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C h a p te r  1

BACKGROUND

1
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1.1 L it t le w o o d -R ic h a rd s o n  N u m b e rs

Littlew ood-R ichardson numbers occur in a varie ty o f contexts. In  combinatorics, the L it t le 

wood-Richardson number counts, for example, the number o f skew tableaux o f shape v j A 

whose rectifica tion  is o f shape n  [6]. In  algebra, the ring  o f sym m etric functions has a basis 

o f Schur functions. The Schur functions can be enumerated using pa rtitions  and the structure 

coefficients o f the ring  are the Littlew ood-R ichardson numbers. In  representation theory, the 

general linear group G L n(C) has irreducible representations enumerated by partitions. The 

tensor p roduct o f two irreducible representations can be decomposed in to  a sum o f irreducible 

representations w ith  m u ltip lic ities  th a t are L ittlew ood-R ichardson numbers [21]. F inally, the 

Littlew ood-R ichardson numbers play a role in  geometry, the context in  which th is  dissertation is 

set.
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1.2  G e o m e try  D iscu ss io n

The usual, or type A n , Grassmann m anifo ld  G ( k ,n ) is the space o f fc-dimensional vector 

subspaces o f C ".

E x a m p le  1 .2 .1 . G ( l,3 )  is the set o f a ll lines through the orig in  in  C 3 (th is is the projective 

plane, P2). Consider a set o f reference spaces, called a flag, in  C 3, consisting of the orig in, a line 

th rough  the  orig in, a plane containing th a t line, and a ll o f three-space, denoted

F. =  (F 0  C F , C f 2 C F 3 =  C 3).

We can ask w hat lines through the orig in  meet these reference spaces in a certa in way. For 

example, we m ight ask w hat lines meet the reference plane F 2  in  one dimension? The solution 

to  th is  question is a subspace o f the Grassmannian G ( l,3 ) ,  the set o f lines through the orig in 

th a t lie in the reference plane F 2.

In  general, the space o f a ll fc-dimensional subspaces o f C " which intersect certain reference 

spaces in a predeterm ined way is a loca lly closed subvariety o f the Grassmannian.

D e f in i t io n  1. Given 0 <  an <  02 <  • ■ • <  o „  =  A; and a flag F.. =  (Fq C. F \  C • • • C Fn =  C ")

o f subspaces, the set o f a ll V  £ G (k ,n )  such th a t d im y  f i  F j  =  ay for 1 <  j  <  n, is called a

Schubert cell.

In  example 1.2.1, (a n ,022, 0:3) =  (0 ,1 ,1 ).

A  Schubert condition on C "  is encoded by a p a rtit io n  A w ith  at most n  — k  columns and k 

rows. We denote the corresponding Schubert cell f i \ (F . ) .  The vector space V  is an element of 

the Schubert cell t t \ ( F . )  i f  d im (V  r \F (n_ie)+ j-> l j ) =  j  for 1 <  j  <  k.

L is ting  0 <  Oi <  02 <  • • • <  o „  =  fc fo r a Schubert condition is equivalent to  g iv ing a 

p a rtit io n  A v ia  the fo llow ing bijection:

•  G iven A =  (A i >  A2 >  • • ■ >  A^ >  0), we have d im (y  f l  =  j  for 1 <  j  <  k.

•  G iven 0 <  o i  <  02 <  • • ■ <  o „  =  k then fo r each j ,  1 <  j  <  n, where O j_ i  <  a j  (w ith  the

convention th a t 00 =  0) we have Aaj =  (n — k) +  a j  — j .

In  example 1.2.1, the required intersection is described by the p a rtit io n  A =  (1) =  □ .

3
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F0 F i f 2 f 3 F i f 5
d im (F  f l  F j) 0 0 1 1 2 2

Table 1.1: Dimensions o f intersection for Exam ple 1.2.2

1

Figure 1.1: W alk corresponding to  dimensions in  Table 1.1

E x a m p le  1 .2 .2 . Consider the Grassmannian G (2,5) and a fixed flag F. w ith  restrictions on 

d im (F  D F j )  given by Table 1.1. The corresponding p a rtit io n  A is then found by the two calcu

lations:

1. d im (V  n  F (5_2)+ i_A i )  =  1 where

^ (5 -2 ) + l-A i  =  F 2 => X\ =  2

2. d im fy  n  -F(5_2)+2- a 2) =  2 where

■F(5-2)+2-A2 =  F 4 => A2 =  1

So A =  S’ which gives the Schubert cell f ig i(F ) .

A  th ird  equivalent way to  describe a Schubert condition is w ith  an n-step walk through 

the vertices o f a k x  (n  — k)  g rid  o f boxes. Beginning from  the northeast corner, walk either 

west or south. On the j th step, move west i f  d im (E  D F j )  =  d im (E  f l  V j - i )  and move south i f  

d im (E  fl F j )  =  d im (F  f l  F j - 1) +  1. The p a rtit io n  A is then the collection o f boxes northwest of 

the n-step walk.

In  Table 1.1, jum ps occur at F 2 and F 4 . The five step w alk is given in F igure 1.1.

The closure £ l \ (F .)  o f a Schubert cell is called a Schubert variety. Th is is the set of V  tha t 

meet F. a t least in  the prescribed way, or more precisely, d im (E  0  F j) >  a j  fo r all j .  A  natura l 

question is:

Q u e s t io n  1 .2 .1 . How do two Schubert varieties intersect?

A n  im p o rtan t special case is:
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Q u e s t io n  1 .2 .2 . I f  a collection o f Schubert varieties has a f in i te  number o f points in  common, 

what exactly is this number?

Such questions are typ ica l Schubert calculus questions. We w ill concern ourselves w ith  

answers to  generalizations o f these questions. M ore precisely, codim<3(/.in) ( ffy (F .) )  =  |A|, so i f  we 

have r  flags F } ,  F 2, . . . ,  F r , and the flags are in  general position, then

r r
codim  G(k,n)

j = i  j = i

where AJ is a pa rtit io n  fo r 1 <  j  <  r .  A  general Schubert problem consists o f find ing  a ll V  which

satisfy the Schubert conditions AJ w ith  respect to  F 7 for j  =  1 , . . . ,  r.

B y the  K le im an-B ertin i theorem, we can categorize the number o f solutions possible:

1. I f  2 2 j= i  l ^  l <  k (n  ~  k), then there are in fin ite ly  many solutions (over C).

2. I f  Y ^ j= i l^ J l >  k {n  — k ), and F 1, F 2, . . . ,  F r  are in  general position, then there are no

solutions, i.e. H [= i — 0 -

3. I f  X ) j=1 |AJ | =  k (n  — k), and F 1, F 2, . . . ,  F r  are in  general position, then there are a fixed, 

fin ite  number o f solutions, i.e. the set { V  G f l i = i  *s fin ite .

1 .2 .1  O r th o g o n a l ( ty p e  B n ) flags

The setting described above for the usual Grassmannian is called type A n . I f  we place a 

non-degenerate sym m etric b ilinear form  B  on the odd-dimensional vector space C 2n+1 and work 

w ith  iso trop ic subspaces (see de fin ition  2), we are describing a type B n setting. Caution: The 

fo rm  B  is not  an inner p roduct, so there exist nonzero vectors v w ith  B {v , v )  — 0.

The fo llow ing is based on [7]. Since we are w ork ing  over an algebraically closed field, we can 

always choose a basis e i, e2, . . .  e2 n+ i  for C 2n+1 such th a t

1 i f  i  +  j  =  2n +  2 
0 otherwise.

T h is  gives

B ( x , y )  =  [x j ^ 2n + l]

o o H-1

2/1

0 1 . . .  0

1
Oo

1

J/2n+l_
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for x , y  £ C 2ra+1.

For a subspace F  C C 2n+1, define V 1  as

F x  =  { i £  C 2n+1 | B ( x , y )  =  Q V y e F } .

The perp space F x  has dimension d im  F x  =  2n +  1 — d im  F .

D e f in i t io n  2. A  subspace F  C C 2n+1 is called isotropic  i f  B (x ,y )  =  0 for a ll x , y  e F . A  

maximal  isotropic subspace o f C 2n+1 is an isotropic subspace whose dimension is n.

The fo llow ing facts are immediate consequences from  the properties of the form  B:

1. ( l / ± )-L =  F

2. F  is isotropic i f  and only i f  F  C F x .

3. We always consider subspaces of C 2n+1 w ith  the induced (restricted) form  o f B,  I f  F  C C 2n+1 

then B \y  is sym m etric bilinear (bu t no t necessarily nondegenerate).

4. F  is isotropic i f  and on ly i f  B \y  =  0

5. F  is isotropic or the perp o f an isotropic space i f  and only i f  ra n k (B |y )  is m in im al (m in im al 

means m a x {0 , 2 d im F  — (2n +  1)} ) .

6 . I f  F  is the perp o f an isotropic space, then ra n k (B |v )  is odd.

7. I f  F  C W  C C 2”+1 then B  induces a well-defined form  on W / V  i f  and only i f  F  is isotropic 

and W  C F 2-. In  particu la r, i f  F  is isotropic, then B  induces a non-degenerate form  on 

F x / F .

W ith  these facts, we can construct isotropic flags F. =  (Fq C F i  C • ■ ■ C Fn C C2n+1) w ith  

d im  F i =  i  and F i  isotropic. Specifically, choose F\  to  be a one-dimensional isotropic subspace 

o f C2n+1. Once we choose F \,  we choose an isotrop ic line F 2 / F 1 c  F ^ / F i  and continue in the 

same manner, w ith  1 C F ^ / F i - i  fo r i  — 1 , . . .  ,n .  We can complete th is  flag by setting

Fn+ i =  F ^+ i _ i  for 1 <  i  <  n  +  1. A n  a lternate way o f bu ild ing  F. is to  choose a m axim al 

isotropic subspace, F n c  C2n+1. Then choose a flag F \  C • ■ • C Fn . In  th is  method, once a 

m axim al isotropic space Fn is chosen, a ll subspaces o f Fn are im m ediate ly isotropic. The flag is 

completed by setting Fn+i =  F x+1_ i for 1 <  i  <  n + 1 . The variety o f all such flags is O F l ( 2 n + l ) .

