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ABSTRACT 

 

 

 

ACCURATE DIMENSION REDUCTION BASED POLYNOMIAL CHAOS APPROACH 

FOR UNCERTAINTY QUANTIFICATION OF HIGH SPEED NETWORKS 

 

 

 

With the continued miniaturization of VLSI technology to sub-45 nm levels, uncertainty 

in nanoscale manufacturing processes and operating conditions have been found to translate into 

unpredictable system-level behavior of integrated circuits. As a result, there is a need for 

contemporary circuit simulation tools/solvers to model the forward propagation of device level 

uncertainty to the network response. Recently, techniques based on the robust generalized 

polynomial chaos (PC) theory have been reported for the uncertainty quantification of high-

speed circuit, electromagnetic, and electronic packaging problems. The major bottleneck in all 

PC approaches is that the computational effort required to generate the metamodel scales in a 

polynomial fashion with the number of random input dimensions. 

In order to mitigate this poor scalability of conventional PC approaches, in this 

dissertation, a reduced dimensional PC approach is proposed. This PC approach is based on 

using a high dimensional model representation (HDMR) to quantify the relative impact of each 

dimension on the variance of the network response. The reduced dimensional PC approach is 

further extended to problems with mixed aleatory and epistemic uncertainties. In this mixed PC 

approach, a parameterized formulation of analysis of variance (ANOVA) is used to identify the 

statistically significant dimensions and subsequently perform dimension reduction. Mixed 

problems are however characterized by far greater number of dimensions than purely epistemic 

or aleatory problems, thus exacerbating the poor scalability of PC expansions. To address this 
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issue, in this dissertation, a novel dimension fusion approach is proposed. This approach fuses 

the epistemic and aleatory dimensions within the same model parameter into a mixed dimension.  

The accuracy and efficiency of the proposed approaches are validated through multiple 

numerical examples. 
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CHAPTER 1: INTRODUCTION 
      

 

 

1.1 Problem statement  

With   the   scaling   of   VLSI   technology   to   sub-45   nm   levels,   uncertainty  in  the 

nanoscale manufacturing  processes  and  operating  conditions  have  been  found  to  result  in 

unpredictable  behavior  of  high  speed  circuits.  As  a  result,  contemporary  computer aided  

design  (CAD)  tools  need  to  be  flexible enough   to   be   able   to  predict  the  impact  of 

parametric  uncertainty  on  general  circuit  responses. Traditionally,  uncertainty  quantification 

of  circuit  networks  has  been  performed  using  the  brute -force Monte  Carlo  approach [1]-

[6]. Despite the simplicity of this approach, its slow convergence translates to a prohibitively 

large  number  of  deterministic  simulations of  the  original  network  model  in  order  to  

achieve accurate  statistical  results.  This makes the Monte Carlo approach computationally 

infeasible for analyzing large networks [7].  

Recently,  more  robust  uncertainty  quantification  techniques  based  on  the  

generalized polynomial chaos  (PC)  theory  have been reported for various high-speed circuit, 

electromagnetic (EM) and electronic packaging  problems  [7]-[41].  These  techniques attempt 

to model the uncertainty in the network response as  an  expansion  of  predefined  orthogonal  

polynomial  basis  functions  of  the  input  random  variables.  The  coefficients  of  the 

expansion  form  the  new  unknowns  of  the  system  and  are  evaluated  via  intrusive   or non-

intrusive  approaches [42].   

The  existing  literature  in  circuit  and  EM  simulation  has  been  dominated  by  the 

highly  accurate but  intrusive  stochastic  Galerkin  (SG)  approach  [7]-[22]. This  approach 

requires  the  solution  of  a  single but  augmented  coupled  deterministic  network  model  to 
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determine  the  PC  coefficients.  Overall,  the  simulation  costs  of  such  large  models scale  in  

a  near-exponential  manner  with  the  number  of random  dimensions.  While  recent  works  

such as the  decoupled  PC  algorithm  [17]  and  the  stochastic  testing  method  [37],   can 

mitigate  the  time  and memory  costs  of  the  standard  SG  approach,  both  these  approaches  

require  the  development  of  intrusive codes  that  preclude  the  direct exploitation of SPICE-

like legacy circuit simulators. These bottlenecks have limited  the  applicability  of  the  SG 

approach  to  problems  featuring  only  low-dimensional  random  spaces [42],  [43].  

On  the  other  hand, non-intrusive PC approaches such as the stochastic collocation (SC) 

approach, pseudo-spectral  collocation  approach  and  linear  regression  approach,  among 

others,  have  recently  been explored  for  circuit  and  EM  problems  as  well [23]-[36]. The 

advantage of these non-intrusive approaches over  the  intrusive  SG  approach  lies  in  their 

ability  to compute  the  PC  coefficients  of  the  network responses  by  simply  probing  the 

original  model  at  a  sparse  set  of  nodes  located  within  the  random  space [43].  The 

deterministic  simulation  of  the  network  at each node can be performed by a direct invocation 

of  SPICE  without  the  need  for  any  intrusive  coding.  In addition, the relevant deterministic 

simulations can be parallelized unlike the conventional SG approach where the augmented 

network is always coupled.   

Irrespective of the approach used to evaluate the coefficients, the major bottleneck in all 

PC approaches is that the number of unknown coefficients scales in a polynomial fashion with 

the number of random dimension [42], [43]. Thus, conventional PC approaches are often too 

computationally expensive for high-dimensional random spaces.   
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1.2 Scope of the thesis 

Among  non-intrusive  approaches,  the  linear  regression  approach  has  been  found  to  

be highly popular  [24],  [25],  [43].  This  approach  probes  the  PC  expansion of  the  network 

responses  at  an oversampled  set  of  multidimensional  nodes  located  within  the  random 

space,  thereby  leading  to  the formulation  of  an  overdetermined  set  of  linear  algebraic  

equations.  These  equations  can  be  solved  in  a least-square  sense  to  directly  evaluate  the  

PC  coefficients  of  the  network  responses  [43].  Typically,  the multidimensional  regression 

nodes  are  chosen  from  the  tensor  product  grid  of  one  dimensional  (1D) quadrature  nodes 

[24],  [25].  Since  the  number  of  nodes  in  the  tensor product grid increases exponentially 

with  the  number  of  random  dimensions,  realistically  only  a  sparse  subset  of  the  nodes, 

also referred to as design  of  experiments  (DoE),  can  be  chosen.  In  the  work  of  [36],  it 

was  demonstrated  that  blindly choosing  the  DoE  can  lead  to  inaccurate  evaluation  of  the 

PC  coefficients.  However,  the  contemporary literature  on  linear  regression  based  PC 

analysis  of  EM  and  circuit  problems  have  not  identified  any specific  formal  criterion  for 

choosing  the  best  set  of  DoE [24],  [25].  Recently, the  stochastic  testing approach  has 

developed  a  reliable  technique  to  select possible  DoE  where  the number of DoE is equal to 

the  number  of  unknown  PC  coefficients  [37],  [38].  However,  this  technique  does  not 

choose  the  DoE using  any optimal  criterion  and hence does not guarantee the maximum 

possible  accuracy of results.   

In order to address the above issues, this dissertation presents a new linear regression 

methodology based on the alternative D-optimal criterion for choosing the DoE. This criterion 

stipulates that for the most accurate evaluation of the PC coefficients, the corresponding DoE 

have to be so chosen such that the determinant of the information matrix in the linear regression 
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problem is maximized [46]. Moreover, this dissertation proposes a greedy search algorithm in 

order to identify the D-optimal DoE from multidimensional random spaces. The proposed search 

algorithm begins with an arbitrary set of DoE chosen from the tensor product grid of 1D 

quadrature nodes and then sequentially replaces each DoE in that initial set with the best possible 

substitute selected from the remaining set of quadrature nodes. The best possible substitute DoE 

is chosen to be the one that increases the current determinant of the information matrix by the 

largest amount. This step-by-step refinement of the starting set of DoE continues till all of them 

have been replaced at which point the new set forms the D-optimal DoE [36]. Finally, novel 

numerical strategies to expedite the search of the substitute DoE for problems involving high-

dimensional random spaces have also been developed. 

In order to mitigate the poor scalability of conventional PC approaches, in this 

dissertation, an alternative reduced dimensional PC approach is presented that is applicable for 

mutually uncorrelated random dimensions as commonly encountered in many microwave/RF 

networks. This approach uses the HDMR formulation only once to directly quantify the impact 

of each random dimension on the network responses when acting alone [54]. This information is 

modeled as unidimensional (1D) PC expansions. These 1D expansions are then used in an 

analysis of variance (ANOVA) formulation to identify the least important random dimensions, 

which are then removed from the original random space [55], [56]. Now performing a PC 

expansion in the resultant low-dimensional random subspace leads to the recovery of a very 

sparse set of coefficients with negligible loss of accuracy. This reduced dimensional PC 

approach is further extended to model the impact of both aleatory (random) and epistemic 

(ignorance based) uncertainty on the performance of high speed networks. The key feature of 

this approach is the development of a parameterized analysis of variance (ANOVA) strategy to 
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identify which of the aleatory random dimensions have minimal impact on the response surface 

of the network. By removing the statistically insignificant dimensions, a highly compact PC 

representation of the response surface can be developed. This PC representation will serve as a 

metamodel capturing the impact of the purely epistemic, purely aleatory, and mixed epistemic-

aleatory effects.  

Mixed problems are characterized by far greater number of dimensions than purely 

epistemic or aleatory problems. Thus, the poor scalability of PC expansions is even more 

prominent for mixed problems. This issue is further compounded by the fact that traditional 

sparse PC methods use statistical measures to decide which PC bases can be removed or retained 

[41], [57]. However, for mixed problems, the presence of epistemic uncertainty makes it 

impossible to define unique statistical moments. Therefore, sparse PC representations are not 

available for mixed problems. In this dissertation, a novel dimension fusion approach to address 

the above scalability issue of mixed problems is  proposed. As the name suggests, this approach 

fuses the epistemic and aleatory dimensions within the same model parameter into a mixed 

dimension which allows the information contained within a large dimensional mixed uncertainty 

space to be compressed into a low dimensional space. 

 

1.3 Organization of the text  

In this dissertation, most of the state of the art PC approaches are reviewed.  Exploited  

techniques  are  explained  in  details,  and  novel  ideas are  supported  with  extensive  

numerical  examples  and  discussions.  The  rest  of  text  is organized as follows: Chapter 2 

provides a review of basics of  the  generalized  PC  theory  and  the  most  common  

nonintrusive  uncertainty  quantification approaches including stochastic  collocation and  the  
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linear  regression approach, and finally concludes with an overview of sparse polynomial chaos 

techniques.  Moreover, the major advantages and disadvantages of these approaches are provided 

in this chapter.  Chapter 3 mainly deals with improvements to the linear regression approach. 

This chapter starts with a review of  the  D-optimal criterion  and  the  Fedorov  search algorithm  

for  the  linear  regression  approach.  Next, two novel numerical strategies to expedite the search 

algorithm for high-dimensional problems, are presented. The chapter then concludes with a 

comparative analysis of CPU costs of the proposed D-optimal linear regression approach against 

other non-intrusive approaches. Chapter 4 uses a high dimensional model representation 

(HDMR) to formulate sensitivity indices which enable the truncation of a high dimensional PC 

model to a reduced model. Novel strategies to reuse PC bases and SPICE simulations are 

discussed. The same HDMR formulation is then used to further extend the reduced dimensional 

PC method to mixed problems which contain both aleatory (random) and epistemic (ignorance 

based) uncertainty. In Chapter 5, parameterized sensitivity indices are developed to enable 

truncation of high dimensional mixed problems. Chapter 6 uses a dimension fusion strategy 

whereby the aleatory and epistemic uncertainty in a model parameter is collectively represented 

using a single mixed variable. In all the chapters, every proposed method is validated using 

multiple numerical examples. 
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CHAPTER 2: RELATED WORK 

 

 

 

 In this chapter, a comprehensive review of existing uncertainty quantification techniques 

is discussed. First, a brief review brute force techniques like Monte Carlo and its variants are 

presented. Their drawbacks are discussed, leading to the requirement of more robust uncertainty 

quantification techniques. Next, an overview of the generalized polynomial chaos (gPC) 

approach is presented and intrusive/non-intrusive approaches to quantify uncertainty using gPC 

are discussed. The intrusive approaches discussed are Stochastic Galerkin (SG) [7]-[22] and 

Stochastic Testing [37]. The non-intrusive approaches discussed are Pseudo Spectral Stochastic 

Collocation [26], classical linear regression [48], [49], Stochastic Collocation [29], [30], [42], 

[43], Stroud cubature rules [23], [31], [33], [35] and the non-intrusive formulation of stochastic 

testing [34]. Since the main focus of this thesis is the development of methodologies to sparsify 

the gPC expansion, other sparse PC techniques such as the anisotropic PC [73], Hyperbolic 

Polynomial Chaos Expansion (HPCE) [59] and the hierarchical sparse PC approaches [40], [41] 

are discussed. The merits and demerits of using each technique with respect to other techniques 

are finally discussed. 

 

2.1 Monte Carlo 

 Traditionally, brute-force Monte Carlo techniques were used to quantify uncertainty for 

high-speed circuit networks. In this approach, a large number of pseudo-random 

multidimensional samples are collected based on the PDF of the input parameters [1]. The 

network is simulated at each of these samples and the ensemble of the output response is 

obtained. Any desired statistical moment can be computed from this ensemble of responses. 
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 If N observations of a quantity X represented by },....,{ 21 Nxxx are obtained, the Monte 

Carlo approach estimates the mean value of X as the expected value of the set  N

iix
1   
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The variance of X is given by  
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1
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The main drawback of Monte Carlo is that a large number of simulations are required for 

convergence ~ )
1

(
N

O .The computational cost especially becomes prohibitive if the time taken 

for each simulation of the network is large.  

 

2.2 Quasi Monte Carlo 

 Quasi Monte Carlo technique differs from Monte Carlo in the way that the input samples 

are generated. Monte Carlo uses pseudo-random samples whereas quasi Monte-Carlo uses a low 

discrepancy sequence like Sobol’s sequence. This difference is illustrated in Fig. 2.1. 

The main advantage of using a low discrepancy sequence is that a faster rate of convergence is 

obtained. Quasi Monte Carlo has a rate of convergence which is O(1/N). 

 

2.3 Latin Hypercube Sampling 

 Latin Hypercube Sampling, like Quasi Monte Carlo attempts to generate points that are 

evenly distributed over the entire random space of the input parameters.  
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This is achieved by partitioning the input distribution into multiple intervals of equal probability 

and selecting one sample from each interval. Doing so prevents clustering of points that could 

happen when pseudo-random sequences are used. LHS sampling is illustrated in Fig. 2.2. Like 

Quasi Monte Carlo, LHS sampling has a better convergence than Monte Carlo which is O(1/N). 

 

 

 

 

 

 

 

 

 

                                 

      

(a)                                                                    (b) 

 

Fig. 2.1: Difference between a low discrepancy sequence and pseudo-random sequence. (a) Pseudo 

random sequence (b) Sobol’s sequence  

                                                           

Fig. 2.2: Latin hypercube sampling 
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2.4 Generalized Polynomial Chaos (gPC) Theory 

The concept of orthogonal polynomials has existed for a long time [44].  Polynomial 

Chaos Theory was first introduced only for Hermite orthogonal polynomials and was called 

‘Hermite-Chaos’. However, due to the need to solving differential equations in the presence of 

uncertainty for a large number of engineering disciplines, the polynomial chaos technique was 

extended to include other orthogonal polynomials and was renamed as the generalized 

Polynomial Chaos (gPC) theory. 

Consider a network where the input uncertainty is represented by one random variable, λ 

occupying the random space Ω. Provided the variables have finite second order moments, the 

uncertainty in the network response X(t,λ) is modeled using gPC theory and is represented as an 

expansion of orthogonal polynomials and their coefficients. 

 







0

)()(),(
k

kk tctX   (2.3) 

where ck(t) represents the coefficient as a function of time and )(k  is a unidimensional 

orthogonal polynomial basis with respect to the probability distribution function (PDF) of the 

input random variable. The expansion in 2.3 is truncated to  

 





m

k

kk tctX
0

)()(),(   (2.4) 

where m represents the order of expansion of the polynomial and there are m+ 1 terms in the 

expansion. The polynomials )(k  are orthogonal with respect to the PDF of the random input 

parameter λ. 

 
ijijiji d  2)()()()()(  



 (2.5) 
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where <,> represents the inner product operation, ρ represents the PDF of λ, 2

i is a constant and 

ij is the Kronecker delta function. The constant term 
2

i  is used as a normalizing factor to 

generate orthonormal polynomials. It is important to note that polynomials need to be chosen 

based on the Wiener-Askey scheme [44], which states that there is a one-one correspondence 

between the distribution of the polynomials and the kind of orthogonal polynomial used in the 

expansion. This guarantees the fastest rate of convergence for the PC expansion which is 

exponential. The corresponding class of orthogonal polynomials with respect to standard 

distributions can be found in Table 2.1 

 

2.4.1 One-dimensional orthonormal polynomials 

 Consider the standard normal distribution N(0,1) where the PDF ρ(λ) is represented as 

 
2

2

2

1
)(








 e  (2.6) 

According to Table 2.1, the Hermite polynomials are the appropriate orthogonal polynomials to 

the normal distribution. These polynomials can either be generated in an analytic manner [44] 
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or using a three-term recurrence relation 

Table 2.1: Polynomials and their corresponding distributions 
  

Distribution of λ Orthogonal Polynomials Support 

Gaussian Hermite (-∞,∞) 
Uniform Legendre [-1,1] 

Beta Jacobi [-1,1] 

Gamma Laguerre [0, ∞) 
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 )()()( 11    kkk kHHH  (2.8) 

From 2.7, it can be observed that 10 H and 1H . The normalizing factor for Hermite 

polynomials can be obtained as 

 !)(),( kHH kk    (2.9) 

Similarly, considering the standard uniform distribution U(-1,1), the PDF ρ(λ) is represented as  

 

otherwise     0

11    
2

1

     )(





  (2.10) 

According to Table 2.1, the Legendre polynomials are the appropriate orthogonal polynomials to 

the uniform distribution. These polynomials too can either be generated in an analytic manner 

[44] 
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or using the three-term recurrence relation 
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From 2.11, it can be observed that 10 P and 1P . The normalizing factor for Hermite 

polynomials can be obtained as 
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1
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For ease of understanding, the first six univariate orthonormal Hermite and Legendre 

polynomials are listed in Table 2.2 
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2.4.2 Multidimensional orthonormal polynomials 

 Most practical applications deal with uncertainty quantification in the presence of 

multiple random variables. In this subsection, generation of multidimensional orthonormal 

polynomials using univariate orthonormal polynomials is discussed. Consider a general network 

where the input uncertainty is represented by n mutually uncorrelated random variables

],....,[ 21 nλ . The PC approach approximates the uncertainty in the response X(t,Ȝ) as 

 







1

0

)()(),(
P

k

kk tct λλX   (2.14) 

The expansion is truncated to P+1 terms which is given by 

 

!!

)!(
1

nm

nm
P


  (2.15) 

The multivariate polynomials )(λk are now orthonormal to the joint probability distribution 

function (PDF) of the input random variables. Since the variables are independent, their joint 

PDF can be expressed as the product of their individual PDF’s. 

Table 2.2: Univariate orthonormal Hermite and Legendre polynomials 

Index k 
Orthonormal Hermite polynomial )(kH  Orthonormal Legendre polynomial )(kP  

0 1 1 

1 λ 3  

2 2)1( 2   )
2

1

2

3
(5 2   

3 6)3( 3    )
2

3

2

5
(7 3    

4 62)36( 24    )
8

3

8

30

8

35
(3 24    

5 302)1510( 35    )
8

15

8

70

8

63
(11 35    
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The multivariate polynomial basis can be obtained as the product of the univariate polynomial 

basis across each dimension  
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From 2.16 and 2.17, it is evident that the inner product in 2.16 equals 
2

i only when both 

multidimensional polynomials are the same and 0 otherwise. 

For illustration purposes, the generation of two-dimensional basis is shown below. 

 

 

 

 

 

 

 

It is noted that the total degree across both dimensions remains constant in each row and is 

incremented row by row [44]. 

 

2.4.3 Derivation of statistics 

 The major benefit of using the gPC approach to model the uncertainty in any system is 

that all the statistical information of the response is contained in the PC coefficients. The mean 

and variance of the output can be obtained as a function of the coefficients by integrating over 

the random space Ωn. To obtain the PDF and other higher order statistical moments, the PC 
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Fig 2.3: Generation of bivariate basis for m=4 
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metamodel is probed at a large number of Monte Carlo samples. In this subsection, derivation of 

the statistical information is explained. The temporal dependence of the terms in the expansion is 

removed for convenience. 

The expected value or the mean of the response )(λX  is represented as 
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nn
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 (2.18) 

It is noted that the first )(0 λ is always equal to 1 for all orthonormal polynomials. 
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Therefore, the mean or expected value of the response is just the first coefficient in the 

expansion. 

The variance of the response )(λX  is represented as 
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(2.20) 

The variance is the sum of squares of all coefficients except the first. 

