
DISSERTATION

SCALABLE LEARNING OF ACTIONS FROM UNLABELED VIDEOS

Submitted by

Stephen O’Hara

Department of Computer Science

In partial fulfillment of the requirements

For the Degree of Doctor of Philosophy

Colorado State University

Fort Collins, Colorado

Spring 2013

Doctoral Committee:

Advisor: Bruce A. Draper

Adele Howe
Charles Anderson
Christopher Peterson

Copyright by Stephen O’Hara 2013
All Rights Reserved

ABSTRACT

SCALABLE LEARNING OF ACTIONS FROM UNLABELED VIDEOS

Emerging applications in human-computer interfaces, security, and robotics have a need for

understanding human behavior from video data. Much of the research in the field of action recog-

nition evaluates methods using relatively small data sets, under controlled conditions, and with a

small set of allowable action labels. There are significant challenges in trying to adapt existing

action recognition models to less structured and larger-scale data sets. Those challenges include:

the recognition of a large vocabulary of actions, the scalability to learn from a large corpus of video

data, the need for real-time recognition on streaming video, and the requirement to operate in set-

tings with uncontrolled lighting, a variety of camera angles, dynamic backgrounds, and multiple

actors.

This thesis focuses on scalable methods for classifying and clustering actions with minimal hu-

man supervision. Unsupervised methods are emphasized in order to learn from a massive amount

of unlabeled data, and for the potential to retrain models with minimal human intervention when

adapting to new settings or applications. Because many applications of action recognition require

real-time performance, and training data sets can be large, scalable methods for both learning and

detection are beneficial.

The specific contributions from this dissertation include a novel method for Approximate Near-

est Neighbor (ANN) indexing of general metric spaces and the application of this structure to a

manifold-based action representation. With this structure, nearest-neighbor action recognition is

demonstrated to be comparable or superior to existing methods, while also being fast and scalable.

Leveraging the same metric space indexing mechanism, a novel clustering method is introduced

for discovering action exemplars in data.

ii

ACKNOWLEDGEMENTS

I would like to thank my advisor, Professor Bruce A. Draper, for his guidance, encouragement,

and for the opportunity to be involved in exciting research. His insight and feedback was invaluable

for helping me to grow as a scientist. My thanks as well to Dr. Ross Beveridge, who provided

explanations of many computer vision topics and encourages us all to be better at presenting our

research. I am appreciative of my thesis committee members: Dr. Chris Peterson for numerous

lectures on manifold geometry, Dr. Charles Anderson for introducing me to the field of machine

learning, and Dr. Adele Howe for always encouraging precision of thought and expression.

I also am grateful for the collaboration, support, and advice given to me by my friends and

colleagues in the department. Yui Man Lui, David Bolme, and Nayeem Teli were always ready to

listen, providing helpful and challenging comments, and, at times, commiseration. The pizza was

great, the company better.

I am deeply thankful to the support of my family. My parents promoted education, personal

integrity, and achievement, while instilling confidence, love, and a healthy dose of self-reliance.

My siblings are sources of inspiration and pride. My wife has taught me much about decisiveness,

determination, and perseverance, and my daughter reminds me that life should be fun, too!

Finally, my sincere gratitude to the Computer Science systems administrators. Theirs is often a

thankless task, yet I know how hard they work to keep the machines alive while our data processing

jobs hammer on their clusters.

iii

DEDICATION

This thesis is dedicated to my wife, Jodi. She is the love of my life and I’m proud to be her

husband.

iv

TABLE OF CONTENTS

1 Beyond Forced-Choice Action Classification . 1

1.1 Human Behavior Recognition . 1

1.2 Motivation for Unsupervised Learning . 2

1.3 Speed and Scalability . 4

1.4 Scope of Work . 5

1.4.1 How well do actions cluster with existing representations? 5

1.4.2 Unsupervised action recognition on streaming video 6

1.4.3 Action classification via Subspace Forests 7

1.4.4 Scalable clustering of arbitrary metric data and unsupervised action recog-

nition . 8

1.5 Summary of Thesis Contributions . 10

2 Background . 12

2.1 Behavior Terminology . 12

2.2 Forced-Choice Action Classification . 13

2.3 Existing Action Representations . 17

2.3.1 Bag of Features . 17

2.3.2 Silhouettes and Parts . 18

2.3.3 Tensors . 19

2.4 Product Manifold Representation . 21

2.5 Overview of Data Sets . 24

2.5.1 KTH Actions . 25

2.5.2 Cambridge Gestures . 25

2.5.3 Facial Expressions . 25

2.5.4 ETHZ Living Room . 26

2.5.5 UCF Sports . 26

v

2.5.6 UT Tower . 26

3 Action Clustering . 28

3.1 Method for Comparing BOF and PM Representations 29

3.1.1 Data Sets . 29

3.1.2 Bag of Features . 30

3.1.3 Product Manifold . 32

3.1.4 Cluster Purity . 32

3.1.5 Hierarchical Clustering . 33

3.2 Results . 34

3.2.1 Expressions . 36

3.2.2 Gestures . 37

3.2.3 KTH Actions . 40

3.3 Conclusions . 42

4 Learning from Streaming Video . 43

4.1 Method . 43

4.1.1 Data . 44

4.1.2 Tracks and Tracklets . 45

4.1.3 Clustering and Exemplar Selection . 46

4.1.4 Detection . 48

4.1.5 Anomalies and Incremental Learning . 49

4.2 Results . 50

4.2.1 Exemplar Selection . 50

4.2.2 Action Detection and Incremental Learning 51

4.3 Conclusions . 54

5 Approximate Nearest Neighbors . 56

5.1 ANN Algorithms . 58

vi

5.2 Method . 59

5.2.1 Proximity Forest . 60

5.2.2 Software Implementation . 62

5.3 Empirical Evaluation . 62

5.3.1 Data Sets . 62

5.3.2 Data Dimensionality . 64

5.3.3 Varying K . 65

5.3.4 Data Set Size . 66

5.3.5 Distance Measure . 67

5.3.6 Forest Size . 67

5.4 Conclusion . 68

6 Subspace Forests . 70

6.1 Background . 71

6.2 Subspace Forest Construction . 72

6.2.1 Subspace Tree . 73

6.2.2 Subspace Tree Variations . 74

6.2.2.1 Median Splitting . 75

6.2.2.2 Entropy Splitting . 75

6.2.2.3 Random Axis SSTree . 76

6.2.3 Subspace Forest . 76

6.2.4 Tree and Parameter Selection . 77

6.3 Evaluation . 80

6.3.1 Classification Accuracy . 80

6.3.1.1 KTH Actions . 80

6.3.1.2 UCF Sports . 82

6.3.1.3 Cambridge Gestures . 83

6.3.2 Scalability . 84

6.4 Conclusion . 85

vii

7 Latent Configuration Clustering . 87

7.1 Clustering Data using Only Pair-Wise Distances 88

7.2 Latent Configuration Clustering . 89

7.2.1 Generating the Proximity Forest . 89

7.2.2 Clustering using Connectivity Graph . 90

7.2.3 Exemplar Selection . 92

7.3 Application to Discovering Actions in Video . 92

7.3.1 Action Clustering and Unsupervised Exemplar Selection 93

7.3.2 Exemplar-based Classification . 94

7.4 Conclusion . 96

8 Putting It All Together . 98

8.1 Mind’s Eye . 98

8.2 Mind’s Eye: Year 1 versus Year 2 . 99

8.3 Learning Actions . 100

8.4 Detecting Actions . 102

8.5 Integration Test . 102

9 Conclusion . 105

9.1 Summary of Work . 105

9.2 Broader Impact . 106

9.3 Future Work . 107

References . 109

viii

LIST OF TABLES

2.1 Overview of Data Sets . 27

3.1 Gesture labels compared to 3 clusters . 38

3.2 Gesture labels compared to 9 clusters. 40

6.1 Accuracy comparison on KTH Actions . 80

6.2 KTH Actions confusion matrix . 81

6.3 Accuracy comparison on UCF Sports . 82

6.4 UCF Sports confusion matrix . 83

6.5 Classification accuracy on Cambridge Gestures 83

8.1 Set of labels learned from Mind’s Eye training data. 104

ix

LIST OF FIGURES

1.1 Illustration of the challenge in clustering actions 6

2.1 Examples of gesture, action, and interaction data sets 15

2.2 Samples showing strongly co-varying background features 16

2.3 Four approaches to representing actions . 20

2.4 Product Manifold Distance . 23

3.1 Expressions, Cambridge Gestures, and KTH Actions data sets 30

3.2 Comparison of hierarchical clustering linkage methods 34

3.3 PM versus BOF cluster purity on three data sets 35

3.4 Clustering of Expressions data . 37

3.5 Clustering of Gestures data . 38

3.6 Clustering of KTH Actions data . 41

4.1 Example of an activity detection from ETHZ Seq1. 45

4.2 Example of an activity detection from ETHZ Seq3. 45

4.3 Tracklet stabilization strategy . 47

4.4 Cluster purity on ETHZ Seq1 . 48

4.5 Example of a tracklet labeled from multiple exemplars 50

4.6 Validation accuracy using different exemplar sets and thresholds on Seq1 51

4.7 Seq2 and Seq3 detection accuracy using Seq1 exemplars 52

4.8 New exemplars learned from ETHZ Seq2 . 53

4.9 Detection accuracy with and without incremental learning. 54

5.1 Illustration of partitioning planar data with two trees of a Proximity Forest. 61

5.2 Point cloud data set. 63

5.3 ANN Accuracy vs. Data Dimension . 64

5.4 ANN Accuracy vs. K . 66

x

5.5 ANN Accuracy vs. Data Set Size . 67

5.6 ANN Accuracy vs. Distance Metric . 68

5.7 ANN Accuracy vs. Forest Size . 68

6.1 Illustration of Subspace Tree construction. 74

6.2 Nearest neighbors from three trees of a Subspace Forest. 77

6.3 Accuracy vs. Forest Size for different tree types on KTH Actions 78

6.4 Accuracy vs. Entropy Threshold on KTH Actions 79

6.5 Subspace Forest construction time compared to the size of the training data. 85

7.1 Illustration of LCC stages . 91

7.2 LCC applied to Swiss Roll data . 91

7.3 Exemplar selection on UT Tower . 93

7.4 Exemplar selection on KTH . 94

7.5 Exemplar selection on Gestures . 95

7.6 Classifying KTH using only a few exemplars . 96

8.1 Screen capture from a Mind’s Eye year 1 video 98

8.2 Samples of action detections in the Mind’s Eye year 2 data 103

xi

Chapter 1
Beyond Forced-Choice Action Classification
1.1 Human Behavior Recognition

Emerging applications in human-computer interfaces, security, and robotics have a need for

understanding human behavior from video data. Accurate and efficient human behavior recogni-

tion in streaming video is a challenge facing those desiring to automatically annotate a movie, to

build systems that detect suspicious behavior in subway stations, or to build household robotics to

assist the elderly. Behavior recognition requires the ability to detect subjects and objects of interest

in a video, track their locations frame-to-frame, label what they are, what they are doing, and in

what context. These are all open problems in the field of computer vision.

There has been notable success at using computer vision techniques for specific, domain-

constrained tasks. Face recognition, under controlled illumination and pose, has been deployed

by law enforcement and border security agencies. Contemporary video game systems have human

computer interfaces that employ computer vision techniques in concert with special sensors (Mi-

crosoft Kinect) or illuminated markers (Sony PlayStation Move). Recognizing single-actor actions

in controlled benchmark video data sets has shown notable performance gains in the past several

years. For example, action recognition on the KTH Actions data set (see Figure 2.1 in §2.2) has

risen from below 80% [SLC04] in 2004 to above 96% in 2010 [LBK10, GIK10].

Given the high recognition rates cited in action recognition benchmarks, are fielded appli-

cations of human behavior recognition from standard monocular video cameras far away? Per-

haps motivated by a similar analysis, in 2010, the Defense Advanced Research Projects Agency

(DARPA), funded a large program called “Mind’s Eye” [Gel11]. The goal of the Mind’s Eye pro-

gram is to develop smarter surveillance cameras that can recognize important events and behaviors

in video and alert operators with concise summaries. Much of the research presented in this the-

sis was motivated by, and performed as part of, a Mind’s Eye grant awarded to Colorado State

University.

1

Significant challenges remain in trying to adapt action recognition techniques developed using

controlled benchmark data to less structured and larger-scale data sets, such as that provided by the

Mind’s Eye program. Those challenges include: the recognition of a large vocabulary of actions,

the scalability to learn from a large corpus of video data, the need for real-time recognition on

streaming video, and the requirement to operate in settings with uncontrolled lighting, a variety of

camera angles, dynamic backgrounds, and multiple actors.

In an attempt to address these challenges, this thesis focuses on scalable methods for classifying

and clustering actions with minimal human supervision. Unsupervised methods are emphasized

in order to learn from a massive amount of unlabeled data, and for the potential to retrain models

with minimal human intervention when adapting to new settings or applications. Because many

applications of action recognition require real-time performance, and training data sets can be

large, scalable methods for both learning and detection are beneficial.

This thesis presents a set of contributions, as summarized later in this chapter, that leads to the

development of a scalable unsupervised method for action recognition. The ultimate goal is to de-

velop a system that learns and recognizes actions, in real-time, from streaming video sources with

minimal human guidance. We are not there yet. But the methods proposed in this thesis may get us

closer to the goal. In order to reduce confounding factors, evaluations of the specific contributions

are performed using controlled benchmark data sets. We later tie together the individual contri-

butions by providing an overview of the impact made to the Mind’s Eye program, which features

many of the challenges discussed earlier.

1.2 Motivation for Unsupervised Learning

High-definition video consists of millions of pixels per video frame, 30 frames per second,

leading to gigabytes of data for just minutes of observation. Applying supervised training methods

to video data has significant logistical challenges, notably in terms of generating a broad set of

labeled data. Video data annotation is very time consuming.

Consider generating annotations for a set of surveillance videos for the purposes of recogniz-

ing just four verbs: “chase,” “dig,” “give,” and “turn.” It is not sufficient to simply have a user

2

click one of four buttons whenever they observe the associated verb. The video could show sub-

jects performing these and other non-relevant behaviors simultaneously. A single subject could

be exhibiting more than one behavior at once, such as turn and chase. One must annotate which

subjects in the video were involved in a given behavior, where they were, and when. This requires

the tedious drawing of bounding boxes around subjects to allow for recording which verbs are

applicable to each subject at each time step. While tools can help mitigate the tedium of this task

(i.e., [Uni12]), the level of human effort involved is still quite high.

Another challenge is label consistency. There can be ambiguity in determining exactly when a

behavior occurs. Consider the verb “give.” Does the “give” start when the object held by the first

person begins moving towards the second? When does it end? Perhaps “give” is defined as the

very instant of time when the first person lets go and only the second person is holding the object?

But constrained only to that moment in time, is there enough context to even recognize the action

by a human observer? There are ambiguities in the semantics of verbs as well. Does “dig” actually

require the moving of soil, or would it be considered digging if a person clears a superficial amount

of dirt using a trowel? What if a dog is observed digging? What about if the digging is being done

by a backhoe operated by a person? Is the person digging or is it the machine?

To deal with the time-consuming nature of detailed image and video annotation, some re-

searchers enlist large groups of people, via a crowd-sourcing service such as Amazon Mechanical

Turk (as in [JKJ+11]). However, label consistency drops when a large group of people is involved.

Even with only a few people that deeply understand how label quality and consistency affects

machine learning, there can be label drift when the annotation process takes many days.

Consider what happens even when this approach yields positive results. Assume the time and

effort is expended to annotate training videos, and some method of supervised learning is employed

that successfully detects or recognizes the actions in new videos presented to the system. What

happens when the need arises to detect a new set of verbs? Or when the same set of verbs needs

to be recognized, but in a different context where the current model fails? In the first case, new

annotations are required over the training set, and the system must be retrained. In the second case,

a whole new data set is required to be collected, and then the developer must start from scratch

3

with the annotation and training process.

If learning from video can be accomplished with a greatly reduced need for annotations, then

it may be possible to more rapidly extend trained models to cover additional actions and to adapt

methods for a variety of applications and domains. This thesis emphasizes the role of unsupervised

learning for action recognition. Unsupervised learning mitigates both the annotation overhead as

well as the label consistency problem. Instead of deciding a-priori what labels to learn in a data set,

a clustering analysis of the data generates the vocabulary of actions which can be supported by the

data. There are many challenges with unsupervised action learning, some of which are discussed

further below and addressed in the technical contributions of this thesis.

1.3 Speed and Scalability

In moving beyond action classification benchmarks, one challenge that must be faced is scala-

bility. A method which has a high computational complexity may perform well on a small enough

data set, but may be infeasible for use with real-time streaming video sources.

Speed and scalability are important constraints for most applications. For video surveillance,

human-computer interaction, and robotics applications, real-time processing is required. There are

scalability concerns for both training and run-time aspects of a method. If the learning process

has a high computational complexity, it can be too time consuming to learn from large amounts

of data. Generally, data clustering works best when there are many data samples. Being unable to

process large-scale corpi may prevent unsupervised methods from discovering those actions that

appear less frequently in the data.

If run-time recognition speed has a dependency on data set size, or another attribute such as

the number of entities in each frame of video, then such a method may appear fast when tested

on a single-actor short-duration data set like KTH Actions, but slow when applied to streaming

surveillance video.

4

1.4 Scope of Work

This thesis makes contributions towards moving the field of action recognition beyond the

dominant paradigm of forced-choice action classification methods, the distinction of which is dis-

cussed further in the Background chapter. The following is a high-level summary of the technical

body of this work. Significant contributions are enumerated afterwards.

1.4.1 How well do actions cluster with existing representations?

This thesis first seeks to understand how contemporary action representations lend themselves

to unsupervised learning, where the set of possible action labels is learned from the data. Specifi-

cally, a relatively new manifold-based representation [LBK10] is compared with a Bag of Features

representation based on the sampling of localized space-time features [DRCB05]. Different la-

belling choices of benchmark data are evaluated to measure how well clusters formed using these

representations align to the label choices.

The following is a key consideration for unsupervised learning. Without supervision, grouping

of videos will be determined solely by the biases of the representation and associated distance

metric.

As a simple example, consider three video clips, as illustrated in Figure 1.1. The first depicts a

person walking from right to left. The second depicts the same action, but in a different direction,

diagonally across the screen. The third depicts the same person jogging in the same diagonal

direction. When the goal is to group by action label, ideally the first and second video clips would

be grouped separately from the third (walking vs. jogging). The second and third videos have the

actor moving in the same direction, so it would be understandable, but irrelevant to the goal, if they

were clustered along this aspect of similarity (motion direction).

In considering this example, it seems reasonable to predict poor alignment between cluster

membership and a set of desired class labels selected a-priori. The clusters could form just as easily

based on distinctions which are irrelevant to the desired labels. Furthermore, a given linguistic label

could present itself visually in a multitude of ways.

To understand how representation bias impacts action clustering, Chapter 3 of this thesis ex-

5

Figure 1.1: Three examples from KTH Actions data set [SLC04]. From left to right, the first two
show the same actor walking, but in different directions. The last two show the same actor moving
in the same direction, but performing different actions. Without supervision, would clustering these
samples cause them to group together based on direction of motion or the action being performed?
This question is addressed in Chapter 3.

plores how alternative labelings of benchmark data align with a given aspect of similarity among

the video clips. The results from this study suggest that a manifold-based representation developed

by Lui et al. [LBK10], called the Product Manifold (PM) representation, may be more amenable

to clustering along the desired semantics than a popular approach based on histograms of localized

space-time features [DRCB05]. The PM representation is demonstrated to cluster data from the

popular KTH Actions benchmark (Figure 2.1, middle) that are over 90% aligned with the class

labels.

1.4.2 Unsupervised action recognition on streaming video

The challenge of learning and recognizing actions from continuous video streams is addressed

in Chapter 4. This chapter presents an approach for streaming video action recognition based on

detecting and tracking the actor in the video and using temporal windows to select a few seconds of

video localized around the person for classification. Unlike with pre-segmented benchmark data,

classifying the tracked video segments includes errors due to inaccuracies involved in detection

and tracking, which remain open problems in computer vision.

With our approach, one first discovers the set of observed actions based on sampling a set of

unlabeled training videos. Detection and tracking algorithms are applied to the training videos

to extract “tracklets,” which are defined as short-duration segments of video localized around a

tracked subject. The set of tracklets are clustered using the PM representation.

6

Each cluster is assigned an appropriate action label by a human annotator. The clusters are

formed without supervision, and they define the actions learned from the video, but for the sake of

output, a human-assigned label has to be provided at some stage. That is, unless users would be

content with the machine employing cluster numbers as labels, such as “action 25 occurred from

frames 250–310.” Generally speaking, the effort required to label K clusters is much less than the

effort required to label N samples, where K ⌧ N .

To recognize actions in a new video, the detection and tracking algorithms are applied as before

to yield new tracklets. Each tracklet is matched to the K-nearest clusters and assigned a label based

on the labels of the matching clusters. This proposed method has advantages over competing

approaches in being unsupervised, tolerating minor detection and tracking errors, and allowing for

multiple labels per tracklet.

A challenge left unaddressed by Chapter 4 is scalability, as the number of tracklets being clus-

tered is less than 300. Clustering scalability using a manifold-based action representation is ad-

dressed in later chapters, after first introducing a novel data structure used for nearest-neighbor

action classification. This structure is then used as the underpinnings for scalable unsupervised

action recognition.

1.4.3 Action classification via Subspace Forests

Using the PM representation, action classification is done via nearest-neighbor selection. In

small benchmark data sets, this poses no problem, but when applied to large-scale applications with

many thousands of samples, nearest-neighbors may not allow for real-time performance, especially

when the distance function requires 10-100’s of milliseconds per comparison, as is the case with

the PM representation.

To speed up similarity queries, one can employ an Approximate Nearest Neighbor (ANN)

algorithm that identifies neighbors in logarithmic time complexity. The most popular ANN algo-

rithms used in computer vision applications, such as those implemented in the Fast Library for

Approximate Nearest Neighbors (FLANN) [ML09], are predicated upon a vector-space data rep-

resentation. However, for non-Euclidean data equipped with a distance metric, ANN indexing can

7

be accomplished using structures designed for partitioning general metric spaces [Uhl91, Yia93].

A question which arises is whether ANN indexing accomplished using general metric-space

structures works as well as the more popular methods employed in contemporary computer vision

applications. If so, then would not the more general-purpose method be preferred over methods

restricted to vector data?

In Chapter 5, an ANN indexing structure is introduced which can be used on any metric data.

This structure is called a Proximity Forest. The Proximity Forest is compared to leading ANN

methods on well-known vector data representations. The results strongly suggest that not only is

the Proximity Forest a more general-purpose data structure, but that it produces significantly more

accurate results on data representations of wide interest to the computer vision community.

Chapter 6 presents a special-purpose implementation of a Proximity Forest for action recog-

nition called a Subspace Forest. Inspired the PM representation, the Subspace Forest can index

actions as represented as points on Grassmann manifolds. This is significant because most meth-

ods for ANN indexing assume the data lives in a vector space, and thus can not be directly applied

to non-Euclidean manifold representations. The Subspace Forest has the scalability advantage

of the Proximity Forest, allowing for real-time action recognition, while matching or besting the

accuracy of competing methods on benchmark data.