6
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M a t r i x  re p re s e n ta tio n  o f  a fla g

A  flag E. G 0 F l ( 2 n +  1) can be described by a m a trix  representation where each row r i  is a 

vector and E i  =  ( n , . . . ,  r*) for 1 <  i  <  n. We need not include rows greater than n  since these 

spaces are determined by E \ , . . . ,  E n .

A t t i t u d e  ta b le  fo r  a fla g  ce ll

O F l ( 2 n +  1) has a cell structure. A  cell can be represented using an a ttitu d e  table. F ix  a 

flag F. =  (F i  C F2 C ■■■ C Fn) and choose a basis such th a t F i =  (e\ , . . . ,  e*). We want to 

describe the cell o f O F l(2 n  +  1) th a t contains a ll flags E. such th a t d im (F j D F j )  — o t i j  for given 

a , j  w ith  1 <  i  <  n, and 1 <  j  < 2 n + l .  For the cell to  be nonempty, i t  is necessary th a t

1. J “  Otij <  1

2 . QZi ĵ-i-i &i, j ^  1

3. o ni2n + i — n. and

4. i f  i  <  k and j  <  I then ct* j  <  ctk,i-

The o t i j  can be w ritte n  in an a ttitu d e  table. A n  example o f such a table for n  =  2 is given in 

Table 1.2.

Le t the n -tup le  ( j i , j 2, • • • , j n )  describe the jum p ing  numbers for the cell, where j i  is the firs t 

position in  row i  (le ft to  r igh t) where there is an increase from the corresponding column entry 

in  row i  — 1. The ju m p ing  number n -tup le  for the cell described in  Table 1.2 is ( j i , j 2) =  (2,5).

Fq F i f 2 ^3 Fa F5
Eo 0 0 0 0 0 0
E i 0 0 1 1 1 1
e 2 0 0 1 1 1 2

Table 1.2: A  flag a ttitu d e  table fo r n  =  2. Typ ica lly , the E q row and Fo column are not w ritten .

M a t r i x  re p re s e n ta t io n  o f  a fla g  ce ll

A n  n  x  (2n +  1) m a tr ix  representation can also be used to  describe a cell o f O F l(2 n  +  1). 

For each ju m p ing  number j i ,  le t en try (i, j i )  o f the m a trix  be 1. Each entry in  the  column below 

a 1 or in  the row to  the r ig h t o f a 1 w ill be designated as 0. The rem ain ing entries are * ’s,

7
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representing free entries. Isotropy conditions must be imposed, which determines some entries. 

A fte r satisfying isotropy conditions, the number o f free entries in the m a trix  is the dimension of 

the cell in O F l ( 2 n +  1).

E x a m p le  1 .2 .3 . The set o f E. th a t satisfy the a ttitu d e  table 1.2 are given by the m a trix  

representation
T* 1 0 0 O'
•  0 *  •  1

where * represents a free entry and •  represents a determined entry. Determ ined entries come 

from  isotropy conditions. In  th is  example, before isotropy conditions are applied, E. is represented 

by the m a tr ix
a 1 0 0 O'
b 0 c d 1

where a, b, c, d are free entries. Let row 1 be v% and row 2 be v2- In  order for E. to  be isotropic, 

the sym m etric b ilinear form  imposes conditions on the variables.

B ( v = 0  <=$■ 0 =  0

B ( v i , v 2) = 0  <=> a +  d =  0

B (v 2 ,v 2) = 0  <=$■ 2 b +  c2 = 0 .

For the isotropy condition imposed by rows i  and j ,  i  <  j , there w ill be at most two linear

monomials. We solve for the variable in the linear te rm  th a t comes from row j .  In  th is  example,
2

we solve fo r d and b. Now d =  —a and b =  — y  are determined, so th is  cell has dimension =  2.

P e rm u ta t io n  re p re s e n ta t io n  o f  a fla g  c e ll

A  th ird  way to  represent a cell o f O F l(2 n  +  1) is by a perm utation. Schubert cells of 

O F l ( 2 n +  1) correspond to elements in  the W eyl group

W  =  {w  G S2n+ i  | w (i) +  w (2n  +  2 - i )  =  2 n  +  2  V i}  ( 1.1)

where S2n+ i  is the sym m etric group on 2 n + l  elements. Given a perm uta tion  w e W , we produce 

an n  x (2 n + 1) m a tr ix  representation o f the corresponding cell by placing l ’s in  positions (i, u>(i)) 

for 1 <  i  <  n, zeroes to  the righ t and below the l ’s, and * ’s elsewhere. Checking the isotropy 

conditions (like Exam ple 1.2.3) determines where * ’s are replaced w ith  * ’s. Conversely, given a 

n  x  (2n +  1) m a trix  representation o f a cell, w is determ ined by looking at the position o f the l ’s 

in the m a trix . The column position o f the 1 in row i  is uj(i) for 1 <  i  <  n. The rest o f w is then 

determ ined: w (n  +  1) =  n +  1 and u>(j) =  2 n  +  2  -  u>(2 n  +  2 — j )  for n  +  1 <  j  <  2 n +  1.
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1,2 .2  O d d  o r th o g o n a l ( ty p e  B n ) G ra s s m a n n ia n s

We now define the (maximal) odd orthogonal Grassmannian,

O G r(n ,  2 n + l )  =  { V  € G(n, 2n +  1) | V  is isotropic w rt B } .

0 G r ( n , 2 n  +  1) is a homogeneous space of the orthogonal group. L ike the usual (type A n) 

Grassmannian, the orthogonal Grassmannian has a cell structure.

A t t i t u d e  ta b le  fo r  a c e ll o f  0 G r ( n ,2 n  +  1)

For a fixed choice o f F. € O F l(2 n  + 1 ) ,  a cell o f O G r(n ,  2n  +  1) can be described by a single 

row a ttitu d e  table w ith  entries a», 1 <  i  <  2n +  1, where d im (F  n  F i)  — a%. S im ilar to  the 

flag a ttitudes, i t  is a necessary condition fo r nonempty cells th a t a j <  a j  for i  <  j  and th a t 

a j+ i  — a j <  1. A n  example o f such an a ttitu d e  for n  =  2 can be found in  Table 1.3. Note th a t an

F l f 2 F 3 F i f 5
V 0 1 1 1 2

Table 1.3: an orthogonal Grassmannian a ttitude  table fo r n  =  2

a ttitu d e  table for O F l ( 2 n +  1) gives more in form ation than an a ttitu d e  table for O G r(n ,  2 n +  1). 

In  pa rticu la r, there is a forgetfu l map

O F l(2 n  +  1) —» O G r(n ,  2n  +  1)

which maps E. i—> E n . The a ttitu d e  table for a cell o f the orthogonal Grassmannian is the 

same as the n th row o f a ttitu d e  tables of more than one cell in  O F l(2 n  +  1). Tw o different 

cells o f O F l(2 n  +  1) th a t have the same n th row in the a ttitu d e  table have the same image in 

O G r(n ,2 n  +  1) under the fo rge tfu l map.

E x a m p le  1 .2 .4 . Le t F. 6 O F l ( 2 n +  1) be the standard flag defined by F j  =  ( e j , . . . ,  e j) for 1 <

j  <  2 n + l .  The a ttitudes for cells A , B  c  O F l(5 )  are given in Tables 1.4 and 1.5 respectively. The

cells are no t the same, A=£ B ,  b u t for E. G A  there is an E \  G B  such th a t E 2  =  El, and vice versa.

Here, E '2 =  (aej -  ^ e 2  +  ce3 +  e^, e() fo r some choice o f a, c G C and E 2  =  (e i, ^ - e 2 +  ge3 +  e4}

fo r some choice o f g € C. So for c =  g we have E 2  =  E'2. On the other hand, E i  =  (e i) which 
2

cannot be E [  =  (oei — \ e 2  +  ce3 +  64) fo r any choice o f a and c.

9
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Fi f 2 F3 F4 F 5

E i 1 1 1 1 1
E 2 1 1 1 2 2

Table 1.4: a flag a ttitu d e  table for cell A

F i f 2 F3 Fa f 5
E'i 0 0 0 1 1
e '2 1 1 1 2 2

Table 1.5: a flag a ttitu d e  table for cell B 

M a t r i x  re p re s e n ta tio n  fo r  a c e ll o f  O G r(n ,2 n  +  1)

M a tr ix  representations o f two different cells o f O F l(2 n  +  1) both  having l ’s in columns 

{ j i , j 2. • • ■ >in }  w ill describe a unique cell o f O G r(n ,2 n  +  1) w ith  jum p ing  numbers { j i , . . .  , j n }- 

In  fact, two m a trix  representations of cells in  the flag variety w ill row reduce to  the same form  

i f  they describe the same cell in  O G r(n ,  2 n +  1).

L e m m a  1 .2 .1 . Elementary row operations preserve isotropy.

Proof. For an isotropic subspace V,  le t Vj, v j  6 V  where Vi and Vj are the i t h  and j t h  rows o f an

n  x  (2n +  1) m a tr ix  spanning V . B (v i ,V j)  =  0. A dd ing  a m u ltip le  o f row j  to  row i ,  we have the

new row  Uj +  a v j .

B (v i  +  a v j ,V i  +  a v j )  =  B (v i ,  Vi) +  B (v i ,  a v j )  +  B (a v j ,  vf) +  B ( a v j , a v j )

— B (v i ,V i)  +  a B (v i ,V j )  +  a B ( v j ,  vf) +  a 2 B (v j ,V j )

— 0 +  a0 +  aO +  a 20 

=  0 .

So Vi +  a v j  is orthogonal to  itself. S im ila rly  we can check th a t +  a v j,V k )  =  0 for all 

vk £ V.  □

D e f in i t io n  3. The reduced row echelon fo rm  for a m a trix  representation o f a cell o f O F l ( 2 n + 1) 

is an n  x (2n  +  1) m a trix  where the l ’s are arranged in descending order (le ft to  righ t) and there 

are zeroes below each 1.

