the time scale of the balanoed

response to be on the order of' a pendUlum day.

Tripoli (1986) conoluded from his MCS simulations that the internal

gravity wave energy in such systems is largely transported into the

stratosphere by vertical propagation during the daytime. At night.

however. enhanced destabilization of the upper layer'S stratiform cloud

by longwave radiation traps a greater portion of' the internal gravity

wave energy. As a result. the concentrated cellular oirculation

initiates several meso-p-scale systems f'rom the action of the emitted

trapped internal waves. These act to weaken the core and spread the

upward motion through the meso-a-scale circulation.
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Based on the conclusions of Chapters 4 and 5, we see that low-level

convergence is a necessary condition for MCC genesis. During the early

stages of the MCC life-cycle, the system is characterized by the

development of deep convection which has a lower level of maximum upward

motion and a lower level of maximum heating. Up-scale development

during the MCC growth and mature stages is characterized by Wide-spread

thick stratiform clOUd in the upper troposphere. Observational evidence

shows that the formation of this elevated stratiform cloud shield is

accompanied by an upward shift in the level of maximum upward motion and

maximum heating from about 700 mb to 400 mb level. Anthes and Keyser

(1979). in their simulation of a mid-latitude cyclone. suggested that a

higher proportion of convective heating in the lower troposphere

contributed to the deepening of the mesoscale system, but the greater

upper-level heating stabilized the atmosphere and caused the system to

undergo slower development or weakening. It seems to be that an upward

shift in the level of convective heating may weaken the overall

convective intensity of an MCC but favor its up-scale growth to a

larger-scale mesoscale system.

Fulton (1980) found that the extent of geostrophic adjustment

depended strongly on the vertical structure of the initial conditions.

He showed that as the initial bubble moved higher in the troposphere,

the relative contributions of the higher wavenumber modes became

smaller. His results show some resemblance to the heating profile of

the early MCC stages. Hack and Schubert (1986) investigated the

influence of the vertical heating profile on the development of a

tropical cyclone. They found that there is a tendency for a larger

percentage of the kinetic energy to be projected onto larger horizontal
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scales of motion when the heating maximum is shifted into the upper

troposphere. Their conclusion may apply to the MCC growth and mature

stages.

Based on the apparent linkage between the heating profile and the

MCC evolution, we hypothesize that the vertical level of the Rossby

radius of deformation should be chosen in the low to middle tropospheric

levels so as to detect the influence of both cumulus and mesoscale

systems. This will allow determination of whether the Rossby radius

deformation of a system is reduce'~ during the MCC genesis and

development stages.

6.1.2 Calculation of Rossby radius of deformation

We evaluated the Rossby radius of deformation through Eq. (2) by

using 30 m s-1 for the phase speed of the inertia-gravity wave (Cn) as

computed by Tripoli (1986) in his mesoscale model. The west-east

cross-section of the Rossby radius deformation (Figs. 6.2a-d) generally

exhibits a common feature of smaller radius in the lower troposphere and

a slightly larger value aloft. OWing to the larger value of f compared

to the relative vorticity and the mean vorticity (i.e., 2V/R) of the MCC

in mid-latitudes, small changes in the relative vorticity or the

rotational component of the wind result in little change in the

magnitude of the Rossby radius of deformation. Although the change of

radius is insignificant longitudinally during the MCC-12h stage (Fig.

6.2a), the plan view of Rossby radius deformation at the 700 mb level

(Fig. 6.3a) still shows a relative minimum value of 310 km near the MCC

centroid. This low value of the Rossby radius results mainly from the

cyclonic vorticity, but the inertial stability also contributes. As the

system evolves. the tendency for reduction of the Rossby radius of
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Fig. 6.2d. As in Fig. 6.2a. except for the mature stage.
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deformation is maintained within the lower troposphere, reflecting the

presence of cyclonic vorticity. During the MCC growth stage (Fig.

6.3b), the Rossby radius of deformation decreases to a minimum value of

290 km, responding to the presence of the most intense vortex. However.

the Rossby radius at the mature stage (Fig. 6.3c) returns to an average

magnitude of 300 km due to the lower-level cyclonic vorticity center

lagging behind the MCC centroid. Fig. 6.3d shows a relative minimum of

the Rossby radius of deformation at the 400 mb level -- the level of

maximum heating and upward motion. since mesoscale updrafts prevail

during the MCC mature stage.

The time evolution chart of the ratio of Rossby radius of

deformation relative to its value of MCC-12h stage is illustrated in

Fig. 6.4. We can see that the ratio is less than 1 (i.e •• smaller than

the value of MCC-12h stage) below the 800 mb level during most ot the

MCC life-cycle. Note that the Rossby radius of deformation ratio at the

400 mb level decreases slightly between the growth and mature stages;

this decrease can be attributed to the weaker anticyclonic vorticity at

the time of MCC maturity (Fig. 4.39a). The results presented herein

imply that. unlike a tropical cyclone (Lee. 1986), the MCC does not

modulate the inertial stability (discussed later) significantly during

its life-cycle. Consequently, the ratio of Rossby radius of deformation

is near unity during the MCC life-cycle; reflecting the absolute

vorticity and the inertial stability vary over a small range compared to

f. In summary, the profile of Rossby radius of deformation is mainly

subject to the initial distribution of the vertical component of

vorticity such that the Rossby radius of deformation exhibits a smaller

value in the lower troposphere and reaches a minimum during the MCC
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Fig. 6.3a. Analysis of 700 mb level Rossby radius of deformation
-1and wind vectors at the MCC-12h stage. Units: km and m s •
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Fig. 6.3b. As in Fig. 6.3a. ~fcePt for the growth stage.
Units: km and m s •
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RADIUS OF DEFORMATION Km

Fig. 6.3a. As in Fig. 6.3a, ~Iaept for the mature stage.
Units: km and m s •

RADIUS OF DEFORMATION

25,!Sm/l-
Km

Fig. 6.3d. As in Fig. 6.30, =faept for the 400 mb level.
Units: km and m s •
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growth to mature stages due to the presence of 70o-mb level short-wave

trough. In fact. the contribution of f is dominant over the cyclonic

vorticity (caused by the production of short-wave trough) in controlling

the Rossby radius of deformation. Nevertheless. a reduction of Rossby

radius of deformation also occurs in the mid- to upper-level troposphere

during MCC maturity. in response to the mesoscale updrafts. Evidence

obtained from field experiments of Cotton (less than SoC. personal

communication) during the AIMCS and 0-[ Pre-STORM periods also shows

that the upper-level heating during MCC development is not as strong as

in tropical cyclones (about loPC. Gray~•• 1982; Lee. 1986);

therefore. the reduction Of the Rossby radius of deformation will not be

significant compared to that of the tropical cyclone shown by Schubert

and Hack (1983).

6.2 Static stability and wind shear threshold

From the last section. we understand from the concept of Rossby

radius of deformation that the dynamic structure of an MCC can modulate

the system evolution. Apparently. the thermodynamic variations of the

MCC alter the system in some aspects. The static stability and inertial

stability are discussed in this section.

6.2.1 Static stability associated with MCC evolution

The radiative effect of the thick stratiform cloud increases in its

importance to the MCC system dynamics and thermodynamics as nightfall

approaches. During the nighttime. the destabilization resulting from

the clOUd-top longwave radiational cooling and clOUd-base longwave

radiational warming is significantly greater. In general. this

destabilization has some influence on vertically trapping the inertia-
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gravity wave energy emitted by the convection core within the

troposphere (Tripoli. 1986).

Fig 6.S shows that the MCC is characterized by a relative lower

inertial stability [evaluated according to the denominator in Eq. (2)]

in the upper-level troposphere than lower levels due to the anticyclonic

vorticity there. Within the entire vertical column. the MCC exhibits

relatively higher inertial stability (cyclonic vorticity in the lower

layers and weak anticyclonic vorticity aloft) during its early stages

due to the dominant low-level forcing. Gradually. the inertial

stability decreases at the mature stage because of the dominant upper-

level forcing.

The static stability is calculated after Holton (1979) as follows:

s = T aee az' (3)

where T is the temperature. e is the potential temperature. and z is the

vertical coordinate. Fig. 6.6a illustrates the time evolution of the

static stability evaluated in the mid- to upper-level troposphere

(averaged over 500-200 mb layer). This diagram clearly indicates the

MCC is less stable (i.e•• the lapse-rate difference between dry

adiabatic and the real atmosphere is about 20 C km-1) during its growth

stage. The destabilization results from a decrease of the vertical

potential temperature gradient (lowering the Brunt-Vaisala frequency) in

the region below the tropopause. In fact. the convective heating

resulting from the up-scale development of the meso-p convective

elements and the merger of anvil clouds is responsible for this

destabilization (Tripoli. 1986).
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The static stability in the lower stratosphere (evaluated over

200-100 mb layer, Fig. 6.6b) generally shows a reverse trend compared to

its upper-tropospheric counterpart. The MCC system is stable in this

layer after the pre-MCC stage and reaches its most stable extent at the

mature stage. Note that the mid- to upper-level troposphere is being

destabilized one period (roughly 3 hours) prior to the lower

stratospheric stabilization -- this time allows the atmosphere to adjust

and respond. The time evolution of the static stability of the marginal

MCCs (not shown), in contrast, does not show the feature of anvil cloud

destabilization until the dissipation stage (probably due to the upper-

level warm temperature advection below the thick stratiform cloud).

In summary, the atmospheric destabilization process results from

the decrease of the inertial stability and the static stability during

the MCC growth to mature stages. The destabilization, in turn, enhances

the vertically trapping of the inertia-gravity wave energy emitted by

convection cores within the troposphere and possibly contributes to a

projection of greater convective heating on the meso-a~scale by

triggering more widespread convection (Tripoli, 1986).

6.2.2 Wind shear associated with MCC evolution

Weisman and Klemp (1982, 1984) investigated the dependence of

convection storm type on buoyancy and characteristics of the

environmental wind field. A general relationship between wind shear and

buoyancy was expressed in terms of a bulk Richardson number R as

follows:

( 4)
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-where CAPE is as defined in Section 4.2.2, and U6 and UO•5 represent

density-weighted mean wind speed taken over the lowest 6 and 0.5 km of

the profile. The denominator of R is a measure of the wind shear

(calculated by the wind speed difference between two levels) in the

lower half of troposphere; it can also be considered a measure of the

inflow kinetic energy made available to the storm by the vertical wind

shear (Moncrieff and Green, 1972).

