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ABSTRACT 
 
 
 

MIXING OF SCALARS IN TURBULENT FLOWS USING DIRECT NUMERICAL 

SIMULATIONS  

 
 
The research presented in this thesis focuses on scalar mixing in unstratified (neutral) flows 

and stably stratified flows using Direct Numerical Simulations (DNS). Such flows are ubiquitous 

in natural flows such as rivers, estuaries, oceans and the atmosphere. First, a detailed study was 

performed to investigate the effect of varying Schmidt numbers (Sc) on turbulent mixing of a 

passive scalar in a stationary homogeneous unstratified flow using forced DNS. A total of 6 

simulations were performed for 0.1 ≤ Sc < 3. Qualitative and quantitative results of the flow field 

and the passive scalar fields are presented and discussed.  The effect of the Schmidt number on the 

turbulent mixing was found to be negligible and becomes important (as it should) only when 

mixing occurs under laminar flow conditions. 

Using a model proposed by Venayagamoorthy and Stretch in 2006 for the turbulent 

diascalar diffusivity as a basis, a practical (and new) model for quantifying the turbulent diascalar 

diffusivity is proposed as ܭௌ = ͳ.ͳ �′ ்ܮ ݇ଵ/ଶ, where LT is defined as the Thorpe length scale, k is 

the turbulent kinetic energy and ' is one-half of the mechanical to scalar time scale ratio, which 

was shown by previous researchers to be approximately 0.7. The novelty of the proposed model 

lies in the use of LT, which is a widely used length scale in stably stratified flows (almost 

exclusively used in oceanography), for quantifying turbulent mixing in unstratified flows. LT can 

be readily obtained in the field using a Conductivity, Temperature and Depth (CTD) profiler or 

obtained from density fields in a numerical model. The turbulent kinetic energy is mostly contained 
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in the large scales of the flow field and hence can be measured in the field using devices such as 

an Acoustic Doppler Current Profiler (ADCP) or modeled in numerical simulations. Comparisons 

using DNS data show remarkably good agreement between the predicted and exact diffusivities.  

 Finally, the suitability of the proposed model for stably stratified flows was explored for 

varying degrees of stratification ranging from mildly stable flow conditions to strongly stable 

conditions. In stably stratified flows, density variations of the fluid dynamically affect the flow 

field and hence the density acts as what is widely known as an active scalar. Under strongly stable 

conditions, the DNS results indicate an inverse relationship between the Thorpe scale LT and 

kinetic energy length scale ܮ௞�, which is different to the direct (almost one to one correspondence) 

relationship that was found for unstratified flows. Hence, in order to account for this difference, a 

modified turbulent diascalar diffusivity model was proposed as ܭ� = ͳ͵ �′ ்ܮଷ ݇ଵ/ଶ. It must be 

noted that this modified model while dimensionally inconsistent (due to the inverse relationship 

between the length scales), provides reasonable quantitative estimates of the diffusivity under 

stably stratified flow conditions.  

The models proposed in this study require further (extensive) testing under higher 

Reynolds number flow conditions. If shown to be valid, they would be widely useful for 

quantifying turbulent mixing using field measurements of large scale quantities (i.e. LT and k) as 

well as a simple and improved turbulence closure scheme.  
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CHAPTER 1 

INTRODUCTION 

 

1.1 Introduction 

Turbulent flows are ubiquitous in natural and engineering systems involving liquids and 

gases. Turbulent flows are generally irregular, chaotic and nonlinear and hence very difficult to 

predict and model. Examples of turbulent flows in engineering include flow of water in rivers, 

engineered canals, pipes and flow of air in the atmosphere and engineered systems. A key 

characteristic of turbulence is enhanced mixing which can be advantageous in certain situations 

such as when rapid dilution of a substance is desirable and can be detrimental when an opposite 

scenario that requires little to no mixing is required.  

Natural flows can be unstratified where the density of the fluid is constant across the whole 

fluid column (i.e. in well mixed rivers and neutral atmospheric boundary layer) or stratified where 

the density changes with depth. The density (which is a scalar quantity) can be considered to be 

passive in the former case (unstratified flows) in that it does not dynamically influence the 

momentum field. In other words, it passively mixes driven by the resultant turbulent velocity field 

without any feedback on the driving velocity field. On the other hand, in a stably stratified fluid 

(i.e. where density increases with depth e.g. in the oceans), the density is considered as an active 

scalar in the sense that it dynamically influences the momentum field through buoyancy effects. 

Hence, mixing of scalars in these two types of conditions are different and appropriate 

considerations for these differences must be given in the development of turbulent mixing model 

for mixing. However, it is clear that despite numerous studies on scalar mixing, there are many 

unresolved issues concerning both the fundamental aspects of turbulent mixing in such flows as 
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more practical issues related to modeling of such flows for solving many important environmental 

flow problems. 

The work presented in this thesis focuses on mixing of scalars in both unstratified flows 

and stratified flows. Mixing of a passive scalar is studied in unstratified flows using forced Direct 

Numerical Solution (DNS). Besides providing a direct solution to the highly nonlinear Navier-

Stokes equations that govern the motion of fluid flow without recourse to turbulence closure 

models, DNS also provides the ability for the researcher to probe the full three-dimensional flow 

fields.  

In what follows, a brief outline of the main objectives and the layout of the thesis are 

presented. 

1.2 Objectives 

The main objectives of this study are as follows: 

1) To perform analyses of homogeneous, unstratified turbulent flow with a range of Schmidt 

numbers using forced DNS in order to investigate the molecular effects on turbulent mixing in 

such flows. 

2) To develop a turbulent scalar diffusivity model for passive scalar mixing in unstratified flows 

that is practically useful. 

3)  To develop a turbulent scalar diffusivity model for active scalar mixing in stably stratified flows 

that is also practically useful. 

1.3 Thesis Layout 

The contents of this thesis have been arranged into four further chapters. Chapter 2 presents 

a brief literature review including important governing equations as well a discussion on passive 

scalar and active scalar mixing. Basic fluid mechanics theory on turbulence related to stratified 
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and unstratified flow are presented; specifically definitions of important parameters, the governing 

equations, relevant scales, and important non-dimensional parameters are provided. Relevant 

review of previous work done on scalar mixing discussed. 

In Chapter 3, a parametric study of passive scalar mixing in homogeneous unstratified 

flows with different Schmidt numbers using DNS is reported.  Details of simulation setup and 

numerical methods are briefly discussed. The DNS results for the energetics and scalar properties 

are discussed. Visualizations of vorticity, enstrophy and density fields are presented to provide 

qualitative description of coherent turbulent structures of the flow and scalar fields. Finally, an 

innovative attempt is made develop a model for scalar mixing in unstratified flow. 

An extension of the research presented in Chapter 3 pertaining to mixing is made to stably 

stratified flows in chapter 4. The applicability of a proposed scalar diffusivity model that is 

extensively discussed in chapter 3 is tested and refined for the prediction of active scalar mixing 

in stably stratified flows. Chapter 5 concludes this thesis where a summary of the work done is 

provided together with the main finding. Some recommendations for future work are also provided 

in Chapter 5. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Introduction 

Turbulent flows are characterized by enhanced mixing and thus help to distribute and 

transport many substances such as contaminants and nutrients in natural flows as well as 

engineered flows (e.g. in combustion engines). Thus, the subject of scalar mixing in turbulent 

flows has received much attention over the years using a myriad of approaches that combine 

theory, experiments and numerical simulations. In environmental flows, the density of the fluid 

could be either constant over the whole water or air column (e.g. in river flows, the water is more 

or less homogeneous and the density is assumed to be constant) or it could vary with depth (e.g. 

summer conditions in a lake will result in a two-layer system where the upper layer will be warm 

and well mixed and the lower layer will be cooler with a thermocline separating the two layers). 

Understanding and modeling mixing of scalars in environmental flows is important for obvious 

reasons. Here, the salient features of turbulent flows are presented. 

In what follows, first a brief overview of the governing equations of fluid motion and scalar 

transport are discussed in Sec. 2.2. This is followed by a discussion on the basic non-dimensional 

parameters that are relevant to this research in Sec.2.3. Turbulent length and time scales are 

discussed in Sec.2.4 and turbulent diffusivity parameterizations are reviewed in Sec. 2.5. 
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2.2 Equations of motion 

Behavior of fluid motion can be described by the governing conservation principles of 

momentum, mass and energy.   

2.2.1 Governing Equations 

In unstratified turbulent flows, density does not play a dynamic role on the fluid motion 

since it is constant. Hence, only the conservation of momentum principle which leads to the well-

known Navier-Stokes equations in fluids and the conservation of mass principle (resulting in the 

continuity equation) are sufficient to describe the flow.  

2.2.1.1 The Navier-Stokes Equations 

The Navier-Stokes equations for an unstratified flow is given by  

ߩ ݐݑ߲߲ + .ݑሺߩ ∇uሻ = −∇P +  (2.1) ,ݑଶ∇ߤ

where, ߩ is the (constant) density of the fluid, u is the velocity vector (with components u, v, and 

w, respectively), P is the pressure gradient and ߤ is the molecular dynamic viscosity. Eq.2.1 can 

be rewritten with the total derivative notation )(.)()(  utDtD  as follows 

ߩ ݐܦݑܦ = −∇� +  (2.2) ,ݑଶ∇ߤ

For stratified flows, the buoyancy effects are taken into account because of the variation of density. 