E x a m p le  1 .2 .5 .
•  * * * 1 row reduces to •  1 0 0 0‘

•  1 0 0 0_ •  0 * * 1

10
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The set o f m a trix  representations o f cells o f 0 F l ( 2 n  +  1) th a t are in  reduced row eschelon 

form  are in  one-to-one correspondence w ith  the cells of O G r(n ,  2n  1).

P e rm u ta t io n  re p re s e n ta t io n  fo r  a c e ll o f  O G r(n ,2 n  +  1)

For a fixed F., there is a correspondence between the set o f cells o f O G r(n ,2 n  +  1) and a 

subset W '  o f the W eyl group o f O F l(2 n  + 1 ) :

W '  =  {u> e W  | w ( l )  <  lo(2) <  • <  ui(n) and ui(i) {2n  +  2 -  o j( j)  for j  <  1}}  (1.2)

L e m m a  1 .2 .2 . There are 2n cells in  O G r(n ,2 n  +  1).

Proof. We choose the numbers to  be placed in  the firs t n  positions o f the W eyl group element 

(in  table form ). The i th position has 2n — 2 ( i — 1) possibilities (there are 2n  choices for the firs t 

s lot, then 2 n  — 2 choices for the second slot since we cannot use w ( l )  or its  pa ir 2n  +  2 — w( l ) ) .  

Thus there are

2n(2n  -  2 )(2n -  4 ) . . .  (2n  -  (2n  -  2)) =  2nn!

choices for the firs t n  positions. Since we only want the elements where w ( l )  <  ui(2) <  ■ ■ ■ <  w(n), 

we d ivide by the number o f orderings o f each collection. So the number of cells in  O G r (n , 2 n +  1)

is 2!!ni =  2" . □
n!

A n  alternate no ta tion for elements o f W '  described by F. S ottile  is often useful. S h ift the 

num bering o f perm utations so th a t n  4 -1 is now 0. Then we perm ute — n , . . . ,  0 , . . . ,  n  instead o f 

1 , . . .  ,2n +  1. We use the overbar to  denote a negative number; for example, —3 =  3. In  th is 

nota tion,

W  =  { w £ S { _ „  „ }  | u>(i) +  w (i) =  0 V i}

and

W '  =  {w  £ W  | w (n) <  aj(n — 1) <  • • ■ <  w ( l)  and o j( i) ^  u ( j )  fo r j  <  1}

Th is  no ta tion  makes m an ipu la ting  the perm utations easier and adjusts more easily when n  varies. 

Standard perm utation no ta tion  is more qu ickly interpreted for m a trix  represenations and for 

dimension attitudes. These notations w ill be used interchangeably throughout.

11
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Figure 1.2: p$

P a r t i t io n  re p re s e n ta t io n  o f  a c e ll o f  O G r { n , 2n  +  1)

The cells o f 0 G r { n , 2 n  +  1) can also be described by partitions. Le t pn be the pa rtit io n  

( n , n -  1 , . . . ,  2 ,1) (see F igure 1.2). Let

'Pn =  {A =  (Ai ,  A2, . . . )  | Ai  >  A2 >  . . .  and A c  pn } ■

There is a one-to-one correspondence between elements o f W '  and elements o f V n - For u  £ W '  

and A £ V n , w corresponds to  A i f  Aj =  m ax(n  +  1 — u ( i ) ,  0) for i  =  1 , . . . ,  n. Equivalently, let 

/(A) be the number o f nonzero rows o f A. Then u> corresponds to  A if

n +  1 — u>(i) for i  <  l ( A)
Ai =  S

E x a m p le  1 .2 .6 .

Table 1.3 <->

A i =  ,
0 otherwise.

•  1 0  0 0 
•  0 * * 1 u  =  25314 =  12021 <-» A =  (1) =  □ .

For the  fixed flag F. £ O F l(2 n  -I- 1), the Schubert cell o f O G r(n ,  2n  +  1) corresponding to  

the p a rtit io n  A £ P n is denoted f 1\(F.).

f l \ ( F . )  =  { V  £ O G r (n ,2 n  +  1) | j i  =  n  +  1 — Aj for 1 <  i  <  /(A) and j i  >  n - l - 1 i f  i  >  l ( A)}

where { j  1 <  ■ <  j n }  is the set of jum p ing  numbers fo r V.  The closure o f th is  cell is the Schubert

varie ty Q,\(F.) where

f lx (F .)  =  { V  £ O G r(n ,  2n  +  1) | d im (F  f l  F j t ) >  i  V i}

L e m m a  1 .2 .3 . Let |A| =  Aj +  A2 +  . . . .  Then the dimension o f the cell f l \ ( F . )  C O G r(n ,  2n +  1) 

^ s ( nt 1) -  |A|.

Proof. The codim 0 Gr(n,2n+ i) =  |A| where |A| =  Ai +  A2 +  . . .  by [7]. The cell w ith

m axim al codimension is the cell f l Pn(F.) =  { V  =  Fn } which has dimension zero. This implies 

th a t d im (O G r(n ,  2n  +  1)) =  \pn \ =  ( " J 1)- Thus

dim(nA(F.» =  W  -  |A| =  -|A|-

□

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1 .2 .3  S c h u b e rt ca lc u lu s  a n d  c o h o m o lo g y

In  the geometric setting, Schubert calculus is norm ally  phrased in  cohomological terms (see 

[6 , 7] among others). In  the A n setting, a Schubert variety £ l \ (F .)  gives rise to  the Schubert 

cycle

in  homology. Th is Schubert cycle is independent o f the flag F.. Its  Poincare dual in  cohomology,

is called a Schubert class. Now, H * (G {k ,n ) \  Z ) is a ring, and the set o f Schubert classes {<ta} 

is an add itive  basis for th is  ring. In  particu la r, the cup product o f tw o Schubert classes can be 

w ritte n  uniquely as a linear com bination o f basis elements:

The s tructu re  coefficients fo r the cohomology ring  H * (G (k ,n ) ;  Z ) are the Littlew ood-R ichardson 

numbers. In  a compact m anifo ld  such as the Grassmannian, the cup p roduct is Poincare dual 

to  the intersection product. B y  the K le im an-B ertin i theorem, for suffic iently general flags F. 

and M . , the  Schubert varieties Q \(F .)  and f i M(M .) meet transversely, so axa^  is Poincare dual to  

[STa(-P-) n  f2M(M .)]. Now, £lx(F.) D f i M(M .) is homologous to  a union o f other Schubert varieties, 

and counts the number o f components of th is  union th a t are Schubert varieties described 

by v, Thus, know ing the L ittlew ood-R ichardson numbers answers Question 1.2.2 completely and 

gives insight in to  Question 1.2.1. The goal o f Schubert calculus is to  understand these coefficients 

from  the perspective o f the Grassmannian.

M ore generally, i f  we have r  Schubert conditions and {F ? ) for 1 <  j  <  r  meet properly 

and transversely, then a \ \ a \ 2 . . .  o \ r  is Poincare dual to  [D l= i Q \ j(F ? ) ] .  In  particu la r, ogg (where 

EB is a k x (n  — fc) p a rtit io n ) is Poincare dual to  a point. Thus, i f  a \ i a \ 2  • • • a xr =  acrg !  th en 

there are exactly a solutions to  the Schubert problem for general F 1, F 2, . . . ,  F r .

Because o f the Schubert cell s tructure  in  the orthogonal Grassmannian, one can s till ask 

questions in the B n se tting th a t are s im ila r to  questions 1.2.1 and 1.2.2 posed in the type A n 

setting.

[nA(F)] e JT ,(G (fc ,n );Z )
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1 .2 .4  S c h u b e rt c a lc u lu s  in  th e  B n s e tt in g

In  the B n setting, we have a s im ilar s itua tion  (see [7]). The Schubert cell f 1\{F.) gives rise 

to  the Schubert cycle

[HX(F.)] G H * (O G r { n ,2 n  +  1 );Z ) 

in  homology, or by Poincare duality, the Schubert class

r \  £ H * {O G r {n ,  2n +  1);Z) .

For any fixed F. £ O F l (2 n  +  1), the set o f Schubert classes,

{ t x  £ H * (O G r ( n ,  2n  +  1 ),Z ) \ \ £ V n ]

fo rm  an add itive  basis for the cohomology of the orthogonal Grassmannian, or equivalently, for 

its  Chow rin g 1 [17]. So m u ltip ly in g  two Schubert cycles v ia  the cup product yields a linear 

com bination o f Schubert cycles.

t\ t„  =
l/£'Pn

for some integers a ^ .  These integers are the type B n Litt lewood-Richardson numbers. Know ing 

these numbers allows us to  understand the ring  structure of the Chow ring or cohomology ring. 

Equivalently, i f  F. and M.  are in  general position, then the fundam ental class o f the intersection 

o f tw o Schubert varieties, [Q \(F .)  f l  is a^M[f21/ (F .)]. Note th a t i f  r  flags F } , . . . ,  F r £

O F l ( 2 n +  1) are in  general position, then the intersection of Schubert varieties, nC=1f l \ i (F?‘) is 

a transverse intersection.

'I n  this dissertation, we use the complex numbers as the  base field. I t  should be noted th a t more generally, 
w ith certain modifications such as replacing the  cohomology ring H 2* w ith the Chow ring CH *,  the complex 
num bers can be replaced with any algebraically closed field of characteristic 7̂  2.
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1.3 L it t le w o o d -R ic h a rd s o n  R u le s

A  com binatoria l a lgorithm  for calculating L ittlew ood-R ichardson numbers is called a Littlewood- 

Richardson Rule. In  the A n setting, several such rules are known. There are classic rules such as 

P ie r i’s form ula and G iam be lli’s form ula as well as rules invo lv ing tableaux [6], puzzles [11, 12], 

and checker games [22] (for a description o f the  checker games, see also section 1.4).