Fig. 6.7a indicates that the wind shear of low- to mid-level

(calculated by the wind speed difference between 850 and 500 mb levels)

reaches a maximum value of 7.7 m s-l between 6 and O.S km from the

surface during the growth stage -- the time when the mid-level "jet-

like" inflow prevails. Fig. 6.8 further illustrates that the maximum

wind shear occurs in the vicinity of the upstream side of the MCC

centroid. Thus, a mid-level "jet-like" inflow feeds in low ge air for

explosive system development. Frank (1978) found that the wind shear

between 950 to 650 mb level for tropical cloud clusters is 6 m s-l

(contrasting to that for tropical squall lines of 13 m s-l); this is

compatible with the magnitude of wind shear presented herein. Again,

the main distinguishing feature between an environment capable of

sustaining a squall line versus an MCC is that MCCs prevail in low shear

environments, while squall lines are favored in strongly sheared

conditions.

Strong vertical wind shear in the upper troposphere tends to

prevent the accumulation of the enthalpy in a vertical column needed for

deep convection, thus hindering the development of the MCC. Therefore,

the occurrence of an MCC is favored in a low-wind-shear environment.

However, the mid- to upper-level wind shear (measured the wind speed
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850-500 MB WIND SHEAR

Fig. 6.8. Analysis of 8S0-S0~lmb layer wind shear at the growth
stage. Units: m s •
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difference in the 500-200 mb layer, Fig. 6.7b) shows a wind shear peak

with a moderate magnitude at the growth stage. Probably, the higher

wind shear is caused by the enhanced upper-level jet stream resulting

from the MCC's own circulation rather than by preexisting environmental

conditions. However, the wind shear significantly increases at the

mature stage, resulting mainly from the intrusion of a mid-level trough

or partially from the late development of mid-level inflow.

Incidentally, Merritt and Fritsch (1984) found that the meso-~

convective elements tended to move along the orientation of the mean

clOUd-layer shear vector, i.e., the 850-300 mb layer thickness contours.

Weisman and Klemp (1982) found that for a given amount of buoyancy,

weak wind shear produces short-lived single cells. Low to moderate wind

shear produces secondary cell development similar to multicellular

storms, while moderate to strong wind shears were associated with split

or supercell type storms. Their results suggest that a range of bulk

Richardson numbers probably exists during the MCC evolution because

genesis of an MCC involves the up-scale development of meso-y- and

meso-~-scale systems during the early stages. Generally, values of the

bulk Richardson number of the composite MCC (not shown) are in the

hundreds range; comparable values have been found by Bluestein and Jain

(1985) for multicellular storms. It was shown in Chapter 4 showed that

the profile of the bulk Richardson number basically depends on the local

variation ot CAPE; wind shear distribution are not too critical in

controlling the distribution of bulk Richardson number over the MCC

lifecycle.

In summary, an MCC is favored in a weak vertical wind shear

environment in comparison to squall line systems. However, the internal
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dynamics of an MCC induces a slightly larger low- to mid-level wind

shear during the growth stage.

6.3 Tropopause temperature threshold

To some extent, the initial growth and expansion of the upper

layer's mesoscale stratiform cloud is accomplished by the incorporation

of cloud and precipitation debris from dissipating cumulonimbi into a

large-scale rain system (Leary and Houze, 1979). Johnson and Kriete

(1982) found that the cold anomalies of 2-30 C above Winter MONEX

mesoscale stratiform clouds appeared to be centered 1-2 km above the

mesoscale stratiform cloud top. Like those cloud clusters found in

tropical regions, Maddox (1981) inferred that the duration and intensity

of a mid-latitUde MCC positively correlated to the area of -S30 C IR

temperature such that the colder the tropopause temperature is, the

higher the cumulus convection penetrates. Nehrkorn (1985) used a Wave­

CISK model to examine prefrontal squall line formation and pointed out

that the systems growth rate decreases with decreasing static stability

of the stratosphere. His result implies that a colder tropopause

temperature (i.e•• increased static stability in the lower stratosphere)

favored development of the meso-scale wave trapping. In fact,

Heymsfield and Blackmer (1985) confirmed a common feature that there is

a tendency for colder tropopause temperatures to be associated with

higher tropopauses. Also, Emanuel's dynamic flywheel (or Carnot cycle)

concept may be appliable to explain the favored development for the

meso-scale system.

The above-mentioned evidence seems to provide some linkages between

the tropopause temperature (or tropopause height) and the development of

a mesoscale stratiform cloud system. It appears that the colder
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tropopause may enhance the convective updraft and consequently the

mesoscale downdraft through the coalescence and/or ice phase diffusion,

accretion, and aggregate growth within the mesoscale-enhanced vertical

moisture flux region. Therefore, it is postulated that the tropopause

temperature (which, in turn, determines the upper tropospheric or lower

stratospheric static stability) may have scme connection to MCC genesis

and development.

Based on the U. S. Department of Commerce and U. S. Department of

Defense (1969) definition, the tropopause level is selected at a

pressure of 500 mb or less as fOllows:

(1) The lowest level, with respect to altitude, at which the

temperature lapse rate decreases to 20 C km-1 or less.

(2) The lowest level at which the average lapse rate from this

level to any point within the next higher two km does not exceed 20 C

-1km.

The horizontal plan view of the tropopause temperature at the

MCC-12h stage is shown in Fig. 6.9a. We see that a cool pool is located

on the upstream side of the MCC centroid such that it advects cooler air

into the threat area and destabilizes the pre-MCC environment. As the

MCC evolves, the cooling trend at the tropopause is maintained until the

pre-MCC stage, as depicted by the chart of tropopause temperature

variation (Fig. 6.10). Note that the diurnal temperature change is

negligible (less than 0.30 C near the tropopause) so that the tropopause

cooling prior to the MCC initiation is meaningful. During the MCC

initial to mature stages, convective heating contributes to the

tropopause warming before the stratiform cloud shield spreads out

horizontally. The tremendous difference in tropopause temperature (SoC)
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at MCC maturity apparently reflects the domination of the upper

troposphere at nighttime by the well-developed cloud shield. This

concentration of tropopause cooling in the vicinity of the MCC is

clearly illustrated by the horizontal plan view in Fig. 6.9b. Although

the tropopause cooling reaches its peak intensity at the time of MCC

maturity, the environment continuously maintains a cool tropopause until

the post-MCC stage (Fig. 6.10), reflecting the presence of the mesoscale

cloud shield.

Generally, the tropopause height changes in step with the

perturbation of the tropopause temperature, as found by Heymsfield and

Blackmer (1985). The tropopause height has risen about 0.9 km at the

time of MCC maturity as compared to the MCC-12h stage (Fig. 6.11).

Also, the rise of the tropopause is tightly focused at the MCC centroid

as shown in the horizontal plan view (Fig. 6.12). This concentration of

tropopause cooling and lifting strengthens our confidence in being able

to accurately detect the tropopause level and illustrates the phenomena

of the tropopause cooling and elevation associated with the formation of

the cloud shield.

6.4 Summary

In this chapter, we have proposed some environmental conditions

which are favorable for MCC genesis and development. Prior to MCC

initiation, the preexisting cool tropopause located to the upstream side

of the threat area provides a destabilized upper troposphere in the

pre-MCC environment. Within the lower troposphere, the large-scale

circulation continuously supplies a convergence of moist and potentially

unstable air into the threat area for triggering the deep convection.
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During the early stages of the HCC, the low-level cyclonic

circulation is enhanced through convergence, convective heating, and

some mesoscale forcing mechanisms (e.g., LLJ or low-level confluent

flow). The localized cyclonic vorticity increases the inertial

stability and reduces the Rossby radius of deformation, thus providing

an efficient source of heating in the lower troposphere. This highly

efficient heating should occur in the presence of weak vertical wind

shear throughout the entire vertical column.

However. during the MCC growth stage. the low- and mid-level

convergence associated with enhanced internal circulation maintains a

smaller Rossby radius of deformation. Meanwhile. the MCC circulation

experiences a geostrophic imbalance in the upper-level troposphere which

is associated with a significant ageostrophic wind and which enhances

the ascending motion. The longwave radiational cooling at the

stratiform cloud top and warming at the cloud base destabilizes the

upper-level tropospheric environment and results in an enhanced internal

circulation.

Once the MCC reaches maturity. the mesoscale anvil dominates the

upper tropospheric heating. which also helps in maintaining a reduced

Rossby radiUS of deformation in the mid- to upper-level troposphere.

The tropopause cooling and lifting reaches its maximum intensity,

reflecting the influence of the mesoscale cloud shield.



7.0 A CONCEPTUAL MODEL OF MCC EVOLUTION

The primary purpose of this chapter is to describe a conceptual

model of MCC evolution. This model is based on a synthesis of the

composite analysis results for MCC structure. dynamics. thermodynamics.

and the environmental conditions favoring MCC genesis and development.

all of which were discussed in previous chapters.

7.1 Methodology for constructing a conceptual model

A conceptual model of the MCC life-cycle can be constructed

primarily from analysis of the composite MCC structure discussed in

Chapter 4. Certain characteristics of the MCC weather system should be

detectable in the composite data set -- in particular. convectively­

induced meso-a-scale temperature, height, and horizontal wind

perturbations -- because the Barnes objective analysis scheme which has

been used will retain the synoptic- to meso-a-scale aspects of the MCC

composite data set while suppressing both short- and long-wavelength

" noise ".

In order to determine the evolution of the dynamic and

thermodynamic structure of an MCC system, we have focused on the

variations of moisture content, potential instability, and forcing

mechanisms during the MCC life-cycle. The vorticity, heat, and moisture

bUdgets constructed for the composite MCC provide additional information

about MCC dynamics and thermodynamics. Environmental conditions which

appear to favor MCC genesis and development have also been generated

from the composite results, and these have been incorporated into the
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conceptual model of MCC evolution as well. Incidentally, the following

conceptual model of the evolution of a composite MCC was validated and

modified through examination of the independent set of MCC cases from

1984.

7.2 Conceptual model of MCC evolution

The presence of cumulus- to meso-scale updrafts/downdrafts provides

a mechanism to stabilize the atmosphere through warming in the upper

troposphere and cooling in the lower troposphere. On the other hand,

many large-scale processes destabilize the convective or mesoscale

systems. The upper troposphere experiences cooling and relative drying

due to long-wave radiative divergence or adiabatic ascent while the

lower troposphere experiences warming and moistening due to surface heat

flux, short-wave radiative convergence, adiabatic descent, and moisture

convergence. Stabilizing and destabilizing processes compete

simultaneously, thereby determining the timing and intensity of the deep

convection embedded in the mesoscale convective system. During the

early stages of the MCC life-cycle, the system environment is dominated

by destabilizing processes such as strong low-level moisture

convergence, low-level warm temperature advection, long-wave divergence

and short-wave radiative convergence. However, during the growth and

mature stages, the MCC environment is characterized by stabilizing

processes due to the presence of prevailing mesoscale circulations.

