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ABSTRACT

MIXING OF SCALARS IN TURBULENT FLOWS USING DIRECT NUMERICAL

SIMULATIONS

The research presented in this thesis focuses on scalar mixing in unstratified (neutral) flows
and stably stratified flows using Direct Numerical Simulations (DNS). Such flows are ubiquitous
in natural flows such as rivers, estuaries, oceans and the atmosphere. First, a detailed study was
performed to investigate the effect of varying Schmidt numidamsan turbulent mixing of a
passive scalar in a stationary homogeneous unstratified flow using forced DNS. A total of 6
simulations were performed for 0<1Sc < 3. Qualitative and quantitative results of the flow field
and the passive scalar fields are presented and discussed. The effect of the Schmidt number on the
turbulent mixing was found to be negligible and becomes important (as it should) only when
mixing occurs under laminar flow conditions.

Using a model proposed by Venayagamoorthy and Stretch in 2006 for the turbulent
diascalar diffusivity as a basis, a practical (and new) model for quantifying the turbulent diascalar
diffusivity is proposedsKs = 1.1y’ Ly k'/?, whereLr is defined as the Thorpe length scélis,
the turbulent kinetic energy andis one-half of the mechanical to scalar time scale ratio, which
was shown by previous researchers to be approximately 0.7. The novelty of the proposed model
lies in the use oLr, which is a widely used length scale in stably stratified flows (almost
exclusively used in oceanography), for quantifying turbulent mixing in unstratified flavesn
be readily obtained in the field using a Conductivity, Temperature and Depth (CTD) profiler or

obtained from density fields in a numerical model. The turbulent kinetic energy is mostly contained



in the large scales of the flow field and hence can be measured in the field using devices such as
an Acoustic Doppler Current Profiler (ADCP) or modeled in numerical simulations. Comparisons
using DNS data show remarkably good agreement between the predicted and exact diffusivities.
Finally, the suitability of the proposed model for stably stratified flows was explored for
varying degrees of stratification ranging from mildly stable flow conditions to strongly stable
conditions. In stably stratified flows, density variations of the fluid dynamically affect the flow
field and hence the density acts as what is widely known as an active scalar. Under strongly stable
conditions, the DNS results indicate an inverse relationship between the Thorpersaate
kinetic energy length scalg,., which is different to the direct (almost one to one correspondence)
relationship that was found for unstratified flows. Hence, in order to account for this diffexence,
modified turbulent diascalar diffusivity model was propoas#f; = 13y’ L;> k/2. It must be
noted that this modified model while dimensionally inconsistent (due to the inverse relationship
between the length scales), provides reasonable quantitative estimates of the diffusivity under
stably stratified flow conditions.
The models proposed in this study require further (extensive) testing under higher
Reynolds number flow conditions. If shown to be valid, they would be widely useful for
guantifying turbulent mixing using field measurements of large scale quantitidsr @edk) as

well as a simple and improved turbulence closure scheme.



ACKNOWLEDGEMENTS

Foremost, | would like to thank my adviser, mentor Dr. Karan, for all his continuous
support and help in all the ways in my academic life and otherwise. His patience, enthusiasm,
immense knowledge and confidence in my abilities kept me motivated to achieve my goal of
graduating with my master’s degree. | couldn’t have imagined having a better advisor and mentor
for my master’s study. He is also a major reason why we are planning to pubhsirticle ina
journal, an accomplishment | can always be proud of.

Next | wish to express gratitude to my parents for giving birth to me at the first place and
supporting me spiritually throughout my life. Your never-ending love and care as | am removed
far away from you gave me the mindset that | needed to be successful. Thank you for always being
there for me and always being willing to lend a hand.

My sincere thanks also go to Simon Schaad, former master student of Dr. Karan. His
significant work on numerical simulations and Matlab coding gave me guidance to achieve
successful DNS simulations and data post processing. | thank my fellow lab mates in the
Environmental Fluid Mechanics Research Group at €&drid Karimpour, Jordan Wilson, Ben
Mater, Amrapalli Garanaik, Oladapo Asepderemy Carlston and Jian Zhou - were all obliging
when | had questions or needed help.

Finally I would like to acknowledge and thank Prof. Julien and Dr. Sakurai for taking time
out of their busy schedules to serve on my thesis committee. Your insight, suggestions, and

comments are truly appreciated.



TABLE OF CONTENTS

AB ST R A CT e i
ACKNOWLEDGEMENTS ... e e e e v
LIST OF FIGURES ... e e e vii
(O o 1N N PP 1.......
INTRODUGCTION ...ttt e e e et et e e e e e e e tb e e e e e e e tba e e e e e eaaann s 1
0 R [ 11 (0T [ U To{ 1o o PP PP PPPPPPPPPPI 1
@ ] o] [T 1NV U PS 2
1.3 TRESIS LAYOUL....uuiiiiiiiiiiie et e e et e e e e e e e e e e et e e e e e eatan e e e e 2
(O 1A P S
LITERATURE REVIEW ... 4
P2 R 1o To [8 [ox 1] o HO TP P PP UPPPPRPPPON 4
2.2 EQUALIONS OF MOTION ...ttt et e e e e e e e e e e e e e e e e 5
2.3 Basic Parameters of Turbulent floOwW ... 7
2.4 Length and TiMe SCAIES.......ccooiiiiiiii e 9
2.5 Diapycnal diffUSIVITY .....oovuiiiiiiiic e e e e e e eaes 13
(O 1Nl I PP 15......
TURBULENT MIXING OF PASSIVE SCALARS ... ... 15
K A 1170 To [ 8 Tox 1o o HO TP TP PP PPPPPTPPTPPPPPPPPPN 15
3.2 Problem StatemeNnt ..........cooo i 16



3.3 Direct NUMEIICAl SOIUTIONS . ...cnee e e 16

Il a1 o =] o2 SO PPPRPRPPPRRRT 25
3.5 Scalar and scalar diSSIPatioN FALE ..........ooiieiiiiiiiiii e 30
3.6 Coherent turbUIENT SITUCTUIES .........uuiiiiiiiiiieee e 36
3.7 Modeling for turbulent scalar MiXiNg ........ccoooeeiiiiiiiiiiiccrr e 43
CHAPTER 4. et e e e e eens 52.....
MIXING OF ACTIVE SCALARS ... e 52
0t R L i (0o [8 o 1o o [OOSR PPPPPPPPPPPPR 52
4.2 Problem StAtEMENT........eviiiiiiiiiieeee e 52
4.3 DNS fOrMUIATION ... e e e e 53
4.4 Modeling of turbulent scalar mixing in stably stratified flows..................c........ 54
CHAPTER S e et e e e e e e e e e e e nnenene] 62.....
CONCLUSION ..t e et e e e e et et e e e e e e eba e e e e e ennea e eeeas 62
5.1 SUMMArY Of STUAIES. ... .ccoi i e e e e e e e e e e eeeaaaanes 62
5.2 Conclusions from chapter 3 and chapter 4. 63
5.3 Suggestions for future reSEarCh..........cccociiiiiiiiiii e 64
REFERENCES. ... e s e e 65....

Vi



LIST OF FIGURES

Figure 2.1: Schematic sketch of spectrum of passive scalar variance. Scalar fluctuations are
injected at low wave numbers at rgteand transferred to high wave numbers with the mean flux
noand then smeared by the molecular diffusivity at thexate. (Gotoh and Yeung, 2012). ... 12
Figure 2.2: relationship between Thorpe and Ellison length scales (ltsweire et al. 1993). .......... 13

Figure 2.3: non-dimensional diapycnal diffusivity is plotted with turbulent Peclet number (from
Stretch and Venayagamoorthy 2010).........iiiiiiiiiiiiee e 14

Figure 3.1: Turbulent kinetic energy for unstratified homogeneous flow using DNS3ag&6
fOr SC=0.1, 0.2, 0.5, 1, 2 & B oiiiiiiiiii ittt e e e e e e e e e et e et e et a e e e e e e e e e ee e e e a e arnnannn—n, 19

Figure 3.2: a) Three dimensional computational domain MatP56 grid points in each direction,
D) size of @ grid IN XY PlaN@ ......ovuni i 21

Figure 3.3: Comparison of grid scale with Kolmogorov, Batchelor and Obukhov-Corssin length
scales at all Schmidt numbers for minimum wavenumber iS L. ... 22

Figure 3.4: Average scalar dissipation rgieomputed within the DNS code and post processed
ep from density fluctuations f&c=1for a computational domain of length.2...................... 23

Figure 3.5: Comparison of grid scale with Kolmogorov, Batchelor and Obukhov-Corssin length
scales at all Schmidt numbers for minimum wavenumBEIN=4. ..........cccccccciiiiiiiinnnnnnnnnn. 24

Figure 3.6: Average scalar dissipation rgieomputed within the DNS code and post processed

ep from density fluctuations f&c=1for a computational domain of lehgt/2. ........................ 25
Figure 3.7: Plots of available kinetic, potential and total energies with time .......................ooonien. 26
Figure 3.8: Rate of dissipation of turbulent kinetic enerfyr all Sc numbers ......................... 27

Figure 3.9: Energy spectrum with wavenumber normalized by Kolmogorov length scadeGdr
andSc=1 at maximum energy dissipation. Black line indicates the Kolmogorov law of -5/3 slope
At INEITIAl SUBIANGE. ... et e e e e e e e e e e e e e e e e 29

Figure 3.10: Energy dissipation spectra with wavenumlodiSc=1 at different time steps whén
= 0.125T0, 1 TO, 1.726T0 & 2.995T0. ..ceeiiuiitiiteee ettt ettt e e e e e e 30