P ie ri’s form ula is used in the special case o f ca lcu la ting a^cr^ where ^  =  (k ) is the pa rtit io n  

consisting o f one row o f size k. P ie ri’s form ula is

a^a {k) — y > v

which is the sum over those A' th a t are obtained from  A by adding k boxes w ith  no two in the 

same column.

G iam be lli’s form ula says we can decompose a \  to  be w ritte n  as an expression invo lv ing

m u ltip lica tio n  and add ition  o f oVs. Once a \  and are expressed th is way, P ie ri’s form ula can

be used to  calculate from  there. G iam be lli’s form ula is

=  det(<Jxj + j - i ) i< i , j< n-fe

In  the B n setting, there is a P ieri-type ru le [9] and a G iam belli-type rule [18] for the  or

thogonal Grassmannian. In  addition, one can use sym m etric functions to  determ ine the aXjX. 

The H a ll-L ittlew ood  sym m etric functions, or P-polynom ials, P \ { x \ t ) ,  form  a basis for the ring 

o f sym m etric functions. We can m u ltip ly

PxP» =  £  ^ p v
uev

and determ ine bx^ for a ll v £ V. The cup product axa^  is then a linear com bination w ith  

coefficients

^  =  i f " e P ”(0  otherwise

[10, 16]. There is a M aple program w ritte n  by John Stembridge [20] th a t w ill w rite  the product 

P\Pfj. as a linear com bination o f P-polynom ials.

Buch, Kresch, and Tamvakis have a com binatoria l, m axim al orthogonal L ittlew ood-R ichardson 

rule [3] th a t uses shifted tableaux. There is, however, no known L ittlew ood-R ichardson rule for 

O G r(k ,  2n - I-1) when k <  n.
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1.4  V a k i l ’s G e o m e tr ic  L it t le w o o d -R ic h a rd s o n  R u le

In  recent work, V ak il describes the (type A n ) L ittlew ood-R ichardson numbers geometrically 

v ia  exp lic it ra tiona l degenerations [22], Given tw o flags F. and M . in general position w ith  

respect to  each other, V ak il gives a sequence o f ra tiona l, codimension one degenerations in  the flag 

m anifo ld  th a t moves one flag u n til i t  coincides w ith  the other. The intersection of two Schubert 

varieties given by A and fx is studied as the space changes through the sequence of degenerations. 

A t each step, the space either stays as one component or breaks in to  two components, each w ith  

m u ltip lic ity  one. The number is the number o f Schubert varie ty components described by 

v  th a t are the result o f the degeneration sequence beginning w ith  the intersection o f Schubert 

varieties given by A and fi. A  com binatoria l bookkeeping device called a checker board and 

described in  [22] encodes the dimensions o f intersection at each step o f the degeneration.

V ak il describes as the number o f checker games s ta rting  w ith  the configuration 

and ending w ith  the configuration ° v» j i nai ■ G iven a s ta rting  checker configuration, o»in i t , there 

are pa rtitions  A and n  so th a t o»init  corresponds to  the Schubert calculation, Conversely,

i f  crxa^ 0, then there is a unique checker configuration o *in it such th a t the sum of all possible 

outcomes o f games beginning w ith  th is  o *in jt configuration corresponds to §*ve a

summ ary here of V a k il’s work. For a fu ll description, see [22],

1 .4 .1  C h e cke r gam e se tu p

We s ta rt by tak ing  two flags in  general position w ith  respect to  each other, F. and M . , and a 

representative V  € £ l\(F .)  D f iM(M .). We then take an n  x n  checker board w ith  n  black checkers, 

no tw o in the same row or column. The columns o f the checker board refer to  F i,  F2, . . . ,  Fn 

and the rows refer to  M i ,  M 2, . . . ,  M n . The d im (F ; fl Mfc) is the number o f black checkers in 

positions ( i , j )  such th a t i  <  k and j  <  I. In  other words, d im (F / fl Mfc) is the number o f black 

checkers weakly northwest o f the (fc,Z) position. F igure 1.3 shows a »-configuration where, for 

example, d im (F 2 fl M 3) =  2. In  the setup, F. and M. are in general position w ith  respect to  each 

other, so the beginning *-configuration, or njt , is given by black checkers on the antidiagonal. 

See figure 1.5.

To complete the setup o f a checker game, the w h ite  checkers correspond to  V  € G (k , n ) th a t 

meet the flags F. and M . in  the prescribed way. I f  axcr^ /  0 then there is a unique way to  place 

k  w h ite  checkers on the • inn  board such th a t
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F\ F2 Fs Fi
|« Mi

•___________M 2

*________M$
• M i

F igure 1.3: Th is  •-configura tion  encodes d im (M j f l  F j) .  The number o f black checkers weakly 
northwest o f (i, j )  is d im (M j Pi F j) .

Fi F2 F3 Fj
0 0 0 1 Mi
0 0 1 2 M2
0 1 2 3 M2
1 2 3 4 Mi

Figure 1.4: d im (F j n  M ,) for • init

1. There are no two w hite  checkers in  one row or column

2 . d im (F  f l  F) f l  Mfc) is the number o f w h ite  checkers weakly northwest o f the (k , l ) position.

E x a m p le  1 .4 .1 . In  G(2,4) ,  to  calculate agog, we firs t set up the checker configuration og 

Tw o flags, F. and M . , in the most general position have dimensions o f intersection given in Figure

1.4 w hich corresponds to  the •m u  checker position in  F igure 1.5.

The fundam ental class dual to  erg has dimensions o f intersection given in  Table 1.6 and since 

erg is independent o f the choice o f flag, we also have the dimensions o f intersection fo r V  f l  M j in  

Table 1.7.

Using d im (F  f l  F j) ,  d im (V  f l  M i) ,  and d im (M j n  F j)  to  determine the general intersection 

o f V  f l  M. f l  F., F igure 1.6 is constructed to  describe d im (U  f l  M i f l  F j) .  Th is  corresponds to  the 

°g g * im i checker configuration in  F igure 1.7.

F igure 1.5: • i „ it for n  =  4
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F0 Ex f 2 Fs F a

d im ^ D F , - ) 0 0 1 2 2

Table 1.6: A tt itu d e  table for f2 (i,i) ( iT ) for Exam ple 1.4.1

M 0 M i m 2 m 3 M a

d im (F  D M i) 0 0 1 2 2

Table 1.7: A tt itu d e  table for for Exam ple 1.4.1

Fi 1*2 Ej F4

0 0 0 0 M i

0 0 1 1 m 2

0 1 2 2 m 3

0 1 2 2 M a

Figure 1.6: in it ia l d im (K  f l  F j  f l  M ,) for c rf i. ijc ^ i,!)  (Example 1.4.1)

F igure 1.7: o»init for cr(i,i)cr(12) (Example 1.4.1)
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1.4 .2  P la y in g  th e  gam e

The flag M. is moved th rough a series o f ra tiona l codimension one degenerations, called the 

specialization order u n til M.  coincides w ith  F . . A t each stage, the w h ite  checkers along w ith  the 

black checkers describe a pa rticu la r 2-flag Schubert variety. For each degeneration, the space of 

V  th a t meet ( F ,  M .)  in the o«-way e ither stays as one component or breaks in to  two components. 

Each piece has m u ltip lic ity  one.

D e f in i t io n  4.

1. X ,  =  { (F . ,M .)  6 F l ( n )  x F l(n ) \  F. and M.  meet in  dimensions described by the •- 

configuration }

2. X 0» =  { (V ,F .,M .)  e  G {k ,n )  x F l { n )  x  F l( n ) \ ( F . ,M . )  G X ,  and d im (E  n  F j  D M i)  is 

described by the o»-configuration. }

3.

X 0.  =  { ( V ,F . ,M . )  G G (k ,n )  x  F l ( n )  x F l { n )  \

(F ,  M .) G X ,  and d im (V  f l  F j  f l  M i)  is at least the dimension

described by the o •-con figu ra tion .}

=  GlG(k,n)xX,X  o .

The black checker moves follow  the specialization order which has the p roperty  th a t d im  X , next =  

d im X ,  — 1. On the other hand, at each step, the w hite  checkers move in such a way th a t

the dimension o f the fiber of X 0.  —> X .  w ill be the same as the dimension o f the fiber of

Xo»ntxi —* X , ncxt. The p roo f o f the geometric Littlew ood-R ichardson Rule shows th a t the rules 

o f the  game consider exactly the s ituations where d im  X ,  — 1 =  d im  X , next b u t the dimension o f 

the choice o f appropriate V  remains fixed.

To play a checker game, n  black checkers and k w h ite  checkers are set up in  a prescribed 

way on an n  x n  checkerboard. The black checkers are moved, one swap at a tim e  follow ing the 

specialization order. Th is is the order

C n-ien -2  • • • e2ei en_ i . . .  e2 . . .  en_ i en_2 en_ i 

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



F 0 F j f 2 f 3 F 4
d im (F  n  F j) 0 0 1 1 2

Table 1.8: A tt itu d e  table for Example 1.4.2

read righ t to  le ft where e; swaps the black checkers in  the i th and (£ +  l ) si rows. The two flags, F. 

and M . , begin in  the most general position possible, corresponding to  • i nu- F igure 1.8 shows the 

black checker specialization order for an n  =  4 game. The diagram corresponding to  each step o f 

the game shows how F. and M.  intersect as d im  X ,  decreases by one for each step. The pictures 

are pro jectiv ized, so a po in t represents 1-dimensional space, a line represents a 2-dimensional 

space, and the plane represents a 3-dimensional space.