Based on the results of previous chapters, a conceptual model of the MCC

scenerio may be formulated as follows.

Pre-MCC Stage

During the pre-MCC stage, several synoptic-scale features come

together over the threat area several hours before the ensuing MCC
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develops. The preexisting cool tropopause located on the upstream side

of the threat area provides a destabilized upper-level troposphere in

the pre-MCC environment. Within the lower troposphere, the synoptic­

scale circulation drives the convergence of moist, potentially unstable

air over the threat area which then triggers deep convection. In fact,

the genesis of MCC is supported by a maximum intensity of CAPE over the

threat area at the pre-MCC stage before the CAPE is quickly depleted by

deep convection as the MCC forms.

Note that the positions of the surface front, horizontal moist

axis, low-level jet, 500 mb vorticity trough, and upper-level diffluence

zone are focused together over a mesoscale region in association with

the favorable conditions of a preexisting cool tropopause and weak

vertical wind shear. The MCC is thus driven by a combination of

interacting dynamic and thermodynamic processes.

MCC Initial Stage

During the MCC initial stage, the system usually develops in the

vicinity of the surface frontal zone. The MCC then moves with the mid­

level steering flow and experiences a moist inflow in the lower

troposphere to compensate for the energy export at upper levels. Weak

vertical wind shear with the wind veering with height is a feature

commonly present over the MCC threat area which aids in the development

of more intense updrafts inside the core of the MCC. The presence of a

low-level convergence and upper-level divergence couplet helps in

maintaining the inflow and outflow of mass necessary for long periods of

sustained deep convection while the attendent release of latent heat

further enhances the low- to mid-level convergence, thus continously

providing fuel for the MCC system.
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At the initial stage, an MCC receives a fresh supply of moist air

at low levels from the front side of the system and in turn sends an

upper-level stream of drier air toward the rear side of the system. The

MCC is characterized by maximum upward motion near the 700 mb level due

to the dominant contribution from the convection-induced convergence and

heating which carries the necessary energy upward and supports the

system's initiation and further development.

The MCC exhibits a major apparent heat source equivalent to 9-12oC

day-1 which is centered at about the 850 mb level and which results from

mesoscale circulations as well as a minor low-level heat source due to

the prevailing cumulus convection. The initiation of an MCC is largely

driven by MCC-scale moisture convergence in the lower troposphere which

is then transported to upper levels through deep convection.

Precipitation efficiency is about 591. The remaining 41~ of the

moisture is used to moisten the atmosphere in order to maintain MCC

development.

The composite MCC behaves as a vorticity sink in the lower

troposphere and as a vorticity source in the upper troposphere at the

initial stage. This imbalance can be attributed to the removal of

vorticity-rich air from low levels and its upward transport and

deposition aloft by conveotion. The composite MCC initially exhibits

cyolonic vortioity confined within the surface-to-700-mb layer and

anticyclonic vorticity located exclusively in the upper troposphere.

This configuration basically satisfies Emanuel's (1983) "dynamic

flywheel" conceptual model for self-exoiting convection. The low-level

cyclonic circulation is enhanced through low-level mass convergence,

convective heating, and some mesoscale forcing mechanisms (e.g., a LLJ
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or low-level confluent flow). The localized cyclonic vorticity

increases the inertial stability and reduces the Rossby radius of

deformation, slightly enhancing the efficiency of heating within the low

to middle troposphere.

The presence of "mesoscale organizers" which serve as triggers to

release the preexisting potential instability are crucial to the MCC's

initiation. The following "mesoscale organizers" were apparent in the

composite MCC: a low-level jet. an upper-level jet. a mid-level "jet­

like" inflow. 700 mb level confluent flow. and a low- to mid-level

trough.

MCC Growth Stage

During the MCC growth stage. the high ee gradient between the low­

and mid-level troposphere in the Vicinity of the MCC centroid provides

an abundant fuel supply from the lower troposphere as well as a

potentially unstable environment for system development. The low-level

convergence zone expands and lifts to the middle troposphere in

association with an upward motion maximum at 400 mb. reflecting the

dominance of mesoscale updrafts. In response to the upward shift in

heating level associated with the mid-level convergence. a mid-level

"jet-like" inflow develops which reaches its maximum intensity during

the growth stage slightly above the melting level at about SOO mb. This

mid-level "jet-like" inflow appears to play an important role in

driving the. mesoscale downdraft and thus enhances the entire cellular

circulation. Longwave radiative cooling at the top of the growing

stratiform shield and warming at its base destabilizes the upper-level

tropospheric environment and results in enhancing the internal

circulation in the MCC (see Figs. 4.27 and 4.28).
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During the MCC growth stage. the low- and mid-level convergence

associated with the enhanced internal circulation maintains a reduced

Rossby radius of deformation. Meanwhile the MCC circulation induces a

geostrophic imbalance in the upper-level troposphere; the resulting

significant ageostrophic wind enhances the ascending motion. The

dynamic structure of the composite MCC shows that the cyclonic vorticity

still to be confined within the surface-to-70o-mb layer and the

anticyclonic vorticity to be located exclusively in the upper

troposphere. Again. this configuration basically satisfies Emanuel's

"dynamic flywheel" conceptual model for a self-exciting convection.

The convective feedbacks through the development of elevated convective

heating are also instrumental to the development of MCCs. Although the

precipitation efficiency (7~) is high during the growth stage. there is

additional atmospheric storage of water substance.

MCC Mature Stage

Once the MCC reaches its mature stage. the mesoscale altostratus

cloud dominates the upper tropospheric heating. Tropopause cooling and

rising reaches its maximum intensity at the mature stage. reflecting the

contribution of longwave radiative cooling by the upper-level cloud

shield and mesoscale ascent. The MCC is maintained by intensified mid­

level convergence in association with a developing mid-level meso­

cyclone in which mesoscale updrafts mostly prevail. However. a deep

layer of downward motion below the 700 mb level which acts as an

apparent moisture source at the MCC mature stage reflects the presence

of concurrent mesoscale downdrafts. The low- to mid-level cyclonic

vorticity and the upper-level anticyclonic vorticity continuously
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maintain the "dynamic flywheel" mechanism for sustaining the

convective system.

Also, the MCC now exhibits an apparent heat sink equivalent to -6

to -gOC day-1 in the low- to mid-level troposphere (cf. initial stage).

Since the contribution of the mid- to upper-level heat source is greater

than the low-level heat sink, a portion of energy flux from the surface

is required to balance the MCC net energy export from the upper

troposphere. As well, during the MCC mature stage, 31 units of the

total moisture supply come from horizontal transport and 69 units are

supplied by evaporation of cloud water and precipitation. However, the

precipitation efficiency reaches 113~ at this stage (precipitation rate

also reaches its maximum intensity) such that the cloudy atmosphere

provides an extra 13~ from its supply of water which had been

accumulated during the earlier MCC stages. The water vapor budget study

thus suggests that the storage of water substance is important over the

MCC spatial and temporal scales.

MCC Decay Stage

During the decay stage, the MCC moves eastward into a region

characterized by reduced low-level moisture support, and less

potentially unstable stratification or weaker forcing mechanisms (e.g.,

weaker LLJ); those unfavorable conditions gradually lead to the demise

of the MCC system. At this stage the composite MCC exhibits a weak sink

of vorticity in the lower troposphere and a weak source of vorticity in
1',

the mid- to upper-level troposphere, reflecting the lingering cOrlvection
/ i

embedded in the system. Although some forcing mechanisms may still

exist (resulting in the upper-level upward motion), the weakening

"dynamic flywheel" mechanism due to the decrease of cyclonic vorticity
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in the lower troposphere cannot efficiently support self-exciting

convection. The area covered by the mesoscale cloud shield begins to

shrink during this stage.

MCC Dissipation and Post-MCC Stages

During the dissipation and post-MCC stages. the MCC moves further

eastward into a region characterized by little low-level moisture

support. weak potentially unstable stratification. and weak or none

existent forcing mechanisms; those unfavorable conditions eventually

lead to the demise of the MCC system primarily due to the reduction in

fuel supply. Also. the cyclonic vorticity in the lower troposphere is

insufficient to support the "dynamic flywheel" mechanism for

sustaining the convective system.



8.0 CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER RESEARCH

In this final chapter. the major conclusions regarding the nature

of the composite MCC and recommendations for future research are

presented.

8.1 Primary findings

The purpose of the research presented herein is to fill in the gaps

between rawinsonde observation "snapshots" of an evolving MCC, and

thereby to build a four-dimensional picture of an MCC. This stUdy

focuses primarily on the evolution of system structure, dynamics, and

thermodynamics in conjunction with the budgets for the vorticity, heat,

and moisture of the composite MCC.

The results of the composite MCC analysis presented in previous

chapters lead to a number of fruitful conclusions regarding

characteristics of the composite MCC. The major findings are as

follows:

1. At the pre-MCC stage, several favorable synoptic-scale conditions

come together over the threat area several hours before the ensuing

MCC develops. These include the preexisting cool tropopause on the

upstream side, weak vertical wind shear, and a synoptic-scale

convergence of high moisture content, and potentially unstable air

in the lower troposphere.

2. The CAPE reaches its maximum intensity at the pre-MCC stage, then

tapers off due to consumption by cumulus convection.
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3. The composite MCC exhibits convergence limited to the lower layers

in the early stages but which then expands and lifts to the middle

troposphere during the MCC's growth and mature stages. The upper­

level divergence increases as the system evolves and reaches its

maximum intensity very close to the time of MCC dissipation. The

presence of low-level mass convergence overlaid by upper-level mass

divergence simultaneously helps to maintain the mass inflow and

outflow necessary to sustain the system.

4. The composite HCC is characterized by cyclonic vorticity confined

within the surface to 700-mb layer during most of the HCC's

eVolution and anticyclonic vorticity located exclusively in the

upper troposphere. This configuration basically satisfies Emanuel's

"dynamic flywheel" conceptual model for self-exciting convection.

S. Upward motion in the composite MCC is centered near the 70o-mb level

early in the MCC life-cycle due to the dominant contribution from

deep convection. The upward motion maximum then gradually rises to

the 400-mb level later in the MCC life-cycle when mesoscale updrafts

prevail. However. a deep layer of downward motion below the 700 mb

level at the HCC's mature stage reflects the presence of concurrent

mesoscale downdrafts.

6. The mid-level "jet-like" inflow reaches its maximum intensity at

the growth stage slightly above the melting level at about 600 mb.

This mid-level "jet-like" inflow appears to play an important role

in supporting the mesoscale downdraft and enhancing the entire

cellular circulation.

7. The system-relative flow field indicates that as the MCC moves, it

is always receiving a fresh supply of moist air at low levels from
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the front side during its early life-cycle and in turn is sending a

stream of drier upper-level air toward the rear side.