Figure 3.11: mean square of scalar (density) fluctuation is plotted with tinse=fdr.1, 0.2, 0.5,
O TR 31

Figure 3.12: variation of scalar dissipation (CHI) with timeSor 0.1, 0.2,0.5,1,2 & 3. ....... 32

Vil



Figure 3.13: Non-dimensional diascalar diffusivity plotted with time for all Schmidt numbers. 33

Figure 3.14: Contour surfaces of scalar dissipation (CHI) amplitudes at different tinges i
and 1 are plotted for selected plang=l28. ...............ouuiiiiiiiiiiie e 34

Figure 3.15: a) Scalar spectra plotted with wavenumber f@& alumbers and slopes of -1 and -
17/3 are shown in viscous-convective and inertial-diffusive regimes respectively. b) Scalar
spectrums for lowsc numbersSc <1 in Obukhov-Corrsin scaling is plotted with wavenumber
NOMMAIZEU DYLOC. -+ttt e e et et bbb e e et e e e e e e e e e e e e e e e e e s aannnns 35

Figure 3.16: Isotropic structures of enstrophy, horizontal vorticity and vertical vorticiSc+dr
at different time steps. Selected threshold of 2.5 times the root mean square (rms) of enstrophy 38

Figure 3.17: Isosurfaces of scalar (density) fluctuation§&de0.1, 1 & 3 at different time steps.
Isosurfaces are mapped with selected threshold of 2 times the root mean square (rms) of scalar
1118103 (0 =1 1o o PO OO PPPPPP 39

Figure 3.18: Isosurfaces of scalar (density) fluctuation§&de0.1, 1 & 3 at different time steps.
Isosurfaces are mapped with selected threshold of 1.5 times the root mean square (rms) of scalar
L1181 (0 =1 1o o PO OO PPPPPPPPR 40

Figure 3.19: Isosurfaces scalar dissipation rat&ded.1, 1 & 3 at different time steps. Isosurfaces
are mapped with selected threshold of 2 times the root mean square (rms) of scalar dissipation.41

Figure 3.20: Isosurfaces scalar (density) dissipation ratécfdr.1, 1 & 3 at different time steps.
Isosurfaces are mapped with selected threshold of 3 times the root mean square (rms) of scalar

(01515 ] 0= 11 0] o APPSO PPPPPUPPPPUPPP 42
Figure 3.21: Non-dimensional diascalar diffusivity for different Schmidt numbers with turbulent
Peclet number. Dashed black lines represgatsand 0.5. ..........coooiiiiiiiiiii e, 45
Figure 3.22: Gamma values for passive scalars for different Schmidt numbers in forced and
ECAYING TIOWS. ... ettt r ettt e e e e e e e e e e e e e e e e e e e e e nnnnes 46
Figure 3.23: Thorpe scalar length versus Ellison length scale for Passive scalars. ...................... 47
Figure 3.24: Ratio ofe/Lke with time after the flow has developed..........cccccooiiiiiiinn, 48
Figure 3.25: Comparison GE & Lke for passive scalars in unstratified flows........................... 49

Figure 3.26: Comparison of diascalar diffusivity computed using modgsKgiven by Eq.
(3-13) ANA DINS dALA [KaC)- --+vvvvreeerinnnnriieeee ettt e e e e ettt ee e e e e e e b ee e e e e e e e s nnbbeeeaeeesannneseeeaeeeannnaeeens 50

Figure 4.1: Model diffusivity versus exact diffusivity using DNS data of stably stratified flows.

Figure 4.2: Comparison between Ellison and Thorpe length scales for stably stratified flows.... 55

viii



Figure 4.3: Non-dimensional diapycnal diffusivity with turbulent Peclet number for different
decaying stratified flow. Dashed black lines represgits and 0.5. ...........ooovviiiiiiiiiiiieeeeeen, 56

Figure 4.4: Values foy' plotted with eddy turnover time for different stratifications. Dashed black
liNes representB'=1 and 0.5. ........oooiiiiiiiiii e ————————————— 57

Figure 4.5: Ellison length scale versus turbulent kinetic energy length scale for low, moderate and
1o | TS (= L) {[F=14 o] o TP 58

Figure 4.6: Inverse relationship between Ellison and kinetic energy length scales for different
RS 1= L1 o= 1 o o 1 USRS 59

Figure 4.7: Comparison of Scalar diffusivity computed using modalséikand DNS data (Kac)
for active scalar in stratified fIOW. ... 60

Figure 4.8: Master plot showing the diffusivity models for both passive and active scalars in
unstratified and stratified FIOWS. ..........eeiiiii e 61



CHAPTER 1

INTRODUCTION

1.1 Introduction

Turbulent flows are ubiquitous in natural and engineering systems involving liquids and
gases.Turbulent flows are generally irregular, chaotic and nonlinear and hence very difficult to
predict and model. Examples of turbulent flows in engineering include flow of water in, rivers
engineered canals, pipes and flow of air in the atmosphere and engineered systems. A key
characteristic of turbulence is enhanced mixing which can be advantageous in certain situations
such as when rapid dilution of a substance is desirable and can be detrimental when an opposite
scenario that requires little to no mixing is required.

Natural flows can be unstratified where the density of the fluid is constant across the whole
fluid column (i.e. in well mixed rivers and neutral atmospheric boundary layer) or stratified where
the density changes with depth. The density (which is a scalar quantity) can be considered to be
passive in the former case (unstratified flows) in that it does not dynamically influence the
momentum field. In other words, it passively mixes driven by the resultant turbulent velocity field
without any feedback on the driving velocity field. On the other hand, in a stably stratified fluid
(i.e. where density increases with depth e.g. in the oceans), the density is considered as an active
scalar in the sense that it dynamically influences the momentum field through buoyancy effects.
Hence, mixing of scalars in these two types of conditions are different and appropriate
considerations for these differences must be given in the development of turbulent mixing model
for mixing. However, it is clear that despite numerous studies on scalar mixing, there are many

unresolved issues concerning both the fundamental aspects of turbulent mixing in such flows as



more practical issues related to modeling of such flows for solving many important environmental

flow problems.

The work presented in this thesis focuses on mixing of scalars in both unstratified flows
and stratified flows. Mixing of a passive scalar is studied in unstratified flows using forced Direct
Numerical Solution (DNS). Besides providing a direct solution to the highly nonlinear Navier-
Stokes equations that govern the motion of fluid flow without recourse to turbulence closure
models, DNS also provides the ability for the researcher to probe the full three-dimensional flow
fields.

In what follows, a brief outline of the main objectives and the layout of the thesis are
presented.

1.2 Objectives

The main objectives of this study are as follows:

1) To perform analysesf diomogeneous, unstratified turbulent flow with a range of Schmidt
numbers using forced DNS in order to investigate the molecular effects on turbulent mixing in
such flows.

2) To develop a turbulent scalar diffusivity model for passive scalar mixing in unstratifiesl flow
that is practically useful.

3) To develop a turbulent scalar diffusivity model for active scalar mixing in stably stratifiesd flow
that is also practically useful.

1.3 ThesisLayout

The contents of this thesis have been arranged into four further chapters. Chapter 2 presents
a brief literature review including important governgmgyations as well a discussion on passive

scalar and active scalar mixing. Basic fluid mechanics theory on turbulence related to stratified



and unstratified flow are presented; specifically definitions of important parameters, the governing
equations, relevant scales, and important non-dimensional parameters are provided. Relevant
review of previous work done on scalar mixing discussed.

In Chapter 3, a parametric study of passive scalar mixing in homogeneous unstratified
flows with different Schmidt numbers using DNS is reported. Details of simulation setup and
numerical methods are briefly discussed. The DNS results for the energetics and scalar properties
are discussed. Visualizations of vorticity, enstrophy and density fields are presented to provide
qualitative description of coherent turbulent structures of the flow and scalar Keld#y, an
innovative attempt is made develop a model for scalar mixing in unstratified flow.

An extension of the research presented in Chapter 3 pertaining to mixing is made to stably
stratified flows in chapter 4. The applicability afproposed scalar diffusivity model that is
extensively discussed in chapter 3 is tested and refined for the prediction of active scalar mixing
in stably stratified flows. Chapter 5 concludes this thesis where a summary of the work done is
provided together with the main finding. Some recommendations for future work are also provided

in Chapter 5.



CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

Turbulent flows are characterized by enhanced mixing and thus help to distribute and
transport many substances such as contaminants and nutrients in natural flows as well as
engineered flows (e.g. in combustion engines). Thus, the subject of scalar mixing in turbulent
flows has received much attention over the years using a myriad of approaches that combine
theory, experiments and numerical simulations. In environmental flows, the density of the fluid
could be either constant over the whole water or air column (e.g. in river flows, the water is more
or less homogeneous and the density is assumed to be constant) or it could vary with depth (e.g.
summer conditions in a lake will result in a two-layer system where the upper layer will be warm
and well mixed and the lower layer will be cooler with a thermocline separating the two layers).
Understanding and modeling mixing of scalars in environmental flows is important for obvious
reasons. Here, the salient features of turbulent flows are presented.

In what follows, first a brief overview of the governing equations of fluid motion and scalar
transport are discussed in Sec. 2.2. This is followed by a discussion on the basic non-dimensional
parameters that are relevant to this research in Sec.2.3. Turbulent length and time scales are

discussed in Sec.2.4 and turbulent diffusivity parameterizations are reviewed in Sec. 2.5.