Hence, Eq.2.2 can be rewritten by including the force of gravity (�) tern to get  

ߩ ݐܦݑܦ = −∇� + ݑଶ∇ߤ +  (2.3) ,݃ߩ

Equation (2.3) can be further simplified using the Boussinesq approximation which is 

based on the assumption that variations in density have negligible effect on the inertial terms.  The 

assumption formally requires that the density variations are small (i.e. ߩ′ ⁄௢ߩ ا ͳ) and can be 
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shown to be valid for low Mach number flows.  Hence, using the Bousinesq assumption, the 

momentum equations are given by ݐܦݑܦ = − ͳߩ௢ ∇p + ݑଶ∇ߥ + ௢ߩ′ߩ ݃, (2.4) 

where,  ߩ′ is the density fluctuation from the background mean density (ߩ௢ሻ. 
2.2.1.2 Continuity Equation 

The principle of conservation of mass leads to the continuity equation given by ߲ݐ߲ߩ + ∇. ሺݑߩሻ = Ͳ, (2.5) 

Using the total Derivative notation, the above equation can be rearranged into  ݐܦߩܦ + .ߩ ∇ሺݑሻ = Ͳ, (2.6) 

Eq. (2.6) simplifies further for an incompressible fluid to a divergence free velocity field given by ∇. ݑ = Ͳ, (2.7) 

 

 

 

 

 

 

 

2.2.1.3 Scalar Transport Equation 

The ratio of the kinematic viscosity (ߥ), of a fluid to the molecular diffusivity () of a scalar 

quantity is either called the Schmidt number Sc (for mass diffusivity) or Prandtl number Pr (for 

heat diffusivity) as 
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ܵܿ ሺ�ݎሻ =  (2.8) , �ߥ

The transport equation for scalar fluctuation �′ is given by ߲�′߲ݐ + .ݑ ��′ = �∇ଶ�′, (2.9) 

where u is the velocity vector obtained from the Navier-Stokes equations. Eq.2.9 can be simplified 

using total derivative material notation as. 

ݐܦ′�ܦ = �∇ଶ�′, (2.10) 

2.3 Basic Parameters of Turbulent flow 

There are several important non-dimensional parameters that are commonly used for 

describing turbulent flows and stratification. The key parameters that will be used throughout this 

thesis are defined next. 

2.3.1 Reynolds Number 

Reynolds number (Re) is a key parameter in fluid mechanics. It is essentially a ratio of 

inertial to viscous forces and is used to characterize whether a flow is laminar or turbulent. In DNS 

simulations that are initialized with some energy input, an initial turbulent Reynolds number is 

usually defined as 

ܴ݁௢ = ܷ௢ܮ௢ߥ , (2.11) 

Where, ߥ is the kinematic viscosity of the flow. ܷ௢ and ܮ௢ are the initial velocity and length scales 

of the flow. Another commonly used Reynolds number that is defined using the turbulent length 

scale L and turbulent kinetic energy k of the flow is the turbulent Reynolds number expressed in 

Eq. (2.12). 
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ܴ݁௅ = ݇ଵ/ଶߥܮ , (2.12) 

ܴ ఒ݁ = ߥఒܮ௥௠௦ݑ , (2.13) 

Using Taylor microscale ܮఒ = ۄ௜ݑ௜ݑۃߥ5√ �⁄ , a statistical quantity, a Taylor Reynolds number can 

be defined as shown in Eq. (2.13). 

2.3.2 Richardson Number  

The Richardson Number Ri, a non-dimensional parameter that is defined as the ratio of the 

buoyancy forces to inertial forces in a turbulent flow. It expresses the strength of the stratification 

of the flow in terms of the buoyancy frequency N and initial eddy turnover time scale ௢ܶ = ௢ܮ ܷ௢⁄ .  
Ri is given as  

ܴ�௢ = ௢ܷ௢ܮ�] ]ଶ , (2.14) 

where the buoyancy frequency N is defined as 

� = [− ௢ߩ݃  ଵ/ଶ , (2.15)[(ݖ߲ߩ߲̅)

The buoyancy frequency N is also called as the Brunt-ܸ�̈�ݏ�݈̈�̈ frequency. Here, ݃ is the 

acceleration due to gravity and 
��̅�� is the mean density gradient in the vertical direction.  

2.3.3 Schmidt (or Prandtl) and Peclet Number 

The Schmidt (or Prandtl) number Sc (Pr) measures the ratio of kinematic viscosity (of the 

fluid) to molecular diffusivity (of the scalar) effects in the flow as previously defined in Eq.(2.8).  

The Peclet Number can be defined as a ratio between the rates of advection to diffusion in a 

turbulent flow.  
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�݁ = ݊݋�ݏݑ݂݂�ܦ݊݋�ݐܿ݁ݒ݀� = ܷ௢ܮ௢� , (2.16) 

Where ܷ ௢ and ܮ௢ are the initial velocity and length scales of the flow, and � is molecular 

diffusivity. Also it can be rearranged in terms of a Reynolds number Re and the Schmidt number 

Sc for mass transfer as follows 

�݁ = ܴ݁. ܵܿ, (2.17) 

2.4 Length and Time Scales 

Turbulent flows are characterized by a large range of length and time scales. These scales 

range from large scales that are defined by the forcing of the flow field as well as the geometry to 

the small scales which are characteristic of the dissipative scales.  The small scales at which 

molecular viscosity acts to dissipate the kinetic energy are called the Kolmogorov scales in a 

turbulent flow. However, the dissipative scales associated with scalars in turbulent flows maybe 

finer or larger than the Kolmogorov length scales depending on the Sc or Pr. These scales are 

discussed in sections 2.4.2 and 2.4.3. 

2.4.1 Energy cascade and Kolmogorov Scales 

An early and commonly adapted notion is the energy cascade first put forth by Richardson 

(1922). A turbulent flow can be considered to consist of eddies of different sizes ranging from 

large eddies to small eddies. The large eddies (which extract their energy from the mean flow) are 

dominated by inertial forces and are presumably unaffected by viscous effects. However, due their 

high energy content, such large eddies are unstable and hence transfer their energy to smaller 

eddies which in turn undergo a similar process and spurn even smaller eddies. This process 

continues till the local Reynolds number of the smallest eddies is small enough (of the order of 1), 
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for viscosity to stabilize the eddy and dissipate its turbulent kinetic energy effectively (Pope, 

2010). The energy cascade idea was summarized as a poem by Richardson as follows: 

Big whorls have little whorls, 
Which feed on their velocity; 
And little whorls have lesser whorls, 
And so on to viscosity 

-Lewis F. Richardson 

Andrey N. Kolmogorov, a Soviet mathematician is widely credited with putting forth the 

first set of ideas towards formalizing a universal theory of turbulence in 1941. These set of ideas 

are captured through the famous ‘Kolmogorov’s hypotheses.  A key hypothesis of local isotropy 

states that: the large eddies are anisotropic and while the small eddies are isotropic at the dissipative 

scales. Kolmogorov’s First similarity hypothesis is based on the argument that small scale 

turbulent motions in the universal equilibrium range are uniquely determined by kinematic 

viscosity ν, and dissipation rate �௞. Using these determining parameters, unique length, velocity 

and time scales can be constructed from dimensional analysis. These three scales are considered 

as the so called-smallest scales of motion in turbulent flows. The Kolmogorov’s length ሺܮఎሻ,  
time ሺ�ఎሻ, and velocity ሺݑఎሻ scales are define as follows: ܮఎ = ሺߥଷ �⁄ ሻଵ/ସ, (2.18) ݑఎ = ሺ�ߥሻଵ/ସ, (2.19) �ఎ = ሺߥ �⁄ ሻଵ/ଶ, (2.20) 

2.4.2 Obukhov-Corrsin and Batchelor Scales 

Obukhov (1949) and Corrsin (1951) were the first to propose extensions of Kolmogorov’s 

phenomenology to passive scalars. The scalar dissipative regimes can be divided in two 

demarcated by Sc=1. The two regimes are known as inertial-diffusive range and viscous-
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convective range when Sc<1 and Sc>1, respectively (see Fig.2.1). Scalar spectrums in these 

regions can be expressed as shown in Eq.2.21 and 2.22. 

ሻܭሺ�ܧ = ஼�ܥ  �� �̅ሺ−ଵଷሻ ܭሺ−ହଷሻ, ܮ/ͳ ݎ݋݂ ا ܭ ا ͳ/ܮ�஼ 
(2.21) 

ሻܭሺ�ܧ = ߥ஻ �� ሺܥ �̅⁄ ሻሺଵଶሻ ܭሺ−ଵሻ, ఎܮ/ͳ ݎ݋݂ ا ܭ ا ͳ/ܮ஻ (2.22) 

where, ܥ�஼  is known as the Obukhov-Corrsin constant, ܥ஻ is the Batchelor constant, �� is scalar 

dissipation rate, � ̅is the mean rate of energy dissipation rate per unit mass and ܭ is wavenumber. 