1.4.4 Scalable clustering of arbitrary metric data and unsupervised action
recognition

In Chapters 3 and 4, using the PM representation for clustering involves first computing an

all-pairs distance matrix, followed by a hierarchical clustering process using the distance matrix as

input. The all-pairs comparison was used because of the non-Euclidean nature of the representa-

tion. (More details on the Product Manifold representation follow in Chapter 2.) Construction of

the all-pairs distance matrix is an O(N2
) operation, where N is the number of tracklets, and each

distance computation requires about 100ms.

Computing the distance matrix on a relatively small data set consisting of 2,500 tracklets takes

about 3 days on high-end commodity computers available in 2011. To put that in perspective,

8

consider a hypothetical 10-minute surveillance video recorded at 30 frames per second which

averages two tracked people per frame. Depending on implementation details described later, this

10-minute video might produce 2400 tracklets. At this rate, a few hours of surveillance video

used for training would generate tens of thousands of tracklets. Being able to cluster samples

from long-duration video without having to throw away the majority of the data is infeasible given

O(N2
) distance computations, each taking 100 ms. Typically with clustering, the more samples the

better, so one would prefer to not discard a large portion of the training samples due to scalability

concerns.

The Subspace Forest is built without supervision, but it is not directly a method for clustering

actions. It is, however, a structure for finding the closest neighbors to a given tracklet. As such,

one might expect that there is a way to take advantage of the scalability of a Subspace Forest for

clustering.

Chapter 7 describes such a method, called Latent Configuration Clustering (LCC). LCC uses

a connectivity graph generated from the leaves of a Proximity Forest for clustering. It is called

Latent Configuration Clustering because the configuration space of the data samples is unknown.

LCC requires only a distance function which can be applied pair-wise between samples, and thus

can efficiently cluster data in general metric spaces.

Chapter 7 describes the LCC algorithm in general as well as its application for unsupervised

action recognition when coupled with a Subspace Forest. Using a Subspace Forest and the Grass-

mann manifold representation of actions, LCC is shown to have superior performance than the best

known method of unsupervised action recognition on the KTH Actions data [NWF08]. In terms of

scalability, LCC allows the clustering of a large corpus of tracklets in O(N logN) time complex-

ity. As with many tree construction algorithms, under certain pathological conditions, the tree may

degenerate to a list. Time complexity is reported under non-pathological conditions, which can be

reasonably assured by randomly shuffling the order of the input data. LCC reduces the clustering

time of the aforementioned 2,500 tracklets from 3 days to about 20 minutes.

9

1.5 Summary of Thesis Contributions

Necessity is the mother of invention. The DARPA Mind’s Eye data set consisted of over three

thousand sample videos from which to learn 48 verbs. Many of the target verbs are not what we

consider actions, but instead require higher level representations that may be built using actions as

a component. The distinction between the following terms: action, interaction, activity, behavior,

and event, are discussed in Chapter 2. The action recognition component of our Mind’s Eye system

learned 66 unique action labels from the unlabeled training corpus (see Chapter 8 for additional

discussion).

When faced with the challenge of learning actions from such a large data set, scalability im-

provements were a necessity. Without the accuracy and scalability advances of the methods de-

scribed in this thesis, it would have been much harder to process the data required by the program.

The action recognition techniques described herein were sufficient to recognize a subset of these

verbs, and played an important role in the higher-level system that was created to recognize the

rest.

Of even broader impact is the potential of the Proximity Forest to improve the accuracy of many

computer vision algorithms that employ approximate nearest neighbor indexing. One popular

application is large-scale image retrieval, where an image is presented to the system, and similar

images from a huge data set are displayed to the user. Contemporary approaches to image retrieval

[NS06, PCI+07] use ANN indexing structures which are shown in Chapter 5 to be inferior in

accuracy to the Proximity Forest. The implication is that a black-box replacement of the ANN

index may be possible, and as a result, that similarity queries may be 15 to 20% more accurate.

The Proximity Forest has the same essential time complexity as existing ANN methods, but the

current implementation will require optimization before a fair speed comparison can be performed.

No claim is made that the current python-based serial implementation is anywhere near as fast as

the current multithreaded and vector-optimized ANN implementations.

The specific contributions from this dissertation relate to addressing the challenges of devel-

oping unsupervised learning methods for the scalable recognition of actions in streaming videos.

10

Contributions include the following:

• An evaluation of how well existing action representations support unsupervised learning.

Results suggest that the PM representation is more amenable to action clustering than meth-

ods based on space-time feature sampling.

• A method of unsupervised learning and recognition of actions in streaming video.

• A novel structure called a Proximity Forest for Approximate Nearest Neighbor indexing of

general metric spaces.

• An evaluation showing superior performance of the Proximity Forest to popular ANN meth-

ods used in contemporary computer vision applications. This suggests that existing methods

for large-scale image retrieval and nearest-neighbor classification could be improved by a

simple substitution of a Proximity Forest for existing ANN indexing methods.

• A structure based on the Proximity Forest, called a Subspace Forest, for ANN indexing of

actions represented as points on Grassmann manifolds, similar to the PM representation. The

Subspace Forest provides highly accurate action classification on popular benchmarks while

also allowing for real-time recognition.

• A clustering method called Latent Configuration Clustering (LCC) that can be applied to

general metric data. The power of LCC is in transforming the clustering problem from using

expensive pair-wise distance computations into clustering a sparsely connected graph by

comparing scalar edge weights.

• When combined with a Subspace Forest, LCC can be used for clustering actions. LCC

outperforms existing published methods of unsupervised action recognition.

11

Chapter 2
Background

This chapter provides background information on terminology, the limitations of existing forced-

choice benchmarks, an overview of existing approaches to action recognition, and a description of

the data sets used for evaluation purposes in this thesis. Additional emphasis is placed on the Prod-

uct Manifold representation [LBK10], which is the model for manifold-based representations used

extensively in this thesis.

2.1 Behavior Terminology

This section provides the definition of common terms used in the computer vision community

relating to the general topic of human behavior recognition in video. We define our usage of the

terms: action, interaction, gesture, activity, event, and behavior. Usage of these terms is not always

consistent in the literature, so our intended meanings are provided below.

For the purposes of this thesis, an action is a characteristic motion that can be recognized with

a second or two of observation of a single subject. Examples include bending, walking, jumping,

and waving. An interaction is an action between two or more people, such as when two people

hug, or a person gives an object to another. As with actions, we consider interactions to be short

in duration, lasting a few seconds. A gesture is a characteristic motion of a body part, often the

hand, considered in isolation from the rest of the body. An activity is longer in duration than

an action or interaction, and may require a context for effective recognition. Examples include

playing soccer, jogging, and loitering near a secured door. Note that the jogging activity can be

recognized by the repeated observation of the jogging action over a relatively long duration of

time, whereas playing soccer is more complex. Observing a single person kicking a ball is not

sufficient. An event in video is a time when something important happens, such as when a person

tailgates through a secured door or a goal is scored in the soccer match. Finally, the term behavior

is used to generically represent actions, interactions, activities, and events.

12

Actions and interactions may be considered somewhat atomic, and can be used as building

blocks to the recognition of higher level behaviors. Activities may include events, and events may

include activities. For example, the activity of playing soccer involves actions (running, jumping,

kicking), interactions (passing, slide tackling), and events (offsides, goals). An “unauthorized ac-

cess” event may require the recognition of the loitering activity, followed by the loiterer tailgating

another person through a secured door. Thus, the relationship between gestures, actions, interac-

tions, activities, and events is not a simple taxonomy, and the divisions between these terms may

be subject to interpretation.

A recent review on human activity recognition by Aggarwal and Ryoo [AR11] provides an

overview of contemporary approaches to behavior recognition in video, including gestures, actions,

interactions, and higher-level group activities. Our definitions are similar to those used in Aggarwal

and Ryoo, except that we use “behavior” as a general term, and Aggarwal uses “activity” for this

same purpose. Aggarwal does not present an equivalent term for our definition of activity.

This thesis focuses on the application of methods to action recognition. Yet methods used for

action recognition may also be applicable to interactions, gestures, and other visually distinctive

motions of tracked entities/objects in video. Of the data sets employed for evaluation purposes in

this thesis (described later), one is a gesture recognition data set, which helps illustrate that the

representation we employ may be useful beyond the strict definition of action recognition.

Finding ways to advance the state-of-the-art in recognizing actions, interactions, and gestures,

may lead to concomitant improvements in higher level human behavior characterization in video.

2.2 Forced-Choice Action Classification

There is a great deal of research relating to the recognition of human actions in video, yet

much of the research to date has focused on the problem of classifying short video segments (a

few seconds long) according to a small, fixed set of labels. The term forced-choice is used to

differentiate this from a classification task where it is assumed that the recognizable actions are a

small subset of the possible actions that a subject could exhibit. A forced-choice benchmark data

set is one in which each sample shows exactly one action from a closed set of labels.

13

Many popular benchmark data sets [SLC04, GBS+07, LJD09, KWC07] consist of spatially and

temporally segmented video clips that show a single actor executing a single behavior. Examples

of three representative data sets, showing actions, gestures, and interactions, are shown in Figure

2.1. While the forced-choice classification paradigm has led to notable performance gains on

benchmark data, it leaves many questions unanswered regarding the larger challenge of detecting

and recognizing human actions in less structured contexts and in continuous streams of input.

Pre-segmented video clip classification is popular because no significant effort is required to

annotate the data for training or performance evaluation. Each sample video clip demonstrates

only a single label, and there is no requirement for a method to localize where and when the action

occurs (in other words, action detection is not required).

Bag of Features (BOF) methods are popular choices for benchmark action recognition. In a

BOF representation, an entire sample video clip is represented as a histogram of features. Fea-

tures are commonly derived from intensity gradients in small space-time regions sampled from

the video, as in [SLC04, Lap05, DRCB05, KG10] and others. The limitation of BOF methods is

that the feature representation, a simple histogram of the detected features, does little to preserve

the structure of the video. The locations from whence the features were sampled are discarded.

A normalized histogram of two people walking might be extremely similar to that of a single

person walking. When it is known that the benchmark contains only a single subject performing

a single action, the significant structural limitations of this approach does not negatively impact

performance.

In fact, because BOF methods perform no localization of the action, they benefit when bench-

marks have semantically meaningless but strongly co-varying background information. The UCF

Sports data set [RAS08], for example, has actions like golfing, diving, and weight-lifting. One

could predict golfing by the green grass, diving by the blue water, and weight-lifting by a common

backdrop evident in all the samples. See Figure 2.2 for illustration. As pointed out by Pinto et al.

[PDC09], a sufficiently powerful machine learning mechanism, when applied to localized feature

representations, can yield results that are inflated due to artifacts in the data that co-vary with the

class labels. While this phenomenon is not limited to BOF methods, they are particularly suscep-

14

Pair of
Fingers

Figure 2.1: Examples of existing gesture, action, and interaction data sets. From top to bottom:
Cambridge Gestures [KWC07], KTH Actions [SLC04], and UT Interactions [RCAR10] data sets.

15

tible because there typically is no attempt to control for sampling only features from the actor (or

other region) of interest.

Figure 2.2: Samples from the UCF Sports data set [RAS08]. Many of the actions, such as golfing
(top row), diving (middle row), and weight-lifting (bottom row), have strongly co-varying back-
ground features.

Action recognition is hard, and it is reasonable to attempt to simplify the problem using con-

trolled data sets. However, in deference to the no-free-lunch theorem [Wol01], the techniques used

to push performance to the highest levels on existing classification benchmarks may not yield the

desired gains in addressing the more general challenges relating to action recognition from less

controlled, streaming data sources. Recent results from the Contest on Semantic Description of

Human Activities (SDHA Challenge) [RCAR10] indicate that current feature-based approaches

perform well on pre-segmented video clip classification, yet fail to perform well in detecting and

localizing actions in continuous videos.

The representations put forth in this thesis require that the subjects are first localized, and then

action recognition is performed to describe what they are doing. In this way, successful recognition

is attributed only to the pixel data that comprises the action, independent of context or background.

16

2.3 Existing Action Representations

Because the choice of representation can be critically important to the performance of pat-

tern recognition algorithms, we discuss existing action recognition techniques based on their fun-

damental representational choices. Representations common in the literature include: localized

space-time features (i.e., Bag of Features), silhouettes, body-part tracking, and 3D arrays (tensors)

built from tracked regions in the video.

2.3.1 Bag of Features

The Bag of Features approach has become one of the most popular methods for human action

recognition in short video clips [SLC04, DRCB05, KSH05, Lap05, GBS+07, SAS07, NWF08,

RAK09, KG10]. As adapted from similar methods of image classification and retrieval, BOF

approaches represent video clips as unordered sets of local space-time features. Features are quan-

tized into discrete vocabularies, or codebooks. The space-time features in a video are assigned

to their nearest neighbors in the codebook. The BOF representation is a normalized histogram

of frequency counts of the codebook entries detected in videos. Activity classification is often

done by applying Support Vector Machines with appropriate kernels (�2 is common) to the BOF

representation.

There are many choices involved when implementing a BOF approach. One must decide how

to sample the video to extract localized features. Possible sampling strategies include interest

point operators [MTS+05, Lap05, DRCB05], grids/pyramids [RAK09, KG10], or random sam-

pling [JT05]. Each strategy comes with parameters including space and temporal scales, over-

lap, and other settings. From the sampled regions, an appropriate descriptor must be chosen

[DRCB05, SAS07, LP07] to provide a balance between discrimination, robustness to small pho-

tometric and geometric perturbations, and compactness of representation. Wang et al. provide an

evaluation of popular space-time interest point detectors and features [WUK+09], yet there is no

conclusive result indicating which combination of detector and descriptor is best. The results are

data-set dependent. Beyond feature detection and extraction, other design choices include code-

book size, quantization method, and distance function to be used in nearest-neighbor assignments.

17

These and other considerations of the Bag of Features method are discussed in the context of image

classification and retrieval in [OD11a].

An attractive aspect of the BOF approach is the lack of any requirement to pre-process the

videos to perform segmentation or track moving objects. This comes, however, with a significant

difficulty in knowing precisely why two videos are considered similar, as there is little semantic

meaning in the representation. As stated earlier, it is possible to correctly classify videos due to

co-varying, but semantically irrelevant, background artifacts in the data set.

In terms of scalability and recognition speed, there have been efforts to improve the compu-

tational efficiency of bag-of-features action recognition using hierarchical structures. Taking cues

from the vocabulary trees used in object recognition and image retrieval (e.g., [MTJ06]), trees can

be effectively applied to codebooks of spatio-temporal features. Yu et al. [YKC10] propose the

use of a forest of randomized trees to build a feature codebook directly from the pixels surrounding

space-time interest points. Yu reports recognition speeds from 10 to 20 frames per second, and vo-

cabulary generation time is 500 times faster than K-Means (no absolute training time is reported.)

Yao et al. [YGV10] use randomized forests to map densely-sampled features into a Hough voting

space. Unlike Yu et al., Yao’s use of a randomized forest is not for speeding up codebook construc-

tion, but rather as a core action-recognition mechanism that uses features to vote for the most likely

class label. Gilbert et al. [GIB09] use a hierarchical structure inspired by data mining techniques

to perform rapid action recognition using localized features. Gilbert reports recognition speeds of

24 frames per second on KTH data, and training throughput of a multi-stage process ranging from

21 to 640 frames per second per stage, although it is unclear what total training time is required.

2.3.2 Silhouettes and Parts

Departing from the BOF works are silhouette motion methods such as those from Lin et al.

and Nater et al. [LJD09, NGV10]. Lin et al. employ joint likelihood maximization between the

current observation and learned shape-motion prototypes. Nater et al. presents an unsupervised

method for learning human behaviors by clustering silhouettes and motion patterns.

The main challenge with silhouette approaches is the sensitivity to silhouette segmentation,

18

which is an open challenge in non-trivial settings with complex and dynamic backgrounds. For

real-world usage, one must solve the segmentation problem to yield the silhouette before a sil-

houette representation for action recognition can be applied. Segmentation is a different and more

difficult challenge than simple bounding-box localization.

Similar to silhouette methods, which model how silhouettes change over time, is the idea of

tracking body parts for action recognition via changes in pose. The segmentation challenge is

similar in both cases. Accurately localizing body parts such as the upper arm, lower arm, waist,

thigh, calf, foot, hand, etc., is a significant challenge with many points of failure. Recent publica-

tions on pose detection suggest that even the best methods are not yet reliable enough for action

recognition in monocular video. Andriluka et al. [ARS09] present a leading human pose detec-

tion algorithm with accuracy around 55% correct part localization. While it may be possible to

improve part localization performance by integrating the temporal information in video data, we

know of no competitive published results on benchmark data sets using a body-part localization

representation.

We do not further investigate silhouette and body part/pose representations due to the seg-

mentation challenge when applied to monocular video. However it is worth noting that in some

domains, such as with a sensor that provides depth information like the Microsoft Kinect, these

methods can work well because segmentation becomes much easier [SFC+11].

2.3.3 Tensors

A tensor is a mathematical formalism for an n-dimensional array. For action recognition, we

can construct tensors from the (x,y,t) coordinates of every pixel in a video segment, where the time

dimension, t, is represented by a frame number. The 3D array of pixel data (i.e., a 3-mode tensor)

may also be referred to as a data cube.

Tensor representations are pixel-based representations. They may be used for action recogni-

tion using 3D correlation [RAS08, SC12], or by performing some sort of subspace analysis after

factoring the tensor into a set of matrices [KWC07, LBK10]. An advantage of tensor represen-

tations is that the majority of pixels involved in the action is used, unlike feature-based methods

19

Figure 2.3: Four approaches to representing actions. A) Space-time interest points, illustration
from Niebles et al. [NWF08]. B) Tracked region, as used in this thesis. C) Parts-based pose
representation, illustration from Andriluka et al. [ARS09]. D) Silhouette tunnel, illustration from
Gorelick et al. [GBS+07].

20

which sample small space-time patches, and thereby discard the majority of pixels in the process.

A challenge in keeping all the pixels is the high dimensional nature of the representation.

One approach to addressing the high-dimensional nature of the representation is to map the

tensor into a lower dimensional space with some regular structure. This is the approach taken the

PM representation, which maps tensors into a product of Grassmann manifolds (as defined in the

following section). The general idea is that video segments are mapped to points on a manifold

structure, and distances between video segments are measured using a geodesic distance defined

on the manifold. Assuming the geodesic distance can be efficiently computed or approximated, it

can be used to classify or cluster the corresponding videos.

Although it may be difficult to conceptualize the mapping of tensor data to a manifold surface,

the computation is fairly straight forward, requiring techniques from basic linear algebra, as we

show below. The advantages are that the representation requires many fewer design choices and

parameter settings in comparison to space-time feature sampling methods, requires only bounding-

box style localization in comparison to silhouette or parts-based representations, and does not re-

quire additional temporal sequence modeling because the dynamics are captured directly from the

pixel information. This representation has been shown to be highly accurate in a nearest neighbor

action classification. For these reasons, and others that we demonstrate in Chapter 3, the mapping

of actions (as data cubes) to manifolds is our representational choice for the methods described in

this thesis.

2.4 Product Manifold Representation

In this section, we provide an overview of the PM representation [LBK10] because it is refer-

enced throughout this thesis. The high-level idea is that a short video segment can be represented

as a point on a non-Euclidean manifold surface. By measuring the distance between points on the

manifold, one can determine the similarity of two cropped video segments. Action classification

is performed by cropping a salient region of an input video and finding the nearest neighbor on the

manifold.

Figure 2.4 illustrates the process of computing the PM distance between a pair of video seg-

21

ments. We use the term tracklet to denote a sequence of cropped images of a subject tracked over

a few seconds time (see sub-figure B of Figure 2.3). A tracklet is represented as a data cube with

axes of width, height, and frame number, (x, y, f). All tracklets are scaled to be the same size.

Tracklets tensors can be flattened into matrices by unfolding along any of the three axes.

Let T
i

represent tracklet i. Let T k

i

be the matrix representing the tensor unfolding of T
i

along

axis k. Then, using QR Factorization, we have the following.

T k

i

= Qk

i

Rk

i

(2.1)

Qk

i

is an orthogonal basis for T k

i

. The distance between two tracklets, T1 and T2, can be

computed with respect to unfolding k, using the principal angles between the subspaces spanned

by Qk

1 and Qk

2.

Qk

1
T

Qk

2 = U⌃V T

cos⇥ = diag(⌃) (2.2)

In Eq. (2.2), the Singular Value Decomposition is used to compute the principal angles between

the subspaces. The singular values, given by the diagonal entries of ⌃, are the cosines of the

principal angles.

A Grassmann Manifold, Gr(r, n), is the set of all r-dimensional linear subspaces of the n-

dimensional vector space V . Points on a Grassmann Manifold are subspaces, and assuming the

underlying field is <, can be identified by orthogonal matrices. By computing the orthogonal

decomposition of the flattened matrix, one can identify the point on the Grassmann associated

with the flattened data cube. In this manner, we map tracklets to points on Grassmann Manifolds,

each tracklet being represented by the three subspaces arising from the three tensor unfoldings.

The chordal distance can be used to represent the distance between points on a Grassmann

Manifold. This is a pair-wise comparison between two tracklets using the principal angles between

the subspaces. The chordal distance, d(T k

1 , T
k

2) between tracklets T1 and T2 along axis k is the L2

norm of the component-wise sine function applied to the entries of ⇥.

d(T k

1 , T
k

2) = k sin⇥k2 (2.3)

22

Figure 2.4: Illustration of the Product Manifold Distance, adapted from [OLD12].

There exists a product manifold which is the product of the three Grassmann manifolds. Each

video is a point in the product manifold structure. The distance between video clips is the distance

on the product manifold, which can be computed using the Cartesian product of the canonical

angles between the points on the factor manifolds. The chordal distance on the Cartesian product

of the three sets of canonical angles is the PM Distance.

The advantages of the Product Manifold approach include the relatively small number of design

choices, the lack of any training or codebook generation process, and its performance on nearest-

neighbor action classification. The disadvantage of this method is the requirement to use fixed-size

cubes in the representation. The video clips from the data sets must be cropped or scaled to a

uniform-sized cube, which we discuss how to do in later chapters.

One significant challenge left unaddressed by the Product Manifold representation is scalabil-

ity. A single comparison between two samples can take approximately 100 ms. While a linear

search to find the nearest neighbor is acceptable for small scale applications, it will not allow for

real-time recognition when using a large data set.

23

Other challenges arise due to the non-Euclidean nature of the representation. For example,

computing the mean of a set of samples (for use in K-means clustering, e.g.) has no closed form

solution, and even the definition of a mean can be unclear. To understand why, imagine two points

on opposite ends of a sphere. Constrained to the surface of a sphere, which is a simple manifold,

there is no unique shortest path, and thus preferred direction along which to sample the mean.

Would the mean location of the two poles of a globe be the set of points along the equator? Which

point should you choose when computing the distance from the “mean” to some other point on the

surface?

For this and other reasons explored in later chapters, efficiently clustering points on Grassmann

manifolds is not as simple as with vector data. The Product Manifold distance is a metric, however,

and thus clustering can be achieved by directly computing all-pairs distances to generate a distance

matrix, which can in turn be used by a number of common clustering methods such as hierarchical

agglomerative clustering. However with 100ms per comparison, the O(N2
) comparisons required

to construct the distance matrix becomes a limiting factor for large data sets.

A significant contribution of this thesis is in addressing the scalability concerns relating to both

clustering and nearest neighbor selection when actions are represented as points on Grassmann

manifolds.