Any general M
th

 higher order moment can be expressed as 
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(2.21) 



16 

 

Any higher order moment can be computed by generating a large number of Monte Carlo 

samples based on the input distribution. Since the PC metamodel is already known, it is not 

required to simulate the network at all the sample points. The PC metamodel is probed at all the 

samples and the values of the response )(λX is substituted in 2.21 to easily obtain any higher 

order statistical moment. 

 

2.5 Intrusive and non-intrusive methods 

In this section, approaches to determine the unknown coefficients of 2.3 are discussed. 

These unknown coefficients are obtained either using intrusive or non-intrusive techniques.  

 

2.5.1 Intrusive methods 

Intrusive methods are one of the ways in which the unknown coefficients of the PC 

metamodel are computed. Intrusive methods like Stochastic Galerkin (SG) are highly accurate 

and require the construction of an augmented and coupled deterministic network [7]-[22]. The 

unknown PC coefficients are then determined by a single run of this augmented deterministic 

network. The main disadvantage of the SG approach is that this augmented and coupled 

deterministic network is cumbersome to develop. Since the augmentation is P+1 times, the CPU 

time and memory costs scale in a near exponential manner with respect to the number of random 

dimensions. Since a separate solver is required for the SG approach, it cannot make use of 

existing deterministic SPICE solvers for the given network. Furthermore, for non-linear circuits, 

the SG approach uses lumped dependent sources which further augment the network [15]. Due to 

these reasons, the SG approach is favorable for simple circuits with small number of random 

parameters. 
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The intrusive formulation of the Stochastic Testing (ST) approach was developed to 

address the inefficiencies of the SG approach [37]. The ST approach solves the coupled system 

of equations of the augmented circuit, but in a decoupled manner at each time point. Like non-

intrusive methods, the coupled equations are solved at P+1 sampling points which are obtained 

using a node selection algorithm [37]. Unlike the SG approach, the ST approach can be 

parallelized since the equations are solved in a decoupled manner. The main disadvantage of the 

ST approach is that the node selection algorithm does not guarantee the best selection of 

simulation nodes. For more details of the ST approach, readers are encouraged to read [34], [37]. 

 

2.5.2 Non-intrusive methods 

Non-intrusive approaches to determine the unknown gPC coefficients are attractive 

because they do not require the development of new deterministic network solvers. Existing 

SPICE solvers can be used to simulate the network at the determined simulation points. Also, 

since the simulations are independent of each other, they can be parallelized leading to greater 

speedup when compared to intrusive approaches. Popular intrusive approaches are discussed in 

this section. 

 

2.5.2.1 Pseudo-spectral collocation 

 In the pseudo-spectral collocation approach, the output is expanded in a series or 

orthogonal polynomials using the gPC expansion and numerical integration techniques are used 

to determine the PC coefficients [26]. Numerical integration with Gaussian quadrature 

techniques approximate the integral of a function )(λF as a weighted sum of function values 

computed at predetermined sample points 
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where Q is the total number of simulation points given by 
nmQ )1(  , ],.....,[ 21

i

n

iii λ , 

)( iF λ is the value of the function F evaluated at 
iλ and )( iw λ represents the weight 

corresponding to the node 
iλ . For a one-dimensional problem, i are the roots of the one-

dimensional polynomial corresponding to the input distribution according to the Askey scheme. 

For an n-dimensional problem, Q is given by the tensor product of the one-dimensional 

polynomial roots taken across all n dimensions. 

In order to determine the unknown gPC coefficients ck, using Gaussian quadrature 

integration rules, the projection theorem is used, which performs an orthogonal projection on to 

the polynomial basis as 
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 (2.23) 

The nodes are obtained as the roots of the polynomial. Another way to obtain nodes and their 

corresponding weights )( iw λ is by solving an eigenvalue problem which is known as the Golub-

Welsh algorithm [61]. 

The main advantage of the pseudo-spectral collocation approach is that for moderate 

number of random dimensions, the number of simulations required will be far lesser than that 

required for Monte-Carlo. For higher dimensional problems, since the number of required 

simulations scales in an exponential manner with respect to the number of random dimensions, 

the pseudo-spectral collocation approach, when used to find the PC coefficients fails to provide 

any benefits. In such scenarios, it is beneficial to use Monte-Carlo to compute the problem 

statistics. 
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2.5.2.2 Conventional Linear Regression approach 

The conventional linear regression approach is another non-intrusive way of finding the 

gPC coefficients. It takes advantage of the linear least squares technique to find the best fit for 

the PC coefficients [48]. This approach begins by approximating the uncertainty in the network 

response as shown in 2.14. The expansion of (2.14) is oversampled at M = 2(P+1) nodes located 

within the random space Ω in order to achieve the best possible fit of the PC coefficients over the 

entire n-dimensional random space Ω [48]. This results in the formulation of an overdetermined 

system of linear algebraic equations [38] 

 EεXA 
~

 (2.24) 

where 
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2.24 can now be solved in a least square sense to obtain the PC coefficients as 

 EAAAX
TT 1)(

~   (2.26) 

A detailed description of the linear regression methodology is provided in Chapter 3. The main 

benefit of the linear regression methodology compared to pseudo-spectral collocation is that the 

number of simulations required is M = 2(P+1) which means that it scales in a polynomial fashion 

with respect to the number of random dimensions as opposed to the exponential scaling. This 

provides significant savings in CPU costs and makes it an attractive approach for large 

dimensional problems. The main drawback of using the conventional linear regression approach 
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is that it uses the Fedorov algorithm based on the D-optimality criteria to select the M nodes 

which involves a (P+1)X(P+1) size matrix inversion at each stage in the node selection process. 

This leads to exorbitant CPU costs for finding the nodes. Novel methodologies to mitigate these 

costs are discussed in Chapter 3. 

 

2.5.2.3 Non-intrusive formulation of Stochastic Testing 

 The non-intrusive formulation of the Stochastic Testing approach [34] requires less 

number of nodes when compared to the conventional linear regression approach. The ST 

approach samples 2.14 at only )1(  PM  points in the random space. The resultant system of 

equations can be expressed as 
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The methodology to select the M nodes is described below. 

The major challenge in the ST approach is determination of testing nodes since poor 

selection of nodes results in ill-conditioned matrices which in turns makes the solution inaccurate 

or impossible to obtain. In order to address this issue, the ST approach of [34] starts with 

nm )1(  nodes obtained by taking the tensor product of the (m+1) unidimensional roots of the 

polynomial orthogonal to the joint distribution of input random variables. In order to have 

accurate results, the algorithm states that all the nodes need to be arranged in the descending 

order of their weights and the first node 
)1(λ is taken to be the one with the highest weight. The 

vector V is defined as 
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where 
Tk

P

kkk )}(.,).,.......(),({)( )()(

1

)(

0

)( λλλλH  . Assume that r-1 candidate nodes have 

already been selected. The vector space that spans these r-1 nodes can be represented as 

 )}(),.....,(),(span{ )1()2()1(  rλHλHλHV  (2.29) 

 Now any node 
)(rλ is considered to be a candidate node if )( )(rλH  has a large enough 

orthogonal component to V. This is determined as follows 
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where ȕ is a predefined constant. If the condition in 2.30 is satisfied, )( )(rλH is added to the 

vector span V. 

 The node selection algorithm used in the ST approach is faster than the linear regression 

approach as there are no matrix inversions involved. It also requires the least number of network 

simulations, only P+1 as compared to 2(P+1) required in the linear regression approach. The 

main drawback here is that the ST algorithm selects the first P+1 nodes with a large enough 

orthogonal component to V. This does not always guarantee optimal selection of the testing 

nodes. 

  

2.6 Sparse Polynomial Chaos Techniques 

 It is common knowledge that the CPU cost to evaluate the unknown gPC coefficients 

scales in a polynomial fashion with respect to the number of random dimensions. This is the 
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major bottleneck for most PC approach. To mitigate this, the PC expansion needs to be 

sparsified. In this subsection, some sparse PC techniques are discussed.  

 

2.6.1 Sensitivity Indices using ANOVA-HDMR 

 One way to sparsify the PC expansion is to get an understanding of how much of an 

impact each random input parameter has on the network output and retain only those parameters 

which have a significant impact on the response. For this purpose, the network response is split 

into a sum of functions of increasing dimensions known as High Dimensional Model 

Representation (HDMR). This performs the separation of the effects of the input parameters 

which are transmitted in the decomposition of the variance [54]. 
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where x0 is the nominal value of x(t,Ȝ), xi(t,λi) represents the contribution of λi to x(t,Ȝ) acting 

alone, xij(t,λi, λj) represents the pairwise contribution of λi and λj to x(t,Ȝ) etc. The variance of the 

response is expressed as 
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Some properties of HDMR are used in the derivation of terms in 2.32 [55], [56]. 
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Since the impact of each random dimension is studied on the variance of the response, this 

methodology is called Analysis Of Variance (ANOVA). Sensitivity indices quantify the 

contribution of each parameter on the output variance. They are expressed as 
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 (2.33) 

The total sensitivity index of a parameter i represents the total effect of i  on the output 

variance. It is represented as 
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The PC expansion can be used to compute the sensitivity indices of each input dimension by 

rearranging the terms in the expansion to resemble those in the HDMR expansion. Since all the 

statistical information in the PC expansion is contained in the coefficients, the sensitivity indices 

can easily be expressed in terms of the PC coefficients. 

The main issue with using this method is that, in order to compute the sensitivity indices, all the 

PC coefficients need to be computed. Although, the dimensionality of the network can be 

reduced by only considering dimensions with significant values of the sensitivity index, the CPU 

costs scale in a polynomial fashion with respect to number of dimensions. In order to mitigate 

this cost, a novel reduced dimensional PC approach is proposed in Chapter 4.  

 

2.6.2 Hierarchical Sparse PC Approach 

The hierarchical sparse PC approach is another technique to develop a sparse PC 

expansion and mitigate the poor scalability of the gPC approach. This method also uses the 
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HDMR formulation but in an iterative manner by including only the component functions 

pertinent to the most important random parameters [40], [41]. 

Consider the HDMR expansion in 2.31. |u| is defined as the cardinality of a component function. 

For example, |u| = 1 for )λ,( ii tx , |u|=2 for )λ,λ,( jiij tx and so on. The iterative algorithm first 

computes the weights associated with a component function as 
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If Ȗu exceeds a prescribed tolerance, then the random variable corresponding to the component 

function is considered to be significant. Next, the second order component functions 

corresponding to only the significant random dimensions are considered as candidates for 

constructing the second level HDMR. The associated weights are recomputed as 
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This process continues in an iterative manner until the HDMR converges. At the third level, only 

the third level interactions of the important second order component functions are considered. 

 The hierarchical sparse PC approach uses very few terms in the PC expansion owing to 

its selection/eliminations. This reduces the computational effort to a large extent. The main 

drawback of this approach is that the error of the PC expansions representing the lower order 

interactions gets propagated to the higher levels. More details are given in Section 4. 
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2.6.3 Anisotropic Sparse PC Approach 

The Anisotropic Sparse PC (APC) approach is based on the insight that each random 

dimension does not have equal impact on the network responses. As a result, the maximum 

degree of expansion along each dimension can be tuned to different values based on the 

magnitude of the impact each dimension has on the network response. This is in contrast to 

existing isotropic sparse PC approaches where the expansion requires the maximum degree of 

expansion along all dimensions to be equal and set to a common value. Due to the intelligent 

tuning of the maximum degrees of expansion along each dimension, an anisotropic PC expansion 

will be substantially sparser than a full-blown PC expansion and hence the associated 

coefficients can be evaluated far more efficiently.        

The APC approach in [73] starts with the HDMR expansion in 2.31. The impact of each 

random dimension on the response ),( λtx  acting along is quantified using the concept of cut-

HDMR whereby 
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(2.37) 

The notation 
i

λ\)0(λ  represents the vector where all component of Ȝ except λi is set to 0. Based 

on (2.37), these impact terms can be expressed using 1D PC expansions as 
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where xi
(j)

(t) represents the j
th

 coefficient and ϕj is the corresponding 1D basis chosen from the 

Weiner-Askey scheme. 

An iterative approach is used to determine the value of mi. Its value is initially set to one and the 

coefficients of (2.38) are evaluated using the pseudo-spectral method [26]. Once the initial 
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coefficients are obtained, then the value of mi is iteratively increased in steps of one and in each 

iteration the new coefficients of (2.38) are evaluated using the same pseudo-spectral method. 

After the computation of coefficients, the normalized enrichment in the variance predicted using 

the 1D expansion arising from the increment in the degree of expansion is evaluated as 
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(2.39) 

where r refers to the current iteration. Once the enrichment falls below a prescribed tolerance İ, 

the iterations are halted. 

Once the degree of expansion along all the random dimensions is known using the above 

methodology, an anisotropic PC expansion of the network response ),( λtx can be formulated as  
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where the multidimensional basis ȥk(Ȝ) is a product of 1D basis as   
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with the constraint that 
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2.6.4 Hyperbolic PC Expansion 

 The Hyperbolic PC Expansion (HPCE) is another sparse PC technique which uses an 

alternative hyperbolic truncation scheme instead of the conventional linear truncation scheme. 
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This choice of the hyperbolic truncation scheme is based on the sparsity of effects principle 

which claims that the dominant effect on the response uncertainty comes from the impact of each 

random variable acting alone and their low-degree interactions. Guided by this principle, the 

hyperbolic truncation scheme automatically prunes the statistically insignificant high-degree 

multidimensional bases from a general PC expansion. This hyperbolic truncation scheme results 

in a substantially sparse PC formulation which is numerically more efficient to construct than the 

conventional alternatives [59]. 

Traditionally, for uncorrelated random variables, any arbitrary k
th

 multidimensional basis can 

be expressed as a product of one dimensional bases as 
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where K = [k1, k2, …, kn] is the vector of the 1D PC degrees. Such a truncation scheme where all 

relevant PC bases are enclosed between the hyperplane ||K||1 = m and the positive axes 

representing the random dimensions is referred to as the classical linear truncation scheme. In the 
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 uumuK m1||||K

Fig. 2.4: Illustrative example demonstarting the sparsity due to the proposed hyperbolic truncation 

crietrion over the classical linear truncation crietrion using a 2D example (n = 2, m = 5). The decrease in 

sparsity with the increase in the hyperbolic factor (u) is shown. At u = 1, the proposed HPCE expansion 

coincides with the full-blown PC expansion. 
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hyperbolic truncation scheme, by pruning the high-degree multidimensional bases from the 

expansion of (2.14), a sparser PC formulation can be achieved. This hyperbolic truncation 

scheme is described using the fractional u-th norm of K as    
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where u is the hyperbolic factor. The hyperbolic truncation scheme of 2.44 ensures that only 

those multidimensional bases of 2.14 lying under or on the hyperbola ||K||u = m, as opposed to a  

hyper-plane ||K||1 = m, are retained in the expansion. In other words, due to the non-zero radius of 

curvature of the hyperbola ||K||u = m, the higher-degree multidimensional bases of 2.14 will be 

pruned from the expansion. This selective pruning of the PC bases will ensure the best accuracy 

of the expansion while leading to a sparser formulation than 2.14. 

It is noted from Fig. 2.4 that the sparsity achieved by the HPCE depends on the radius of 

curvature of the truncating hyperbola which in turn depends on the hyperbolic factor u. 

Therefore, by tuning u it is possible to adapt the HPCE to exhibit the best sparsity-accuracy 

tradeoff. The main disadvantage of using the HPCE method is that it lacks control over the 

number of bases pruned because of the hyperbolic factor u takes specific values. So, for large 

problems, even the penultimate value of u prunes a large number of bases which causes the 

HPCE method to become inaccurate. 
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CHAPTER 3: APPROACHES TO ACCELERATE THE CLASSICAL FEDOROV SEARCH 

ALGORITHM 

 

 

 

From the previous chapter, it is evident that among the non-intrusive techniques to 

evaluate the PC coefficients, the linear regression approach is preferred as it uses only a sparse 

subset of nodes out of the entire tensor product set of nodes without compromising on the 

accuracy of the results. However, for large dimensional problems, the traditional search 

algorithm takes a large amount of time for selecting the DoE nodes. In this dissertation, firstly, 

the methodology used by the traditional linear regression to select the DoE using the D-

optimality criterion and the Fedorov search algorithm is explained. Next, two novel numerical 

strategies are proposed to expedite the search for the substitute DoE for problems involving high-

dimensional random spaces. As the first strategy, instead of substituting all DoE, the proposed 

algorithm identifies a small fraction of the worst DoE present in the initial selection and replaces 

only these DoE. As the second strategy, a recursive method to efficiently compute the inverse of 

the information matrix required for every exchange of DoE is developed. Further, a complexity 

analysis of the search algorithm in [36] is presented. The accuracy and efficiency of the proposed 

approaches is illustrated by comparing the results with other PC approaches for microwave/RF 

networks using multiple numerical examples. 

 

3.1 PC expansion using Linear Regression 

Consider a general microwave/RF network where the uncertainty in the physical 

dimension, circuit elements, and electrical properties of the network is represented by n mutually 

uncorrelated real valued random variables Ȝ = [λ1, λ2,…, λn]
T

 located within the multidimensional 
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random space Ω. In order to extract all the statistical information of this network, the variability 

in the network response is approximated using a PC expansion as 

 

ελXλX 


P

0k

kk tt )()(),(   (3.1) 

where İ is the vector of random truncation errors of the PC expansion. The Linear Regression 

approach begins by oversampling the expansion of (3.1) at M = 2(P+1) nodes located within the 

random space Ω. The expression of (3.1) is oversampled in order to achieve the best possible fit 

of the PC coefficients over the entire n-dimensional random space Ω [43]. This results in the 

formulation of an overdetermined system of linear algebraic equations [43] 
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(3.3) 

and I represents the identity matrix. The vectors εj of (3.3) are the individual truncation errors at 

each node. The vector E consists of the network responses obtained by probing the original 

stochastic network of (3.1) at the M multidimensional nodes (or DoE) Ȝ(j) = [λ1
(j), λ2

(j),…, λn
(j)

]; 

Mj 1 . Equation (3.3) can now be solved in a least-square sense to evaluate the PC 

coefficients of the network response. Once the PC coefficients are obtained from (3.3), all 

statistical moments of the network responses can be obtained from the PC expansion of (3.1). 
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3.2 Advantages over intrusive approaches 

 A key benefit of the conventional linear regression approach is that sophisticated 

deterministic solvers such as SPICE can be directly used to populate the matrix E in (3.3) 

without any intrusive coding as required in the SG approach and the stochastic testing approach 

[7]-[22], [37]. More importantly, the M SPICE simulations of (3.3) can be easily parallelized 

unlike the SG approach. 

 

3.3 Proposed D-Optimal Linear Regression Approach 

In order to identify the M nodes satisfying the D-optimal criteria for the regression 

problem of (3.3), in this dissertation, we propose to utilize the Fedorov search algorithm which 

has been commonly used in the field of estimation theory and experimental designs [46],[48]. 

While there are various other exchange algorithms besides the Fedorov algorithm, the work of 

[46] demonstrates that the Fedorov algorithm reaches successful completion far more frequently 

than its counterparts. The following subsections explain the rationale behind the choice of the D-

optimal criterion, the Fedorov search algorithm to identify the D-optimal nodes and the 

computational cost associated with the search. 

 

3.3.1 D-optimal Criterion 

The importance of the D-optimal criterion to the accuracy of the evaluated PC 

coefficients of (3.3) is revealed using the following lemma. 

Lemma 1μ Assuming that the truncation error İj Mj 1  at all M DoE of (3.3) are independent 

of each other and exhibit a normal distribution of zero mean and same variance σ2
, then in order 

http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=7415055#deqn2
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to achieve the maximum accuracy of the PC coefficients the DoE must be chosen such that the 

determinant of the information matrix A
t
A of (3.2) is maximized.  

Proof: Based on the PC expansion of the network responses of (3.1), it is understood that the 

presence of the random truncation error ε makes the PC coefficients themselves random 

variables. The variance of the evaluated PC of (3.3) can be computed as  
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Knowing that the truncation error for each DoE (i.e., εj) is independent and has a constant 

variance σ2
, Var(E) = σ2

I where I is the identity matrix. Replacing this in (3.4) the variance of 

the PC coefficients of (3.4) can be compactly expressed as  

 21)()
~

(  AAX
tVar  (3.5) 

From (3.5) we understand that to ensure the maximum accuracy of the PC coefficients we have 

to reduce the uncertainty in the solution X
~

 (i.e., the variance of X
~

). Since the variance of X
~

 

is inversely proportional to the determinant of the information matrix A
t
A, a simple way to 

minimize the variance of X
~

 is to maximize the determinant. This criterion is referred to as the 

D-optimal criterion [46], [47]. It is noted that other optimal criterions besides the D-optimal 

criterion also exists although the D-optimal criterion has been deemed the most effective and 

popular till now [46]. In the next subsection, we develop a search algorithm that can efficiently 

identify the D-optimal nodes from multidimensional random spaces.  

