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A Multistage Representation of the Wiener
Filter Based on Orthogonal Projections
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Abstract—The Wiener filter is analyzed for stationary complex
Gaussian signals from an information-theoretic point of view. A
dual-port analysis of the Wiener filter leads to a decomposition
based on orthogonal projections and results in a new multistage
method for implementing the Wiener filter using a nested chain
of scalar Wiener filters. This new representation of the Wiener
filter provides the capability to perform an information-theoretic
analysis of previous, basis-dependent, reduced-rank Wiener fil-
ters. This analysis demonstrates that the recently introduced
cross-spectral metric is optimal in the sense that it maximizes
mutual information between the observed and desired processes.
A new reduced-rank Wiener filter is developed based on this new
structure which evolves a basis using successive projections of the
desired signal onto orthogonal, lower dimensional subspaces. The
performance is evaluated using a comparative computer analysis
model and it is demonstrated that the low-complexity multistage
reduced-rank Wiener filter is capable of outperforming the more
complex eigendecomposition-based methods.

Index Terms—Adaptive filtering, mutual information, orthog-
onal projections, rank reduction, Wiener filtering.

I. INTRODUCTION

T HIS paper is concerned with the discrete-time Wiener
filter. Here the desired signal, also termed a reference

signal, is assumed to be a scalar process and the observed
signal is assumed to be a vector process. By contrast, a
scalar Wiener filter is described by a desired signal and an
observed signal which are both scalar processes. The so-called
matrix Wiener filter, which is not addressed in this paper, is
characterized by both a desired signal and an observed signal
which are vector processes.

A new approach to Wiener filtering is presented and ana-
lyzed in this paper. The process observed by the Wiener filter
is first decomposed by a sequence of orthogonal projections.
This decomposition has the form of an analysis filterbank,
whose output is shown to be a process which is characterized
by a tridiagonal covariance matrix. The corresponding error-
synthesis filterbank is realized by means of a nested chain of
scalar Wiener filters. These Wiener filters can be interpreted as
well to be a Gram–Schmidt orthogonalization which results in
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an error sequence for the successive stages of the decomposed
Wiener filter. This new multistage filter structure achieves the
identical minimum mean-square error that is obtained by the
original multidimensional Wiener filter.

The advantages realized by this new multistage Wiener
filter are due to the decomposition being designed from a
point of view in which the Wiener filter is treated as a dual-
port problem. The multistage decomposition of the Wiener
filter in the space spanned by the observed-data covariance
matrix utilizes all of the information available to determine a
“best” basis representation of the Wiener filter. Since all full-
rank decompositions of the space spanned by the observed-
data covariance matrix are simply different representations
of the same Wiener filter, the term “best” is used here to
describe that basis representation which comes the closest
to most compactly representing the estimation energy in the
lowest rank subspacewithoutknowledge of the observed-data
covariance matrix inverse. Clearly, if the covariance matrix
inverse were known then also the Wiener filter would be
known, and the rank-one subspace spanned by the Wiener
filter would itself be the optimal basis vector.

Previous decompositions of the space spanned by the
observed-data covariance matrix only consider the Wiener
filtering problem from the perspective of a single-port problem.
In other words, the decompositions considered were based on
Gram–Schmidt, Householder, Jacobi, or principal-components
analyses of the observed-data covariance matrix (for example,
see [1]–[5] and the references contained therein). Treating the
Wiener filter as a dual-port problem, however, seems more
logical since the true problem at hand is not determining the
best representation of the observed data alone, but instead
finding the best representation of the useful portion of the
observed data in the task of estimating one scalar signal from
a vector observed-data process. Here, the projection of the
desired signal onto the space spanned by the columns of the
observed-data covariance matrix is utilized to determine the
basis set. This basis set is generated in a stage-wise manner
which maximizes the projected estimation energy in each
orthogonal coordinate.

An interesting decomposition which at first appears sim-
ilar in form to that presented in this paper is developed
for constrained adaptive Wiener filters in [6] and [7]. This
decomposition also treats the constrained Wiener filter as a
single-port problem and does not use the constraint (in place
of the desired signal, as detailed in Appendix B) in basis
determination; in fact, the technique proposed in [6] and [7]
removes the constraint itself from the adaptive portion of
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the processor. In addition, this method decomposes a rank-
reduction matrix as opposed to the Wiener filter itself and
results in a modular structure which is not a nested recursion.
Thus while the modular structure in [6] and [7] is very
interesting in its own right, neither the decomposition nor the
recursion technique are similar to the new multistage Wiener
filter presented here.

Reduced-rank Wiener filtering is concerned with the com-
pression, or reduction in dimensionality, of the observed data
prior to Wiener filtering. The purpose of rank reduction is
to obtain a minimum mean-square error which is as close as
possible to that obtainable if all of the observed data were
available to linearly estimate the desired signal. The new
multistage Wiener filter structure leads to a natural means to
obtain rank reduction.

The performance of such a reduced-rank multistage Wiener
filter is compared by computer analysis to the well-known
principal components and the lesser known cross-spectral
methods of rank reduction. This analysis demonstrates that
the new method of rank reduction, using quite simply a
truncated version of the above-described nested chain of scalar
Wiener filters, is capable of outperforming these previous
approaches. Also an information-theoretic analysis of entropy
and mutual information is now possible due to this new
structure, which provides insight into these results. In partic-
ular, it is demonstrated that the cross-spectral method of rank
reduction maximizes the mutual information as a function of
rank relative to the eigenvector basis. The new reduced-rank
multistage Wiener filter does not utilize eigendecomposition
or eigenvector-pruning techniques.