2.5 Overview of Data Sets

Several data sets are referenced throughout this dissertation. This section provides a consoli-

dated overview of the key aspects of each, which are further summarized in Table 2.1. Two of the

data sets, Cambridge Gestures and Facial Expressions, do not represent full-body actions, which is

the main application focus of this dissertation. However, it is informative to include different types

of human subject-based video data to illustrate that the representations and methods presented in

this dissertation could be applied to a broader range of potential applications.

Of note, we use the terms “subject” and “actor” synonymously to indicate the person of interest

in full-body action videos. However, the term “subject” can also refer to a close-up of a hand (for

gestures) or face (for expressions).

24

2.5.1 KTH Actions

KTH Actions [SLC04] (KTH) presents full-body actions. KTH has been used extensively in

the action recognition literature. At the time of this writing, it has been cited nearly 1,000 times

according to Google Scholar.

The KTH data set consists of six classes (walking, jogging, running, boxing, handwaving,

handclapping), demonstrated by 25 subjects, each in four different scenes. See the middle panels

of Figure 2.1. Of note, one of the 600 variations is missing, so there are actually 599 samples

provided in the data. The first three scenes are taken outdoors, with a fairly uniform background.

The fourth scene is taken indoors, also with a uniform background. Scene 2 varies the scale or

angle from Scene 1. Scene 3 varies the clothing of the subject.

Three of the classes (walking, jogging, running) involve a human gait, while the other three

involve actions where the actor remains in place (boxing, handwaving, and handclapping). We

call the latter three the “stationary” actions in KTH, although clearly the actions involve motion –

stationary meaning the actor stays in the same place. The actor varies direction of travel (for the

gait classes), and is not always well-centered in the stationary actions.

2.5.2 Cambridge Gestures

Cambridge Gestures [KWC07] (Gestures) is a popular gesture data set, cited over 100 times

since 2007. The data set consists of nine classes, repeated in five sets of varying lighting, with 20

samples per class per set, for a total of 900 videos. Each sample is a close-up of a single hand on a

uniform background performing one gesture. The nine classes are divided into three hand shapes

(flat, spread, pair-of-fingers) combined with three motions (leftward, rightward, contracting), as

illustrated at the top of Figure 2.1.

2.5.3 Facial Expressions

Facial Expressions [DRCB05] (Expressions) has short video clips of a subject exhibiting one

of six different emotions. The Facial Expression data set differs from the others in that the motions

involved are deformations of the facial features and have less translational motion of body parts.

25

The Expressions data consists of six classes (anger, disgust, fear, joy, sadness, surprise), re-

peated in four sets. The four sets are comprised of two subjects under two different lighting con-

ditions performing eight repetitions of all expressions, for a total of 192 videos. Each video starts

with the subject in a neutral expression, then transitions into one of the expressions, and then back

to neutral.

2.5.4 ETHZ Living Room

The ETHZ Living Room data set [NGV10] (ETHZ) consists of videos of a single person mov-

ing about a living room set performing various actions such as sitting down, bending over, walking

around the room, and so on. This data set differs from the others in that it does not contain pre-

segmented video samples and does not strictly pre-define the set of possible actions.

We selected this data set for use in Chapter 4 because it represents the continuous surveillance

problem better than many of the more popular action recognition benchmarks. The ETHZ data set

provides three video sequences. The first, over 7,000 frames long, is a continuous recording of a

person moving about a room and performing a few selected behaviors (walking, sitting, bending

down). The second two videos are similar, but shorter, and contain novel actions not observed in

the first video, such as falling down, jumping, and panicking.

2.5.5 UCF Sports

UCF Sports is a relatively small data set, with 150 video clips representing ten actions: diving,

swinging a golf club, kicking, weight lifting, horseback riding, running, skateboarding, swinging

on a pommel horse, swinging on high bars, and walking. UCF Sports is challenging due to unequal

set sizes, significant intra-class variability, and complex backgrounds.

2.5.6 UT Tower

UT Tower [CRA10] (Tower) presents a set of full-body human actions captured from a camera

perched atop a bell tower. This set features low-resolution data with few pixels on target. Com-

pared to KTH, the Tower data set has fewer samples but more classes. Specifically, UT Tower

26

has 108 samples of nine classes: standing, pointing, 2-handed waving, 1-handed waving, jumping,

digging, walking, carrying, and running.

Table 2.1: Overview of Data Sets. This table summarizes key characteristics of the data sets used
for evaluations in this dissertation. Short Name is the abbreviation used to refer to the set, Classes
indicates the number of classes in the data, # per Class indicates the number of samples per class,
and Sample Length is the approximate duration, “seconds” or “minutes”, describing how long each
sample video clip lasts.

Name Short Name Classes # per Class Sample Length
KTH Actions KTH 6 100 Seconds
Cambridge
Gestures

Gestures 9 100 Seconds

Facial
Expressions

Expressions 6 32 Seconds

ETHZ Living
Room

ETHZ N/A N/A Minutes

UCF Sports UCF Sports 10 Varies Seconds
UT Tower Tower 9 12 Seconds

27

Chapter 3
Action Clustering

Our first step towards advancing unsupervised action learning from videos is to select an ap-

propriate representation of the data. Without supervision, grouping of videos will be determined

by the biases of the representation and associated distance metric. This chapter investigates the dif-

ferences in clustering on three data sets between a standard Bag of Features (BOF) representation

based on localized spatio-temporal feature sampling and the Product Manifold (PM) representa-

tion. We undertake this evaluation with the goal of gaining insight into how these very different

representations affect cluster purity.1

For this evaluation, we use the Expressions, Gestures, and KTH data sets described in Chapter

2. We consider each to be a controlled data set because there is only a single subject performing

a single behavior with a nearly uniform background. Each of these data sets was designed for a

forced-choice classification task, so each has a small set of defined class labels. In addition to the

class labels provided by the data set, which we call the “nominal” labels, we apply other labels to

the data that correspond with various aspects of similarity, such as direction of motion. Clustering

is evaluated in terms of cluster label purity based on each set of labels. We are primarily interested

in the cluster purity of the nominal labels, but by using other labels, such as direction of motion or

subject identity, we can learn something about why the two methods perform differently.

We show that PM yields superior results to BOF when measuring the alignment between the

generated clusters and the nominal class labeling of Gestures and KTH, and similar results on

Expressions. We find that gross motions were easily clustered by both methods, but that the lack

of structural information inherent to the BOF representation leads to limitations that are not easily

overcome without supervised training.

1Material presented in this chapter was previously published by the author in [OLD11, OLD12].

28

3.1 Method for Comparing BOF and PM Representations

Our method for comparing the two representations is to generate a pair-wise distance matrix

using both representations from the training samples of a given data set. We apply a well-known

hierarchical agglomerative clustering routine to the distance matrices to produce dendrograms (tree

structures) of the similarity between the samples. Dendrograms can be cut at varying levels in

their hierarchy to produce different numbers of clusters, from coarser to finer-grained grouping.

We vary the number of clusters, K, over a range of values and observe how well the unsupervised

grouping of the video samples compares to the selected labels. While we use labels to evaluate the

clustering, the formation of the distance matrices and subsequent hierarchical clustering is entirely

unsupervised. More details of each of these aspects can be found below.

We selected Piotr Dollár’s BOF implementation [DRCB05], popularly known as the “Cuboids”

algorithm, because the well-documented code is readily available upon request from the author, and

generates competitive classification results in an independent study of BOF feature detectors and

descriptors for action recognition [WUK+09]. We used Yui Man Lui’s MATLAB implementation

of the Product Manifold algorithm because it has been shown to provide strong results when used

for nearest-neighbor classification of actions and gestures [LBK10].

3.1.1 Data Sets

We selected three data sets for this study: KTH Actions, Cambridge Gestures, and Facial

Expressions. The data sets are described in Chapter 2, and illustrated in Figure 3.1. In addition to

full-body actions from KTH, we include hand gestures and facial expressions so that we can better

understand how our conclusions from this study apply to a slightly broader scope of application

data.

All three data sets were designed to evaluate forced-choice classification algorithms. For the

sake of familiarity within the action and gesture recognition community, we elected to use these

same data sets, but in an evaluation scheme that measures unsupervised clustering and how the

clusters align with different potential labelings of the data (direction of motion, subject identity,

and others as later enumerated). Video samples may be similar along different aspects than the

29

Pair of
Fingers

Figure 3.1: Data sets used in this evaluation. From top to bottom: Expressions [DRCB05], Ges-
tures [KWC07], and KTH [SLC04].

externally applied class label, and our evaluation helps illustrate which aspects the two representa-

tions are sensitive to.

3.1.2 Bag of Features

When employing BOF, two key design choices are the selection of the feature detector, used to

determine where to sample features, and the feature descriptor, used to represent a sampled feature.

The choice of detector and descriptor is data-set dependent, and is also sensitive to parameters such

as the spatial and temporal scales (denoted as � and ⌧ , respectively in this chapter) used in detection

and feature description.

For the Expressions data, we used the settings provided in Dollár’s source code for application

to the Expressions data, which he also created. The code employs the Cuboids detector (separable

30

linear filters, as described in [DRCB05]) coupled with the Cuboids descriptor, which is a flattened

vector of gradients reduced via PCA to 100 dimensions.

For the Gestures and KTH data sets, we employ the Cuboids detector coupled with Histogram

of Oriented Flow (HoF) features. HoF features were computed using Dollár’s source code. We

found this combination to yield superior results when applied to the Gestures and KTH data

sets compared to what was used for Expressions. This combination was also shown to generate

good classification accuracy on KTH Actions by Wang et al.’s evaluation of space-time features

[WUK+09]. The HoF descriptor has 440 dimensions, which we employ with no dimensionality re-

duction because we found applying PCA to this descriptor reduced performance. For the Cuboids

detector, we set the spatial scale � = 2 and the temporal scale ⌧ = 4 for KTH, which are the

same settings in Wang et al.’s evaluation. For Gestures, we use � = 2 and ⌧ = 3, as a result of a

parameter selection search to optimize performance.

We use a vocabulary of size 150 for all evaluations, selected empirically as having the best

performance among sizes ranging from 50 to 1000. Each data set requires separate vocabulary

creation using the features extracted from training data. For each, the vocabulary was generated

by K-Means (where K is the vocabulary size) over a random sample of 10% of all the features

extracted from the data set. We chose to use 10% due to scalability issues in generating the vocab-

ulary from the features. Due to the randomness inherent in the vocabulary creation, we repeated

the process 20 times and chose the vocabulary that generated the best results.

The BOF representation was formed for each video by sampling features and mapping each to

the closest entry in the vocabulary (also called a codebook). The BOF representation for a video

is the normalized histogram of frequency counts of the vocabulary terms. In other words, with a

vocabulary of size 150, each video becomes a 150-element histogram, called the feature vector.

A distance matrix was created by computing the distances between all pairs of feature vectors in

a data set. We used the �2 histogram distance function, which is a common choice in the BOF

literature. The distance function is shown in Eq. 3.1, where i is the bin index of the histogram.

d(H1, H2) =

X

i

(H1(i)�H2(i))2

H1(i) +H2(i)
(3.1)

31

For the remainder of this chapter, this approach will be labeled “BOF.”

3.1.3 Product Manifold

We used the code provided by Lui with no modifications beyond those required to generate

pair-wise distance matrices on different data sets. Tracklets are extracted from the samples in the

data, as discussed below. The tracklet tensors are mapped onto the product manifold, as presented

in Chapter 2, and then the pair-wise distances are computed. For the remainder of this chapter, this

approach will be labeled “PM.”

For all three data sets, we extract tracklets having 32 frames where each frame is 20x20 pixels

in resolution. For Gestures and Expressions, the videos provided by the respective data sets are

already cropped spatially and temporally. Extracting a tracklet from either of these two data sets

is done by selecting the 32 frames temporally centered on the sample, and down-sampling each

frame using bilinear interpolation to be 20x20 pixels. To extract tracklets from KTH, we select a

fixed position space-time bounding box, based on annotations provided by Lui, available from him

upon request. As with Gestures and Expressions, we down-sample the spatial extents to 20x20

pixels and use the middle 32 frames from each sample. However, some actions do not have 32

consecutive frames of the subject on-screen. In that case, we use a smaller temporal window and

repeat frames as required to fill 32 frames.

3.1.4 Cluster Purity

We define cluster purity as the fraction of tracklets that were of the majority label in their

respective clusters. The minimum score always occurs when K = 1, in which case the cluster

purity is the ratio of the number of tracklets in the largest class to the total number in the data

set, N . At the other extreme, when K = N , the cluster purity will be 1.0, as all samples will be

assigned unique clusters and thus there will be no cluster “impurity.” The computation is shown

formally in Eq. 3.2, where C is the set of K clusters, x
i

are the tracklets being clustered, and | · |

indicates set cardinality.

32

C = {C1, C2, . . . , CK

}

XK

L

= {x
i

|x
i

2 CK

^ Label(x
i

) = L}

Cluster Purity =

1
N

KP
k=1

max

L2Labels |Xk

L

|

(3.2)

3.1.5 Hierarchical Clustering

We use agglomerative hierarchical clustering [FHT09] to group similar video samples. Hierar-

chical clustering is used because it produces deterministic results and the number of clusters can

be varied without re-computation. In a completely unsupervised learning environment, the number

of class labels is unknown, so having the different levels of similarity/generalization provided by

hierarchical clustering is appropriate.

The non-Euclidean PM representation is not easily clustered via K-means (or hierarchical K-

means), because computing the mean of points on the manifold is relatively difficult. The Karcher

Mean [Kar77] is one option for computing the mean of points on Grassmann manifolds, but this

is an iterative method that is most accurate when the samples being clustered are somewhat close

together. In certain cases, the computation may not converge. Instead, we selected a clustering

method that could be applied to both representations in exactly the same way by accepting a pre-

computed distance matrix as input.

Prior to performing the main evaluations presented in this Chapter, we performed a pilot study

to determine which of several possible linkage functions to use with agglomerative hierarchical

clustering. A linkage function computes the distance between two clusters and is used to determine

which two clusters should be merged at each stage of the agglomerative process.

We evaluated the following linkage functions: Single [FHT09] (nearest neighbor between clus-

ter members), Complete [FHT09] (furthest neighbor), Average [FHT09] (average distance), Mc-

Quitty’s [McQ66] (weighted average based on recursive agglomerations), and Ward’s [War63]

(minimum incremental increase in inter-cluster variance).

Figure 3.2 shows a comparison of the linkage methods when employing the BOF representation

for measuring the similarity of Gestures. In this figure, we plot the cluster purity of the Gesture

class label against the number of clusters, K, which was varied from 1 to 30. We perform a single

33

0 5 10 15 20 25 30

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

BOF Gesture Clustering by Linkage

K

C
lu

st
er

 A
cc

ur
ac

y
Single
Complete
Average
McQuitty
Ward

BOF Gesture Clustering by Linkage
Cl

us
te

r P
ur

ity

Number of Clusters

Figure 3.2: Comparison of hierarchical clustering linkage methods. This graph is formed using
the Bag of Features method on the Gestures data set. This graph is representative of the linkage
performance over all data sets in that Ward’s linkage was superior in all cases.

hierarchical clustering per curve, and cut the resulting dendrogram at the appropriate level to yield

K clusters. When the ideal number of clusters is unknown, the full curve may be more indicative

than any single point in measuring performance.

We performed this comparison for both BOF and PM over all three data sets and determined

that Ward’s linkage generated superior results in all cases. The conclusion of this pilot study was

the use of Ward’s linkage for the subsequent analysis described in this chapter.

3.2 Results

We compared BOF and PM for clustering Expressions, Gestures, and KTH actions. Each

evaluation is described below. A summary comparison of the relative performance of BOF and

PM is illustrated in Figure 3.3. This figure presents the performance curve when the generated

34

Expression Clustering

Number of Clusters

C
lu

st
er

 A
cc

ur
ac

y

0.
00

0.
25

0.
50

0.
75

1.
00

1 4 7 10 14 18 22 26 30

PM
BOF

Gesture Clustering

Number of Clusters

C
lu

st
er

 A
cc

ur
ac

y

0.
00

0.
25

0.
50

0.
75

1.
00

1 4 7 10 14 18 22 26 30

PM
BOF

KTH Action Clustering

Number of Clusters

C
lu

st
er

 A
cc

ur
ac

y

0.
00

0.
25

0.
50

0.
75

1.
00

1 4 7 10 14 18 22 26 30

PM
BOF

Cl
us

te
r P

ur
ity

Figure 3.3: PM versus BOF methods compared against the nominal class labels on all three data
sets. Vertical line indicates number of nominal classes in the data set (6,9,6, respectively). PM
cluster purity on KTH Actions is 90.7% at K=6.

clusters are compared against the nominal class labels provided by the data set. There are 6 classes

in KTH Actions and Expressions, and 9 classes for Gestures, indicated by the vertical dotted black

line. The solid red curve shows the cluster purity of PM over all K, the amber dotted curve shows

BOF.

From this figure, PM strongly outperforms BOF on the KTH Actions and Gestures data, while

yielding comparable results on Expressions. This may be in part because Dollár developed both

the Expressions data set and the BOF implementation we adapted for this study, and thus the

implementation may have a level of tuning for this data set not present in the others. However, we

believe other factors are involved, which we present later.

A key result shown in Figure 3.3 is the performance of PM on KTH Actions. At K = 6,

the cluster purity is 90.7%, suggesting that the KTH data set is intrinsically separable along the

class labels using PM, and that one could discover the classes if they were not known a-priori.

In [LBK10], Lui et al. report nearest-neighbor classification results on KTH Actions using the

PM representation scoring 96-97%, depending on the classification protocol (fixed partitioning of

the data versus leave-one-out). Other features-based approaches also have classification accura-

cies on KTH in the mid-to-upper 90’s, but they employ strong supervised classifiers. For exam-

ple Kovashka and Grauman [KG10] scores 94.5% using hierarchical features and multiple kernel

learning.

As with KTH Actions, the cluster purity on Gestures shows a big gap between PM and BOF.

35

We show in more detailed analysis, below, that the ability for BOF and PM to discriminate hand

shape is a limiting factor in cluster purity. Since PM is better able to distinguish between hand

shapes undergoing the same motion, it produces purer clusters.

In our work we desire representations for unsupervised learning, so the difference between the

PM representation and the BOF representation, in terms of how much supervision is required to

separate the data along the desired partitions, is important. Our results suggest that BOF requires

more supervision for high classification accuracy because clustering alone does not effectively

separate the data. We explore these and other aspects in more detail, presented according to data

set, below.

For each data set, we explore the purity in comparison to alternative labelings, such as subject,

direction of motion, or lighting. We select the alternative labels based on the information available

about the data set. For example, there are 25 subjects in the KTH data and the data is provided in

such a way that this label is easy to determine, thus subject identity is one alternative labeling we

employ for KTH. The reason we explore alternative labelings is so that we can gain insight into

why the performance differs between the representations.

3.2.1 Expressions

We compared the clusters generated on the Expressions data to four labelings: the nominal

Expression label from the data set (6 classes), the Set label (4 sets), and labels for Subject (2) and

Lighting (2). Figure 3.4 shows the results. Although the performance of the two methods is similar

for Expression, Set, and Lighting labels, BOF clustering is much more closely aligned to subject

identity than PM, as evidenced by the significantly higher curve.

With BOF, the Subject labeling generates less cluster impurity than Expressions. While the

higher curve is indicative of the fact that there are only two subjects as opposed to six expressions,

it is also true that with PM, the Subject labeling does not behave the same way. The subject

identity is seemingly less useful to PM when grouping the expression video samples than it is with

BOF. This leads to the speculation that if this small data set were expanded to include many more

subjects, the sensitivity to subject identity evidenced by BOF may lead to decreased cluster purity

36

Expressions - PM
Cl

us
te

r P
ur

ity

Number of Clusters

Expressions - PMBOF Expressions Clustering

Number of Clusters

C
lu

st
er

 A
cc

ur
ac

y

0.
00

0.
20

0.
40

0.
60

0.
80

1.
00

1 4 7 10 14 18 22 26 30

65.1 at K=6

PM Expressions Clustering

Number of Clusters

C
lu

st
er

 A
cc

ur
ac

y

0.
00

0.
20

0.
40

0.
60

0.
80

1.
00

1 3 5 7 9 12 15 18 21 24 27 30

Expression
Set
Subject
Lighting

66.7 at K=6

Expressions - BOF

Number of Clusters

Figure 3.4: Clustering of Expressions data. BOF clusters are more closely aligned to the Subject
labeling, but both methods perform similarly on other labels.

when labeling by Expression, while PM performance might be less affected.

3.2.2 Gestures

We evaluated BOF and PM clustering against the following labels applied to the Cambridge

Gestures data set: Gesture (the nominal class label, 9 classes), Set (5 sets with varying lighting

conditions), Direction of motion (3 motions as per Figure 2.1), and Shape (Flat, Spread, and Pair

of fingers). Results are shown in Figure 3.5.

One immediately obvious aspect of Figure 3.5 is that both methods generate clusters that are

nearly completely separable along direction of motion (98% purity at all K ranges for BOF and

100% for PM). At the same time, Gesture class labeling is nearly identical in performance to Shape

labeling for both methods.

From this, we infer that the hierarchical clustering groups the data first by motion direction, and

later by shape. Further, because the overall performance of BOF is much lower than PM, it may

be that PM is doing a much better job differentiating shape, while BOF struggles in this regard.

This would not be surprising because BOF discards locations of features in the representation. As

such, the histogram of space-time features located near the fingertips of the spread hand and flat

37

Gestures - PM
Cl

us
te

r P
ur

ity

Number of Clusters

Gestures - BOF

Number of Clusters

Gestures - PMGestures - BOFBOF Gestures Clustering

Number of Clusters

C
lu

st
er

 A
cc

ur
ac

y

0.
00

0.
20

0.
40

0.
60

0.
80

1.
00

1 4 7 10 14 18 22 26 30

48.6 at K=9

PM Gestures Clustering

Number of Clusters

C
lu

st
er

 A
cc

ur
ac

y

0.
00

0.
20

0.
40

0.
60

0.
80

1.
00

1 3 5 7 9 12 15 18 21 24 27 30

Gesture
Set
Dir
Shape

76.9 at K=9

Figure 3.5: Clustering of Gestures data. Direction of motion is nearly perfectly separated by both
methods. Both methods show that Gesture class labeling is limited by the Shape.

hand may look very similar, and thus difficult to differentiate. The PM method, however, treats all

pixels equally, preserving location information, and thus having less confusion between the hand

shapes. To test this inference, we further investigate the details of how clusters align to labels in

the Gesture data set.

Table 3.1: Gesture labels compared to 3 clusters. Please refer to the body text for interpretation.

BOF Cluster ID PM Cluster ID
Label 1 2 3 1 2 3

Flat Left 99 0 1 100 0 0
Spread Left 100 0 0 100 0 0

Pair Left 100 0 0 100 0 0
Flat Right 0 98 2 0 100 0

Spread Right 1 99 0 0 100 0
Pair Right 1 97 2 0 100 0

Flat Contract 0 4 96 0 0 100
Spread Contract 0 6 94 0 0 100

Pair Contract 0 2 98 0 0 100

Given the strong affinity for both methods with the three gesture directions, we investigated

the cluster purity when comparing the nominal class labels to clusters when K = 3. Note that the

38

gestures are defined by three shapes (Flat, Spread, Pair of fingers) combined with three motions

(Left, Right, Contract), and so by limiting the number of clusters to three, we can determine if

either of these aspects (shape/motion) is the first aspect of similarity that guides the grouping.

