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Abstract—The Wiener filter is analyzed for stationary complex an error sequence for the successive stages of the decomposed
Gaussian signals from an information-theoretic point of view. A Wiener filter. This new multistage filter structure achieves the

dual-port analysis of the Wiener filter leads to a decomposition jqantical minimum mean-square error that is obtained by the
based on orthogonal projections and results in a new multistage . . - . . .
original multidimensional Wiener filter.

method for implementing the Wiener filter using a nested chain X : . )
of scalar Wiener filters. This new representation of the Wiener ~ The advantages realized by this new multistage Wiener
filter provides the capability to perform an information-theoretic ~ filter are due to the decomposition being designed from a
analysis of previous, basis-dependent, reduced-rank Wiener fil- point of view in which the Wiener filter is treated as a dual-
ters. This analysis demonstrates that the recently introduced o oroplem. The multistage decomposition of the Wiener
cross-spectral metric is optimal in the sense that it maximizes | ) .
mutual information between the observed and desired processes. filter in the space spanned by the observed-data covariance
A new reduced-rank Wiener filter is developed based on this new matrix utilizes all of the information available to determine a
structure which evolves a basis using successive projections of the“best” basis representation of the Wiener filter. Since all full-
oo b loed o 2 o ot ey 27k decomposiions of the space spanmied by the observc.
ﬁwodel and it is demonstrated gwat the IIoow-(:omplexi[?y multista)ge data Covarlancg matrl?( are simply dlfferent. representations
reduced-rank Wiener filter is capable of outperforming the more  Of the same Wiener filter, the term “best” is used here to
complex eigendecomposition-based methods. describe that basis representation which comes the closest
Index Terms—Adaptive filtering, mutual information, orthog- to most compactly representing the estimation energy in the
onal projections, rank reduction, Wiener filtering. lowest rank subspaagithoutknowledge of the observed-data
covariance matrix inverse. Clearly, if the covariance matrix
inverse were known then also the Wiener filter would be
. INTRODUCTION known, and the rank-one subspace spanned by the Wiener
HIS paper is concerned with the discrete-time Wiendiltter would itself be the optimal basis vector.
filter. Here the desired signal, also termed a referencePrevious decompositions of the space spanned by the
signal, is assumed to be a scalar process and the obsemeserved-data covariance matrix only consider the Wiener
signal is assumed to be a vector process. By contrastfileering problem from the perspective of a single-port problem.
scalar Wiener filter is described by a desired signal and &nother words, the decompositions considered were based on
observed signal which are both scalar processes. The so-catgdm-Schmidt, Householder, Jacobi, or principal-components
matrix Wiener filter, which is not addressed in this paper, inalyses of the observed-data covariance matrix (for example,
characterized by both a desired signal and an observed sigse# [1]-[5] and the references contained therein). Treating the
which are vector processes. Wiener filter as a dual-port problem, however, seems more
A new approach to Wiener filtering is presented and ankgical since the true problem at hand is not determining the
lyzed in this paper. The process observed by the Wiener filtegst representation of the observed data alone, but instead
is first decomposed by a sequence of orthogonal projectiofiading the best representation of the useful portion of the
This decomposition has the form of an analysis filterbankbserved data in the task of estimating one scalar signal from
whose output is shown to be a process which is characterizedector observed-data process. Here, the projection of the
by a tridiagonal covariance matrix. The corresponding erradesired signal onto the space spanned by the columns of the
synthesis filterbank is realized by means of a nested chainglserved-data covariance matrix is utilized to determine the
scalar Wiener filters. These Wiener filters can be interpretediggsis set. This basis set is generated in a stage-wise manner
well to be a Gram—Schmidt orthogonalization which results ighich maximizes the projected estimation energy in each
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the processor. In addition, this method decomposes a rank- d (k)
reduction matrix as opposed to the Wiener filter itself and 0
results in a modular structure which is not a nested recursion. k
Thus while the modular structure in [6] and [7] is very + 80(
interesting in its own right, neither the decomposition nor the -

recursion technique are similar to the new multistage Wiener —> wxo A

filter presented here. Xo(k) d (k)

Reduced-rank Wiener filtering is concerned with the com- °
pression, or reduction in dimensionality, of the observed ddtig- 1. The classical Wiener filter.
prior to Wiener filtering. The purpose of rank reduction is
to optain a minimum mean-square error which is as close @siiance of the desired procedg(k) is
possible to that obtainable if all of the observed data were
available to linearly estimate the desired signal. The new oy, = E[|do(E)]?]. (2
multistage Wiener filter structure leads to a natural means
obtain rank reduction.

The performance of such a reduced-rank multistage Wiel‘r@r(k)
fiIt_er _is compared by computer analysis to the well-known Toudo = Elzo(k)d5(k)] (3)
principal components and the lesser known cross-spectral
methods of rank reduction. This analysis demonstrates thgtere ()" is the complex conjugate operator. The optimal
the new method of rank reduction, using quite simply &near filter, which minimizes the mean-square error between
truncated version of the above-described nested chain of scater desired signady (k) and its estimate,

Wiener filters, is capable of outperforming these previous A "

approaches. Also an information-theoretic analysis of entropy do(k) = wy, Zo(k), (4)
and mutual information is now possible due to this neyw the classical Wiener filter

structure, which provides insight into these results. In partic- L

ular, it is demonstrated that the cross-spectral method of rank Way = Ry 720, (5)
reduction maximizes the mutual information as a function
rank relative to the eigenvector basis. The new reduced-r .
multistage Wiener filter does not utilize eigendecomposition go(k) = do(k) — do(k). (6)

or eigenvector-pruning technigues. - .
Section Il provides a brief description of the Wiener ﬁlte;rhe minimum mean-square error (MMSE) is

‘H%e complex cross-correlation vector between the processes
and zq(k) is given by

;?r(f?& complex stationary processes. The resulting error is

in terms of the framework to be used in the remainder of this o = Eleo(k)?]

paper. An introduction and analysis of this new representation —o2 —pH Rlp

of the Wiener filter is presented in Section Ill. A summary of (;0 ""0‘;0 wo oo

previous reduced-rank Wiener filtering technigues is provided =04, (1 = Kigay) @)

in Section IV, where the reduced-rank multistage Wiener filtgfare the squared canonical correlatigh,, [8]-[11] is
is presented and its performance is evaluated via a comparative oo

computer analysis. Concluding remarks are given in Section V. B2 = ‘rfodo R;Ol'racgdg (8)
zodo 0.30 .
As will be seen in Section IlI-D, the squared canonical
II. PRELIMINARIES correlation provides a measure of the information present in