There are specific rules governing the movement of the w h ite  checkers at each step (details 

o f the rules can be found in [22]). o *iriit is the in it ia l setup o f w h ite  and black checkers, o• f ina l  is 

the fina l outcome of a checkergame, and o»midsort refers to  the  configuration of w hite  and black 

checkers a t any interm ediate step o f the game. In  most moves o f the checker game, there is a 

unique way to  move the w h ite  checkers such th a t for the pro jection

7r : G {k ,n )  x X , - )  G (k ,n )

we have d im  7r (A 0. )  =  d im  7r ( A o . „ „ „ , ) .  In  one type o f s itua tion  there are tw o possible placements 

o f the w h ite  checkers so th a t d im 7r (A 0, )  =  d im  7r (A o .„,,„,) (see step 2 o f figure 1.10). In  th is 

s itua tion , instead of o* m oving to  o»next, the game splits in to  two, w ith  configurations ° stay9next 

and 0swap9next- Geometrically, as ( F ,  M .)  G X ,  specializes to  a po in t in X , neit, the correspond

ing fiber { V  G G (k ,n ) \ (V , F., M .)  e  X ot}  specializes to  a d iv isor w ith  two components, each 

having m u ltip lic ity  one.

E x a m p le  1 .4 .2 . A  classic example o f a Schubert problem asks: How many lines meet four 

fixed pro jective lines in P 3? This is equivalent to  asking how many V  G G (2 ,4) meet four fixed 

two-planes in  one-dimensional subspaces.

For one fixed 2-plane, F ^ \  we want dimensions o f intersection described in  Table 1.8. Th is 

corresponds to  the p a rtit io n  A =  □ . To calculate [ f i ^ F 1) fl f ln (F 2) fl f2D(F 3) fl f i a(F 4)] or 

<7a<7n<Tni7D,we begin w ith  aaan- F igure 1.9 gives d im (F  H F j  D M i)  for 1 <  i , j  < 4  and the 

corresponding o»init configuration.
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Figure 1.8: Specialization O rder for n  =  4
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F i F t F3 F4
0 0 0 0 M i •

0 0 0 1 m 2 • O

0 0 0 1 m 3 •

0 1 1 2 m 4 • O

Figure 1.9: In it ia l <tq<tq configuration (Example 1.4.2)

For th is  example, we w ill again consider the pro jectiv ized p icture, so V  £ G (2,4) w ill be 

drawn as a dashed line. For we can th in k  o f V  as the span o f 2 points described by the

two w h ite  checkers. One po in t lies on a general po in t of F 2 f l  M 4 =  F 2 (not on F i) .  The other 

po in t lies on a general po in t o f F4 f l  M 2 =  M 2 (not on M i) .  F igure 1.10 walks through the <7Dctp 

checker game and shows the corresponding geometric in te rpre ta tion . Note th a t in  the in it ia l 

configuration d im (n D(F .) n f l a(M .)) =  2 and d im {F }  remains 2 through the game. Note also the 

sp lit in to  tw o components a t the second step, which results in  <70<rn =  om +  erg. Continuing the 

calculation o f (ctq)4, we have

<Ta&n&n&n — (cm  T  CTg)<TP(Tn

=  (Oco0b)<7a +  (<7g<7a )<7p.

Now, two new checker games must be set up and played. F igure 1.11 gives the dimensions 

and ouinit configuration for am aa and F igure 1.12 gives the same fo r crgcrD. Both  games, am aa 

and crgcro, y ie ld a o• f ina l  configuration corresponding to  , so the last game is the same for both 

branches, namely a&aa. The d im (F  f l  F j  f l  M j)  and o *in it configuration for a&aa are given in 

F igure 1.13.

The outcome o f th is  fina l game is a&an — so (an)4 =  2 u g , meaning there are two 

solutions to  the orig ina l Schubert problem.

1 .4 .3  T h e  geom etric  L ittle w o o d -R ic h a rd s o n  ru le

Consider the fo llow ing com m utative diagram:

X 0,  ---------> X 0,  <----------  D x
open closed

I i 1 <i3>
_____ 1 x »  U x ,  *— — X ,
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swap

Figure 1.10: cra^a =  C(2) +  o’( i. i)
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F \ F2 F3 F4
0 0 0 0 M i •

0 0 0 1 m 2 • 0

0 0 0 1 m 3 •

1 1 1 2 Ma *0

Figure 1.11; In it ia l o-(2)cra configuration (Exam ple 1.4.2)

F\ F 2 F3 Fj

0 0 0 0 M i •

0 0 1 1 m 2 *0
0 0 1 1 m 3 •

0 1 2 2 Mi • 0

Figure 1.12: In it ia l <7(i,i)Ctq configuration (Example 1.4.2)

F i F2 F 3 F4
0 0 0 0 M i •

0 0 1 1 m 2 •0

0 0 1 1 m 3 •

1 1 2 2 Mi •0

F igure 1.13: In it ia l <7(2ii)<to configuration (Example 1.4.2)
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The closure o f the upper le ft corner is taken in  G(k, n ) x  X ,  w hile the closure of the upper m iddle 

is taken in  G (k ,n )  x ( X , U X , next). Define D x  as the fiber product fo r the righ t square o f diagram 

(1.3). The Geometric L ittlew ood-R ichardson rule states th a t at each stage o f a checker game, 

the space o f a ll V  th a t meet (F . , M .) in  the °»next way is exactly D x -  In  other words, the rules 

o f the checker game were made in the righ t way, causing no add itiona l nor lost components and 

no extra  m u ltip lic ities . Precisely,

T h e o re m  1.4.1 (Geometric L ittlew ood-R ichardson Rule).

X  ^ ° a t a y  * n e x t  ’  ^  ° a w a p * n e x t  > ^ ° s t a y * n e x t  ^  ^ 0 a 5 i i a p * n e i t

The p roo f o f the Geometric L ittlew ood-R ichardson Rule firs t shows th a t the components of 

D x  are exactly those described by each step o f the checker game, namely X 0stay, next, X o swapt next, 

or the union o f the two. The proof then shows th a t each of these components has m u ltip lic ity  1.

1 .4 .4  T h e  im p o r ta n c e  o f  a g e o m e t r ic  ru le

W hy do we want a geometric in te rp re ta tion  o f the L ittlew ood-R ichardson Rule? The in it ia l 

question posed is really a geometric question: Given two Schubert conditions and two general 

flags, we want to  find out about the set o f V  & G (k ,n )  th a t satisfy the given conditions w ith  

respect to  the given flags.

Before the w ork o f V akil, geometers were forced to  analyze general Schubert problems al

gebraically. In  particu la r, tw o Schubert conditions and two general flags correspond to  two 

Schur polynom ials (already we’ve jum ped in to  algebra). Using a (non-geometric) L ittlew ood- 

R ichardson rule, the p roduct o f these two Schur polynom ials gives a sum o f various Schur po ly

nomials. These new Schur polynom ials correspond to a sum o f Schubert conditions. By the 

K le im an-B ertin i theorem, th is  new sum o f Schubert varieties is homologous to  the orig inal in te r

section. T h is  amounts to  a black box approach to  determ ining the intersection o f two Schubert 

classes.

On the other hand, V a k il’s geometric ru le gives an exp lic it step-by-step description of how 

the intersection and the sum are connected. Th is is more d irect and in  general preferable to 

a black box explanation. M ore im portan tly , th is  proof opens the door fo r other applications. 

In  pa rticu la r, Schubert induction  [23] is a consequence o f th is  geometric proof. Among other 

th ings, Schubert induction shows th a t when the intersection o f a collection of Schubert varieties

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



has dimension zero, then for most choices o f real flags, all o f the expected solutions are real. 

V a k il’s geometric proof using degeneration methods w ill like ly also lead to  numerical solutions o f 

general Schubert problems. In applications such as contro l theory, the existence o f real solutions 

and num erical a lgorithm s are tremendously im portan t, so the geometric L ittlewood-R ichardson 

ru le promises to have a significant im pact on such fields.

26
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1.5 S chubert In d u c tio n

In  th is  section, we give a b rie f in troduc tion  to  Schubert Induction , an im po rtan t application 

o f V a k il’s geometric L ittlew ood-R ichardson rule. For a complete p roof and discussion, see [23].

Consider Example 1.4.2 o f four fixed pro jective lines in P3. The question o f how many 

other pro jective lines intersect the four fixed lines can be answered by the Geometric L ittlew ood- 

R ichardson Rule (of course it  can be answered other ways as well). Suppose we want both  o f the 

solutions to  be real. We m ight ask: Is there a choice o f four real flags such th a t the intersection 

o f the corresponding Schubert varieties yields all real solutions? The answer is yes, and Schubert 

Induction  is used to  prove this.

Le t P  be a property  o f morphisms th a t depends only on dense open subsets o f the range, 

meaning /  : X  —> Z  has property P  i f  there is a dense open subset V  C Z  such th a t 

has the property  P. For a given •-configura tion  and subvariety Y  C G (k ,n )  x X , ,  le t 7r#]y  be 

the pro jection

{ (V , F 1, . . . ,  F m) 6  G(k, n)  x F l { n ) m - 2  x V .  | V  e U ai ( F i ) for 1 <  i  <  m  -  2 and (V , F m~ \ F m) € V }

h y
F l ( n ) m ~ 2 x  X .

T h e o re m  1.5.1 (Schubert Induction  Theorem).

I F

1. Cla C  G (k ,n )  x  F l ( n )  is the universal Schubert variety, =  { ( V ,F .) \V  G f l a (F .) } ,  then 

the projection S : Q,a —> F l ( n )  has property P  fo r  al l  partit ions a

2 . whenever TT,nextiDx has P , th e n i r t -x0, has P

3. whenever the checker game splits and both n m -y and n .  -y have P
n e x t » ° s t a y 9 n e x t .  n e x t r ^  o s w a p 9 n e x t

then Tr*ncxt,Dx has P  

T H E N

We can have many Schubert conditions and property P  w il l  s t i l l  hold. In  other words, property 

P  holds V m , Q i, . . . ,  a m fo r  the projection

{(V , F l , . . . ,  F m) e G(k, n)  x  F l ( n ) m \V  e f i ai (F i )  f o r  1 <  i  <  m }

I <IJ)
F l ( n ) m .
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(1  j 9 f i n a l ) , ( 2 j •  f i n a l )  . (3 *  •  f i n a l ) 
1 
1

! ' I I /  I

1
t
1

( 1 , * 4 )  / | / 1
1

( 1 , « 3 )  / 1 / 1

( 1 . * a )  / ( 2 , n )  / ( 3 . » 2 )

r (1  j • i n . i t )  ' ( 2 ,  • i n t t )  ' ( 3 ,  • i n i t )

F igure 1.14: O rder of induction  using Type I  and Type I I  induction  steps

The p roo f is a backwards induction on the steps through the specialization order (type 

I  induction  step) and a forward induction on the number o f Schubert conditions, m  (type I I  

induction  step). Details can be found in [23].