 

3.3.2 Greedy Search Algorithm to Identify DoE  

In this subsection, the development of a greedy search algorithm to identify the D-

optimal DoE from multidimensional random spaces is described. This greedy search algorithm is 
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based on the Fedorov algorithm commonly used in the field of estimation theory and data 

analysis [48], [49]. This algorithm begins by considering a set of M = 2(P+1) starting DoE 

selected from the tensor product grid of (m+1)
n 

multidimensional quadrature nodes and creating 

the corresponding information matrix A
t
A of (3.3). Thereafter, each DoE in the starting set is 

replaced by the best possible substitute DoE taken from the remaining (m+1)
n
-M quadrature 

nodes such that the determinant of the information matrix increases by the maximum amount in 

the process. This step-by-step refinement of the starting DoE continues till all the initial set of 

nodes has been replaced [36]. 

As per the above description, at the r
th

 step it is assumed that the first r-1 nodes have been 

replaced by their best possible substitutes. Now if the r
th 

DoE (Ȝ(r)
) of the starting set is removed 

from A, then the new determinant of the information matrix can be expressed as 
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where R(λ(r)) is the row vector contributed by the rth DoE (λ(r)) in A. Similarly, if any arbitrary 

kth DoE (λ(k)) from the remaining (m+1)n-M quadrature nodes is included into A, the new 

determinant of the information matrix can be expressed as 
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Combining the results of (3.6) and (3.7), after exchanging the r
th 

DoE (Ȝ(r)
) of the starting set 

with any arbitrary k
th 

DoE (Ȝ(k)
) from the remaining (m+1)

n
-M quadrature nodes, the new 

determinant of the new information matrix can be mathematically expressed as the recursive 

function 
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where Ψ(r-1) 
represents the inverse of the information matrix obtained after the previous (i.e., r-

1
th

)
 
exchange. From (3.8) it is understood that in order to achieve D-optimality, the k

th 
node Ȝ(k)

 

needs to be so chosen to satisfy the optimization criterion 
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Once the best possible node Ȝ(k) 
has been found to satisfy (3.9) and the relevant exchange has 

been made, the new determinant can be directly updated using (3.9) and the substitution process 

moves on to the r+1
th

 node. Once all M starting DoE have been replaced the new set of DoE will 

represent the D-optimal selection. In the next subsection, we derive the computational cost 

associated with the node selection. 

 

3.3.3 Computational cost of the search algorithm 

 It is noted that the total computational cost of the search algorithm is due to two main 

factors. Firstly, identifying the D-optimal DoE requires searching through (m+1)
n
-M quadrature 

nodes for each DoE in the starting set – in other words, a total of M((m+1)
n
-M) searches. The 

associated CPU cost can be expressed as 
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where C1 is the CPU cost of computing the terms in the brackets of (3.9) assuming that the 

inverse Ψ(r-1) 
is known. It is noted that based on (3.8) and (3.9) C1 can be expressed as  

 ))1()1((3 2

1  PPkC  (3.11) 
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where the first term is the cost of the matrix-vector multiplication Ψ(r-1)
R

t
(Ȝ(r)

), the second term 

is the cost of the vector-vector multiplication of R(Ȝ(r)
) with Ψ(r-1)

R
t
(Ȝ(r)

), and the factor 3 is due 

to the fact that the above operations needs to be performed for three scalars drr, dkk, and dkr of 

(3.8). Also k is assumed to be the cost of each floating point operation. Combining (3.10) and 

(3.11), it can be concluded that the overall search cost (Ca) scales in an exponential manner with 

the number of random dimensions (n), quantified as O((P+1)
3
(m+1)

n
)) ))1(( 3 nm mnO  .  

The other source of computational effort arises from the fact that for each substitution, 

the information matrix changes and the inverse Ψ(r-1) 
have to be reevaluated. This CPU cost is 

expressed as  

 
2

)1(2 CPC
b

  (3.12) 

where C2 is the CPU cost of each matrix inversion. It is noted that for direct inversion methods 

C2 scales as O((P+1)
3
) thereby ensuring that the cumulative cost of the matrix inversions (Cb) 

scales as O((P+1)
4
) )( 4mnO  with respect to the number of random dimensions (n). Given that 

for typical PC problems 52  m , this suggests a near exponential scaling of the associated 

CPU costs.  

The above two features of the search algorithm significantly slow down its performance 

for high-dimensional problems and may even render it infeasible for some problems. In fact, the 

cost of implementing the search algorithm can often become a significant fraction of the cost of 

performing the M deterministic SPICE simulations of (3.3) as will be demonstrated in the 

numerical examples section. In order to address these computational constraints of the search 

algorithm, in the next section two novel strategies to expedite the search algorithm for problems 

involving high-dimensional random spaces is presented. 
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3.4 Expediting the Search Algorithm for High-Dimensional Random Spaces  

 In this section, two modifications to the original search algorithm of the previous section 

are presented. 

 

3.4.1 Substituting K worst DoE 

This strategy is based on the rationale that once a reasonably large determinant of the 

information matrix has been reached, any further enrichment of the determinant will translate to 

only marginal improvement in the accuracy of the evaluated PC coefficients. Thus, instead of 

substituting all M DoE (as suggested previously), in this strategy only the K worst DoE in the 

starting set will be identified and substituted. The substitution of the K worst DoE will result in a 

sufficiently large increase of the determinant of the information matrix, thereby eliminating the 

need for exchanging the remaining M-K DoE. Thus, this strategy will reduce the number of 

searches from M((m+1)
n
-M) searches to K((m+1)

n
-M) – a reduction of the search cost (Ca) of 

(3.10) by a factor of M/K.  

In this work, K is initially set to [M/5] where [.] is the ceiling function. Next, from (3.6) it is 

noted that the depreciation in the value of the determinant caused by removing the r
th 

DoE (Ȝ(r)
) 

is proportional to the term 

 trr

rrd )()( )()0()( λRΨλR  (3.13) 

where Ψ(0)
 is the inverse of the original information matrix consisting of the starting M DoE. 

Thus, the K worst DoE are identified as those DoE in the starting set that have the smallest 

possible value of the scalar drr. It is appreciated that computation of the drr term of all 2(P+1) 

DoE can be performed cheaply since the matrix inverse Ψ(0)
 needs to be computed only once. 

Once the K worst DoE have been identified, the search algorithm of the previous subsection is 
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run for only these DoE. Thereafter, a check is made to ascertain if the determinant of the 

information matrix A
t
A is reasonably high. If not, then the next worst DoE (i.e., K+1

th 
worst 

DoE) is identified using (3.13) and substituted as before. This sequential process continues until 

the determinant of the information matrix A
t
A is deemed to be sufficiently large. It is observed 

from numerous examples that K = [M/5] is a good starting guess for K and rarely does this value 

need to be increased further. 

 

3.4.2 Implicit Matrix Inversion 

 Although the above strategy will reduce the number of searches, and consequently the 

number of matrix inversions, given that the cost to directly invert the information matrix even 

once scales in a near-exponential manner with the number of random dimensions (see (3.12)), 

the overall cost of matrix inversions may still remain prohibitively large for high-dimensional 

random spaces. 

 In this dissertation, a new strategy is adopted whereby Ψ(0) 
(i.e., inverse of the 

information matrix for the starting set of DoE) is computed once and stored. Thereafter, the 

substitution of any r
th 

DoE (Ȝ(r)
) (r < K) will change the information matrix. The inverse of the 

new information matrix (i.e., Ψ(r)
 of (3.8)) will now be expressed as a P+1 rank correction to the 

previous inverse Ψ(r-1) 
using the Sherman-Morrison-Woodbury formula as [49] 

 

r

t

rrk

t

kk

r

rrtkkttr

ww UUVVΨ
RRRRAAΨ








)1(

1)()()()()( ))()()()()(( 
 (3.14) 

where 
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(3.15) 

Based on the recursive expressions of (3.14) and (3.15), it is observed that for the substitution of 

any r
th 

DoE (Ȝ(r)
) (r < K) the new inverse Ψ(r) 

will be updated efficiently using numerically cheap 

matrix-vector and vector-vector multiplications as opposed to the direct matrix inversions. 

In the next section, we discuss the numerical efficiency of the modified search algorithm. 

 

3.5 Numerical Efficiency of the Modified Search Algorithm 

 It is emphasized that the modified search algorithm described above offers two clear 

benefits. Firstly, the number of searches will decrease from M((m+1)
n
-M) searches to K((m+1)

n
-

M) where K = [M/5]. This automatically reduces the search cost of (3.10) approximately by a 

factor of 5 to 
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(3.16) 

Secondly, the CPU cost of performing the matrix inversions for the modified search algorithm 

will also decrease significantly as quantified using the following lemma. 

 

Lemma 2: Utilization of the Sherman-Morrison-Woodbury formula of (3.14) and (3.15) will 

ensure that the total CPU costs to perform the matrix inversions in the modified search algorithm 

will scale as O((P+1)
3
) )( 3mnO with respect to the number of random dimensions (n). 

Proof: Based on (3.15) it is noted that the main computations required in order to evaluate Vk is a 

matrix-vector multiplication of dimensions P+1 where Ψ(r-1)
 is assumed to be known. The cost of 
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this operation will be C3 = k(P+1)
2
 where k is the cost of each floating point operation. Next, to 

compute the matrix k

t

kVV  a vector-vector multiplication of dimensions P+1 is required. This will 

incur an additional CPU cost of C4 = k(P+1)
2
. Finally, to compute the denominator of the scalar 

term wk, another matrix-vector multiplication of dimensions P+1 will be required at the cost C3 = 

k(P+1)
2
. Thus, the overall CPU cost to evaluate the second term in (16) (i.e., wk k

t

kVV ) will be 

 2

343 )1(3  PkCCC  (3.17) 

It is observed that computing the third term in (3.14) (i.e., wr r

t

r UU ) proceeds exactly in the same 

way as that of the second term. Hence, the associated cost too will equal to that of (3.17). Adding 

all the above CPU costs for K substitutions along with the cost of directly inverting the starting 

information matrix (i.e., computing Ψ(0)
), the total CPU cost incurred to perform the matrix 

inversions in the modified search algorithm can be quantified as  

  22 16  PKkCCb  
(3.18) 

It is observed that for K = [M/5] both the first and the second terms of (3.18) will scale as 

O((P+1)
3
) )( 3mnO  with respect to the number of random dimensions (n). Thus, it is concluded 

that the overall costs of performing the matrix inversions for the modified search algorithm will 

also scale as O((P+1)
3
) )( 3mnO . Comparing this result with that of (3.12) reveals a distinct 

improvement in the CPU cost to the order of O(n) – a major numerical benefit for high-

dimensional problems (i.e., for large n).  

Finally, it is remarked that the cost of identifying the K worst nodes will require the additional 

computation of the scalar drr in (3.13) for the entire 2(P+1) starting DoE. This cost can be 

expressed as 
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since C1 is defined in (3.11). Comparing (3.16) and (3.19) it is evident that the cost of identifying 

the K worst DoE is a negligible fraction of the search cost Ca and can be safely ignored. Overall, 

it is appreciated that the proposed modified search algorithm will be able to significantly reduce 

both the search cost Ca  of (3.10) and the cost of the matrix inversions Cb of (3.12), thereby 

substantially accelerating the original search algorithm of Section 3.3.2.  

 

3.6 Comparative Analysis of Overall CPU Costs 

 In this section, the CPU cost of the proposed D-optimal linear regression approach is 

compared against that of conventional non-intrusive PC approaches. 

 

3.6.1 Proposed Linear Regression Approach 

 Based on the discussion of Section 3.5, it is appreciated that the CPU cost required for the 

proposed linear regression approach can be divided into two parts – the cost incurred by the 

modified search algorithm and the cost incurred to perform the M deterministic SPICE 

simulations to extract the E matrix of (3.3). The cost of the modified search algorithm is 

expressed using (3.16) and (3.18) as 

  221 16)1(  PKkCCmKC n

t  (3.20) 

where typically K = [M/5]. As for the SPICE simulation cost, it is assumed that each of the M 

simulations requires the same CPU cost which is a reasonable assumption since the variation in 

the number of unknowns in the network equations from one DoE to another will be typically 

small. Thus, the SPICE simulation cost can be quantified as 
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where C0 is the cost of each deterministic SPICE simulation. Thus, the overall cost of the SPICE 

simulations scales as )2( mnO  with respect to the number of random dimensions (n).  

 

3.6.2 Stochastic Testing Approach 

 The proposed linear regression approach has some interesting features compared to the 

stochastic testing algorithm of [37], [38]. Firstly, the modified search algorithm allows only K 

substitutions as opposed to the significantly larger P+1 substitutions required by the stochastic 

testing algorithm, although the CPU cost for each substitution is similar. Further, the proposed 

linear regression approach can directly utilize the SPICE results of the M DoE without the need 

of any intrusive coding or access to the internals of the SPICE engine, thereby making the 

proposed approach truly non-intrusive in nature. These benefits are offset by the fact that the 

stochastic testing algorithm requires only P+1 SPICE simulations (i.e., CS = (P+1)C0) as opposed 

to the 2(P+1) simulations required by the proposed D-optimal linear regression approach.   

 

3.6.3 Stochastic Collocation Approach 

 Stochastic collocation (SC) has been a very popular non-intrusive PC approach [29], [30], 

[42], [43]. In this approach, if the non-intrusive multidimensional nodes are selected to be the 

full tensor product of 1D quadrature nodes, then M = (m+1)
n
. These nodes can be analytically 

identified at negligible computational costs (i.e., Ct = 0). Thus, the cumulative costs of the entire 

SC approach is equal to that of the SPICE simulations and is expressed as  
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This corresponds to an exponential scaling of the time costs with respect to the number of 

random dimensions (n), quantified as O((m+1)
n
). This means that for even moderate dimensional 

problems, the massive cost of SPICE simulations in (3.22) will make this approach highly cost 

intensive compared to the proposed linear regression approach.   

In order to mitigate this prohibitive scaling, an intelligent choice of only a sparse subset of the 

tensor product nodes guided by the Smolyak algorithm has been proposed [29], [30], [42], [51]. 

Once again, this method allows the fast identification of the sparse nodes (i.e., Ct = 0 compared 

to the proposed linear regression approach). This approach results in a decrease in the number of 

multidimensional nodes from M = (m+1)
n 

to approximately M = (2n)
m
/m!, thereby improving the 

CPU time costs of the SC algorithm from that of (3.22) to   
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For this approach, it is observed that the number of deterministic SPICE simulations required 

scales as O(2
m
n

m
) which is still 2

m-1 
times more than that required for the proposed linear 

regression approach (see (3.23)). Thus, for large variation in the random dimensions requiring 

high degrees of PC expansion (m), the proposed linear regression approach may still be more 

cost effective than even this sparse collocation approach. 

 

3.6.4 Other Approaches 

 Among other existing non-intrusive approaches, the pseudo-spectral collocation has been 

recently reported for full-wave EM problems [26]. However, this approach suffers from the same 

exponential scaling of the SPICE simulation costs as the classical SC approach. Other methods 

based on the Stroud low order cubature methods have also recently been explored for packaging 

problems [23], [31], [33], [35]. This approach can easily locate the multidimensional nodes using 
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simple analytic formulas and exhibits only a linear scaling of the number of SPICE simulations 

with number of random dimensions (i.e., O(n)). However, this excellent scaling with the number 

of random dimensions only exists for a second and third degree PC expansion and cannot be 

extended to higher degree expansions [23]. 

Finally, it is remarked that a promising non-intrusive PC approach has been proposed in [34]. In 

this approach the selection of the non-intrusive nodes is determined exactly as proposed in the 

stochastic testing approach of [37]. As a result, this approach too relies on the costly P+1 

substitutions as opposed to the relative smaller K substitutions used in the modified search 

algorithm. On the other hand, this approach requires only P+1 SPICE simulations as opposed to 

the 2(P+1) simulations required by the proposed D-optimal linear regression approach. 

From the above analysis, it is observed that the proposed linear regression approach offers clear 

benefits over the state-of-the-art non-intrusive PC approaches and this is validated through 

multiple lumped and distributed microwave network examples in the next section. 

 

3.7 Numerical Examples 

 In this section, three examples are presented to compare the accuracy and scalability of 

the proposed D-optimal linear regression approach against existing intrusive and non-intrusive 

PC approaches. All relevant PC computations are performed using MATLAB 2013b while the 

deterministic transient simulations, whether using intrusive or non-intrusive PC approaches, are 

performed using HSPICE. In particular, the transmission line networks are modeled using the W-

element transmission line model provided by HSPICE which can automatically consider 

frequency dependent per-unit-length parameters. The above simulations are run on a workstation 

with 8 GB RAM, 500 GB hard disk memory and an Intel i5 processor with 3.4 GHz clock speed. 
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3.7.1 Example 1: CMOS Low Noise Amplifier (LNA) 

 The objective of this example is to demonstrate the accuracy of the proposed linear 

regression approach. For this purpose, the RF low noise amplifier (LNA) network of Fig. 3.1 

comprising of three SPICE level-49 CMOS transistor models are considered. The RF input to the 

network is a sinusoidal wave with amplitude of 1V and a frequency of 1 GHz. The uncertainty in 

the network is introduced via six normal random variables (n = 6) whose characteristics are listed 

in Table 3.1. A Hermite PC expansion of degree m = 3 is required for this example.  

In order to evaluate the accuracy of the proposed approach, the mean and standard deviation (σ) 

of the transient response at the output node N1 of Fig. 3.1 is computed using two methods – the 

proposed D-optimal linear regression approach described in Section 3.3 and the pseudo-spectral 

collocation approach based on Gauss-Hermite quadrature techniques. For the proposed approach, 

only K = [2(P+1)/5] = 33 substitutions are performed as described in Section 3.4. The 

comparison of the above results is shown in Fig. 3.2 (a) where the proposed linear regression 

approach is found to exhibit good agreement with the pseudo-spectral collocation approach.  

                                 

AC

50Ω L2 M1

L1

M3

M2

2.3V 

400Ω 
255Ω 

R3

C1

1.19V

N1

      

Fig. 3.1: Circuit schematic of the CMOS low-noise amplifier network of Example 1. 
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Next, in order to test the accuracy for higher order statistical moments, the probability 

distribution function of the transient response at node N1 evaluated at the time point of maximum 

standard deviation (t = 2.81 ns) is computed using the above two approaches and the results are 

displayed in Fig. 3.2(b). As expected, the probability distribution results for 20,000 samples 

exhibit good agreement demonstrating the accuracy of the proposed linear regression approach.  

 

Table 3.1: Characteristics of Random Variables of Example 1 (Fig. 3.1) 
 

Random Variables Mean 

% Standard 

Deviation (Normal 

Distribution)   

w1 (width of M1) 7.5 µm 

+/- 10 % 

 

w2 (width of M2) 7.5 µm 

w3 (width of M3) 7.5 µm 

L1 13 nH 

L2 0.9 nH 

R3 120 Ω 

 

       
(a)                                                                                         (b) 

Fig. 3.2: Comparison of mean and higher order statistical moments of the transient response of Example 

1 computed using the proposed linear regression approach and pseudo-spectral collocation approach [26]. 

(a) Mean and statistical corners of the transient response at N1. (b) Probability distribution function of 

transient response at N1 at the time point of maximum standard deviation (t = 2.81ns) using 20,000 

samples. 
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Finally, it is noted that the proposed approach requires 15 seconds for completing the K 

substitutions and another 13.44 seconds for the 2(P+1) = 84 SPICE simulations. On the other 

hand, the pseudo-spectral collocation approach requires 327.68 seconds to perform the necessary 

4096 SPICE simulations at the Gauss-Hermite quadrature nodes. This amounts to a speedup of 

11.5 provided by the proposed algorithm over the pseudo-spectral collocation approach. This is 

as expected from the discussion of Section 3.6. 

 

3.7.2 Example 2: Transmission Line Network 

 The objective of this example is to compare the performance of the proposed linear 

regression approach with the existing intrusive SG approach for a large distributed network. For 

this purpose, the multiconductor stripline network driven by nonlinear transmission lines shown 

in Fig. 3.3(a) is considered. The layout of the stripline network is illustrated in Fig. 3.3(b). The 

nonlinear transmission lines are represented using cascaded lumped nonlinear RLGC segments 

as shown in Fig. 3.4 where the nonlinear capacitance C(V) is represented as 

 

 
)))1(()( / aV

a ebbCVC   
(3.24) 

 

and V is the potential difference across the capacitor. It is noted that (3.24) is a strongly 

nonlinear function used for benchmarking the proposed approach. For the network in Fig. 3.3(a), 

10 nonlinear RLGC segments are considered. The input to the network is a trapezoidal waveform 

with rise/fall time Tr = 10 ns, pulse width Tw = 400 ns and amplitude equal to 5V. The 

uncertainty in the network is introduced via five random variables (n = 5) whose characteristics 

are listed in Table 3.2. A mixed Legendre-Hermite PC expansion of degree m = 2 is required for 

this example. 
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Table 3.2: Characteristics of Random Variables of Example 2 (Fig. 3) 

Random Variables Mean Distribution % Relative Variation  

“a” parameter in NL capacitors 

of NLETL 1 
2.137 

Normal 

 

+/- 10 % 

 

“a” parameter in Nδ capacitors 
of NLETL 2 

2.637 

“a” parameter in Nδ capacitors 
of NLETL 3 

1.637 

“b” parameter in Nδ capacitors 
of NLETL 1 

6.037 e-3 

Uniform 
“b” parameter in Nδ capacitors 

of NLETL 2 
9.108 e-3 

 

Section 1 Section 2 Section 10

L=1µH

RL=0.16Ω 
RC=2Ω 

C(V) C(V)

RC=2Ω RC=2Ω 

C(V)

L=1µH L=1µHRL=0.16Ω RL=0.16Ω 

 

Fig. 3.4: Equivalent lumped RLGC model of nonlinear transmission lines of Fig. 3. 