The classical Wiener filtering problem is depicted in Fig. 1t’he. observed vector random process(k) that is used to
where there is a desired scalar sigdglk), an N-dimensional estimate the scalar random procesgk).
observed-data vectat,(k), and anN-dimensional Wiener — Because of the assumed Gaussianity, the self-information or
filter w,,. The error signal is denoted (k). The Wiener entropy of the signal process (%) is given by (see [12]-[15])
filter requires that the signals be modeled as wide-sense- 1
stationary random processes, and the information-theoretic H(dp) = 5 log (2meay,) ©)
analysis to be considered makes as well the complex Gaussiala

assumption. Thus in both cases there is no loss in generaﬁﬂl the entropy of the vector input procasgk) is

to assume that all signals are zero-mean, jointly stationary, H(zo) = 110g[(27rc)N||R,; I (10)
complex Gaussian random processes. The covariance matrix 2 !
of the input vector processo(k) is given by where||(-)|| denotes the determinant operator. Next define an
augmented vectok(k) by
Raco = E[ﬁo(/&)ﬁg(k)] (1) dol(k
(k) = { of )} (11)
where E[(-)] denotes the expected-value operator &nd’ 2o(k)

is the complex conjugate transpose operator. Similarly, tiiden, using (1)—(3) and (11), the covariance matrix associated
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with the vector procesg(k) is given by for Wiener filtering is determined via a pyramid-like structured
oH decomposition which serves as an analysis filterbank. This
R, = |:T0d0 ado } (12) decomposition decorrelates the observed vector process at lags
zodo o greater than one, resulting in a tridiagonal covariance matrix
so that, by (10), the joint entropy of the random processg§sociated with the transformed vector process.
do(k) andzo(k) is given by A nested chain of scalar Wiener filters form an error-
1 ] synthesis filterbank, which operates on the output of the
H(do, ®0) = 5109;[(27T6)A+1||Rn||]- (13) analysis filterbank to yield an error process with the same

. . MMSE as the standard multidimensional Wiener filter. It is
Thus by Shannon's chain rule the conditional entropyemonstrated also that the error-synthesis filterbank can be
H{(do|zo), or what Shannon called the equivocationddfk) interpreted as an implementation of a Gram—Schmidt orthog-
given zo(k), is given by onalization process.

H(do|zo) = H(do, x0) — H(zo). (14) A. An Equivalent Wiener Filtering Model

Now the mutual information/(do, o) is the relative en-  To obtain this new multistage decomposition, note that
tropy between the joint distribution and the product distribihe preprocessing of the observation data by a full-rank,
tion. That is,/(dy, o) represents the reduction in uncertaintyonsingular, linear operator prior to Wiener filtering does not
of do(k) due to the knowledge af,(k). This mutual infor- modify the MMSE. This fact is demonstrated in Appendix A.
mation is given by Now consider the particular nonsingular operdtarwith the

structure
I(do, .'l‘o) IH(do) — H(d0|.'l'0)
=H(do) + H(zo) — H(do, o). (15) B
T 7~ | (16)

By definition the Wiener filter minimizes the mean-square B,
error between the desired process and the filtered observed
process. Therefore, the operation of this filter must determine
that portion of the observed process which contains the magere b, is the normalized cross-correlation vector, a unit
information about the desired process. Intuitively for Gaussiactor in the direction ot 4,, given by

processes one expects that a minimization of the mean-square B — Tz dy (17)
error and a maximization of the mutual information are equiv- ' [pH 4
alent. This insight is mathematically realized through the Todo” F0C0

multistage representation of the Wiener filter presented n@@dB: is an(N—1)x N operator which spans the nullspace of
in this paper. Txodos 1-€., By is the blocking matrix which annihilates those
signal components in the direction of the vectgy, [18],
[19] such thatBih; = 0.

: ) ) Two fast algorithms for obtaining such a unitary matrix
The analysis developed herein emphasizes the standard,Tc{\—are described in [20] which use either the singular-

constrained Wiener filter. It is noted that an identical approagh e decomposition or the QR decomposition. Fofl'a
also solves the problem of quadratic minimization with linegfnich is nonsingular, but not unitary, a new, very efficient
constraints [16] and the joint-process estimation problem, quplementation of the blocking matrisB; is presented in
of which can be interpreted as a constrained Wiener f"t%ppendix A.

The pa_rtitipned solution presented in [16] Qecomposes' the| et the new transformed data vector, formedBy operat-
_constralnt in such a manner that the re_:sultmg Wiener f!ltﬁ{g on the observed-data vector, be given by
is unconstrained, as is further explored in the example given " i
in Section IV-C and Appendix B. It is further noted that z1(k) =Tizo(k) = [h’l a:o(k:)} = [dl(k‘)} (18)
other constraints also may be decomposed similarly [17]. Thus Bizo(k) 21 (k)
the constrained Wiener filter can be represented as an uncbhe transform-domain Wiener filter with the preprocesgor
strained Wiener filter with a prefiltering operation determinelg shown in Fig. 2. The Wiener filter for the transformed
by the constraint. It is seen next that the unconstrained Wierépcess is computed now to have the form
filter can also be represented as a nested chain of constrained w,, = Rz_11ir21 do- (19)
Wiener filters.

This new representation of the Wiener filter is achieved
a multistage decomposition. This decomposition forms t

I1l. THE MULTISTAGE WIENER FILTER

|d\lext, the covariance matril. , its inverseR;l, and the
6oss-correlation vector., 4, are expressed as

subspaces at each stage; one in the direction of the crosg _ [ 031 ngl} (20)
correlation vector at the previous stage and one in the subspace’  [Tz:d, @

orthogonal to this direction. Then the data orthogonal to the 1 —rH, R!
cross-correlation vector is decomposed again in the sanﬁ;lzﬁfll 1 1 o m}{ ] @D)
manner, stage by stage. This process reduces the dimension of R e By (I 410070, R

the data vector at each stage. Thus a new coordinate systeqy, = E[z1(k)d5(k)] = T1#pa, =61 0 --- 0]"  (22)
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d,(k) d,(K)

~d, ek
+§ £4(k) xo(k)[;‘ b, %\p(k) 4209 o Q@g(
T1 _) wzl _ xlﬂ() W2
z,(k)

Fig. 3. The first stage of the decomposition.

—>
x,(k)

Fig. 2. The transform-domain Wiener filter.

where(-)?" denotes the standard matrix transpose operator and, — £ (k)
by (16)—(18), the scalaf; in (22) is obtained as +@ 1 »
81 = b rogay = \/7H | Ponay- (23) —> W, -
x,(k)

The variance off; (k) in (18) is calculated to be

021 = h{IRa:O h. (24) Fig. 4. The first chain in the nested recursion.
The covariance matridR., is given by
R, = E[x,(k)zf (k)] = B,R,, B} (25) Fig. 3, where the new scalar Wiener filter is defined by
The cross-correlation vecter,, 4, is computed to be wy =& e gy = 716 (32)
T2, = Blz1(k)d{(k)] = B R, hy (26)

and where by (18), (22), (23), and (30) the identity of the

and the matrixR_' in (21) is determined by the matrix correlation between the scalar processgd) anddo(k) with
inversion lemma for partitioned matrices [16]. In terms of thg, is shown by

joint-process covariance matrR, in (12), the transformations

described above in (20)-(26) may be represented by Terdo = Ele1(k)dg(k)]
R, =T RA" =(hy —wlB))r, 4 = hi'rye, = 6. (33)
I A It is evident by (19)—(21) that the filtering diagrams in Figs.
=T 0 Todo T1 ! N .
Twodo o 2 and 3 are identical since
2 H
_ | %4y Tz 1 -1 1 _ 1
N "'zujo RZlo :| 'le N RZl TZldO B 51 61 |:_R;11Tw1d1 :| - |:—'U)2:| ' (34)
2 6F 0 0
o, ] Note that the scala; is also the MMSE of the nested
b1 9 lower dimensional Wiener filter with a new scalar sigdalk)
- 0 { 031 ngl} (27) and a new observed signal vecter(k). The first stage of
: Tod, R, this decomposition partitions th&-dimensional Wiener filter
0 into a scalar Wiener filter and &V — 1)-dimensional vector
where Wiener filter, where the reduced-dimension vector filter spans
. 1 oY a space which is orthogonal to the space spanned by the
T = [0 TJ- (28)  scalar filter. Also note that the nested filtering structure in