When Sc<1, range of scales ܮ ب ͳ/ܭ ب ͳ/ܮ�஼, which shows that neither molecular 

viscosity nor molecular diffusion is important. Thus, it is called inertial-convective range. For the 

case when Sc൒1, the scale ܮ஻ =  ఎ. Therefore a viscous-convectiveܮ ఎܵܿ−ଵ/ଶ  is smaller thanܮ

range may form where viscosity is important but not the diffusivity.  

The Batchelor scale ܮ஻ (Batchelor, 1959) is a length scale where the molecular diffusion 

of a scalar is dominated by energy dissipation. It is defined as  

஻ܮ = ቆ݇ଶߥ� ቇଵ/ସ, (2.23) 

The Batchelor scale and Obukhov-Corrsin scale can be related with Kolmogorov length 

scale in terms of Sc as follows 

஻ܮ =  ఎܵܿଵ/ଶ , (2.24)ܮ

஼�ܮ =  ఎܵܿଷ/ସ , (2.25)ܮ

Hence, when Sc >1, ܮ஻is smaller than the Kolmogorov scale. 
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Figure 2.1: Schematic sketch of spectrum of passive scalar variance. Scalar fluctuations are injected at low wave 
numbers at rate �̅௜௡and transferred to high wave numbers with the mean flux ߨఏand then smeared by the 
molecular diffusivity at the rate �̅௢௨௧. (Gotoh and Yeung, 2012). 
 

2.4.3 Thorpe and Ellison length scales 

The Thorpe displacement ݀′ is the vertical distance a particle must travel back to a position 

along a gravitationally stable density profile. The gravitationally stable density profile is calculated 

by monotonically sorting the density profile. The Thorpe scale ்ܮ is the root-mean square of non-

zero ݀ ′along a vertical profile and provides a measure of the size of vertical overturns (Thorpe, 

1977). 

The Ellison scale  ܮ�  is an additional measure of the maximum vertical displacement, given 

a background density profile and a turbulent intensity estimated by ͳ/ʹ(′2ߩ)̅̅ ̅̅ ̅̅ ̅. 

�ܮ = ̅̅(′2ߩ) ̅̅ ̅̅ ̅ଵ/ଶ ߩ߲̅| ⁄ݖ߲ |⁄  , (2.26) 

If sorted density profile is exactly equal to ߲̅ߩ ⁄ݖ߲ , then ܮ� is exactly equal to ்ܮ. However, 

a relationship of LT = 0.8 LE was proposed by Itsweire et al. (1993) for stably stratified shear flows 

as shown in Fig.2.2.  
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Figure 2.2: relationship between Thorpe and Ellison length scales (Itsweire et al. 1993). 
 

2.5 Diapycnal diffusivity 

The diapycnal diffusivity is a measure of the irreversible mixing in a density stratified flow. 

Venayagamoorthy and Stretch (2006) proposed a model to define the turbulent diffusivity in terms 

of Ellison length scale and turbulent time scale as  

�ܭ = �′ ଶ�ܮ 
௅ܶ , (2.27) 

where, ܮ� is the Ellison ‘overturning’ length scale, ௅ܶ is turbulent time scale and �′ is one-half of 

the ratio of the mechanical-to-scalar time scale given by 

�′ = ͳʹ �� ௅ܶ(′2ߩ)̅̅ ̅̅ ̅̅ ̅/ʹ, (2.28) 

where �� scalar dissipation, ܶ௅ is the turbulent time scale (௅ܶ = ݇ �⁄ ሻ and ߩ′ is mean scalar 

fluctuation. Fig.2.3 is a plot of the non-dimensional diapycnal diffusivity (ܭௌ �⁄ ሻ with turbulent 

Peclet number (�݁௧ = ଶ�ܮ ௅ܶ�⁄ ሻ for a different of datasets taken from a study conducted by Stretch 

and Venayagamoorthy (2010) to assess the validity of the diapycnal diffusivity they proposed as 

shown in Eq. (2.27). 
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Figure 2.3: non-dimensional diapycnal diffusivity is plotted with turbulent Peclet number (from Stretch and 
Venayagamoorthy 2010). 
 

2.6 Conclusions 

In this short chapter, an overview of the key equations and parameters was provided to 

set the stage for the research study presented in the next two chapters.  
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CHAPTER 3 

TURBULENT MIXING OF PASSIVE SCALARS 

 

3.1 Introduction 

This chapter presents results from a detailed study was performed to investigate the effect 

of varying Schmidt numbers (Sc) on turbulent mixing of a passive scalar in a stationary 

homogeneous unstratified flow using forced DNS. Here, a passive scalar by definition is a scalar 

quantity that does not affect the flow (momentum) field dynamically. Examples of such scalars 

include a dissolved pollutant such as Nitrogen or Chlorine that is transported in a turbulent flow. 

The dissipation and mixing of passive scalars occurs at small scales which besides the Reynolds 

number, may also be influenced by the Schmidt number (Sc). The Sc can vary widely by several 

orders of magnitude ranging from 10-3 in liquid metals to order unity in gaseous flames to 103 or 

higher in organic mixtures and biological fluids (Yeung et al., 2002). However, to date, it is not 

clear what the effect of Sc is in high Reynolds number turbulent flows, especially pertaining to the 

prediction of turbulent mixing of scalars in such flow. 

In what follows in this chapter, first a formal problem statement is stated in Sec. 32. This 

is followed in Sec.3.3 by a discussion on the DNS formulation and numerical resolution issues.  

DNS results of the energetics and dynamics of the flow field are presented in Sec 3.4 for Sc =1, 

noting that for passive scalars, the velocity fields for different Sc simulations are identical. In Sec 

3.5, DNS results for scalar dissipation and fluxes are presented for 0.1 ≤ Sc < 3. The coherent 

structures of both the flow field and scalar are qualitatively visualized in three-dimensional space 

in Sec. 3.6. Finally, a practical (and new) model for quantifying the turbulent diascalar diffusivity 

is presented in Sec. 3.7. 
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3.2 Problem Statement 

The overarching question that primarily motivates the work presented in this chapter is 

“Does the turbulent mixing of a passive scalar in a homogeneous, unstratified turbulent flow 

depend on the molecular diffusivity (specified by different Schmidt number Sc)?”  

An associated and practical question that follows pertains to whether a unifying model can 

be proposed for quantifying the turbulent diascalar diffusivity of passive scalars in turbulent flows? 

It should be noted that it is very challenging to obtain conclusive and elegant answers to 

both of the above questions due to in part the complexities associated with turbulent flows and 

also the constraints inherent in the tools such as DNS and experiments that are used to study such 

flows. However, an attempt to answer these questions is made in this study using DNS simulations 

for varying Sc numbers. 

3.3 Direct Numerical Solutions  

Direct Numerical Simulation (DNS) is a computational technique for the solving the three-

dimensional instantaneous Navier-Stokes (N-S) equations for fluid flow. A turbulent flow is 

characterized by a large range of length scales ranging from large scales depicted by the geometry 

of the flow domain to small dissipated scales where most of the turbulent kinetic energy that is 

produced from the mean flow field at large scales is dissipated. Hence it is very important to solve 

the N-S equations across this spectrum of length scales in order to investigate the fundamental 

physics associated with turbulence. Thus DNS has the advantage over other computational fluid 

dynamics (CFD) methods as it directly solves the flow field up to the smallest scales for a given 

Reynolds negating the need for a turbulence model that is typically required in all the other CFD 

techniques.  
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However the computational cost associated with DNS scales nonlinearly with the Reynolds 

number. Hence DNS is restricted to low to moderate Reynolds numbers (Pope 2000). Practical 

environmental flows which are characterized by higher Reynolds numbers require other CFD 

techniques such as Large Eddy Simulations (LES) and Reynolds Average Navier-Stokes (RANS) 

simulations which solve some form of the averaged N-S equations in conjunction with a turbulence 

closure model. 

3.3.1 Description of Code 

The DNS code used in this current work was pioneered for homogeneous turbulence by 

Orszag and Patterson (1972) using a pseudo-spectral numerical scheme. The code was extended 

by Riley et al. (1981) for stratified turbulent flows. The forcing scheme with pseudo spectral 

method DNS code used in this work for unstratified flow is based on a constant energy input 

technique using a linear forcing technique (Stretch, personal communication). The code is written 

in the FORTRAN 77 programming language and executed on a Linux operating system. A pseudo-

spectral method is a technique where by the linear terms in the Navier-Stokes equations are 

evaluated in wavenumber space while the non-linear terms are computed in physical space. Time 

marching is accomplished using the leap frog scheme in order to achieve second order accuracy at 

minimal cost. Periodic boundary conditions are applied on all boundaries, which are necessary 

boundary conditions for spectral schemes (Pope, 2000). 
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3.3.2 Formulation of DNS 

DNS using pseudo spectral numerical method involves the formulation of the flow 

parameters such as velocity in wavenumber space (K) as three dimensional Fourier series for N 3 

grid points, where N is the number of grids (which is set the same in all three directions). For 

example, the Fourier series for velocity can be represented as a finite Fourier series as follows  ݑሺݔ, ሻݐ = ∑ ݁௜௄.�௄ ,ܭሺݑ̂  ሻ, (3.1)ݐ

where  is the wavenumber is the wavenumber and ̂ݑ is the Fourier coefficients. In physical space, 

the resolving domain is a cube of length of L with N grid points in each direction. Hence a grid 

size is ∆ݔ = ݕ∆ = ݖ∆ = ܮ �⁄ .  Discrete Fourier Transform (DFT) gives a one-to-one mapping 

between Fourier coefficients and the velocities. (Pope, 2000). 