 

DC

DC

DC

50 Ω 

50 Ω 

50 Ω 

50 Ω 

50 Ω 

10 cm

100 pF

100 pF

100 pF

100 pF

100 pF

5V

5V

5V

NLETL 1

NLETL 2

NLETL 3

N1

N2

  

15 µm 300 µm

120 µm30 µm

175 µm

  
                                          (a)                                                                        (b) 

Fig. 3.3: Transmission line network of Example 2. (a) Circuit schematic. (b) Geometry of coupled 

transmission lines. 
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In order to evaluate the accuracy of the proposed approach, the mean and standard deviation (σ) 

of the transient response at the output nodes N1 and N2 of Fig. 3.3(a) is computed two methods – 

the proposed D-optimal linear regression approach described in Section 3.3 and the SG approach 

[15]. For the proposed approach, only K = [2(P+1)/5] = 8 substitutions are performed as 

described in Section 3.4. The comparison of the above results is shown in Fig. 3.5 where the 

proposed linear regression approach is found to exhibit good agreement with the SG approach.  

 

To further probe the accuracy of the proposed approach, the PC expansion of the voltage 

response at node N1 is computed using the same above two methods where the input sources in 

Fig. 3.3 are changed to random pulse trains with rise/fall time Tr = 10 ns, pulse width Tw = 400 

ns and amplitude equal to 1V. From the PC expansion the eye diagram is generated as shown in 

Fig. 3.6(a). The probability distribution function of the eye height is then extracted using both the 

above methods and compared in Fig. 3.6(b). It is observed from Fig. 3.6(b) that the proposed 

linear regression approach matches very well the results of the SG approach. 

 

    
                                              (a)                                                                                         (b) 

Fig. 3.5: Comparison of mean and higher order statistical moments of the transient response of Example 2 

computed using the proposed linear regression approach and the stochastic Galerkin approach [15]. (a) 

Mean and statistical corners of the transient response at N1. (b) Mean and statistical corners of the 

transient response at N2. 
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It is appreciated that the proposed approach requires 1.022 seconds for completing the K 

substitutions and another 23.94 seconds for the 2(P+1) = 42 SPICE simulations. On the other 

hand, the SG approach requires 4722.45 seconds to perform the solitary augmented SPICE 

simulation. This is because the augmented network is 21 times larger than the original model and 

includes an additional (m+1)
n  

= 243 companion circuits to model the uncertainty in each 

nonlinear capacitor [15]. Thus, the proposed approach provides a speedup of roughly 189 over 

the SG approach. If the size of the network and/or the number of random dimensions is 

increased, the achieved speedup will be even higher, thereby clearly validating the advantage of 

the proposed linear regression approach over the intrusive SG approach. 

 

3.7.3 Example 3: BJT Low Noise Amplifier (LNA) 

The objective of this example is to compare the computational complexity of the 

proposed linear regression approach against that of conventional non-intrusive PC approaches as 

the number of random dimensions increases. For this purpose, the low noise amplifier (LNA) 

network of Fig. 3.7 is considered [38]. This LNA utilizes an NXP BFG425W wideband BJT, 

      
                                                (a)                                                                                         (b) 

Fig. 3.6: Eye diagram comparison for Example 2 computed using the proposed linear regression approach 

and the stochastic Galerkin approach [15]. (a) Example of the eye diagram obtained for a DoE at N1. (b) 

Probability distribution function of the eye height. 
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which is represented as a level-1 (Gummel-Poon) SPICE model. This network is driven by a 

voltage source with a sinusoidal waveform of frequency 2 GHz and amplitude of 1V. The supply 

voltage of the network is set to Vs = 4.5 V. The uncertainty in the network is introduced via 

twelve random variables (n = 12) whose characteristics are listed in Table 3.3 and a Hermite PC 

expansion of degree m = 4 is considered. 

  

 

AC

BFG425W
4.7 pF

2.7 pF

DC 4.5 V

100 nF

Rl = 50Ω  50 Ω 

5.6 pF 1 nF

15 kΩ 

TL1

TL2

TL3

TL4 TL5

22 Ω 82 Ω 

N1

R2

          

h

2 ȝm

w

Dielectric Layer

Ɛr = 4.6 

   
                (a)                                                                                                  (b) 

Fig. 3.7: Circuit schematic of the BJT low-noise amplifier network of Example 3. (a) Circuit schematic. 

(b) Geometry of transmission lines. 

 

Table 3.3: Characteristics of Random Variables of Example 3 (Fig. 3.7) 
 

Random Variables Mean 
% Relative Variation 

(Normal Distribution) 

w1 (width of TL1) 0.2 mm  

 

 

 

 

 

+/- 25% 

w2 (width of TL2) 0.25 mm 

w3 (width of TL3) 0.3 mm 

w4 (width of TL4) 0.7 mm 

w5 (width of TL5) 0.9 mm 

Bf (Current gain of BJT) 145 

Cjs (Junction Cap. Of BJT) 667.5 fF 

Rl 50 Ω 

h1 (height of TL1) 0.4 mm 

h2 (height of TL2) 0.45 mm 

h3 (height of TL3) 0.5 mm 

h4 (height of TL4) 0.55 mm 

h5 (height of TL5) 0.6 mm 

R2 100 Ω 
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First, the number of random dimensions is set to n = 8 represented as the first eight dimensions 

of Table 3.3. For this case, in order to demonstrate the accuracy of the proposed linear regression 

approach, the mean and standard deviation (σ) of the transient response and output power at the 

output node N1 is computed two methods – the proposed linear regression approach described in 

Section 3.4 and the Monte Carlo approach. For the proposed approach, only K = [2(P+1)/5] = 

198 substitutions are performed as described in Section 3.4. The comparison of the above results 

is shown in Fig. 3.8 where the proposed linear regression approach is found to exhibit good 

agreement with the Monte Carlo approach.  

 

Next, to demonstrate the efficiency offered by the modified search algorithm over the classical 

Fedorov search algorithm of [36], the number of random dimensions is progressively increased 

from 4 to 14. For each test case, the original search algorithm of [36] and the proposed modified 

search algorithm described in Section 3.4 are implemented. The total time cost for each 

algorithm is decomposed into two parts – the CPU cost incurred in identifying the regression 

      
                                        (a)                                                                                         (b) 

Fig. 3.8: Comparison of mean and higher order statistical moments of the transient response of Example 

3 computed using the proposed linear regression approach and the Monte Carlo approach. (a) Mean and 

statistical corners of the transient response at N1. (b) Mean and statistical corners of the output transient 

power at N1. 
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nodes (compared in Table 3.4) and the CPU cost incurred in the matrix inversion after every 

node exchange (compared in Table 3.5).  

 

From Table 3.4 it is observed that the speedup achieved using the K worst nodes compared to the 

full set of 2(P+1) regression nodes are consistently 5. This is exactly as expected from (3.16) in 

Section 3.5. Similarly, from Table 3.5 it is observed that the speedup provided by the Sherman- 

Morrison-Woodbury method compared to the explicit matrix inversion method closely matches 

the expected scaling of O(n
m
) as illustrated in Fig. 3.9(a). This too is as expected from the 

comparison of (3.18) with (3.12) in Section III-D. 

 It is further noted that the simulation CPU cost for both the modified search algorithm and the 

classical Fedorov search algorithm for Tables 3.4 and 3.5 have been compared with an analytic 

Table 3.4: Scaling of CPU Time for Identifying D-Optimal Nodes Using Proposed and 

Classical Search Algorithms 
 

Random 

Variables 

CPU Time for Proposed Algorithm 

using K Worst Nodes (sec) 

CPU Time for Classical Search 

Algorithm using 2(P+1) nodes 

(sec) 

 

Speedup 

 
Simulation 

Cost 
Analytic Cost 

Simulation 

Cost 
Analytic Cost  

4 (w1, w2, w3, 

w4) 
0.0005 0.0003 0.0026 0.0014 

5 

6 (w1, w2, w3, 

w4, w5, Bf) 
0.0055 0.0077 0.0277 0.0383 

8 (w1, w2, w3, 

w4, w5, Bf, Cjs, 

Rl ) 

0.0615 0.1001 0.3074 0.5008 

10 (w1, w2, w3, 

w4, w5, Bf, Cjs, 

Rl, h1, h2 ) 

0.6806 0.8274 3.4034 4.1373 

12 (w1, w2, w3, 

w4, w5, Bf, Cjs, 

Rl, h1, h2, h3, 

h4) 

6.3336 4.9714 31.668 24.8570 

14 (w1, w2, w3, 

w4, w5, Bf, Cjs, 

Rl, h1, h2, h3, 

h4, h5, R2) 

23.6232 23.6219 118.1160 118.1098 
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estimation of the CPU cost possible using (3.10)-(3.12) and (3.16)-(3.18). The analytic and 

simulation CPU cost results of Table IV show good agreement. Even for Table V, for higher 

dimensional problems (i.e., n > 6) the analytic CPU costs are within a factor of 1.6 – 2 times the 

simulation CPU costs for the proposed approach and within a factor of 0.57 – 0.80 times the 

simulation CPU costs for the proposed approach. 

 Finally, for the same test cases of Table 3.4 and 3.5, the total PC problem is solved using 

three methods – the proposed linear regression approach, the original linear regression approach 

of [36], and the pseudo-spectral collocation approach [26]. The total CPU time incurred by each 

approach is noted in Table 3.6 and plotted in Fig. 3.9(b). For all methods, the time costs of the 

corresponding search algorithms have been added with the time cost for the 2(P+1) SPICE 

Table 3.5: Scaling of CPU Time for Matrix Inverse Computation Using Proposed and Classical 

Search Algorithms 

 

Random 

Variables 

CPU Time of Proposed 

Algorithm using Sherman-

Morrison-Woodbury 

Method (sec) 

CPU Time for Classical 

Search Algorithm using 

Explicit Matrix Inverse (sec) 

 

Speedup 

 
Simulation 

Cost 

Analytic 

Cost 

Simulation 

Cost 

Analytic 

Cost 
 

4 (w1, w2, w3, 

w4) 
0.0129 0.0029 0.0332 0.0220 2.57 

6 (w1, w2, w3, 

w4, w5, Bf) 
0.2423 0.0805 0.7560 1.7810 3.12 

8 (w1, w2, w3, 

w4, w5, Bf, Cjs, 

Rl ) 

6.4487 10.5518 94.5450 54.9805 14.66 

10 (w1, w2, w3, 

w4, w5, Bf, Cjs, 

Rl, h1, h2 ) 

48.4691 87.2597 1183.1820 919.4419 

 

24.41 

 

12 (w1, w2, w3, 

w4, w5, Bf, Cjs, 

Rl, h1, h2, h3, 

h4) 

303.3098 524.4761 14480.6480 10047.8592 47.74 

14 (w1, w2, w3, 

w4, w5, Bf, Cjs, 

Rl, h1, h2, h3, h4, 

h5, R2) 

1201.3000 2492.7336 101776.8240 80292.2630 84.72 
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simulation costs. It is observed from Table 3.6 that the pseudo-spectral collocation exhibits an 

exponential scalability with respect to the number of random dimensions [26]. Thus, the pseudo-

spectral collocation approach runs out of memory for more than 8 random variables. Similarly, 

for the linear regression approach of [36], the cost of the original search algorithm quickly 

becomes very large and also runs out of memory for more than 8 random variables. The CPU 

costs for n =10, 12, and 14 for these methods is estimated via extrapolation and added in Fig. 

3.9(b) for completeness. As seen from Fig. 3.9(b), the proposed linear regression approach which 

uses the more efficient modified search algorithm provides far superior scalability of the total 

CPU costs with respect to the number of random dimensions than the original linear regression 

approach of [36] or the pseudo-spectral collocation approach [26]. Interestingly, here too the 

total savings in CPU times increases with the number of random dimensions, thereby validating 

the benefits of the proposed linear regression approach for high-dimensional problems. 

 

 

 

      
                                            (a)                                                                                         (b) 

Fig. 3.9: Comparison of CPU time required by proposed linear regression approach with state-of-the-art. 

(a) Speedup achieved during matrix inverse computation by proposed algorithm compared to expected 

speedup. (b) Scaling of total CPU time cost of proposed linear regression algorithm compared against the 

pseudo-spectral approach and the original linear regression approach. 
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Table 3.6: Scaling of CPU Time Costs Using Proposed, Conventional Linear Regression and 

Pseudo-Spectral Collocation Approaches 

Number of 

Random 

Variables 

CPU Time (Proposed 

Approach) 

CPU Time (Conventional Linear 

Regression) 

CPU Time (Pseudo 

Spectral 

Collocation) 

Proposed 

Search 

Algorithm 

SPICE 

Simulations 

Original Search 

Algorithm 

SPICE 

Simulations 
SPICE Simulations 

4 (w1, w2, w3, w4) 13.12 s 179.2 s 18.42 s 179.2 s 800 s 

6 (w1, w2, w3, w4, 

w5, Bf) 
62.42 s 537.6 s 1214.99 s 537.6 s 20000 s 

8 (w1, w2, w3, w4, 

w5, Bf, Cjs, Rl ) 
100.68 min 21.12 min 5442.25 min 21.12 min 8333.33 min 

10 (w1, w2, w3, 

w4, w5, Bf, Cjs, 

Rl, h1, h2 ) 

26.23 h 0.71 h 
Insufficient 

Memory 
0.71 h 

Insufficient 

Memory 

12 (w1, w2, w3, 

w4, w5, Bf, Cjs, 

Rl, h1, h2, h3, h4) 

94.95 h 1.29 h 
Insufficient 

Memory 
1.29 h 

Insufficient 

Memory 

14 (w1, w2, w3, 

w4, w5, Bf, Cjs, 

Rl, h1, h2, h3, h4, 

h5, R2) 

229.07 h 2.176 h 
Insufficient 

Memory 
2.17 h 

Insufficient 

Memory 
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CHAPTER 4: DEVELOPMENT OF THE REDUCED DIMENSIONAL POLYNOMIAL 

CHAOS APPROACH  

 

 

 

 In the previous chapter, a novel linear regression methodology for evaluating the PC 

coefficients of microwave/RF circuits in a non-intrusive manner by using the D-optimal criteria 

to select the DoE nodes was proposed. While this provides significant acceleration in the search 

algorithm for selecting substitute DoE for high-dimensional problems, the problem size remains 

unaffected. In other words, the CPU effort to evaluate the PC coefficients of the network still 

scales badly with the number of random dimensions. In this dissertation, a polynomial chaos 

(PC) formulation based on the concept of dimension reduction is proposed for the efficient 

uncertainty analysis of microwave and RF networks. This formulation exploits a high 

dimensional model representation (HDMR) for quantifying the relative effect of each random 

dimension on the network response surface. This information acts as problem dependent 

sensitivity indices guiding the intelligent identification and subsequent pruning of the statistically 

unimportant random dimensions from the original parametric space. Performing a PC expansion 

in the resultant low-dimensional random subspace leads to the recovery of a sparser set of 

coefficients than that obtained from the full-dimensional random space with negligible loss in 

accuracy. Novel methodologies to reuse the preliminary PC bases and SPICE simulations 

required to estimate the sensitivity indices are proposed, thereby making the proposed approach 

more efficient and accurate than standard sparse PC approaches. The validity of the proposed 

approach is demonstrated using multiple numerical examples. 
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4.1 Development of Proposed Reduced Dimensional PC Approach  

 In this section, an explanation of how the HDMR can be utilized to compute the 

sensitivity indices of the random dimensions is given. These sensitivity indices will be used to 

guide the dimension reduction scheme. Thereafter, the formulation of a new linear regression 

approach for evaluating the reduced dimensional PC coefficients will be presented. This linear 

regression approach will maximize the reuse of SPICE simulations and PC bases. Next, the 

extension of the proposed method for networks with multiple responses of interest will be 

described. To conclude, this section will quantify the computational complexity of the proposed 

method and will contrast its performance with state-of-the-art sparse PC expansions [40], [41], 

[58], [59]. 

 

4.1.1 Evaluating Sensitivity Indices 

 For ease of understanding, the PC expansion that approximates the uncertainty in the 

network response X(t,Ȝ)  described in (2.14)  is shown again as 

 



P

0k

kk tt )()(),( λXλX   (4.1) 

The HDMR of any output ),( λtx  of the network of is expressed as a hierarchical sum of 

component functions as [60]  
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(4.2) 

where x0 is the nominal value of x(t,Ȝ), xi(t,λi) represents the contribution of λi to x(t,Ȝ) acting 

alone, xij(t,λi, λj) represents the pairwise contribution of λi and λj to x(t,Ȝ) etc. In this work, only 
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the zero-th and first order component functions of (4.2) are utilized, mathematically described as 

[54] 
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(4.3) 

    

In equation (4.3), λ(0)
 = 0 and the notation iλ\λ )0(

represents the scenario where all random 

dimensions except λi are set to 0 [54]. The zero-th component function represents the mean while 

the first order component functions of (6) represent the zero mean contribution of each random 

dimension to the network response acting alone. These contributions are then described using 

one dimensional (1D) PC expansions as 
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(4.4) 

The coefficients of (4.4) satisfy the inner product operation 
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(4.5) 

where ρ(λi) represents the marginal probability density function of random dimension λi. The 

integral in (4.5) is evaluated using Gaussian quadrature rules [61] allowing one to compute the 

coefficients of (4.4) as 
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(4.6) 

         where wj represents the j-th 1D Gaussian quadrature weight corresponding to the  j-th 

quadrature node
 λi

(j)
. From (4.5) and (4.6), it can be concluded that only (m+1)N SPICE 

simulations are required to evaluate the coefficients of (4.6).  
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 Next, by neglecting the higher order component functions of (4.2), the variance of x(t,Ȝ) 

can be approximated as  

 
22

2

2

1

2 ... Nx  
 

(4.7) 

 where σx
2
 is the total variance of x(t,Ȝ) and σi

2 
is the variance of the contribution of λi acting 

alone (i.e., variance of xi(t,λi)). Using (4.6) and (4.7), the variance based sensitivity index of each 

i
th

 random dimension can be analytically measured as [55], [56] 
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(4.8) 

 These sensitivity indices serve as problem dependent statistical information. It is noted 

that each sensitivity index Si is a positive dynamic function whose value is bounded between 0 

and 1. Moreover, it is observed from (4.7) and (4.8) that the sum of the sensitivity indices is 

always equal to unity. Thus, the magnitude of Si at any particular time point directly reveals the 

relative impact of λi on the variance of the network response x(t,Ȝ)  at that time point. However, 

these sensitivity indices being time dependent, their values change at every time point. Thus, the 

indices of (4.8) cannot be directly used to guide the dimension reduction approach for most 

electrical networks. In this dissertation, to address this problem, the normalized integral of the 

sensitivity indices of (4.8) will be computed as 
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(4.9) 

where Tmax represents the time point of simulation. The integral of (4.9) is efficiently evaluated 

using the trapezoidal rule. This integral is a scalar quantity that reflects the average relative 

contribution of each random dimension over the entire time window of simulation. It is used to 
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rank the random dimensions in decreasing order of their impact on the variance of the network 

response. All dimensions with the integral of (4.9) falling below a prescribed tolerance İ are 

considered to be non-impactful and will be removed from the original N-dimensional random 

space to contract it into a n-dimensional random subspace Ωn where n < N. Thus, the random 

vector Nλ  will be replaced by a new random vector 
nξ  where the entries of vector ξ are 

the most impactful n random variables of Ȝ. From the various numerical examples performed, it 

has been concluded that the prescribed tolerance of İ = 0.01 works very well for most problems. 

 It is pointed out that the sensitivity indices of (4.8) are based on the impact of the random 

dimensions acting alone and does not consider their interactions. Thus, these indices do not 

accurately capture the total impact of each dimension. However, the sparsity of effects principle 

claims that the lower order interaction terms are statistically more significant than their higher 

order counterparts [62]. This means that considering the first order terms of (4.2) can still yield 

an accurate relative measure of the impact of each dimension if not the accurate total impact. 

Since at this stage only the relative impact of the random dimensions is required to identify the 

non-impactful dimensions and not their total impact, the indices of (4.8) will suffice. This 

particular point will be demonstrated using numerical examples in Section 4.2. It is further noted 

that in the above approach, no cumbersome iterative hierarchical methods are required to 

evaluate the sensitivity indices, as opposed to existing works on sparse PC expansions [40], [41]. 