Section II provides a brief description of the Wiener filter
in terms of the framework to be used in the remainder of this
paper. An introduction and analysis of this new representation
of the Wiener filter is presented in Section III. A summary of
previous reduced-rank Wiener filtering techniques is provided
in Section IV, where the reduced-rank multistage Wiener filter
is presented and its performance is evaluated via a comparative
computer analysis. Concluding remarks are given in Section V.

II. PRELIMINARIES

The classical Wiener filtering problem is depicted in Fig. 1,
where there is a desired scalar signal , an -dimensional
observed-data vector , and an -dimensional Wiener
filter . The error signal is denoted by . The Wiener
filter requires that the signals be modeled as wide-sense-
stationary random processes, and the information-theoretic
analysis to be considered makes as well the complex Gaussian
assumption. Thus in both cases there is no loss in generality
to assume that all signals are zero-mean, jointly stationary,
complex Gaussian random processes. The covariance matrix
of the input vector process is given by

(1)

where denotes the expected-value operator and
is the complex conjugate transpose operator. Similarly, the

Fig. 1. The classical Wiener filter.

variance of the desired process is

(2)

The complex cross-correlation vector between the processes
and is given by

(3)

where is the complex conjugate operator. The optimal
linear filter, which minimizes the mean-square error between
the desired signal and its estimate,

(4)

is the classical Wiener filter

(5)

for complex stationary processes. The resulting error is

(6)

The minimum mean-square error (MMSE) is

(7)

where the squared canonical correlation [8]–[11] is

(8)

As will be seen in Section III-D, the squared canonical
correlation provides a measure of the information present in
the observed vector random process that is used to
estimate the scalar random process .

Because of the assumed Gaussianity, the self-information or
entropy of the signal process is given by (see [12]–[15])

(9)

and the entropy of the vector input process is

(10)

where denotes the determinant operator. Next define an
augmented vector by

(11)

Then, using (1)–(3) and (11), the covariance matrix associated
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with the vector process is given by

(12)

so that, by (10), the joint entropy of the random processes
and is given by

(13)

Thus by Shannon’s chain rule the conditional entropy
, or what Shannon called the equivocation of

given , is given by

(14)

Now the mutual information is the relative en-
tropy between the joint distribution and the product distribu-
tion. That is, represents the reduction in uncertainty
of due to the knowledge of . This mutual infor-
mation is given by

(15)

By definition the Wiener filter minimizes the mean-square
error between the desired process and the filtered observed
process. Therefore, the operation of this filter must determine
that portion of the observed process which contains the most
information about the desired process. Intuitively for Gaussian
processes one expects that a minimization of the mean-square
error and a maximization of the mutual information are equiv-
alent. This insight is mathematically realized through the
multistage representation of the Wiener filter presented next
in this paper.

III. T HE MULTISTAGE WIENER FILTER

The analysis developed herein emphasizes the standard, un-
constrained Wiener filter. It is noted that an identical approach
also solves the problem of quadratic minimization with linear
constraints [16] and the joint-process estimation problem, both
of which can be interpreted as a constrained Wiener filter.
The partitioned solution presented in [16] decomposes the
constraint in such a manner that the resulting Wiener filter
is unconstrained, as is further explored in the example given
in Section IV-C and Appendix B. It is further noted that
other constraints also may be decomposed similarly [17]. Thus
the constrained Wiener filter can be represented as an uncon-
strained Wiener filter with a prefiltering operation determined
by the constraint. It is seen next that the unconstrained Wiener
filter can also be represented as a nested chain of constrained
Wiener filters.

This new representation of the Wiener filter is achieved by
a multistage decomposition. This decomposition forms two
subspaces at each stage; one in the direction of the cross-
correlation vector at the previous stage and one in the subspace
orthogonal to this direction. Then the data orthogonal to the
cross-correlation vector is decomposed again in the same
manner, stage by stage. This process reduces the dimension of
the data vector at each stage. Thus a new coordinate system

for Wiener filtering is determined via a pyramid-like structured
decomposition which serves as an analysis filterbank. This
decomposition decorrelates the observed vector process at lags
greater than one, resulting in a tridiagonal covariance matrix
associated with the transformed vector process.

A nested chain of scalar Wiener filters form an error-
synthesis filterbank, which operates on the output of the
analysis filterbank to yield an error process with the same
MMSE as the standard multidimensional Wiener filter. It is
demonstrated also that the error-synthesis filterbank can be
interpreted as an implementation of a Gram–Schmidt orthog-
onalization process.

A. An Equivalent Wiener Filtering Model

To obtain this new multistage decomposition, note that
the preprocessing of the observation data by a full-rank,
nonsingular, linear operator prior to Wiener filtering does not
modify the MMSE. This fact is demonstrated in Appendix A.
Now consider the particular nonsingular operatorwith the
structure

(16)

where is the normalized cross-correlation vector, a unit
vector in the direction of , given by

(17)

and is an operator which spans the nullspace of
; i.e., is the blocking matrix which annihilates those

signal components in the direction of the vector [18],
[19] such that .