. _ o ~ Fig. 3, which useaw, to estimated; (k) from z;(k), may be
The structure of the matridZ., in (20), its inverse in interpreted as a constrained Wiener filter which minimizes the
(21), and the diagrams in Figs. 1 and 2 suggest that a N@Wor ¢, (k) subject to the constraint that the desired signal
(N — 1)-dimensional “weight” vectomw. be defined by d; (k) has the gain and phase provided by the fiker
wy =R, 1,4, (29)
B. A Multistage Representation of the Wiener Filter
which is the Wiener filter for estimating the scatark) from

the vectorz, (k). Then a new erroe, (k), given by The first stage decomposition results in the structure de-

picted in Fig. 3. The neWN — 1)-dimensional vector Wiener
e1(k) = di(k) — wilz (k), (30) filter w» operates on the transformédy — 1)-dimensional data

. , , o vectorz; (k) to estimate the new scalar signal%), as shown
can be defined for the new Wiener filtes, which is similar in Fig. 4. This represents a Wiener filter which is identical

in form 1o the Wl_ener fllt_er depicted in F|g. 1. The vanancg, form to the original N-dimensional Wiener filter, except
of the errore, (k) in (30) is computed readily to be that it is one dimension smaller. Thus a recursion of scalar
& = El|ler(k)]?] = 0(211 — 'T‘fidl R;l,rmdl — 0(211 —wily, 4. Wiener filters can be derived by following the outline given
31) in Section IlI-A until the dimension of both the data and the
corresponding Wiener filter is reduced to one at lg\Vél— 1)
Since¢; is the covariance of the scalar procesgk), the in the tree. The error signal at each stage serves as the scalar
identical MMSE, &y, is achieved by the filtering diagram inobserved process for the Wiener filter at the next stage. At
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each stage, 1 < ¢ < N — 1, the normalized cross-correlation TABLE |
vector h; is computed in the same manner as (17) to be RECURSION EQUATIONS
Toi 1 d; Toi 1d; FORWARD
hi — z—ldz—l — z—gdz—l (35)
VT e i Frig, = B [z,(k)d: (k)]
The blocking ma_trix,Bi = null{f‘_ti}, may be compute_d using Sigr = /—rf.d.rz,d.
the method detailed in Appendix A, that presented in [20], or o
any other method which results in a valli. The covariance hijs = gfﬂ
matrix R, is computed corresponding to (25) as follows: e
Raci = BingleiI{ Bi+1 = null {hi+1}

1 7
- <H Bk> R,, <H B,{?), 1<i<N-1 (36) disa (k) = Bk x(k)
k=i k=1 xi41(k) = Bipixi(k)
and the cross-correlation vectey. 4, is found recursively in
the manner of (26) to be

re.q =B R, BACKWARD

1 1—1
B <H B")Rwo (H Bf) hi, 1<i<N-1(37) &v =B [lexa(Bf]
k=t k=1

oy = Ton_1dy_1

.’EN__l(k) = dN(k‘) = €N(k‘)

The scalar signald;(k) and the (N — ¢)-dimensional
observed-data vectog;(k) at the ith stage are found in w; = &1
accordance with (18) as follows:
gi(k) = di(k) — wicip1(k
di(k) =hfe,_(k), 1<i<N-1 (38) ()= k) = wiasina ()

:L'Z(k') :Biwi,l(/ﬂ), 1 S 1 S N —1. (39) fi = 035 - §$1l5i+1|2

The error signals at each stage, in analogy to (30), are given by

eik) = di(k) — wips€ipr (k) (40)  similar to the results of (29), (31), and (32). In accordance
where it is notationally convenient to define the scalar outptth (41), the MMSE of the last stage is given by = o .
of the last signal blocking matrix in the chaimy_;(k) to The complete series of required recursion relationships are

be theNth element of both the sequencégk) ande; (k) as listed in Table I. An example of this decomposition f§r= 4
follows: is provided in Fig. 5. Note that this new multistage Wiener

filter does not require an estimate of the covariance matrix
ry_1(k) = dn(k) = en(k). (41) or its inverse when the statistics are unknown since the only
requirements are for estimates of the cross-correlation vectors
and scalar correlations, which can be calculated directly from
the data.

The variances associated with the signal&:), 1 < i <
N — 1, are defined by

o3 = E[|di(k)*] = h'R,,_,h; (42)
C. Analysis of the Multistage Wiener Filter
wheres = R, ,.The scalar cross-correlations , , 4, are

computed in the same manner as (33) to be This new Wiener filter structure is naturally partitioned

into an analysis filterbank and a synthesis filterbank. The
analysis filterbank is pyramidal, and the resulting tree structure
successively refines the signal(k) in terms ofd; 1 (k), its

where, using (41), the last term of the recursion in (43) gomponent in the direction of the cross-correlation vector,

Teip1d; — 6i+1 = ng;rl‘idi (43)

provided by the identity andz;,1(k), its components in the orthogonal subspace. The
subspaces formed at leveblnd leveli + 1 in the tree satisfy
ON = Tendy 1 = Ty dy 1 (44)  the direct-sum relationship
The scalar Wiener filters); are found from the Wiener—Hopf Spi = Sa;oy ® Sar, (47)

equation to be
whereS,,, denotes the linear subspace spanned by the columns

wi =& '8 (45)  of the covariance matri,, and(-) & (-) represents a direct
sum.