Moreover, this work is able to address the dynamic nature of the sensitivity indices of (4.9) 

guiding the dimension reduction scheme. In the next subsection, the methodology to recover the 

reduced dimensional PC expansion will be described.  
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4.1.2 Recovering the Reduced Dimensional PC Expansion via Linear Regression 

Once the N-dimensional network has been reduced to an n-dimensional problem, a 

reduced dimensional PC expansion of the network response can be expressed as 

 



Q

k

kk txtx
0

)()(),( ξλ 
 

(4.10) 

where  ȥk(ξ) is the k-th reduced dimensional basis, xk(t) is the corresponding coefficient and the 

number of terms in (4.10) is Q+1 = (n+m)!/(n!m!) where Q+1 << P+1. Next, in order to 

intelligently evaluate the coefficients of (4.10), instead of directly adopting the linear regression 

approach of Section 3.1, first the expansion of (4.10) is separated into the mean, 1D terms, and 

multidimensional interactions terms as   
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(4.11) 

 

It is noted that in (4.11), the 1D PC expansions of all the random dimensions have been included. 

This is because the 1D PC coefficients have already been evaluated anyway in (4.6) and 

including these terms will enhance the accuracy of the final expansion. The mean is already 

known from (4.3) while the 1D terms are already known from the 1D PC expansions of (4.4), 

thereby leaving only the multidimensional terms to be represented as  
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(4.12) 

The coefficients of the multidimensional terms can now be computed via the regression analysis  

approach described in Section 3.1 in conjunction with (4.12) instead of (4.10). In doing so, the 

linear overdetermined system of equations of (3.2) can be reformulated as 
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(4.14) 

It is noted that the 1D regression node in (4.14) is λi
(k)

 = ξi
(k) 

if λi has been deemed an impactful 

dimension and λi
(k) 

= 0 otherwise. It is also noted that the number of unknown multidimensional 

PC coefficients are Q-mn and as a result only M = 2(Q-mn) (< 2(P+1)) regression nodes are 

required to be identified. Next, instead of directly utilizing the D-optimal condition to identify 

these nodes, in this work the first (m+1)n regression nodes are taken to be the purely 1D m-th 

degree Gaussian quadrature nodes used in (4.6) to evaluate the PC coefficients of the impactful 

1D expansions of (4.4). Since the SPICE solution for these initial nodes are already known, they 

are not required to be extracted again. Only for the remaining 2(Q-mn)-(m+1)n regression nodes, 

the D-optimal condition can be used (i.e., new SPICE simulations will be required). 

 It is pointed out that in (4.13)-(4.14), both the 1D PC basis from the expansions of (4.4) 

and the 1D quadrature nodes required to evaluate the coefficients in (4.6) are reused – in other 

words, the maximum possible amount of information from the sensitivity analysis procedure is 

reused. The outcome of this reutilization of information is that only 2(Q-mn)-(m+1)n SPICE 

simulations are required to recover the unknown multidimensional PC coefficients of (4.12) 

instead of 2Q. This efficiency due to information reuse is above and beyond that already 

achieved due to the dimension reduction procedure itself.  
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4.1.3 Sensitivity Analysis for Multiple Network Responses 

The above dimension reduction strategy is based on the assumption that there is only one 

network response of interest x(t,Ȝ). Now consider that for the network there exist K responses of 

interest. In that case, each random dimension will have a different effect on each response 

thereby complicating the proposed strategy of Section 4.1.2. 

In this work, in order to determine the most impactful random dimensions across all the K 

responses, first the sensitivity indices of (4.8) for each random dimension is computed for all the 

K responses and denoted as Si
(k) 

where Kk 1 . Thereafter, the integrals of (4.9) for the 

corresponding sensitivity indices are computed as 

 
max

0

)(

max

)( )(
1

T

k

i

k

i dttS
T

L

 

(4.15) 

Finally, these average quantities are checked against the prescribed tolerance value İ. Any i-th 

dimension is considered to be non-impactful only if the following criterion is satisfied 

 KkL k

i
 1;)max( )( 

 
(4.16) 

In this way, the random vector ξ will contain only those dimensions which are impactful over all 

the K network responses. It is pointed out that this strategy for multiple network responses of 

interest does not require any additional SPICE simulations thereby ensuring that the CPU costs 

of the proposed approach does not depend on the number of responses probed.  

 

4.1.4 Contraction of PC due to Dimension Reduction 

This section begins with the following lemma to quantify the contraction in the PC 

expansion achieved.     
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Lemma 1: The contraction in the number of PC basis terms of the proposed reduced dimensional 

approach over full-dimensional PC approaches is approximately as O((n/N)
m
).  

Proof: Given the negligible computational costs to identify the regression nodes, the overall 

costs for any non-intrusive PC approach can be reduced to the one required by the SPICE 

simulations needed to evaluate the PC coefficients. For full-dimensional PC approaches, the 

number of SPICE simulations can be quantified as  
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(4.17) 

On the other hand, the number of bases in the reduced dimensional PC expansion of (4.10) is 

only 
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(4.18) 

Thus, the sparsity of the reduced dimensional PC expansion can be quantified as  
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(4.19) 

 If n < N, the reduced dimensional PC expansion will represent a substantial contraction of the 

original full-blown PC expansion. 

 Section III A-B clearly demonstrates that the total number of SPICE simulations required 

in the regression analysis of (4.10) is equal to those required to construct the sensitivity indices 
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of (4.8) plus those required for the linear regression analysis of (4.12) minus the reused nodes. 

Together, that makes  

 
))(1()(2

)1()(2)1(

nNmmnQ

nmmnQNmR




 

(4.20) 

As will be demonstrated in Section 4.2, if n << N, then the required number of SPICE 

simulations R << 2(P+1) used in traditional linear regression approaches [24], [25], [63]. 

 

4.1.5 Comparing Performance of Proposed Approach with Respect to Existing Sparse PC 

Approaches 

The more popular sparse PC approaches are the hierarchical basis reduction techniques of 

[40], [41]. These techniques also utilize variance based sensitivity indices similar to this work. 

However, the major distinction of these works from the proposed approach is that they utilize an 

iterative methodology to determine which of the higher order interactions of (4.2) are to be 

retained. As a result, these approaches can even ignore the statistically insignificant higher order 

terms of important dimensions. This is not possible in the proposed approach where all higher 

order interactions of the n important dimensions are accounted for in (4.10). As a result, the basis 

reduction techniques of [40], [41] may require fewer basis than the proposed approach. On the 

other hand, due to the ability of the proposed approach to reuse the (m+1)n Gaussian quadrature 

nodes of (4.6), both these approach still require nearly the same number of SPICE simulations 

despite having different number of PC bases. 

 As a second distinction, because the works of [40], [41] utilize a hierarchical approach to 

evaluate the relevant higher order interactions of (4.2), the error of the PC expansions 

representing the lower order interactions gets propagated to the higher levels. For example, the 
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approximation of (4.4) introduces some nonzero error into the 1D PC expansions. When 

considering the second order interactions of (4.2), they are expressed as 
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where the error due to the 1D PC expansions is included. This in turn introduces error in the PC 

representation of the 2D interaction term xij(t,λi,λj). Due to the hierarchical nature of HDMR, this 

error will get propagated to the third order interactions and beyond. In contrast, the proposed 

approach requires a single step reduction, thus precluding any error propagation beyond that in 

(4.12) due to the 1D PC expansions. This feature combined with the fact that the works of [40], 

[41] may ignore the higher order interactions of even the impactful n dimensions, automatically 

ensures that the proposed approach is relatively more accurate – this despite the fact that the 

proposed approach and the sparse approaches require very similar number of SPICE simulations. 

This has been demonstrated using the numerical examples of Section 4.2. 

Finally, a new HPCE approach has been recently proposed in [58]-[59]. This work is 

based on the concept of hyperbolic truncation of PC expansions. These works attempt to prune 

the number of PC bases by automatically removing the high dimensional interactions among the 

bases guided by the sparsity of effects principle [62]. However, this approach lacks sophisticated 

control over the number of pruned basis e.g., such as those based on sensitivity indices of the 

dimensions. As a result, for high-dimensional problems, the hyperbolic truncation may 

overestimate/underestimate the number of pruned bases leading to an inaccurate PC expansion. 

In fact, the proposed approach is both more efficient and more accurate than the HPCE for high-

dimensional problems as demonstrated in Section 4.2. 
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4.2 Numerical Examples 

In this section, we present three examples in order to demonstrate the computational 

benefits of the proposed reduced dimensional PC approach over full-dimensional PC approaches 

and existing sparse PC approaches. For all examples, the threshold for pruning the number of 

dimensions using (4.9) is İ = 0.01. 

 

4.2.1 Example 1 

In this example, the microstrip MTL network consisting of 10 coupled lines of Fig. 4.1 is 

considered. The cross-section of the MTL network is shown in Fig. 4.2. The uncertainty in the 

network is introduced via forty random variables (N = 40) with Gaussian distribution as listed in 

Table 4.1 and a Hermite PC expansion of degree m = 3 is considered. 
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Fig. 4.1: The schematic of the MTL network of Example 1 
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For the accuracy demonstration of this example, the uncertainty quantification for this 

example is performed using four methods – the Monte Carlo sampling approach using 25,000 

samples, the hierarchical sparse PC approach of [41], the HPCE approach of [59], and the 

proposed approach. To ensure the fairest comparison, all three PC approaches of above employ 

the linear regression approach described in Chapter 3. For this example, the response at node N1 

of Fig. 4.1 is considered as the only output of interest. For the proposed approach, the sensitivity 

indices of the random dimensions with respect to this response are computed using the 

methodology of Section 4.1. For this example, only n = 7 dimensions of Table 4.1 are retained 

(Rs1, Rl1, w1, w2, s1, s2, and H).  

 

 

 

 

The standard deviation (σ) of the frequency domain response at N1 of Fig. 4.1 is 

computed using all the above methods and the magnitude results are compared in Fig. 4.3(a). It 

is demonstrated that the proposed approach exhibits good agreement with MC while both the 

hierarchical sparse PC approach of [41] and the sparse HPCE expansion exhibits distinct errors. 

 

H

TL1 TL2 TL3 TL9 TL10

w1 w2 w3 w9 w10
s1 s2 s9

 

 

Fig. 4.2: Cross sectional view of the MTL network of Fig. 1. 

Table 4.1: Random Variables of Example 1 (Fig 4.1) 

Random 

Variables 
Mean Values 

% Standard 

Deviation (Normal 

Distribution) 

Rs1-10 50 Ω 

 

20% 

 

Rl1-10 50 Ω 

w1-10 130 µm 

s1-9 100 µm 

H 100 µm 
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The L2 error norm for the three PC approaches for the standard deviation result of response at N1 

is listed in Table 4.2 (MC results taken as reference). The results of Table 4.2 show that the 

proposed approach is roughly 3 times more accurate than the work of [41] and 13 times more 

accurate than the sparse HPCE expansion of [59]. The reasons behind the poor accuracy of the 

works of [41] and [59] have already been discussed in Section 4.1.5.  

Next, the probability density function (PDF) of the response of N1 at 20 GHz obtained 

using the same four approaches as above is evaluated and the results shown in Fig. 4.3(b). The 

yield of the network is defined to be the probability that the magnitude of the response at N1 is 

less than 0.1 at 20 GHz. From the Fig. 4.3(b) it is observed that the proposed approach and MC 

results provide similar yields of roughly 38%. On the other hand, due to errors in the work of 

[41], the yield computed using this approaches is 51.8% – significantly different from the MC 

result.  

 

Finally, for a comparison of the CPU costs incurred, the total number of SPICE simulations 

required by all PC approaches considered is recorded in Table 4.2. As expected, all the PC 

approaches require lesser number of SPICE simulations than the MC approach. The results 

      
(a)                                                                                          (b) 

Fig. 4.3: Statistical analysis of Example 1 using proposed approach, the work of [41] and [59], all 

compared against Monte Carlo approach (25,000 samples). (a) Magnitude of standard deviation of the 

frequency response at node N1. (b) Histogram of the response data from node N1 at 20 GHz. 
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reported in Table 4.2 show that the proposed approach and the hierarchical sparse PC approach 

of [41] require almost the same number of SPICE simulations. This is despite the fact that the 

proposed approach requires 219 PC bases compared to the 207 required by the work of [41] (as 

expected from the discussion of Section 4.1.5). Thus both these approaches exhibit almost the 

same speedup over full-blown PC approaches (roughly 74 times faster). In addition, the proposed 

reuse of information in (4.12) allows the further reduction of 70 SPICE simulations over the 

preliminary work of [53]. The results of Table 4.2 also demonstrate that the proposed approach is 

2.7 times faster than the sparse HPCE approach of [59].  

 

4.2.2 Example 2 

In this example, the same MTL network of Fig. 4.1 is considered with the outputs of 

interest being both nodes N1 and N2. The uncertainty quantification for this example is performed 

using three methods – the Monte Carlo sampling approach using 35,000 samples, the 

hierarchical sparse PC approach of [41], and the proposed approach. For probing the new outputs 

of interest, this example requires n = 8 dimensions to be considered (Rs1, Rl1, Rl2, w1, w2, s1, s2, 

and H). Note that the new random dimension Rl2 has to be considered as it displays a significant 

sensitivity on the crosstalk results at node N2.  

   Table 4.2: L2 Error Norm of Standard Deviation for Example 1 (Monte Carlo with 25,000  

Samples Taken as Reference) 

 

 
L2 Error 

Norm 

# SPICE 

Simulations 
# Bases 

Speedup w.r.t full 

blown PC 

(24,682 

Simulations) 

Hierarchical sparse PC 

approach [41] 
0.1097 333 207 74.12 

Proposed approach 0.0356 331 219 74.57 

Proposed approach (work 

of [53]) 
0.0433 401 219 61.55 

HPCE approach [59] 0.4679 901 901 27.39 
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Fig. 4.5: Magnitude of standard deviation of frequency 

response at node N10 

The standard deviation (σ) of the frequency domain response at N1, N2, and N10 of Fig. 

4.1 are computed using all the above methods. The magnitude of the standard deviation at N2 

and N10 are illustrated in Fig. 4.4 and 4.5 respectively. The L2 error norm for the PC approaches 

for the standard deviation result of response at nodes N1, N2, and N10 is computed and listed in 

Table 4.3 (MC results taken as reference). The results of Table 4.3 show that the proposed 

approach is roughly 2 times more accurate than the work of [41] for the outputs N1 and N2.  

 

 

     
    (a)                                                                                            (b) 

Fig. 4.4: Statistics of Example 2 evaluated using proposed approach and the work of [32], both 

compared against Monte Carlo approach (25,000 samples). (a) Magnitude of standard deviation of the 

frequency response at node N2. (b)  Zooming in on the standard deviation results of node N2 between 15 

and 20 GHz, thereby illustrating the accuracy of the proposed approach. 
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Importantly, the error norm for node N1 for both approaches has improved from the results of 

Example 1 (Table 4.2). This is to be expected since a new dimension has been taken into account 

to ensure good accuracy for the results of node N2 as well. 

For a comparison of the CPU costs, the total SPICE simulations incurred by both the PC 

methods are recorded in Table 4.3. From the results of Table 4.3 it is observed that the proposed 

approach is once again virtually just as efficient as the sparse PC approach of [41] (both are 

roughly 57-60 times faster than the full-blown PC approach). This is despite the fact that the 

proposed approach requires 261 PC bases compared to the 255 required by the work of [41]. In 

addition, because the number of reduced dimensions have increased in Example 2 from Example 

1, the proposed approach requires 10 less SPICE simulations compared to the preliminary work 

of [53] (i.e., total reduction of 80 SPICE simulations over [41]). 

 

4.2.3 Example 3 

In this example, the enhanced performance of the proposed reduced dimensional 

approach over existing sparse PC approaches when considering larger degrees of expansion is 

illustrated. For this purpose, the 16 conductor stripline MTL network of Fig. 4.6 is considered. 

   Table 4.3: L2 Error Norm of Standard Deviation for Example 2 (Monte Carlo with 25,000  

Samples Taken as Reference) 

 

 
L2 Error 

Norm at 

N1 

L2 Error 

Norm at 

N2 

L2 Error 

Norm at 

N10 

# SPICE 

Simulations 
# Bases 

Speedup w.r.t 

full blown PC 

(24,682 

Simulations) 

Hierarchical 

sparse PC 

approach [41] 

0.0694 

 

0.0520 

 

 

0.0106 429 255 57.53 

Proposed 

approach 
0.0334 

 

0.0295 

 

 

0.0097 411 261 60.05 

Proposed 

approach [53] 
0.0413 0.0311 0.00101 491 261 50.26 
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The lengths of the MTL networks are set to 5 cm and their layout and geometric dimensions are 

shown in Fig. 4.7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The voltage sources of Fig. 4.6 exhibit trapezoidal waveforms of rise/fall time Tr = 0.1 

ns, pulse width Tw = 1 ns and amplitude of 5V. The uncertainty in the network is introduced via 
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Fig. 4.6: Circuit layout of the MTL network with 16 

coupled lines terminated by inverters (Example 3). 
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Fig. 4.7: Cross sectional view of the MTL network of 

Example 3 (Fig. 4.6). 
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twenty two random variables (N = 22) with uniform distribution as listed in Table 4.4 and a 

Hermite PC expansion of degree m = 4 is required. It is noted that for N = 22 and m = 4, the 

number of PC bases P+1 = 14,950 – a larger problem than N = 40 and m = 3 (P+1 = 12,341) as 

considered in Examples 1 and 2. 

 

 

 

 

 

 

 

 

 

 

For the accuracy demonstration, the uncertainty quantification for this example is 

performed using three methods – the Monte Carlo sampling approach with 35,000 samples, the 

hierarchical sparse PC approach of [41], and the proposed approach. For this example, the 

outputs of interest are the nodes N1 and N2 of Fig. 4.5. For the proposed approach, only n = 4 

dimensions of Table 4.4 are retained (w, s, İr, and L).  

The statistical assessment of the response at the nodes N1 and N2 in Fig. 4.6 are computed 

using all the above methods as illustrated in Fig. 4.8 and 4.9. The proposed approach is found to 

display good agreement with MC while the hierarchical sparse PC approach of [41] exhibit 

distinct errors for the mean results of node N2. The L2 error norm for the PC approaches relative 

   Table 4.4: Characteristics of Random Variables of Example 3 (Fig. 4.6)  

Random Variables Mean Values 
% Standard Deviation 

(Uniform Distribution) 

w (TL width) 150 µm 

 

20% 

 

t (TL height)  30 µm 

H (Dielectric thickness) 450 µm 

s (TL separation) 150 µm 

İr (Relative permittivity of 

dielectric) 
4.1 

L (TL length) 6 cm 

σ (Tδ conductance) 5.8e7 

PL (PMOS length) 0.1 µm 

10% 
PW (PMOS width) 10 µm 

NL (NMOS length) 0.1 µm 

NW (NMOS width) 10 µm 

RL1-6 1.5 kΩ 
20% 

CL1-5 1 pF 
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to the MC results for the mean and standard deviation results is listed in Table 4.5. The results of 

Table 4.5 show that the proposed approach is roughly 2.6 and 5.6 times more accurate than the 

work of [41] when considering the mean of N1 and N2 respectively. However, both approaches 

are similarly accurate when considering the standard deviation results of Table 4.5. 

For a comparison of the CPU costs incurred, the total number of SPICE simulations required by 

both the PC approaches is recorded in Table 4.5. These results show that the proposed approach 

is once again virtually just as efficient as the sparse PC approach of [41] (both are roughly 150 

      
        (a)                                                                                          (b) 

Fig. 4.8: Statistics of Example 3 evaluated using proposed approach and the work of [41], both compared 

against Monte Carlo approach. (a) Nominal response at node N1. (b) Standard deviation of the response at 

node N1  

         
      (a)                                                                                          (b) 

Fig. 4.9: Statistics of Example 3 evaluated using proposed approach and the work of [41], both compared 

against Monte Carlo approach. (a) Nominal response at node N2. (b) Standard deviation of the response at 

node N2  
. 
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times faster than the full-blown PC approach). This is despite the fact that the proposed approach 

requires 142 PC bases compared to the 133 required by the work of [41]. Importantly, even 

though the number of reduced dimensions in Example 3 is very small (n = 4), the work of [41] 

still requires a substantially large 50 additional SPICE simulations over the proposed approach. 

 

 

 

 

 

 

 

 

 

 

 

Table 4.5: L2 Error Norm of Statistical Results for Example 3 (Monte Carlo with 35,000 

samples used as reference)  
 

 

L2 Error Norm at N1 L2 Error Norm at N2 

# SPICE 

Simulations 

 

# Bases 

Speedup 

w.r.t full 

blown PC 

(29,990 

simulations) 

Mean 
Standard 

Deviation 
Mean 

Standard 

Deviation 

Hierarchical 

sparse PC 

approach 

[41] 

0.0043 0.0017 0.0019 

 

7.53e-4 

 

199 133 150.70 

Proposed 

approach 
0.0016 0.0018 3.34e-4 

 

8.41e-4 

 

202 142 148.47 

Proposed 

approach[23] 
6.70e-4 4.2e-4 3.23e-4 2.18e-4 251 142 119.48 
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CHAPTER 5: EXTENDING THE REDUCED DIMENSIONAL POLYNOMIAL CHAOS 

APPROACH FOR MIXED EPISTEMIC-ALEATORY PROBLEMS  

 

 

 

 In the previous chapter, a novel reduced dimensional PC approach for performing 

uncertainty quantification of microwave/RF circuits was presented where the input uncertainty 

was aleatory in nature. Aleatory uncertainty refers to the kind of uncertainty where the random 

dimensions are characterized by a known probability density function. It is irreducible in nature. 