Two fast algorithms for obtaining such a unitary matrix
are described in [20] which use either the singular-

value decomposition or the QR decomposition. For a
which is nonsingular, but not unitary, a new, very efficient,
implementation of the blocking matrix is presented in
Appendix A.

Let the new transformed data vector, formed byoperat-
ing on the observed-data vector, be given by

(18)

The transform-domain Wiener filter with the preprocessor
is shown in Fig. 2. The Wiener filter for the transformed
process is computed now to have the form

(19)

Next, the covariance matrix , its inverse , and the
cross-correlation vector are expressed as

(20)

(21)

(22)
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Fig. 2. The transform-domain Wiener filter.

where denotes the standard matrix transpose operator and,
by (16)–(18), the scalar in (22) is obtained as

(23)

The variance of in (18) is calculated to be

(24)

The covariance matrix is given by

(25)

The cross-correlation vector is computed to be

(26)

and the matrix in (21) is determined by the matrix
inversion lemma for partitioned matrices [16]. In terms of the
joint-process covariance matrix in (12), the transformations
described above in (20)–(26) may be represented by

...

(27)

where

(28)

The structure of the matrix in (20), its inverse in
(21), and the diagrams in Figs. 1 and 2 suggest that a new

-dimensional “weight” vector be defined by

(29)

which is the Wiener filter for estimating the scalar from
the vector . Then a new error , given by

(30)

can be defined for the new Wiener filter which is similar
in form to the Wiener filter depicted in Fig. 1. The variance
of the error in (30) is computed readily to be

(31)

Since is the covariance of the scalar process , the
identical MMSE, , is achieved by the filtering diagram in

Fig. 3. The first stage of the decomposition.

Fig. 4. The first chain in the nested recursion.

Fig. 3, where the new scalar Wiener filter is defined by

(32)

and where by (18), (22), (23), and (30) the identity of the
correlation between the scalar processes and with

is shown by

(33)

It is evident by (19)–(21) that the filtering diagrams in Figs.
2 and 3 are identical since

(34)

Note that the scalar is also the MMSE of the nested
lower dimensional Wiener filter with a new scalar signal
and a new observed signal vector . The first stage of
this decomposition partitions the-dimensional Wiener filter
into a scalar Wiener filter and an -dimensional vector
Wiener filter, where the reduced-dimension vector filter spans
a space which is orthogonal to the space spanned by the
scalar filter. Also note that the nested filtering structure in
Fig. 3, which uses to estimate from , may be
interpreted as a constrained Wiener filter which minimizes the
error subject to the constraint that the desired signal

has the gain and phase provided by the filter.

B. A Multistage Representation of the Wiener Filter

The first stage decomposition results in the structure de-
picted in Fig. 3. The new -dimensional vector Wiener
filter operates on the transformed -dimensional data
vector to estimate the new scalar signal , as shown
in Fig. 4. This represents a Wiener filter which is identical
in form to the original -dimensional Wiener filter, except
that it is one dimension smaller. Thus a recursion of scalar
Wiener filters can be derived by following the outline given
in Section III-A until the dimension of both the data and the
corresponding Wiener filter is reduced to one at level
in the tree. The error signal at each stage serves as the scalar
observed process for the Wiener filter at the next stage. At
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each stage, , the normalized cross-correlation
vector is computed in the same manner as (17) to be

(35)

The blocking matrix, , may be computed using
the method detailed in Appendix A, that presented in [20], or
any other method which results in a valid. The covariance
matrix is computed corresponding to (25) as follows:

(36)

and the cross-correlation vector is found recursively in
the manner of (26) to be

(37)

The scalar signal and the -dimensional
observed-data vector at the th stage are found in
accordance with (18) as follows:

(38)

(39)

The error signals at each stage, in analogy to (30), are given by

(40)

where it is notationally convenient to define the scalar output
of the last signal blocking matrix in the chain to
be the th element of both the sequences and as
follows:

(41)

The variances associated with the signals ,
, are defined by

(42)

where . The scalar cross-correlations are
computed in the same manner as (33) to be

(43)

where, using (41), the last term of the recursion in (43) is
provided by the identity

(44)

The scalar Wiener filters are found from the Wiener–Hopf
equation to be

(45)

where, for , the MMSE recursion yields

(46)

TABLE I
RECURSION EQUATIONS

similar to the results of (29), (31), and (32). In accordance
with (41), the MMSE of the last stage is given by .

The complete series of required recursion relationships are
listed in Table I. An example of this decomposition for
is provided in Fig. 5. Note that this new multistage Wiener
filter does not require an estimate of the covariance matrix
or its inverse when the statistics are unknown since the only
requirements are for estimates of the cross-correlation vectors
and scalar correlations, which can be calculated directly from
the data.

C. Analysis of the Multistage Wiener Filter

This new Wiener filter structure is naturally partitioned
into an analysis filterbank and a synthesis filterbank. The
analysis filterbank is pyramidal, and the resulting tree structure
successively refines the signal in terms of , its
component in the direction of the cross-correlation vector,
and , its components in the orthogonal subspace. The
subspaces formed at leveland level in the tree satisfy
the direct-sum relationship

(47)

where denotes the linear subspace spanned by the columns
of the covariance matrix and represents a direct
sum.