2.2 Equations of motion

Behavior of fluid motion can be described by the governing conservation principles o
momentum, mass and energy.
2.2.1 Governing Equations

In unstratified turbulent fis, density does not play a dynamic role on the fluid motion
since it is constant. Hence, only the conservation of momentum principle which leads to the well-
known Navier-Stokes equations in fluids and the conservation of mass principle (resulting in the
continuity equation) are sufficient to describe the flow.
2.2.1.1 The Navier-Stokes Equations

The Navier-Stokes equations for an unstratified flow is given by

ou 2.1
P53 + p(u.Vu) = —VP + uV?u, (2.1)

where,p is the (constant) density of the fluidjs the velocity vector (with components u, v, and
w, respectively) VP s the pressure gradient amas the molecular dynamic viscosity. Eg.2.1 can
be rewritten with the total derivative notatibg)/Dt = d()/ot +u.V() as follows

u (2.2)
— = -VP 2
p Dr VP + uV<u,

For stratified flows, the buoyancy effects are taken into account because of the variation of density.
Hence, Eq.2.2 can be rewritten by including the force of gragityarn to get

u 2.3
p— = —VP + uV?u + pg, 2:3)
Dt
Equation (2.3) can be further simplified using the Boussinesq approximation which is
based on the assumption that variations in density have negligible effect on the inertial terms. The

assumption formally requires that the density variations are smap'{i@, < 1) and can be



shown to be valid for low Mach number flows. Hence, using the Bousinesq assumption, the
momentum equations are given by

Du 1 p' (2.4)
—=—-—Vp+vWu+—g,
Dt Po Po g

where, p’ is the density fluctuation from the background mean density (
2.2.1.2 Continuity Equation

The principle of conservation of mass leads to the continuity equation given by

—+ V. =0,
Fri (pu)
Using the total Derivative notation, the above equation can be rearranged into
D 2.
—p+p. V(u) =0, (2.6)

Dt

Eq. (2.6) simplifies further for an incompressible fluid to a divergence free velocity field given by

V.ou=0, (2.7)

2.2.1.3 Scalar Transport Equation
The ratio of the kinematic viscosity)( of a fluid to the molecular diffusivity«) of a scalar
quantity is either called the Schmidt numi&er(for mass diffusivity) or Prandtl numbér (for

heat diffusivity) as



Sc (Pr) = E, (2.8)

The transport equation for scalar fluctuatiins given by

00’ 2.9
E+u. Vo' = kV20', (2.9)

where u is the velocity vector obtained from the Navier-Stokes equations. Eq.2.9 can be simplified

using total derivative material notatias

DO’ Ry (2.10
Dt ’

2.3 Basic Parameters of Turbulent flow

There are several important non-dimensional parameters that are commonly used for
describing turbulent flows and stratification. The key parameters that will be used throughout this
thesis are defined next.

2.3.1 Reynolds Number

Reynolds numberRg) is a key parameter in fluid mechanics. It is essentially a ratio of
inertial to viscous forces and is used to characterize whether a flow is laminar or tutbuDNS
simulations that are initialized with some energy input, an initial turbulent Reynolds number is
usually defined as

U,L
Re, = (; 2, (2.11)

Where,vis the kinematic viscosity of the flow, and L, are the initial velocity and length scales
of the flow. Another commonly used Reynolds number that is defined using the turbulent length
scaleL and turbulent kinetic enerdyof the flow is the turbulent Reynolds number expressed in

Eqg. (2.12).



K12, (2.12)

wo Ly (2.13)

Using Taylor microscalé; = \/W a statistical quantity, a Taylor Reynolds number can
be defined as shown in Eq. (2.13).
2.3.2 Richardson Number

The Richardson Numbé&ti, a non-dimensional parameter that is defined as the ratio of the

buoyancy forces to inertial forces in a turbulent flow. It expresses the strength of the stratification
of the flow in terms of the buoyancy frequeri¢and initial eddy turnover time scdlg = LO/U .
o

Ri is given as

NLO]Z’ (2.14)

RiO:[U
o

where the buoyancy frequenblis defined as

9

Po

0z

N2 (2.15)
Gl

The buoyancy frequenci is also called as th8runt-Vdisdlda frequency. Hereg is the
acceleration due to gravity a%@ is the mean density gradient in the vertical direction.

2.3.3 Schmidt (or Prandtl) and Peclet Number

The Schmidt (or Prandtl) numbge (Pr) measures the ratio of kinematic viscosity (of the
fluid) to molecular diffusivity (of the scalar) effects in the flow as previously defined in Eq.(2.8).
The Peclet Number can be defined as a ratio between the rates of advection to diffasion in

turbulent flow.



_ Advection _ U,L, (2.16)
" Diffusion k'

Pe

Where U, and L, are the initial velocity and length scales of the flow, angs molecular
diffusivity. Also it can be rearranged in termsadReynolds numbeRe and the Schmidt number

Sc for mass transfer as follows

Pe = Re. Sc, (2.17)

2.4 Length and Time Scales

Turbulent flows are characterized by a large range of length and time scales. These scales
range from large scales that are defined by the forcing of the flow field as well as the geometry to
the small scales which are characteristic of the dissipative scales. The small scales at which
molecular viscosity acts to dissipate the kinetic energy are calledingogorov scales ima
turbulent flow. However, the dissipative scales associated with scalars in turbulent flows maybe
finer or larger than the Kolmogorov length scales depending oBctbe Pr. These scales are
discussed in sections 2.4.2 and 2.4.3.
2.4.1 Energy cascade and K olmogorov Scales

An early and commonly adapted notion is the energy cascade first put forth by Richardson
(1922). A turbulent flow can be considered to consist of eddies of different sizes ranging from
large eddies to small eddies. The large eddies (which extract their energy from the mean flow) are
dominated by inertial forces and are presumably unaffected by viscous effects. However, due their
high energy content, such large eddies are unstable and hence transfer their energy to smaller
eddies which in turn undergo a similar process and spurn even smaller eddies. This process

continues till the local Reynolds number of the smallest eddies is small enough (of the order of 1)



for viscosity to stabilize the eddy and dissipate its turbulent kinetic energy effectively (Pope,

2010). The energy cascade idea was summarized as a poem by Richardson as follows:

Big whorls have little whorls,

Which feed on their velocity;,

And little whorls have lesser whorls,

And so on to viscosity

-LewisF. Richardson
Andrey N. Kolmogorov, a Soviet mathematician is widely credited with putting forth the

first set of ideas towards formalizing a universal theory of turbulence in 1941. These set of ideas
are captured through the famd&Imogorov’s hypotheses. A key hypothesis of local isotropy
states that: the large eddies are anisotropic and while the small eddies are isotropic at the dissipative
scales Kolmogorov’s First similarity hypothesis is based on the argument that small scale
turbulent motions in the universal equilibrium range are uniquely determined by kinematic
viscosityv, and dissipation ratg,. Using these determining parameters, unique length, velocity

and time scales can be constructed from dimensional analysis. These three scales are considered

asthe so called-smallest scales of motion in turbulent flows. The Kolmogdemgth(L,),

time (z,,), and velocity(u, ) scales are define as follows:

L, = (v3/e)'/4, (2.18)
u, = (ev)/4, (2.19)
T, = (v/e)'?, (2.20)

2.4.2 Obukhov-Corrsin and Batchelor Scales
Obukhov (1949) and Corrsin (1951) were the first to propose extensions of Kolmagorov
phenomenology to passive scalars. The scalar dissipative regimes can be divided in two

demarcated bysc=1. The two regimes are known as inertial-diffusive range and viscous-

10



convective range whefic<l and Sc>1, respectively (see Fig.2.1). Scalar spectrums in these
regions can be expressed as shown in Eq.2.21 and 2.22.

1 5
E,(K) = Coc g, &9 KT, for1/L « K < 1/Lgc (2.21)

1
E,(K)=Cze,v/O)P KD, for1/L, < K < 1/Lg (2.22)

where,Cy¢ is known as the Obukhov-Corrsin constahy,is the Batchelor constard, is scalar
dissipation rateg is the mean rate of energy dissipation rate per unit mass enaravenumber.
When S<1, range of scalds> 1/K > 1/L,., which shows that neither molecular
viscosity nor molecular diffusion is important. Thus, it is called inertial-convective range. For the
casewhen =1, the scalely = L, Sc™*/? is smaller thad,. Therefore a viscous-convective
range may form wire viscosity is important but not the diffusivity.
The Batchelor scalgg (Batchelor, 1959) is a length scale where the molecular diffusion

of a scalar is dominated by energy dissipation. It is defined as

2\ Y4 (2.23)
be = (T) '

The Batchelor scale and Obukhov-Corrsin scale can be related with Kolmogorov length

scale in terms ofc as follows

L. = Ly (2.24)
BT gc1/2”

[ = Ly (2.25)
0C ™ gc3/4”

Hence, whersc >1, Lgis smaller than the Kolmogorov scale.

11
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Figure 2.1: Schematic sketch of spectrum of passive scalar variance. Scalar fluctuations are injected at low wave
numbers at ratgr;,and transferred to high wave numbers with the meansdjeand then smeared by the
molecular diffusivity at the raig,, ;. (Gotoh and Yeung, 2012).

2.4.3 Thorpeand Ellison length scales

The Thorpe displacemeidit is the vertical distance a particle must travel back to a position
along a gravitationally stable density profile. The gravitationally stable density profile is calculated
by monotonically sorting the density profile. The Thorpe stalis the root-mean square of non-
zerod'along a vertical profile and provides a measure of the size of vertical overturns (Thorpe,
1977).

The Ellison scald. is an additional measure of the maximum vertical displacement, given

a background density profile and a turbulent intensity estimatég{y'*).