8. The composite fields provide some evidence for the presence of

"mesoscale organizers" which serve as triggers to release the

preexisting potential instability. These forcing mechanisms are

crucial to the MCC's genesis and development. The most likely

"mesoscale organizers" are a low-level jet, an upper-level jet. a

mid-level "jet-l1ke" inflow, 70o-mb level confluent flow, and a

low- to mid-level trough.

9. Cumulus- to meso-scale updrafts/downdrafts provide a mechanism to

stabilize the atmosphere through warming in the upper troposphere

and cooling in the lower troposphere. These stabilization processes

compete simultaneously with the environmental destabilization

processes; therefore, they determine the timing and the intensity of

deep convection embedded in the mesoscale convective system.

10. The MCC system usually develops in the vicinity of a surface

frontal zone; it then moves with the mid-level steering flow and

experiences a highly moist inflow in the lower troposphere to

compensate for energy export trom the upper tropospheric levels.

11. During the early stages of the MCC life-cycle, the system exhibits

a reduced Rossby radius of deformation due to enhanced cyclonic

vorticity in the lower troposphere. This smaller Rossby radius of

deformation can slightly enhance the efficiency of convective

heating in the low- to mid-level troposphere.

12. The vorticity budget of the composite MCC shows that the residual

grid-scale vorticity exhibits a decrease of cyclonic vorticity in

the lower troposphere from the initial to post-MCC stages which
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reaches its maximum rate at the MCC mature stage. On the other

hand. a mid- to upper-level decrease of anticyclonic vorticity

exists during the MCC early and dissipation stages.

13. The heat budget for the composite MCC indicates that the total

apparent heating function Q1 exhibits a major heat source of 10­

200 C day-l at about the 40o-mb level which occurs throughout the

MCC life-cycle; there is also a minor low-level heat source during

the MCC early stages while cumulus convection prevails. However. a

heat sink of magnitude of -6 to -90 C day-l exists in the low- to

mid-level troposphere after the growth stage. In addition. the

total apparent drying Q2 shows a major moisture sink equivalent to

-9 to -14oC day-l which occurs below the 700-mb level throughout

most of the MCC life-cycle. although a moisture source appears near

the 900-mb level during the MCC mature stage. Since the mid- to

upper-level heat source is greater than the lower level"s heat

sink. some amount of the energy flux from the surface is required

to balance the MCC net energy production in the upper troposphere.

14. Water vapor budget calculations over the composite MCC area

indicate that water vapor is mainly provided by MCC-scale

convergence and the atmospheric storage term. At the MeC mature

stage. the precipitation efficiency reaches 113~. such that the

moist atmosphere provides an extra 1~ from its storage, which is

accumulated from the early stages of the MCC life-cycle.

15. During the MCC growth stage. the MCC circulation induces a

geostrophic imbalance in the upper-level troposphere. resulting in

a significant ageostrophic wind which then enhances the ascending

motion. The longwave radiative cooling in the stratiform cloud top
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and warming in the cloud base destabilize the upper-level

troposphere environment and result in an enhanced internal

circulation.

16. Once the MCC reaches maturity, the mesoscale cloud shield dominates

the upper tropospheric heating and also helps in maintaining a

reduced Rossby radius of deformation in the mid- to upper-level

troposphere. The tropopause cooling and rising reach their maximum

intensity at this point, reflecting the influence of the mesoscale

cloud shield.

8.2 Recommendations for future research

1. Although enhanced IR satellite imagery during the period June to

August of 1977-1984 has been compiled to develop the composite MCC,

these images which encompass the life-cycles of 134 MCCs are still

far from complete. We might extend our data set from April until

September of 1977-1986. Based on this more complete data set, some

more detailed classification for the composite MCC could be carried

out. For instance, we might classify MCCs by their associated

weather patterns, such as the synoptic, frontal, and mesohigh types

as suggested by Merrit and Fritsch (1984).

2. Another possibility is to collect and composite similar pre-frontal

squall line and non-prefrontal mid-latitude squalls cases. Using

the same procedure to composite their structural, dynamic, and

thermodynamic evolution, it should then be valuable to compare those

results with those for the composite MCC presented herein.

3. Three-hour surface observations for each sample MCC could be blended

with the regUlar rawinsonde data to provide better time resolution

in the surface analysis. In fact, in order to completely understand
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the kinematic structure of the composite MCC, a kinetic energy

budget and a momentum budget could also be constructed. In

addition, the radar summary of each MCC sampled can provide certain

information useful for determining the vertical heating structure,

which in turn would help in choosing the representative level (or

levels) of the Rossby radius of deformation.

4. Moreover, observations of the detailed structure of an MCC should

help to assess the MCC's evolution. Therefore, major field

experiments which employ special observational networks of finer

scale than those routinely provided by the National Weather Service

are necessary for probing the detailed life-cycle of an MCC.

Experiments like the U. S. national STormscale .Qperational and

Research Meteorology (STORM) program or the Iaiwan Area Mesoscale

~eriment (TAMEX, scheduled on May-June, 1987) program should

provide more detailed temporal and spatial resolution of an evolving

Mesoscale Convective System from its thunderstorm roots until full

development, and the resulting data sets should permit the detailed

analyses required to elucidate questions concerning the up-scale

development of meso-p convective elements.

S. Although the composite MCC provide invaluable insights of dynamical

structure and its evolution, however, some detailed physical

processes need to be further identified solely by a numerical or

analyt1Q model. For instance, the significance of middle-level

"jet-like" inflow to the MCC development, needs to be examined.

SensitiVity tests of the effects of the upward shift of the heating

level on the MCC evolution and the variations of MCC heating

efficiency during the MCC lifecycle need to be examined as well as
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examinations of the distinguishable contributions of the various

source of evaporation in MCC-scale water vapor budget nees to be

evaluated.

6. The composite MCC. in general. exhibits many structural. dynamic and

thermodynamic features in commom with tropical cloud clusters.

However. the MCC exhibits a maximum upper-level divergence during

the dissipation stage instead of the mature stage as found in

tropical cloud clusters (Gray et al •• 1982). The physical

mechanisms responsible for the different evolution of the divergence

fields between these two systems needs to be further examined.
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APPENDIX A. DETAILED PROCEDURE FOR MCC SCREENING

Due to the natural variability of MCC's, some of these systems may

be in the early stages of initiation or within several hours of maturity

at the time the standard 0000 GMT soundings are taken. Furthermore,

some systems may be at, or be two to four hours beyond or before. the

MCC dissipation stage at the time the standard 1200 GMT soundings are

taken. However. even though high-time-resolution soundings may be

lacking, the large number of MCC samples available permits the

development of a composite model of the MCC life-cycle.

First of all, working maps were constructed for each MCC from the

available satellite images to relate the satellite-viewed storm system

to other meteorological fields. MCC centroid positions were marked

every 3 hours plus on the working map along with outlines of the -32oC

and -530 C areas at the system peak. The latter showed areas with IR

temperature colder than -320 C and -530 C, respectively. Planimetric

estimates were then made by counting the number of grid space points

within the outlines which yielded either direct on-the-hour areas or

interpolated from off-the-hour IR maps which were acquired from the

Weather Research Program of NOAA-ERL. Fig. A.1 illustrates the

evolution of one MCC as seen in GOES-East imagery. satellite-image

enhanced features utilized in this study were the IR isotherms of -32

and -S30 C [following Maddox (1980)] and the light-shaded interior anvil

regions which are indicative of overshooting thunderstorm activity

(Clark. 1983). Although Maddox (1980) used the size of both -32°C and



220

•CELLULAR

Fig. A.1. Enhanced IR GOES-East satellite images spanning tbe
life-cycle of a sampling MCC through tbe night of 3-4
Aug 1977. Central Standard Time is 6 h earlier than the
indicated GMT time. The stepped shades of medium gray.
light gray. dark grey and black are thresholds for areas
with IR temperatures colder tban -32. -42. -53 and -590 C.
resgectively. Temperatures progressively colder than
-63 C appear as a gradual black-to-wbite shade.
The life-cycle terminology is described in the text.
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o-53 C IR temperature areas as MCC benchmarks, analyses of MCC hourly

precipitation by Kane et ale (1985) and McAnelly and Cotton (1986)

suggest that most of the rainfall occurs beneath the colder cloud-top

area. whereas the -320 C area is largely a non-precipitating anvil.

Therefore. we have based our definitions solely on the -53 0 C area.

Based on the hourly IR measurements. we define an MCC to be

"initiating" when the contiguous area within the -530 C IR isotherm

2first exceeds 50.000 km • to be reaching its "maturity" when this area

attains its largest size. and to be "dissipating" when this area first

becomes less than 50.000 km2 • We believe our MCC case selection and }-tCC

definition agree totally with the rationale behind the stringent (though

somewhat arbitrary) criteria adopted by Maddox (1980).

In addition to these objective areally-defined periods in the MCC

life-cycle. a meso-u "cellular" stage is defined more subjectively as

the period after the system has apparently unified into a single meso-u

"cell" and during which the -53 0 C IR contour is relatively smooth and

circular. Within the "cellular" stage. the time of maximum

"overshooting-top" activity is defined subjectively to be when the

light-shaded anvil interior reaches its largest and coldest extent.

These points in the MCC life-cycle were determined to the nearest half

hour. Times given for life-cycle periods correspond to the period

midpoint.

One hundred thirty-four MCC cases are tabulated for an eight-year

period (1977-1984) in Table A.I. The assigned case numbers refer to the

chronological order of the MCCs listed in Table A.l. The cases have

been screened both according to how large and "classical" the MCC

appears to be and by considering nearby meso-~- to meso-a-scale
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activities as undesirable "contaminants" to the meso-a environment of

the MCC. According to an individual case's evolution. duration. size,

cellular characteristics, and proximity to other mesoscale convection,

each MCC was graded for compilation purposes according to a subjective

"MCC purity scale" which consisted of ten categories ranging from 0 to

9. For example. category 9 was reserved for the " perfect " MCC case.

characterized by a large maximum cloud-shield size. a long-lived mature

stage. an ideal "cellular" appearance. little environmental

contamination. and a clear evolution through its life-cycle. By the

same token. category 0 was reserved for MCC cases having a particularly

complex or "messy" evolution. an irregular "cellular" appearance. a

short-lived mature stage. and/or small clOUd-top areal coverage at the

time of maximum extent. Labels used in Table A.1 are:

Case Number: the chronologically-ordered MCC identification number

Date: year. month, and day of the MCC initial stage (yymmdd)

Rank: category on the "MCC purity scale" from 0 to 9

First storm: time of the first thunderstorm detection from satellite;
a negative value denotes time before 0000 GMT on the
specific date

lnit: time (GMT) of the MCC initial stage (midpoint)

Mat: time (GMT) of MCC mature stage (midpoint)

Dissi: time (GMT) of MCC dissipation stage (midpoint)

Cell. lnit: time (GMT) of initiation for cellular cloud; 9999
denotes data unavailable

O-Top: time (GMT) of maximum overshooting top

Cell. Term: time (GMT) of termination for cellular cloud
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Table A.1 Mesoscale Convective Complexes during 1977-1984.