The operation of the analysis filterbanks are combined next
into one lossless transfer matrix , which is given
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Fig. 5. The nested chain of scalar Wiener filters forN = 4.

Fig. 6. The Gram–Schmidt interpretation of the synthesis filterbank.

as follows:

...

(48)

where the dimension of the matrix is
and the vector is of dimension . The matrix filter

operates on the observed-data vector to produce an
output vector , defined by

(49)

where . The definition of the matrix filters
and guarantees that decorrelates all lags in the

process greater than one. This means that the covariance
matrix

(50)

is tridiagonal.
The synthesis filterbank is composed of nested scalar

Wiener filters, where the input to each weight is the error
signal from the previous stage. This filtering operation may be
interpreted also as an implementation of the Gram–Schmidt
algorithm, as shown in Fig. 6, which operates on the sequen-
tially correlated random vector , defined in (49), to form
the uncorrelated error vector where

(51)

and the last element in this recursion is given by (41).
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Fig. 7. The combined multiresolution Gram–Schmidt interpretation of the Wiener filter.

The equivalent Gram–Schmidt matrix may be computed by
the backward recursion relations in Table I. Explicitly, the

Gram–Schmidt operator is an upper-triangular
matrix given by (52) at the bottom of this page. Finally, the

matrix is given by

(53)

where the -dimensional Wiener filter , defined in (19),
is now given equivalently by

(54)

Define the -dimensional vector to be

(55)

Thus the complete Gram–Schmidt orthogonalization, which
results in the error signal vector

(56)

is realized with weights, as opposed to the
weights which are normally required to obtain the -
dimensional error process from an -dimensional

process such as . Fig. 7 depicts the combined multistage
decomposition and Gram–Schmidt orthogonalization interpre-
tation of the Wiener filter.

The error covariance matrix , which is associated with
the error process in (51), is a diagonal matrix given by

(57)

where the operator , with a vector operand, represents
a diagonal matrix whose only nonzero elements are along the
main diagonal and provided by the corresponding element
of the operand. Similarly, the error covariance matrix
associated with the error process in (56) is also a diagonal
matrix given by

(58)

The minimum mean-square error of theth stage is explicitly
computed in Table I.

One final interpretation of the multistage Wiener filter is
realized through an examination of the analysis and error-
synthesis filterbanks. Define the trans-
formations

(59)

...
...

...

(52)
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where the identity matrix of rank is denoted and the
vectors and are detailed in Table I for
. The matrix is formed by extending the definition of

matrix in (48) as follows:

(60)

Then the -dimensional vector in (55) is given by

(61)

where the augmented vector is defined in (11). The
tridiagonal covariance matrix is given by

(62)

where is defined in (12). Note that the solution in (61) and
(62) can be achieved by (59) using the method described in
Appendix A or by a slight modification of the Householder
tridiagonalization technique [21]–[24]. That is to say, that the
decomposition presented here as a component of this new
multistage Wiener filter represents a generalization of the
unitary Householder tridiagonalization method for arbitrary
nonsingular transformations and . An example of the
tridiagonal decomposition of the matrix is provided by
the following progression for as shown in (63) at the
bottom of this page.

Next, define the matrices by

(64)

for . Let the matrices ,
for , be defined as follows:

(65)

Then the error-synthesis filterbank can be expressed in the
form

(66)

The error-synthesis filterbank is now seen to provide planar
rotations, similar to the Jacobi or Givens transforms [5], [21],
[25]. Note that the matrices which form the multistage
decomposition may be chosen to be unitary or nonunitary
as a design choice and that the matriceswhich form the
error-synthesis filterbank are unimodular.

Therefore, for , the pyramid decomposition and
nested scalar Wiener filters are represented in the form de-
picted in Fig. 8. Here the multistage Wiener filter demonstrates
a relationship to planar reflections and rotations. Note that
the coarsest estimate of the diagonal covariance matrixis
given by

(67)

where the first row of is the coarsest estimate of
the Wiener filter and finer grain estimates of both and the
Wiener filter are obtained as additional stages are added.

D. Entropy and Mutual Information

The expressions for entropy and mutual information are
now examined in terms of the multistage representation of the
Wiener filter. First note from (1), (50), and (57), that matrix

is similar to the matrix . The multiplicative property
of determinants, which states that the determinant of a product

(63)
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Fig. 8. The plane rotation interpretation of the Wiener filter forN = 4.

of two matrices is equal to the product of their determinants,
implies

(68)

Similarly, from (12), (58), and (62), it is found that

(69)

The entropy of the desired process is unchanged from
the expression in (9). The entropy of the observed process,

in (10), is now written in the form

(70)

Similarly, the joint entropy, in (13) becomes

(71)

Thus the conditional entropy, in (14), is expressed
by

(72)

Finally, the mutual information, in (15), for a joint
Gaussian process is computed to be

(73)

From the last expression in (73) the intuitive result, that
minimizing the mean-square error and maximizing the mutual

information are equivalent, can now be established. Expressing
the MMSE in terms of the canonical correlation in (8) results
finally in

(74)

from which it is also evident for joint Gaussian processes
that maximizing the canonical correlation is equivalent to a
maximization of the mutual information.