Le=(0")" 1ap/ol, (2.26)

If sorted density profile is exactly equalap/dz, thenL is exactly equal td,. However,
a relationship oLt= 0.8Le was proposed by Itsweire et al. (1993) for stably stratified shear flows

as shown in Fig.2.2.
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Figure 2.2: relationship between Thorpe and Ellison length scales (Itsweire et al. 1993).
2.5 Diapycnal diffusivity

The diapycnal diffusivity is a measure of the irreversible mixing in a density stratified flow.
Venayagamoorthy and Stretch (2006) proposed a model to define the turbulent diffusivity in terms
of Ellison length scale and turbulent time scale as

Lg? (2.27)

where,Lg is the Ellison ‘overturning’ length scale, T;, is turbulent time scale and is one-half of
the ratio of the mechanicétd-scalar time scale given by

_1 T (2.28)
2 (plz)/z’

where ¢, scalar dissipationT;, is the turbulent time scald,(= k/¢) and p’ is mean scalar

!

14

fluctuation. Fig.2.3 is a plot of the non-dimensional diapycnal diffusivity’ k) with turbulent
Peclet numberRe, = L;*/T, k) for a different of datasets taken from a study conducted by Stretch
and Venayagamoorthy (2010) to assess the validity of the diapycnal diffusivity they proposed as

shown in Eq. (2.2
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Figure 2.3: non-dimensional diapycnal diffusivity is plotted with turbulent Peclet number (from Stretch and

Venayagamoorthy 2010).

2.6 Conclusions

In this short chapter, an overview of the key equations and parameters was provided to

set the stage for the research study presented in the next two chapters.
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CHAPTER 3

TURBULENT MIXING OF PASSIVE SCALARS

3.1 Introduction

This chapter presents results from a detailed study was performed to investigate the effect
of varying Schmidt numbersSf) on turbulent mixing of a passive scalar in a stationary
homogeneous unstratified flow using forced DNS. Here, a passive scalar by definition is a scalar
guantity that does not affect the flow (momentum) field dynamically. Examples of such scalars
include a dissolved pollutant such as Nitrogen or Chlorine that is transported in a turbulent flow.
The dissipation and mixing of passive scalars occurs at small scales which besides the Reynolds
number, may also be influenced by the Schmidt nunf®r The Sc can vary widely by several
orders of magnitude ranging from3.t liquid metals to order unity in gaseous flames tdd0
higher in organic mixtures and biological fluids (Yeuwtal., 2002). However, to date, it is not
clear what the effect & is in high Reynolds number turbulent flows, especially pertaining to the
prediction of turbulent mixing of scalars in such flow.

In what follows in this chapter, first a formal problem statement is stated in Sec. 32. This
is followed in Sec.3.3 by a discussion on the DNS formulation and numerical resolution issues.
DNS results of the energetics and dynamics of the flow field are presented in SecS8.4Xor
noting that for passive scalars, the velocity fields for diffeBersimulationsare identical. In Sec
3.5, DNS results for scalar dissipation and fluxes are presented fer32.¥ 3. The coherent
structures of both the flow field and scalar are qualitatively visualized in three-dimensional space
in Sec. 3.6. Finally, a practical (and new) model for quantifying the turbulent diascalar diffusivity

is presented in Sec. 3.7.
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3.2 Problem Statement

The overarching question that primarily motivates the work presented in this chapter is
“Does the turbulent mixing of a passive scalar in a homogeneous, unstratified turbulent flow
depend on the molecular diffusivity (specified by different Schmidt nust)&r

An associated and practical question that follows pertains to whether a unifying model can
be proposed for quantifying the turbulent diascalar diffusivity of passive scalars in turbulent flows?

It should be noted that it is very challenging to obtain conclusive and elegant answers to
both of the above questions due to in part the complexities associated with turbulent flows and
also the constraints inherent in the tools such as DNS and experiments that are used to study such
flows. However, an attempt to answer these questions is made in this study using DNS simulations
for varyingSc numbers.

3.3 Direct Numerical Solutions

Direct Numerical Simulation (DNS) is a computational technique for the solving the three-
dimensional instantaneous Navier-StoKBsS) equations for fluid flow. A turbulent flow is
characterized by a large range of length scales ranging from large scales depicted by the geometry
of the flow domain to small dissipated scales where most of the turbulent kinetic energy that is
produced from the mean flow field at large scales is dissipated. Hence it is very important to solve
the N-S equations across this spectrum of length scales in order to investigate the fundamental
physics associated with turbulence. Thus DNS has the advantage over other computational fluid
dynamics (CFD) methods as it directly solves the flow field up to the smallest scales for a given
Reynolds negating the need for a turbulence model that is typically required in all the other CFD

techniques.
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However the computational cost associated with DNS scales nonlinearly with the Reynolds
number. Henc®NS is restricted to low to moderate Reynolds numbers (Pope 2000). Practical
environmental flows which are characterized by higher Reynolds numbers require other CFD
techniques such as Large Eddy Simulations (LES) and Reynolds Average Navier-Stokes (RANS)
simulations which solve some form of the averaged N-S equations in conjunction with a turbulence
closure model.

3.3.1 Description of Code

The DNS code usedn this current work was pioneered for homogeneous turbulence by
Orszag and Patterson (1972) using a pseudo-spectral numerical scheme. The code was extended
by Riley et al. (1981) for stratified turbulent flows. The forcing scheme with pseudo spectral
method DNS code used in this work for unstratified flow is based on a constant energy input
technique using a linear forcing technique (Stretch, personal communication). The code is written
in the FORTRAN 77 programming language and executed on a Linux operating system. A pseudo-
spectral method is a technique where by the linear terms in the Navier-Stokes equations are
evaluated in wavenumber space while the non-linear terms are computed in physical space. Time
marching is accomplished using tleapfrog schenein order to achieve second order accurdcy a
minimal cost. Periodic boundary conditions are applied on all boundaries, which are necessary

boundary conditions for spectral schemes (Pope, 2000).
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3.3.2 Formulation of DNS

DNS using pseudo spectral numerical method involves the formulation of the flow
parameters such as velocity in wavenumber sgécaq three dimensional Fourier seriesNor
grid points, whereN is the number of grids (which is set the same in all three directiéos)

example, the Fourier series for velocity can be represented as a finite Fourier series as follows

u(x,t) = Z KX (K. b), (3.1)

K

whereK is the wavenumber is the wavenumber @amglthe Fourier coefficients. In physical space,
the resolving domain is a cube of lengthLofvith N grid points in each direction. Hence a grid
size isAx = Ay = Az = L/N. Discrete Fourier Transform (DFT) gives a doene mapping
between Fourier coefficients and the velocities. (Pope, 2000).

The computational boX.§ must be large enough to capture the largest scales of the flow
while the grid size should be small enough to capture the smallest dissipative scales. The highest
wave numbek,,,, can be determined in terms of number of grid pditnd lowest norzero

wavenumbek,,.

3.2
gKoN, (3.2)

Kmax =
The turbulent Reynolds numbge; (Eq. 3.3) can be used to illustrate the computational
cost associated with DNS. The number of grid pdih{isq. 3.4) in each direction is approximately
equal the ratio of the turbulent large schl® the Kolmogorov scale, (Durbin & Pettersson Reif,
2011) and typicallyN is chosen to be in power of 2 naturally to facilitate computation of Fourier
transforms.

k1/2], B k_2 (3.3)
v v’

ReL =
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L k32 e 1 (k2\* » (34)
i) =) =R

wherek is the turbulent kinetic energy amds the rate of dissipation of turbulent kinetic energy
and vis the kinematic viscosity.
3.3.2.1 Forcing scheme

A forcing scheme was added to momentum equation in order to obtain a statistically
stationary homogeneous velocity field (Eswaran and Pope, 1987). A linear forcing scheme was
used for this purpose, where a forcing is introduced in order to maintain a constant turbulent kinetic
energyk as a function of time. The turbulent kinetic energy as a function of time is shown in figure
3.1 and is seen to be almost constant for up to three eddy turnover time. Also, it should be noted
that the velocity field and hence the associated energetics of the flow field is identical for all the
different simulations that were performed for varying Schmidt number$&¢i=0.1, 0.2, 0.5, 1,
2 and 3). Through this approach, a statistically stationary homogeneous turbulent field was

maintained throughout the duration of the simulations.
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1.2 4
1.1 L L L 1 L
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EddyTurnoverThne(To)

Figure 3.1: Turbulent kinetic energy for unstratified homogeneous flow using DNSajrizfsforSc=0.1, 0.2,
05,1,2&3.
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3.3.2.2Initial Conditions
The simulation was initialized with a Gaussian, Isotropic velocity field using with an
energy spectrum function as follows

_lp2.2 3.5
E(K) = CxUZLSK*e 2871, (3:5)

whereC, is the Kolmogorov constant scaling factip& L, are initial velocity and length scales.

The turbulent Reynolds numb@&e, was 625 and the number of grid poii =256 for all
simulations. DNS at this high&e;, and number of grid points were checked by Schaad (2012)
against the earlier lower resolution DNS study by Venayagamoorthy and Stretch (2006). The initial
Richardson numbeki, was set to zero for all simulations of unstratified turbulence since
buoyancy effects are absent in such flows.

Each simulation was performed for up to three eddy turn over time, which is necessary to
allow the turbulent flow to reach a stationary state. Hence, the total number of time steps and time
step sizeAt were determined as 6000 and 0.0005, respectively to achieve three eddy turn time
while ensuring numerical stability. The minimum wavenumB&M\IN) was determined as 1 and
then increased to 4 to overcome the resolution issues on the results, which are discussed in the next
section. Also, the range of Schmidt numbers that were simulated was constrained by the resolution
issues.