Time Maximum cloud-
top area

Case (GMT)
(x 103 km2 )Number Date Rank

First Cell. Cell.
Storm lnit Mat Dissi lnit o-Top Term i-32°C i-52°C

1 770804 8 -0400 0130 1000 1530 0600 0700 1000 340 580
2 770805 5 -0600 0100 0900 1630 0600 0700 0900 252 374
3 770806 7 -0800 0100 0700 1330 0500 0600 0700 238 381
4 770807 4 -0900 -0200 0000 0430 -0100 -0100 0000 108 156
5 770807 1 -0300 0400 0645 1230 0500 0500 0800 103 187
6 770807 8 0300 0645 1200 1700 0800 1000 1100 239 322
7 770808 7 0300 0500 1200 1800 0600 0900 1100 307 516
8 770809 3 -0400 0130 0400 1000 0100 0300 0500 139 193
9 770809 6 0130 0545 1100 1500 0800 0900 1100 307 478

10 770809 1 -0600 0330 0545 1100 0400 0500 0600 90 139
11 770810 2 -0600 0000 0400 0730 0200 0300 0500 138 182
12 780614 1 -0430 0500 1100 1400 0930 1030 1230 999 235
13 780620 2 -0430 -0100 0530 1300 9999 9999 9999 999 546
14 780624 5 -0600 -0200 0500 0800 0300 0330 0500 170 300
15 780625 2 -0100 0200 0400 0730 0300 0400 0430 160 167
16 780625 2 -0300 0430 1000 1300 0700 0900 0930 270 446
17 780630 8 -0600 0000 0600 1100 0500 0500 0800 250 322
18 780701 8 -0400 -0100 0400 1000 0200 0400 0700 240 262
19 780702 2 -0'00 0030 0800 1030 0700 0330 0800 126 271
20 780704 7 -0400 0400 1200 1700 0800 1000 1'00 190 262
21 780706 7 -0'30 -0100 0430 0800 0200 0430 0600 333 454
22 780706 5 0100 0700 1100 1330 0800 1030 1100 1'0 233
23 780709 2 -0400 0300 0630 1130 0500 0'30 0600 162 190
24 780713 4 0130 0700 1000 1600 0600 0800 1000 90 186
2' 78071' 7 -0700 0000 0500 0830 0000 0430 0'30 216 326
26 780720 , -0300 0500 0800 1200 0600 0600 0800 126 238
27 780721 6 -1200 -0'00-0200 0100 -0600 -0400 -0200 140 999
28 780721 8 -0'30 0100 0800 1200 0600 0630 1000 160 243
29 780722 3 -0430 -0100 0630 1000 0300 0400 0600 190 429
30 780817 2 0100 1100 1230 1800 1200 1300 1'00 60 216
31 780818 6 -0700 0100 0400 0800 0130 0330 0430 160 382
32 180823 7 -0600 -0230 0430 0830 0330 0330 0500 230 338
33 780823 7 -0430 0000 0800 1600 0430 0800 1000 2'0 375
34 780824 6 -0630 0130 0700 0900 0300 0330 0730 70 150
35 780826 8 -1200 -0300 0100 0930 -0300 0000 0300 140 239
36 790616 4 -0400 0000 0500 0830 0200 0300 0400 70 165
37 790616 6 -0400 0600 1130 2700 0800 9999 1'00 240 342
38 790619 7 0030 0800 1230 1930 1000 9999 1730 180 257
39 790622 6 -0430 0100 0600 1200 0230 0500 0600 190 349
40 790623 0 -0430 -0100 0330 0630 0100 0300 0400 100 150
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Table A.l Mesoscale Convective Complexes during 1977-1984
(Continued) •

Time Maximum cloud-
top area

Case (GMT)
(x 103 km2)Number Date Rank

First Cell. Cell.
Storms Init. Mat. Dissi. Init. o-Top Term i-32oCi-52oC

41 790623 2 -C200 0000 0300 1030 0100 0300 0500 110 167
42 -790627 4 -C030 0230 0600 0930 0430 0430 0600 170 233
43 790627 3 -C700 0300 0930 1300 0730 0900 1200 110 198
44 790628 8 -0830 0700 1000 1430 0800 0830 0930 160 235
45 790705 8 -C400 -0030 0630 1000 -0100 0500 0730 180 378
46 790709 3 -C230 0600 0830 1400 0600 0800 1230 110 180
47 790712 9 -C300 0200 0900 1500 0430 0800 0900 210 245
48 790715 8 -0800 0230 0915 1400 0600 0600 1000 310 490
49 790723 2 --0530 0200 0600 1000 0430 0430 0600 100 189
50 790730 7 -C230 0430 0900 1300 0600 0900 1100 230 414
51 790808 6 --0330 0100 0600 1215 0200 0415 0745 135 192
52 790829 6 -C200 0100 0800 1230 0400 0830 1000 210 340
53 790831 6 0300 0515 1015 1830 0800 0900 1000 220 330
54 800602 6 0600 0800 1500 2000 1200 1430 1530 90 240
55 800604 7 -C030 0300 0930 1600 0600 0930 1500 207 345
56 800604 7 -C3S0 -0030 0800 1600 0600 0800 1200 176 308
57 800605 8 -1100 -0900 -0030 0230 -0800 -0600 0030 132 260
58 800606 8 -C330 -0030 0500 1030 0200 0230 0430 218 419
59 800607 4 -CI00 0400 1500 2200 1300 1500 1800 189 510
60 800608 8 -0800 -0400 0100 0430 -0200 0000 0100 265 416
61 800608 7 --0200 0230 0700 2200 0330 0500 0730 140 280
62 800609 7 -1200 -0730 -0500 -0100 -0630 -0600 -043 0 120 210
63 800619 7 -C215 0730 1015 1700 0830 0845 1000 220 340
64 800620 6 -C430 0515 1045 2000 0815 0945 1115 300 460
65 800627 8 -0400 0000 0530 0900 0300 0300 0600 323 515
66 800702 1 -C015 0815 2000 2430 1800 1900 2330 126 224
67 800703 7 -0300 -0030 0400 0830 0200 0330 0500 332 489
68 800708 2 -0330 0515 0815 1100 0515 0745 0930 91 173
69 800709 0 -1200 -0500 0300 0900 0000 0300 0500 244 350
70 800709 6 0200 0630 1100 1400 0730 0930 1100 182 300
71 800714 6 -C130 0700 1115 1500 0800 1100 1200 21,5 344
72 800715 2 -0100 0730 0845 1900 0800 1000 1300 95 154
73 800720 8 -0400 0130 0800 1300 0300 0800 0900 288 523
74 800813 7 -0100 0200 0715 1115 0500 0630 0730 140 280
75 810608 5 -0430 -0100 0445 0830 0400 0500 0530 188 239
76 810610 3 0045 0500 1215 2000 0500 0730 1215 190 237
77 810611 6 0530 0615 1315 1900 1145 1230 1415 290 427
78 810621 1 -0445 0230 1530 1900 9999 9999 9999 188 245
79 810622 8 0430 1030 1800 2815 1030 1315 1615 370 567
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Table A.l Mesoscale Convective Complexes during 1977-1984
(Continued) •

Time Maximum cloud-
top area

Case <GMT)
(x 103 km2 )Number Date Rank

First Cell. Cell.
Storms Init. Mat. Dissi. Init. o-Top Term i-32°C i-52°C

80 810623 7 -0030 0330 0700 1045 0530 0530 0700 210 304
81 810624 7 -1130 -0300 0500 1100 0445 0430 0545 300 504
82 810703 8 -0430 -0200 0400 0900 -0045 0215 0430 265 416
83 810712 6 0200 0500 1030 1630 0900 0830 1100 180 318
84 810713 7 -0445 0130 0630 0930 0430 0500 0700 156 255
85 810714 2 0100 0400 0700 0930 0400 0430 0700 125 206
86 810803 4 -0900 0315 0500 1300 0330 0500 0730 113 300
87 810805 6 -0800 0400 0645 0945 0515 0615 0745 186 309
88 810816 6 -0400 0400 0915 1130 0630 0815 1000 170 255
89 820608 7 0545 1000 1430 2400 1100 1330 2000 191 235
90 820609 6 -1200 -0830 0130 1430 -0200 0100 0330 265 294
91 820610 6 -0315 -0030 0330 0700 0100 0330 0400 197 268
92 820611 3 -0500 -0200 0830 1600 0200 0500 0900 469 733
93 820614 3 -0400 -0100 0930 1730 0800 1100 0930 207 317
94 820615 4 -0600 -0200 0400 1130 0330 0400 0830 390 602
95 820616 3 -0600 0030 0530 0900 0330 0400 0630 196 321
96 820627 5 -0500 -0100 0600 0730 0330 0330 0600 88 135
97 820627 5 -0500 0630 1130 1400 0830 1100 1200 103 188
98 820629 6 -1130 -0300 0215 0430 0045 0130 0300 122 179
99 820630 7 -0330 0030 0500 1200 0200 0400 0600 273 430

100 820702 2 -0345 0100 0330 0630 0100 0200 0330 98 158
101 820705 7 -0200 -0030 0745 1230 0100 0600 0700 329 450
102 820714 4 -0230 0100 0430 0900 0230 0230 0430 123 194
103 820718 6 0330 0530 0830 1630 0600 0630 0800 203 359
104 820719 2 -0100 0330 0730 1130 0330 0530 0700 169 244
105 820725 5 -0145 0230 0415 0930 0330 0230 0445 116 189
106 820805 7 -0200 0300 0700 1030 0300 0430 0730 223 381
107 820815 6 -0200 0445 1000 1500 0700 0930 1200 108 193
108 820827 6 -0230 0130 0630 1200 0430 0500 0830 303 469
109 820830 4 -0230 0230 0600 0900 0230 0500 0730 88 137
110 820831 4 -0300 0115 0530 0900 0330 0500 0730 118 207
111 830611 2 0100 0530 0900 1130 0630 0830 0930 98 165
112 830614 0 -0330 0100 0600 1500 0430 0800 0800 137 173
113 830620 8 0430 0730 1100 1530 0930 1000 1300 191 284
114 830622 5 -0400 0200 0530 1300 0330 0530 0630 219 366
115 830701 7 -0430 0100 1300 1700 0800 1130 1500 238 297
116 830703 6 -0400 0000 0800 1400 0400 0700 0800 168 312
117 830727 7 -0500 0100 0730 1300 0400 0700 0900 153 246
118 830813 2 -0400 -0100 0245 0800 0245 0315 0330 101 180
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Table A.l Mesoscale Convective Complexes during 1977-1984
(Continued) •