IV. REDUCED-RANK WIENER FILTERING

Rank reduction is concerned with finding a low-rank sub-
space, say of rank , of the space spanned by the
columns of the rank observed-data covariance matrix. The
rank covariance matrix whose columns span this subspace
has the same dimension as the original covariance matrix. The

-dimensional Wiener filter which is calculated using the rank
covariance matrix estimate is termed a reduced-rank Wiener

filter.
An equivalent method of implementing a reduced-rank

Wiener filter is obtained by prefiltering the observed data with
an matrix whose columns are the basis vectors of the
reduced-rank subspace. The observed data is then compressed
to an -dimensional vector, the corresponding covariance
matrix is , and both the transformed cross-correlation
vector and the Wiener filter are of dimension. This method
is also termed reduced-rank or reduced-dimension Wiener
filtering.

Another rank-reduction technique utilizes rank-shaping and
shrinkage methods. The data-adaptive shrinkage method pre-
sented in [26] results in a nonlinear filter that uses mode-
dependent, nonlinear companders to estimate something akin
to the Wiener filter gain. This technique, which is not discussed
further in this paper, represents an extension of a linear
estimator.

A. Previous Approaches to Rank Reduction

The first approaches to the rank-reduction problem were
motivated by the array processing application and were some-
what ad hoc [27], [28]. More statistical approaches to this
problem were introduced next which were based on the
principal-components analysis of the covariance matrix devel-
oped originally by Hotelling and Eckart [29], [30].

A new method to achieve a reduction in the number of
degrees of freedom, or filter order, in a Wiener filter is
introduced in [31] and [32]. This method utilizes a measure,
termed the cross-spectral metric, to determine the smallest
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number of degrees of freedom to linearly estimate with little
loss a scalar random process from a set ofcorrelated
complex random processes. To accomplish this a basis set
is selected for the space that is spanned by the columns of
the observed-data covariance matrix. What is called the cross-
spectral information measure, is used then to rank the relative
contributions of these basis vectors in order to minimize the
mean-square error. The dimension of the data vector, and
therefore the associated Wiener filter, can be reduced optimally
to a dimension by discarding the projection of the
data upon those basis vectors whose contributions are the
smallest. This cross-spectral metric is recognized in [31] to be
a vector which has components that are the weighted squared
magnitudes of the direction cosines between each basis vector
and the cross-correlation vector for the two aforementioned
correlated random processes.

The principal-components technique achieves rank reduc-
tion to the effective rank of the signal subspace, but is limited
in its ability to further reduce the data dimension. On the
other hand, the cross-spectral metric provides a capability for
reducing the data rank below this dimension without adversely
affecting the mean-square error performance. This property
represents a form ofdata compression. When the eigenvectors
of the observed-data covariance matrix are utilized as a basis,
the counter-intuitive result that the cross-spectral metric forms
an upper bound on the performance obtained by the principal-
components method of rank reduction is well established, e.g.,
see [31], [32], and Appendix B. Also it is proved that the
eigenvectors selected, determined by the ranking provided by
the cross-spectral metric, yield the lowest MMSE out of all
other possible combinations of eigenvectors.

It is now demonstrated that the cross-spectral metric is the
optimal eigen-based subspace selection rule for Gaussian sig-
nals in an information-theoretic sense. The covariance
matrix of the data observed by the Wiener filter is expressed by

(75)

where is the matrix of eigenvectors and is
the diagonal matrix of corresponding eigenvalues . The
expression for the full-rank MMSE in (7) may be expressed
in terms of the eigendecomposition in (75) as follows:

(76)

The cross-spectral metric chooses the eigenvectors
which correspond with the largest values of the term

, from which it is evident that the cross-
spectral metric is the optimal selection of eigenvectors
in an MMSE sense for reduced-rank Wiener filtering and
directly minimizes the mean-square error as a function of the
rank , for . The expression for the canonical
correlation in (8) similarly reduces to

(77)

and it is also seen that the cross-spectral metric maximizes the
canonical correlation as a function of the rank. From the
expression for mutual information in (74) it is also concluded
that the cross-spectral metric maximizes mutual informa-
tion as a function of rank. These properties show that the
cross-spectral metric provides the capability for optimum
compression, defined to be a reduction in the rank of the
covariance matrix below the dimension of the signal subspace
eigenstructure without incurring a large penalty in MMSE
performance. The reduced-rank Wiener filter using the cross-
spectral metric is therefore more robust in the sense that
an error in underestimating the dimension of the underlying
signal eigenstructure does not cause as great of a loss in
performance as that which is experienced by the principal-
components method. Note that the above claims of optimality
are all relative to the eigenvector basis.

B. Rank Reduction Using the Multistage
Representation of the Wiener Filter

The development and analysis of a reduced-rank or reduced-
dimension Wiener filter which is based on the new multistage
Wiener filter utilizes the operator interpretation of this decom-
position. The matrix in (48) provides the complete
decomposition of the observed-data vector. A reasonable and
straightforward method of rank reduction is accomplished by
discarding the last stages of this decomposition. The
rank-reducing transformation is then given by the
matrix , defined as follows:

... (78)

The resulting -dimensional output vector is processed by a
nested chain of scalar Wiener filters, in a manner which
is a direct truncation of the filter structure shown in Fig.
5. Thus rank reduction is accomplished by simply stopping
the multistage decomposition at the th stage. Note that
no eigendecomposition is involved in this process and that
a different basis is naturally generated by the multistage
decomposition and the nested scalar Wiener filters.