3.3.3 Resolution issues

All the initial simulations that were performed were done with a minimum wavenumber of
1 (i.e. a dimensional box size equivalent t©) 2n order to allow for the largest possible
computational domain which will allow for the largest scales of the flow to evolve in the periodic

computational domain. With a minimum wavenumber of 1, each size of the computational cube is
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of length Zr, which implies that computational domain is about 6 times larger than the large eddy

size (see i§.3.2).

256 Ay
P dx =L/ NK
192 1 ~ 7
N
N 128
64
dyzL/NY
32
16
83
256 = - v
128 128 12 ) X
Y i X 0 1

Figure 3.2:a) Three dimensional computational domain With256 grid points in each direction, b) size of a
grid in XY plane

In order to ensure adequate grid resolution, the computational domain must be sufficiently
large enough to contain the large scales of the flow while also ensuring that gud=slz&)
should be sufficiently fine to resolve the smallest scales, which are typically of the order of the

Kolmogorov length scalg, = (v3/£)'/*. Here,vis the kinematic viscosity angis the dissipate

rate of turbulent kinetic energy. The Kolmogorov scales were checked to ensure that the grid was
sufficiently small in order to confirm that the simulations were adequately resolved. Furthermore,
in order to adequately resolve the passive scalar field, the corresponding small length scales
commonly known as the Obukhov - Corssin scale $o«x1) and the Batchelor scale (f6r >1)

were also checked against the grid resolutiagn.3E3 shows all three small length scales together
with the grid sizes. As can be seen, clearly, the grid size is not small enough to resolve the small

scale motions for all of the Schmidt numbers. Grid sizes are almost 5 times larger than Kolmogorov
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scale. Hence it is clear that a smaller computational domain is required to resolve all scale motions

of the flow with a total number of grid points of 256
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Figure 3.3: Comparison of grid scale with Kolmogorov, Batchelor and Obukhov-Corssin length scales at all
Schmidt numbers for minimum wavenumber is 1.

In addition to the scale comparisons shown in Fig 3.3, another standard comparison check

was done for the turbulent scalar dissipation gatéiven thats,occurs the smallest scales, it is
should be expected that the simulations would not be adequately resolved to egroputectly.

In the DNS code, turbulent statistics suckeaare computed by considering a truncated sphere
within the cubic domain consisting of Z5g¥id points at each time step. Itis also possible to output

the scalar fluctuationg' on each grid point over the domain at each time separately. The
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fluctuating scalar gradients of three dimensiastaar fields can then be computed at each grid

points from whiche, can be obtained using equation J&abany given time step.

_[09p" 9p’ (3.6)
Sp - K Ox] ax] ’

wherex is molecular diffusivity ang is the density of the flow. If the simulations are well
resolved, both computations should yield the same results. Fig 3.4 shows the comparison for a
simulation withSc =1. Clearly, the results do not converge within acceptable limit. The maximum

difference is more 150% and increasesJor 1.
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Figure 3.4: Average scalar dissipation igteomputed within the DNS code and post processed ep from density
fluctuations forSc=1for a computational domain of length.2

It is clear that for a simulation with 25§rid points, the domain size must be smaller than
2n in order to resolve the smaller scales. Thus, the domain size was motifiedrder to ensure
that adequate resolution of the smallest scales are obtdihedstandard checks as discussed
above were performed again for & numbers and compared. As can be seen frign3.B, the

grid size and Kolmogorov scales are now comparable. Also the maximum differepeesis 7%
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between the results as discussed previously. Thus a box siZ&wés used for the remainder of

this study. The Schmidt number range was also restricted $g=8in order to ensure adequate
resolution of Batchelor scales. The maximum differeneg is about 17% foBc=3 beyond which

the numerical errors become large. Hence, simulations with Schmidt numbers in the range 0.1
S < 3were performed with eye toward answering the overarching question related to turbulent

mixing of passive scalars.
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Figure 3.5: Comparison of grid scale with Kolmogorov, Batchelor and Obukhov-Corssin length scales at all
Schmidt numbers for minimum wavenumBe¢MIN=4.
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Figure 3.6: Average scalar dissipation igteomputed within the DNS code and post processed ep from density
fluctuations forSc=1for a computational domain of lengtf2.
3.4 Energetics

In this section, the energetics of the flow field is presented. Since all the simulations are
unstratified, the energetics of the flow field does not change with va&ingherefore, only
results forSc=1 simulation are discussed here.
3.4.1 Turbulent kinetic energy and dissipation rate

As a reminder, the purpose of artificially forcing the flow was to obtain a Main purpose
statistically stationary velocity field for all the simulations that is turbulent. Hence, turbulent
kinetic energy(k = 1/2(u.u)) is constant for all time. For practical flows, the turbulent kinetic
energy is produced from a sheared mean flow field. In other words, a key ingredient for the
production/sustenance of turbulence is mean shear (or mean velocity gradients) in the flow.
However, for homogeneous isotropic turbulence, the only way to ensure stationarity, is through

artificial forcing that adds energy to the flow as discussed earlier and shown in Fig.3.1.
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Available turbulent kinetic energy (TKE), turbulent potential energy and total energy are plotted
in Fig.3.7 as function of time. As shown before (see Fig. 3.1) the TKE remains constant throughout

the duration of the simulation.
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Figure 3.7: Plots of available kinetic, potential and total energies with time
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It is important to note that even though the TKE is statistically stationary, this does not
necessarily provide a constant rate of dissipation of turbulent kinetic endsge Fig.3.8)g, is

the average of square of the fluctuating velocity gradients over the domain as follow:

_ aui aui (37)
E=v 6x] ax] ’

wherev is the kinematic viscosity of the flow. It can be seen from Fig 3.8stheg¢aches its
maximum dissipation dt=1.73T, and then it decreases slightly to attain a stationary level. Hence,
the kinetic energy shows a small increment around the time of maximum dissipation (see Fig 3.7).
Clearly, the potential energy is zero with no changes in time since there is no production of

buoyancy fluxes for unstratified flovR{( = 0).

4 1 L] 1 I 1 1
1
g 1
o /"’i\w
R e —
g- 3 i // ! \*w-«—"‘“ \,vamw.:
8 // 1
o 1
: /S
= 1
g 2F // 1 -
o l
- 1 Sc=0.1
[= -
= : Sc=0.2
"'6 1+ i Sc=0.5] .
% i Sc=1
g , Sc=2
1 Sc=
0 1 L 1 1 1 1
0 0.5 1 1.5 1.726 2 2.5 3

Eddy Turnover Time (To)

Figure 3.8: Rate of dissipation of turbulent kinetic enerégr all Sc numbers

It can be seen from Fig 3.8 that the dissipation rate starts almost from zero and peaks at

1.73 eddy turnover time. During the time betw&ehto 1.73T,, turbulent effects start to develop
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and hence it is important to use the flow statistics beyond this time for the purpose of analyzing
the turbulent physics.
3.4.2 Energy and energy dissipation spectra

The energy spectrum provides the distribution of the turbulent kinetic energy as a function
of wavenumbek and is obtained as follows.

Ewy = Cxe*PK™>/3, (3.8)

where Cg is the Kolmogorov constants is the dissipation rate of kinetic energy akdis
wavenumber. Fig.3.9 shows the energy spectrum versus wavenumitet.z8 To when
dissipation rate of TKE is a maximum. Here, wavenunmie(K=2xz/L,) is normalized by
Kolmogorov length scalg,. As discussed earlier regarding resolution issueseaBS.3, the
energy spectrum reaches the Kolmogorov scales as shown by blue continuous line at high wave
numbers. Hence, this is additional confirmation that the computational grid and domain resolve all
scales from largest scales to smallest scales. The large scale estimate in this study is also known
as the flow scal&o whereL, = k3/%/¢,.

It is important to note that inertial range spectral slope in this study does not attain the
classicaKolmogorov’s -5/3 law (black continuous line shown in Fig.)3&xcept for a few points.
This indicates that the separation of length scales are on the order of 1 to 10 for these simulations
at aninitial Reynolds numbeRe;=625. The Taylor microscale Reynolds numRer~200. The
Reynolds number should be sufficiently high enough to achieve a considerable order of separation
of scales. It has been found that a minimum Taylor Reynolds number ofReye2®00 is needed

to achieve -5/3 slope (Sreenivasan 1995).
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Figure 3.9: Energy spectrum with wavenumber normalized by Kolmogorov length scate@dr andsc=1 at
maximum energy dissipation. Black line indicates the Kolmogorov law of -5/3 slope at inertial subrange.

Fig.3.10 shows the energy dissipation spectra at different timeScfdr These plots
clearly indicate peaks in energy dissipation at low wavenumbers and subsequent decay at middle
wave numbers that approaches zero at high wavenumbers. The spectra at different times are
exhibiting the same trend with the spectrunt=al.73 eddy turnover time indicating maximum
dissipation. The monotonic and decaying trend in the dissipation spectra is another diagnostic that
indicates that the simulations are well resolved with no contamination or aliasing errors occurring

at higher wavenumbers (i.e. smaller scales).
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Figure 3.10: Energy dissipation spectra with wavenumlodiSc=1 at different time steps whér 0.125To, 1
To, 1.726To & 2.995To.

3.5 Scalar and scalar dissipation rate
Since the simulations presented in this chapter were conducted for unstratifieRiflow (
0), the density acts as a passive scalar, and hence it does not influence the dynamics of the flow

via buoyancy effects. Here, the density field is therefore used as a passive scalar. Also, it should

be noted that the Schmidt numbefs & E) will influence the scalar properties. Note &k 1, the

molecular diffusivity of the scalar is greater than momentum diffusivity and vice verSexfor
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Figure 3.11: mean square of scalar (density) fluctuation is plotted with tiref@.1, 0.2, 0.5, 1, 2 & 3.