The computational box (L) must be large enough to capture the largest scales of the flow 

while the grid size should be small enough to capture the smallest dissipative scales.  The highest 

wave number ܭ௠�� can be determined in terms of number of grid points N and lowest non-zero 

wavenumber ܭ௢. 

��௠ܭ = √ʹ͵  ௢�, (3.2)ܭ

The turbulent Reynolds number ܴ݁௅ (Eq. 3.3) can be used to illustrate the computational 

cost associated with DNS. The number of grid points N (Eq. 3.4) in each direction is approximately 

equal the ratio of the turbulent large scale L to the Kolmogorov scale Lη (Durbin & Pettersson Reif, 

2011) and typically N is chosen to be in power of 2 naturally to facilitate computation of Fourier 

transforms. 

ܴ݁௅ = ݇ଵ/ଶߥܮ = ݇ଶ�(3.3) ,ߥ 
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�~ ఎܮܮ = ݇ଷ/ଶ� ቀ ଷቁଵ/ସߥ� = ቆ݇ଶ�ߥቇଷ/ସ = ܴ݁௅ଷ/ସ, (3.4) 

where k is the turbulent kinetic energy and ε is the rate of dissipation of turbulent kinetic energy 

and  is the kinematic viscosity. 

3.3.2.1 Forcing scheme 

A forcing scheme was added to momentum equation in order to obtain a statistically 

stationary homogeneous velocity field (Eswaran and Pope, 1987). A linear forcing scheme was 

used for this purpose, where a forcing is introduced in order to maintain a constant turbulent kinetic 

energy k as a function of time. The turbulent kinetic energy as a function of time is shown in figure 

3.1 and is seen to be almost constant for up to three eddy turnover time. Also, it should be noted 

that the velocity field and hence the associated energetics of the flow field is identical for all the 

different simulations that were performed for varying Schmidt numbers (i.e. Sc = 0.1, 0.2, 0.5, 1, 

2 and 3). Through this approach, a statistically stationary homogeneous turbulent field was 

maintained throughout the duration of the simulations. 

 

Figure 3.1: Turbulent kinetic energy for unstratified homogeneous flow using DNS at 2563 grids for Sc=0.1, 0.2, 
0.5, 1, 2 & 3. 
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3.3.2.2 Initial Conditions 

The simulation was initialized with a Gaussian, Isotropic velocity field using with an 

energy spectrum function as follows 

ሻܭሺܧ = ௢ହܮ௄ܷ௢ଶܥ  ସ݁ሺ−ଵଶ௄2௅2ሻ, (3.5)ܭ

where ܥ఑ is the Kolmogorov constant scaling factor, ܷ௢& ܮ௢ are initial velocity and length scales. 

The turbulent Reynolds number ܴ݁௅ was 625 and the number of grid points N3 =2563 for all 

simulations. DNS at this higher ܴ݁௅ and number of grid points were checked by Schaad (2012) 

against the earlier lower resolution DNS study by Venayagamoorthy and Stretch (2006). The initial 

Richardson number ܴ�௢ was set to zero for all simulations of unstratified turbulence since 

buoyancy effects are absent in such flows.  

Each simulation was performed for up to three eddy turn over time, which is necessary to 

allow the turbulent flow to reach a stationary state. Hence, the total number of time steps and time 

step size ∆t were determined as 6000 and 0.0005, respectively to achieve three eddy turn time 

while ensuring numerical stability. The minimum wavenumber (AKMIN) was determined as 1 and 

then increased to 4 to overcome the resolution issues on the results, which are discussed in the next 

section. Also, the range of Schmidt numbers that were simulated was constrained by the resolution 

issues. 

3.3.3 Resolution issues 

All the initial simulations that were performed were done with a minimum wavenumber of 

1 (i.e. a dimensional box size equivalent to 2) in order to allow for the largest possible 

computational domain which will allow for the largest scales of the flow to evolve in the periodic 

computational domain. With a minimum wavenumber of 1, each size of the computational cube is 
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of length 2ߨ, which implies that computational domain is about 6 times larger than the large eddy 

size (see Fig.3.2). 

 

 

Figure 3.2: a) Three dimensional computational domain with N=256 grid points in each direction, b) size of a 
grid in XY plane 
 

In order to ensure adequate grid resolution, the computational domain must be sufficiently 

large enough to contain the large scales of the flow while also ensuring that grid size d (=L/N) 

should be sufficiently fine to resolve the smallest scales, which are typically of the order of the 

Kolmogorov length scale ܮఎ = ሺߥଷ �⁄ ሻଵ/ସ. Here,  is the kinematic viscosity and  is the dissipate 

rate of turbulent kinetic energy. The Kolmogorov scales were checked to ensure that the grid was 

sufficiently small in order to confirm that the simulations were adequately resolved. Furthermore, 

in order to adequately resolve the passive scalar field, the corresponding small length scales 

commonly known as the Obukhov - Corssin scale (for Sc <1) and the Batchelor scale (for Sc >1) 

were also checked against the grid resolution. Fig.3.3 shows all three small length scales together 

with the grid sizes. As can be seen, clearly, the grid size is not small enough to resolve the small 

scale motions for all of the Schmidt numbers. Grid sizes are almost 5 times larger than Kolmogorov 

y 

x 0 1 

1 
dX =L/NX 

dy=L/NY 
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scale. Hence it is clear that a smaller computational domain is required to resolve all scale motions 

of the flow with a total number of grid points of 2563. 

 

Figure 3.3: Comparison of grid scale with Kolmogorov, Batchelor and Obukhov-Corssin length scales at all 
Schmidt numbers for minimum wavenumber is 1. 
 

In addition to the scale comparisons shown in Fig 3.3, another standard comparison check 

was done for the turbulent scalar dissipation rate ��. Given that ��occurs the smallest scales, it is 

should be expected that the simulations would not be adequately resolved to compute �� correctly. 

In the DNS code, turbulent statistics such as �� are computed by considering a truncated sphere 

within the cubic domain consisting of 2563 grid points at each time step. It is also possible to output 

the scalar fluctuations ' on each grid point over the domain at each time separately. The 
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fluctuating scalar gradients of three dimensional scalar fields can then be computed at each grid 

points from which �� can be obtained using equation (3.6) at any given time step.  

�� = � ௝ݔ߲′ߩ߲⟩  ௝⟩, (3.6)ݔ߲′ߩ߲ 

where ț is molecular diffusivity and ρ is the density of the flow. If the simulations are well 

resolved, both computations should yield the same results. Fig 3.4 shows the comparison for a 

simulation with Sc =1.  Clearly, the results do not converge within acceptable limit. The maximum 

difference is more 150% and increases for Sc > 1.  

 
Figure 3.4: Average scalar dissipation rate ��computed within the DNS code and post processed ep from density 
fluctuations for Sc=1for a computational domain of length 2. 
 

It is clear that for a simulation with 2563 grid points, the domain size must be smaller than 

2 in order to resolve the smaller scales. Thus, the domain size was modified 2/ߨ in order to ensure 

that adequate resolution of the smallest scales are obtained. The standard checks as discussed 

above were performed again for all Sc numbers and compared. As can be seen from Fig.3.5, the 

grid size and Kolmogorov scales are now comparable. Also the maximum difference in �� was 7% 
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between the results as discussed previously. Thus a box size of 2/ߨ was used for the remainder of 

this study. The Schmidt number range was also restricted up to Sc=3 in order to ensure adequate 

resolution of Batchelor scales. The maximum difference in �� is about 17% for Sc=3 beyond which 

the numerical errors become large. Hence, simulations with Schmidt numbers in the range 0.1 ≤ 

Sc < 3 were performed with eye toward answering the overarching question related to turbulent 

mixing of passive scalars. 

 

Figure 3.5: Comparison of grid scale with Kolmogorov, Batchelor and Obukhov-Corssin length scales at all 
Schmidt numbers for minimum wavenumber AKMIN=4. 
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Figure 3.6: Average scalar dissipation rate ��computed within the DNS code and post processed ep from density 
fluctuations for Sc=1for a computational domain of length . 
 

3.4 Energetics 

In this section, the energetics of the flow field is presented. Since all the simulations are 

unstratified, the energetics of the flow field does not change with varying Sc. Therefore, only 

results for Sc=1 simulation are discussed here.  

3.4.1 Turbulent kinetic energy and dissipation rate 

As a reminder, the purpose of artificially forcing the flow was to obtain a Main purpose 

statistically stationary velocity field for all the simulations that is turbulent. Hence, turbulent 

kinetic energy ሺ݇ = ͳ/ʹݑۃ.  ሻ is constant for all time. For practical flows, the turbulent kineticۄݑ

energy is produced from a sheared mean flow field. In other words, a key ingredient for the 

production/sustenance of turbulence is mean shear (or mean velocity gradients) in the flow. 