The operation of the analysis filterbanks are combined next
&= ai —wiy10i41 (46) into one losslessV x N transfer matrixL, which is given

where, fori < N, the MMSE recursion yields
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Fig. 5. The nested chain of scalar Wiener filters f§r = 4.

dl F b > €,
d2 » &,
d3 » &,
dN_1 +@ » Ex
dN » Ey
Fig. 6. The Gram-Schmidt interpretation of the synthesis filterbank.
as follows: wheredy (k) = zy_1(k). The definition of the matrix filters
= h; and B; guarantees thaLy decorrelates all lags in the
i by i processd(k) greater than one. This means that the covariance
hY B, matrix
3 R;=LyR, LY (50)
Ly=|,n (48)
hy_ ] B: is tridiagonal.
i=N-2 The synthesis filterbank is composed &f nested scalar
L Wiener filters, where the input to each weight is the error
H B; signal from the previous stage. This filtering operation may be
1 -

- i=N— interpreted also as an implementation of the Gram—-Schmidt
algorithm, as shown in Fig. 6, which operates on the sequen-
tially correlated random vectal(%), defined in (49), to form

the uncorrelated error vecté(k) where

where the dimension of the matr®; is (N —i) x (N —i+1)
and the vectoh; is of dimensionN — ¢ + 1. The matrix filter
Ly operates on the observed-data veaigk) to produce an

N x 1 output vectord(k), defined by ek) = [er(k) ex(k) - en(k)]" (51)

d(k) = Lyzo(k) = [di(k) do(k) --- dn(k)]"  (49) and the last element in this recursion is given by (41).
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; so(k)
&,(k)

(k)

Uy
d(k)

ex(k)

Fig. 7. The combined multiresolution Gram-Schmidt interpretation of the Wiener filter.

The equivalent Gram—Schmidt matrix may be computed lpyocess such ad(k). Fig. 7 depicts the combined multistage
the backward recursion relations in Table I. Explicitly, thelecomposition and Gram—Schmidt orthogonalization interpre-
N x N Gram-Schmidt operatol/ - is an upper-triangular tation of the Wiener filter.
matrix given by (52) at the bottom of this page. Finally, the The error covariance matri:, which is associated with

(N +1) x (N +1) matrix U 541 is given by the error processg(k) in (51), is a diagonal matrix given by
_ap .
UMJZF wm} (53) R:=diag(f&, & - &) (57)
0 Uy

where the operatatiag (), with a vector operand, represents
a diagonal matrix whose only nonzero elements are along the
main diagonal and provided by the corresponding element
N of the operand. Similarly, the error covariance mathx
w! = |wi —wiwi - (=N Hw* ) (54) . . ) . X
N 1 1W2 i associated with the error proces#) in (56) is also a diagonal
=1 matrix given by

where the/N-dimensional Wiener filtew.,, defined in (19),
is now given equivalently by

Define the(V + 1)-dimensional vectod(k) to be )
R. =diag([§&o & - &) (58)

 [do(k) 55
(k) = L}(/{) } (55) The minimum mean-square error of thk stages; is explicitly
) o _computed in Table I.
Thus the complete Gram—Schmidt orthogonalization, which one final interpretation of the multistage Wiener filter is

results in the error signal vector realized through an examination of the analysis and error-
o synthesis filterbanks. Define thgv + 1) x (N + 1) trans-
e(k) =Upnqd(k) = [~ } (56)  formations
&(k)
is realized withNV weights, as opposed to th¥(N + 1)/2 1 ?{ I, 0
weights which are normally required to obtain th&¥ + 1)- T = 0 |:hj } = {0 TJ (59)
dimensional error proceggk) from an(N + 1)-dimensional B;
r N—1 N .
1w wiwg o (DY JJwr DY Jwr
=2 =2
N-1 N
0 1 —why - (=N wy DN | | wr?
Uy — 3 (1) l;[g F(=1 l;[g S| 52)
1 —wy
A 0 1 _
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where the identity matrix of rank is denotedl; and the forj=1,2,..-, N. Letthe(N+1)x (N+1) matricesé'j,

vectorsh; andB; are detailed in Table | far=1, 2, ---, N— for j =1, 2, ---, N, be defined as follows:
1. The matrixLy1 is formed by extending the definition of
matrix Ly in (48) as follows: I 0
= G; (65)
0 IN—j

o=y L) (60)
N Then the error-synthesis filterbank can be expressed in the

Then theN + 1-dimensional vectod(k) in (55) is given by form

v

e(k) = G1Gs -+ Gnd(k) = Un1d(k). (66)

d(k) = Ly41(k) = Tx1 Tz - Tun(k) = [ The error-synthesis filterbank is now seen to provide planar

(61) rotations, similar to the Jacobi or Givens transforms [5], [21],
[25]. Note that the matriced’; which form the multistage

where the augmented vectef(k) is defined in (11). The decomposition may be chosen to be unitary or nonunitary

error-synthesis filterbank are unimodular.
Ry=Tx_ Ty - T'\RI\T) - T , Therefore, for N = 4, the pyramid decomposition and

nested scalar Wiener filters are represented in the form de-
picted in Fig. 8. Here the multistage Wiener filter demonstrates

whereR,, is defined in (12). Note that the solution in (61) an relationship tq planar reflegtions and rot.ations. No_t.e that
(62) can be achieved by (59) using the method described tﬂne crzloab;sest estimate of the diagonal covariance méifiis

Appendix A or by a slight modification of the HouseholdeP'©
tridiagonalization technique [21]-[24]. That is to say, that the R = (GLGLIT )R, (GG, IT))" (67)
decomposition presented here as a component of this new Lo

multistage Wiener filter represents a generalization of thghere the first row oiG1G.IT; is the coarsest estimate of
unitary Householder tridiagonalization method for arbitrarthe Wiener filter and finer grain estimates of bdth and the
nonsingu|ar transformation®’; and T7 An examp|e of the Wiener filter are obtained as additional stages are added.
tridiagonal decomposition of the matrik,, is provided by

the following progression fofV = 4 as shown in (63) at the D. Entropy and Mutual Information

=Ly R.LY (62)

bottom of this page. . The expressions for entropy and mutual information are
Next, define the2 x 2 matricesG; by now examined in terms of the multistage representation of the
1 —uw Wiener filter. First note from (1), (50), and (57), that matrix
G = { J} (64) R, is similar to the matrixR:. The multiplicative property
0 1 of determinants, which states that the determinant of a product

c 8 0 0 0
o 14 o1 031 (D) rh g (2) E g (3)
[ 0 1”;“}:5 0 7rea(1) Ry (1,1) R:(2,1) R:(3,1)
irac ¢
v T 0 (2 Re(21) Re(2,2) RL(3,2)
L 0 7)331(11(3) Rl‘l(3’ 1) Rl‘l(3’ 2) Rl‘l(3’ 3)
'030 o7 0 0
_ 61 0'31 (5; 0
Llo & o2 i) (2) (63)

0 0 rea(l) Re(1,1) R (2,1)
L O 0 74,(2) Ra,(2,1) R,,(2,2)

>
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Q
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>
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Ly Unat
. 'il i‘z T, I E G, G, G, G,
IC(k) " 1 0||Z, 0)]I, 0 , 0 Ed(k): I, 0 I, c 0|1 G oll6. 0 E(k)
I N K u . v B s M A
0 1 0 2 0 3 0 . . 1] G, 0 illo 1.2 0 I_,

Fig. 8. The plane rotation interpretation of the Wiener filter f§r = 4.

of two matrices is equal to the product of their determinantformation are equivalent, can now be established. Expressing

implies the MMSE in terms of the canonical correlation in (8) results
N finally in
R, || =||R:|| = & (68) 1 1
IR0l = 181 =[] 1(do, o) = 3 os(o3,) ~ 3 logfod, (1 — 12,4,
- L 1
Similarly, from (12), (58), and (62), it is found that =3 log(1 — kiodo) (74)
N
IR.|| = |R.| = H ¢ (69) from which it is also evident for joint Gaussian processes
" s v that maximizing the canonical correlation is equivalent to a