The mean square of density (scalar) fluctuati()ns,o’2 >) (also known as the scalar
variance) is plotted with eddy turn over time for all Schmidt numbers in figure 3.11. The mean
square scalar (density) fluctuations increases from zero and reach their peaks after about the first
eddy turn over time and then decrease to almost quasi-steady state further in time. It can be seen
that the trends for all Schmidt numbers are the same with higher fluctuations with incBeasing

dpry dpti

>) which are shown in
ax]’ ax]-

A similar behavior is observed for scalar dissipation ré&g:s: v<

Fig.3.12. Once stationarity is achieved (after about one turn over time), the scalar properties
continue to be influenced by the Schmidt number.Jesrl, it can be seen at least for Reynolds
numbers of these simulations that the scalar variance and they are smaller compared their

counterparts aéc>1 but the scalar dissipation rates appear to converge at later timesSor all
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Figure 3.12: variation of scalar dissipation (CHI) with timeSor 0.1, 0.2, 0.5, 1, 2 & 3.

In order to assess whether the turbulent scalar diffusion is the predominant process (as
opposed to molecular diffusion) in these simulations, the ratio between the turbulent diffusivity
K, and molecular diffusivity, was computed. This ratio is known as non-dimensional diascalar
diffusivity or commonly known in oceanography as the Cox numBgr given by Eq. (3.9).

Fig.3.13 shows the non-dimensional diascalar diffusivity as a function of time &u all

K 3.9
¢, = 7s , (3.9)
Note the diascalar diffusiviti(s is defined as
_ €p (3.10)
S = — 2
(ap'/0z)

The results for the non-dimensional diascalar diffusivity for all Schmidt numbers clearly
show that turbulent diffusion dominates. Bor= 0.1, Kg/x = 15 and reaches up to 400 at steady
state forSc =3. Thus, these results confirm that the scalar mixing in these simulations are driven

by the turbulence.
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Figure 3.13: Non-dimensional diascalar diffusivity plotted with time for all Schmidt numbers.

Statistical geometry of isovalues of scalar dissipation rates are showg.3:1& for
selectedkz planes where y=128. The distributions are showrsfs0.1 and 1 at different times
The ramp and cliffs structures seen in the distributions indicate regions of sharp changes in scalar
dissipation rate,. At initial timet= 0.5To, the scalar dissipation rates exhibit very low values
that are fairly uniform over the xz plane except for a very few sharp changes in the middle of plane
for both Schmidt numbers. Peaks in the scalar dissipation occursl.@ To and higher
fluctuations of scalar dissipation are widely spread over the plarelat5To and 3To for both
Schmidt numbers. However, higher amplitudes are seefcfdr compared t&c=0.1 @salso

indicated previously in Fig.3.)2
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Figure 3.14: Contour surfaces of scalar dissipation (CHI) amplitudes at different tint&s-forl and 1 are

plotted for selected plane wt128.
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3.5.1 Scalar and Scalar dissipation spectrum

For scalars, the form of the spectriip,, whose integral gives the scalar variance, is
sensitively dependent on how the smallest scales compare with the smallest momentum scales.
Multiple regimes are formed depending on the Schmidt numbers as described previoigly in F
2.1 in Chapter 2 (Gotoh and Yeung, 2012). Fig.3.15 shows the scalar spectra for different Schmidt

numbers. In kg.3.15 (a), slopes of -1 and -17/3 are indicated to show the trend of inertial-diffusive

range and viscous-convective range, respectively.
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Figure 3.15: a) Scalar spectra plotted with wavenumber f&c allmbers and slopes of -1 and -17/3 are shown
in viscous-convective and inertial-diffusive regimes respectively. b) Scalar spectrums Somomberssc <1
in Obukhov-Corrsin scaling is plotted with wavenumber normalizeldoby

For low Schmidt numberSc<1, a small range of the scalar spectrum reatie slope of
-17/3. However, most of the spectra do not capture this limit perhaps due to the low Reynolds
number of the simulations. Whéit increases (as indicated by the black arrow in Fig 3.15(a))

scalar spectrum also increases towards the slope of -1, which indicates the region of viscous-
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convective regime (that must hold f6c >1). Again, due to the low Reynolds numbers of the
simulations, the turbulent scale separati@smot sufficient to reach the expected trends as shown
in Fg.2.1.

The scalar spectra are scaled with Obukhov-Corrsin length keal@and plotted in
Fig.3.15 (b) for low Schmidt numbe8<1. All spectra in the low wavenumber band start from a
near constant level which is known as the Obukhov-Corrsin corSsanwvhich is about 0.5 in
this set of simulations. The asymptotic valu€dg = 0.67assuggested by Sreenivasan (1996) for
Re, > 1000.

3.6 Coherent turbulent structures

A turbulent flow can be considered as a stochastic voftieal Coherent structures can
be considered as signatures of vertical motions in the flow. These structures can be identified by
flow visualization or by other eduction techniques from the DNS data. However, they are very
difficult to define and distinguished precisely for the purpose of quantitative description of the
turbulent motions. The coherent structures are generally significantly larger than the smallest
turbulent scales. The purpose here is to illustrate such structures in the simulations done in this
study and provide a perspective on how they evolve spatially and temporally. Isosurfaces are
selected based thresholds in order to provide a good qualitative description of the structures.
3.6.1 Enstrophy and Vorticity

Since turbulent eddies are generally characterized by vortical motions, it is insightful to
visualize the vorticity fields. Both the horizontal vorticity and the vertical vorticity fields are
visualized. The mean square vorticity known as the enstrophy is also utilized for describing the

flow structures.
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The isosurfaces of enstrophy, horizontal and vertical vorticity for the simulatiofsewith
are plotted in k.3.16 at different times. Just after the initialization=8.125To, there is very
little vortical motion as can be seen from all three diagnostics. As time progresses, the flow evolves
considerably with tube-like patches developing significantly. The structures fill the whole domain
and the classic tube-like structures seen in other similar DNS studies of homogeneous isotropic

turbulence are observed.
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Figure 316: Isotropic structures of enstrophy, horizontal vorticity and vertical vorticitgdet at different time
steps. Selected threshold of 2.5 times the root mean square (rms) of enstrophy
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3.6.2 Scalar and scalar dissipation

Fig.3.17 through 3.20 show the scalar fluctuations and scalar dissipation fields for Schmidt
numbers 0.1, 1, and 3, respectively. At timé.125T,, scalar fluctuations and scalar dissipation
patches follow a similar pattern for & numbers. As time progresses, the patches evolve into
more turbulent like features. What is most obvious is the patches for the higher Sc simulations are
clearly more turbulent which is in agreement with the higher quantitative values of the diascalar

diffusivity presented in Fig. 3.13.

Sc=0.1 Sc=1 Sc=3

0.125u /L,

t

0.75u /L,
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t

1.75u /L,
z

t

2.75ug/Ly
z

t

Figure 3.17Isosurfaces of scalar (density) fluctuationsSor0.1, 1 & 3 at different time steps. Isosurfaces are
mapped with selected threshold of 2 times the root mean square (rms) of scalar fluctuation.
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Figure 3.18Isosurfaces of scalar (density) fluctuations3or0.1, 1 & 3 at different time steps. Isosurfaces are
mapped with selected threshold of 1.5 times the root mean square (rms) of scalar fluctuation.

Note, Fig.3.17 is patched for 2 times the rms of mean scalar fluctuationsga®d & is
mapped with a threshold of 1.5 times rms of mean scalar fluctuations. Also, the scalar dissipation
rates are plotted with two different thresholdsim&.19 and 3.20, respectively. Scalar dissipation

in these plots also follows a same trend like as scalar fluctuation isosurfagg8ih7and 3.18.
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Figure 3.19: Isosurfaces scalar dissipation rat&fef.1, 1 & 3 at different time steps. Isosurfaces are mapped
with selected threshold of 2 times the root mean square (rms) of scalar dissipation.
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Figure 3.20lsosurfaces scalar (density) dissipation rateSfs0.1, 1 & 3 at different time steps. Isosurfaces are
mapped with selected threshold of 3 times the root mean square (rms) of scalar dissipation.
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3.7 Modeling for turbulent scalar mixing

The ability to quantitatively model/predict the turbulent mixing of passive scalars is
important in many engineering and geophysical applications. The major challenge from a practical
standpoint is to determine the key large scale turbulent parameters that must be measured in the
field or modeled in numerical simulations in order to predict the turbulent mixing which occurs at
the small scales. In other words, what are key ingredients required for predicting the turbulent
diascalar diffusivityks? Furthermore, the quantities that are considered should be fairly
straightforward and inexpensive to measure in the field such as in oceanic flows or for simulations,
such quantities should be obtained without extreme computational costs. With these constraints in
mind, the ambitious goal in this section is to develop a simple but robust model for the diascalar
diffusivity that can used in field applications as well as a turbulence closure model in
computational simulations of fluid flows involving passive scalars.

The model proposed by Venayagamoorthy and Stretch (2006, hereafter the VS model) for
the turbulent diascalar diffusivity is used as a basis to develop a practical model. The VS model is
given as:

L2 (3.11)

where,Ly = ml/z/lap’/azl is the Ellison‘overturning’ length scaleT; = k/¢ is turbulent
time scale angt’ is one-half of the mechanical to scalar time scale ratio.