The results in Table 3.1 show both methods divide the videos into clusters according to direc-

tion of motion first. In the table, the three clusters are the columns 1-3 shown for both methods.

The rows indicate the count of gestures with the given label in that cluster. Reading the table, one

can see that the first cluster of BOF consists of 99 “Flat Left” gestures, 100 “Spread Left”, 100

“Pair Left”, and only two other videos that show a non-leftwards motion direction. Similarly, the

elements of cluster 2 are dominated by rightward gestures, and the final cluster consists mostly of

gestures with a contracting motion. For PM the grouping of gestures according to motion direction

is 100% pure – all leftwards gestures are in cluster 1, all rightwards in cluster 2, and all contractions

in cluster 3.

Recall that the clustering is hierarchical, so each of the three clusters is further broken down

into sub-clusters when one cuts deeper in the dendrogram. Allowing each of these three top-level

clusters to be further divided into threes, we raise K from three to nine. Since there are nine gesture

labels in the data set, and we know from Figure 3.5 that the cluster purity is 48.6% for BOF and

76.9% for PM, we expect to see different behavior at this level.

Table 3.2 shows the results, and is read in the same was as explained for Table 3.1. While

PM begins to differentiate based on shape, BOF struggles to do so. BOF maintains its confusion

between shapes within the same direction, while PM manages to cleanly separate Leftward motion

into the three Shapes, and partially separate the Contraction motion as well. BOF has only two

gestures, Flat Left and Flat Contract, that are over 80% pure in their respective clusters, while PM

has five of the nine at this level of purity.

This evidence supports our idea that shape is secondary to the clustering behind motion, and it

appears to be the limiting factor on the overall agreement between the class labels and the clusters.

Since BOF discards the feature locations in the feature vector representation, it has less power to

differentiate between different hand shapes undergoing the same motion.

39

Table 3.2: Gesture labels compared to 9 clusters.

Cluster ID - BOF Representation
Label 1 2 3 4 5 6 7 8 9

Flat Left 95 4 0 0 0 0 0 1 0
Spread Left 46 54 0 0 0 0 0 0 0

Pair Left 26 74 0 0 0 0 0 0 0
Flat Right 0 0 24 35 9 13 17 2 0

Spread Right 0 1 30 25 20 6 18 0 0
Pair Right 0 1 25 26 18 4 24 2 0

Flat Contract 0 0 1 2 0 0 1 92 4
Spread Contract 0 0 2 3 0 0 1 40 54

Pair Contract 0 0 1 0 1 0 0 52 46
Cluster ID - PM Representation

Label 1 2 3 4 5 6 7 8 9
Flat Left 93 0 0 0 0 0 0 7 0

Spread Left 3 0 0 0 94 0 0 3 0
Pair Left 0 0 0 0 0 0 0 100 0

Flat Right 0 43 57 0 0 0 0 0 0
Spread Right 0 85 15 0 0 0 0 0 0

Pair Right 0 62 38 0 0 0 0 0 0
Flat Contract 0 0 0 100 0 0 0 0 0

Spread Contract 0 0 0 0 0 80 20 0 0
Pair Contract 0 0 0 17 0 0 41 0 42

Restating an earlier point, with no supervision, it is the inherent biases of the two represen-

tations and their related distance measures that dictate which generates clusters that are better

aligned with the desired labels. As we saw with Expressions, the BOF representation aligns more

strongly with subject identity than PM, which is not desirable if the behavior clustering is meant

to be subject-invariant. In the case of Gestures, the design bias of BOF to ignore relative spatio-

temporal positions causes it to fail in many instances to match the nominal gesture label.

3.2.3 KTH Actions

We chose the following labels to apply to the KTH Actions data set: Action (the nominal class

label, 6 classes), Scene (4 scene types), Gait (2 types: gait or stationary actions, as per Figure 2.1),

Location (2 types: indoors and outdoors, 75% are outdoors), and Subject (25 people). Results are

shown in Figure 3.6. We did not expect either method to align clusters against the Subject label, as

40

KTH Actions - PM
Cl

us
te

r P
ur

ity

Number of Clusters

KTH Actions - BOF

Number of Clusters

KTH Actions - PMKTH Actions - BOFBOF KTH Actions Clustering

Number of Clusters

C
lu

st
er

 A
cc

ur
ac

y

0.
00

0.
20

0.
40

0.
60

0.
80

1.
00

1 4 7 10 14 18 22 26 30

46.2 at K=6

PM KTH Actions Clustering

Number of Clusters

C
lu

st
er

 A
cc

ur
ac

y

0.
00

0.
20

0.
40

0.
60

0.
80

1.
00

1 3 5 7 9 12 15 18 21 24 27 30

Action
Scene
Gait
Loc
Subject

90.7 at K=6

Figure 3.6: Clustering of KTH Actions. Both methods easily distinguish between Gait and Non-
Gait actions. PM clustering is over 90% pure when judged against the nominal labels and restricted
to K = 6, the number of classes in the set.

the individuals can be hard to discern, there are 25 of them, and Scene 3 uses changes of clothing to

further make identifying the subject difficult. Separating the actions based on Gait labeling proved

easy for both methods. Although the performance curve for Location appears high, the base rate

is 75% outdoors, and the results did not rise much above that minimum score. Clustering based on

PM distances was very closely aligned to the nominal class labels, as shown by the 90.7% cluster

purity at K = 6.

Unlike with Gestures, we did not find a semantic labeling that best explains the performance

of the nominal class labels. Given the high performance of PM clustering on the class labels,

one is led to believe that the classes are inherently separable in most cases when using the PM

representation, but not when using BOF.

Given that Support Vector Machines trained with similar BOF representations achieve classifi-

cation accuracies in the upper 80’s to lower 90’s% (see Wang et al. [WUK+09]), it is revealing that

the clustering performance is comparatively poor on KTH Actions. Because of this, we believe that

supervised training may be more important for achieving high accuracy with BOF representations

of full-body actions than it is for PM representations.

41

3.3 Conclusions

Lacking any supervision, and outside a forced-choice paradigm, it is important to design repre-

sentations that are amenable to clustering human activities along semantically meaningful aspects.

In this chapter, we presented performance differences between Product Manifold and Bag of Fea-

tures representations over three data sets representing human facial expressions, hand gestures, and

full-body actions. The pair-wise distance matrices generated by PM representations of the video

samples led to superior clustering purity when compared with the nominal class labels of actions

and gestures, and performed similarly to BOF on expressions.

We also found that while gross motions were easily clustered by both methods, the lack of

preservation of structural information inherent to the BOF representation leads to limitations that

are not easily overcome without supervised training. This was evidenced by the poor separation of

shapes in the hand gestures data by BOF, and the overall poor performance on full-body actions.

There are BOF-based action recognition approaches that add additional spatial information to the

representation, such as by using pyramid structures [KG10]. While it may be likely that BOF

clustering performance would improve with the added spatial information, the cost is in increased

design and computational complexity. That said, we encourage other researchers to follow the

protocol we presented to facilitate comparative evaluations for unsupervised action learning.

42

Chapter 4
Learning from Streaming Video

In the previous chapter, we compared the Product Manifold representation with Bag of Features

and determined that the Product Manifold is more amenable to unsupervised learning. In this

chapter, we present a method for learning actions from unlabeled streaming video data using the

PM representation. 1

The method proposed in this chapter requires no prior knowledge of an expected number of

labels/classes, requires no silhouette extraction, is tolerant to minor tracking errors and jitter, and

can operate at near real-time speed on the tested data set. Further, we show that the system is

amenable to incremental learning as anomalous activities are detected in the video stream. We

demonstrate performance using the ETHZ Living Room data set which is described in Chapter 2.

We make no assumption on the number of actions a subject may exhibit in a given length of time,

and we allow for multiple labels to be applied simultaneously. Because there remain scalability

issues with the method as presented in this chapter, we address scalability of both learning and

recognition in subsequent chapters.

4.1 Method

We propose an unsupervised learning method for action recognition based on clustering track-

lets (as defined in Section §2.4) that are extracted from tracking subjects in streaming videos. Each

tracklet captures the appearance and motion of an entity for a second or two of time. We cluster the

tracklets using the Product Manifold distance. In grouping similar tracklets, we find the repeated

actions in the video. We perform clustering with no foreknowledge of either the expected types

or numbers of actions present in the data. The idea is to discover the set of action labels from the

video.

1Material presented in this chapter was previously published by the author in [OD11b, OLD12].

43

The set of clusters may be given labels by the users of the system, a process we call “Selective

Guidance.” It is important to note that the system would work with internally generated identifiers,

although it would be challenging for the user to know the significance of a generic output like “ac-

tion 12” instead of “walking.” From each labeled cluster, we identify a small number of exemplar

tracklets that best represent the group. Not all clusters are easily described with a concise label.

For those that are easily described, we can apply that label to the cluster’s exemplar(s). For those

clusters that are semantically meaningless, we apply no label and extract no exemplar for run-time

matching. Another strategy for handling the difficult-to-label clusters would be to explicitly label

them as “unknown”. However, we did not explore this option.

The set of exemplars is used in a nearest-neighbor matching strategy to detect and label actions

on previously unseen test video. We perform detection on streaming video without pre-segmenting

the space-time regions of interest. As an entity being tracked changes behavior, the system will

detect the change and apply a new action label to the subject when appropriate.

At times, a tracklet from the test video may not be a good match to any of the exemplars. In

such instances, the system will apply no label to the tracklet, and it will be remembered as a novel

detection. The set of novel detections can be evaluated to produce additional exemplars, and thus

the system can learn over time, boot-strapped from an initial training set. Further details on the

various aspects of our approach are presented below.

4.1.1 Data

We use the ETHZ Living Room data (ETHZ) in this Chapter. We selected this data set because

it represents the continuous surveillance problem better than many of the more popular action

recognition benchmarks, such as those used in Chapter 3.

Recall from the description in Chapter 2 that ETHZ provides three longer-duration video sam-

ples, the first of which is over 7,000 frames long. The first video (Seq1) is intended to allow

an unsupervised system to learn the nominal behavior of the room’s occupant. The second two

videos (Seq2 and Seq3) are shorter, and are used to present novel behaviors, such as falling down

or panicked gesticulations, to measure a system’s ability to detect anomalous events. Figures 4.1

44

and 4.2 show sample images from the first and third sequences, respectively, of the data set. The

annotations shown in the images, i.e. the blue bounding boxes and the action labels, are the result

of the method described in this chapter.

Figure 4.1: Example of an activity detection from ETHZ Seq1.

Figure 4.2: Example of an activity detection from ETHZ Seq3.

4.1.2 Tracks and Tracklets

To generate the tracks on ETHZ video sequences, we perform background subtraction using

the median image of the first 2,000 frames as the background model. We use the bounding box of

the foreground mask to track the subject in the video. Processing is performed using gray-scale

imagery.

45

Action recognition approaches that rely on silhouette extraction [LJD09, NGV10] can be nega-

tively impacted when the foreground mask is inaccurate. An important advantage to our method is

that it processes all pixels within the bounding box, requiring no silhouette mask, and is therefore

less sensitive to foreground/background segmentation challenges.

A single track of a person over time will give rise to numerous tracklets, some of which may

clearly contain an action, and others may represent transitions between actions and thus have no

clear semantic label (see Figure 4.5 for an example). The size of each frame in the tracklet is

kept small in order to capture only large-scale structure, eliminate high-frequency features, and

de-emphasize individual appearance. In this investigation, we create tracklets having 48 frames of

32x32 pixels, which captures about 2 seconds of activity at a time, at a frame rate of 24 fps.

To extract tracklets from the video, we employ a sliding temporal window strategy, overlapping

by 16 frames, for slicing the long duration track of the room’s occupant into many shorter tracklets.

The bounding box of a track typically varies from frame-to-frame, and so the resulting tracklet can

suffer from significant instability that negatively impacts the PM distance computation. To stabilize

the tracks, we compute the bounding box that contains the spatial extent of the entire tracklet, and

we use that box to clip tracklet tiles from corresponding frames in the video. The benefit of

this simple stabilization strategy is illustrated in Figure 4.3. Beyond the stabilization benefit, this

method for extracting tracklets from video also has the effect of better preserving direction and

speed of motion than simply clipping the tracked region using a tight bounding box.

4.1.3 Clustering and Exemplar Selection

Given a set of tracklets extracted from the training video, we compute the pair-wise PM dis-

tances to form a distance matrix. As in Chapter 3, we use agglomerative hierarchical clustering

with Ward’s linkage to generate a cluster tree. The tree can be cut at a particular linkage threshold

value to generate a set of clusters. With no prior knowledge of the expected number of clusters, it

can be challenging to select the appropriate cut. It is an open question on how best to measure the

clustering quality lacking any prior information. However, we have observed that the performance

of our method rises quickly as K is increased, and then plateaus at a high level for K greater than

46

Figure 4.3: Example tracklet created without (top) and with (bottom) stabilization strategy. Top
tracklet uses the bounding rectangles from the track to clip tiles from the source. Bottom uses the
full spatial extent of the track within the temporal window to define a single clipping region, and
thus stabilizes the images and corrects for minor track drift. In both cases, the clipped tiles are
rescaled to fit the fixed tracklet dimensions.

approximately ten percent of the training sample size.

To convince ourselves that this is true, we measured the Cluster Purity (Eq. 3.2) against the

choice of K, illustrated in Figure 4.4. Generating this plot requires labeling the training data, but

this is not an integral part of our method. Instead, for the evaluations described later, we arbitrarily

chose values of K equal to 5, 10, 15, and 20 percent of the training set size.

The PM distance measure is non-Euclidean, and there is no closed-form computation for the

mean value of the samples in a cluster. Instead, exemplars (medoids) can be selected from within

each cluster that minimize the sum of the distances to the other cluster members. More than one

exemplar can be selected from within a cluster by removing the best medoid and repeating the

process. Interestingly, we found that pulling two exemplars from clusters that represent “sitting”

or “bending” resulted in one of the samples exhibiting the downward aspect of the motion and

the other exemplar exhibiting the upward aspect (e.g., bending down vs. straightening back up).

It may be that these videos are close enough on two of three factor manifolds to form a well-

defined cluster, yet in the third factor (e.g.,vertical motion), they are separable into two sub-classes.

However, we did not further explore the implications of this observation.

47

0 10 20 30 40 50

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Cluster Accuracy - ETHZ Seq1

Number of Clusters

C
lu

st
er

 A
cc

ur
ac

y
0.961

Cluster Purity ETHZ Seq. 1

Number of Clusters

Cl
us

te
r P

ur
ity

Figure 4.4: Cluster purity on ETHZ Seq1 tracklets. The sharp rise followed by a long plateau
indicates many K values work well.

4.1.4 Detection

After exemplars have been trained, we use them to match against tracklets in the test videos.

This process occurs in near-real-time on the streaming video. We compute the 3-Nearest-Neighbors

using the PM distance between each new tracklet and the exemplars. Soft weighting is used so that

selected exemplars contribute their labels to the new tracklet based on how close they are. A stan-

dard Gaussian decay is used with � determined from the distribution of distances in the training

samples. The use of soft weighting is important for detecting anomalies, so that when the 3-

Nearest Neighbors are far away, we avoid blindly applying existing labels to what might be a novel

observation. This consideration will be more clear as we further describe our labeling method,

below.

We allow for multiple labels. Each tracklet maintains a bit vector of length equal to the cardi-

48

nality of the label set. In the bit-vector, a 1 indicates the corresponding label applies to the tracklet,

and a 0 means it does not. The weighted label vectors from the nearest exemplars are summed

component-wise to produce the raw label vector of the new tracklet. A score threshold is applied

to each component to generate the label bit vector. It is possible, even desirable, that the label

vector will result in all zeros should none of the nearest exemplars be close enough to the sample.

Formally, the scoring computation is shown in Equation 4.1, where !
i

is the weight based on

the PM distance d(i, x) between exemplar i and tracklet x, L
i

is the label vector for exemplar

i, P is the number of labels, sp is the component score computed as the weighted sum of the

corresponding components from the K nearest exemplars, and L
x

is the computed label for tracklet

x by comparing the component scores to a constant threshold t.

!
i

= e�d(i,x)2/2�2

L
i

= (l1
i

, l2
i

, . . . , lP
i

)

sp =
KX

i=1

!
i

lp
i

, 8p 2 {1 . . . P}

L
x

= (s1 � t, s2 � t, . . . , sp � t) (4.1)

4.1.5 Anomalies and Incremental Learning

An anomaly is a tracklet that is too far from the exemplars to produce a non-zero label set.

After the initial exemplars have been produced from the training data, we can run the system with

a relatively high score threshold in order to generate a set of anomalous samples. We combine the

anomalous tracklets with the current exemplar set, and then recompute the clustering over only the

combined set (i.e. omitting all of the original training tracklets), yet keeping the number of output

clusters constant. In the resulting clusters, we look for any of the anomalous samples that are not

grouped with current exemplars. This subset of the anomalous samples is selected to be added to

the updated exemplar set, and selective guidance is used to generate labels where appropriate, or

to assign the new exemplar to an existing label if it represents a novel aspect of a known action.

49

Figure 4.5: Example of a tracklet labeled from multiple exemplars. This tracklet captures the
transition between multiple states, and is thus correctly described by the unordered label set
{walk,sit,recline}. Sample frames are from the 48 frame, 32x32 pixel tracklet.

4.2 Results

4.2.1 Exemplar Selection

We used Seq1 to learn clusters and to generate the initial set of exemplars. We tried four values

of K to use in our initial clustering, where we selected a number of clusters equal to 5%, 10%,

15%, and 20% of the number of training tracklets. Having extracted 283 tracklets from a sampling

of video Seq1 for training, the values for K were 14, 28, 42, and 56, respectively. We selected one

exemplar per cluster (the medoid).

Figure 4.6 shows the accuracy when performing action detection on the training set using each

set of examplars, and over a range of score thresholds. The accuracy is measured in terms of the

average F1 score between the predicted and ground truth label bit vectors. The F1 score is the

harmonic mean of precision and recall computed over the bit vector.

It is not surprising that having more exemplars leads to better overall performance, yet the

performance drop when decreasing from 56 to 42 exemplars is not severe. When using the best

score threshold of 0.8, the performance drops by 3% from 56 to 42, and 8% from 56 to 28. This

adds support to our belief that performance is not overly sensitive to the choice of K, as long as K

is beyond the steeply rising part of the curve, as described earlier (see Figure 4.4).

In the next section we apply exemplars learned from Seq1 to detection on Seq2 and 3. We

expect accuracy to drop because the testing sequences contain actions which do not appear in the

training data, however this aspect also allows us to evaluate whether incremental learning of new

exemplars has a positive effect on the accuracy.

50

0.6 0.8 1.0 1.2 1.4 1.6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Threshold

A
cc

ur
ac

y

14 Exemplars
28 Exemplars
42 Exemplars
56 Exemplars

Detection Accuracy ETHZ Seq1

0.922

Figure 4.6: Validation accuracy using different exemplar sets and thresholds on Seq1. Accuracy is
the average F1 score between predicted and ground truth label bit vectors. Threshold is the mini-
mum sum of the weighted bits from the 3 nearest exemplars required to activate the corresponding
label bit on the tracklet.

4.2.2 Action Detection and Incremental Learning

Using each set of exemplars trained from Seq1, representing approximately 5, 10, 15, and 20%

of the training tracklets, we perform action detection on the other two sequences, Seq2 and Seq3.

Figure 4.7 shows the results. Surprisingly, on the test data, the set of 28 exemplars performs as

good or better than the larger sets over most values of the threshold parameter.

Impairing the performance of the action detection is the fact that the testing sequences contain

novel actions not represented in the training. Each novel action generates multiple tracklets, each

of which fail to be labeled correctly. Seq3 appears to be slightly harder than Seq2. This may be

51

in part due to the fact that there is a lighting change in Seq3 about half way through, which causes

some additional error in the low level tracking of the subject.

0.6 0.8 1.0 1.2 1.4 1.6
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Threshold

A
cc

ur
ac

y

14 Exemplars
28 Exemplars
42 Exemplars
56 Exemplars

Detection Accuracy ETHZ Seq3

0.586

0.6 0.8 1.0 1.2 1.4 1.6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Threshold

A
cc

ur
ac

y

14 Exemplars
28 Exemplars
42 Exemplars
56 Exemplars

Detection Accuracy ETHZ Seq2

0.629

Action Detection on Seq2 and Seq3
ETHZ Seq2 ETHZ Seq3

Figure 4.7: Detection accuracy on Seq2 (left) and Seq3 (right) using each of the exemplar sets
learned from Seq1. Seq2 and Seq3 contain repetitions of novel actions not seen in the training
sequence, so detection accuracy is expected to be impaired.

Figure 4.5 shows an example of a single tracklet from Seq2 that was given multiple labels. The

detection was on a tracklet where the tracklet duration happened to contain the transition between

three actions. The advantage of allowing multiple labels is that such interstitial observations may

be described as a set of appropriate labels. There are no exemplars that were learned that had more

than two labels. This result required the contribution from two or more exemplars that had parts

that were similar enough to a corresponding exemplar.

Next, we evaluate the effect of incremental learning. Seq2 and Seq3 contain the novel behav-

iors: falling down, jumping, reclining on the couch, and panicking. We perform action detection

on Seq2 with the expectation that novel actions will generate tracklets that are assigned no labels

because they are too far from any of the exemplars, and thus will be marked as anomalous. The

anomalous tracklets from Seq2 are “folded” into the labeled exemplars according to the method

described in §4.1.5. The new combined exemplar set is then used for detection on Seq3. Finally,

52

we repeat this process, reversing the roles of Seq2 and 3.

Figure 4.8 shows the set of fourteen new exemplars identified from Seq2. Three of the new

exemplars were variants of the “walk” action and two represented “sit.” Of the novel actions, one

exemplar was selected for “jump,” two for “recline,” three for “fall,” and three for “panic.”

Walk Walk Jump Sit

Sit Recline Recline Walk

Fall Fall Fall Panic

Panic Panic

Figure 4.8: Fourteen new exemplars were learned from the ETHZ Seq2 video, representing the
novel actions of jumping, reclining, falling, and panicking. Images are representative frames from
the 48 frame, 32x32 pixel tracklets.

Detection accuracy before and after incremental learning is shown in Figure 4.9, which presents

the detection accuracy on the test sequences with and without the incremental learning step. For

this figure, only the performance for the set of 28 exemplars is shown. There is nearly a 10%

performance improvement after incorporating the new exemplars. Of note is that the threshold

53

score for best performance is lower than before. This is because with 3NN detection and novel

actions that are only supported by a few exemplars, a more sensitive threshold is required.

0.4 0.5 0.6 0.7 0.8 0.9

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Threshold

A
cc

ur
ac

y

Seq2 - No Incremental Learning
Seq2 - With Incremental Learning
Seq3 - No Incremental Learning
Seq3 - With Incremental Learning

Incremental Learning Impact

0.679

Figure 4.9: Detection accuracy with and without incremental learning.

4.3 Conclusions

We believe that to make progress on the fundamental challenge of human behavior recognition

in continuous video, more research is required on open-world, incremental learning methods that

require a minimum of supervision. In this chapter, we presented a step in this direction by showing

how the Product Manifold representation for measuring similarity between video tracklets can be

applied to unsupervised, incremental learning of actions.