Currently, there is a growing interest in studying the effect of epistemic uncertainty alongside 

random or aleatory uncertainty. Epistemic uncertainty is that uncertainty arising from the lack of 

knowledge regarding the value of the network parameters. Due to this lack of knowledge or 

ignorance, no probability density functions are known regarding these parameters and they are 

represented as pure interval valued variables [64]. 

 So far, within the context of circuit simulation, the literature has been dominated by 

purely aleatory [13]-[20] or epistemic problems [76]-[81] with very little attention given to the 

more general problems where both forms of uncertainty are present (i.e., mixed uncertainty 

problems). When tackling mixed uncertainty problems, it is noted that all statistical moments of 

the response are no longer unique. Rather, these moments become functions of the epistemic 

dimensions. Thus, the main goal of mixed uncertainty quantification (UQ) is to evaluate the 

maximum and minimum bounds that enclose the possible variability of the response statistical 

moments [82], [83]. 

 Traditionally, mixed UQ has been performed using the second order probability (SOP) 

approach [70]. While the SOP approach can be easily applied to circuit simulation, unfortunately 

this approach requires a nested sampling of the aleatory and epistemic dimensions, leading to 
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possibly thousands of SPICE simulations of the overall network. In recent engineering research, 

this computational burden has been alleviated by developing a surrogate model or metamodel of 

the system response [84]-[86]. A metamodel maps the effects of the input mixed dimensions on 

the system response using simple closed form functions. This metamodel can then be used to 

analytically emulate the network response in the SOP framework at negligible computational 

costs compared to solving the massive original system model.  

 Of the many metamodeling techniques available, unified polynomial chaos (PC) 

metamodels are particularly attractive due to their fast convergence to the actual response 

statistics even in high-dimensional spaces [65], [87]. Unified PC metamodels are so called 

because they represent epistemic dimensions as aleatory dimensions with uniforms PDFs. 

Thereafter, the overall effect of all the aleatory dimensions on the system response is modeled 

using a linear combination of orthonormal basis functions as described in Section 2.4. Once the 

coefficients are determined, the unified PC metamodel can be used in the SOP framework to 

analytically and cheaply emulate the system response and extract the maximum and minimum 

bounds of any statistical functions of the response.  

Unfortunately, the scalability issue of PC which is described in Section 1.1 is further 

exacerbated for mixed problems because the number of mixed dimensions is usually much more 

than that seen in purely aleatory or epistemic problems [87]. Thus, unified PC approaches are 

often too computationally expensive for high-dimensional mixed problems. Methods to develop 

sparse and reduced PC metamodels described in Section 2.6 are generally incompatible with 

mixed problems. This is because these works exploit the statistical information of the response 

such as the variance, covariance, or probability density function in order to determine how to 

best reduce the PC metamodel. However, for mixed problems, as explained before, all statistical 
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information of the response become functions of the epistemic dimensions. This means that the 

statistical information of the response cannot be uniquely known, thereby making it impossible 

to use such information to reliably reduce the PC metamodel. This inability to reduce the unified 

PC metamodels makes tackling mixed uncertainty in microwave networks a computationally 

intractable challenge. 

 In this dissertation, the above poor scalability of unified PC metamodels with respect to 

the number of mixed dimensions is remedied. As a first step of this remedy, a crude model of the 

response will be derived from a high dimensional model representation (HDMR) of the network 

[54]. This model will be used to estimate the sensitivity of the response variance with respect to 

each epistemic and aleatory dimension of the problem. In particular, when estimating the 

sensitivity of the response variance with respect to each aleatory dimension, the sensitivity 

indices will be swept over the entire epistemic space. Similarly, when estimating the sensitivity 

of the response variance with respect to each epistemic dimension, the sensitivity indices will 

also be swept over the entire epistemic space. This sensitivity sweeping algorithm will provide a 

clear picture of how the sensitivity indices vary over the entire domain of the multidimensional 

epistemic space – critical global information that could not be otherwise revealed. This global 

knowledge of the sensitivity indices is essential to objectively identify those epistemic and 

aleatory dimensions which exhibit a marginal contribution to the response variance across the 

entire epistemic space. Once these globally unimportant mixed dimensions have been identified 

and removed, a more compact unified PC metamodel of the network response can be constructed 

at far smaller CPU costs than a full-dimension metamodel without much loss in accuracy. 
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5.1 Overview of Mixed Uncertainty Problems and Unified Polynomial Chaos 

Consider a general distributed interconnect network where the mixed parametric 

uncertainty is represented by N mutually uncorrelated aleatory (random) dimensions Ȝ = [λ1, 

λ2,…, λN] and M independent epistemic dimensions ξ = [ξ1, ξ2,…, ξM]. There currently exists two 

different ways in which mixed uncertainty can be introduced into the network as described 

below. 

 

5.1.1 Epistemic and Aleatory Uncertainty is Separated 

Let ei represent the i-th epistemic network parameter and ai the i-th aleatory network 

parameter. If the parameters ei and ai are different, then the epistemic and aleatory uncertainty is 

said to be separated. In that case, these parameters can be described as 

  iiiiiii saaeee  1; 0,max,min,  (5.1) 

 

where [emin,i, emax,i] represent the closed interval of values the epistemic parameter ei can assume, 

ai,0 is the nominal (mean) value of the aleatory parameter ai and si is the corresponding relative 

standard deviation. In the work of [65], the epistemic parameter is modeled as an aleatory 

parameter with a uniform PDF using the transformation 

    
i

iiii

i

eeee
e 

22

 min, max, min, max, 



  (5.2) 

 

where ]1,1[iξ . It is appreciated that based on the transformation of (5.2), the mixed 

uncertainty problem is converted to a N+M-dimensional purely aleatory problem. The effect of 

the N+M aleatory dimensions can be propagated from the network parameters to any response 

),,(),,( ξλXξλ ttx  of using conventional PC techniques [65], [87].  
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5.1.2 Epistemic and Aleatory Uncertainty is Not Separated 

It is possible for both epistemic and aleatory uncertainty to be present in the same 

network parameter. For example, epistemic uncertainty can arise from the lack of precise 

knowledge of the nominal value and relative standard deviation of an otherwise aleatory network 

parameter. In other words, the network parameter can be described as   

  
iiiiii

iiii

sssaaa

saa

 max, min, max,0, min,

0,

;

1



 
 (5.3) 

where [amin,i, amax,i] and [smin,i, smax,i] represent the closed intervals of values the nominal value 

and relative standard deviation can take. In such a scenario, a similar linear transformation as 

(5.2) can be used on the nominal and relative standard deviation values as 
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 (5.4) 

where ]1,1[i  and ]1,1[i . The new vectors ȝ = [ȝ1, ȝ2,…, ȝN] and ș = [ș1, ș2,…, șN] will 

together make up the vector of epistemic dimensions ξ as ξ = [ȝ ș] and M = 2N. Based on the 

transformation of (4), the mixed uncertainty problem of (1) is now converted into a 3N-

dimensional aleatory problem. The effect of the 3N aleatory dimensions on the network response 

can be again propagated using classical PC techniques [65], [87].  

 The above two scenarios demonstrate that irrespective of how mixed uncertainty appears 

in the problem, it can be transformed into an aleatory problem [35]. Now, the overall aleatory 

uncertainty can be propagated to any network response ),,(),,( ξλXξλ ttx   using a PC expansion 

as   
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where ϕk(Ȝ,ξ) is the k-th multivariate polynomial, xk(t) is the corresponding coefficient, and the 

number of terms in the expansion of (5.5) is equal to P+1 = (N+M+d)!/(N+M!)(d!), d being the 

maximum degree of the expansion. The polynomial bases ϕk(λ,ξ) are all orthogonal with respect 

to the joint probability density function ρ(Ȝ,ξ) of the aleatory dimensions [65]. The expansion of 

(5.5) is hereafter referred to as a unified PC metamodel [87]. The coefficients of (5.5) can be 

evaluated using any non-intrusive approach. Once the coefficients are known, the metamodel of 

(5.5) can be used as a surrogate of the response x(t,Ȝ,ξ). Using this surrogate representation, it 

will be possible to analytically and efficiently emulate the response x(t,Ȝ,ξ) in a SOP framework. 

As a result, the maximum and minimum bounds of all of the response statistics can be quantified 

[87].  

 The main limitation of the unified PC approach is that in order to evaluate the 

coefficients of (5.5), the number of discrete SPICE simulations of the network of (1) that will be 

required will scale in a polynomial fashion as O((N+M)
d
). Thus, even for moderate values of N 

and M, such an approach can become computationally intractable. Various methods such as 

those based on ANOVA [75], [40], [41], [89], active subspaces [88], basis adaptations [91], 

multi-element PC [32], and probabilistic error criteria [90] have been developed to mitigate the 

above poor scalability of PC metamodels for purely aleatory problems. However, these methods 

are not extendable to mixed UQ problems. This is because these works rely on statistical 

information of the response (e.g., variance, covariance, PDFs) in order to determine how to best 

reduce the metamodel. Unfortunately, quantifying any statistical information of the response 

requires the knowledge of the input PDFs. However, for mixed problems, the PDFs of the 
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epistemic dimensions of ξ are never known. In fact, even though the unified PC approach uses 

the transformations of (5.2) and (5.4) to convert the epistemic dimensions to uniform aleatory 

dimensions, this is only for the sake of sampling the multidimensional epistemic space in the 

SOP framework. In other words, for mixed problems, all response statistics becomes functions of 

the epistemic dimensions. Thus, the response statistics cannot be uniquely known and hence 

cannot be used to objectively guide the metamodel reduction process. This inability to reduce the 

unified PC metamodels means that for microwave networks subject to mixed uncertainty, the 

CPU cost of constructing the unified metamodel of (5.5) will be massively large. In order to 

address this limitation, a mixed dimension reduction approach is presented next.  

 

5.2 Development of Proposed Mixed Dimension Reduction Approach 

Assume a general interconnect network where uncertainties of both forms described in 

Sections 5.1.1 and 5.1.2 are present. For this kind of general problem, let the full vector of mixed 

dimensions be defined as α = [Ȝ ξ] and the total number of mixed dimensions be Q = M+N. The 

following sections will describe how the sensitivity of the response variance with respect to each 

epistemic and aleatory dimension of α will be estimated.  

 

5.2.1 Constructing a Crude Representation of the Response  

The high dimensional model representation (HDMR) of any response of the network of 

(1) is defined as [54]  
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  (5.6) 

where x0 is the value of x(t,α) in absence of any uncertainty (zero-th order interaction term), 

xi(t,αi) represents the contribution of each αi on x(t,α) acting alone (first order interaction terms), 
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xij(t,αi,αj) represents the contribution of each {αi, αj} pair on x(t,α) acting alone (second order 

interaction terms) etc. The zero-th order and first order interaction terms of (5.6) are expressed 

using cut-HDMR [54] as 
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 (5.7) 

where α(0) = 0 and the notation i\
)0(α represents the vector where all components of α except 

αi are set to 0.  

 In the work of [36], it was proposed that the network response be crudely represented as 

the sum of the zero-th order and first order interaction terms of (5.6). However, this 

representation is not adequate for mixed uncertainty problems of the type described in Section 

5.1.2. To better understand why this is the case, consider the scenario when αi = șj for some {i, j} 

pair. In this scenario, when quantifying xi(t,αi), all component of α except αi are set to 0. This 

means that the aleatory dimension λj corresponding to the relative standard deviation șj is also set 

to zero. Replacing λj = 0 in (5.3) automatically leads to xi(t,αi) = 0 in (5.7). This means that using 

only the zero-th order and first order interaction terms of (5.6) to approximate the network 

response cannot account for the effects of the epistemic dimensions of ș. This is a direct outcome 

of the fact that in some parameters, both epistemic and aleatory uncertainty exists together as 

shown in (5.3). In order to circumvent this issue, only those second order interaction terms of 

(5.6) where αi = λk and αj = șk for the triplet {i, j, k} will be added to the approximation of the 

response. Thus, the response will now be approximated as  
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It is noted that by adding the few second order interaction terms in (5.8), it will now be possible 

to both map the effects of the epistemic dimensions of ș on the response while simultaneously 

keeping the number of terms required to approximate the response to the bare minimum. Next, 

the right hand side of (5.8) will be represented using a PC metamodel as 
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where the basis functions ϕk(α) have to be either only univariate or bivariate by nature. If the 

basis functions are univariate, then the variable αi   șj. If the basis functions are bivariate, then 

the pair of variables {αi, αj} must satisfy the condition αi = λk and αj = șk for the triplet {i, j, k}. 

Due to these restrictions, the number of terms and coefficients of (5.9) will be much smaller than 

that of a full-blown PC metamodel of (5.5) (i.e., R << P+1). Consequently, the coefficients of 

(5.9) can be evaluated at relatively small CPU costs using any non-intrusive approach including 

the linear regression approach [63]. This metamodel of (5.9) will now be leveraged to perform 

the proposed sensitivity analysis. 

 

5.2.2 Sensitivity Sweeping Algorithm for Aleatory Dimensions 

The main challenge of estimating the sensitivity of the response variance with respect to 

the aleatory dimensions of α is that the response variance itself varies with the values of the 

epistemic dimensions of ξ. As a result, the extracted sensitivity information for any aleatory 

dimension will not be unique. Rather, this information will vary from one point in the 

multidimensional epistemic space to another, thereby making it useless as an objective and 

reliable tool for dimension reduction.   
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 To address this problem, in this work, the sensitivity information corresponding to each 

aleatory dimension will be swept over the entire epistemic space in order to fully understand and 

characterize its global properties. For this purpose, a nested sampling algorithm is proposed. As 

part of this nested sampling algorithm, in the outer loop Ne uniformly distributed samples will be 

taken from the epistemic space without replacement. Let any k-th general sample be described as 

ξ(k)
 = [ξ1

(k)
, ξ2

(k),…, ξM
(k)

] where eNk 1 . Replacing each sample ξ(k)
 in the metamodel of (5.9) 

will render the response as a pure PC metamodel of the aleatory dimensions of Ȝ as shown 
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where 0x̂  represents the mean and )(ˆ r

ix  are the r-th PC coefficients capturing the impact of λi on 

the response, all computed at the location ξ = ξ(k). Note that the values of 0x̂ and )(ˆ r

ix  will change 

for each sample point ξ(k)
 in the outer loop. Now, in the inner loop, the first order Sobol’s 

sensitivity index of the aleatory dimension λ1 will be computed as 
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where V(λ1,ξ(k),t) is the contribution of the aleatory dimension λ1 to the response variance and 

Vu(Ȝ,ξ(k),t) is the overall response variance at the location ξ = ξ(k). Thus, the first order Sobol’s 

sensitivity index of (5.11) is a metric representing the relative impact of the dimension λ1 on the 

response variance at the location ξ = ξ(k) [56]. Since this index of (5.11) is time-varying, it is 

reduced to a scalar quantity by averaging its value over the entire time window of simulation, [0 

- Tmax], as 
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The integrals of (5.12) can be evaluated using any numerical integration scheme [93]. This 

process will now be repeated for all Ne samples of the outer loop, thereby leading to an ensemble 

of the scalar sensitivity indices of (5.12) distributed across the entire epistemic space. If the 

sensitivity index of (5.12) is consistently below a prescribed tolerance of İ across all Ne samples 

then the impact of λ1 will be considered to be globally marginal. As a result, the dimension λ1 

will be removed from the problem definition by setting λ1 = 0. This dimension reduction process 

needs to be redone for all the N aleatory dimensions. As an outcome of the dimension reduction, 

the original vector of aleatory dimensions, Nλ  , will be reduced to a new vector 
n

red λ ,  

where n < N. 

It is noted that by sweeping the sensitivity indices of (5.12) across all Ne sample points, it 

will be possible to distinguish between those aleatory dimensions that are globally marginal in 

their impact from those that are locally marginal in their impact at some regions in the epistemic 

space. Thus, the above algorithm is referred to as a sensitivity sweeping algorithm. As part of 

this algorithm, Ne response variances and NNe Sobol’s sensitivity indices of (5.11) needs to be 

quantified. All of these computations does not involve any SPICE simulations and can be done 

analytically using the metamodel of (5.9) as shown in (5.11). Moreover, all of these 

computations can be easily performed in parallel as well. Thus, the computational expense of the 

sensitivity sweeping algorithm is negligible. 
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5.2.3 Modified Sensitivity Sweeping Algorithm for Epistemic Dimensions 

The aforementioned sensitivity sweeping algorithm is now modified for the case of the 

epistemic dimensions of α. As part of the modified sensitivity sweeping algorithm, it is first 

pointed out that in Section 5.2.2, the response variance Vu(Ȝ,ξ(k)
,t) has already been evaluated at 

all Ne sample points. These variance measures are referred to as unconditional variances. From 

the knowledge of these Ne instances of the unconditional variances, for each time point the 

unconditional maximum and minimum bounds of the variance will be determined as 
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                 
Next, the same nested sampling approach of Section 5.2.2 will be reused in order to reevaluate 

the variance bounds of (5.13), this time subject to the constraint ξ1
(k)

 = ξ1
(1)

 in all the sample 

points ξ(k)
. The new variance bounds evaluated will be the conditional maximum and minimum 

bounds. Mathematically, the conditional bounds can be described as  
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From the knowledge of the above unconditional and conditional bounds, the raw change in the 

bounds will be measured as 
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           
It is important to note that the above change is time dependent. As a result, the index of (5.15) 

will be reduced to a scalar quantity by averaging over the entire time window of simulation as 



89 

 

 

    












 

maxmax

0

1,1min,min

0

1,1max,max

max

1, )()()()(
2

1ˆ
TT

e dttVtVdttVtV
T

E  (5.16) 

As before, the integral of (5.16) can be evaluated using any numerical integration scheme. It is 

pointed out that the integral of (5.16) measures the change in the variance bounds caused by 

fixing ξ1 at the location ξ1
(1)

. In other words, this integral reveals the sensitivity of the variance 

bounds with respect to ξ1 at the location ξ1 = ξ1
(1)

. Thus, the integral of (5.17) will hereafter be 

referred to as the sensitivity index of ξ1. Next, the entire above process will be repeated to 

quantify the sensitivity index of the epistemic dimension ξ1 at all ξ1 = ξ1(k), eNk 1  sample 

points. If the sensitivity index of (5.16) is constantly less than a prescribed tolerance of η across 

all the sample points, then the impact of ξ1 will be considered to be globally marginal and this 

dimension will be removed from the problem definition. This modified sensitivity sweeping 

algorithm needs to be repeated for all epistemic dimensions of ξ. It is assumed that due to the 

epistemic dimension reduction, the original vector 
Mξ  will be reduced to a new vector,  

m

red ξ  where m < M. 

It is observed that for the modified sensitivity sweeping algorithm, Ne instances of the 

variances have to be computed to find out the variance bounds of (4.14). This process has to be 

then repeated for Ne sample points and M dimensions. In other words, a total of MNe
2
 variances 

have to be computed. However, as explained in Section 5.2.2, these variance computations can 

be done analytically using the metamodel of (5.9) and even parallelized to ensure that the 

modified sensitivity sweeping algorithm incurs negligible CPU costs. 
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5.2.4 Constructing the Reduced Dimensional PC Expansion 

Once the Q-dimensional network  has been reduced to a q = m+n dimensional problem (q 

< Q) using the dimension reduction process described in Sections 5.2.2 and 5.2.3, the reduced 

dimensional PC metamodel of the network response can now be formulated as 
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Where ȥk(αred) is the k
th

 reduced dimensional basis, αred = [Ȝred ξred], )(~ txk is the corresponding 

coefficient, and the number of terms in the expansion of (5.17) is truncated to U+1 = 

(n+m+d)!/((n+m)!d!). The coefficients of (5.17) will be evaluated using the linear regression 

scheme suggested in [63]. Based on the complexity analysis performed in [75], the reduction in 

SPICE simulations to evaluate the coefficients of (5.17) compared to that of (5.5) will be 

bounded by the factor (Q/q)
d
 where the factor Q/q is referred to as the dimension reduction 

factor. 

 

5.3 Numerical Examples 

In this section, three examples are presented to demonstrate the accuracy and efficiency 

of the proposed mixed dimension reduction based PC approach over the unified full-dimensional 

PC approach. In all of these examples, the sensitivity thresholds for judging if an epistemic or 

aleatory dimension is unimportant are set to η = 10-4
 and İ = 0.01 respectively. 