Time Maximum cloud-
top area

Case (GMT)
(x 103 km2 )Number Date Rank

First Cell. Cell.
Storms In1t. Mat. D1ss1. In1t. o-Top Term i-32°C i-52°C

119 830816 7 0530 1300 1500 2030 1400 1430 1500 96 221
120 830819 8 -0200 0730 1000 1700 0900 0830 1400 146 234
121 830823 7 -1630 -0900 -0200 0300 -0800 -0100 0030 158 257
122 830823 8 -0400 0030 0700 1330 0530 0700 0800 139 280
123 830826 6 0800 1030 1230 1630 1100 1200 1300 140 192
124 830829 3 -0200 0430 0600 1530 0400 0800 1030 90 192
125 830829 3 -0100 0500 0830 1130 0700 0800 0900 129 219
126 840606 7 -0200 0030 0400 1000 0200 0500 0630 240 370
127 840609 7 -0730 -0030 0530 1000 0230 0600 0730 284 416
128 840614 5 -0330 0200 1200 1430 1000 1100 1300 139 389
129 840615 8 0300 0730 1300 1500 1100 1130 1300 199 320
130 840715 6 -1200 -0300 0300 1000 0100 0300 0400 215 281
131 840716 8 -0600 0000 0330 0700 0200 0200 0400 159 235
132 840808 7 -0600 -0230 0430 0730 0330 0300 0600 176 271
133 840821 5 -0400 0000 0300 1200 0100 0430 0500 205 292
134 840830 5 -0330 -0100 1400 1800 0900 1200 1530 174 260
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COii:\;3equentJ.y. vJe have chosen to determine the location in addition

to t.he l;,:U;aes of OCCl,2r:rZi.1,Ce of an individ.ual !4CC and to delineate the

:;~tages ,of it;;:; lif'f)-cycle on the basir:l of their satellite-defined cloud

sbield. Aft~r MCCs were identified and classified into life-cycle

1M the compositing procedure was to establish the

s':~e:p 'begiJlJ,s tr.1l :1,dertJ~if)·1.!O.g the analysis grid point nearest the "center

NN Il~~1DD sass EEEE [ rIFF UUUuuu VVVvvv WWWwww XXXxxx IIIyyy ZZZzzz

DB: day of the MCC

ssss: time of occl~:rence of the first thunderstorm (GMT)

EEEE: time of occurrence of the MCC dissipation stage (GMT)

K: :l.nr.1e;x of ocmtin.v.6.tion U for the first line of centroid
position of an MCC case. 2 for the second line of same

II: fii'"lls·;~ t,:~..~~e (J:f 1'tl1~.r1 posit im;l. (0f.-1'J.') f.or this linej,.'~~<,~

j?~ : Z~tl1a.1 t,:L~ill'~j ·,oTf ~JCC posit.ion (G1J.lT) f.or this line

centr.oid at time II (tenths of degree)

uvu: longitude of MeG centroid at time II (tenths of degree, omit
:"ll1..md~·E;d:i:J i if He~t of 10@ 0> itl)

VVV: latitude of MCC centroid at time II + 3
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vvv: longitude of MCC centroid at time II + 3

WWW: latitude of MCC centroid at time II + 6

WWW: longitude of MCC centroid at time II + 6

XXX: latitude of MCC centroid at time II + 9

xxx: longitude of MCC centroid at time II + 9

YYY: latitude of MCC centroid at time II + 12

yyy: longitude of MCC centroid at time II + 12

zzz: latitude of MCC centroid at time II + 15

zzz: longitude of MCC centroid at time II + 15
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Table A.2 MCC centroid position at 3-hour intervals for period
1977-1984.

--
NN YYMMDD SSSS EEEE K IIFF UUUuuu VVVvvv WWWwww XXXxxx YYYyyy ZZZzzz

1 770804 -0400 1530 1 2112 424050 420020 412000 402980 397954 395937
1 770804 -0400 1530 2 1518 394920 400892
2 770805 -0600 1630 1 0015 382036 386023 392993 390975 399950 414938
2 770805 -0600 163.0 2 1821 423894 428865
3 770806 -0800 1330 1 2112 380039 376023 381013 390986 400945 407911
3 770806 -0800 1330 2 1518 409863 420796
4 770807 -0900 0430 1 1506 398947 399931 400905 403885 400862 403824
5 770807 -0300 1230 1 2112 395045 396033 396023 395013 394000 404967
5 770807 -0300 1230 2 1515 400955
6 770807 0300 1700 1 0318 403950 411918 414896 411881 396893 391881
6 770807 0300 1700 2 2121 386866
7 770808 0300 1800 1 0318 431928 428916 426888 416882 415896 405897
8 770809 -0400 1000 1 2112 402958 398938 395926 394906 385890 374890
9 770809 0130 1500 1 0318 436976 434940 423948 420929 406928 406926

10 770809 -0600 1100 1 0015 379030 370019 370014 358014 347008 340000
11 770810 -0600 0730 1 1809 362052 364039 342025 342022 344018 340006
11 770810 -0600 0730 2 1212 335990
12 780614 -0430 1400 1 0015 446022 447002 449983 451970 458956 464941
12 780614 -0430 1400 2 1818 470928
13 780620 -0430 1300 1 1809 379023 389998 399971 403955 408936 408925
13 780620 -0430 1300 2 1218 408913 408899 407887
14 780624 -0600 0800 1 1809 416048 424037 423020 423999 420989 414969
14 780624 -0600 0800 2 1212 404945
15 780625 -0100 0730 1 2109 429000 433977 435956 435948 437928
16 780625 -0300 1300 1 2112 397048 402027 405010 415990 437982 438957
16 780625 -0300 1300 2 1515 440933
17 780630 -0600 1100 1 1809 435040 445030 454016 460990 459972 462971
17 780630 -0600 1100 2 1215 461960 457947
18 780701 -0400 1000 1 2112 452950 452938 447912 444907 436897 430887
19 780702 -0500 1030 1 2112 413937 415920 410907 403904 398899 388888
20 780704 -0400 1700 1 0015 474107 471088 481065 489042 493009 491981
20 780704 -0400 1700 2 1818 501947
21 780706 -0530 0800 1 1809 440975 448963 443952 444938 444927 438901
21 780706 -0530 0800 2 1212 444881
22 780706 0100 1330 1 0315 418050 424041 426035 440009 444988
22 780706 0100 1330 1 0315 418050 424041 426035 440009 444988
23 780709 -0400 1130 1 0015 402970 403953 404934 400891 401866 392852
24 780713 0130 1600 1 0318 414893 413882 402869 390860 380853 375840
25 780715 -0700 0830 1 2112 400943 393928 385920 373904 353912 330920
26 780720 -0300 1200 1 2112 392045 393030 394019 406997 414979 414951
26 780720 -0300 1200 2 1515 418937
27 780721 -1200 0100 1 1506 415937 419921 432897 427860 427850 425846
28 780721 -0530 1200 1 2112 389041 393027 404010 419997 436979 438942
28 780721 -0530 1200 2 1515 440929
29 780722 -0430 1000 1 2112 401992 404985 408973 411963 390967 374968
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Table A.2 MCC centroid position at 3-hour intervals for period
1977-1984 (Continued).

NN YYMMDD SSSS EEEE K !IFF UUUuuu VVVvvv WWWwww XXXxxx YYYyyy ZZZzzz

396967 407954
443983 446966
448865 440846
473943 482910

378986 374980
436921 430897 424869
443010 443986 443955

456007 462994 473967 473935 461902
455861
456904 450900 450890 434871 425853
497025 500010 494000 488988 479943

367919

395926
374930
386912
357991
457960

338980
362933
420970
405922
379943
391934
355993
456980

0318 399978 400967 400953 413908 409886 396882
2121 384879
2112 470960 475942 482930 480918 498880 506843
1809 470980 472964 475925 471913 465881 457852
1212 454840
2112 442020
1518 462871
2112 456914
1809 497035
1212 463917
2112 405043 403028 396008 392987
2112 437060 442038 438018 433002
1506 460951 467930 463906 460886
0621 428025 447995 461971 465955
0000 485875
2112 407996 404990 398972 393946 384958 387950
1515 380920
2109 357004 353998 352992 347987
2112 370010 374985 373965 374950
0012 421013 423001 425998 423987
0015 437918 429920 423924 414928
0318 424011 402981 406968 393955
2112 398990 399982 397967 391955
0318 384030 383020 378008 364997
2112 443038 450022 450011 454988
1518 455940 457935
2112 445008 435988 426987 412964 410955 397960
1518 386957 383961
0012 387002 385994 383990
0015 391008 400987 419962
2112 447051 447024 444020
1515 442920
2112 413964 416948 413940 404938 394934 387933
1515 373928
0318 486990 489982 492953 487936 483905 474876
2121 465863
0621 396002 410974 412941 414896 410860 400834
0000 390800
0015 413982 415968 420950 425935 416913 400888
1818 397870
2112 472040 482030 484010 483995 487980 480972
1518 472960 473919
1203 460990 458976 457967 448950 446930 440910
0606 442885

30 780817 0100 1800 1
30 780817 0100 1800 2
31 780818 -0700 0800 1
32 780823 -0600 0830 1
32 780823 -0600 0830 2
33 780823 -0430 1600 1
33 780823 -0430 1600 2
34 780824 -0630 0900 1
35 780826 -1200 0930 1
35 780826 -1200 0930 2
36 790616 -0400 0830 1
37 790616 -0400 2700 1
37 790616 -0400 2700 2
38 790619 0030 1930 1
38 790619 0030 1930 2
39 790622 -0430 1200 1
39 790622 -0430 1200 2
40 790623 -0430 0630 1
41 790623 -0200 1030 1
42 790627 -0030 0930 1
43 790627 -0700 1300 1
44 790628 -0830 1430 1
45 790705 -0400 1000 1
46 790709 -0230 1400 1
47 790712 -0300 1500 1
47 790712 -0300 1500 2
48 790715 -0800 1400 1
48 790715 -0800 1400 2
49 790723 -0530 1000 1
50 790730 -0230 1300 1
51 790808 -0330 1215 1
51 790808 -0330 1215 2
52 790829 -0200 1230 1
52 790829 -0200 1230 2
53 790831 0300 1830 1
53 790831 0300 1830 2
54 800602 0600 2000 1
54 800602 0600 2000 2
55 800604 -0030 1600 1
55 800604 -0030 1600 2
56 800604 -0330 1600 1
56 800604 -0330 1600 2
57 800605 -1100 0230 1
57 800605 -1100 0230 2
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Table A.2 MCC centroid position at 3-hour intervals for period
1977-1984 (Continued).