However, for homogeneous isotropic turbulence, the only way to ensure stationarity, is through 

artificial forcing that adds energy to the flow as discussed earlier and shown in Fig.3.1. 
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Available turbulent kinetic energy (TKE), turbulent potential energy and total energy are plotted 

in Fig.3.7 as function of time. As shown before (see Fig. 3.1) the TKE remains constant throughout 

the duration of the simulation.  

 

Figure 3.7: Plots of available kinetic, potential and total energies with time  
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It is important to note that even though the TKE is statistically stationary, this does not 

necessarily provide a constant rate of dissipation of turbulent kinetic energy �௞(see Fig.3.8). �௞ is 

the average of square of the fluctuating velocity gradients over the domain as follow:  

� = ߥ ௝ݔ௜߲ݑ߲⟩  ௝⟩, (3.7)ݔ௜߲ݑ߲ 

where ν is the kinematic viscosity of the flow.   It can be seen from Fig 3.8 that �௞ reaches its 

maximum dissipation at t =1.73 To and then it decreases slightly to attain a stationary level. Hence, 

the kinetic energy shows a small increment around the time of maximum dissipation (see Fig 3.7). 

Clearly, the potential energy is zero with no changes in time since there is no production of 

buoyancy fluxes for unstratified flow (Ri = 0). 

 

Figure 3.8: Rate of dissipation of turbulent kinetic energy ε for all Sc numbers 
 

It can be seen from Fig 3.8 that the dissipation rate starts almost from zero and peaks at t = 

1.73 eddy turnover time. During the time between t=0 to 1.73 To, turbulent effects start to develop 
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and hence it is important to use the flow statistics beyond this time for the purpose of analyzing 

the turbulent physics.  

3.4.2 Energy and energy dissipation spectra 

The energy spectrum provides the distribution of the turbulent kinetic energy as a function 

of wavenumber κ and is obtained as follows.  ܧሺ௄ሻ =  ହ/ଷ, (3.8)−ܭ௄�ଶ/ଷܥ

where ܥ௄ is the Kolmogorov constant, ε is the dissipation rate of kinetic energy and  is 

wavenumber. Fig.3.9 shows the energy spectrum versus wavenumber at t=1.73 To when 

dissipation rate of TKE is a maximum. Here, wavenumber K (K=2π/ܮఎ) is normalized by 

Kolmogorov length scale ܮఎ. As discussed earlier regarding resolution issues in Sec.3.3.3, the 

energy spectrum reaches the Kolmogorov scales as shown by blue continuous line at high wave 

numbers. Hence, this is additional confirmation that the computational grid and domain resolve all 

scales from largest scales to smallest scales. The large scale estimate in this study is also known 

as the flow scale Lo where ܮ௢ = ݇ଷ/ଶ �௞⁄ . 

It is important to note that inertial range spectral slope in this study does not attain the 

classical Kolmogorov’s -5/3 law (black continuous line shown in Fig. 3.9), except for a few points. 

This indicates that the separation of length scales are on the order of 1 to 10 for these simulations 

at an initial Reynolds number Reo=625. The Taylor microscale Reynolds number ReȜ~200. The 

Reynolds number should be sufficiently high enough to achieve a considerable order of separation 

of scales. It has been found that a minimum Taylor Reynolds number of about ReȜ~2000 is needed 

to achieve -5/3 slope (Sreenivasan 1995). 
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Figure 3.9: Energy spectrum with wavenumber normalized by Kolmogorov length scale for Sc=0.1 and Sc=1 at 
maximum energy dissipation. Black line indicates the Kolmogorov law of -5/3 slope at inertial subrange. 
 

Fig.3.10 shows the energy dissipation spectra at different times for Sc=1. These plots 

clearly indicate peaks in energy dissipation at low wavenumbers and subsequent decay at middle 

wave numbers that approaches zero at high wavenumbers. The spectra at different times are 

exhibiting the same trend with the spectrum at t= 1.73 eddy turnover time indicating maximum 

dissipation. The monotonic and decaying trend in the dissipation spectra is another diagnostic that 

indicates that the simulations are well resolved with no contamination or aliasing errors occurring 

at higher wavenumbers (i.e. smaller scales). 
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Figure 3.10: Energy dissipation spectra with wavenumber ț of Sc=1 at different time steps when t = 0.125 TO, 1 
TO, 1.726 TO & 2.995 TO. 
 

3.5 Scalar and scalar dissipation rate 

Since the simulations presented in this chapter were conducted for unstratified flow (Ri = 

0), the density acts as a passive scalar, and hence it does not influence the dynamics of the flow 

via buoyancy effects. Here, the density field is therefore used as a passive scalar. Also, it should 

be noted that the Schmidt numbers (ܵܿ = �఑) will influence the scalar properties. Note for Sc<1, the 

molecular diffusivity of the scalar is greater than momentum diffusivity and vice versa for Sc>1. 
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Figure 3.11: mean square of scalar (density) fluctuation is plotted with time for Sc= 0.1, 0.2, 0.5, 1, 2 & 3. 
 

The mean square of density (scalar) fluctuations ሺ< ′2ߩ >ሻ (also known as the scalar 

variance) is plotted with eddy turn over time for all Schmidt numbers in figure 3.11. The mean 

square scalar (density) fluctuations increases from zero and reach their peaks after about the first 

eddy turn over time and then decrease to almost quasi-steady state further in time. It can be seen 

that the trends for all Schmidt numbers are the same with higher fluctuations with increasing Sc. 

A similar behavior is observed for scalar dissipation rates (�� = ߥ ⟨��′೔��ೕ  ��′೔��ೕ ⟩) which are shown in 

Fig.3.12. Once stationarity is achieved (after about one turn over time), the scalar properties 

continue to be influenced by the Schmidt number. For Sc< 1, it can be seen at least for Reynolds 

numbers of these simulations that the scalar variance and they are smaller compared their 

counterparts at Sc>1 but the scalar dissipation rates appear to converge at later times for all Sc. 
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Figure 3.12: variation of scalar dissipation (CHI) with time for Sc= 0.1, 0.2, 0.5, 1, 2 & 3. 
 

In order to assess whether the turbulent scalar diffusion is the predominant process (as 

opposed to molecular diffusion) in these simulations, the ratio between the turbulent diffusivity ܭௌ, and molecular diffusivity , was computed. This ratio is known as non-dimensional diascalar 

diffusivity or commonly known in oceanography as the Cox number (CX) given by Eq. (3.9). 

Fig.3.13 shows the non-dimensional diascalar diffusivity as a function of time for all Sc. 

�ܥ = �ௌܭ  , (3.9) 

Note the diascalar diffusivity ܭௌ is defined as 

ௌܭ = ̅′ߩ߲)�߳ ⁄ݖ߲ )ଶ, (3.10) 

The results for the non-dimensional diascalar diffusivity for all Schmidt numbers clearly 

show that turbulent diffusion dominates. For Sc = 0.1,  ܭௌ �⁄ = ͳ5 and reaches up to 400 at steady 

state for Sc =3. Thus, these results confirm that the scalar mixing in these simulations are driven 

by the turbulence.  
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Figure 3.13: Non-dimensional diascalar diffusivity plotted with time for all Schmidt numbers. 
 

Statistical geometry of isovalues of scalar dissipation rates are shown in Fig.3.14 for 

selected xz planes where y=128. The distributions are shown for Sc=0.1 and 1 at different times. 

The ramp and cliffs structures seen in the distributions indicate regions of sharp changes in scalar 

dissipation rate ��.  At initial time t= 0.5 To, the scalar dissipation rates exhibit  very low values 

that are fairly uniform over the xz plane except for a very few sharp changes in the middle of plane 

for both Schmidt numbers. Peaks in the scalar dissipation occurs at t=1.75 To and higher 

fluctuations of scalar dissipation are widely spread over the plane at t= 1.75 To and 3 To for both 

Schmidt numbers. However, higher amplitudes are seen for Sc=1 compared to Sc=0.1 (as also 

indicated previously in Fig.3.12).  
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Figure 3.14: Contour surfaces of scalar dissipation (CHI) amplitudes at different times for Sc= 0.1 and 1 are 
plotted for selected plane at y=128.  
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3.5.1 Scalar and Scalar dissipation spectrum 

For scalars, the form of the spectrum ܧ�ሺ఑ሻ whose integral gives the scalar variance, is 

sensitively dependent on how the smallest scales compare with the smallest momentum scales. 

Multiple regimes are formed depending on the Schmidt numbers as described previously in Fig. 

2.1 in Chapter 2 (Gotoh and Yeung, 2012). Fig.3.15 shows the scalar spectra for different Schmidt 

numbers. In Fig.3.15 (a), slopes of -1 and -17/3 are indicated to show the trend of inertial-diffusive 

range and viscous-convective range, respectively.  

  

Figure 3.15: a) Scalar spectra plotted with wavenumber for all Sc numbers and slopes of -1 and -17/3 are shown 
in viscous-convective and inertial-diffusive regimes respectively. b) Scalar spectrums for low Sc numbers Sc ൑1 
in Obukhov-Corrsin scaling is plotted with wavenumber normalized by LOC. 
 