_ _ maximization of the mutual information.
The entropy of the desired proceBqd,) is unchanged from

the expression in (9). The entropy of the observed process,

. . . . IV. REDUCED-RANK WIENER FILTERING
H(zo) in (10), is now written in the form

Rank reduction is concerned with finding a low-rank sub-
H(zo) Illog[(QWC)NIIRmOII] space, say of rank/ < N, of the space spanned by the
2 ) columns of the rankV observed-data covariance matrix. The
N N rank M covariance matrix whose columns span this subspace
= log| (2me) H i has the same dimension as the original covariance matrix. The
=t N-dimensional Wiener filter which is calculated using the rank

_ % log[(2me)N] + % EA: log(&;). (70) lfi\l/{ecrovariance matrix estimate is termed a reduced-rank Wiener
i=1 )
An equivalent method of implementing a reduced-rank
Similarly, the joint entropy,H (do, o) in (13) becomes Wiener filter is obtained by prefiltering the observed data with
1 . an N x M matrix whose columns are the basis vectors of the
H(do, 20) =5 log[(2me)¥ | R, |[] reduced-rank subspace. The observed data is then compressed
N to an M-dimensional vector, the corresponding covariance
- 1 log [(gm)(gm)l\’ H 51] matrix is M x M, and both the transformed cross-correlation
2 =0 vector and the Wiener filter are of dimensig#. This method
1 1 Nr o 1 is also termed reduced-rank or reduced-dimension Wiener
=5 log(2me) + > log[(2me)™ ] + > log(&o) filtering.
1 X Another rank-reduction technique utilizes rank-shaping and
+ > Z log(&;). (71) shrinkage methods. The data-adaptive shrinkage method pre-
i=1 sented in [26] results in a nonlinear filter that uses mode-

dependent, nonlinear companders to estimate something akin

Thus the conditional entropyH (do|zo) In (14), is expressed : i ) _ _ JOS .
to the Wiener filter gain. This technique, which is not discussed

b
y further in this paper, represents an extension of a linear
H(do|zo) = H(do, xo) — H(zo) estimator.
1 1
) log(2re) + 2 log(£o)- (72) A. Previous Approaches to Rank Reduction

Finally, the mutual information/(dy, zo) in (15), for a joint The first approaches to the rank-reduction problem were

Gaussian process is computed to be motivated by the array processing application and were some-
what ad hoc [27], [28]. More statistical approaches to this

I{do, xo) = H(do) — H(do|zo) problem were introduced next which were based on the

- 1 10g(27r603 ) — llog(gm) _ llog(ﬁo) principal-components analysis of the covariance matrix devel-
2 Y2 2 oped originally by Hotelling and Eckart [29], [30].
:%log(ago) - %bg(é’o)- (73) A new method to achieve a reduction in the number of

degrees of freedom, or filter order, in a Wiener filter is
From the last expression in (73) the intuitive result, thamtroduced in [31] and [32]. This method utilizes a measure,
minimizing the mean-square error and maximizing the mutuedrmed the cross-spectral metric, to determine the smallest
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number of degrees of freedom to linearly estimate with littland it is also seen that the cross-spectral metric maximizes the
loss a scalar random process from a setNofcorrelated canonical correlation as a function of the ramk From the
complex random processes. To accomplish this a basis sgpression for mutual information in (74) it is also concluded
is selected for the space that is spanned by the columnstiudt the cross-spectral metric maximizes mutual informa-
the observed-data covariance matrix. What is called the croen as a function of rank. These properties show that the
spectral information measure, is used then to rank the relatr@ss-spectral metric provides the capability for optimum
contributions of these basis vectors in order to minimize ttommpression, defined to be a reduction in the rank of the
mean-square error. The dimension of the data vector, atmariance matrix below the dimension of the signal subspace
therefore the associated Wiener filter, can be reduced optimadigenstructure without incurring a large penalty in MMSE
to a dimensionM < N by discarding the projection of the performance. The reduced-rank Wiener filter using the cross-
data upon those basis vectors whose contributions are #ipectral metric is therefore more robust in the sense that
smallest. This cross-spectral metric is recognized in [31] to @ error in underestimating the dimension of the underlying
a vector which has components that are the weighted squaseghal eigenstructure does not cause as great of a loss in
magnitudes of the direction cosines between each basis vegerformance as that which is experienced by the principal-
and the cross-correlation vector for the two aforementionedmponents method. Note that the above claims of optimality
correlated random processes. are all relative to the eigenvector basis.

The principal-components technique achieves rank reduc-
tion to the effective rank of the signal subspace, but is limite®l Rank Reduction Using the Multistage
in its ability to further reduce the data dimension. On threpresentation of the Wiener Filter
other hand, the cross-spectral metric provides a capability for.

reducing the data rank below this dimension without adversea};—he development and analysis of a reduced-rank or reduced-

: . mension Wiener filter which is based on the new multistage
affecting the mean-square error performance. This prope ' . . . .
represents a form afata compressiarWhen the eigenvectors Iener filter utilizes the Qperat_or mterpretgﬂon of this decom-

E(S)sition. TheN x N matrix Ly in (48) provides the complete

of the observed-data covariance matrix are utilized as a ba "
A ! etomposition of the observed-data vector. A reasonable and
the counter-intuitive result that the cross-spectral metric forms _. o .
straightforward method of rank reduction is accomplished by

an upper bound on the performance obtained by the prinCipglécarding the lastv — M stages of this decomposition. The
components method of rank reduction is well established, e‘l%ihk-reducing transformation is then given by thé x N

see [31], [32], and Appendix B. Also it is proved that thg ) . : _
eigenvectors selected, determined by the ranking provided rg}z;\trlx Lu, defined as follows:

the cross-spectral metric, yield the lowest MMSE out of all Ry
other possible combinations éff eigenvectors. hEB

It is now demonstrated that the cross-spectral metric is the 2 !
optimal eigen-based subspace selection rule for Gaussian sig- Ly = : . (78)
nals in an information-theoretic sense. TNex N covariance H !
matrix of the data observed by the Wiener filter is expressed by by H B;

=M-1
H
R., = EAE (75) The resultingM -dimensional output vector is processed by a

whereE is the N x N matrix ofeigenvector$Ei}£\;l andA is _nested_ chain of\/ _scalar Wiene_r filters, in a manner _Whic_h
Al is a direct truncation of the filter structure shown in Fig.

the diagonal matrix of corresponding eigenvaltﬂﬂs}ﬁ\;l. The e ) > ;
expression for the full-rank MMSE in (7) may be expressegt 1hus rank reduction is accomplished by simply stopping

in terms of the eigendecomposition in (75) as follows: the multistage decomposition at th&th stage. Note that
no eigendecomposition is involved in this process and that