NN YYMMDD SSSS EEEE K IIFF UUUuuu VVVvvv WWWwww XXXxxx YYYyyy ZZZzzz

58 800606 -0330 1030 1 2112 456950 459934 448902 445885 442844 444810
58 800606 -0330 1030 2 1515 446785
S9 800607 -0100 2200 1 0015 440010 441978 433955 430925 430903 427861
59 800607 -0100 2200 2 1800 415836 408802 390780
60 800608 -0800 0430 1 1809 418893 413868 405841 385841 380812 375780
61 800608 -0200 2200 1 0015 323025 323021 329015 338996 345978 342958
61 800608 -0200 2200 2 1800 338934 334925 322908
62 800609 -1200 -0100 1 1203 311045 313036 314025 317019 319992 323976
63 800619 -0215 1700 1 0015 375018 377000 376971 363952 353937 340920
63 800619 -0215 1700 2 1821 325918 308915
64 800620 -0430 2000 1 0015 344006 354990 349963 348955 345940 333938
64 800620 -0430 2000 2 1800 325934 310935 300930
65 800627 -0400 0900 1 2112 437007 445000 448985 452960 445941 442915
66 800702 -0015 2430 1 0621 405998 406987 407959 403936 395923 383914
66 800702 -0015 2430 2 0003 371903 362888
67 800703 -0300 0830 1 0621 405998 406987 407959 403936 395923 377885
67 800703 -0300 0830 2 0012 381875 378847 376826 380802 410780
68 800708 -0330 1100 1 0315 408038 419032 428024 436993 443974
69 800709 -1200 0900 1 1506 415800 406810 395798 384805 375808 369814
69 800709 -1200 0900 2 0912 360770 350740
70 800709 0200 1400 1 0318 435948 432928 430910 424888 414842 408824
71 800714 -0130 1500 1 0318 443987 462958 470930 472882 470846 46 7806
72 800715 -0100 1900 1 0318 399998 410983 426956 439924 446885 441848
72 800715 -0100 1900 2 2121 437802
73 800720 -0400 1300 1 2112 423982 433952 443920 447900 448862 452824
73 800720 -0400 1300 2 1515 452788
74 800813 -0100 1115 1 0015 454978 447948 445933 441921 440900 437880
75 810608 -0430 0830 1 2112 415935 416919 413910 403907 395900 392880
76 810610 0045 2000 1 0318 393948 386942 379930 374921 372927 374919
76 810610 0045 2000 2 2100 376927 382929
77 810611 0530 1900 1 0318 383941 381931 386930 389955 387944 390910
77 810611 0530 1900 2 2121 391892
78 810621 -0445 1900 1 1809 430045 416016 409001 410987 407978 405965
78 810621 -0445 1900 2 1221 400935 403930 404905 403875
79 810622 0430 2815 1 0621 389016 387994 382968 381951 374942 368898
79 810622 0430 2815 2 0006 362860 362837 363822
80 810623 -0030 1045 1 0015 356018 354024 343032 339042 327053 318063
81 810624 -1130 1100 1 1809 451948 444935 440930 435925 430918 412892
81 810624 -1130 1100 2 1215 404867 393852
82 810703 -043 0 0900 1 1809 401015 400013 403000 397997 388995 374984
82 81 0703 -043 0 0900 2 1212 364977
83 810712 0200 1630 1 0015 462050 463037 465020 466995 463968 464941
83 810712 0200 1630 2 1821 463922 460908
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Table A.2 MCC centroid position at 3-hour intervals for period
1977-1984 (Continued).

NN YYMMDD SSSS EEEE K IIFF UUUuuu VVVvvv WWWwww XXXxxx YYYyyy ZZZzzz

84 810713 -0445 0930 1 2112 414061 422058 422050 425044 440023 447014
85 810714 0100 0930 1 0012 453012 463992 469981 473962 472942
86 810803 -0900 1300 1 0015 472068 464041 462011 453993 447964 442935
87 81080S -0800 0945 1 2112 433994 426987 420977 414965 410950 406935
88 810816 -0400 1130 1 2112 370006 368999 359992 358982 356972 353961
88 810816 -0400 1130 2 1515 350938
89 820608 0545 2400 1 0621 382960 393939 396921 395890 391868 386842
89 820608 0545 2400 2 0003 380800 360780
90 820609 -1200 1430 1 1203 407978 413957 410946 413932 412920 408912
90 820609 -1200 1430 2 0618 404935 408924 401920 383908 373895
91 820610 -0315 0700 1 2112 359963 360940 367919 367899 368870 373845
92 820611 -0500 1600 1 1809 305062 313049 319037 337018 352998 364978
92 820611 -0500 1600 2 1218 373950 374929 373904
93 820614 -0400 1730 1 2112 442065 442041 444027 436003 440997 436976
93 820614 -0400 1730 2 1521 430962 430938 423911
94 820615 -0600 1130 1 1809 403048 405030 413994 411975 417933 423907
94 820615 -0600 1130 2 1215 420857 420825
95 820616 -0600 0900 1 1809 335984 339963 346955 346939 347920 334920
95 820616 -0600 0900 2 1212 335903
96 820627 -0500 0730 1 2109 332012 324005 317984 310970 310960
97 820627' -0500 1400 1 2112 356041 347033 343030 333014 328001 324991
97 820627 -0500 1400 2 1518 316980 310963
98 820629 -1130 0430 1 1506 332952 328947 326951 326957 315950 320940

'98 820629 -1130 0430 2 0909 310930
99 820630 -0330 1200 1 2112 415044 418032 420019 418004 407003 400990
99 820630 -0330 1200 2 1515 397972

100 820702 -0345 0630 1 2109 397998 401991 404981 405971 413973
101 820705 -0200 1230 1 2112 462003 476990 488963 491940 497927 504920
102 820714 -0230 0900 1 2112 371024 373015 373997 371993 361996 354987
103 820718 0330 1630 1 0318 423964 426942 425915 414903 405901 396894
103 820718 0330 1630 2 2121 383891
104 820719 -0100 1130 1 0015 407930 410910 408895 405864 392857 382848
105 820725 -0145 0930 1 0012 436058 449046 458029 464001 464969
106 820805 -0200 1030 1 0015 414958 415945 415937 413917 402900 392887
107 820815 -0200 1500 1 0015 382978 389958 394939 384918 375909 363903
107 820815 -0200 1500 2 1818 350904
108 820821 -0230 1200 1 2112 387949 389932 391921 384903 378873 376833
108 820821 -0230 1200 2 1515 370810
109 820830 ~0230 0900 1 2112 387003 379989 377977 371975 366963 363957
110 820831 -0300 0900 1 2112 398030 402009 402998 403981 405961 410939
111 830611 0100 1130 1 0315 365020 360011 354998 354976 354954
112 830614 -0330 1500 1 2112 358990 357975 349971 343972 340965 340953
112 830614 -0330 1500 2 1518 330962 318952
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Table A.2 MCC centroid position at 3-hour intervals for period
1977-1984 (Continued).

NN YYMMDD SSSS EEEE K IIFF UUUuuu VVVvvv WWWwww XXXxxx YYYyyy ZZZzzz

449006 446980 440949 435918
415830
474960 479930 478875 473862

341940 343958 343970 345993
461979 463943 451920 449902
481940 482885 473845 463827

378020 378003 392978
438928 438908 432889 427858
414993 407982 400970 399958

429863
492961 484920
470901
487917
411933 413923
462983 464960

451917 440890
500020 498992
463933 469922
466966 417938
395963 403950
469039 470012

113 830620 0430 1530 1 0318 446990 442973 438966 438954 430940 432919
114 830622 -0400 1300 1 2112 459041 464008 476994 486950 493960 499908
114 830622 -0400 1300 2 1515 502860
115 830701 -0430 1700 1 2112 437056 446026
115 830701 -0430 1700 2 1521 430890 419857
116 830703 -0400 1400 1 2112 458999 468983
116 830703 -0400 1400 2 1518 467838 464819
117 83 0727 -0500 1300 1 2112 414032 421014 420001 423992 426976 480950
117 830727 -0500 1300 2 1515 481910
118 830813 -0400 0800 1 2112 345922 340929
119 830816 0530 2030 1 0900 453020 454001
120 830819 -0200 1700 1 0015 478975 482960
120 830819 -0200 1700 2 1821 449804 435789
121 830823 -1630 0300 1 1203 412963 413950 411940 404915 390896 389879
121 830823 -1630 0300 2 0606 385860
122 830823 -0400 1330 1 2112 403048 415030 423014 416997 414979 411961
122 830823 -0400 1330 2 IS15 404938
123 830826 0800 1630 1 0618 450962 450940
124 830829 -0200 1530 1 0015 489062 493036
125 830829 -0100 1130 1 0315 469948 462946
126 840606 -0200 1000 1 0012 412997 437986
127 840609 -0730 1000 1 2112 384963 387969
128 840614 -0330 1430 1 0015 460072 467058
128 840614 -0330 1430 2 1818 459934
129 840615 0300 1500 1 0318 431038 448036 455013 463971 458951 464925
130 840715 -1200 1000 1 1809 447946 435927 424915 412910 408906 400890
130 840115 -1200 1000 2 1215 387867 382842
131 840716 -0600 0700 1 2109 364050 375036
132 840808 -0600 0730 1 1809 435954 435946
133 840821 -0400 1200 1 2112 406011 410999
133 840821 -0400 1200 2 1515 400939
134 840830 -0330 1800 1 2112 446906 450890 453862 447843 440830 429819
134 840830 -0330 1800 2 1521 418808 404805 394794



APPENDIX B. COMPARISON OF THE IMPACTS OF COORDINATE ROTATION. SYSTEM
STRENGTH. AND SYSTEM-RELATIVE FLOW ON MCCS

In this section. the differences between the composite pairs

constructed for 1) with and without rotation. 2) organized MCCs and

marginal MCCs. and 3) with and without relative flow are discussed.

What might be termed "control case". the composite MCC which has

already been discussed in this chapter. is the organized MCCs sample for

the period 1977-1983 analyzed in rotated but ground-referenced

coordinate.