1. Type I: th is  type of induction step says i f  we are a t •  final and we know th a t at •*+1 

the pro jection onto F l ( n ) m has P, then at the pro jection also has property  P.

2. Type II :  th is induction  step says i f  we are at a nu position and we have m  Schubert 

conditions, then we can rew rite  these conditons as the fina l step o f a game played using 

m  +  1 Schubert conditions.

The order o f induction  can be pictured as in F igure 1.14. Le t be an ordered pair

where m  is the number o f Schubert conditions and is the j th step in  the specialization order,

W i t h  • i n n  =  * i .

1 .5 .1  A p p lic a t io n s

Schubert Induction  can be applied to  several questions. Tw o are summarized here.

R e a li ty

R eturn ing  to  the question of reality, are Schubert problems enumerative over the reals?

C o ro l la r y  1 .5 .2 . There is a dense open subset o f F l ( n ) m , al l  real, such that appropriately asked 

Schubert questions on these flags w il l  yield all real solutions.

E x a m p le  1 .5 .1 . To see how Schubert Induction  helps answer th is  question, we look at the 

example in  G (2 ,4 ) explored earlier (example 1.4.2). The calculations can be summarized by the 

tree diagram  on the r ig h t side o f Figure 1.15. Each vertica l line represents the movement through
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(4,<
Type I

(4, •  final) 
Type n  *■ II

^o, * im t)
l

Type I (3) *midsort')

(3, •  final') 
Type H Jl

*m it)
I

Type I i
i

™ TT  final)Type I I  ||

Type I

(1, •  final)

On

(<7n<7n)cro

c7m(o'D̂ Tn)
II

((JcDO'a)aa

CTgjCTQ

0g(<7n<rn)
II

( t7 g ( 7 o ) (7 n

CTjpcrn

F igure 1.15: W orking from bo ttom  to  top, Schubert Induction  is used to  show th is  Schubert 
problem is enumerative over the reals.

the specialization order, or p laying the checker game. The branching at Y  is where the checker 

game aaa n sp lits in to  two games.

F irs t we check th a t S : f l a {F.) —> F l ( 4) has property  P  fo r a ll pa rtitions  a. In  the rea lity  

question, we are checking th a t for a ll partions a  there is a dense open real subset U  o f F l ( 4) such 

th a t S'-1 (17) C f I Q(jF.)(K). F irs t note th a t the only single Schubert C ond ition  th a t yields a fin ite  

number o f solutions is erg. So we find  a dense open subset of F l(4)(W )  such th a t its preimage is 

real, erg is Poincare dual to  { V  € G (k ,n ) \V  =  i ^ } -  Choose U  =  F l ( 4)(R ). C ondition 1 is met. 

C onditions 2 and 3 are also met by the choice o f U.

Follow ing F igure 1.15 we can w alk through the induction order beginning at both leaves 

on the  bo ttom  and simultaneously m oving up. A t Y ,  each component has property P , so by 

cond ition  3 o f the theorem, when combining oswap and ostay we w ill s til l have property P.

G en eric  Sm oothness

We know th a t a Schubert problem over an algebraically closed field o f characteristic zero 

w ill always give the expected number or dimension o f solutions. For an algebraically closed field

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



o f positive characteristic, p, th is  is not always the case since there do exist nowhere smooth, 

surjective maps between smooth spaces. Consider the fo llow ing defin ition:

D e f in i t io n  5. A morphism /  : X  —» Y  is generically smooth i f  there is a dense open subset 

V  C Y  and a dense open subset U  C f ~ 1 (V )  such th a t /  is smooth on U.

I f  the pro jection in  (1.4) is generically smooth, then we have the fo llow ing corollary:

C o ro l la r y  1 .5 .3 . I f  a part icu lar dimension o f  solutions or a certain f in i te  number o f solutions 

are expected over C, then the same dimension o r number of solutions can be expected over any 

algebraically closed field. In  part icular, this holds fo r  fields o f characteristic p >  0.

A  tra d itio n a l way to  show th a t Schubert calculus is enumerative over C is to  use the K leim an- 

B e rtin i Theorem. K le im an-B ertin i implies th a t the pro jection in  (1.4) is generically smooth over 

C, which in  tu rn  shows th a t Schubert calculus is enumerative over C. U nfortunate ly, K leim an- 

B e rtin i fails in  characteristic p >  0, so u n til [22], there was no way to  show th a t the pro jection 

in (1.4) is generically smooth over a field o f characteristic p  >  0. Generic smoothness used as 

p roperty  P  in Theorem 1.5.1 satisfies a ll three hypotheses, so by Schubert Induction, (1.4) is 

generically smooth. Th is  implies corollary 1.5.3.
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1.6 D is s e rta tio n  goals and rea lities

The goal o f th is  pro ject is to  state and prove a type B n geometric L ittlew ood-R ichardson 

ru le  fo r the m axim al orthogonal Grassmannian along the lines o f V a k il’s type A n rule. A  strategy 

s im ila r to  [22] is used here, however the number o f cases to  be considered is s ign ificantly  larger. 

There are three times as many tr iv ia l cases and at least six times as many n o n -triv ia l cases.

Th is dissertation is not a complete p roo f o f a type B n geometric L ittlew ood-R ichardson rule 

for the m axim al orthogonal Grassmannian (conjecture 3). We present a substantial portion  of 

the proof o f conjecture 3 includ ing a specialization order for the degeneration o f one orthogonal 

flag in to  another (section 2.2), p re lim inary  lemmas w ith  careful consideration to  the effect o f the 

b ilinear form  on the geometry (in particu la r, lemma 3.3.1), defin itions of spaces needed for the 

p roo f o f the main conjecture, and proofs for certa in cases in the conjecture. We give complete 

proofs fo r the tr iv ia l cases, both  the so and s* cases (section 4.2). We leave fo r fu tu re  work 

no n tr iv ia l cases where there is a w h ite  checker in  column c +  1. For n on triv ia l cases w ith  no 

w h ite  checker in  column c +  1, we give p a rtia l results for the case of non triv ia l Sj moves where 

there is no w h ite  checker in  row ds  <  n. We give complete proofs in  the cases

1. N o n triv ia l Sf-moves where there is a w h ite  checker in  row d& <  n.

2. N o n triv ia l case for So moves.
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C h a p te r 2

STATEMENT OF THE RULE
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F, F2 F3 F4 F5
Mi 0 0 0 0 1
m 2 0 1 1 1 2
m 3 0 1 2 2 3
m 4 0 1 2 3 4
Mi 1 2 3 4 5

F igure 2.1: The dimensions o f M* n  Fj encoded by the black checker configuration on the righ t 
are listed on the left.

Fi F2 F3 F i F5
M, 0 0 0 0 1
m 2 0 0 0 1 2
m 3 0 0 1 2 3
m 4 0 1 2 3 4
Mi 1 2 3 4 5

Figure 2.2: • j„ jt-co n fig u ra tio n  for n  =  2

In  th is  chapter, we state the type B n geometric Littlew ood-R ichardson rule and describe 

some prelim inaries needed for the proof.

2.1  B la c k  C hecker D iag ram s and doub le  S chubert cells

Consider a (2n +  1) x  (2n +  1) checker board w ith  2 n +  1 black checkers, no two in the same 

row or column. We make a rank table describing d im (M j fl F j)  such th a t d im (M * fl F j)  is the 

number o f black checkers weakly northwest o f position (i , j ). We define

X , =  { ( M . ,F . )  £ O F l(2 n  +  1) x O F l ( 2 n +  1) | M. and F. meet in dimensions

described by the *-configura tion}

X ,  is an example o f a double Schubert cell. See figure 2.1.

The dimensions o f two two transverse flags are encoded by black checkers in  positions (z, 2n +  

2—i)  fo r 1 <  i  <  2 n + l.  We w ill call th is  configuration •jn»t> the in i ta l  black checker configuration. 

See figure 2.2.

The configuration o f black checkers in positions ( i , i )  for 1 <  i  <  2 n + l  describes the diagonal 

o f O F l ( 2 n +  1) x O F l ( 2 n +  1). Such a configuration w ill be called • f ina l ,  the f ina l  black checker 

configuration. The corresponding double Schubert cell is X , final.
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2.2 S pec ia liza tio n  o rd er

Given an isotropic flag F. and an isotropic flag M. th a t is transverse to  F ., we give a sequence 

o f n 2 ra tiona l curves in 0 F l ( 2 n  +  1), each o f degree one or two. The sequence o f curves moves 

the flag M.  u n til i t  coincides w ith  F.. Traveling along each curve causes a m in im al increase in 

intersection between M. and F., a codimension one degeneration. A  degeneration corresponds to  

m oving black checkers on the (2 n +  1) x (2n +  1) checkerboard. The prescribed sequence o f black 

checker moves is called the specialization order.

T h e o re m  2 .2 .1 . There is a sequence o f n 2  codimension one degenerations taking an arbitrary  

isotropic f lag  to a fixed isotropic flag. Each degeneration respects isotropy and corresponds to a 

curve o f degree one or two in  the orthogonal flag variety .

Consider the subset S of' the sym m etric group on 2n +  1 elements.

S — {so, ^11 i Sn_ 1} ^  ^2n-(-l

where so =  ( n ,n  +  2) and s, =  (n + 1 +  i , n  +  2 +  i ) ( n  + 1 - i , n  — i )  for 1 <  i  <  n —1. S generates

W ,  the W eyl group for B n , see equation (1.1). Note th a t

1. s? =  1

2. (sjS j+ i ) 3 =  l f o r l < * < n  — 2

3. (sosO4 =  1

4. (SiSj)2 =  1 for |i — j \  >  2.