N H 2 a different basis is naturally generated by the multistage
H —1pH |E Tady | " ) .
§o = 030 —Troa BAT BV 1,04, = 030 - Z % decomposition and the nested scalar Wiener filters.
=1 ‘ This tridiagonalization of the covariance matrix of a sta-
ionary process tends to group most of the significant energy
(76) ¢ tends t t of th ficant
(both autocorrelation terms; and cross-correlation ternds)
in the first few tridiagonal terms. That is to say, the tridiagonal
covariance matrix can be divided infox 2 blocks along the
main diagonal, where the upper-left and lower-right elements
in an MMSE sense for reduced-rank Wiener filtering an f one block are also members of the previous and follqwmg
. . . locks that compose the diagonal, respectively. The multistage
directly minimizes the mean-square error as a function of th

rank M, for 1 < M < N. The expression for the canonicap%compos'tlon then strongly WEIghtS _the most hlghl.y corre-
L L= lated terms and places them in the first few blocks; that is,
correlation in (8) similarly reduces to

the information which is most useful for estimating the signal
, 1N |Ef{'rm0d0 2 do(k)_ from a:_o_(k).. . .
krody = =5 E —_— (77) A final justification for the reduced-rank multistage Wiener
O'do - )\z . . . . .
i=1 filter is that the covariance matrix of the proceasstends to

The cross-spectral metric chooses thd eigenvectors
which correspond with the larges/ values of the term
1/N|E 72,4, 2, from which it is evident that the cross-
spectral metric is the optimal selection ()f}) eigenvectors
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become white as the filter structure increases in stages. This . d (k)
is particularly true if the data is overmodeled, as is often the X(k) SJ o
, - . 1 &(k)
case in many applications such as sensor array processing. 1 3%
At the point where this covariance matrix is approximately Bh" o N
white, the optimal Wiener filter is obtained by truncation of x,(k) - (/i\o(k)
the remaining terms due to the fact tthat ; goes to zero. Thus
the optimal solution is obtained as the data becomes white iy ©
the decomposition itself whitens the data via successive stages.

A 4

\ 4

The GSC MVDR constrained Wiener filter.

It is now emphasized that this new method of reduced- SGNEB'(;EEOUETRY
rank Wiener filtering has the capability to outperform the
eigendecomposition-based methods. This is due to the fact that | SIGNAL | DOA | SNR
a natural basis is generated by the multistage decomposition. desired 0° |1 0dB
Assume for the moment that the Wiener filter is collinear with jammer 1 || —69° | 20 dB
the cross-correlation vectat,, 4, . Then the rank-one Wiener jammer 2 || —30° | 22 dB
filter, which results from the first stage of the decomposi- jammer 3 _lzo 17 dB
tion, maximizes the mutual information, and the remaining J,?“mme“: 14° | 20dB
jammer 5 34° 19 dB

portion of the tree-structured analysis filterbank contributes
nothing to the minimization of the mean-square error. The

smallest subspace of the space spanned by the eigenved@iisiced to an unconstrained Wiener filter by the matrix filters
of the covariance matrixLyR,, Ly which contains this s and B. The structure which follows these matrix filters in
same vector may be composed of many eigenvectors. Thrg. 9 is identical in form to the original Wiener filter depicted
to obtain the optimal solution under these conditions, amy Fig. 1. Thus the methods detailed in Sections Il and IV can
eigendecomposition-based method of rank reduction would used directly to implement the equivalent multistage Wiener
require a larger rank than the multistage method. Note that thiger and the reduced-rank Wiener filters. Note, in particular,
does not imply that the reduced-rank multistage Wiener filtgiat the very efficient blocking matrix developed in Appendix
is optimal; it is, however, a very-low-complexity realizationa can be employed both to implement the matBxin Fig.
which demonstrates excellent performance as shown next.9 and the matrice®; at each stage of the multistage Wiener
filter.

For the purpose of this analysis, the sensor array is assumed
to be linear, equispaced at a half-wavelength, and composed
A computer analysis is now made to demonstrate tld NV + 1 = 16 sensor elements. The dimension of the Wiener

performance of the above new reduced-rank Wiener filter afiller is ;N = 15. There are six signals which impinge the array,
to compare its performance with the principal-componentspresenting five undesired sources of interference or jammers
and cross-spectral techniques. The well-known problem afid one desired signal, as detailed in Table Il. All signals
interference mitigation using a narrowband and minimunare modeled as narrowband, white, complex Gaussian random
variance distortionless response (MVDR) antenna array psocesses. The theoretical covariance matrix is computed and
considered for this example. The MVDR constrained optthe optimal Wiener solution for the scenario, described in Table
mization problem is to minimize the output power of thél, is depicted in Fig. 10 by the array power gain as a function
array subject to a constraint that any signal coming fromd angle of arrival. All jammers are attenuated, and the desired
particular and predefined direction is passed without distortiosignal receives a unity gain.
This choice demonstrates the applicability of the new Wiener Next the MMSE is calculated as a function of rank for the
filter structure to the constrained optimization problem. Thmultistage Wiener filter, the cross-spectral metric Wiener filter
generalized sidelobe canceler (GSC) form of the constrainedd the principal-components Wiener filter using the theoret-
processor, defined, for example in [16]-[19] and Appendix Bgal covariance matrix. As shown in Fig. 11 the principal-
is now utilized. components Wiener filter obtains the optimal solution only
The GSC MVDR array processor has the partitioned struafter the number of significant eigenvectors, retained in the
ture shown in Fig. 9 and derived in Appendix B. Thereovariance estimate, equals the number of jammers. For this
are N + 1 sensor elements in the array, and {1é + 1)- example the number of jammers is five, which corresponds
dimensional data vector which serves as the antenna inputdothe effective rank of the signal subspace for that co-
the processor is denoted ky%). The MVDR linear quadratic variance matrix. The principal-components method degrades
constraint is implemented by thév +1)-dimensional steering in performance rapidly if fewer than five eigenvectors are
vector s in the upper branch of the GSC. Thé x (N + 1) retained. The cross-spectral metric Wiener filter also obtains
matrix B in the lower branch is a blocking matrix for those¢he same optimal solution with five weights. However, its
signals which impinge the array from the direction specifielMSE performance is much better as a function of rank,
by s. The output of the upper branch provides for the scalachieving values within a fraction of a decibel of the optimum
desired signafly (%) of the Wiener filter, and the output of thewith just three or four weights. The new multistage Wiener
lower branch similarly provides th& x 1 observed-data vector filter outperforms both the cross-spectral and the principal-
zo(k). As noted in Section Ill, the constrained Wiener filter isomponents Wiener filters. This new reduced-rank filtering

C. Example
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Fig. 11. The MMSE as a function of rank for the three reduced-rank GSC sensor arrays.

structure obtains the optimal solution with four weights andhereé, > & is the MMSE of the reduced-rank processor and
performs better in terms of the MMSE performance for everyay take a different value for each rank-reduction technique.
rank. The computational complexity of the Wiener filter iShe results of this comparison are presented in Fig. 12. The
also greatly reduced for the multistage Wiener filter using therves for the mutual information depict the same comparative
method found in Appendix A. results as noted above for the MMSE. Observe that the
The mutual information is calculated for these three pray 4| information curves are scaled and inverted replicas of
rcsdsjc?;?j ?&Smi fupocéfsnsg:srgnk._Thek;nutual information for ﬂfﬁe MMSE curves, which is what might be expected since,
i P 'S given by as established in Section IlI-D for the assumed Gaussian
processes, the maximization of the mutual information and

. 1 1 .
I(d = ~log(o2 ) — ~log 79 :
(do, @) = 5 log(og,) — 5 108(%0) (79) " ihe minimization of the mean-square error are equivalent.
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Multistage GSC ]
- - —— Cross-Spectral GSC
---------- Principal Components GSC 4

mutual information

155}k .
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1 ‘45 1 L 1 1 y e 1 1
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rank

Fig. 12. The mutual information as a function of rank for the three reduced-rank GSC sensor arrays.