B.l Comparison between rotated and non-rotated composites

The results of the coordinate rotated composite MCC (as control

case) have been discussed in detail in the previous sections. therefore

it is appropriate to address only the major differences between the

rotated and non-rotated composites. To save space, figures for these

calculations are not shown. Because the coordinate system used in the

rotated case has been rotated according to the direction of the MCC

track (which is more or less equivalent to the direction of the mid-

level steering flow). the thermodynamic fields are not affected with

regard to the rotation. Thus. the distribution of CAPE and the bulk

Richardson ~umber patterns in the non-rotated case are similar to those

composites for the rotated case. The flux £onvergence available moist

static ~nergy (FCE) patterns resemble each other but the magnitUde of

non-rotated case is greater. reflecting that the low-level wind is more

sensitive to the MCC movement. In essence. the genesis potential of
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vorticity possesses a greater value of 6.7 X 10-5 s-1 for the non­

rotated case at Mec matu~ity due to the stronger upper-!eve!

anticyclonic vorticity (upper-!evel winds in the rotated cases have

smaller horizontal wind shear of au/ay term).

For the non-rotated case. the temperature advection field

illustrates that w~u."m ad:'lection prevail at MCC maturity over the

boundary layer and reaches a maximum of 25.20 C X 10-5 s-l at the MCC

decay stage. However. the moisture advection field indicates that there

is no dry advection in the non-rotated case at the MCC mature stage in

the extreme low level instead of a lagging maximum of 34.6 X 10-6g kg-1

s-l at the decay stage. Again, the comparisons of temperature and

moisture advection indicate the low-level winds are sensitive to the

rotation: therefore the cold and dry advections at the MCC mature stages

can be clearly addressed by the rotated case. Comparison of the u­

component change fields indicates that the increase of mid-level "jet­

like" inflow at the growth stage reduces to 3 m s-l (compared to 4.4 m

s-l), and the v-component change indicates no significant variations

between the two cases. implying that the MCC track (or mean steering

flow) is more or less parallel to the east-west direction.

The divergence field for the non-rotated case is weaker at the

mature stage and exJ:~ib;Ats its maximum value later at the dissipation

stage. The divergence field also exhibits a single lower level

convergence_ zone without mid-level convergence. Consequently, the mid­

level positive cyclonic center is absent due to the lack of mid-level

convergence, but the upper-level anticyclonic vorticity maximum has

intensified. reflecting that the upper-level flow is modulated in the

rotated case to behave as smaller horizontal wind shear (Bu/ay term) in
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the vorticity evaluation. Because of the vertical motion responds to

the divergence field, it indicates a weaker downward motion in the

extreme low-level at the mature stage for non-rotated case.

Nevertheless, the upward motion reaches its maximum value at the mature

stage with a much smaller magnitude of only 20 X 10-5 mb s-1. In

summary, the essential features of the dUal mid-level convergence maxima

and boundary-layer downdraft can be more clearly addressed by the

rotating frame.

B.2 Comparison between the selected MCCs and marginal MCCs

Because the selected MCCs (organized MCCs) were characterized by

longer duration. well-organized meso-~ convective elements, larger cold

cloud shield. and less envirolllJ1ental contamination than the marginal

MCCs based on the compilation philosophy. differences obtained from the

comparison of the two composites should be attributed to the real

influence of the well-organized MCCs which modifies the synoptic

background in which the MCC is embedded. '!be time-height cross-section

of mixing ratio (Fig. B.la vs. Fig. 4.5) shows that the significant

moisture increase for the marginal MCCs is confined within the boundary

layer until MCC maturity and does not extend over the entire lifetime as

it does for the selected MCCs'. The mid-level mixing ratio (Fig. B.1b

vs. Fig. 4.10) is monotonically increasing until the mature stage while

the smaller magnitude reflects that the energy consumption by deep

convection and meso-~ convective elements are inefficient in the

marginal MCCs case. The moisture advection field (Fig. B.lc vs. Fig.

4.12a) displays a pronounced dry advection at 850 mb level or MCC's

maturity in association with the insignificant moist advection

elsewhere. The 6e distribution (Fig. B.ld vs. Fig. 4.6) depicts a
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Fig. B.la. Height-time plot of the mixing ratio difference from
its co~responding value at the MCC-12h stage for the
marginal case. The mixing ratio field is obtained by
applying a 9-grid- point area average over !160 X 60
lat.-long. domain every 50 lib. Units: g kg
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Fig. B.lb. Time evolution plot of the average 700-400 mb layer
mixing r8tio for the marginal case. The error-bar
represents one plus/minus sta~!rd deviation of the
9-point average. Units: g kg •



MAT END
MCC LIFE CYCLE

Fig. B.lc. Height-ti_ plot ot the .::>isture advection for the
marginal case. The moisture advection tield is obtained
by applying a 9- grid-point area average ~Jer a !~ X_fo
lat.-long. domain every SO mb. Units: 10 g kg s •
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Fig. B.ld. Height-time plot of the equivalent potential
temperature <ge ) for the marginal case. The 9 field
is obtained by applying a 9-grid-point area avlrage over
a ,0 X 60 lat.-long. domain every 50 mb. Units: IC.
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minimum value at 700 mb level (compared to 500 mb level for organized

MCCs) during the decay stage which is associated with the evaporation

process, but the early stage's extremely high ee maximum (348 K compared

to 340 K for organized MCCs) resides in the boundary layer, implying

that the low-level moisture supply is even more favored for marginal

Mecs.

The total totals index distribution (not shown) indicates that the

potential instability has been released atter marginal MCCs initiation

and reaches a minim'!..1m value at MCC maturity. Because both of the low-

level moist~ning produced by preoipitation and the mid-level cooling

resulting from the intl"Ysion of low Se air are weaker; it is therefore

impossible to r-egenerate the instability during the marginal MCC's

mature stage as in the organized MCC's. This fact is supported by the

distribution of FeE for marginal MCCs which is smaller in magnitude than

for selected MCCse~ but it maximizes (negative value of FCE) at the MeC

initial stage and reaches a minimum at the mature stage. In fact, the

time evolution of CAPE for the marginal case exhibits a persistent high

magnitude which is maintained until its growth stage (compared to the

pre-MCC stage of the selected cases) and then rapidly tapers off through

to the decay stage. This delayed consumption of the potential energy

confirms that the deep convection or meso-p convective elements neither

occupy the la~ger portion of marginal MeCa nor are well organized for a

long period.

The u-compon~nt change (Fig. B.2 vs. Fig. 4.27) shows that the

mid-level '"jet-like'o feature is delayed in its occurrence fram the

growth stage until the mature stage~ The temperature advection field
I

[advected by the full winds not the relative winds (not shown)] exhibits
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300

INI

Fig. B.2. Height-time plot of the u-component change compared to
its corresponding value at the MCC-12h stage tor the
marginal case. The wind is obtained by applying a 9­
grid-point area average over a ,0 X ,0 lat.-long. domain
every 50 mb. The central point of the 9-point average
is located ~ie grid point west of the MCC centroid.
Units: liS.
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that weaker low-level warm advection (120 C X 10-5 s-1) prevails for

marginal MCCs except at the mature stage (offset by weak mesoscale

downdraft cooling). This figure also indicates that the warm advection

extending to upper levels before the growth stage is associated with a

pronounced mid-level cool advection after this stage.

The areally-averaged divergence, areally-averaged vorticity, and

areally-averaged vertical motion are illustrated in Figs. B.3a-B.3c (vs.

Figs. 4.36a. 4.39a. and 4.43a), respectively for marginal MCCs. The

low-level divergence persists after MCC maturity, while the upper-level

divergence reaches its maximum intensity at the decay stage earlier and

more intensely than for organized MCCs (2.5 versus 1.8 X 10-5 s-l). The

striking feature of the vorticity profile for marginal MCCs 1s the

presence of cyclonic vorticity aloft at the growth stage which inhibits

the "dynamic flywheel" effect for deep convection. Upper-level

cyclonic vorticity advection is responsible for this unfavorable

configuration at the growth stage; it implies that certain marginal MCCs

may be initiated behind the mid-level trough. The vertical motion field

for marginal MCCs depicts the upward motion center lifting from 600 mb

(growth stage) to 400 mb level (mature stage). The mesoscale downdraft,

however, is not significant enough to be reflected as a net downward

motion until the marginal MCCs dissipation stage. These comparisons

indicate that selected MCCs are supported by a deeper moist environment

and low- to mid-level warm advection which allows convection or meso-I}

convective elements to be sustained for a longer period. Dynamically,

the persistent low-level convergence and cyclonic vorticity associated

with upper-level divergence and anticyclonic vorticity provide a

flywheel effect for deep convection in the case of organized MCCs.
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Fig. B.3a. Height-time plot of the mean divergence field for the
marginal case. The horizontal coordinates have been
rotated along the MCC MCC track so that positive u and
v values represent winds from the rear and right flank
of the MCC. respectively. The divergence field is
obtained by averaging !!~C ~ises every SO mb tor each
sub-period. Units: 10 s •
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Fig. B.3b. Height-time plot ot the mean relative vorticity for the
marginal case. The horizontal coordinates have been
rotated along the MCC MCC track so that positive u and
v values represent winds trom the rear and right flank
of the HCC, respectivelr. The vorticitr field i8
obtained br averaging !!JC £!8eS everr 50 mb tor each
sub-period. Units: 10 8 •
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Fig. B.Sc. He1ght-ti_ plot ot the vertical motion for the
marginal case. The vertical motion field is obtained by
applying a 9- grid-point area average over_! 60 X_fa
lat.-long. domain every SO mb. Units: 10 mb s •
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B.3 Comparison between ground-relative and system-relative cases

The system-relative case is calculated by sUbtracting the MCC

centroid velooity from the horizontal wind fields. Again, the

thermodynamic fields are not affected. For the sake of brevity, the

figures will not be displayed. The temperature advection field depicts

that the 6-hour oscillation is pronounced over both lower and upper

levels but that it exhibits an out-of-phase feature between these two

levels. The low-level cool advection (advected by the relative winds)

at MCC maturity is as big as -160 C X 10-5 s-l. In fact, the moisture

advection field shows that moist advection exclusively occurs in the

boundary layer during the early part of MCC life-cycle, reflecting that

the low-level relative easterly flow brings moist air towards the MCC

centroid before the mature stage.

The relative u-component change shows that the mid-level "jet­

like" inflow identified in the selected MCCs is reduced in magnitUde

from 4.4 m $-1 to 2.3 m s-l, implying that the MCC-steering flow is

above the level of mid-level "jet-like" inflow. In fact, the relative

v-component change exhibits a pronounced 6-hour oscillation feature.

However. a value which is 3.4 m s-l larger than the MCC-12h value in the

lower troposphere at the MCC decay stage resulting from the LLJ is qUite

striking. In essence, the system-relative calculation depicts clearly

that as the MCC moves, it is always receiving a fresh supply of moist

air at low levels from the east during the early MCC life-cycle and in

turn is sending a stream of dry air eastward in the upper troposphere,

not unlike a mid-latitude squall line.
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