For low Schmidt numbers Sc൑1, a small range of the scalar spectrum reaches the slope of 

-17/3. However, most of the spectra do not capture this limit perhaps due to the low Reynolds 

number of the simulations. When Sc increases (as indicated by the black arrow in Fig 3.15(a)), 

scalar spectrum also increases towards the slope of -1, which indicates the region of viscous-

a) b) 



 

36 
 

convective regime (that must hold for Sc >1). Again, due to the low Reynolds numbers of the 

simulations, the turbulent scale separation was not sufficient to reach the expected trends as shown 

in Fig.2.1. 

The scalar spectra are scaled with Obukhov-Corrsin length scale LOC and plotted in 

Fig.3.15 (b) for low Schmidt numbers Sc൑1. All spectra in the low wavenumber band start from a 

near constant level which is known as the Obukhov-Corrsin constant COC which is about 0.5 in 

this set of simulations. The asymptotic value is COC = 0.67 as suggested by Sreenivasan (1996) for 

ReȜ > 1000. 

3.6 Coherent turbulent structures 

A turbulent flow can be considered as a stochastic vortical flow. Coherent structures can 

be considered as signatures of vertical motions in the flow. These structures can be identified by 

flow visualization or by other eduction techniques from the DNS data. However, they are very 

difficult to define and distinguished precisely for the purpose of quantitative description of the 

turbulent motions. The coherent structures are generally significantly larger than the smallest 

turbulent scales. The purpose here is to illustrate such structures in the simulations done in this 

study and provide a perspective on how they evolve spatially and temporally. Isosurfaces are 

selected based thresholds in order to provide a good qualitative description of the structures.  

3.6.1 Enstrophy and Vorticity 

Since turbulent eddies are generally characterized by vortical motions, it is insightful to 

visualize the vorticity fields. Both the horizontal vorticity and the vertical vorticity fields are 

visualized. The mean square vorticity known as the enstrophy is also utilized for describing the 

flow structures. 
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The isosurfaces of enstrophy, horizontal and vertical vorticity for the simulation with Sc=1 

are plotted in Fig.3.16 at different times. Just after the initialization at t=0.125 TO, there is very 

little vortical motion as can be seen from all three diagnostics. As time progresses, the flow evolves 

considerably with tube-like patches developing significantly. The structures fill the whole domain 

and the classic tube-like structures seen in other similar DNS studies of homogeneous isotropic 

turbulence are observed.  
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Figure 3.16: Isotropic structures of enstrophy, horizontal vorticity and vertical vorticity for Sc=1 at different time 
steps. Selected threshold of 2.5 times the root mean square (rms) of enstrophy 
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3.6.2 Scalar and scalar dissipation 

Fig.3.17 through 3.20 show the scalar fluctuations and scalar dissipation fields for Schmidt 

numbers 0.1, 1, and 3, respectively. At time t= 0.125 To, scalar fluctuations and scalar dissipation 

patches follow a similar pattern for all Sc numbers. As time progresses, the patches evolve into 

more turbulent like features. What is most obvious is the patches for the higher Sc simulations are 

clearly more turbulent which is in agreement with the higher quantitative values of the diascalar 

diffusivity presented in Fig. 3.13. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.17: Isosurfaces of scalar (density) fluctuations for Sc=0.1, 1 & 3 at different time steps. Isosurfaces are 
mapped with selected threshold of 2 times the root mean square (rms) of scalar fluctuation. 
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Figure 3.18: Isosurfaces of scalar (density) fluctuations for Sc=0.1, 1 & 3 at different time steps. Isosurfaces are 
mapped with selected threshold of 1.5 times the root mean square (rms) of scalar fluctuation. 
 

Note, Fig.3.17 is patched for 2 times the rms of mean scalar fluctuations and Fig.3.18 is 

mapped with a threshold of 1.5 times rms of mean scalar fluctuations. Also, the scalar dissipation 

rates are plotted with two different thresholds in Fig.3.19 and 3.20, respectively. Scalar dissipation 

in these plots also follows a same trend like as scalar fluctuation isosurfaces in Fig.3.17 and 3.18. 
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Figure 3.19: Isosurfaces scalar dissipation rate for Sc=0.1, 1 & 3 at different time steps. Isosurfaces are mapped 
with selected threshold of 2 times the root mean square (rms) of scalar dissipation. 
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Figure 3.20: Isosurfaces scalar (density) dissipation rate for Sc=0.1, 1 & 3 at different time steps. Isosurfaces are 
mapped with selected threshold of 3 times the root mean square (rms) of scalar dissipation. 
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3.7 Modeling for turbulent scalar mixing 

The ability to quantitatively model/predict the turbulent mixing of passive scalars is 

important in many engineering and geophysical applications. The major challenge from a practical 

standpoint is to determine the key large scale turbulent parameters that must be measured in the 

field or modeled in numerical simulations in order to predict the turbulent mixing which occurs at 

the small scales. In other words, what are key ingredients required for predicting the turbulent 

diascalar diffusivity ܭௌ? Furthermore, the quantities that are considered should be fairly 

straightforward and inexpensive to measure in the field such as in oceanic flows or for simulations, 

such quantities should be obtained without extreme computational costs. With these constraints in 

mind, the ambitious goal in this section is to develop a simple but robust model for the diascalar 

diffusivity that can used in field applications as well as a turbulence closure model in 

computational simulations of fluid flows involving passive scalars. 

The model proposed by Venayagamoorthy and Stretch (2006, hereafter the VS model) for 

the turbulent diascalar diffusivity is used as a basis to develop a practical model. The VS model is 

given as: 

ௌܭ = �′ ଶ�ܮ 
௅ܶ , (3.11) 

where, ܮ� = ̅̅(′2ߩ) ̅̅ ̅̅ ̅ଵ/ଶ ′ߩ߲| ⁄ݖ߲ |⁄  is the Ellison ‘overturning’ length scale, ܶ௅ = ݇/� is turbulent 

time scale and �′ is one-half of the mechanical to scalar time scale ratio.  

In a follow-up work, Stretch and Venayagamoorthy (2010) showed that VS model was 

quite robust for predicting the diascalar diffusivity using datasets from numerous laboratory and 

DNS studies that were done by different researchers. However, the VS model is not quite practical 

for field scale applications in that, it does not require the prescription of the turbulent time 
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scale ௅ܶ = ݇/�. It is clear that this quantity would be very challenging to estimate or quantify a 

priori given that  is a small-scale turbulent quantity. Therefore, the goal here is to obtain a 

simplification to the VS model that only relies on large scale (measurable) quantities to 

estimate ܭௌ.  

As a first check, the non-dimensional diascalar diffusivity (ܭௌ �⁄ ሻ computed from the six 

different simulations performed in this study for passive scalars in an unstratified flow are 

compared in Fig.3.21 against the predictions of the VS model. It is clear that the actual values from 

the DNS simulations are closely predicted by VS model with some small variations. The results 

confirm that the VS model can be extended to passive scalars without any loss of generality (noting 

that Stretch and Venayagamoorthy 2010 already showed that VS model can be extended to passive 

scalars). Note that Fig.3.21 is a non-dimensional plot of-diascalar diffusivity (ܭௌ �⁄ ሻ or Cox 

number, versus the turbulent Peclet number (�݁௧ = ଶ�ܮ ௅ܶ�⁄ ሻ, where  is the molecular diffusivity 

(� = ߥ ܵܿ⁄ ሻ. 
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Figure 3.21: Non-dimensional diascalar diffusivity for different Schmidt numbers with turbulent Peclet number. 
Dashed black lines represents �′=1 and 0.5. 
 

For further confirmation of the �′ value of 0.7 proposed by VS, DNS results from decaying 

unstratified turbulent flows with a passive scalar were added to the current results. �′ was 

computed from the mechanical-to-scalar time scale as shown in Eq. (3.12).  

�′ = ͳʹ �� ௅ܶ(′2ߩ)̅̅ ̅̅ ̅̅ ̅/ʹ, (3.12) 

where, �� scalar dissipation, ܶ௅ is the turbulent time scale (௅ܶ = ݇ �⁄ ሻ and ߩ′ is mean scalar. 

Fig.3.22 shows  �′ as function of time from which it can be seen that a value of 0.7 is a good 

estimate for the average value of �′ once the flow has reached stationary conditions, consistent 

with the estimate proposed in VS model. 
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Figure 3.22: Gamma values for passive scalars for different Schmidt numbers in forced and decaying flows. 
 

Now, to improve the VS model for practical application (as alluded earlier to), the need for 

an easily measurable mixing length scale that mimics the Ellison length scale LE is required. 

Furthermore, a further recasting of the VS model is required in order to circumvent the need to 

prescribe the time scale TL. From the stably stratified turbulence literature (especially related to 

oceanic flows), a strong linear (almost one to one) correlation between the Ellison length scale and 

the Thorpe length scale LT has been established (Itsweire et al. 1993, Mater et al., 2013). The 

natural question that follows is whether a similar relationship would be valid for passive scalars in 

unstratified flows? Of course, it must be noted that Thorpe length scales in unstratified flows can 

no longer be related with the available potential energy in the flow. Regardless, it should still be a 

representative indicator of the mixing length scale. LT can be calculated from the scalar fluctuating 

field by resorting the distribution monotonically. The detailed procedure is well described in Mater 

et al. (2013). The LT were computed for all the six different DNS runs at different times and 

' 
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compared with LE as shown figure 3.23. It can be seen that there is a remarkably good agreement 

between LE and LT. In fact, it is found that LT = 0.8 LE, a relationship first suggested Itsweire et al. 