Fig. 13. The magnitude of the elements of the tridiagonal covariance matrix.

Finally, the magnitude of the terms in the theoretical co- V. CONCLUSIONS
variance matrix, after being decomposed to a tridiagonal i i . . _
matrix by the multistage decomposition, is depicted in Fig. A N€w Wiener filter structure is derived which uses a
13 with a Matlab mesh plot. Here it seen that the number g}uIUSte}ge depomposmon. The properties of th|s. new version
significant terms in theV x N covariance matrixk; decay of a Wiener filter are analyzed from several points of view.
quickly and are not discernible after the sixth row and colundf particular, it is demonstrated that the unconstrained Wiener
entry. The fact that the equivalent cross-spectral energy in fiféer can always be constructed via a chain of constrained
basis generated by the multistage decomposition is compadtfjener filters. The relationship of the Wiener filter with the
represented by this new structure is reflected by the fact tioperties of entropy, mutual information, and canonical corre-
the new reduced-rank processor outperforms the cross-spedatidn are established. Also previous reduced-rank Wiener filter
metric using an eigenvector basis. algorithms are analyzed in terms of these properties. A new
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method for performing rank reduction based on the multistage d(k)
decomposition is derived. This new reduced-rank Wiener filter k h.
is shown by example to be capable of outperforming the X 1( ) !
eigendecomposition-based methods both in terms of MMSE B )
performance and computational complexity. i X(k)
APPENDIX A Fig. 14. The matrix filter decomposition of the observed data.
A Low COMPLEXITY BLOCKING MATRIX

By weakening the unitary requirement flt;, an imple- Tdi(k)
mentation of the blocking matrix3; is now found which X.,(k) q | R
demonstrates a low computational complexity. The MMSE * ‘
is preserved when the nonunitary matifk is any arbitrary, Hxi(k)

nonsingularN x N matrix [19], [33]. To establish this fact

) ~ ) : - ' Fig. 15. An equivalent decomposition of the observed data.
recall that the MMSE for the filter in Fig. 1 is given by (7)

_ 2 - .
o =0y, — l‘odoRl‘o Tzado- (A1) asshownin Fig. 15. In order for the operation of the structures

If the matrix T, in Fig. 2 is an arbitrary, nonsingular matrix,in Figs. 14 and 15 to be equivalent in terms of the MMSE, it
then the covariance matri®.. is given by is clear that the following three conditions must hold:
21

- 1) h; = Ha,.
R, =T,R, T, (A.2) 2) B; = D;H,.
H
and its inverse is given by 3) Bh; = D;H;H; a; = 0.
1 Let the complex cross-correlation vecthy be composed of
R = (Tf) RMTT. (A.3) elementss;, forj =1 --- N —i+1, so that

Similarly, the cross-correlation vecter, 4, is given by hi=1[6 62 - Oy_is1]". (A7)

Tody = L1724, (A.4) Then a solution, which satisfies Conditions 2) and 3), is the

Thus the MMSE is computed to be (N —i+1)x (N —i+ 1) diagonal matrixH; given by

1 1 1
bo=0y — ﬂdoRé1 T2ido H, —d1ag([91 5, MD (A.8)
H H —1lp—1
=05, — TodoT (@) R, Ty ) T1s, With (A.8) and Condition 1), the vecta; must have the form
.2
=04, modoRacg Tzodo (AS) — [|91|2 |92|2 . |9]\77i+1|2 ]T' (Ag)

and it is evident that the MMSE is conserved by any invertible
transformation of the observed data.
The special case of interest occurs when the nonsingular h;
. i s o T, =
matrix T, is formed so that its first row is given ny and D,H;

the remainingV —1 rows are linearly independent, composinq_ o o L
the matrix B,. The matrix B; must satisfyB;h; = 0. herefore, it is observed that the new filtering operation in

Fig. 15 may now be implemented with the filtering structure
in Fig. 14 where a new signal-blocking mati;, defined by

Finally, the form of the matrice¥’; are now given by

(A.10)

Then this operatol’; is of the same form as detailed in
(16), the covariance matri., and its inverse retain the

structure described in (20) and (21), respectively, and the -1 0 ... 0 0 0
cross-correlation vector. 4, is again in the form shown in 01 O
(22). Finally, the structure depicted in Fig. 3 is again obtained, 1 -1
and it yields the identical MMSE as shown above. 0 0y 65 0 0 0
The partitioning of the operatof’;, given in (16) for B —|: . .
i = 1, is shown in Fig. 14. It is now desired to find an™ ' ' ' 1 _q ' ’
(N —i+1) x (N —i+ 1) diagonal matrix preprocessd; 0 0 0o - 0
at each stage, with the properties that theV — i + 1) x 1 On—i1 On-i
vectorh; is replaced by a vecta; (to be defined) and that the o 0o 0 ... 0 1 -1
(N — i) x (N —i+1) matrix B; is replaced by the following - On—i On—it1-
multiplier-free difference matrixD;: (A.11)
(1) _1 _(1) 8 8 8 is used to replace the matrix filt&; in Fig. 14. Fig. 16 depicts
i ) . this new structure, where the vectly is again given by (35)
D;=|: E : (A-6)  and the matrixB; in (A.11) is found directly fromB; = D, H;
6o o0 o0 -1 -1 0 using (A.6) and (A.8). All three previously stated conditions

6o o0 0 -0 1 -1 for equivalence are thus satisfied.



GOLDSTEIN et al: A MULTISTAGE REPRESENTATION OF THE WIENER FILTER 2957

— d(k) function of rank is equivalent to maximizing the output SINR
X ](k) : hi — > as a function of rank, or maximizing the expression
H D, —» g, NS [ofsf?
i Xi(k) 50 =s8"R "s= ; 1/)2 (B.5)

Fig. 16. Final equivalent representation of the decomposition. . ) . .
9 a P P as a function of rank. Clearly, choosing thel/ + 1 eigen-

vectorsu; corresponding with the largedt + 1 values of the
APPENDIX B direct-form cross-spectral metric
THE CONSTRAINED WIENER FILTER ! o2
v;'8

Many applications of the Wiener filter utilize a constrained T (B.6)
optimization in situations where a desired signal may not ’
be explicitly available. In this Appendix the linearly conboth maximizes the output SINR and minimizes the mean-
strained, minimum-variance, distortionless response (MVDRjuare error as a function of rank.
Wiener filter is considered to describe the problem of quadraticThe form of the constrained Wiener filter in (B.2) may be
mininization with linear constraints and rank reduction fopompared with the unconstrained Wiener filter in (5). The

constrained Wiener filters. cross-correlation vector in (5) is replaced by the tefm
The MVDR constrained optimization problem is expressetihere the scalap = (s R™'s)~1. The multistage Wiener
as follows: filter could be derived directly using this relationship, but an
interpretation of the constrained Wiener filter known as the
min w’Rw  subject tos?w =1 (B.1) GSC [16], [18], [19] provides additional insight.