 

5.3.1 Example 1 

In this example, the 16 conductor stripline MTL network of Fig. 5.1 terminated by 

inverters consisting of SPICE level 49 CMOS transistors is considered. The response of interest 
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for this example is the transient voltage at node N1 of Fig. 5.1. The cross-section layout and 

geometric dimensions of the transmission lines are shown in Fig. 5.2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The voltage sources of Fig. 5.1 exhibit a trapezoidal waveform of rise/fall time Tr = 0.1 ns, pulse 

width Tw = 5 ns and amplitude of 5V. The uncertain parameters of this example are listed in 

Table 5.1. A general scenario where some epistemic and aleatory parameters are separated while 

others are coupled together is considered. 
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Fig. 5.1: The schematic of the MTL network of Example 1 
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Fig. 5.2: Cross section view of the MTL network of Fig.5. 1. 
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In order to demonstrate the accuracy of the proposed approach, the uncertainty 

quantification for this example is performed using two methods – the conventional unified full-

dimensional PC approach [65], [87] and the proposed reduced dimensional PC approach of 

Section 5.2 where the degree of expansion of both metamodels is set to d = 3. In performing the 

dimension reduction approach of Section 5.2, the number of epistemic samples used in the 

sensitivity sweeping algorithm is set to Ne = 20,000. As a result of the dimension reduction 

Table 5.1: Uncertain Parameters of Example 1 (Fig 5.1) 
 

Random Variable Mean (ai,0) Standard Deviation (si) 

w  150 µm 

10% (Normal Distribution) 

s  150 µm 

RL1 

 

1.5 kΩ 

RL2 

RL3 

RL4 

PL (PMOS length) 0.1 µm 

PW (PMOS width) 10 µm 

NL (NMOS length) 0.1 µm 

NW (NMOS width) 10 µm 

Rs3 50 Ω 
Rs4 

σ (Tδ conductance) 5.8 e7 

CL3 

1 pF 
CL4 

CL5 

CL6 

t  [27.5 – 32.5] µm 

H  [427.5 – 495] µm 

CL1 
[0.95 – 1.05] pF 

CL2 

Rs5 
[47.5 – 52.5] Ω 

Rs6 

İr  [3.89 – 4.30]  

RL5 [1.35 – 1.65] kΩ  

RL6 [1.35 – 1.65] kΩ  

Rs1 [1.35 – 1.65] kΩ  

Rs2 [1.35 – 1.65] kΩ  

CL7 [0.9 – 1.1] pF  

L (TL length) 6 cm 5% (Uniform Distribution) 
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strategy of Section 5.2, the original Q = 36 dimensions of the problem is reduced to q = 12 

dimensions.  

Next, the maximum and minimum bounds of mean plus three times the standard 

deviation of the transient response at node N1 is evaluated using the above two methods. These 

results are compared in Fig. 5.3(a). Furthermore, in order to demonstrate the accuracy of the 

proposed approach for higher order statistical moments, the bounds of the cumulative density 

function (CDF) of the transient response at N1 is evaluated at the time point where the mean is 

maximum (t = 1.1 ns) using the above two methods. These results are compared in Fig. 5.3(b). 

From Fig. 5.3(a) and Fig. 5.3(b), it can be concluded that the reduced dimensional PC approach 

shows good agreement with the full dimensional PC approach.  

 
Finally, for a comparison of the CPU costs incurred, the total number of SPICE 

simulations required by the full dimensional PC approach is 2(P+1) = 18,278. For the proposed 

approach, the total number of SPICE simulations including the simulations required for 

constructing the metamodel of (10) is 2(R+U) = 218+910 = 1128. This indicates that the 

      
      (a)                                                                                         (b)  

Fig. 5.3: Statistics of the MTL network of Fig. 5.1. (a) Maximum and minimum bounds of the mean 

plus three times the standard deviation of the transient response at node N1. (b) Belief and plausibility 

functions of the transient response at N1 (t = 1.1ns).  



94 

 

proposed approach exhibits a speedup of more than 16 times compared to the unified full 

dimensional PC approach.  

 

5.3.2 Example 2 

In this example, the same MTL network of Fig. 5.1 is considered with the responses of 

interest being the transient voltage at both nodes N1 and N2. The uncertainty in the network is 

introduced using Q = 45 parameters, the characteristics of which are listed in Table 5.2. All the 

epistemic and aleatory parameters of this example are coupled together.  

The uncertainty quantification for this example is performed using the same two methods 

as in Example 1. When performing the dimension reduction approach of Section 5.2, the number 

of epistemic samples used in the sensitivity sweeping approach is Ne = 20,000. As a result of the 

dimension reduction strategy, the original Q = 45 mixed dimensions is reduced to q = 9 

dimensions. Note that because there are two response quantities of interest, only those 

dimensions that exhibit marginal global sensitivity for the response variance of both N1 and N2 

are removed. The maximum and minimum bounds of mean plus three times the standard 

Table 5.2: Uncertain Parameters of Example 2 (Fig 5.1) 
Random Variable Mean (ai, 0) Standard Deviation (si) 

w 
[147.5 – 152.5] µm 

[9.5 – 10.5] % 

s 

RL1 

[1.425 – 1.575] kΩ RL2 

RL3 

PL [0.095 – 0.105] µm 

PW [9.5 – 10.5] µm 

NL [0.095 – 0.105] µm 

NW [9.5 – 10.5] µm 

T [28.5 – 31.5] µm 

H [427.5 – 472.5] µm 

CL1 

[0.95 – 1.05] pF CL2 

CL3 

İr [3.895 – 4.305] 
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deviation of the transient responses at nodes N1 and N2 are evaluated using both the above 

methods and the results are compared in Fig. 5.4(a) and Fig. 5.5(a) respectively. Furthermore, in 

order to demonstrate the accuracy of the proposed approach for higher order statistical moments, 

the bounds of the CDF of the transient responses at N1 and N2 are evaluated at the time points 

when the corresponding means are maximum (t = 1.04 ns and t = 1.09 ns respectively) using the 

same two methods. These results are compared in Fig. 5.4(b) and 5.5(b) respectively. From Fig. 

5.4 and Fig. 5.5, it can be concluded that the reduced dimensional PC approach shows good 

agreement with the unified full dimensional PC approach.  

        
     (a)                                                                                        (b) 

Fig. 5.4: Statistics of the transient response of node N1 of Fig. 5.1. (a) Maximum and minimum bounds of 

the mean plus three times the standard deviation of the transient response. (b) Belief and plausibility 

functions of the transient response (t = 1.04ns). 

    
           (a)                                                                                   (b) 

Fig. 5.5: Statistics of the transient response of node N2 of Fig. 5.1. (a) Maximum and minimum bounds 

of the mean plus three times the standard deviation of the transient response. (b) Belief and plausibility 

functions of the transient response (t = 1.09ns). 
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For a comparison of the CPU costs incurred, the total number of SPICE simulations 

required by the full dimensional unified PC approach is 2(P+1) = 34,592. For the proposed 

approach, the total number of SPICE simulations required including the simulations required to 

construct the metamodel of (5.9) is 2(R+U) = 272+440 = 712. This indicates that the proposed 

approach exhibits a speedup of more than 48 times over the full dimensional PC approach. 

 

5.3.3 Example 3 

In this example, the MTL network of Fig. 5.6 terminated by inverters consisting of 

SPICE level 49 CMOS transistors is considered. The cross-section layout and geometric 

dimensions of the MTL subnetworks are shown in Fig. 5.7.  
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Fig. 5.6: The schematic of the MTL network of Example 3.  
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The lengths of the transmission lines in subnetworks 1, 2 and 3 are set to 5 cm, 10 cm and 

15 cm respectively. The voltage sources of Fig. 5.6 exhibit a trapezoidal waveform of rise/fall 

time Tr = 0.1 ns, pulse width Tw = 5 ns and amplitude of 5V. The output voltages at the nodes N1, 

N2, N3 and N4 are considered to be the responses of interest. A total of Q = 60 uncertain 

parameters are considered in this example as listed in Table 5.3. All the epistemic and aleatory 

parameters of this example are coupled together.   
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(a)                                                        (b)                                                              (c) 

Fig. 5.7: Cross section view of the MTL network of Example 3. (a) Subnetwork 1. 

(b) Subnetwork 2.         (c) Subnetwork 3 

Table 5.3: Uncertain Parameters of Example 2 (Fig 5.1) 

Random Variable  Mean (ai, 0) Standard Deviation (si) 

w1 [142.5 – 157.5] µm 

[9.5 – 10.5] % 

w2 [123.5 – 136.5] µm 

w3 [161.5 – 178.5] µm 

s1 [95 – 105] µm 

s2 [142.5 – 157.5] µm 

s3 [190 – 210] µm 

CL4 

[0.95 – 1.05] pF 

CL5 

CL6 

CL10 

CL11 

CL12 

PL1 [0.095 – 0.105] µm 

PW1 [9.5 – 10.5] µm 

NL1 [0.095 – 0.105] µm 

NW1 [9.5 – 10.5] µm 

PL3 [0.095 – 0.105] µm 

PW3 [9.5 – 10.5] µm 

NL3 [0.095 – 0.105] µm 

NW3 [9.5 – 10.5] µm 
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In order to demonstrate the accuracy of the proposed approach, the uncertainty 

quantification for this example is performed using the same two methods of Example 1. Even the 

degree of expansion of both the metamodels are set to d = 3. For this example, when performing 

the dimension reduction approach of Section III, the number of epistemic samples used in the 

sensitivity sweeping algorithm is Ne = 10,000. As a result of the dimension reduction strategy, 

the original Q = 60 mixed dimensions of the example is reduced to q = 20 dimensions. As 

before, only those dimensions that exhibit marginal global sensitivity for the response variance at 

nodes N1-N4 are removed. 

The maximum and minimum bounds of mean plus three times the standard deviation of 

the transient response at the crosstalk nodes N2 and N4 of Fig. 5.6 are evaluated using both the 

above methods and the results are compared in Fig. 5.8. From Fig. 5.8, it can be concluded that 

the reduced dimensional PC approach shows good agreement with the full dimensional PC 

approach.  

 

    
     (a)                                                                                        (b) 

Fig. 5.8: Statistics of transient response of Fig. 5.6. (a) Maximum and minimum bounds of the mean 

plus three times the standard deviation of the transient response at N2. (b) Maximum and minimum 

bounds of the mean plus three times the standard deviation of the transient response at N4. 
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In this example, the total number of SPICE simulations required by the full dimensional 

PC approach is 2(P+1) = 79,422. For the proposed approach, the total number of SPICE 

simulations required including the simulations required to construct the metamodel of (5.9) is 

2(R+U) = 362+3542 = 3904. This indicates that the proposed approach exhibits a speedup of 

more than 20 times compared to the unified full dimensional PC approach. 
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CHAPTER 6: A NOVEL DIMENSION FUSION BASED POLYNOMIAL CHAOS 

APPROACH FOR MIXED ALEATORY-EPISTEMIC UNCERTAINTY QUANTIFICATION 

        

 

 

 Traditional uncertainty quantification (UQ) of high-speed interconnects have been 

performed from the perspective of aleatory uncertainty [4], [12], [41], [57], [68]. As explained in 

Section 5, aleatory uncertainty refers to the irreducible uncertainty in systems arising from the 

random variability of model parameters. These parameters are assumed to be well defined using 

standard probability density functions. Recently, epistemic UQ of engineering problems has 

garnered significant attention [69], [70]. Epistemic uncertainty refers to that uncertainty arising 

from the lack of precise knowledge regarding the value of the network parameters. Due to this 

lack of knowledge, no probability density function can be defined for these parameters. Rather, 

epistemic dimensions are represented as pure interval valued dimensions [69], [70]. The goal of 

epistemic UQ is to propagate these intervals through the network model and map their effect on 

the maximum and minimum bounds of the response.  

 Recent works have attempted to model epistemic dimensions as uniformly distributed 

pseudo-random dimensions [64], [65]. In doing so, PC metamodels can be used to propagate 

mixed epistemic-aleatory uncertainty concurrently. Such mixed metamodels can be probed 

analytically to find the maximum and minimum bounds of the statistical moments of the network 

response. However, it is appreciated that mixed problems are characterized by far greater number 

of dimensions than purely epistemic or aleatory problems. Thus, the poor scalability of PC 

expansions is even more prominent for mixed problems. This issue is further compounded by the 

fact that traditional sparse PC methods use statistical measures to decide which PC bases can be 

removed or retained [41], [57]. However, for mixed problems, the presence of epistemic 
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uncertainty makes it impossible to define unique statistical moments. Therefore, sparse PC 

representations are not available for mixed problems.  

 In this dissertation, a novel dimension fusion approach is proposed to address the above 

scalability issue of mixed problems. As the name suggests, this approach fuses the epistemic and 

aleatory dimensions within the same model parameter into a mixed dimension. A key outcome of 

this fusion process is that the mixed dimension can now encapsulate the epistemic and aleatory 

effects simultaneously. Thus, they are significantly richer in information content than purely 

epistemic and aleatory dimensions. Using the mixed dimensions allows the information 

contained within a large dimensional mixed uncertainty space to be compressed into a low 

dimensional space without any approximation – in other words, achieve dimension reduction. 

Unfortunately, this also means that the marginal probability density function describing the 

mixed dimension may be arbitrary in nature even if the marginal probability density function of 

the composite epistemic and aleatory dimensions are of standard form. Thus, the Weiner-Askey 

polynomial bases cannot be used for an optimal PC expansion of the mixed dimensions [44].  

 In this work, a new methodology is presented that is based on the Cholesky 

decomposition of a statistical moment matrix of mixed dimensions to elicit a set of optimally 

orthonormal bases [71]. It is noted that the statistical moments of the mixed dimensions, used to 

construct the moment matrix, is obtained from the prior knowledge of the statistical moments of 

the epistemic and aleatory dimensions. Finally, a reduced dimensional PC metamodel is then 

constructed using these obtained bases. Such a reduced dimensional metamodel is viable over the 

entire support of the epistemic and aleatory dimensions.  

 Next, to achieve further reduction in the number of dimensions, the above approach is 

combined with the sensitivity sweeping approach defined in section 5.2. This approach is used to 
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find the sensitivity indices for the aleatory and epistemic parts of the mixed dimension. Based on 

the values of the sensitivity indices, unimportant mixed dimensions can be removed. It is noted 

that a mixed dimension is considered unimportant and can be removed only if the aleatory 

parameter and the corresponding epistemic mean and standard deviation can be removed.  

 

6.1 Proposed Dimension Fusion Based PC Approach 

6.1.1 Model Parameters with Mixed Uncertainty 

Within the context of this dissertation, mixed parameters are defined to be aleatory 

parameters with embedded epistemic uncertainty in the nominal value and the relative standard 

deviation of the parameter. Assuming that the nominal value of the general i-th mixed parameter 

Ȥi is bounded within the closed interval [ai, bi], then the mixed parameter can be mathematically 

represented as 
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where the uniformly distributed random dimension λi represents the epistemic uncertainty in the 

mean, the uniformly distributed random dimension Ȗi represents the epistemic uncertainty in the 

standard deviation, the random dimension ξi represents the aleatory uncertainty, σmi, σ0i and σsi 

represents the relative standard deviation in the epistemic mean, epistemic standard deviation 

and the aleatory parameter respectively.  It is assumed that the total number of mixed parameters 

are N, in which case the number of epistemic and aleatory dimensions are 2N and N each. Let the 

complete multidimensional epistemic and aleatory uncertainty be described using the vectors Ȝ = 

[λ1, λ 2,…, λ N], γ = [Ȗ1, Ȗ2,…., ȖN] and ξ = [ξ1, ξ 2,…, ξ N] with support Ωe and Ωa respectively.  

For mixed UQ, Ȝ, γ and ξ need to be propagated through the model to the network 

response. Typically, this can be done by developing a 3N-dimensional PC metamodel of the 
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network response spanning the support of Ȝ, γ and ξ using the Weiner-Askey scheme [64], [65]. 

However, for high-dimensional problems (i.e., where N is large), such a task may be 

computationally prohibitive due to the poor scalability of PC expansions with respect to the 

number of dimensions (3N). In fact, the number of discrete model solutions required to construct 

the PC expansion will scale as O(3
m
N

m
) where m is the degree of the PC expansion, often in the 

range 2 < m < 5 for most problems. To mitigate this bottleneck, a novel dimension fusion 

approach is described next. 

 

6.1.2 Dimension Fusion 

The i-th mixed parameter Ȥi can be expressed in terms of a single mixed dimension λi as 
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Now, it can be assumed that  ti  = i0  since the largest value that ti  can take is i0 . By 

comparing (6.2) to (6.1) and using the condition above, it is noted that Și is a linear combination 

of the dimensions λi, Ȗi and ξi as 
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The linear mapping of (6.3) represents the fusion of the aleatory and epistemic dimensions into a 

mixed dimension. An important feature of the mixed dimension Și is that it can perfectly 

encapsulate the entire mixed uncertainty due to λi, Ȗi and ξi. The mixed dimension is always 

significantly richer in information than the epistemic or aleatory dimensions alone. As an 

outcome of using information rich dimensions, the mixed uncertainty that originally was 

contained in the 3N-dimensional space spanned by [Ȝ,γ,ξ] is now compressed into the N-



104 

 

dimensional space spanned by the vector Ș = [Ș1, Ș 2,…, ȘN]. This compression is free from any 

numerical inaccuracy. Now, the number of discrete model solutions to construct the PC 

expansion of the network response will scale only as O(N
m
). However, a drawback of the fusion 

approach is the fact that the probability density function (PDF) of the mixed dimension Și will no 

longer conform to the shape of the PDF of either λi or Ȗi or ξi – it will be arbitrary in nature. Thus, 

a new methodology to construct orthonormal bases for dimensions with arbitrary shaped PDFs 

needs to be developed.  

 

6.1.3 Orthonormal Basis Construction for Mixed Dimensions 

In the work of [71], an innovative method to obtain the orthonormal polynomials, nodes 

and weights for any arbitrary distribution is described. It is based on the Cholesky decomposition 

of the Hermitian positive-definite matrix M comprising of 2m+1 statistical moments of the mixed 

dimension Și as 
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where ȕk is the k-th statistical moment of the mixed dimension Și represented as a multinomial 

expansion 
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and R is the upper triangular matrix. The function ρ(.) is the marginal probability density 

function. The term in (.) in (6.5) can be expanded using the multinomial theorem. Since the 

mapping between the mixed, aleatory and epistemic dimensions is linearly predefined in (6.3), 
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the k-th statistical moment of (6.5) can be explicitly expressed as a linear combination of the first 

2k+1 statistical moments of λi, Ȗi and ξi which are known a priori as 
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and 
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Now the three term recurrence relation for the j-th degree polynomial basis ȥj is represented as  
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where ri,j is the element belonging to the i-th row and j-th column of the upper triangular matrix 

R. Once the polynomial coefficients of the arbitrary distribution are obtained, the corresponding 

nodes and weights can be computed using the Golub-Welsh algorithm [61]. The univariate 

orthonormal bases of (6.6) now can be used to construct a PC metamodel of the network 

response, say x(t,Ȝ,γ,ξ), as 
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where pk is the k-th unknown coefficient and ȥk(Ș) is the corresponding multidimensional basis 

formed from the product of the unidimensional bases of (6.6). These coefficients can now be 

obtained using a nonintrusive linear regression based approach [57].  

 

6.2 Dimension Reduction Using Sensitivity Sweeping Approach for Mixed Parameters 

 In section 6.1, the dimension fusion approach to propagate 3N parameters as N mixed 

parameters was explained, thereby reducing the computational cost for developing the PC 

expansion of the network response by a factor of 3
m
. In this section, an approach to achieve 

further reduction in computation cost by identifying and excluding unimportant mixed 

dimensions is explained. This is similar to the approach in section 5.2 and is explained again in 

this chapter for the sake of clarity. First, an approximate model of the response is derived from a 

high dimensional model representation (HDMR) of the network [54] using only the zeroth and 

first order interaction terms. 
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where x0 is the value of x(t,Ș) in absence of any uncertainty (zero-th order interaction term), 

xi(t,Și) represents the contribution of each Și on x(t,Ș) acting alone (first order interaction terms), 

The zero-th order and first order interaction terms of (6.11) are expressed using cut-HDMR [54] 

as 
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where Ș(0) = 0 and the notation i\
)0(η represents the vector where all components of Ș except 

Și are set to 0. The LHS of 6.12 is evaluated using 1D PC expansions as explained in chapter 4 



107 

 

using equation (4.4) and the 1D coefficients are evaluated using equation (4.5) and (4.6). As 

explained in chapter 4, (m+1)N+1 simulations are required to evaluate this approximate model. 

This model is now used to estimate the sensitivity of the response variance with respect to the 

epistemic and aleatory parts of each mixed dimension. While doing so, the sensitivities need to 

be swept over the entire epistemic space. This will provide a clear picture of how the sensitivity 

indices vary over the entire domain of the multidimensional epistemic space. 

 

6.2.1 Sensitivity Sweeping for Aleatory Part of the Mixed Parameters 

The main challenge of estimating the sensitivity of the response variance with respect to 

the aleatory part of the mixed dimensions of Ș is that the response variance varies with the values 

of the epistemic parts of the mixed dimensions. As a result, the extracted sensitivity information 

for any aleatory parts of the mixed dimension will not be unique and will vary across the entire 

epistemic space.  