This tridiagonalization of the covariance matrix of a sta-
tionary process tends to group most of the significant energy
(both autocorrelation terms and cross-correlation terms)
in the first few tridiagonal terms. That is to say, the tridiagonal
covariance matrix can be divided into blocks along the
main diagonal, where the upper-left and lower-right elements
of one block are also members of the previous and following
blocks that compose the diagonal, respectively. The multistage
decomposition then strongly weights the most highly corre-
lated terms and places them in the first few blocks; that is,
the information which is most useful for estimating the signal

from .
A final justification for the reduced-rank multistage Wiener

filter is that the covariance matrix of the processtends to
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become white as the filter structure increases in stages. This
is particularly true if the data is overmodeled, as is often the
case in many applications such as sensor array processing.
At the point where this covariance matrix is approximately
white, the optimal Wiener filter is obtained by truncation of
the remaining terms due to the fact that goes to zero. Thus
the optimal solution is obtained as the data becomes white and
the decomposition itself whitens the data via successive stages.

It is now emphasized that this new method of reduced-
rank Wiener filtering has the capability to outperform the
eigendecomposition-based methods. This is due to the fact that
a natural basis is generated by the multistage decomposition.
Assume for the moment that the Wiener filter is collinear with
the cross-correlation vector . Then the rank-one Wiener
filter, which results from the first stage of the decomposi-
tion, maximizes the mutual information, and the remaining
portion of the tree-structured analysis filterbank contributes
nothing to the minimization of the mean-square error. The
smallest subspace of the space spanned by the eigenvectors
of the covariance matrix which contains this
same vector may be composed of many eigenvectors. Thus
to obtain the optimal solution under these conditions, any
eigendecomposition-based method of rank reduction would
require a larger rank than the multistage method. Note that this
does not imply that the reduced-rank multistage Wiener filter
is optimal; it is, however, a very-low-complexity realization
which demonstrates excellent performance as shown next.

C. Example

A computer analysis is now made to demonstrate the
performance of the above new reduced-rank Wiener filter and
to compare its performance with the principal-components
and cross-spectral techniques. The well-known problem of
interference mitigation using a narrowband and minimum-
variance distortionless response (MVDR) antenna array is
considered for this example. The MVDR constrained opti-
mization problem is to minimize the output power of the
array subject to a constraint that any signal coming from a
particular and predefined direction is passed without distortion.
This choice demonstrates the applicability of the new Wiener
filter structure to the constrained optimization problem. The
generalized sidelobe canceler (GSC) form of the constrained
processor, defined, for example in [16]–[19] and Appendix B,
is now utilized.

The GSC MVDR array processor has the partitioned struc-
ture shown in Fig. 9 and derived in Appendix B. There
are sensor elements in the array, and the -
dimensional data vector which serves as the antenna input to
the processor is denoted by . The MVDR linear quadratic
constraint is implemented by the -dimensional steering
vector in the upper branch of the GSC. The
matrix in the lower branch is a blocking matrix for those
signals which impinge the array from the direction specified
by . The output of the upper branch provides for the scalar
desired signal of the Wiener filter, and the output of the
lower branch similarly provides the observed-data vector

. As noted in Section III, the constrained Wiener filter is

Fig. 9. The GSC MVDR constrained Wiener filter.

TABLE II
SIGNAL GEOMETRY

reduced to an unconstrained Wiener filter by the matrix filters
and . The structure which follows these matrix filters in

Fig. 9 is identical in form to the original Wiener filter depicted
in Fig. 1. Thus the methods detailed in Sections III and IV can
be used directly to implement the equivalent multistage Wiener
filter and the reduced-rank Wiener filters. Note, in particular,
that the very efficient blocking matrix developed in Appendix
A can be employed both to implement the matrixin Fig.
9 and the matrices at each stage of the multistage Wiener
filter.

For the purpose of this analysis, the sensor array is assumed
to be linear, equispaced at a half-wavelength, and composed
of sensor elements. The dimension of the Wiener
filter is . There are six signals which impinge the array,
representing five undesired sources of interference or jammers
and one desired signal, as detailed in Table II. All signals
are modeled as narrowband, white, complex Gaussian random
processes. The theoretical covariance matrix is computed and
the optimal Wiener solution for the scenario, described in Table
II, is depicted in Fig. 10 by the array power gain as a function
of angle of arrival. All jammers are attenuated, and the desired
signal receives a unity gain.

Next the MMSE is calculated as a function of rank for the
multistage Wiener filter, the cross-spectral metric Wiener filter
and the principal-components Wiener filter using the theoret-
ical covariance matrix. As shown in Fig. 11 the principal-
components Wiener filter obtains the optimal solution only
after the number of significant eigenvectors, retained in the
covariance estimate, equals the number of jammers. For this
example the number of jammers is five, which corresponds
to the effective rank of the signal subspace for that co-
variance matrix. The principal-components method degrades
in performance rapidly if fewer than five eigenvectors are
retained. The cross-spectral metric Wiener filter also obtains
the same optimal solution with five weights. However, its
MMSE performance is much better as a function of rank,
achieving values within a fraction of a decibel of the optimum
with just three or four weights. The new multistage Wiener
filter outperforms both the cross-spectral and the principal-
components Wiener filters. This new reduced-rank filtering
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Fig. 10. The gain pattern of the optimal 16-sensor GSC.