So (W, S) is a Coxeter system [5]. The specialization order comes from a walk through the B ruhat

order o f W ,  beginning w ith  a representation o f the longest word u>0  (length n 2) and ending w ith

the iden tity , 1. Let

Wo =  (S n-lS n -2  . . . So ■ • ■ S„_2Sn_ i) ( s n_2Sn-3  • • • So ■ ■ • Sn -3Sn-2 ) • • • (siSoSi)(so). (2.1)

I f  s j e S is the rightm ost le tte r of a word w, apply the perm utation Sj to  oj, g iv ing oj' =  uiSj. By

the properties o f the Coxeter system (kF ,5), we have s j  =  1 so J  has length 1 less than oj. The 

representation o f u>o in  equation (2.1) (reading righ t to  le ft) gives the specialization order for the 

deform ation o f M.  in to  F . .
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An so move swaps the black checkers in  rows n  and n +  2. An S i, i  ^  0, move swaps the 

black checkers in rows n  +  1 +  i  and n  +  2  +  i  and simultaneously swaps the checkers in rows 

n +  1 — i  and n — i. A n  Sj move swaps four checkers w hile an so move swaps only two. See figure 

2.3. The movement o f checkers occurs w ith  some sym m etry about position ( n +  l , n + 1). In  th is 

choice of path, the radius o f movement o f checkers about position ( n + l , n + l )  increases as the 

specialization order progresses.

E x a m p le  2 .2 .1 . For n  =  3, uiq =  S2SiSoSi«2si soSiSo. The interm ediate checker configurations 

correspond to  p a rtia l factorizations o f ojq. F igure 2.3 shows the nine moves o f the black checkers 

and the corresponding pa rtia l factorizations and perm utations. The W eyl group fo r n  =  3 can be 

realized as a polytope. Consider the po lytope obtained by shaving o ff the corners and edges of a 

cube. The faces of the cube become octagons, the edges become squares, and the vertices become 

hexagons. Such a polytope is called a perm utahedron of type Bz [5]. See figure 2.4. The vertices 

correspond to  elements o f the W eyl group. The edges between squares and octagons correspond 

to  so moves. The edges between hexagons and octagons correspond to  Si moves. A nd the edges 

between squares and hexagons correspond to  s2 moves. I f  we place the longest word at the north  

pole o f the perm utahedron, then the identity , 1, is the south pole. The specialization order is a 

prescribed path along the edges (w ith  the firs t step along the edge between the square and the 

octagon) to  move from  the no rth  pole to  the south pole.

We now describe the degeneration at each step by describing an exp lic it ra tiona l curve th a t 

the M.  flag follows to  move one step closer to  becoming the F. flag. Given any F. and M . in 

•-pos ition , we can choose a basis such th a t F. is the standard flag and M.  is given by the • -  

configuration. Specifically, F j =  ( e \ , . . .  ,e j )  and M i  — (e ^ , . . . , e^)  where j k  is the column of 

the black checker in  row k.

For a fixed F . , we describe a curve in X .  U X . ncit as the set o f points (F . , M.p) for p =  [s, t] £ 

P 1 w ith  the properties:

1. =  M.

2. ( F . , M P) e X .  for [1,0]

3. ( F „ M . [1'01) € X . nex4

The degeneration for an s* move is linear w hile  the degeneration for an sq move is quadratic.
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Figure 2.3: Specialization order for B 3 . Each step is labeled w ith  the corresponding element of 
the W eyl group, a perm uta tion  o f {3 ,2 ,1 ,0 ,1 , 2 ,3 }, and a perm uta tion  o f {1 ,2 ,3 ,4 ,5 ,6 ,7 }
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Figure 2.4: Permutahedron o f type B 3 from  [5]

2 .2 .1  R a t io n a l c u rv e  fo r  an  Sj m o ve

In  an s* move, i  ^  0, black checkers in  rows n  +  1 — i  and n  — i  swap and black checkers 

in rows n  +  1 +  i  and n  +  2 +  i  swap. W h ile  there are four checkers moving, only two spaces, 

M n _ j and M^-_i =  M n+i +i  are actua lly  m oving in the degeneration. Since is determined

by M n_ i, we can describe the curve by showing w hat happens to  the flag

M ?  =  (M j C • ■ • C C M n+1_ i C • • ■ C M n)

For a ll p G P 1, we need C Define M p as

Mje ~  ~  (eh  > • • • i ejk)

for 1  <  k <  n  — i  — 1 and for n + 1  — i  <  k < n  and

A^n-» =  M n - i- 1 +  (sejn+1_i +  te jn_i )

Note th a t for any choice p € P 1, M p_ i is isotropic and M p_i C M n+ i_ j.

E x a m p le  2.2 .2 . We illus tra te  th is  linear curve w ith  the s i move (n  =  3) shown in figure 2.5.

For th is  configuration, we choose a basis for F. and M. so th a t F. is the standard flag w ith

F j  =  ( e j , . . .  ,e j )  and

M i  =  W )

M 2 =  (ey, ee)

M 3 =  (ey, ee, 63}
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Figure 2.5: B lack checker configuration for an Si move

Let M f  =  (er, se3 +  tee). W hen p  =  [0,1], then M f  =  M 2 and M ?  =  M..  Consider a m a trix  

whose firs t i  rows span M f  (as long as s ^ t ) .

0 0 0 0 0 0 1
0 0 s 0 0 t 0
0 0 t 0 0 s 0
0 0 0 1 0 0 0
0 s 0 0 - t 0 0
0 t 0 0 s 0 0
1 0 0 0 0 0 0

In  row 5, we use —t instead o f t  so th a t M f  = I f p =

in ^-positions and zeroes otherwise. I f  p = [1,0], then M f  =

make a pa th  to  p =  [1, 0], we begin by m oving away from  th

generality, le t s =  1. For our example, th is  gives the m a trix

' 0 0 0 0 0 0 1
0 0 1 0 0 t 0
0 0 t 0 0 1 0
0 0 0 1 0 0 0
0 1 0 0 - t 0 0
0 t 0 0 1 0 0
1 0 0 0 0 0 0

The firs t i  rows should span M f , so again w ith o u t loss o f g(

row 6 g iv ing  the m a tr ix
' 0 0 0 0 0 0 1

0 0 1 0 0 t 0
0 0 0 0 0 1 0
0 0 0 1 0 0 0
0 1 0 0 - t 0 0
0 0 0 0 1 0 0
1 0 0 0 0 0 0

Then for any choice o f t (even t  =  1) the rows span as expected. The span o f the rows o f th is 

m a trix  describe a linear path  from a general po in t in X .  U X , ncxt to  a general po in t in X , ncxt.
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Figure 2.6: B lack checker configuration for an sq move

2 .2 .2  R a tio n a l curve for an  so m ove

For an so move, black checkers in rows n  and n  +  2 swap positions. Here, two checkers are 

m oving and two spaces, M% and M % + 1  =  (M £ )x  are moving in the degeneration. Since Af^+1 is 

determ ined by M%, we describe the curve by considering MF =  ( M i  C • • • C M n_ i C M%). We 

need M% isotropic and M% C M n + Define M F  by

M l = ( e h , . . . , e j k )

for 1 <  k <  n  — 1 and

M n =  M n - \  +  (2s2 ej n + 2  +  2tsen+i -  t 2 ejn )

Note th a t j n + 1  =  n  +  1 since the center checker is in  position (n +  l , n  +  1).

For any choice p =  [s ,t] 6 P 1, M J  is isotropic and quadratic terms are needed to  satisfy 

isotropy.

E x a m p le  2 .2 .3 . We illu s tra te  th is  quadratic curve w ith  the •-configura tion  shown in figure 2.6 

whose next move is o f type so (n  =  3). From th is  "-configuration, we choose a basis for F. and 

M . . F. is the standard flag and

M i  =  (e7)

M 2  =  (e7, ez)

M 3  =  (e7, e3, eg)

M 4 =  (e7, e3, e6, e4) =  M%

M 5  =  (e7 ,e3,ee,e4,e2) =  M ^

Let M F  =  ( M i  C M 2  C M 3 ) w ith  M 4,M 5,M 6 and M 7  determined as perps.

Mg =  (e7, e3, 2s2e2 +  2tse4 — t 2 ee)
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W hen p =  [0,1],

M f  =  {er, e3, —eg) =  {e-j, e3, ee) =  M 3

w hich gives M.p =  M . .

Consider a m a trix  whose firs t i  rows span M f  (as long as s /  t).

0 0 0 0 0 0 1
0 0 1 0 0 0 0
0 2s2 0 2 ts 0 - f 2 0
0 2 ts 0 (t 2 - s 2) 0 ts 0
0 - t 2 0 2ts 0 2 s2 0
0 0 0 0 1 0 0
1 0 0 0 0 0 0

I f  p — [0,1] then we have nonzero entries in  ^-positions and zeros otherwise. I f  p =  [1,0], then 

M f  =  (£7, 63, 62) which puts (F . ,M F )  G X , next. To make a path to  p =  [1,0], we begin by 

m oving away from  the po in t [0,1] and so w ith o u t loss o f generality, le t s =  1. For our example, 

th is  gives the m a trix
0 0 0 0 0 0 1
0 0 1 0 0 0 0
0 2 0 21 0 - f 2 0
0 2 t 0 Ct2 - 1 ) 0 t 0
0 - 1 2 0 2 t 0 2 0
0 0 0 0 1 0 0
1 0 0 0 0 0 0

A nd  since the firs t i  rows should span M f ,  we can change row 5 to  give a new m a trix

0 0 0 0 0 0 1
0 0 1 0 0 0 0
0 2 0 2 t 0 - t 2 0
0 21 0 (■t2 -  1) 0 t 0
0 0 0 0 0 1 0
0 0 0 0 1 0 0
1 0 0 0 0 0 0

and then fo r any choice o f t  (even t — 2) the rows span as expected. The span o f the rows o f

th is  m a tr ix  describe a degree two path from  a general po in t in  X ,  U X , next to  a general po in t in  

v
• n e x t  '
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0 0 0 0 0 0 1
0 0 0 0 0 1 2
0 0 1 1 1 2 3
0 0 1 2 2 3 4
0 0 1 2 3 4 5
0 1 2 3 4 5 6
1 2 3 4 5 6 7

Mi
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Mi
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M7

0
•

10
•

•
• O

•

0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 1 1 1 1 2
0 0 1 1 1 1 2
0 0 1 1 1 1 2
0 0 1 1 1 2 3
0 0 1 1 1 2 3

M i
M2
m 3
m 4
M5
Me
M7

Fi F2 Fz F4 Fi Fi Fj Fi F2 F3 F , F5 Fe Fj

F igure 2.7: The black checkers encode the dimensions o f M i  fl F j  listed on the le ft and the w hite  
checkers encode the dimensions o f V  fl M 4 fl F j  listed on the righ t.