 To address this problem, in this work, the sensitivity information corresponding to the 

aleatory part of each mixed dimension will be swept over the entire epistemic space in order to 

fully understand and characterize its global properties. For this purpose, a nested sampling 

algorithm is proposed where in the outer loop Ne uniformly distributed samples will be taken 

from the epistemic space without replacement. Let any k-th general sample be described as [Ȝ(k)
, 

γ(k)
] = [λ1

(k)
, λ2

(k)
,…., λN

(k)
,Ȗ1(k)

, Ȗ2(k),…, Ȗ N(k)
] where eNk 1 . Replacing each sample [Ȝ(k)

, γ(k)] in 

the mapping of (6.3) will render η(k)
 purely as a function of the aleatory parameter ξ(k)

. Now, in 

the inner loop, Na aleatory samples are taken without replacement. The 1D PC expansion of 

(4.10) is evaluated for all the Na samples as 
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The total variance of all Na samples is computed using (2.2) as 
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Repeating this process for each of the Ne epistemic samples results in an ensemble of variances 

called unconditional variances. From the knowledge of these Ne instances of the unconditional 

variances, for each time point the unconditional maximum and minimum bounds of the variance 

will be determined as 

 

)1),,,,( max()(

);1),,,,( min()(

)()(

max

)()(

min

e

kk

u

e

kk

u

NktVtV

NktVtV





ξλ
ξλ




 (6.15) 

Next, the same nested sampling approach as above is reused to reevaluate the variance 

bounds of (6.15), this time subject to the constraint Njk  1for      0)(

j in all the sample 

points ξ(k)
. The new variance bounds evaluated will be the conditional maximum and minimum 

bounds. Mathematically, the conditional bounds can be described as  
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From the knowledge of the above unconditional and conditional bounds, the raw change in the 

bounds will be measured as 
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It is important to note that the above change is time dependent. As a result, the index of (6.17) 

will be reduced to a scalar quantity by averaging over the entire time window of simulation as 

 
    NjdttVtVdttVtV

T
E

T

ja

T

jaja 









  1    ;)()()()(

2

1ˆ
maxmax

0

,min,min

0

,max,max

max

,  (6.18) 

Any numerical integration method can be used to evaluate the integral in (6.18). The integral of 

(6.18) measures the change or sensitivity in the variance bounds for every aleatory parameter 

Njj 1  by switching off ξj at every point in the epistemic space. Thus, the integral of (6.18) 

will hereafter be referred to as the sensitivity index of ξj. If the sensitivity index of (6.18) is 

constantly less than a prescribed tolerance of į across all the points in the epistemic space, then 

the impact of ξj will be considered to be globally marginal.  

 

6.2.2 Sensitivity Sweeping for Epistemic Part of Mixed Parameters 

The sensitivity sweeping algorithm mentioned in section 6.2.1 is now modified for the 

case of the epistemic parts of the mixed dimensions of Ș. The unconditional response variances 

Vu(t, λ(k)
, γ(k)

, ξ) have already been evaluated at all Ne sample points. These variance measures are 

referred to as unconditional variances. Now, to compute the variance bounds for the epistemic 

parts of the mixed parameters, the same nested sampling approach as listed in section 6.2.1 is 

adopted where in the outer loop, the same Ne uniformly distributed samples are taken from the 

epistemic space without replacement. The k-th sample is described as [Ȝ(k)
, γ(k)

] = [λ1
(k)

, λ2
(k)

,…., 

λN
(k)

,Ȗ1(k)
, Ȗ2(k),…, Ȗ N

(k)
] where eNk 1 . The constraint introduced now is 

  Njk

j

k

j 21for      0, )()(  in all the sample points [Ȝ(k)
, γ(k)

]. The same Na aleatory samples as 

in section 6.2.1 are considered in the inner loop and the new variances are computed using the 
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1D PC expansions as shown in (6.13) and (6.14). The conditional variance bounds are now 

evaluated as 
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The sensitivity indices for the epistemic parts of the mixed parameters are evaluated using 
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It is noted that a mixed parameter ηj can be removed from the parametric space only if 

each of its aleatory and epistemic parts fall below the prescribed tolerance of į. 

It is assumed that due to the aleatory and epistemic dimension reduction, the original vector 

N  will be reduced to a new vector,  
n

red   where n < N. In this sensitivity sweeping 

algorithm, Ne instances of the variances have to be computed to find out the variance bounds of 

(6.20). This process has to be then repeated for Ne sample points and 3N dimensions. In other 

words, a total of 3NNe
2
 variances have to be computed. The 1D PC metamodel of (6.13) is used 

to computed the variances and the computations can be performed with negligible CPU cost. 

 

6.2.3 Constructing the Reduced Dimensional PC Expansion 

Once the N-dimensional network has been reduced to an n dimensional problem (n < N) 

using the dimension reduction process described in Section 6.2, the reduced dimensional PC 

metamodel of the network response can now be formulated as 
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where ȥk( η red) is the k
th

 reduced dimensional basis, )(~ txk is the corresponding coefficient, and 

the number of terms in the expansion of (6.21) is truncated to U+1 = (n+m)!/(n!m!). The 

coefficients of (6.21) will be evaluated using the linear regression scheme suggested in Chapter 

3.  

 

6.2.4 Evaluating max/min bounds of statistical moments 

 For mixed problems, it is not possible to define unique statistical moments of a model 

response because they are functions of the epistemic dimensions. In other words, considering any 

model subject to mixed uncertainty, the arbitrary i-th statistical moment of the network response 

can be expressed as a parametric function of the epistemic dimensions using MC sampling as 
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The maximum and minimum bounds of the family of statistical moments are computed 

via a second order probability approach, also referred to as the nested MC sampling approach 

[70]. This approach involves drawing a large number of MC samples of the epistemic 

dimensions [Ȝ,γ] = [Ȝ(n),γ(n)
]; 

eNn 1  in the outer loop. For each sample, in the inner loop, the 

discrete statistical moment Si(t,[Ȝ,γ] = [Ȝ(n),γ(n)
]) can be evaluated, again using a set of MC 

samples as shown in (6.9) provided the network responses at the sample points [Ȝ(n),γ(n)
,
 ξ(l)

] is 

known. In this way, an ensemble of realizations of the statistical moment Si(t,[Ȝ,γ] = [Ȝ(n),γ(n)
]) is 

obtained. Provided sufficient MC samples are taken, the maximum and minimum bounds of this 

ensemble represent the maximum and minimum bounds of the statistical moments [70].  

In this work, the dimension fusion strategy is used to model the impact of both aleatory 

and epistemic uncertainty on CNT interconnects. The solution of the CNT model at each NaNe 

MC sample is found analytically using an efficient two step method. At the first step, the sample 
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point Ș(n)
  = [Ȝ(n) γ(n) ω(l)

] is obtained using the linear mapping of (6.3). Thereafter, the model 

solution at Ș = Ș(n) 
is obtained analytically from the dimension fused PC expansion of (6.8). It is 

noted that the only CNT model solutions required are those needed to construct the PC 

metamodel of (6.8) and not NaNe. Importantly, by using the novel dimension fusion strategy, the 

number of CNT model solutions required scales as O(N
m
) as opposed to the O(3

m
N

m
)  scalability 

of full-blown PC. 

 

6.3 Numerical Examples 

In this section, three examples are presented to demonstrate the accuracy and efficiency 

of the proposed mixed dimension reduction based PC approach over the unified full-dimensional 

PC approach. In all of these examples, the relative sensitivity thresholds for judging if an 

epistemic or aleatory dimension is unimportant are set to į= 0.01 respectively. 

 

6.3.1 Example 1 

In this example, the 3-conductor multiwalled CNT network of Fig. 6.1 is considered. The 

network is represented using the lumped model proposed in [72] where the tunneling 

conductivity is taken into account. A total of N = 20 mixed dimensions are used in this example, 

the characteristics for which are listed in Table 6.1. All the dimensions have epistemic 

uncertainty embedded in their mean values. Conductors 1 and 3 are excited by a voltage source 

with a saturated ramp waveform of rise/fall time Tr = 0.1 ps and an amplitude of 1 V. Two 

approaches are used to quantify uncertainty for the network at the outputs of conductors 1 and 2 

of Fig. 6.1 – the proposed dimension fusion approach combined with dimension reduction 

described in Section 6.1 and 6.2 and the full- blown PC expansion of the 2N dimensions. Both 

metamodels are utilized within the nested MC framework to evaluate the maximum and 
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minimum bounds of the response statistical moments. A maximum degree of m = 3 is used for 

the PC expansions of both the methods and is found to be sufficient to handle the variation in the 

mixed parameter.  

In performing the dimension reduction approach of Section 6.2, the number of epistemic 

samples used in the outer loop of the sensitivity sweeping algorithm is set to Ne = 5,000 and the 

number of aleatory samples used in the inner loop is Na = 10,000. As a result of the dimension 

reduction strategy of Section 5.2, the original N = 40 dimensions of the problem is reduced to n = 

5 mixed dimensions.  

For the full-blown PC approach, 24,682 SPICE simulations of the CNT model are 

required to construct the PC metamodel whereas for the proposed dimension fusion approach, 

only 133 simulations are required (including the simulations required for dimension reduction). 

This indicates that the proposed dimension fusion approach exhibits a speedup of 92 times over 

   
                                      (a)                                                                                     (b) 

Fig. 6.1: Schematic of the MWCNT interconnect network. (a) Profile view. (b) Equivalent RLGC 

lumped circuit for a single conductor of the network [72]. 

Table 6.1: Uncertainty Characteristics of CNT Network of Fig. 6.1 

Random Variable Mean 
Aleatory Uncertainty 

(Normal Distribution) 

Din[1:3] (Inner diameter of CNT) 2.17 – 2.39 nm 

10% 

d (Inter-shell distance) 0.32 – 0.36 nm 

σ[1μ3] (Tunneling conductivity) 9.5 – 10.5 

H (Height of dielectric) 47.5 – 52.5 nm 

İr (dielectric constant) 1.9 – 2.1 

Rm[1:3] (Contact Resistance) 0.95 – 1.05 kΩ 

Cin[1:3]  133 – 147 pf 

Cout [1:3] 46.6 – 51.5 pf 

w (Spacing between conductors) 20.9 – 23.1 nm 

l (Conductor length) 47.5 – 52.5 µm 5% 
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the full-blown PC approach. To establish the accuracy of the dimension fusion approach, the 

maximum and minimum bounds of the statistics defined to be the mean plus thrice the standard 

deviation of the response at nodes N1 and N2 are compared for both approaches and the results 

are shown in Figs. 6.2(a) and 6.3(a). Both methods use a total of 10,000 x 20,000 MC samples 

where the samples for both approaches are different. Next, to validate the accuracy of the 

proposed approach for higher order statistics, the family of cumulative density functions (CDFs) 

is computed for the transient response at N1 and N2 at the time point when the max mean plot 

assumes 90% of the maximum value (t = 111.2 ps and 35.2 ps). The maximum and minimum 

bounds (i.e., the plausibility and belief) are evaluated using the two approaches and the results 

are shown in Figs. 6.2(b) and 6.3(b). It is evident that the proposed approach shows very good 

agreement with the full-blown PC approach while being computationally much more efficient. 

 

6.3.2 Example 2 

 In this example, the same network of Fig. 6.1 is considered. The same N = 20 mixed 

dimensions are considered the characteristics for which are listed in Table 6.2. In this example, 

all the dimensions have epistemic uncertainty embedded in their mean and standard deviation. 

Two approaches are used to quantify uncertainty for the network at the outputs of conductors 1 

and 2 of Fig. 6.1 – the proposed dimension fusion approach combined with dimension reduction 

described in Section 6.1 and 6.2 and the full-blown PC expansion of the 3N dimensions. 
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  (a)                                                                                           (b) 

Fig. 6.2: Statistics of the CNT network of Fig 6.1. (a) Maximum/minimum bounds of mean +/- 3 SD for 

the transient response at node N1.  (b) Maximum and minimum bounds of the CDF for the transient 

response at node N1 at time point where max mean is 90% of its max value. 

      
                                              (a)                                                                                             (b) 

Fig. 6.3: Statistics of the CNT network of Fig 6.1. (a) Maximum/minimum bounds of mean +/- 3 SD for 

the transient response at node N2.  (b) Maximum and minimum bounds of the CDF for the transient 

response at node N2 at time point where max mean is 90% of its max value. 

Table 6.2: Uncertainty Characteristics of CNT Network of Fig. 6.1 

Random Variable Mean SD 

Din[1:3] (Inner diameter of CNT) 2.17 – 2.39 nm 

[9.5 – 11.5]% 

d (Inter-shell distance) 0.32 – 0.36 nm 

σ[1μ3] (Tunneling conductivity) 9.5 – 10.5 

H (Height of dielectric) 47.5 – 52.5 nm 

İr (dielectric constant) 1.9 – 2.1 

Rm[1:3] (Contact Resistance) 0.95 – 1.05 kΩ 

Cin[1:3]  133 – 147 pf 

Cout [1:3] 46.6 – 51.5 pf 

w (Spacing between conductors) 20.9 – 23.1 nm 

l (Conductor length) 47.5 – 52.5 µm [4.75 – 5.75]% 
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As a result of the dimension reduction strategy of Section 5.2, the original N = 60 

dimensions of the problem is reduced to n = 7 mixed dimensions. For the full-blown PC 

approach, 79,422 SPICE simulations of the CNT model are required to construct the PC 

metamodel whereas for the proposed dimension fusion approach, only 321 simulations are 

required (including the simulations required for dimension reduction). This indicates that the 

proposed dimension fusion approach exhibits a speedup of 247 times over the full-blown PC 

approach. To establish the accuracy of the dimension fusion approach, the maximum and 

minimum bounds of the statistics defined to be the mean plus thrice the standard deviation of the 

response at nodes N1 and N2 are compared for both approaches and the results are shown in Fig. 

6.4(a) and Fig. 6.5(a).  

Both methods use a total of 10,000 x 20,000 MC samples where the samples for both 

approaches are different. Next, to validate the accuracy of the proposed approach for higher 

order statistics, the family of cumulative density functions (CDFs) is computed for the transient 

response at N1 and N2 at the time point when the max mean plot assumes 90% of the maximum 

value (t = 111.2 ps and 35.2 ps). The maximum and minimum bounds (i.e., the plausibility and 

belief) are evaluated using the two approaches and the results are shown in Figs. 6.4(b) and 

   
(a)                                                                                               (b) 

Fig. 6.4: Statistics of the CNT network of Fig 6.1. (a) Maximum/minimum bounds of mean +/- 3 SD for 

the transient response at node N1.  (b) Maximum and minimum bounds of the CDF for the transient 

response at node N1 at time point where max mean is 90% of its max value. 
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6.5(b). It is evident that the proposed approach shows very good agreement with the full-blown 

PC approach while being computationally much more efficient. 

 

6.3.2 Example 3 

In this example, the 5 conductor network of Fig. 6.6 is considered.  The equivalent RLGC 

lumped circuit model for this example is the same as that in Fig. 6.1(b).  

For this example also N= 20 mixed dimensions are considered the characteristics for 

which are listed in Table 6.3. All the dimensions have epistemic uncertainty embedded in their 

mean and standard deviation. Conductors 1 and 4 are excited by a voltage source with a saturated 

ramp waveform of rise/fall time Tr = 0.1 ps and an amplitude of 1 V.  

    
                                              (a)                                                                                          (b) 

Fig. 6.5: Statistics of the CNT network of Fig 6.1. (a) Maximum/minimum bounds of mean +/- 3 SD for 

the transient response at node N2.  (b) Maximum and minimum bounds of the CDF for the transient 

response at node N2 at time point where max mean is 90% of its max value. 

 
Fig. 6.6: Profile view of the schematic of the MWCNT interconnect network. 
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Two approaches are used to quantify uncertainty for the network at the outputs of 

conductors 3 and 4 of Fig. 6.6 – the proposed dimension fusion approach combined with 

dimension reduction described in Section 6.1 and 6.2 and the full-blown PC expansion of the 2N 

dimensions. Both metamodels are utilized within the nested MC framework to evaluate the 

maximum and minimum bounds of the response statistical moments. A maximum degree of m = 

3 is used for the PC expansions of both the methods and is found to be sufficient to handle the 

variation in the mixed parameter. In performing the dimension reduction approach of Section 

6.2, the number of epistemic samples used in the outer loop of the sensitivity sweeping algorithm 

is set to Ne = 5,000 and the number of aleatory samples used in the inner loop is Na = 10,000. As 

a result of the dimension reduction strategy of Section 5.2, the original N = 60 dimensions of the 

problem is reduced to n = 6 mixed dimensions. For the full-blown PC approach, 79,422 SPICE 

simulations of the CNT model are required to construct the PC metamodel whereas for the 

proposed dimension fusion approach, only 249 simulations are required (including the 

simulations required for dimension reduction). This indicates that the proposed dimension fusion 

approach exhibits a speedup of 319 times over the full-blown PC approach. To establish the 

accuracy of the dimension fusion approach, the maximum and minimum bounds of the statistics 

defined to be the mean plus thrice the standard deviation of the response at nodes N3 and N4 are 

compared for both approaches and the results are shown in Figs. 6.7(a) and 6.8(a). Both methods 

Table 6.3: Uncertainty Characteristics of CNT Network of Fig. 6.6 

Random Variable Mean SD 

Din[1:5] (Inner diameter of CNT) 2.17 – 2.39 nm 

[9.5 – 11.5]% 

d (Inter-shell distance) 0.32 – 0.36 nm 

σ[1:5] (Tunneling conductivity) 9.5 – 10.5 

H (Height of dielectric) 47.5 – 52.5 nm 

İr (dielectric constant) 1.9 – 2.1 

Rm[1:5] (Contact Resistance) 0.95 – 1.05 kΩ 

w (Spacing between conductors) 20.9 – 23.1 nm 

l (Conductor length) 47.5 – 52.5 µm [4.75 – 5.75]% 
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use a total of 10,000 x 20,000 MC samples. Next, to validate the accuracy of the proposed 

approach for higher order statistics, the family of cumulative density functions (CDFs) is 

computed for the transient response at N3 and N4 at the time point when the mean plot assumes 

90% of the maximum value (t = 32.4 ps and 125 ps). The maximum and minimum bounds (i.e., 

the plausibility and belief) are evaluated using the two approaches and the results are shown in 

Figs. 6.7(b) and 6.8(b). It is evident that the proposed approach shows very good agreement with 

the full-blown PC approach while being computationally much more efficient. 

   
(a)                                                                                              (b) 

Fig. 6.8: Statistics of the CNT network of Fig 6.6. (a) Maximum/minimum bounds of mean +/- 3 SD 

for the transient response at node N3.  (b) Maximum and minimum bounds of the CDF for the transient 

response at node N3 at time point where max mean is 90% of its max value. 

   
(a)                                                                                                     (b) 

Fig. 6.7: Statistics of the CNT network of Fig 6.6. (a) Maximum/minimum bounds of mean +/- 3 SD 

for the transient response at node N3.  (b) Maximum and minimum bounds of the CDF for the 

transient response at node N3 at time point where mean is 90% of its max value. 
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CHAPTER 7: CONCLUSION 

       

 

 

 In this dissertation, the need for development of circuit tools/solvers to model the forward 

propagation of device level uncertainty to the system response was discussed. The benefits of 

using the generalized Polynomial Chaos (gPC) theory as a robust uncertainty quantification 

technique for the statistical analysis of high speed microwave/RF networks were highlighted. 

The gPC technique represents the uncertainty in the network response as an expansion of 

predefined orthonormal polynomials and their unknown coefficients. These coefficients can be 

obtained using either intrusive or non-intrusive approaches. This dissertation focuses on non-

intrusive approaches to evaluate the unknown coefficients. Non-intrusive approaches are popular 

because of their ability to reuse existing deterministic SPICE solvers and their parallelizability. A 

new linear regression methodology for the fast and non-intrusive analysis of high speed circuits 

was presented. This approach uses the D-optimal DoE to accurately evaluate the PC coefficients 

of the network responses. Novel techniques to further accelerate the search algorithms to identify 

the DoE from large multi-dimensional random spaces were presented. 

 One of the main bottlenecks of the PC approach is that the CPU cost to evaluate the 

unknown coefficients scales in a polynomial fashion with respect to the number of random input 

dimensions. To mitigate this effort, various techniques to develop a sparser alternative to the 

conventional full-blown PC expansion were presented. The first approach uses a HDMR 

formulation to study the effect of each random dimension on the network output. This sensitivity 

information guides the truncation of the original number of dimensions to a smaller set of 

dimensions. Constructing a PC metamodel in this low dimensional space leads to the recovery of 

a sparser set of coefficients than that obtained for the original number of dimensions with 
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negligible loss in accuracy. Further, a novel approach to reuse the PC bases and SPICE 

simulation results from the sensitivity indices estimation back in the nonintrusive recovery of the 

reduced dimensional PC coefficients were discussed to further expedite the proposed approach. 

This reduced dimensional PC approach was further extended to model the impact of both 

aleatory (random) and epistemic (ignorance based) uncertainty on the performance of distributed 

transmission line networks. A parameterized analysis of variance (ANOVA) strategy to identify 

which aleatory random dimensions have minimal impact on the response surface of the network 

was developed thereby enabling the construction of a highly compact PC.  This PC 

representation serves as a metamodel capturing the impact of the purely epistemic, purely 

aleatory, and mixed epistemic-aleatory effects. 

 Mixed problems are characterized by far greater number of random dimensions than 

purely aleatory or epistemic problems, thereby further exacerbating the poor scalability of PC 

techniques. A novel dimension fusion approach that fuses the epistemic and aleatory dimensions 

within the same model parameter into a mixed dimension was developed to address the above 

scalability issue of mixed problems. 
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