Fig. 11. The MMSE as a function of rank for the three reduced-rank GSC sensor arrays.

structure obtains the optimal solution with four weights and
performs better in terms of the MMSE performance for every
rank. The computational complexity of the Wiener filter is
also greatly reduced for the multistage Wiener filter using the
method found in Appendix A.

The mutual information is calculated for these three pro-
cessors as a function of rank. The mutual information for the
reduced-rank processors is given by

(79)

where is the MMSE of the reduced-rank processor and
may take a different value for each rank-reduction technique.
The results of this comparison are presented in Fig. 12. The
curves for the mutual information depict the same comparative
results as noted above for the MMSE. Observe that the
mutual information curves are scaled and inverted replicas of
the MMSE curves, which is what might be expected since,
as established in Section III-D for the assumed Gaussian
processes, the maximization of the mutual information and
the minimization of the mean-square error are equivalent.
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Fig. 12. The mutual information as a function of rank for the three reduced-rank GSC sensor arrays.

Fig. 13. The magnitude of the elements of the tridiagonal covariance matrix.

Finally, the magnitude of the terms in the theoretical co-
variance matrix, after being decomposed to a tridiagonal
matrix by the multistage decomposition, is depicted in Fig.
13 with a Matlab mesh plot. Here it seen that the number of
significant terms in the covariance matrix decay
quickly and are not discernible after the sixth row and column
entry. The fact that the equivalent cross-spectral energy in the
basis generated by the multistage decomposition is compactly
represented by this new structure is reflected by the fact that
the new reduced-rank processor outperforms the cross-spectral
metric using an eigenvector basis.

V. CONCLUSIONS

A new Wiener filter structure is derived which uses a
multistage decomposition. The properties of this new version
of a Wiener filter are analyzed from several points of view.
In particular, it is demonstrated that the unconstrained Wiener
filter can always be constructed via a chain of constrained
Wiener filters. The relationship of the Wiener filter with the
properties of entropy, mutual information, and canonical corre-
lation are established. Also previous reduced-rank Wiener filter
algorithms are analyzed in terms of these properties. A new
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method for performing rank reduction based on the multistage
decomposition is derived. This new reduced-rank Wiener filter
is shown by example to be capable of outperforming the
eigendecomposition-based methods both in terms of MMSE
performance and computational complexity.

APPENDIX A
A LOW COMPLEXITY BLOCKING MATRIX

By weakening the unitary requirement for , an imple-
mentation of the blocking matrix is now found which
demonstrates a low computational complexity. The MMSE
is preserved when the nonunitary matrix is any arbitrary,
nonsingular matrix [19], [33]. To establish this fact,
recall that the MMSE for the filter in Fig. 1 is given by (7)

(A.1)

If the matrix in Fig. 2 is an arbitrary, nonsingular matrix,
then the covariance matrix is given by

(A.2)

and its inverse is given by

(A.3)

Similarly, the cross-correlation vector is given by

(A.4)

Thus the MMSE is computed to be

(A.5)

and it is evident that the MMSE is conserved by any invertible
transformation of the observed data.

The special case of interest occurs when the nonsingular
matrix is formed so that its first row is given by and
the remaining rows are linearly independent, composing
the matrix . The matrix must satisfy .
Then this operator is of the same form as detailed in
(16), the covariance matrix and its inverse retain the
structure described in (20) and (21), respectively, and the
cross-correlation vector is again in the form shown in
(22). Finally, the structure depicted in Fig. 3 is again obtained,
and it yields the identical MMSE as shown above.

The partitioning of the operator , given in (16) for
, is shown in Fig. 14. It is now desired to find an

diagonal matrix preprocessor
at each stage, with the properties that the
vector is replaced by a vector (to be defined) and that the

matrix is replaced by the following
multiplier-free difference matrix :

...
...

... (A.6)

Fig. 14. The matrix filter decomposition of the observed data.

Fig. 15. An equivalent decomposition of the observed data.

as shown in Fig. 15. In order for the operation of the structures
in Figs. 14 and 15 to be equivalent in terms of the MMSE, it
is clear that the following three conditions must hold:

1) .
2) .
3) .

Let the complex cross-correlation vector be composed of
elements , for , so that

(A.7)

Then a solution, which satisfies Conditions 2) and 3), is the
diagonal matrix given by

(A.8)

With (A.8) and Condition 1), the vector must have the form

(A.9)

Finally, the form of the matrices are now given by

(A.10)

Therefore, it is observed that the new filtering operation in
Fig. 15 may now be implemented with the filtering structure
in Fig. 14 where a new signal-blocking matrix , defined by

...
...

...

(A.11)

is used to replace the matrix filter in Fig. 14. Fig. 16 depicts
this new structure, where the vector is again given by (35)
and the matrix in (A.11) is found directly from
using (A.6) and (A.8). All three previously stated conditions
for equivalence are thus satisfied.
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Fig. 16. Final equivalent representation of the decomposition.

APPENDIX B
THE CONSTRAINED WIENER FILTER

Many applications of the Wiener filter utilize a constrained
optimization in situations where a desired signal may not
be explicitly available. In this Appendix the linearly con-
strained, minimum-variance, distortionless response (MVDR)
Wiener filter is considered to describe the problem of quadratic
mininization with linear constraints and rank reduction for
constrained Wiener filters.