In addition to those described earlier, our approach has the additional advantage of not requir-

ing a large number of parameters and design choices. This is a clear improvement over many

54

approaches that require parameter selection and design optimizations for feature detection, feature

extraction, dimensionality reduction, codebook size, and so on. As an unsupervised method, we

require no extensive training and validation stages.

However, there is a drawback with the proposed method. The clustering stage requires the

construction of a distance matrix, which is an O(N2
) operation in terms of the number of training

tracklets. Each distance computation takes approximately 100ms, depending upon the dimension

of the tracklets. For a modest sized data set, this poses no problem (less than one hour for the

ETHZ data). For a data set that has ten thousand tracklets, however, computation of the distance

matrix is time-consuming. There will be N ·(N�1)/2 distance computations required, each taking

100ms. Total time to construct a 10K by 10K distance matrix would be about 58 days, assuming a

serial computation. In later chapters of this thesis, we address this scalability concern.

55

Chapter 5
Approximate Nearest Neighbors

In the previous chapter, we presented a method for learning actions from unlabeled video

streams using the Product Manifold representation. We also stated that the method presented in

Chapter 4 has scalability limitations. In this chapter, we begin to address the scalability concerns

involved when clustering actions represented using the Product Manifold.

Our high-level approach is to use an Approximate Nearest Neighbor (ANN) index, which we

define below, to improve the scalability of similarity queries over a large corpus of tracklet samples.

A challenge that arises in doing so relates to the difficulties in applying existing ANN indexing

methods to non-vector data representations. This chapter addresses that challenge in general, and

thus takes a short detour from action recognition in order to present a method for indexing general

metric spaces. In Chapters 6 and 7 which follow, we apply this ANN indexing method to action

classification and clustering.1

Finding the (exact) K nearest neighbors of a query item in large data sets can be computation-

ally prohibitive. In such cases, finding a set of neighbors which approximates the nearest neighbors

may suffice. Approximate Nearest Neighbor (ANN) algorithms are designed to quickly yield a set

of K neighbors which are close to a given query item, but with no guarantee that the set represents

the K nearest.

The popularity of ANN indexing methods in computer vision has grown with the interest in

large-scale image retrieval using Bag of Features representations. Nister and Stewenius were

among the first to demonstrate fast image retrieval from a data set consisting of a million im-

ages and billions of descriptors [NS06]. Underlying their method’s scalability is a Hierarchical

K-Means (HKM) structure for indexing the visual vocabulary. Along similar lines, Mooseman et

al. present randomized clustering forests for building fast visual vocabularies [MTJ06]. Philbin et

1Material presented in this chapter was published by the author in [OD13].

56

al. [PCI+07] use a forest of kd-trees (KDT) to speed up k-means clustering of visual vocabularies.

Silpa-Anan and Hartley explored optimizations for KDT to speed up image descriptor matching

[SH08]. Another popular approach to ANN indexing is through Locality Sensitive Hashing (LSH)

[GIM99], which uses a hashing mechanism such that neighboring data samples have similar hash

codes.

Today, there are popular implementations of KDT and HKM that make these methods de facto

standards in the vision community. FLANN (Fast Library for Approximate Nearest Neighbors)

is a software package developed by Muja and Lowe that includes implementations of KDT and

HKM and a mechanism for automatically selecting and tuning these algorithms for a given data

set [ML09]. FLANN is also packaged as part of the well-known OpenCV library [BK08]. Another

popular computer vision library containing implementations of HKM and KDT is the VLFeat

package from Vedaldi and Fulkerson [VF10].

Although KDT, HKM and LSH are well-known and widely used ANN algorithms, they assume

the data samples are points in a vector space. In this thesis, we focus on manifold representations

for action recognition, and thus our data elements are not vectors. The geodesic distance on a

Grassmann manifold obeys the triangle inequality, positivity constraint, and symmetry requirement

of a metric. There are methods, which we generically refer to as metric trees (detailed in §5.1), for

nearest-neighbor and ANN indexing of general metric spaces.

However, there is little precedent in the literature for employing metric trees in contemporary

computer vision applications. Since data is often represented by feature vectors with similarity

measured using metrics such as the Euclidean or L1 norm, in principle, metric trees could be

used for image retrieval or nearest-neighbor classification. Instead, the use of KDT and HKM has

dominated the discussion. Is the reason for this because metric trees perform poorly on vector data,

or have they simply have been overlooked by those in the field?

An answer to this question comes from the analysis presented in this chapter. We introduce an

ANN indexing method, called a Proximity Forest, which is a forest of randomized metric trees. In

later chapters, we apply specializations of the Proximity Forest to action recognition. Before that

discussion, we first validate the method in a comparative evaluation with KDT and HKM methods

57

on vector data.

The contribution from this chapter is two-fold. First, the Proximity Forest may be the first de-

scription of a forest of randomized metric trees. Second, and more central to this discussion, upon

comparing Proximity Forests with KDT and HKM, the results suggest that randomized forests of

metric trees yield substantially more accurate results on traditional computer vision data represen-

tations. In the following chapters, we show how a specific variant of a Proximity Forest can be

applied for scalable nearest-neighbor action recognition and unsupervised action clustering.

5.1 ANN Algorithms

A kd-tree is an index for exact nearest neighbor query that partitions a vector space by recur-

sively generating hyperplanes to cut along coordinates where there is maximal variance in the data

[FBF77]. A modification to support ANN indexing with kd-trees is the addition of a priority queue

to eliminate backtracking in queries [BL97, AMN+98]. Forests of kd-trees consist of kd-trees

that randomize the splitting criteria by stochastically choosing the partitioning coordinate. The

effectiveness and speed of KDT (e.g., [SH08]) has made this approach very popular.

ANN queries can also be supported via hierarchical k-means clustering. Nister and Stewenius

describe HKM in [NS06]. There is evidence showing that HKM performs competitively with KDT,

and that both outperform locality sensitive hashing (LSH) on real-world data [ML09].

Uhlmann introduced metric trees for the partitioning of general metric spaces [Uhl91]. Uhlmann

presented two methods for constructing metric trees. The first way is to randomly select one of

the points in the data set to be a pivot. The distances from each of the remaining points to the

pivot are computed. The median distance is chosen as the partition boundary, which divides the

data into two balanced sets: those closer to the pivot than the median distance, and those further

away. Repeating this process recursively yields a tree structure which covers the data set. It can

be viewed as recursively partitioning the metric space with median-radii hyperspheres centered

on the pivot points. The second metric tree described by Uhlmann is the Generalized Hyperplane

tree (GH-tree). In a GH-tree, two pivots are selected at each tree node in such a way that they are

relatively far apart. The remaining points are split according to which of the two pivots they are

58

closest to.

Contemporary with Uhlmann’s developments, Yianilos developed the Vantage Point tree (vp-

tree), which is essentially the same as Uhlmann’s median-splitting metric tree, but the pivots are

denoted as “vantage points” [Yia93]. Yianilos analyzes the performance guarantees of vp-trees,

and additional pivot selection strategies. M-trees, introduced by Ciaccia et al. [CPZ97], extend

metric trees with optimizations for dynamic data sets. Chavez et al. [CNBYM01] provides a

survey of these and other related metric space searching techniques.

Liu et al. [LMGY04] compares GH-trees with Locality Sensitive Hashing (LSH) [GIM99],

noting the following advantages of GH-trees: they automatically adapt their splitting resolution

according to the density of the local data, and the hyperplanes used to partition the data can be

along any direction, whereas in LSH the hyperplanes are constrained to align with coordinate

directions. Importantly, Liu considers how to adapt metric trees for use in approximate similarity

search applications. Liu introduced the spill tree, which is a modification of the GH-tree that incor-

porates an overlap region to allow for efficient approximate nearest neighbor search by eliminating

back tracking for points close to partition boundaries.

For the remainder of this thesis, the term “metric tree” (uncapitalized) indicates any of sev-

eral variations of tree structures for partitioning metric spaces. “Metric Tree” (capitalized), will

specifically indicate Uhlmann’s algorithm for median-distance based hypersphere partitioning of a

metric space.

5.2 Method

Two questions are addressed by this chapter. The first is whether there is an ANN mechanism

that will work on general metric data with performance comparable to vector-space methods when

applied to vector data. The second is whether the most popular methods used by computer vision

experts for large scale similarity search, namely KDT and HKM, have the best performance on real-

world data sets compared with other options. The results indicate that the answer to the second

question is also answered by the first. A simple structure based on metric trees not only provides

accurate proximity queries of non-Euclidean metric data (which is demonstrated in later chapters),

59

but is also notably more accurate than KDT and HKM when applied to commonly used image

feature vectors.

A method for supporting ANN queries based on generating a forest of randomized metric trees

is described below. This structure is called a Proximity Forest. The Proximity Forest is compared

to KDT and HKM on data sets consisting of 128-dimensional integer-valued SIFT features (Scale

Invariant Feature Transform [Low04]), 12-dimensional real-valued MSER features (Maximally

Stable Extremal Regions [MCUP04]) and 3-dimensional real-valued point cloud data. More in-

formation on these data sets, including our motivation for choosing them, is discussed below in

§5.3.1. The performance impact of the following variables is evaluated: dimensionality, data set

size, distance function, and the number of neighbors to return in the query. Each evaluation is

described in more detail in §5.3.

We do not directly compare Proximity Forests to LSH, as it has been shown in other work

[ML09] that KDT and HKM outperform LSH for indexing SIFT features and similar computer

vision data.

5.2.1 Proximity Forest

A Proximity Forest consists of a set of Proximity Trees, described below. Nearest neighbor

computations are performed on each tree in the forest, and the best results from each tree are

compared to return the nearest neighbors from the forest. Proximity Trees are constructed in a

manner similar to Metric Trees. However, unlike Metric Trees, the Proximity Tree approximates

the median by computing the distance between the pivot and a random subset of the input points.

Doing so allows the Proximity Forest to be constructed incrementally as data arrives in a streaming

source. A Proximity Tree can be characterized as a randomized metric tree.

A batch algorithm for constructing a Proximity Tree is shown in Algorithm 1. We present

the batch construction for clarity even though our actual implementation builds the tree in an

incremental fashion. To determine the neighbors of a sample, it is submitted to the tree and sorted

to a leaf node. Sorting at each node occurs based on whether or not the distance between the

sample and the pivot element is less than the current node’s distance threshold. As shown in the

60

Algorithm 1: ProximityTree(S,⌧ ,�)
/* Recursive construction of a Proximity Tree */ ;
Input: S, a set of data elements from which to construct the tree
Input: ⌧ , the number of data elements to sample before splitting
Input: �, a distance function
if |S| < ⌧ then Return /*Leaf node. Base case for recursion */ ;
ˆS random selection of ⌧ elements from S ;
P random selection of a pivot element from ˆS ;
D {�(x, P), 8x 2 ˆS} ;
dt median(D) ;
/* Partition S into left and right subsets */ ;
S {x 2 S | �(x, P) dt} ;
S
>

 {x 2 S | �(x, P) > dt} ;
LeftChild ProximityTree(S, ⌧ , �) ;
RightChild ProximityTree(S

>

, ⌧ , �) ;

algorithm, the distance threshold (which varies from node to node) is based on the median distance

between a subset of elements to the randomly selected pivot element. The elements of the leaf

node are considered the sample’s neighborhood, from which the K nearest can be selected.

Figure 5.1: Illustration of partitioning planar data with two trees of a Proximity Forest.

Due to the near/far nature of the splitting criterion, nodes in a left subtree may often be more

self-similar than nodes of a right subtree. With enough samples, the right subtrees will be broken

down, recursively, into smaller subsets of greater self-similarity. Yet it remains true that the far

right leaf nodes of a Proximity Tree are often less compact neighborhoods than the rest. This is

61

mitigated by using a forest of trees, and selecting the nearest from the set returned by each tree.

5.2.2 Software Implementation

The Proximity Forest implementation uses the Python programming language. It is an unopti-

mized serial implementation which is available to the public under an open source license. Muja’s

FLANN library [ML09] provides both the KDT and HKM implementations used for comparison.

The FLANN library is mature, optimized, and freely available. All code required to reproduce the

results of the evaluations reported herein is also publicly available as part of the Proximity Forest

code base, which is available as the “ProximityForest” project on SourceForge [O’H12].

5.3 Empirical Evaluation

This section describes five evaluations that were conducted to compare the accuracy of the

three methods while controlling for: 1) data dimensionality, 2) the number of K nearest neighbors

to return, 3) data set size, 4) distance measure, and 5) forest size, in the case of Proximity Forests

and KDT.

All evaluations we run are using real-world data. We do not evaluate on synthesized data.

Our focus is on data of broad interest to the computer vision community, and synthetic data can

introduce regularities and other artifacts that can skew results. See the discussion in §4 of Gionis et

al. [GIM99] on the importance of using real data sets for evaluating approximate nearest neighbor

algorithms.

There is only one parameter to select when using the Proximity Forest, which is ⌧ , the max-

imum size of a node before it is split (maximum neighborhood size). We set ⌧ = 15 for all

evaluations reported upon in this chapter. In all charts, Proximity Forest results are denoted as PF

for brevity.

5.3.1 Data Sets

The evaluation uses three data sets: 128-dimensional SIFT descriptors, 12-dimensional MSER

detections, and 3D point cloud data. We use SIFT and MSER because they have been used exten-

62

Figure 5.2: Point cloud data set.

sively in image retrieval and other computer vision applications requiring ANN indexing [SZ03,

NS06, PCI+07]. The SIFT descriptor [Low99] is the most cited feature representation in computer

vision. The journal version [Low04], published in 2004, has over 16,000 citations according to

Google Scholar, which is a remarkable average of nearly 2,000 citations per year since publication

as of 2012. Indexing SIFT descriptors is thus of obvious interest to the computer vision commu-

nity. The MSER data consists of 12-dimensional real-valued vectors, a convenient choice for our

evaluation because the dimensionality is in between SIFT and 3D points. We use 3D point cloud

data because it allows us to compare performance on low-dimensional spatial data.

The first data set consists of 10,000 SIFT features, available from the FLANN library reposi-

tory.2 SIFT features are 128-dimensional integer-valued histogram vectors.

2http://people.cs.ubc.ca/ mariusm/uploads/FLANN/datasets/dataset.hdf5

63

The second data set consists of over seven million MSER points, which were sampled to pro-

duce testing sets of size 10K, 100K, and 1M. MSER points were proposed by Matas et al. for

wide-baseline stereo correspondence [MCUP04], but have since been used as feature detectors for

image retrieval and other tasks (e.g., [NS06]). The MSER data are available for download from

the University of Kentucky benchmark data site.3

The final data set consists of 250,000 points from a 3D point cloud generated by scanning the

handles of a pair of scissors.4 For illustration, 20K of these points are shown in Figure 5.2.

5.3.2 Data Dimensionality

!"#$ %"#$ &"#$ '"#$ ("#$)"#$ *""#$

+,$-.$
/.0$-.$
1/2$-.$

+,2345
/.0$2345$
1/2$2345$

+,$36,0$
/.0$36,0$
1/2$36,0$

!"#"$!%&'()%*("+%#,-$.//$

Figure 5.3: ANN Accuracy vs. Data Dimension. PF accuracy is superior to KDT and HKM on
SIFT, MSER, and 3D point cloud data. Red caps at end of bars indicate the width of one standard
error in the results.

In this evaluation, the data set size is fixed at 10K points, randomly divided into 9K target

points used to build the ANN index and 1K query points for testing. Performance is evaluated on

3D, MSER, and SIFT features, which represent dimensions of 3, 12, and 128, respectively. For

each query point, the ANN index returns the three nearest neighbors (3NN), using the Euclidean

3http://vis.uky.edu/ stewe/ukbench/

4http://www.qcgroup.com/engineering/resources/

64

distance.

The accuracy of the three methods, PF, KDT, and HKM, is compared against the true 3NN

results. For each query, we score a point for each of the results that are one of the true 3NN. For

a single trial, there are 1,000 queries, so the maximum score is 3,000. Accuracy is the percentage

of the max score. All results reported in this chapter represent the average over five trials of 1,000

queries each. In addition, for each trial a new partitioning of the data into target and query points

is generated.

For PF and KDT, 15 trees in the forest were employed because this number is a good balance

between accuracy and computational efficiency, which is shown in §5.3.6. For HKM, initially a

branching factor of 128 with 15 iterations was used, in agreement with published settings from

[ML09]. However, HKM accuracy was improved by using the default settings from the FLANN

implementation. Consequently, the default parameter settings, a branching factor of 32 with 5

iterations, are used in all evaluations unless otherwise stated.

Results are shown in Figure 5.3. The variation in the results of all three methods is small –

the standard error is shown in the figure as the red section of each bar. All three methods perform

well on the 3D point cloud data, with PF correctly finding nearly all exact neighbors on all five

trials. The performance difference between PF and the other methods is more pronounced for

higher dimensional data, with a 15 to 20% improvement over the next best method. For the 12-

dimensional MSER data, PF finds 98.5% of the exact 3NN, while the next best method is HKM

at 80.5%. With the 128-dimensional SIFT data, PF gets nearly 75% of the 3NN, while KDT and

HKM score less than 57%.

5.3.3 Varying K

In the second evaluation, the settings and data sets are as before, but we vary K to find the 1,

3, 5, or 10 nearest neighbors of every query point.

Results are shown in Figure 5.4. PF outperforms the other two methods for every value of

K on all three data sets. As K increases, all methods suffer a penalty to accuracy, which is

more pronounced on the higher-dimensional SIFT data. PF outperforms the best of the other two

65

(a) SIFT (b) MSER

(c) 3D

Figure 5.4: ANN Accuracy vs. K. Performance of the three methods is shown varying the number,
K, of nearest neighbors to return. On SIFT data, the accuracy advantage of PF over the other
methods is more pronounced for K � 3. On MSER, the performance advantage is consistent for
all K. On the 3D data, the advantage is less clear due to ceiling effects.

methods by more than 15% on MSER and SIFT data for all settings with K � 3.

5.3.4 Data Set Size

The third evaluation tests whether the size of the data set used to build the index affects the

relative accuracy of the three ANN methods. The MSER data was used to create subsets of size

10K, 100K, and 1M, from which 1K were selected as query points and the remaining as the target

set. All other settings were as previously described, with K=3.

Results are shown in Figure 5.5. The Proximity Forest outperforms the other methods over

all three data sizes. Compared to PF, HKM and KDT both experience a larger drop in accuracy

between the smallest and largest data sets. These results suggest that PF accuracy may scale better

to very large data sets than the other two methods.

66

!"#$ %"#$ &"#$ '"#$ ("#$)""#$

*+$

,-.$

/,0$

*+$,-.$ /,0$
)",0123 ('45#$ &54)#$ '"4%#$
)"",0123 (&4(#$ %&45#$ &(4%#$
)0$0123$ (%4(#$ %!46#$ &745#$

!"#"$%&#$%'(&)$*%+,)$-..$

Figure 5.5: ANN Accuracy vs. Data Set Size. PF performs between 15 to 20% better than KDT
and HKM on MSER data regardless of data set size. Variation in PF performance on the three data
set sizes is less than that of the other methods.

5.3.5 Distance Measure

In this evaluation, three commonly used distance metrics are used to determine if this choice af-

fects the relative performance of the three ANN indexing methods. ANN indexes were constructed

using Euclidean, Manhattan, and �2 distance functions on the 10K SIFT data set with K = 3. All

other parameters are the same as in the previous evaluations.

Figure 5.6 shows that PF outperforms the other two methods regardless of the choice of distance

function used in the test.

5.3.6 Forest Size

PF and KDT are both methods that employ a forest of randomized trees. This evaluation

compares the accuracy of these two methods against the size of the forest. We apply both methods

to the three data sets, using 10K points each, and compute the 3NN accuracy with forest sizes: {1,

3, 5, 10, 15, 20, 25}. Other settings are the same as previously described.

The results are shown in Figure 5.7. PF performance suffers with forest sizes of three or fewer

trees. A single randomized metric tree is not a good ANN indexing method, but with a modest

67

!"# $!"# %!"# &!"# '!"# (!!"#

)*#

+,-#

.+/#

)*# +,-# .+/#
012345678# 9%:$9"# ;&:'9"# ;&:(!"#
/78<7==78# 9(:&>"# ;;:>>"# ;!:!>"#
?<4@AB17C65# 9$:%>"# ;(:(9"# ;(:&9"#

!"#$%&'()*+&'$",&-)./0)12*3-)455)

Figure 5.6: ANN Accuracy vs. Distance Metric. PF maintains a 15 to 20% accuracy advantage
with any of the three tested distance measures on SIFT data.

number of trees, performance significantly outperforms KDT, especially on higher-dimensional

data.

Figure 5.7: ANN Accuracy vs. Forest Size. Error bars, which are very small, show the upper and
lower 95% confidence interval around the mean values. The point of the error bars is to show that
the variation in performance over multiple trials is negligible compared to the differences between
the methods.

5.4 Conclusion

In this chapter, attention was drawn to a method of performing approximate nearest neighbor

queries that may have been overlooked by many in the computer vision community. Metric trees

68

are structures that allow for the partitioning of general metric spaces. A forest of randomized

metric trees, called a Proximity Forest, appears to return substantially more accurate ANN queries

on a variety of real-word feature vector data.

No claim is made that a Proximity Forest is the best possible ANN indexing method under all

circumstances. Instead, this chapter serves to highlight a practical alternative indexing strategy,

and to encourage those building vision systems to think beyond current black-box ANN imple-

mentations.

In the data sets explored in this paper, the accuracy improvement over randomized kd-trees and

hierarchical k-means is 15 to 20 percentage points for MSER and SIFT data. This performance gain

is consistent across tests controlling for various factors that could influence indexing performance,

such as data set size, distance function, and desired number of nearest neighbors (K).

By using metric trees, the Proximity Forest also has the significant advantage of being able to

index any metric data. This allows the computer vision practitioner interested in large-scale simi-

larity search to explore a wider variety of potential image/video representations. The next chapter

illustrates this utility by introducing a specialization of a Proximity Forest for highly scalable and

accurate action recognition using a non-Euclidean data representation and a geodesic metric.

69

Chapter 6
Subspace Forests

A goal of this chapter is to demonstrate an accurate action recognition method that avoids

overly-complex designs (those with many parameters to tune) and can scale to large, real-world

problems. From the evaluation presented in Chapter 3, we believe that relatively simple manifold

representations can provide powerful discriminative properties. An open question is how to scale

a nearest-neighbor manifold similarity measure to large data sets without losing accuracy.1

In this chapter, we present a novel structure, called a Subspace Forest, designed to provide

an efficient approximate nearest neighbor query of subspaces represented as points on Grassmann

manifolds. The Subspace Forest is a specific implementation of a Proximity Forest, which was

presented in the previous chapter.

We apply the Subspace Forest to action recognition using the Grassmann manifold tracklet

representation discussed in earlier chapters. The Subspace Forest lifts the concept of randomized

forests from classifying vectors to classifying subspaces, and employs a partitioning method that

respects the underlying manifold geometry. The Subspace Forest is an inherently parallel structure

and is highly scalable due to average-case O(logN) recognition time complexity.

Our results demonstrate classification accuracies that are equal or superior to known published

results on KTH and UCF Sports action benchmarks, and yield competitive scores on Gestures. In

addition to being both highly accurate and scalable, the Subspace Forest is built without supervi-

sion and requires no extensive validation stage for model selection. Conceptually, the Subspace

Forest could be used anywhere set-to-set feature matching is desired.

1Material presented in this chapter was previously published by the author in [OD12].