To derive the GSC form of the constrained Wiener filter it
where for convenience in the derivation to follov and s is convenient to redefine the constraint veatdo be

are defined to b&N + 1)-dimensional vectors anf is the s
(N +1) x (N + 1) dimensional covariance matrix associated 8= Va3 (B.7)

with the (N + 1)-dimensional observed-data vecta(k). _ ) _
Here the vectors usually represents a temporal, spatial, gid define the&/V + 1) x (N + 1) nonsingular matrixI’ as
space—-time frequency response of interest which is constraif@épws:
to be undisturbed by the minimization procedure. The solution st
to the constrained optimization in (B.1) may be found by the T= { } (B.8)

method of Lagrange multipliers and is given by
whereB is a full row-rankN x (N 4 1) matrix with nullspace

R's 8. The optimization in (B.1) may then be expressed by

sPRs min w T TRTH (TH) L

The resulting MMSE is provided by subject tOsHTH(TH)_l'w 1 (B9

1
TR s (B-3)  which has the equivalent solution for tha + 1)-dimensional
Wiener filter in (B.2) expressed in the form
Reduced-rank Wiener filtering using the direct-form con- I I
T (TRT")'Ts

& =w"Rw =

strained Wiener filter in (B.2) is possible by performing an — N /2 ] (B.10)
eigendecomposition of the matri® sIT" (I'RT")"Ts
R=vuvH (B.4) Next note that the produds results in the compressed

(N + 1)-dimensional vectoe;, wheree; = [1 00 --- 0],
where the matrix¥ is composed of theV + 1 eigenvectors The partitioned, transformed, covariance matiRT" is
v; and the diagonal matriXl is composed of theV + 1 computed to have the form

elgenv.alueSz/;f,. The_pnnmpal-compon_ents method of rank v [s7Rs sYRBY 030 "‘g)do
reduction would retain only thos¥ +1 eigenvector®,; which TRT" = BRs BRB" |~ (B.11)
correspond with the largest/ + 1 eigenvaluesy;, where Tzodo o
M < N. which is identical toR,, in (12) with r, 4, being anN x 1

In a similar manner, the method of rank reduction whicQector andR,,, being anN x N matrix. The inverse of the

utilizes the cross-spectral metric may be implemented with tgvariance matri@RT" is computed as follows:
direct-form constrained Wiener filter. Note that minimizing the

. . - . HN\—
mean-square error is equivalent to maximizing the inverse ¢f'RT") '
the mean-square error. In the case of the constrained Wiener . 1 _Tg)ng;ol
filter it may be shown [17] that the inverse of the MMSE is =& 1 1 I 1
proportional with the output signal-to-interference plus noise R Tavdy By (S 4 Ty, Br)
ratio (SINR). Hence minimizing the mean-square error as a (B.12)
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Finally, using (B.11) and (B.12), thé N + 1)-dimension between the eigenvectors of the constrained covariance matrix
constrained Wiener filter in (B.10) is expressed as R,, and the induced cross correlation with the constraint
vector, r,,4,, Which also determines the largest projection

w= TH[ _i } =8 BwaO (B.13) of the useful estimation energy from a different perspective.
—R. 7204, Therefore, while the solutions are identical for the full-rank
wherew,, is the N-dimensional unconstrained Wiener filter PrOC€SSOrS, the convergence as a function of rank for the direct-

form and GSC-form reduced-rank processors are generally

(B.14) different. The cross-spectral metric is optimal in terms of

) ) ) _ MMSE or SINR as a function of rank with respect to the
which yields the optimal estimate ak(k) = s"2(k) from eigenvectors of the relevant covariance matrix for both the

the processo(k) = Bz(k) as depicted in Fig. 9. direct-form and the GSC-form structures.
The GSC form of the constrained Wiener filter is now

in the standard form of the classical Wiener filter, and the
analysis of reduced-rank algorithms may be examined in the
context presented in Section IV. The multistage Wiener filter The authors wish to thank Prof. Alfred Hero and the

implementation is identical from either the direct-form ofnonymous reviewers for their suggestions which improved
the GSC-form derivation; that is, the matrix filtegsand B the presentation of the material in this paper. In addition, the
form the first stage of the decomposition and the rest follova!thors are grateful for insightful discussions with Dr. Allan

directly from the derivation in Section IV. However, theSteinhardt and Dr. Dennis Healy at DARPA, Dr. John Tague
eigendecomposition-based approaches require more attenti@frihe Office of Naval Research, Dr. Peter Zulch at the USAF

_ —1
Wy, = Razg Tzodo
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R, is expressed in the form

the
R, = EAE"

(B.15)

where E is the N x N matrix of eigenvector#; and A is
the V x N diagonal matrix of eigenvalues; associated with
the matrixR,, = BRB". The principal-components method
chooses thelM < N eigenvectors corresponding with the 7]
M largest eigenvalues aR,, to implement rank reduction.
The GSC-form cross-spectral metric approach to reduced?
rank Wiener filtering chooses thosd eigenvectors which [4]
correspond with the largest/ values of the cross-spectral
metric Bl
(6]

(1]

H
|‘Ez Taqdo |2

Ai

[71
Thus rank reduction for the GSC-form processor utilizes an
M x N operator to compress the data veetg(k) and reduce 8]
the dimension of the Wiener filtew,,, from N to A. Note
that reducing the dimension af,, in (B.14) fromN to M is [
equivalent to reducing the dimensionwfin (B.2) and (B.10) [1q]
from N +1to M + 1.

The performance of the principal-components and crodd?!
spectral metric Wiener filters for the direct form and the GSC
form are not in general the same. The eigenstructure of tHél
GSC-form processor is dependent on the choic# a@ind the 13]
spaces spanned by the two sets of eigenvecter$,and{E,},
are of different dimensions. The direct-form cross-spectrél
metric in (B.6) and the GSC-form cross-spectral metric ifs)
(B.16) both minimize the mean-square error and maximize the
output SINR as a function of rank, however their performanéé6]
is not the same as a function of rank. While this may seepy;
counter-intuitive at first, the direct-form cross-spectral metric
is the magnitude-squared value of a direction cosine betweﬁgh
the eigenvectors of the unconstrained covariance m&taxd
the constraint vectag, which determines the largest projectio
of the useful estimation energy. The GSC-form cross-spect %\?]
metric is the magnitude-squared value of a direction cosine

(B.16)

the University of Southern California, and Dr. Jeff Holder at

Georgia Tech Research Institute.
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