In a follow-up work, Stretch and Venayagamoorthy (2010) showed that VS model was
quite robust for predicting the diascalar diffusivity using datasets from numerous laboratory and
DNS studies that were done by different researchers. However, the VS model is not quite practical

for field scale applications in that, it does not require the prescription of the turbulent tim
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scaleT, = k/¢. It is clear that this quantity would be very challenging to estimate or quantify a
priori given thate is a small-scale turbulent quantity. Therefore, the goal here is to obtain a
simplification to the VS model that only relies on large scale (measurable) quantities to
estimateXs.

As a first check, the non-dimensional diascalar diffusiviity/é) computed from the six
different simulations performed in this study for passive scalars in an unstratified flow are
compared in Ig.3.21 against the predictions of the VS model. It is clear that the actual values from
the DNS simulations are closely predicted by VS model with some small variations. The results
confirm that the VS model can be extended to passive scalars without any loss of generality (noting
that Stretch and Venayagamoorthy 2010 already showed that VS model can be extended to passive
scalars). Note that Fig.3.21 is a non-dimensional plot of-diascalar diffusKjgftc) or Cox
number, versus the turbulent Peclet numBey & L% /T, k), wherex is the molecular diffusivity

(xk =v/Sc).
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Figure 3.21Non-dimensional diascalar diffusivity for different Schmidt numbers with turbulent Peclet number.
Dashed black lines represepts1 and 0.5.

For further confirmation of thg’ value of 0.7 proposed by VS, DNS results from decaying
unstratified turbulent flows with a passive scalar were added to the current reSults

computed from the mechanidalscalar time scale as shown in Eqg. (3.12).

—_

Ty,

R

(3.12)

!

)’=§

where, ¢, scalar dissipationT;, is the turbulent time scald (= k/¢) andp’ is mean scalar.
Fig.3.22 showsy’ as function of time from which it can be seen that a value of 0.7 is a good
estimate for the average valueydfonce the flow has reached stationary conditions, consistent

with the estimate proposed in VS model.
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Figure 3.22: Gamma values for passive scalars for different Schmidt numbers in forced and decaying flows.

Now, to improve the VS model for practical application (as alluded earlier to), the need for
an easily measurable mixing length scale that mimics the Ellison length lscaderequired.
Furthermore, a further recasting of the VS model is required in order to circumvent the need to
prescribe the time scale. From the stably stratified turbulence literature (especially related to
oceanic flows), a strong linear (almost one to one) correlation between the Ellison length scale and
the Thorpe length scaler has been established (ltsweire et al. 1993, Mater et al., 2013). The
natural question that follows is whether a similar relationship would be valid for passive scalars in
unstratified flows? Of course, it must be noted that Thorpe length scales in unstratified flows can
no longer be related with the available potential energy in the flow. Regardless, it should still be a
representative indicator of the mixing length sclatecan be calculated from the scalar fluctuating
field by resorting the distribution monotonically. The detailed procedure is well described in Mater

et al. (2013). Thet were computed for all the six different DNS runs at different times and
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compared withLe as shown figure 3.23. It can be seen that there is a remarkably good agreement
betweerlLe andLr. In fact, it is found thaltt= 0.8LE, a relationship first suggested Itsweire et al.
(1993) for stably stratified shear flows as shown in Fig.2.2. This study shows that this relationship

also holds for passive scalars in unstratified flows and hence suggektsahatoe replaced with

Lt/0.8.
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Figure 3.23: Thorpe scalar length versus Ellison length scale for Passive scalars.

The next issue is to find a suitable alternative formulation for the turbulent tim&'seale
k/e. Using dimensional reasonirig can be rewritten in terms of the widely known turbulent
kinetic energy length scalg,,., asT, = k3/?/sk*/? = L,./k'/?, wherek here is the turbulent
kinetic energy (Pope 2000). Hence, turbulent time scale can be recast in tetarbwlent length
scaleL,, and a velocity scale given liy}/?. Intuitively, it is plausible that the turbulent length

scaleL,, should also correlate linearly wiily. Figure 3.24 shows a plot &f /L. versus time
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once the flow has reached a quasi-steady state while Fig 3.25 shows alploteysud.,.. As

can be seen, there is almost one to one correspondence between these two length saales with

average relationship given lby = 0.9L,.
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Figure 3.24Ratio ofLg/L;,, with time after the flow has developed.
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Figure 3.25Comparison of.; & L,, for passive scalars in unstratified flows.

With these new findings, a revised model for the diascalar diffusivity can be derived by
recasting.; andT, in terms ofL; andL,,. The resulting new model is given as
Ks =11y Ly k2, (3.13)

The new model is clearly more practical since it relies entirely on large scale quantities i.e.
Ly andk are both large scales quantities in a turbulent flow. In essence, Eq. (3.13) can be viewed
as a turbulence closure scheme in the spirit of turbulence modeling since it does not rely on any
small-scale turbulence quantity for closure.

As a final step of this modelling exercise, the diascalar diffusivity computed using new

model, Eqg. (3.13) and exadtedcalar diffusivity from DNS for unstratified flows are compared in

Fig.3.26. Red continuous line indicates the 1:1 relationship betWeef and Kexact 20% of
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confidence intervals are indicated by dashed black lines. It can be seen that the proposed model

does reasonably well in capturing the exact diffusivities.
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Figure 3.26: Comparison of diascalar diffusivity computed using modekdKgiven by Eq. (3.18and DNS

data (Kexac)-

3.8 Conclusions

In this chapter, a detailed DNS study was performed to investigate turbulent mixing of

passive scalars in an unstratified homogeneous turbulent flow. The main findings of this study are

twofold: first, for turbulent flows, the mixing is not sensitive is found not to be sensitive to Schmidt

number provided that there is sufficient separation of scales i.e. the diascalar diffusivities have to
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at least one or more order of magnitude higher their molecular counterparts. Second, a revised
model to the VS model which has considerable potential for practical applications was proposed
and validated. In what follows in the next chapter, suitability of the new proposed model to stably

stratified flows is considered.
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CHAPTER 4

MIXING OF ACTIVE SCALARS

4.1 Introduction

Stably stratified flows are common in the environment flows such as oceans, lakes and the
atmosphere. Stable stratification arises from temperature and/or salinity variations in deep water
environments where the mean potential density increases with depth. In a stably stratified fluid,
the heavier fluid lies below the lighter fluid. Dynamically, the presence of a stable stratification
has substantial effect on physical processes such as turbulent scalar mixing. Accurate prediction
of turbulent mixing in such flows is important for many applications such as pollutant dispersion
in air and water bodies, weather and climate prediction. As such, in this study, the main focus is
on parameterization of active scalar mixing.

In what follows in this chapter, first a formal problem statement is stated in Sec. 4.2 which
is followed by a description of the DNS data in Sec. 4.3. The main results on the modeling aspects
of the study are presented in Sec. 4.4.

4.2 Problem statement

The main goal in this Chapter is to test and refine the diascalar diffusivity parameterization
that was developed in Chapter 3 for passive scalars to active scalar mixing in stably stratified flows
at low, moderate and high stratification. Specifically, the key questionS2wes the diascalar
diffusivity model proposed in Chapter 3 & = 1.1y’ L k'/? for passive scalar mixing in
unstratified flows seamlessly extend to active scalar mixing in stably stratified flows? If not, what

modifications are required to account for the buoyancy effects in the model?
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4.3 DNSformulation

DNS is an exact numerical solution (within numerical accuracy of the computational
schemes) of the Navier-Stokes (N-S) equations that is obtained by resolving all scales of motion
in a given turbulent flow. First theorized by John Von Neumann in 1949 (Davidson, 2004), DNS
is the simplest form of numerical simulations that does not resort to the use of turbulence models

To resolve all scales of motion, the grid size must be of the order of the Kolmogorov length scales

L, while the domain length must be large enough to capture the largest energy containing eddies

(Pope, 2000).

Orszag & Patterson (1972) pioneered the pseudo-spectral computational method. The
pseudo spectral DNS code used in a previous study of stably stratified turbulence from which the
data for the present study is obtained is based on the methodology put forth by Orszag and
Patterson (1972). The serial code was written in the FORTRAN 77 programming language. The
DNS data used in this chapter were obtained from the study by Schaad (2012) for his MS thesis
research. His simulations were conducted for stably stratified decaying turbulent flow with low,
moderate and high stratification.

DNS data from simulations of stratified decaying flow for Prandtl (or Schmidt) number
Pr=1 is used foarange of Richardson numbers, which is a non-dimensional number that indicates
strength of the stratification. Seven different simulations were done by Schaad (2012) with initial
Richardson numbef =0, 0.01, 0.1, 0.4, 1.6, 10, 40 and 158 that encompass flows ranging from
low to moderatéo strong stratification with an initial turbulent Reynolds nunfRer625. It must
be noted that these simulations were unforced and hence the flow decayed with time dues to the
absence of an energy input source beyond the initial input at the start of the simulationsS The N-

solutions were computed such that the lowest wavenurkber2, which implies that the
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computational domain had a lendthz. Periodic boundary conditions were applied to the cubic
box with a grid resolution of 25@rid points.