(1993) for stably stratified shear flows as shown in Fig.2.2. This study shows that this relationship 

also holds for passive scalars in unstratified flows and hence suggests that LE can be replaced with 

LT /0.8.  

 
Figure 3.23: Thorpe scalar length versus Ellison length scale for Passive scalars. 
 

The next issue is to find a suitable alternative formulation for the turbulent time scale ௅ܶ =݇ �⁄ . Using dimensional reasoning ௅ܶ can be rewritten in terms of the widely known turbulent 

kinetic energy length scale ܮ௞�, as ௅ܶ = ݇ଷ/ଶ �݇ଵ/ଶ⁄ =  ௞�/݇ଵ/ଶ, where k here is the turbulentܮ

kinetic energy (Pope 2000). Hence, turbulent time scale can be recast in terms of a turbulent length 

scale ܮ௞�  and a velocity scale given by ݇ଵ/ଶ. Intuitively, it is plausible that the turbulent length 

scale ܮ௞� should also correlate linearly with ܮ�. Figure 3.24 shows a plot of ܮ/�ܮ௞� versus time 



 

48 
 

once the flow has reached a quasi-steady state while Fig 3.25 shows a plot of  ܮ� versus ܮ௞�. As 

can be seen, there is almost one to one correspondence between these two length scales with an 

average relationship given by ܮ� = Ͳ.ͻܮ௞�.  

 
Figure 3.24: Ratio of LE/݇ܮ� with time after the flow has developed. 
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Figure 3.25: Comparison of ݇ܮ & ܧܮ� for passive scalars in unstratified flows.  
 

With these new findings, a revised model for the diascalar diffusivity can be derived by 

recasting ܮ� and ܶ ௅ in terms of ்ܮ and ܮ௞�. The resulting new model is given as ܭௌ = ͳ.ͳ �′ ்ܮ ݇ଵ/ଶ, (3.13) 

The new model is clearly more practical since it relies entirely on large scale quantities i.e. ்ܮ  and k are both large scales quantities in a turbulent flow. In essence, Eq. (3.13) can be viewed 

as a turbulence closure scheme in the spirit of turbulence modeling since it does not rely on any 

small-scale turbulence quantity for closure. 

As a final step of this modelling exercise, the diascalar diffusivity computed using new 

model, Eq. (3.13) and exact diascalar diffusivity from DNS for unstratified flows are compared in 

Fig.3.26. Red continuous line indicates the 1:1 relationship between Kmodel and Kexact. 20% of 
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confidence intervals are indicated by dashed black lines. It can be seen that the proposed model 

does reasonably well in capturing the exact diffusivities.  

 

Figure 3.26: Comparison of diascalar diffusivity computed using model (Kmodel) given by Eq. (3.13) and DNS 
data (Kexact). 
 

3.8 Conclusions 

In this chapter, a detailed DNS study was performed to investigate turbulent mixing of 

passive scalars in an unstratified homogeneous turbulent flow. The main findings of this study are 

twofold: first, for turbulent flows, the mixing is not sensitive is found not to be sensitive to Schmidt 

number provided that there is sufficient separation of scales i.e. the diascalar diffusivities have to 
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at least one or more order of magnitude higher their molecular counterparts. Second, a revised 

model to the VS model which has considerable potential for practical applications was proposed 

and validated. In what follows in the next chapter, suitability of the new proposed model to stably 

stratified flows is considered.  
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CHAPTER 4 

MIXING OF ACTIVE SCALARS  

 

4.1 Introduction 

Stably stratified flows are common in the environment flows such as oceans, lakes and the 

atmosphere. Stable stratification arises from temperature and/or salinity variations in deep water 

environments where the mean potential density increases with depth. In a stably stratified fluid, 

the heavier fluid lies below the lighter fluid. Dynamically, the presence of a stable stratification 

has substantial effect on physical processes such as turbulent scalar mixing. Accurate prediction 

of turbulent mixing in such flows is important for many applications such as pollutant dispersion 

in air and water bodies, weather and climate prediction. As such, in this study, the main focus is 

on parameterization of active scalar mixing. 

In what follows in this chapter, first a formal problem statement is stated in Sec. 4.2 which 

is followed by a description of the DNS data in Sec. 4.3. The main results on the modeling aspects 

of the study are presented in Sec. 4.4. 

4.2 Problem statement 

The main goal in this Chapter is to test and refine the diascalar diffusivity parameterization 

that was developed in Chapter 3 for passive scalars to active scalar mixing in stably stratified flows 

at low, moderate and high stratification. Specifically, the key questions are: “Does the diascalar 

diffusivity model proposed in Chapter 3 as ܭௌ = ͳ.ͳ �′ ்ܮ ݇ଵ/ଶ for passive scalar mixing in 

unstratified flows seamlessly extend to active scalar mixing in stably stratified flows? If not, what 

modifications are required to account for the buoyancy effects in the model? 
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4.3 DNS formulation 

DNS is an exact numerical solution (within numerical accuracy of the computational 

schemes) of the Navier-Stokes (N-S) equations that is obtained by resolving all scales of motion 

in a given turbulent flow. First theorized by John Von Neumann in 1949 (Davidson, 2004), DNS 

is the simplest form of numerical simulations that does not resort to the use of turbulence models. 

To resolve all scales of motion, the grid size must be of the order of the Kolmogorov length scales 

Lη while the domain length L must be large enough to capture the largest energy containing eddies 

(Pope, 2000). 

Orszag & Patterson (1972) pioneered the pseudo-spectral computational method. The 

pseudo spectral DNS code used in a previous study of stably stratified turbulence from which the 

data for the present study is obtained is based on the methodology put forth by Orszag and 

Patterson (1972). The serial code was written in the FORTRAN 77 programming language. The 

DNS data used in this chapter were obtained from the study by Schaad (2012) for his MS thesis 

research. His simulations were conducted for stably stratified decaying turbulent flow with low, 

moderate and high stratification.  

DNS data from simulations of stratified decaying flow for Prandtl (or Schmidt) number 

Pr=1 is used for a range of Richardson numbers, which is a non-dimensional number that indicates 

strength of the stratification. Seven different simulations were done by Schaad (2012) with initial 

Richardson numbers Ri = 0, 0.01, 0.1, 0.4, 1.6, 10, 40 and 158 that encompass flows ranging from 

low to moderate to strong stratification with an initial turbulent Reynolds number Re=625. It must 

be noted that these simulations were unforced and hence the flow decayed with time dues to the 

absence of an energy input source beyond the initial input at the start of the simulations. The N-S 

solutions were computed such that the lowest wavenumber o =2, which implies that the 
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computational domain had a length L=π. Periodic boundary conditions were applied to the cubic 

box with a grid resolution of 2563 grid points. 

4.4 Modeling of turbulent scalar mixing in stably stratified flows 

The first step is to assess how well the proposed model given by ܭௌ = ͳ.ͳ �′ ்ܮ ݇ଵ/ଶ using 

the stably stratified DNS data. The model prediction of the diffusivity is plotted again the exact 

diffusivity for all Ri cases including the unstratified decaying simulation (denoted by Ri =0) as 

shown in Fig. 4.1. It is evident that as the stratification increases (i.e. beyond Ri = 0.39), the model 

overpredicts the diffusivity. This implies that as buoyancy effects become significant and dominate 

the flow, the diascalar diffusivity is suppressed and the inherent physics in the proposed model 

does not fully account for this effect. Clearly, further analysis is required to correct for this effect. 

 

Figure 4.1: Model diffusivity versus exact diffusivity using DNS data of stably stratified flows.  
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Given that the correlation between the Ellison and Thorpe length scales have been 

previously established by other researchers (see Itsweire et al. 1993, Mater et al. 2013), it is 

unlikely that the differences are related to the breakdown in this relationship. Regardless, before 

proceeding to other possibilities, this relationship is tested again as shown in Fig. 4.2. It is clear 

that LT = 0.8 LE still holds across a broad range of stratification. 

 

Figure 4.2: Comparison between Ellison and Thorpe length scales for stably stratified flows. 
 

The next step is to reconfirm whether the original model proposed by Venayagamoorthy 

and Stretch (2006, hereafter the VS model) holds for the diascalar diffusivity (previously discussed 

in Chapter 3 in Sec. 3.7). Fig.4.3 shows a plot of the nondimensional diascalar diffusivity versus 

the turbulent Peclet number for all Ri cases. It is evident that the VS model continues to capture 

the exact diffusivity reasonably well. The parameter �′ is computed for these active scalar mixing 
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simulations in decaying stably stratified flows and shown as a function of eddy turnover time in 

Fig.4.4 for different stratifications. Even though high fluctuations in the value are evident at high 

Ri (due to the occurrence of linear internal wave motions), average values for �′ are closer to 0.7. 