The MVDR constrained optimization problem is expressed
as follows:

subject to (B.1)

where for convenience in the derivation to follow and
are defined to be -dimensional vectors and is the

dimensional covariance matrix associated
with the -dimensional observed-data vector .
Here the vector usually represents a temporal, spatial, or
space–time frequency response of interest which is constrained
to be undisturbed by the minimization procedure. The solution
to the constrained optimization in (B.1) may be found by the
method of Lagrange multipliers and is given by

(B.2)

The resulting MMSE is provided by

(B.3)

Reduced-rank Wiener filtering using the direct-form con-
strained Wiener filter in (B.2) is possible by performing an
eigendecomposition of the matrix

(B.4)

where the matrix is composed of the eigenvectors
and the diagonal matrix is composed of the

eigenvalues . The principal-components method of rank
reduction would retain only those eigenvectors which
correspond with the largest eigenvalues , where

.
In a similar manner, the method of rank reduction which

utilizes the cross-spectral metric may be implemented with the
direct-form constrained Wiener filter. Note that minimizing the
mean-square error is equivalent to maximizing the inverse of
the mean-square error. In the case of the constrained Wiener
filter it may be shown [17] that the inverse of the MMSE is
proportional with the output signal-to-interference plus noise
ratio (SINR). Hence minimizing the mean-square error as a

function of rank is equivalent to maximizing the output SINR
as a function of rank, or maximizing the expression

(B.5)

as a function of rank. Clearly, choosing the eigen-
vectors corresponding with the largest values of the
direct-form cross-spectral metric

(B.6)

both maximizes the output SINR and minimizes the mean-
square error as a function of rank.

The form of the constrained Wiener filter in (B.2) may be
compared with the unconstrained Wiener filter in (5). The
cross-correlation vector in (5) is replaced by the term,
where the scalar . The multistage Wiener
filter could be derived directly using this relationship, but an
interpretation of the constrained Wiener filter known as the
GSC [16], [18], [19] provides additional insight.

To derive the GSC form of the constrained Wiener filter it
is convenient to redefine the constraint vectorto be

(B.7)

and define the nonsingular matrix as
follows:

(B.8)

where is a full row-rank matrix with nullspace
. The optimization in (B.1) may then be expressed by

subject to (B.9)

which has the equivalent solution for the -dimensional
Wiener filter in (B.2) expressed in the form

(B.10)

Next note that the product results in the compressed
-dimensional vector , where .

The partitioned, transformed, covariance matrix is
computed to have the form

(B.11)

which is identical to in (12) with being an
vector and being an matrix. The inverse of the
covariance matrix is computed as follows:

(B.12)
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Finally, using (B.11) and (B.12), the -dimension
constrained Wiener filter in (B.10) is expressed as

(B.13)

where is the -dimensional unconstrained Wiener filter

(B.14)

which yields the optimal estimate of from
the process as depicted in Fig. 9.

The GSC form of the constrained Wiener filter is now
in the standard form of the classical Wiener filter, and the
analysis of reduced-rank algorithms may be examined in the
context presented in Section IV. The multistage Wiener filter
implementation is identical from either the direct-form or
the GSC-form derivation; that is, the matrix filtersand
form the first stage of the decomposition and the rest follows
directly from the derivation in Section IV. However, the
eigendecomposition-based approaches require more attention.

For the eigendecomposition-based techniques, the matrix
is expressed in the form

(B.15)

where is the matrix of eigenvectors and is
the diagonal matrix of eigenvalues associated with
the matrix . The principal-components method
chooses the eigenvectors corresponding with the

largest eigenvalues of to implement rank reduction.
The GSC-form cross-spectral metric approach to reduced-
rank Wiener filtering chooses those eigenvectors which
correspond with the largest values of the cross-spectral
metric

(B.16)

Thus rank reduction for the GSC-form processor utilizes an
operator to compress the data vector and reduce

the dimension of the Wiener filter from to . Note
that reducing the dimension of in (B.14) from to is
equivalent to reducing the dimension ofin (B.2) and (B.10)
from to .

The performance of the principal-components and cross-
spectral metric Wiener filters for the direct form and the GSC
form are not in general the same. The eigenstructure of the
GSC-form processor is dependent on the choice ofand the
spaces spanned by the two sets of eigenvectors,and ,
are of different dimensions. The direct-form cross-spectral
metric in (B.6) and the GSC-form cross-spectral metric in
(B.16) both minimize the mean-square error and maximize the
output SINR as a function of rank, however their performance
is not the same as a function of rank. While this may seem
counter-intuitive at first, the direct-form cross-spectral metric
is the magnitude-squared value of a direction cosine between
the eigenvectors of the unconstrained covariance matrixand
the constraint vector, which determines the largest projection
of the useful estimation energy. The GSC-form cross-spectral
metric is the magnitude-squared value of a direction cosine

between the eigenvectors of the constrained covariance matrix
and the induced cross correlation with the constraint

vector, , which also determines the largest projection
of the useful estimation energy from a different perspective.
Therefore, while the solutions are identical for the full-rank
processors, the convergence as a function of rank for the direct-
form and GSC-form reduced-rank processors are generally
different. The cross-spectral metric is optimal in terms of
MMSE or SINR as a function of rank with respect to the
eigenvectors of the relevant covariance matrix for both the
direct-form and the GSC-form structures.
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