70

6.1 Background

In Chapter 2, we described the representation of tracklets as points on three Grassmann mani-

folds, each relating to the chosen axis used to unfold the 3-mode tensor into a matrix. Equation 2.3

presented the chordal distance function between points on Grassmann manifolds, or equivalently,

between fixed dimensional subspaces.

The scalability challenge is to perform nearest-neighbor based classification or clustering using

this distance metric between subspaces without having to compute an all-pairs comparison, which

is computationally intractable for large data sets. In addressing this challenge, we adapt the Prox-

imity Forest structure presented in the previous chapter. We call the resulting structure a Subspace

Forest because it is based on the application of randomized forests to sorting subspaces of a fixed

dimension.

A structural difference between the Subspace Forest and the Proximity Forest is that the Sub-

space Forest consists of three different types of trees – one type corresponding to each of the three

factor manifolds. The Subspace Forest does not directly create an ANN indexing structure for the

Product Manifold. Instead, it individually indexes each of the three factor manifolds and selects

nearest neighbors of tracklets via a voting scheme.

Before presenting the details, we first provide background on related work. The following point

is important to understanding a key contribution of this chapter. Our representation of actions

as points on Grassmann manifolds does not directly provide a global coordinate system for the

samples. Distances are computed pair-wise, and Grassmann manifolds have no unique origin.

ANN indexing methods that assume vector data, such as those in the FLANN library as discussed

in the previous chapter, can not be directly applied to our selected representation.

Turaga et al. describe a general method for the application of existing nearest-neighbor search

algorithms to non-Euclidean manifolds [TC10]. Points are mapped from the manifold onto a tan-

gent space, and then a vector-space ANN algorithm is applied. The mapping from the manifold

to a tangent space is defined at a specific point on the manifold called the “pole”, which forms

the origin in the tangent space. Any point can serve as the pole, but one should select this point

71

carefully because the mapping from the manifold to the tangent space is most accurate (in terms of

preserving distances) for points closest to the pole. One mechanism to select the pole is by com-

puting the Karcher Mean [Kar77] of the data set, which is a computationally expensive iterative

process. Our approach is to avoid the errors induced by mapping points onto tangent planes by

using manifold distances in our randomized forest structure.

Wang et al. present a method for developing spatial hashing functions for high dimensional

data [WLZY11]. Conceptually similar to Locality Sensitive Hashing (LSH), [GIM99], Wang’s

Grassmann Hashing (GRASH) improves over LSH by selecting optimal subspaces for hashing

using a Grassmann metric. A key step in this approach is the use of Linear Discriminant Analysis

(LDA) to provide a set of subspace candidates. Unlike the Subspace Forest, GRASH requires

supervision to develop the hashing functions, and requires a vector space in which LDA can be

computed over the training samples.

Basri et al. [BHZM07] present a method for determining the approximate nearest subspace to

a query item. Basri et al.’s method relies on random projections to reduce dimensionality, and also

to map the problem to a vector-space ANN query.

The most similar work to the Subspace Forest is a randomized manifold forest developed

by Bonde et al. for learning kernel hyperparameters of a set-to-set face recognition algorithm

[BKR10]. Bonde et al.’s method shares the general idea of constructing randomized forests using

pair-wise principal angle computations at the interior nodes of a decision tree. In comparison, the

Subspace Forest uses no kernel projections, no iterations to select optimal node splitting param-

eters, and no supervision. Although different, Bonde et al.’s results on set-to-set face recognition

provides additional support for the general utility of manifold-based randomized forests.

6.2 Subspace Forest Construction

Below, we describe the Subspace Forest and related data structures, illustrating the construction

of a Subspace Forest and how to apply it for nearest-neighbor-based action recognition. To validate

the benefit of the Subspace Forest, we evaluate its accuracy in comparison to contemporary meth-

ods on standard benchmark classification data sets. We investigate its scalability by demonstrating

72

Algorithm 2: Subspace Tree Construction
Data: Node.items == ;

Data: Node.status == Collecting
Input: Orthogonal matrix X
begin

if Node.status == Collecting then
Node.items Node.items [X
if |Node.items| > ⌧ then

5 Node.pivot selectP ivot()
6 if checkSplittingCriteria() then
7 Node.threshold selectThreshold()

Node.Left new(Node)
Node.Right new(Node)
for x

i

2 Node.items do
D

i

 d(x
i

, Node.pivot) //Eq.(2.3)

if D
i

 Node.threshold then
Node.Left.add(x

i

)

else
Node.Right.add(x

i

)

Node.status Splitting
Node.items ;

else
D d(X,Node.pivot) //Eq.(2.3)

if D Node.threshold then
Node.Left.add(X)

else
Node.Right.add(X)

timing results on a much larger data set.

6.2.1 Subspace Tree

We define a Subspace Tree as a tree structure used to sort points on a Grassmann manifold,

which define subspaces of a fixed dimension. In principle, this structure could be used to sort any

set of orthogonal matrices of fixed dimension. In our application, we use it to sort tracklets which

have been flattened from a data cube into a matrix, from which an orthogonal basis is computed.

The basic formulation of a Subspace Tree (SSTree) is illustrated in Figure 6.1 and outlined

in Algorithm 2. Samples are added to an initially empty node until it becomes large enough to

73

Collecting Node

•Input Subspaces

S
•Node size reaches
splitting threshold

•Subspaces sent left or right
based on subspace distance
from pivot

•Process recurses to form tree

P

P

•Pivot element is
randomly selected

•Node splits

Figure 6.1: Illustration of Subspace Tree construction.

consider splitting. We define ⌧ to be the minimum number of elements in a node before it may be

split. An element of the node being split is selected to be the pivot element. The chordal distance,

Eq. (2.3), is computed between each element of the node and the pivot. Those having a distance

less than or equal to a threshold are added to the left child node, the others to the right. The

now-empty node is marked as a splitting node. This process recurses to form a tree, where all the

samples are at leaf nodes, and all interior nodes are splitting nodes. Essentially, an SSTree is a

Metric Tree (see Chapter 5) using the chordal distance function between samples.

As with Metric Trees, the SSTree imposes a local partial ordering at each splitting node, yet

there is no global sort order. By voting across a forest of SSTrees, we mitigate the errors inherent

to any single tree that is constructed in this manner. The Subspace Forest constructed from a set of

SSTrees is discussed in §6.2.3.

6.2.2 Subspace Tree Variations

In Algorithm 2, lines 5-7 refer to functions that may implement different strategies for deter-

mining when and how to split a node in an SSTree. In this section, we discuss two node splitting

variants called Median Splitting and Entropy Splitting. We also present a variation of the SSTree

called the Random Axis Subspace Tree.

74

6.2.2.1 Median Splitting

With the median splitting strategy, the node is split as soon as the number of items in a node

exceeds ⌧ . There is no additional selection criteria, so the function of line 6 always evaluates as

true. Pivot selection (line 5) is a random selection of one of the samples in the node. Threshold

selection (line 7) is done by computing the median chordal distance between the pivot element and

the items in the node. No labels are considered during the construction of this tree.

Note that a Median Splitting SSTree is essentially the same as a Metric Tree, as presented in

the previous chapter, only the data points and distance function are designed for indexing samples

represented as fixed-dimensional subspaces.

6.2.2.2 Entropy Splitting

With Entropy Splitting, the splitting criterion (line 6) is based on the distribution of the dis-

tances between the elements of the node and the selected pivot. The pivot is chosen randomly as

with Median Splitting. Entropy is computed over a normalized histogram with a fixed number of

bins covering an appropriate range of distances. Eq. (6.1) shows the entropy computation, where

H is entropy, k is the number of histogram bins, p
i

is the proportion of samples in bin i.

H = �

kX

i=1

p
i

log p
i

(6.1)

When the entropy falls below an empirically-determined threshold, H
t

, this indicates that the

distribution has become concentrated in a small number of bins. Entropy is maximized by a uni-

form distribution and is zero when all samples are within a single bin. Threshold selection (line

7) is as follows. When the entropy falls below H
t

, the distances are divided into two clusters and

the midpoint between the cluster centers is used as the splitting threshold. Assuming ⌧ is small,

the entropy computation and clustering of the scalar distances adds a negligible amount of compu-

tational overhead in comparison to the median splitting strategy. No labels are considered during

the construction of this tree. Distinct from supervised decision trees, our entropy computation is

based on the distribution of distances, not distribution of labels.

75

6.2.2.3 Random Axis SSTree

In the previous discussion, we assumed the input to the tree was an orthogonal matrix, where

the unfolding axis was selected a-priori and used for all samples. A forest can have trees represent-

ing each of the axes, but any single tree will represent only one axis. The Random Axis SSTree

(RA-SSTree) takes a complete tracklet data cube as input, and sorts it per Algorithm 2, but with

each new child node randomly selecting an unfolding axis. For the evaluations reported herein, we

use Median Splitting for all RA-SSTrees.

6.2.3 Subspace Forest

The Subspace Forest consists of a set of SSTrees. When applied to action recognition, we

select forest sizes in multiples of three so that we can have an equal number of SSTrees for each

unfolding axis of the tracklets. With RA-SSTrees, any number of trees can be used because each

tree has information about all unfoldings. For classification, a video clip is flattened into three fac-

tor matrices, one each along the X,Y, and T dimensions. We compute an orthogonal basis for each

of the three factors. Each of the three orthogonalized unfoldings of the input video are presented to

corresponding subspace trees in the forest to determine the approximate nearest neighbors for that

factor. To classify a probe sample, the label of the K-Nearest-Neighbors from each leaf node is

used in simple majority voting. Other voting strategies could be applied, for example soft weight-

ing, but they are not explored in this dissertation.

Figure 6.2 shows an example nearest-neighbor query result from a small forest of three Median

Splitting SSTrees. The input sample is a hand gesture from the Gestures data set (see §6.3.1.3),

and the top matches from each tree are shown. Those outlined in red have the same class as the

probe sample. This figure helps illustrate the benefit of including all three tracklet unfoldings in the

forest. For different classes of tracklets, different unfoldings may contain the most discriminative

information.

76

Figure 6.2: Nearest six neighbors from each of three trees of a Subspace Forest using the Gestures
data set. The rows are the nearest neighbors from the three trees, one tree per unfolding. Within
each row, the samples are sorted left to right according to distance from the query tracklet, which
is on the left. Those matching the class of the query tracklet are outlined in red. The “Vertical
Motion” unfolding, represented by the second tree (middle row), cannot distinguish left-moving
from right-moving gestures.

6.2.4 Tree and Parameter Selection

We compared the performance of Subspace Forests using different SSTree variants. We use

the KTH Actions data set (see §6.3.1.1) for comparing tree variants. We varied the number of trees

in the forest and ran 10 trials for each combination of variant and size. The results are shown in

Figure 6.3. Overall, we felt that the Entropy Splitting strategy performed better than the other two,

although the difference may not be statistically significant. The best average result was 97.9%

when using Entropy Splitting and 27 trees in the forest. The RA-SSTree variant performed better

than the other two variants when the forest size was limited to fewer than nine trees, and yields

competitive results (95.5%) even when limited to only three trees.

Beyond tree selection, only a few parameters are required with a Subspace Forest: the size of

the data cube to represent the action, the number of trees in the forest, and the number of samples

a node will collect before splitting, ⌧ . When using the Entropy Splitting strategy, H
t

must also be

selected.

Using an Entropy Splitting Subspace Forest, we selected the value for H
t

as follows. When we

77

Figure 6.3: Accuracy vs. Forest Size for different tree types on KTH Actions. Each data point
represents the mean of ten trials. The shaded region represents the 95% confidence interval around
the mean values of the Entropy Splitting results.

compute the entropy of the distribution of distances to a pivot, we quantize the distances into 10

bins. Thus, the maximum entropy in nats is ln(10) ⇡ 2.3. This occurs when the distances to the

pivot are uniformly distributed over all the bins. When the distances to the pivot are concentrated

into a single bin, the minimum entropy is reached, which is zero. Since we do not want to split tight

groupings, we tested a range of H
t

values between 1.8 and 2.3, which corresponds to distributions

that are spread over a majority (six or more) bins. The results are shown in Figure 6.4. There

are a range of values that are not significantly different in performance. From these, we selected

H
t

= 2.19 to use for the remaining evaluations.

We selected the value for ⌧ after testing performance over a range of values from five to 25,

78

Figure 6.4: Accuracy vs. Entropy Threshold on KTH Actions. Each data point represents the mean
of ten trials. The shaded region represents the 95% confidence interval around the mean values.

using an Entropy Splitting forest with 27 trees and Ht=2.19. We found little significant difference

for the range of values between 15 to 25. The choice of ⌧ is somewhat less important in an Entropy

Splitting Subspace Forest than in the other variants. This is because ⌧ controls when a node has

reached a size such that it can be considered for splitting. With the Median Splitting variant, the

node will always be split as soon as it collects more than ⌧ samples. However, with the Entropy

Splitting strategy, this will not occur unless the entropy of the distribution of the distances to the

pivot falls below H
t

.

We chose ⌧ = 21 to use for the following evaluations, but this choice was an arbitrary selection

over several possible values that are statistically equivalent. The benefit of a relatively low value

for ⌧ is that the leaves will have fewer neighbors, and thus the linear search time within the leaf for

79

the nearest neighbor is reduced. Larger values, on the other hand, have the benefit of improving the

estimated median distance (for Median Splitting) or having more samples over which to compute

the entropy, and thus potentially choosing better partitions.

To illustrate that the Subspace Forest does not have to be strongly tuned to work well, we use

the same size and type of Subspace Forest, with the same node splitting and entropy thresholds

applied to all three data sets presented in our results. The only difference in application was the

selection of an appropriate cube size based on the source video resolution and temporal extent of

the actions. Specifically, we used a Subspace Forest of 27 Entropy Splitting trees with ⌧=21, and

H
t

=2.19.

6.3 Evaluation

In this section, we present our results on Subspace Forest classification accuracy and scalability.

6.3.1 Classification Accuracy

We evaluate the Subspace Forest using three data sets: KTH, Gestures, and UCF Sports. We

use KTH and Gestures because both data sets have a large number of samples and we know from

Chapter 3 that our manifold-based representation works well. We employ UCF Sports because this

data set is considered more challenging due to unequal class distribution, less controlled imagery,

and fewer number of samples.

6.3.1.1 KTH Actions

Table 6.1: Accuracy comparison on KTH Actions. All results use Schuldt’s training/testing parti-
tioning of the data. CMOF is Covariance Manifolds of Optical Flow, and MSTF is Mined Space-
Time Features.

Method Accuracy
Subspace Forest 97.9
CMOF [GIK10] 97.4
Product Manifold [LBK10] 96
MSTF [GIB09] 94.5

80

Table 6.2: KTH Actions confusion matrix. Overall accuracy 97.9%.

walk jog run box clap wave
walk 100 0 0 0 0 0
jog 0 100 0 0 0 0
run 0.6 0 99.4 0 0 0
box 0 0 0 100 0 0
clap 0 0 0 0 100 0
wave 0 0 0 0 12.0 88.0

We extracted tracklets from KTH as was previously described in Chapter 3. Tracklets were

32 frames long with resolution 20x20 pixels. For testing nearest-neighbor classification accuracy,

we followed the training/testing split outlined by Schuldt et al. [SLC04]. The Subspace Forest

exceeds the performance of other methods, as shown in Table 6.1. Values for the other algorithms

were taken from their respective publications, and all followed the same training/testing protocol.

It is hard to draw strong conclusions on the significance of the difference in accuracy among top

methods, given ceiling effects and implementation variations, yet the Subspace Forest classification

method is clearly a top-performer with the additional practical benefits of simplicity, speed, and

scalability.

We believe the Subspace Forest is one of the fastest methods as well, justified as follows. With

our single-threaded python implementation, the total time to build the Subspace Forest on the

training partition and recognize all the actions in the test partition is 6.5 minutes combined.

To our knowledge, none of the authors who have reported leading recognition accuracies on

KTH have published the computational times required by their algorithms. It is our experience

with feature sampling methods that leads us to believe that the Subspace Forest is much faster in

both training and recognition time that most published methods. In Wang et al.’s evaluation of

feature detectors and descriptors for BOF action recognition [WUK+09], the authors report that

the Cuboids detector and descriptor, as a combined unit, operates at approximately one frame per

second. Other combinations in the evaluation operate between 0.8 and 4.6 frames per second.

One frame per second equates to approximately three minutes per video sample (based on aver-

age 180 frames per segmented video clip) to extract features. The time required to train a classifier

using feature sampling methods consists of sampling features from the training data, constructing

81

a codebook, representing each of the training videos as feature vectors over the codebook entries,

and finally training a Support Vector Machine or other classifier. Just processing the feature sam-

pling component performed on the KTH training partition of 384 videos would take about 19 hours

with the Cuboids algorithm. With the fastest feature sampling method from Wang et al.’s evalua-

tion, this time might be reduced to about 4 hours. This is in strong contrast to the 6.5 minutes total

time (training plus testing) required to process the KTH recognition protocol using the Subspace

Forest.

Table 6.2 shows the confusion matrix. The Subspace Forest has little confusion between the

similar classes of walking, jogging, and running, whereas it has some errors separating waving

from clapping. This is in contrast to some other algorithms, and what might be expected of hu-

man judgment. Gilbert et al.’s Mined Space-Time Features [GIB09], reports the most confusion

between the jogging and running classes. Some of the KTH subjects exhibit running in a way that

is understandably confusing with jogging, yet no human would confuse any of the waving samples

with clapping. This leads to the speculation that a combination of representations might further

improve performance.

6.3.1.2 UCF Sports

Table 6.3: Accuracy comparison on UCF Sports. All results use leave-one-out protocol. AFMKL
is Augmented Feature Multi-Kernel Learning and DTM is Discriminative Topics Modelling.

Method Accuracy
Subspace Forest 91.3
AFMKL [WXDL11] 91.3
Tangent Bundle [LB11] 88
DTM [BLGX10] 86.9

For UCF Sports, we use 64-frame tracklets of 32x32 pixels, in order to capture the longer

duration and spatial extent of the samples. Tracklets are selected from the middle frames of the

samples, and using the bounding boxes provided by the data set, except for 10 videos where the

bounds are not provided. For those 10, we created the associated tracks, and this additional infor-

mation is available from us upon request. As with KTH, frames are repeated for samples with too

few frames.

82

Table 6.4: UCF Sports confusion matrix. Overall accuracy 91.3%. Actions are:
DV=diving, GS=golf swing, K=kicking, WL=weight lifting, HR=horseback riding, R=running,
SK=skateboarding, PH=pommel horse swinging, HB=high bar swinging, and W=walking.

DV GS K WL HR R SK PH HB W
DV 100 0 0 0 0 0 0 0 0 0
GS 0 94.4 0 5.6 0 0 0 0 0 0
K 0 0 100 0 0 0 0 0 0 0
WL 0 0 0 100 0 0 0 0 0 0
HR 0 8.3 0 0 91.7 0 0 0 0 0
R 0 0 0 0 7.7 84.6 0 0 0 7.7
SK 0 0 0 0 0 0 58.3 0 0 41.7
PH 0 0 0 0 0 0 0 100 0 0
HB 0 0 0 0 0 0 0 0 100 0
W 0 4.5 0 4.5 0 0 9.1 0 0 81.8

We followed the standard protocol for UCF Sports, which is leave-one-out classification. With

the small size of this data set, even using leave-one-out, there are only 149 samples for use in

constructing the Subspace Forest, so we doubled the gallery size by adding horizontally-mirrored

copies of each training tracklet. Our results are as good or better than other published methods, as

shown in Table 6.3. The confusion matrix in Table 6.4 shows that many of our errors were from

confusing skateboarding with walking.

6.3.1.3 Cambridge Gestures

Table 6.5: Classification accuracy on Cambridge Gestures using protocol from [KWC07]. TCCA
is Tensor Canonical Correlation Analysis.

Method Accuracy
Subspace Forest 89.8
Tangent Bundle [LB11] 91
TCCA [KWC07] 82

We extract tracklets from the Gestures data set in the same way as presented in Chapter 3.

Tracklets are 32 frames long with resolution 20x20 pixels. For classifying the gestures, we use

the training/testing split outlined by Kim et al. [KWC07], which requires training on Set 5 (180

samples), and testing on Sets 1-4. Our results are competitive with leading published results.

83

6.3.2 Scalability

Determining the nearest neighbors using a Subspace Tree requires D + ⌧ � 1 distance com-

putations, D decisions to determine the leaf node, and then an additional ⌧ � 1 computations, at

maximum, to determine the nearest within the leaf node. Each chordal distance computation takes

about 10 milliseconds using a video cube of dimensions 20x20x32. For example, with a tree con-

structed from 2,500 gallery samples, the expected depth is log2(2500) = 11.3, and with ⌧ = 21,

the time to select the approximate nearest neighbor is about 0.31 seconds. Note that this is the

time to recognize an entire tracklet, not to process a single frame. With 32-frame video clips, our

effective frame rate is about 103 fps, for a single tree. This structure is highly scalable due to the

O(log2 N) time complexity. Increasing from 2,500 to 10,000 gallery videos, the effective frame

rate drops to 96 fps, and with 1,000,000 the recognition frame rate would remain at a respectable

80 fps. Tree construction is O(N log2 N).

The Subspace Forest has the same time complexity as the Subspace Tree, with a constant

factor per tree assuming a serial implementation. Forests can be trivially parallelized by having

a computational node per tree, which would allow for very efficient build and recognition times

for large-scale data sets. For the evaluations described in this Chapter, we used a serial, single-

threaded, python implementation on commodity hardware.

Figure 6.5 demonstrates actual run-times required to generate Subspace Forests of different

sizes. The figure shows how long it takes to construct a Subspace Forest, in minutes, in relation

to the number of samples in the training data. The two lines represent Subspace Forests of three

and six trees, using Entropy Splitting. Tracklet dimensions are 32x32x32. The slopes of the lines

show a slight super-linear growth, which agrees with the O(N log2 N) complexity analysis. The

light gray guide lines show that as the number of trees in the forest doubles, the construction time

with our serial implementation also doubles from 20 to 40 minutes. A larger forest of 27 trees

would take nine times longer to build than a three-tree forest with our serial implementation, but

this additional time is easily mitigated with parallelism.

The time to construct a forest in Figure 6.5 is longer than previously discussed for KTH due

to the larger tracklet dimensions that were used. The chordal distance function involves using an

84

Number of Tracklets added to Forest

Ti
m

e
to

 B
ui

ld
 F

or
es

t (
M

in
ut

es
)

0 500 1500 2500 3500 4500 5500 6500 7500

0
10

20
30

40
50

60

Forest of 3 Trees
Forest of 6 Trees

Figure 6.5: Subspace Forest construction time compared to the size of the training data.

SVD decomposition, which is approximately O(n3
) where n is the total number of pixels in the

tracklet. A tracklet with dimension 32x32x32 = 32,768 pixels has 2.56 times the number of pixels

as a tracklet of dimension 20x20x32 = 12,800, which means each chordal distance computation

takes about 17 times longer. The computational complexity of the Subspace Forest is given in

terms of the number of tracklets, but there is a factor in the speed of each comparison that depends

upon the tracklet dimensions.

6.4 Conclusion

Lui et al. [LBK10] showed that videos of human actions can be represented as points on Grass-

mann manifolds, and that the geodesic distances between two videos represented this way is an

effective method for determining their similarity. In this Chapter, we introduced the Subspace For-

est for determining the approximate nearest neighbors of points on Grassmann manifolds, which

can be used to rapidly classify actions based on a set of labeled training samples. The Subspace

85

Forest works in a manner conceptually similar to randomized forests for approximating nearest

neighbor computations, but respects the Grassmann manifold geometry. With the Subspace For-

est, action recognition can be performed with high accuracy and with the ability to scale to much

larger systems than is feasible with many previously-published approaches.