However, as previously discussed in Sec. 3.7 of Chapter 3, the need for a practical model that 

utilizes only large scale turbulent flow quantities dictates that an improvement to the current 

proposed model is required. 

 

Figure 4.3: Non-dimensional diapycnal diffusivity with turbulent Peclet number for different decaying stratified 
flow. Dashed black lines represents �′=1 and 0.5. 
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Figure 4.4: Values for �′ plotted with eddy turnover time for different stratifications. Dashed black lines 
represents �′=1 and 0.5. 
 

Returning to the proposed model given by ܭௌ = ͳ.ͳ �′ ்ܮ ݇ଵ/ଶ, the next check point 

pertains to the linear relationship that was shown to hold between the turbulent kinetic energy 

length scale ܮ௞�   and ܮ� for unstratified flows in Chapter 3 (see Sec. 3.7). A plot of ܮ� versus ܮ� 

is shown in Fig. 4.5. Clearly, as stratification increases, the linear relationship between these two 

length scales no longer holds, especially beyond  Ri = 0.4, which can be considered to be a 

somewhat mildly stratified flow case. Physically, this breakdown can be attributed to the strong 

anisotropy that develops in the flow due buoyancy effects as Ri increases. As the buoyancy effects 

increases, the vertical fluctuations decrease constraining the vertical motions of fluid particles thus 

resulting in much diminished values of ܮ�. On the other hand, ܮ௞� is based on the turbulent kinetic 

energy which is based on the three-dimensional velocity fluctuations. Hence, it continues to stay 

large.  
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Figure 4.5: Ellison length scale versus turbulent kinetic energy length scale for low, moderate and high 
stratification. 
 

What can also be seen in Fig.4.5 is an inverse trend in the relationship between ܮ� and ܮ௞� 

for Ri ≥ 0.4. This trend is closely captured by ܮ� = Ͳ.ͳ5 ܮ௞�. Fig. 4.6 shows that a constant of 

0.15 is a suitable proportionality constant. 

Using this modified relationship between ܮ� and ܮ௞� for the moderate to strong stably 

stratified flow cases, the diffusivity can be modified accordingly.  
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Figure 4.6: Inverse relationship between Ellison and kinetic energy length scales for different stratification. 
 

Beginning with the VS model for the scalar diffusivity given by 

ௌܭ = �′ ଶ�ܮ 
௅ܶ , 

first, ܮ� can be substituted with ்ܮ/Ͳ.ͺ and ܶ ௅ can be rewritten as ܮ௞�/݇ଵ/ଶ. Thus, 

ௌܭ = �′  ቀ்ܮ Ͳ.ͺ⁄ ቁଶܮ௞�/݇ଵ/ଶ . 
Now ܮ௞�  can be replaced by Ͳ.ͳ5/ܮ�   which in conjunction with the relation between ܮ�  and ்ܮ  

can further simplified as ܮ௞� = ሺͲ.ͳ5 ∗ Ͳ.ͺሻ/்ܮ to provide a model for the scalar diffusivity as 

ௌܭ = �′  ቀ்ܮ Ͳ.ͺ⁄ ቁଶሺͲ.ͳ5 ∗ Ͳ.ͺሻ/்ܮ ݇ଵ/ଶ, 
which simplifies to ܭ� = ͳ͵ �′ ்ܮଷ ݇ଵ/ଶ, (4.1) 
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It must be noted that the model presented in Eq. (4.1) might appear at first sight to be dimensionally 

inconsistent due to the inverse relationship between the relevant length scales it should provide a 

good quantitative estimate of the diascalar diffusivity. 

The diascalar diffusivity computed using revised model, Eq.4.1 and exact scalar diffusivity 

using DNS data for active scalars in stably stratified flows shown in Fig.4.7. Red continuous line 

indicates the 1:1 relationship (Kmodel = Kexact). 20% of confidence intervals are indicated by dashed 

black lines. It can be seen that there is a significant improvement in the prediction compared to 

that shown in Fig. 4.1 using the passive scalar model. 

 

Figure 4.7: Comparison of Scalar diffusivity computed using model (Kmodel) and DNS data (Kexact) for active 
scalar in stratified flow. 
 

As a final summary plot, predictions of diffusivities using both the passive scalar model as 

well as the active scalar model are shown against exact diffusivities for all the available DNS data 
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for forced unstratified flows and decaying stratified flows in Fig.4.8. To construct this plot, the 

two relevant models are applied to their appropriate regimes, respectively. The model ܭௌ =ͳ.ͳ �′ ்ܮ ݇ଵ/ଶis used for passive scalar mixing as well as for mildly stratified flows, while the 

model ܭ� = ͳ͵ �′ ்ܮଷ ݇ଵ/ଶ is used for the moderate to strongly stably stratified flows. 

 

Figure 4.8: Master plot showing the diffusivity models for both passive and active scalars in unstratified and 
stratified flows. 
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CHAPTER 5 

CONCLUSION 

 

5.1 Summary of studies 

The main focus of the work presented in this thesis revolves around mixing of passive and 

active scalars in turbulent flows. DNS was used to simulate scalar mixing in homogeneous 

unstratified and stably stratified turbulent flows. For unstratified flows, the effect of varying 

Schmidt numbers on turbulent mixing was investigated in Chapter 3. A total of 6 different 

simulations were performed for 0.1 ≤ Sc ≤ 3. Quantitative and qualitative analysis were presented 

to highlight the mixing under for varying Sc. The highlight of the study presented in Chapter 3 

focused on a new model for quantifying the diascalar diffusivity that used a model proposed by 

Venayagamoorthy and Stretch (2006) as its basis.  

In Chapter 4, DNS data for different stratified flows with Prandtl number Pr=1 obtained 

from the work by Schaad (2012) were used to study the active scalar mixing in stably stratified 

turbulence. The main thrust of this study was to investigate the suitability and required 

modification (if any) of the new proposed model for diascalar diffusivity in Chapter 3 for stably 

stratified flows 

The main conclusions from Chapter 3 and 4 are summarized in Sec.5.2 and 

recommendations for future work on further developments of the scalar mixing model are provided 

in Sec.5.3. 
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5.2 Conclusions from chapter 3 and chapter 4 

In Chapter 3, a DNS parametric study was performed for different Schmidt numbers 

Sc=0.1, 0.2, 0.5, 1, 2 and 3 in forced unstratified homogeneous turbulent flow. The forcing scheme 

was added in order to achieve stationary velocity fields. A careful analysis was carried to ensure 

that numerical resolution issues were adequately addressed before embarking on a detailed study 

to investigate the flow physics. Results of energetics, statistics of the scalar field and coherent 

structures were presented to show the characteristics of the flow and scalar fields. It was found 

that the scalar dissipation rate which essentially characterizes mixing was not so sensitive to the 

molecular diffusivity. This was clearly demonstrated by plotting the non-dimensional diascalar 

diffusivity versus the turbulent Peclet number (see Fig. 3.26). It was observed that diascalar 

diffusivity can be predicted by the VS model. 

The main highlight of this research was the development of an improved model to the VS 

model that utilizes the well-known Thorpe length scale in oceanography as well as the turbulent 

kinetic energy as a suitable velocity scale to parameterize the turbulent diascalar diffusivity as ܭௌ = ͳ.ͳ͵ �′ ்ܮ ݇ଵ/ଶ in homogeneous unstratified flows. In Chapter 4, the above expression was 

modified to account for anisotropy effects. In short, an inverse relationship between Ellison ܮ� and 

kinetic energy length scale ܮ௞�  was found as ܮ௞� = Ͳ.ͳ5/ܮ�. Hence, a modified model was 

proposed as ܭ� = ͳ͵ �′ ்ܮଷ ݇ଵ/ଶ for active scalars in homogeneous stratified flow. A priori tests 

using DNS data show remarkable promise in the ability of the proposed models to capture the 

exact turbulent diffusivities. 
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5.3 Suggestions for future research 

As with most DNS studies, a major limitation of the present study is the low Reynolds 

numbers achieved in simulations. The code that was used for this study is serial and thus 

simulations with 2563 grid points take about a week of clock time to run for simulating 3 eddy turn 

over times. Simulations should be conducted at much higher resolutions in order to achieve higher 

turbulent Reynolds numbers to further test the relationships and models that have been proposed 

here. Another avenue is to obtain DNS data at high turbulent Reynolds numbers for stratified and 

unstratified flows from other researchers to validate the proposed scalar diffusivity model. This 

option is desirable since it will allow for independent verification of the model proposed in this 

study. 

Another important missing ingredient in the flows studied in this work is the lack of mean 

shear in the flow field. Most natural turbulent flows are sustained by mean shear generated from 

proximity to boundaries or differential flow. The robustness of the proposed model should be 

tested with simulations that are forced by mean shear. Another important missing piece is the use 

of an experimental study to validate the proposed model. An experiment study on passive scalar 

mixing in a fully developed channel flow or in a mixing tank (stirred by rotation) would be 

provided for a useful practical comparison.  

As a final summary, it must be noted that the models proposed in this study require further 

(extensive) testing under higher Reynolds number flow conditions. If shown to be valid, they 

would be widely useful for quantifying turbulent mixing using field measurements of large scale 

quantities (i.e. LT and k) as well as serve as a simple and improved turbulence closure scheme.  
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