4.4 Modeling of turbulent scalar mixing in stably stratified flows

The first step is to assess how well the proposed model givnbyl.1y’ L k/? using
the stably stratified DNS data. The model prediction of the diffusivity is plotted again the exact
diffusivity for all Ri cases including the unstratified decaying simulation (denotd’l b)) as
shown in Fig. 4.1. It is evident that as the stratification increases (i.e. beyortd39), the model
overpredicts the diffusivity. This implies that as buoyancy effects become significant and dominate
the flow, the diascalar diffusivity is suppressed and the inherent physics in the proposed model

does not fully account for this effect. Clearly, further analysis is required to correct for this effect.
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Figure 4.1: Model diffusivity versus exact diffusivity using DNS data of stably stratified flows.
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Given that the correlation between the Ellison and Thorpe length scales have been
previously established by other researchers (see Itsweire et al. 1993, Mater et al. 2013), it is
unlikely that the differences are related to the breakdown in this relationship. Regardless, before
proceeding to other possibilities, this relationship is tested again as shown in Fig. 4.2. It is clear

thatLt= 0.8Le still holds across a broad range of stratification.
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Figure 4.2: Comparison between Ellison and Thorpe length scales for stably stratified flow

The next step is toeconfirm whether the original model proposed by Venayagamoorthy
and Stretch (2006, hereafter the VS model) holds for the diascalar diffusivity (previously discussed
in Chapter 3 in Sec. 3.7)id=4.3 shows a plot of the nondimensional diascalar diffusivity versus
the turbulent Peclet number for &il cases. It is evident that the VS model continues to capture

the exact diffusivity reasonably well. The parametas computed for these active scalar mixing
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simulations in decaying stably stratified flows and shown as a function of eddy turnover time in
Fig.4.4 for different stratifications. Even though high fluctuations in the value are evident at high
Ri (due to the occurrence of linear internal wave motions), average valyésafercloser to 0.7.
However, as previously discussed in Sec. 3.7 of Chapter 3, the need for a practical model that
utilizes only large scale turbulent flow quantities dictates that an improvement to the current

proposed model is required.

10* ; ; A— ;
« Ri= 0.39 7
+ Ri= 1.58 ,7’0//
A
« Ri= 10.0 7
Ri= 39.5 o
* /7 #F2
5 + Ri= 158 At
10°F W,
1’4
T 10%F ;
1’4
101-
y s
100 L//;‘) 1 1 L
10° 10’ 102 103 10*

s
Pe= L2/(T, k)

Figure 4.3: Non-dimensional diapycnal diffusivity with turbulent Peclet number for different decaying stratified
flow. Dashed black lines represepts1 and 0.5.
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Figure 4.4 Values fory’ plotted with eddy turnover time for different stratifications. Dashed black lines
representg’=1 and 0.5.

Returning to the proposed model givenKy= 1.1y’ L k'/?, the next check point
pertains to the linear relationship that was shown to hold between the turbulent kinetic energy
length scald.,, andLy for unstratified flows in Chapter 3 (see Sec. 3.7). A pldtzofersusl g
is shown in Fig. 4.5. Clearly, as stratification increases, the linear relationship between these two
length scales no longer holds, especially beydRid= 0.4, which can be considered to be a
somewhat mildly stratified flow case. Physically, this breakdown can be attributed to the strong
anisotropy that develops in the flow due buoyancy effed® msreases. As the buoyancy effects
increases, the vertical fluctuations decrease constraining the vertical motions of fluid particles thus
resulting in much diminished valueslgf. On the other hand,,, is based on the turbulent kinetic
energy which is based on the three-dimensional velocity fluctuations. Hence, it continues to stay

large.
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Figure 4.5 Ellison length scaleversus turbulent kinetic energy length scale for low, moderate and high
stratification.

What can also be seen in Fig.4.5 is an inverse trend in the relationship beiveseii,,
for Ri > 0.4. This trend is closely captured by = 0.15 L. Fig. 4.6 shows that a constant of
0.15 is a suitable proportionality constant.

Using this modified relationship betweép andL,. for the moderate to strong stably

stratified flow cases, the diffusivity can be modified accordingly.
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Figure 4.6: Inverse relationship between Ellison and kinetic energy length scales for different stratification.

Beginning with the VS model for the scalar diffusivity given by

L;?
K=y —,
S TL

first, L; can be substituted witty. /0.8 andT, can be rewritten aks,./k*/2. Thus,

Now L, can be replaced l:15/L; which in conjunction with the relation betwekpn andL,

can further simplified as,, = (0.15 * 0.8) /L, to provide a model for the scalar diffusivity as

L 2
_(he) .,
(0.15%08)/L; =

Ks=vy
which simplifies to

K; =13y' L2 k72, (4.1)
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It must be noted that the model presented in Eq. (4.1) might appear at first sight to be dimensionally

inconsistent due to the inverse relationship between the relevant length scales it should provide a

good quantitative estimate of the diascalar diffusi

vity.

The diascalar diffusivity computed using revised model, Eq.4.1 and exact scalar diffusivity

using DNS data for active scalars in stably stratified flows showigid.FF. Red continuous line

indicates the 1:1 relationshif{ode = Kexact). 20% of confidence intervals are indicated by dashed

black lines. It can be seen that there is a significant improvement in the prediction compared to

that shown in Fig. 4.1 using the passive scalar model.
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Figure 4.7: Comparison of Scalar diffusivity computed using modeéqtlk and DNS data (Kac) for active

scalar in stratified flow.

As a final summary plot, predictions of diffusivities using both the passive scalar model as

well as the active scalar model are shown against exact diffusivities for all the available DNS data
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for forced unstratified flows and decaying stratified flows 19.4~8. To construct this plot, the
two relevant models are applied to their appropriate regimes, respectively. The Kuedel
1.1y’ Ly k/?is used for passive scalar mixing as well as for mildly stratified flows, while the

modelK,; = 13y’ L;> k'/? is used for the moderate to strongly stably stratified flows.
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Figure 4.8: Master plot showing the diffusivity models for both passive and active scalars in unsaatfie
stratified flows.
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CHAPTER S

CONCLUSION

5.1 Summary of studies

The main focus of the work presented in this thesis revolves around mixing of passive and
active scalars in turbulent flows. DNS was used to simulate scalar mixing in homogeneous
unstratified and stably stratified turbulent flows. For unstratified flows, the effect of varying
Schmidt numbers on turbulent mixing was investigated in Chapter 3. A total of 6 different
simulations were performed for 0<I1Sc < 3. Quantitative and qualitative analysis apresented
to highlight the mixing under for varyingc. The highlight of the study presented in Chapter 3
focused on a new model for quantifying the diascalar diffusivity that used a model proposed by
Venayagamoorthy and Stretch (2006) as its basis.

In Chapter 4, DNS data for different stratified flows with Prandtl number Pr=1 obtained
from the work by Schaad (2012) were used to study the active scalar mixing in stably stratified
turbulence. The main thrust of this study was to investigate the suitability and required
modification (if any) of the new proposed model for diascalar diffusivity in Chapter 3 for stably
stratified flows

The main conclusions from Chapter 3 and 4 are summarized in Sec.5.2 and
recommendations for future work on further developments of the scalar mixing model are provided

in Sec.5.3.
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5.2 Conclusionsfrom chapter 3 and chapter 4

In Chapter 3, a DNS parametric studpsyperformed for different Schmidt numbers
=0.1, 0.2, 0.5, 1, 2 and 3 in forced unstratified homogeneous turbulent flow. The forcing scheme
was added in order to achieve stationary velocity fields. A careful analysis was carried to ensure
that numerical resolution issues were adequately addressed before embarking on a detailed study
to investigate the flow physics. Results of energetics, statistics of the scalar field and coherent
structures were presented to show the characteristics of the flow and scalar fields. It was found
that the scalar dissipation rate which essentially characterizes mixing was not so sensitive to the
molecular diffusivity. This was clearly demonstrated by plotting the non-dimensional diascalar
diffusivity versus the turbulent Peclet number (see Fig. 3.26). It was observed that diascalar
diffusivity can be predicted by the VS model.

The main highlight of this research was the development of an improved model to the VS
model that utilizes the well-known Thorpe length scale in oceanography as well as the turbulent
kinetic energy as a suitable velocity scale to parameterize the turbulent diascalar diffusivity as
Ks = 1.13y' Ly k*/? in homogeneous unstratified flows. In Chapter 4, the above expression was
modified to account for anisotropy effects. In short, an inverse relationship between Ellesah
kinetic energy length scalg, was found ad.;, = 0.15/L;. Hence, a modified model was
proposed ak, = 13y’ L;> k'/? for active scalarém homogeneous stratified flow. A priori tests
using DNS data show remarkable promise in the ability of the proposed models to capture the

exact turbulent diffusivities.
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5.3 Suggestions for future research

As with most DNS studies, a major limitation of the present study is the low Reynolds
numbers achieved in simulations. The code that was used for this study is serial and thus
simulations with 258grid points take about a week of clock time to run for simulating 3 eddy turn
over times. Simulations should be conducted at much higher resolutions in order to achieve higher
turbulent Reynolds numbers to further test the relationships and models that have been proposed
here. Another avenue is to obtain DNS data at high turbulent Reynolds numbers for stratified and
unstratified flows from other researchéo validate the proposed scalar diffusivity model. This
option is desirable since it will allow for independent verification of the model proposed in this
study.

Another important missing ingredient in the flows studied in this work is the lack of mean
shear in the flow field. Most natural turbulent flows are sustained by mean shear generated from
proximity to boundaries or differential flow. The robustness of the proposed model should be
tested with simulations that are forced by mean shear. Another important missing piece is the use
of an experimental study to validate the proposed model. An experiment study on passive scalar
mixing in a fully developed channel flow or in a mixing tank (stirred by rotation) would be
provided for a useful practical comparison.

As a final summary, it must be noted that the models proposed in this study require further
(extensive) testing under higher Reynolds number flow conditions. If shown to be valid, they
would be widely useful for quantifying turbulent mixing using field measurements of large scale

quantities (i.eLt andk) as well as serve as a simple and improved turbulence closure scheme.
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