Other strengths of our method for action recognition include the simplicity of implementation,

and the avoidance of the many design decisions and parameter selections that are required by Bag

of Features methods. We build the Subspace Forest without using labels, so it is well-suited for

unsupervised learning applications, which we describe in the next chapter.

86

Chapter 7
Latent Configuration Clustering

This chapter addresses the general challenge of efficiently clustering data samples where only

a distance metric exists, and where the cost of computing all nearest neighbors is prohibitive.

We present a method, called Latent Configuration Clustering (LCC), that transforms samples in

O(N logN) time into a sparsely-connected weighted graph. From the weighted graph, a number

of popular clustering mechanisms can be applied, and comparisons are between scalar values.

Latent Configuration Clustering, unlike other techniques designed for clustering points on smooth

manifolds, does not require explicit mapping to a Euclidean configuration space.

Some methods can cluster data given only a distance or affinity matrix. If an all-pairs com-

parison is required, generating the distance matrix is a limiting factor for large-scale applications.

Existing techniques can generate distance matrices in O(N logN) time using spatial partitioning

strategies (see the brief review in the next section), but many of these make vector space assump-

tions and cannot be applied to non-Euclidean metric data. For the specific case of manifold data, a

general approach is to first map the data to a Euclidean space. Computing a Euclidean approxima-

tion of the data can be error prone and computationally expensive.

The ability to efficiently cluster samples using only pair-wise distance computations is not just a

theoretical curiosity, but has applications to real-world problems. Previously, we demonstrated the

benefit of using a non-Euclidean representation for clustering tracklets, but the cost of computing

all-pair distances made the application to large scale data sets intractable.

With the Product Manifold representation, each distance comparison takes approximately 100

milliseconds, depending on the size of the video cube used to capture the actions. Given a data

set of 5,000 samples, the all-pairs comparison would take about 347 hours (14 days). Doubling

the size of the data set to 10,000 samples increases the computation time to nearly 1389 hours

(58 days). Distributed computing could help mitigate some of the scalability concerns, but a clus-

tering method that retains the advantages of the representation while reducing the computational

complexity would be of significant value.

87

7.1 Clustering Data using Only Pair-Wise Distances

Manifold learning algorithms can find low-dimensional Euclidean configurations for data using

only neighborhood information. A few notable examples include Isomap [TSL00], Local Linear

Embedding (LLE) [RS00], and Locality Preserving Projections [HN03]. Similarly, one can map

points residing on certain matrix manifolds to Euclidean tangent spaces. Assuming locality is suffi-

ciently preserved in these quasi-isometric mappings, one can cluster data in the resultant Euclidean

space using any technique appropriate for vector data.

Generally speaking, mapping non-Euclidean data to a Euclidean configuration involves some

error and potential loss of locality. Isomap, for example, can be subject to topological instability

when neighborhood distances are large enough to cause “short circuit” errors [BS02]. Tangent

space mappings on manifolds require the selection of a “pole,” or point at which the Tangent is

incidental to the manifold surface. The approximate isometry of the mapping degrades the further

away from the pole the samples lie (as discussed in [TC10], and other sources). Choosing the pole,

e.g., via a Karcher Mean, can be a computationally expensive, iterative process.

Many manifold learning and clustering methods can take as input a distance/dissimilarity ma-

trix. For scalability concerns, it is important to avoid an all-pairs comparison of the data. A

common processing step for manifold learning methods is to compute the K-nearest-neighbors

at every point (i.e., all nearest-neighbors). If the input data is in a metric space based on an L
p

norm, then it has been shown that the all nearest neighbor problem can be solved in O(N logN)

time [Vai89]. Additionally, there are computationally efficient Approximate Nearest Neighbor

(ANN) algorithms, such as Locality Sensitive Hashing [GIM99], forests of randomized K-D Trees

[ML09], and Balanced Box-Decomposition Trees [AMN+98]. However, lacking a vector space,

these methods can not be applied, and thus the all nearest-neighbor problem requires an O(N2
)

all-pairs computation.

In Chapter 5, we introduced the Proximity Forest structure for accurate ANN indexing, and

in Chapter 6, we showed that it can be applied in the form of a Subspace Forest for indexing

action tracklets. With LCC, we employ the Proximity Forest to speed up clustering of metric data,

88

where the computation of the metric between a pair of data elements is computationally expensive.

Although we are motivated to cluster tracklets represented as points on Grassmann manifolds, LCC

is a general method to cluster any set of data objects equipped with a distance metric. Similar to

manifold learning approaches, we use neighborhood connectivity, but we compute only a fraction

of the all-pairs distances. LCC avoids potentially error-inducing explicit mappings to Euclidean

configuration spaces.

7.2 Latent Configuration Clustering

The power of Latent Configuration Clustering is the ability to efficiently and accurately cluster

arbitrary metric data. The key is the use of a Proximity Forest to transform the data into a sparsely

connected graph using only O(N logN) distance comparisons. Having transformed samples from

an unknown configuration space into a sparse affinity matrix, our final step is to apply an existing

clustering method on the graph data. Some clustering methods, such as DBSCAN [EKSX96] and

hierarchical single linkage [FHT09], can cluster connectivity graphs in O(N2
). It is important to

note that after the transformation, the complexity of the individual comparisons is reduced from

being very costly (e.g., chordal distance) to being very cheap (scalar comparisons).

The high-level procedure for LCC consists of three steps, as shown in Algorithm 3. Each step

is further explained below.

Algorithm 3: LatentConfigurationClustering(S, �)
Input: S, the set of data objects of type T
Input: �, a distance function � : T ⇥ T ! <
begin

1 � GenerateProximityForest(S, �) ;
2 G GenerateConnectivityGraph(�) ;
3 return WardsLinkage(G) ;

7.2.1 Generating the Proximity Forest

The first step requires the construction of a Proximity Forest on the data, as described in Chapter

5. Each tree in a Proximity Forest sorts samples into leaf nodes of a maximum size, ⌧ . Each leaf

89

is considered an approximate neighborhood for the samples it contains. We use these approximate

neighborhoods to generate the connectivity graph for LCC, as described below.

7.2.2 Clustering using Connectivity Graph

We examine the leaf nodes of the forest to determine neighborhood relations. The number of

trees in the forest where a pair of samples are neighbors (i.e., are in the same leaf node) indicates

the similarity of the samples. We build a weighted undirected graph, G(V,E), where the nodes are

the data elements and the edge weights, W
i,j

, represent similarity scores between nodes i and j.

Let � be the Proximity Forest consisting of p Proximity Trees. Let the function I
k

(X, Y)

indicate that samples X and Y belong to the same leaf node in tree k (1 if true, 0 if false). Then

the weights of G(V,E) are specified as follows.

V
i

, V
j

2 V

W
i,j

=

pX

k=1

I
k

(V
i

, V
j

) (7.1)

The computational complexity of this step is O(N). There are on average N/⌧ leaf nodes per

tree, each of maximum size ⌧ . At each leaf node, all pairs of samples are scanned to update the

connectivity graph, which takes a maximum of ⌧ · (⌧ � 1)/2 operations. For each tree, we thus

have N · (⌧ �1)/2 operations. There are p trees in the forest, so the total time to generate the graph

is p ·N · (⌧ � 1)/2, which is O(N) since p and ⌧ are small constants.

After generating G(V,E), one can apply any clustering mechanism that works on graph data

to the affinity information encoded by the edge weights. We employ hierarchical agglomerative

clustering with Ward’s linkage, as in previous chapters, and have not significantly explored other

options. The connectivity graph has only a fraction of the edges that would exist in a completely

connected graph, yet maintains the neighborhood relations necessary to cluster the data.

Figure 7.1 illustrates the LCC process on 1000 points in 2D drawn from four Gaussian distri-

butions. A Proximity Forest is constructed on the input data, and the connectivity graph is created.

The middle image in the figure shows the connectivity graph filtered such that edges are shown

90

Figure 7.1: LCC stages (from left to right): input data, Proximity Forest connectivity, graph-based
clustering.

only between points that co-occur in at least 1/3 of the trees in the forest. To be clear, this filtering

is only for visualization, and is not part of the cluster process. The last image in the figure overlays

the points with colors based on cluster label assignment. In this case, hierarchical agglomera-

tive clustering using Ward’s Linkage was applied to the full connectivity graph, and the resulting

dendrogram was cut to produce four clusters.

Figure 7.2: LCC applied to Swiss Roll data. As a connectivity-oriented cluster mechanism, Latent
Configuration Clustering respects the manifold surface of the data.

Figure 7.2 illustrates clustering performance on the “swiss roll” data. The purpose of this fig-

ure is to show that as a connectivity-oriented cluster mechanism, Latent Configuration Clustering

respects the manifold surface of the data.

91

7.2.3 Exemplar Selection

While not required in all applications, it can be convenient to select a representative example,

or exemplar, from a cluster. Since LCC assumptions admit no direct computation of the mean of a

set of data elements, we must select a medoid instead. This is accomplished via selecting the node

with the highest closeness centrality [Sab66] from those in the subgraph of the cluster.

The weighted graph G(V,E), represents the connectivity of the leaves in the forest structure,

as described previously. For each cluster C
k

, we generate the subgraph G
k

(V
k

, E
k

) ⇢ G(V,E)

consisting of all nodes in C
k

and the edges between them. The edge weights, W
i,j

, represent

similarity between nodes i and j. We select exemplars, �
k

, from the subgraphs by computing

the closeness centrality, and selecting those with the highest scores. We represent the closeness

centrality score of node v in cluster k as cc
k

(v), which is computed as follows.

G
k

(V
k

, E
k

) ⇢ G(V,E), for cluster k

cc
k

(v) =
X

n2Vk\v

2

�dGk
(v,n)

�

k

= argmax

v2Vk

(cc
k

(v))

where d
Gk
(v, n) = W

max

�W
v,n

and W
max

= max(W
i,j

2 G) (7.2)

7.3 Application to Discovering Actions in Video

We use a Subspace Forest, as described in Chapter 6, as the Proximity Forest structure in the

LCC algorithm when used for clustering actions. We evaluate Latent Configuration Clustering

using three data sets, KTH, Gestures, and Tower.

For KTH and Gestures, we use a data cube size of 32 frames at 20⇥ 20 pixels for each sample,

in agreement with what was done in earlier chapters. For the Tower data set, we use a cube size

of 48 frames at 32 ⇥ 32 pixels, because the videos are in lower resolution (so we try to capture

more pixels) and some actions take longer to represent (so we extend the temporal duration). For

92

all three data sets, we use a forest of 27 trees with ⌧ = 21. These choices for the Subspace Forest

are in agreement with Chapter 6.

Stand

Dig
Walk

Carry Run

Wave Jump

Point

Run

2H Wave

Figure 7.3: Unsupervised exemplar selection on UT Tower data. Color indicates cluster member-
ship. A single exemplar from each class was selected when the number of clusters was limited to
the number of classes in the data.

7.3.1 Action Clustering and Unsupervised Exemplar Selection

Figures 7.3, 7.4, and 7.5, illustrate the clusters and associated exemplars on each of the three

data sets. LCC perfectly selects an exemplar from each class in the Tower data, even with some

apparent cluster overlap. Our method also perfectly generates a single exemplar from each class in

KTH, and the classes show minimal cluster overlap. Gestures clusters well, but not perfectly. Of

the nine classes, no exemplar for PR (Pair of fingers, Right) was found. Instead a second exemplar

for FC (Flat hand, Contracting) was selected.

It is not surprising that Gestures proved the most challenging to cluster, as even supervised clas-

sification schemes find the data set relatively challenging in comparison to others. State of the art

93

Jog
Run Walk

Box
Wave

Clap

Figure 7.4: Unsupervised exemplar selection on KTH Action data. A single exemplar from each
class was selected when the number of clusters was limited to the number of classes in the data.

supervised classification accuracy on KTH is in the upper 90’s [LBK10, GIK10], UT Tower is also

in the upper 90’s [CRA10], while Gestures remains in the upper 80’s to lower 90’s [LB11]. Each

of these data sets defines its own classification protocol and training/testing partitioning, yet the

clustering results shown here are indicative that KTH and UT Tower may be intrinsically separable

using a Grassmann data representation, while Cambridge Gestures remains more challenging.

7.3.2 Exemplar-based Classification

In order to quantitatively gauge the quality of LCC clustering and exemplar selection, we con-

ducted an evaluation to determine how well we could classify actions with only a few exemplars

selected from the training corpus of the KTH Actions data set. We chose KTH Actions because, to

the best of our knowledge, it is the only well-known data set upon which unsupervised classifica-

tion results have been reported, as by Niebles et al. [NWF08].

94

FLFL

FR FC

SC

SLSL

PL

SR

PC

Shape
F=Flat
S=Spread
P=Pair

Motion
L=Left
R=Right
C=Contract

PR?

Left

Contract
Right

Figure 7.5: Unsupervised exemplar selection on Cambridge Gestures data. A single exemplar from
most classes was selected when the number of clusters was limited to the number of classes in the
data. No exemplar was automatically selected for the “Pair of fingers, Right” (PR) gesture. Instead
two were chosen showing the “Flat hand, Contracting” (FC) gesture.

We apply Latent Configuration Clustering to the KTH training partition of 384 samples, using

Schuldt et al.’s recommended partitioning [SLC04]. We used Proximity Forests of three different

sizes, 18 trees, 27 trees, and 40 trees. We select from 6 to 24 exemplars from the training data,

allowing for 1 to 4 exemplars per class. We use the exemplars to classify the samples from the test-

ing partition (216 samples) using a nearest-exemplar strategy. The label for the nearest exemplar

is used to predict the label of the test sample. We repeat each trial 10 times and report the average

results.

Classification accuracy is reported in Figure 7.6. When using only 4 exemplars of each cluster

(24 total exemplars), classification accuracy approaches 90%, which compares favorably to Niebles

et al. [NWF08] who use Probabilistic Latent Semantic Analysis (pLSA) with a bag of words repre-

sentation to achieve 83.3% unsupervised classification accuracy. Even with only 2 exemplars per

cluster (12 total exemplars), performance still compares favorably to pLSA.

95

Figure 7.6: Classifying KTH Actions using only a few exemplars per cluster. The x-axis shows
the number of exemplars, and the y-axis the nearest-exemplar classification accuracy. Each point
represents the average over 10 trials. The blue region indicates the 95% confidence interval around
the sample means for the forest of 40 trees. The graph also shows a comparison to the pLSA
method from Niebles et al. [NWF08]. Even with only two exemplars per class (12 total), average
performance is comparable or superior to pLSA.

In the figure, the shaded region represents the 95% confidence interval around the results for

the 40-tree forest. This provides an indicator of the statistical significance between the three forest

sizes. There is little difference in significant performance based on the three forest sizes, except

for when using only 6 exemplars or when using 21 or more. One would expect a larger forest may

produce better results, but it is unclear to us why the largest forest seems to perform much worse

when only a single exemplar per cluster is selected. This will be the subject of future evaluation.

7.4 Conclusion

We introduced a method called Latent Configuration Clustering to address the need for effi-

ciently clustering arbitrary metric data, especially in the case where pair-wise comparisons are

96

computationally expensive. Given a set of data elements of arbitrary type and a distance function,

LCC generates a sparse connectivity graph to which a standard clustering algorithm can be applied.

LCC is efficient because it greatly reduces the number of expensive distance computations that is

required for clustering, and replaces them with cheap scalar comparisons.

We applied LCC to unsupervised clustering and exemplar selection of action tracklets. We

demonstrated that LCC generates qualitatively good clusters on three data sets, and that it selects

exemplars representative of the different action classes. Using exemplars automatically selected

from the training partition of the KTH Actions data set, we performed unsupervised action recog-

nition that is superior to existing reported results. Specifically, given only two exemplars per class,

our method achieves unsupervised classification accuracies around 85%. Given only four exem-

plars per class, we show 90% accuracy on KTH.

97

Chapter 8
Putting It All Together
8.1 Mind’s Eye

As mentioned in the introductory chapter, a major motivation for the development of the tech-

nology outlined in this thesis was our involvement in the DARPA Mind’s Eye program [Gel11].

While the Mind’s Eye program is intended to address higher-level human behavior in video, action

recognition is a significant component of the effort. This chapter qualitatively describes how the

proposed unsupervised action learning and recognition methods performed in the context of this

program.

Figure 8.1: Screen capture from a Mind’s Eye year 1 video. Unlike the previously discussed
benchmark data, Mind’s Eye videos feature multiple actors, complex and dynamic backgrounds,
and longer durations exhibiting multiple activities.

98

8.2 Mind’s Eye: Year 1 versus Year 2

The first two years of the Mind’s Eye program had separate data sets. In the first year, per-

formers were given approximately 3,000 short videos to use for evaluating system performance on

four related tasks: 1) verb recognition from a set of 48 action verbs, 2) video description in 140

characters of text, 3) gap-filling by describing what happens in a section of video that has been

blacked-out, and 4) anomaly detection in video. The videos used in the first year for recognition

and description are generally short (a minute or less in duration), but contain multiple actors and

objects in dynamic settings, including parks, street corners, and parking lots. A screen capture

from one of these videos is shown in Figure 8.1.

Many computer vision challenges must be overcome to recognize actions in the Mind’s Eye

data that are beyond the scope of this thesis. These challenges include detecting and tracking the

subjects in the video, under uncontrolled lighting and in dynamic outdoor scenes. The first year

data set created additional challenges due to semantic ambiguity and the related issue of high intra-

class variability. For example, in the year 1 corpus, some samples for the verb “walk,” would best

be described as “walking a dog,” and “walking on hands.”

In the second year of the program, the data was designed to more closely reflect the intended

goal of improving automated video surveillance. The year 2 data has approximately one tenth

the number of videos, but each is much longer, typically about 15 minutes in length, totalling

approximately 4,500 minutes of high-definition video. These videos are designed to simulate

realistic operating scenarios, such as monitoring the door to a “safe house,” or monitoring a check

point on a country road. The videos depict periods of activity as well as long periods where nothing

of importance is happening. Unlike in the year 1 corpus, where it was sufficient for the recognition

system to label an entire video sample with one or more of the target verbs, in year 2, it was

necessary to localize where and when each verb occurs.

In the year 2 challenge, the verbs being recognized were defined with less semantic variation

(“walk” means a human walking in a normal upright position), and demonstrated in fewer settings.

However, the year 2 videos feature significant variation in camera angle in the data set. Many

99

samples feature actors moving towards or away from a ground-level camera, which induces rapid

scale changes in the tracked subjects and frequent occlusions – challenges that were less frequently

observed in the year 1 data.

As stated in the introduction, many of the Mind’s Eye target verbs are not what we consider

actions, but instead require higher level representations that may be built using actions as a compo-

nent. The action recognition component of our Mind’s Eye system learned 66 unique action labels

from the unlabeled training corpus, which we present below.

8.3 Learning Actions

During the course of our involvement in the Mind’s Eye program, our methods for analyzing the

videos evolved, both in response to new capabilities being developed under this research, but also

in response to the change in data sets. We employed the action learning and recognition techniques

outlined in this thesis on the year 2 data. Because our methods were not fully-developed during

the year 1 period of performance, we do not present any results herein on that data set. All further

references to Mind’s Eye data are to the year 2 corpus.

Tracklets were sampled from the videos using the same technique as outlined in Chapter 4.

Tracklets were formed using sliding temporal windows applied over tracked regions in the video

(see §4.1.2). Due to the complexity of the videos, the lower level vision system responsible for

detecting and tracking the subjects is significantly more complex than that presented on the ETHZ

Living Room data set.

A total of 24,800 tracklets were extracted from the training videos, each having dimension

32x32 pixels by 48 frames. A Subspace Forest with 24 trees was constructed to index the tracklets.

To speed construction time, one quarter of the forest was built on each of four processing nodes.

Total time to build the ANN index was approximately eight hours. Without the Subspace Forest,

the estimated time to cluster the tracklets using the PM representation would be 8,500 hours (354

days), without additional parallelism.

Using Latent Configuration Clustering applied to the Subspace Forest, as described in Chapter

7, the tracklets were clustered to produce 2,480 exemplars. Each exemplar was given one or two

100

labels (by human annotation) to describe the action being performed. In some cases the exemplar

was not easily described, was ambiguous, or was unidentifiable due to low-level detection or track-

ing errors. In total 134 of 2480 exemplars were given the label “unknown.” The remaining were

assigned either one or two labels.

The labeling of exemplars from the Mind’s Eye data differed somewhat to that performed in

Chapter 4, mainly due to the scale of the challenge. With the ETHZ data, we had a small set of

labels learned from only a few hundred training tracklets. At this scale, we could easily construct

a bit vector for each sample indicating the presence of each action. With the Mind’s Eye corpus,

we had 2400 exemplar tracklets to label (reduced from over 24,000 total training tracklets), with

no predefined set of labels. In order to make the process of labeling exemplars relatively easy

(although it still took many hours to do), we allowed for a maximum of two labels per exemplar.

Although exemplar labeling at this scale still requires significant manual effort, the techniques

introduced in this thesis made it possible for one person to do so in one day. With the year 1

corpus, prior to the development of LCC and the exemplar selection strategy, we used about a

dozen students over several days time to label approximately 8000 training tracklets. In year 2, we

processed three times the number of training tracklets, yet only needed to label 2400 exemplars,

which was done by a single person in a single day. Labeling was easier not only because we

reduced the number of tracklets, but also because we simplified the label assignment process, as

previously discussed.

The set of unique labels discovered from the unsupervised learning process is shown in Table

8.1, which also shows the number of tracklets assigned each label. Since some tracklets received

two labels, the sum of the counts is greater than the number of tracklets. There are a total of 66

labels, some of which are related. Labels such as “walk” and “walk-group” differ only in that in the

latter case, the tracklet shows two or more people performing the action. The labels of the form “x-

motion” indicate that the tracklet was centered not on the full extent of a person’s body, but either

on a specific body part (leg, e.g.), or other area where there is tracked motion (foliage, shadow, or

carried object). The table is provided to show the variety of labels discovered in the videos and the

uneven distribution of the label set – two characteristics which are unusual in benchmark data.

101

8.4 Detecting Actions

Action detection in the Mind’s Eye challenge is done using a nearest-exemplar matching strat-

egy similar to that described in Chapter 4 of this thesis. The key differences are: 1) exemplars had

a maximum of two labels in the Mind’s Eye data, as discussed previously, and 2) nearest exemplar

matching was performed using a second Subspace Forest that just indexed the exemplars.

Because over 2000 exemplars were used for action detection in the year 2 corpus, we needed to

use a second Subspace Forest to index the exemplars for efficient nearest-exemplar labeling. Thus,

the Subspace Forest data structure is used twice in our Mind’s Eye action recognition process.

Once for clustering the training tracklets to produce the exemplars as part of LCC, and again to

index the set of exemplars so that labeling the test data is fast.

As done in Chapter 4, for every tracked subject in the test videos, a sliding temporal window

is used to extract the tracklet to be labeled. The label of the nearest exemplar is used to label each

test tracklet. The score of the label is proportional to the distance between the test sample and the

exemplar, according to distribution statistics collected from the training data. The frames within

a tracklet are labeled up to four times, due to overlapping the sliding windows. Thus, at a single

point in time (frame number), a tracked entity may have several labels. In addition, as part of

the Mind’s Eye processing, scores are normalized and smoothed over time by applying a Hidden

Markov Model.

Figure 8.2 shows a collage of six sample action detections from the year 2 data. It is worth

noting that even though the distribution of labels is heavily weighted towards a few very common

actions (walk, carry, turn, loiter), we detect instances of rare actions like collide and greet.

8.5 Integration Test

The Mind’s Eye program provided funds not only to research institutions, but also to three

corporate technology integrators. One of those was iRobot Corporation, maker of popular home

and military robots. Our team partnered with iRobot to port our action recognition technology to

their platform.

102

jump: 1.00
greet: 1.00

point: 0.94

collide 1.00
carry: 1.00

putdown: 0.75

Figure 8.2: Samples of action detections in the Mind’s Eye year 2 data. In the figure, clockwise
from top left: carry, collide, point, greet, jump, and putdown. The highlighted score indicates the
confidence in the label based on nearest neighbor voting from the Subspace Forest.

In June 2012, a team from iRobot demonstrated real-time action recognition to the Mind’s Eye

program manager and other interested parties using the technology described in this thesis. The

iRobot demonstration was the only one able to meet the action detection goals of the integration

test. Further, the iRobot team, upon request by the reviewers, was able to incrementally add a new

action to the demonstration within a single day, while on-site. This is a significant practical advan-

tage of building a system without a closed-world assumption. Information about the integration

test was conveyed in an e-mail from Dr. Christopher Geyer, the Principal Investigator from iRobot,

dated June 26, 2012.

103

Table 8.1: Set of labels learned from Mind’s Eye training data.

Label Count Label Count
approach 4 loiter 185
arm-motion 13 loiter-group 117
bend 27 loiter-seated 6
carry 227 no-action 12
cart-motion 9 object-drop 3
chase 6 object-motion 24
clap 11 pass 39
clap-group 41 pass-group 2
climb 1 patdown 7
collide 11 pickup 28
cover 2 point 49
dig 21 point-group 33
dig-group 4 push 25
drag 10 putdown 28
drop 1 ride-bike 17
enter 3 run 24
escort 5 run-group 4
exchange 3 shadow-motion 12
exit 3 shove 1
cloth-flapping 15 sit 8
foliage-motion 28 sit-up 1
follow 32 stand 6
foot-motion 16 stop 21
gesture 39 swing 16
give 4 take 1
greet 9 throw 6
head-motion 77 turn 153
hold-box 3 unknown 134
jump 8 walk 659
kick-ball 19 walk-group 351
lean 1 walk-rifle 7
leave 4 wave 19
leg-motion 141 wave-group 20

104

Chapter 9
Conclusion
9.1 Summary of Work

This thesis has presented a set of evaluations, algorithms, and data structures that address some

of the challenges that stand in the way of being able to recognize human behaviors outside of

controlled benchmark data sets. For empirical evaluation, the individual contributions presented in

this thesis were tested on controlled data, but the methods were designed out of the need to apply

action recognition to more challenging and larger data sets.

In order to learn from a large corpus of unlabeled data, we argued for advancing methods for

unsupervised clustering of actions. We performed a comparative analysis of a local-features action

representation with one based on manifold geometry and showed that the manifold method may

be more amenable to unsupervised learning. We proposed a method for extracting video samples

of tracked entities from streaming data, and applying hierarchical clustering on the samples, rep-

resented as points on Grassmann manifolds, to derive a set of representative action exemplars. We

demonstrated that this method can be used for action recognition based on K-nearest-exemplar

matching, and has the advantage of allowing for incremental learning and anomaly detection.

To address the real-time performance requirements of action recognition applications, we de-

veloped a scalable data structure, called a Proximity Forest, for indexing general metric data for

Approximate Nearest Neighbor (ANN) queries. To evaluate the Proximity Forest, we first com-

pared it to two popular ANN methods, KD-Trees (KDT), and Hierarchical K-Means (HKM), on

vector data of interest to the computer vision community. The Proximity Forest was 15 to 20%

more accurate than KDT and HKM on a series of studies which controlled for data set size, di-

mensionality, distance metric, number of neighbors to return, and forest size. In addition to the

significant increase in accuracy on the tested data, the Proximity Forest is more general because it

can be applied to any metric data, including our manifold representation of actions.

We introduced the Subspace Forest, a variant of a Proximity Forest designed for ANN index-

105

ing of fixed-dimensional subspaces (or, equivalently, indexing points on a Grassmann manifold).

When used for nearest-neighbor classification of actions, the Subspace Forest yielded state-of-the-

art accuracy on three well-known action benchmarks, with the significant advantage of being fast

and scalable.

The final contribution of this thesis uses the Proximity Forest indexing structure as a key com-

ponent of a method for efficiently clustering any metric data. This was the final technical achieve-

ment needed in order to address the scalability issues involved in unsupervised learning of actions

using our chosen manifold representation. We demonstrated clustering and exemplar selection

from three data sets. After post-hoc labeling of the selected exemplars (i.e., labels are required to

describe the selected exemplar actions, but not for learning them), we demonstrated unsupervised

action recognition on a benchmark data set, exceeding the accuracy of a competing unsupervised

method.

9.2 Broader Impact

The methods for scalable action clustering and recognition presented in this thesis were key

enablers for our performance in the Mind’s Eye program. However, there are contributions of

broader interest as well.

The Proximity Forest is a general-purpose data structure for Approximate Nearest Neighbor

indexing. Our study shows that it may be more accurate than existing methods popularly used in

computer vision applications. While more engineering is required to match the maturity and speed

of the implementations of competing methods, there is potential that a “black-box” replacement

of the ANN indexing method with a Proximity Forest could substantially improve the accuracy of

applications such as large-scale image retrieval.

As we found in action recognition, sometimes a non-vector data representation is beneficial.

Anyone wishing to perform large scale similarity search or clustering of such data has far fewer

tools to draw from, because most existing methods assume the data resides in a vector space with

a global coordinate system. This thesis provides additional tools for those dealing with non-vector

metric data elements. The Proximity Forest can be used for ANN indexing of general metric

106

spaces, and Latent Configuration Clustering can be used for efficiently clustering elements of a

general metric space.

9.3 Future Work

There are many remaining challenges to be addressed when developing systems to automati-

cally recognize human behaviors in video. These challenges span the range from improving lower-

level processing to integrating actions, interactions, and gestures as input to higher-level methods

for detecting activities, events, and other complex behaviors.

This thesis focused on methods relating to action recognition. The representation we employed

requires that subjects are first detected and tracked by a lower-level video processing module.

Accurate human detection and tracking are areas of active research in the computer vision commu-

nity. There is a concept of a feedback loop between the detection and tracking modules, sometimes

phrased as “tracking via detection, and detection via tracking.” It may be possible to extend this

optimization loop to include the characteristic motion patterns of human subjects. The idea would

be to correct the localization of the subject by finding perturbations of the tracked region that yield

better similarity scores to known actions.

Along this line of thought, one might be able to extend the action representation from 3rd order

tensors to 4th order, representing a set of (x,y,t) data cubes. The 4th order representation might

be able to account for small spatial or temporal localization errors by extracting a set of tracklets

around a given space-time volume, each element of the set generated by one of a fixed-number

of transformations. Actions would then be represented as a set of candidate volumes around the

subject, and action recognition becomes a set-to-set matching problem on Grassmann manifolds.

In the introductory chapter, we alluded to the fact that interactions and gestures may be repre-

sented in a similar fashion to actions. Chapter 3 compared the Product Manifold representation to

a Bag of Features representation on actions, hand gestures, and facial expressions. However, this

thesis did not explore the application of the proposed methods much beyond action recognition.

Given a reliable method for detecting and localizing interactions between two or more people, a

Subspace Forest may work as well for interactions as it does for actions.

107

We showed that a Proximity Forest provides accurate Approximate Nearest Neighbor indexing

of vector data, as well as being generalizable to non-Euclidean metric data. Before the wider

community would embrace a potential replacement for the popular FLANN library [ML09], more

engineering is required to generate an implementation with comparable indexing speed. Speed

improvements would likely arise by using a compiled language (C/C++ instead of Python), multi-

threading, and employing vectorized operations when the input data is in matrix form.

Finally, more work needs to be done for learning higher-level behaviors by integrating action,

interaction, and gestures with additional information about the subjects and objects of interest,

as well as the context or setting of the activity. For the Mind’s Eye project, we combined this

information primarily using intuition and heuristics. In the future, more principled ways of learning

higher-level concepts from low and mid-level information may be investigated.

108

References
[AMN+98] S. Arya, D. M Mount, N. S Netanyahu, R. Silverman, and A. Y Wu. An optimal

algorithm for approximate nearest neighbor searching fixed dimensions. Journal of
the ACM (JACM), 45(6):891–923, 1998.

[AR11] J. K. Aggarwal and M. S. Ryoo. Human activity analysis: A review. ACM Comput-
ing Surveys (CSUR), 43(3):16, 2011.

[ARS09] M. Andriluka, S. Roth, and B. Schiele. Pictorial structures revisited: People de-
tection and articulated pose estimation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 1014–1021, 2009.

[BHZM07] R. Basri, T. Hassner, and L. Zelnik-Manor. Approximate nearest subspace search
with applications to pattern recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 1–8, 2007.

[BK08] G. Bradski and A. Kaehler. Learning OpenCV: Computer vision with the OpenCV
library. O’Reilly Media, Incorporated, 2008.

[BKR10] U. Bonde, T. K Kim, and K. Ramakrishnan. Randomised manifold forests for prin-
cipal angle-based face recognition. In Proceedings of the Asian Conference on Com-
puter Vision (ACCV), pages 228–242, 2010.

[BL97] J. S. Beis and D. G. Lowe. Shape indexing using approximate nearest-neighbour
search in high-dimensional spaces. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 1000–1006. IEEE, 1997.

[BLGX10] M. Bregonzio, J. Li, S. Gong, and T. Xiang. Discriminative topics modelling for
action feature selection and recognition. In Proceedings of the British Machine
Vision Conference (BMVC), pages 8.1–8.11, 2010.

[BS02] Mukund Balasubramanian and Eric L Schwartz. The isomap algorithm and topo-
logical stability. Science, 295(5552):7–7, January 2002.

[CNBYM01] E. Chavez, G. Navarro, R. Baeza-Yates, and J. L. Marroquin. Searching in metric
spaces. ACM Computing Surveys (CSUR), 33(3):273–321, 2001.

[CPZ97] P. Ciaccia, M. Patella, and P. Zezula. M-tree: An efficient access method for sim-
ilarity search in metric spaces. In Proceedings of the International Conference on
Very Large Data Bases (VLDB), 1997.

[CRA10] Chia-Chih Chen, M. S. Ryoo, and J. K. Aggarwal. UT-
Tower Dataset: Aerial View Activity Classification Challenge.
http://cvrc.ece.utexas.edu/SDHA2010/Aerial View Activity.html, 2010.

109

[DRCB05] P. Dollar, V. Rabaud, G. Cottrell, and S. Belongie. Behavior recognition via sparse
spatio-temporal features. In Proceedings of the Joint IEEE International Workshop
on Visual Surveillance and Performance Evaluation of Tracking and Surveillance
(PETS), pages 65–72, 2005.

[EKSX96] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-based
algorithm for discovering clusters in large spatial databases with noise. In Proceed-
ings of the International Conference on Knowledge Discovery and Data Mining,
pages 226–231, 1996.

[FBF77] Jerome H. Friedman, Jon Louis Bentley, and Raphael Ari Finkel. An algorithm for
finding best matches in logarithmic expected time. ACM Transactions on Mathe-
matical Software (TOMS), 3(3):209–226, 1977.

[FHT09] Jerome H. Friedman, Trevor Hastie, and Robert Tibshirani. Elements of Statistical
Learning. Springer Series in Statistics, second edition, 2009.

[GBS+07] L. Gorelick, M. Blank, E. Shechtman, M. Irani, and R. Basri. Actions as space-
time shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence,
29(12):2247–2253, 2007.

[Gel11] T. Geller. Seeing is not enough. Communications of the ACM, 54(10):15–16, 2011.

[GIB09] A. Gilbert, J. Illingworth, and R. Bowden. Fast realistic multi-action recognition
using mined dense spatio-temporal features. In Proceedings of the International
Conference on Computer Vision (ICCV), pages 925–931, 2009.

[GIK10] K. Guo, P. Ishwar, and J. Konrad. Action recognition using sparse representation
on covariance manifolds of optical flow. In Proceedings of the IEEE International
Conference on Advanced Video and Signal-Based Surveillance (AVSS), pages 188–
195, 2010.

[GIM99] A. Gionis, P. Indyk, and R. Motwani. Similarity search in high dimensions via
hashing. In Proceedings of the International Conference on Very Large Data Bases
(VLDB), pages 518–529, 1999.

[HN03] X. He and P. Niyogi. Locality preserving projections. In Proceedings of the Con-
ference on Neural Information Processing Systems (NIPS), pages 153–160, 2003.

[JKJ+11] A. Janoch, S. Karayev, Y. Jia, J. T. Barron, M. Fritz, K. Saenko, and T. Darrell. A
category-level 3-d object dataset: Putting the kinect to work. In Proceedings of the
IEEE International Conference on Computer Vision Workshops (ICCV Workshops),
pages 1168–1174, 2011.

[JT05] F. Jurie and B. Triggs. Creating efficient codebooks for visual recognition. In Pro-
ceedings of the International Conference on Computer Vision (ICCV), pages 604–
610, 2005.

110

[Kar77] H. Karcher. Riemannian center of mass and mollifier smoothing. Communications
on Pure and Applied Mathematics, 30(5):509–541, 1977.

[KG10] A. Kovashka and K. Grauman. Learning a hierarchy of discriminative Space-Time
neighborhood features for human action recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages 2046–
2053, 2010.

[KSH05] Y. Ke, R. Sukthankar, and M. Hebert. Efficient visual event detection using volu-
metric features. In Proceedings of the International Conference on Computer Vision
(ICCV), pages 166–173, 2005.

[KWC07] T. K. Kim, S. F. Wong, and R. Cipolla. Tensor canonical correlation analysis for
action classification. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 1–8, 2007.

[Lap05] I. Laptev. On space-time interest points. International Journal of Computer Vision,
64(2):107–123, 2005.

[LB11] Y. M. Lui and J. R. Beveridge. Tangent bundle for human action recognition. In
Proceedings of the IEEE Conference on Automatic Face and Gesture Recognition
(FG), pages 97–102, 2011.

[LBK10] Y. M. Lui, J. R. Beveridge, and M. Kirby. Action classification on product man-
ifolds. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 833–839, 2010.

[LJD09] Z. Lin, Z. Jiang, and L. S Davis. Recognizing actions by shape-motion prototype
trees. In Proceedings of the International Conference on Computer Vision (ICCV),
pages 444–451, 2009.

[LMGY04] T. Liu, A. W. Moore, A. Gray, and K. Yang. An investigation of practical approx-
imate nearest neighbor algorithms. In Proceedings of the Conference on Neural
Information Processing Systems (NIPS), pages 825–832, 2004.

[Low99] D. G. Lowe. Object recognition from local scale-invariant features. In Proceed-
ings of the International Conference on Computer Vision (ICCV), pages 1150–1157,
1999.

[Low04] D. G. Lowe. Distinctive image features from scale-invariant keypoints. Interna-
tional Journal of Computer Vision, 60(2):91–110, 2004.

[LP07] I. Laptev and P. Perez. Retrieving actions in movies. In Proceedings of the Interna-
tional Conference on Computer Vision (ICCV), pages 1–8, 2007.

[McQ66] L. L. McQuitty. Similarity Analysis by Reciprocal Pairs for Discrete and Continu-
ous Data. Educational and Psychological Measurement, 26(4):825–831, December
1966.

111

[MCUP04] J. Matas, O. Chum, M. Urban, and T. Pajdla. Robust wide-baseline stereo from
maximally stable extremal regions. Image and Vision Computing, 22(10):761–767,
2004.

[ML09] M. Muja and D. G. Lowe. Fast approximate nearest neighbors with automatic algo-
rithm configuration. In Proceedings of the International Conference on Computer
Vision Theory and Application (VISSAPP), pages 331–340, 2009.

[MTJ06] F. Moosmann, W. Triggs, and F. Jurie. Fast discriminative visual codebooks using
randomized clustering forests. In Proceedings of the Conference on Neural Infor-
mation Processing Systems (NIPS), pages 985–992, 2006.

[MTS+05] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas, F. Schaffalitzky,
T. Kadir, and L. V. Gool. A comparison of affine region detectors. International
Journal of Computer Vision, 65(1):43–72, 2005.

[NGV10] F. Nater, H. Grabner, and L. Van Gool. Exploiting simple hierarchies for unsuper-
vised human behavior analysis. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 2014–2021, 2010.

[NS06] D. Nister and H. Stewenius. Scalable recognition with a vocabulary tree. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 2161–2168, 2006.

[NWF08] J. C. Niebles, H. Wang, and L. Fei Fei. Unsupervised learning of human action
categories using spatial-temporal words. International Journal of Computer Vision,
79(3):299–318, 2008.

[OD11a] Stephen O’Hara and Bruce A Draper. Introduction to the bag of features paradigm
for image classification and retrieval. arXiv:1101.3354, January 2011.

[OD11b] Stephen O’Hara and Bruce A. Draper. Unsupervised learning of Micro-Action ex-
emplars using a product manifold. In Proceedings of the IEEE International Con-
ference on Advanced Video and Signal-Based Surveillance (AVSS), pages 206–211,
2011.

[OD12] Stephen O’Hara and Bruce A. Draper. Scalable action recognition using a subspace
forest. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 1210–1217, 2012.

[OD13] Stephen O’Hara and Bruce A. Draper. Are you using the right approximate nearest
neighbor algorithm? In Proceedings of the IEEE Workshop on the Applications of
Computer Vision (WACV), pages 9–14, 2013.

[O’H12] Stephen O’Hara. ProximityForest on SourceForge.net. http://

sourceforge.net/projects/proximityforest/, 2012.

112

[OLD11] Stephen O’Hara, Yui Man Lui, and Bruce A. Draper. Unsupervised learning of
human expressions, gestures, and actions. In Proceedings of the IEEE Conference
on Automatic Face and Gesture Recognition (FG), pages 1–8, 2011.

[OLD12] Stephen O’Hara, Yui Man Lui, and Bruce A. Draper. Using a product manifold dis-
tance for unsupervised action recognition. Image and Vision Computing, 30(3):206–
216, March 2012.

[PCI+07] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman. Object retrieval with large
vocabularies and fast spatial matching. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 1–8, 2007.

[PDC09] N. Pinto, J. J. DiCarlo, and D. Cox. How far can you get with a modern face recog-
nition test set using only simple features? In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages 2591–2598, 2009.

[RAK09] K. Rapantzikos, Y. Avrithis, and S. Kollias. Dense saliency-based spatiotemporal
feature points for action recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 1454–1461, 2009.

[RAS08] M. D. Rodriguez, J. Ahmed, and M. Shah. Action MACH a spatio-temporal maxi-
mum average correlation height filter for action recognition. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2008.

[RCAR10] M. S. Ryoo, C. C. Chen, J. K. Aggarwal, and A. Roy-Chowdhury. An overview of
contest on semantic description of human activities (SDHA) 2010. In Proceedings
of the International Conference on Pattern Recognition (ICPR), pages 270–285,
2010.

[RS00] S. T Roweis and L. K Saul. Nonlinear dimensionality reduction by locally linear
embedding. Science, 290(5500):2323–2326, 2000.

[Sab66] Gert Sabidussi. The centrality index of a graph. Psychometrika, 31(4):581–603,
1966.

[SAS07] P. Scovanner, S. Ali, and M. Shah. A 3-dimensional sift descriptor and its appli-
cation to action recognition. In Proceedings of the International Conference on
Multimedia (MM), pages 357–360, 2007.

[SC12] S. Sadanand and J. J. Corso. Action bank: A high-level representation of activity
in video. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 1234–1241, June 2012.

[SFC+11] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore, A. Kip-
man, and A. Blake. Real-time human pose recognition in parts from single depth
images. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), volume 2, pages 1297–1304, 2011.

113

[SH08] C. Silpa-Anan and R. Hartley. Optimised KD-trees for fast image descriptor match-
ing. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 1–8, 2008.

[SLC04] C. Schuldt, I. Laptev, and B. Caputo. Recognizing human actions: A local SVM
approach. In Proceedings of the International Conference on Pattern Recognition
(ICPR), pages 32–36, 2004.

[SZ03] J. Sivic and A. Zisserman. Video google: A text retrieval approach to object match-
ing in videos. In Proceedings of the International Conference on Computer Vision
(ICCV), pages 1470–1477, 2003.

[TC10] P. Turaga and R. Chellappa. Nearest-neighbor search algorithms on non-Euclidean
manifolds for computer vision applications. In Proceedings of the Seventh Indian
Conference on Computer Vision, Graphics and Image Processing, pages 282–289,
2010.

[TSL00] J. B Tenenbaum, V. Silva, and J. C Langford. A global geometric framework for
nonlinear dimensionality reduction. Science, 290(5500):2319–2323, 2000.

[Uhl91] Jeffrey K. Uhlmann. Satisfying general proximity / similarity queries with metric
trees. Information Processing Letters, 40(4):175–179, November 1991.

[Uni12] University of Maryland Language and Media Processing Laboratory. ViPER-GT.
http://viper-toolkit.sourceforge.net/products/gt/, 2012.

[Vai89] P. M Vaidya. An O(NlogN) algorithm for the all-nearest-neighbors problem. Dis-
crete & Computational Geometry, 4(1):101–115, 1989.

[VF10] A. Vedaldi and B. Fulkerson. VLFeat: an open and portable library of computer
vision algorithms. In Proceedings of the International Conference on Multimedia
(MM), pages 1469–1472, 2010.

[War63] Joe H. Ward. Hierarchical grouping to optimize an objective function. Journal of
the American statistical association, 58(301):236–244, 1963.

[WLZY11] X. Wang, Z. Li, L. Zhang, and J. Yuan. Grassmann hashing for approximate nearest
neighbor search in high dimensional space. In Proceedings of the IEEE Interna-
tional Conference on Multimedia and Expo (ICME), pages 1–6, 2011.

[Wol01] David H. Wolpert. The supervised learning no-free-lunch theorems. In Proceedings
of the Online World Conference on Soft Computing in Industrial Applications, pages
10–24, 2001.

[WUK+09] H. Wang, M. M. Ullah, A. Klaser, I. Laptev, and C. Schmid. Evaluation of local
spatio-temporal features for action recognition. In Proceedings of the British Ma-
chine Vision Conference (BMVC), pages 124.1–124.11, 2009.

114

[WXDL11] X. Wu, D. Xu, L. Duan, and J. Luo. Action recognition using context and appear-
ance distribution features. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 489–496, 2011.

[YGV10] A. Yao, J. Gall, and L. Van Gool. A hough transform-based voting framework for
action recognition. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 2061–2068, 2010.

[Yia93] Peter N. Yianilos. Data structures and algorithms for nearest neighbor search in
general metric spaces. In Proceedings of the ACM-SIAM Symposium on Discrete
Algorithms, pages 311–321, 1993.

[YKC10] T. H. Yu, T. K. Kim, and R. Cipolla. Real-time action recognition by spatiotem-
poral semantic and structural forests. In Proceedings of the British Machine Vision
Conference (BMVC), page 56, 2010.

115