2.3  W h ite  checkers and tw o  flag Schubert varieties

In  add ition  to  the black checkers, we place n  w hite  checkers on the board. These w hite  

checkers encode the dimensions d im (V n M ,n .F )) for F. and M. in ^-position and V  £  O G r (n , 2n +  

1). The number o f w h ite  checkers weakly northwest o f position (i, j )  is d im (V  fl M i  fl F j) .  Note 

th a t the southernmost row then encodes d im (V  H F j)  and the easternmost column encodes 

d im (V  fl M j) .  See figure 2.7 for an example.

D e fin it io n  6. A w hite  checker configuration o is happy with respect to •  i f  each w h ite  checker 

has one black checker weakly north  o f i t  in the same column and one black checker weakly west 

o f i t  in  the same row (th is  is V a k il’s de fin ition o f happy). W hen there is no confusion over which 

•-configura tion  is meant, then we ju s t say happy.

D e fin it io n  7. A  w h ite  checker configuration o is pairwise happy i f  i t  is happy and i f  there is a 

w h ite  checker in  position (ry, c4) and a w h ite  checker in  position ( r j , C j ) ,  then ry + r j  ^  2n +  2 

and Ci +  Cj y ^ 2 n  +  2  for any 1 <  i ,  j  <  n  (even i  =  j ) .

D e fin it io n  8. A  w h ite  checker configuration o is isotropically happy i f  i t  is pairwise happy and 

there exists some V  £ O G r (n , 2n  +  1) th a t meets the flags in exactly the way described by the 

o* configuration. In  other words, there cannot be a more specialized w h ite  checker configuration 

th a t describes the fu ll set o f isotropic V ’s th a t meet the flags in  the way described by the orig inal 

configuration.

2 .3 .1  In i t ia l  configurations

For an intersection o f two Schubert varieties (w ith  respect to  transverse isotropic flags, i.e. 

flags in the  position), we give a construction to  place w h ite  checkers on the in it ia l black

checker board. We w ill call th is  w h ite  checker configuration oin i t .
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Figure 2.8: For n  =  3, T(i)T(3,i) corresponds to th is in it ia l position.

T h e o re m  2 .3 .1 . There is a one-to-one correspondence between in i t ia l  white checker configura

tions o f type Oinit and non-empty type B n two-flag Schubert varieties.

For a Schubert question posed as f l \ ( F . )  f l  we describe how to  set up the in it ia l

w h ite  checker configuration. Labeling columns and rows w ith  n , n — 1 , . . . ,  1 ,0 ,1 ,2 , . . . ,  n  — 1 , n  

(recall th is  no ta tion  introduced a t the end o f section 1.2.2), the jum p ing  numbers for A C pn are 

j i  <  j 2  <  ■ ■ ■ <  jn  • Let £(X) be the number o f rows in the pa rtit io n  A and A b e  the number o f 

boxes in row  k. Then Av C pn is the s tr ic t p a rtit io n  whose parts complement the parts of A in 

the set {1 , 2 , . . .  , n } .  For 1 <  k <  £{X), we have

j k  =  A k

and for 1 <  k <  t { Av ), we have

j i(X)+k  =  A ^Av)+1_ fc

The ju m p in g  numbers for p  c  pn are i \  <  i i  <  ■ ■ ■ <  i n and are described sim ilarly.

D e fin it io n  9. On a • jn,t-configuration, define oin it  as the in i t ia l  white checker configuration 

fo r f l \ ( F . )  D oinit is constructed by placing w h ite  checkers in  positions {ik i j n + i - k )  for

1 <  k <  n.

See figure 2.8 for an example oin it-configuration. We make some observations about oin i t .

L e m m a  2 .3 .1 . The white checker configuration oin it  has no white checker in  the center column 

and no white checker in  the center row. Equivalently, 0 ^  { j i , j 2 > ■ ■ • > in } and 0 • • • An}-

Proof. T h is  is clear by construction o f the jum p ing  numbers from  A and p. We can also see 

th is  by constructing  the m a trix  representation for V. Suppose 0 € { j i ,  . . . , jn }- Then the m a trix  

representation o f V  has a row va o f the form
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[* * ... * 1 0 ... o]

where the 1 is in  the m iddle column. Th is  requires th a t 0 =  B (v a ,v a ) =  1, a contrad iction, in 

order for V  to  be isotropic. A  s im ilar argument works for { i i ,  12, . . . ,  i n }- d

L e m m a  2 .3 .2 . The set {k ,  k }  <£. { j i ,  . . . , jn } and {k ,  k } <£. { i j ,  . . . , in} fo r  any 0 <  k <  n.

Proof. Th is  is again clear by construction o f the jum p ing  numbers from  A and jx. We can also 

see th is by constructing the m a trix  representation for V . Suppose {k ,  k }  C { j i , j z ,  in ) -  Then 

V  is represented by an n  x (2n  +  1) m a trix  o f the form

V  ■■

* 1 0 0 0 0

* 1 0

w ith  Ts in  columns k and k. B u t then V  is no t isotropic because the rows va and vp (listed in 

the m a tr ix  fo r V ) give B (v a ,vp)  =  1. A  s im ila r argum ent works for ■ ■■fin}- D

L e m m a  2 .3 .3 . I f  f i  is not contained in  Av then the in i t ia l  white checker configuration ° im t is 

not happy and £ l \(F .)  f l  f l ^ M . )  =  0.

Proof. (See also [3] defining / ( A,/n; v).)  In  the configuration, the 2 n + l  black checkers are in 

positions (k , k) for 0 <  k <  n. As a consequence, i f  a oinit configuration is happy, then r  +  c >  0 

fo r a w h ite  checker in  position (r, c). I f  p, <f. Av then either

1. £(gt) >  £{XW) or

2. £(n) <  £(XV) and there is some k, 1 <  k <  £ ( / j .) such th a t pp . >  A^.

Case 1: £{y) >  £{XV)

In  th is  case there is a w h ite  checker in  position (i^(M), j n +  \ - t ( n ) )  where

ie(pj.) =  Te(pi) <  0
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and

j n+ i-e(n) <  3n+i-e(xv )

=  j n + l —(n—((X))

=  J e w + i

Now, m  =  £(A) +  1 is the m in im al m  such th a t j m >  0, so j n+i-g(p)  must be negative. Th is 

im plies i g ^  +  j n+\-e{n) <  0 and thus th is w hite  checker position is not happy.

Case 2: £(/r) <  £ ( \ v ) and there is some k, 1 <  k <  £ ( / j,) such th a t p.k >  X£.

N ote th a t for 1 <  m  <  &{p), the w h ite  checker positions are A ^ ). Consider the w h ite  checker 

in  position  A^). Checking the necessary happiness condition, JTk +  A)f < 0  since fik >  A)C So 

th is  w h ite  checker position is not happy. □

L e m m a  2 .3 .4 . On a •m u  checkerboard, the oinit configuration is the least specialized o-configuration 

that s t i l l  describes the required intersections fo r  Q,\(F.) n  S l^ M .) .

Proof. Suppose o ^  oinit is an iso trop ica lly happy w hite  checker configuration on a checker

board such th a t for (F . , M .) £ X , init there exists V  £ fI f L e t  the positions o f the

n  w h ite  checkers in  the o-configuration be described by pairs (i a{k ) i j k ) for 1 <  k <  n  and a  £ Sn. 

Le t k  be the smallest number o f {2, . . .,n }  such th a t cr(fc) >  a (k  — 1) (i.e. i a(k) >  M / t - i ) ) -

In  order to  satisfy the jum ps in dimension fo r V  f l  F j  and V  ft  M i , any good in it ia l w hite  

checker configuration o must have one w hite  checker in  each o f rows i i , . . . , i n and in each of 

columns The claim  to  be proved is: oinit is the least specialized o f these possible

configurations. We firs t look a t the case where k =  2.

°1

° 2

MD

M2)

°2

°1

Mo

M2)

h n

Figure 2.9: k =  2

I f  we swap checkers o j and o2, we have a less specialized configuration because in figure 

2.9 on the le ft side, d im ('F  n  Fj2 [~l =  2 and d im (V  D F j1 D =  1. In  figure 2.9 on

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



 °_____

_______ £______________ M*-«

Z __________________ 2-— M*)

 °____________________ Mfc-3)
Ji.--.-J jfr-2 Jfc-l ,7fc

Figure 2.10: fc >  2

the righ t side, d im (F  n F j 2 n M ia{2)) =  2 and d im (I /  D F; i  D =  0 w hile s till preserving

dimension jum ps at j i ,  j%, V ( i) ,  and i a(2 )-

For the case fc >  2, we have figure 2.10. Notice for a  <  k th a t d im (y  n F jQ n M ,a(Q)) =  1 bu t 

fo r k, d im (l^  (1 F jk f l  M ia M ) >  2. Thus we can swap the checkers in columns j k  and j k - i -  Th is  

decreases the dimension of intersection, b u t does not change the dimension jum ps. I f  i a( k - 1) >  

M fc -2) now, then swap these two checkers. Continue u n til a ll w h ite  checkers are creating a 

positive slope (i.e. rows decrease west to  east). Th is  is the least specialized configuration, and 

s t i l l  preserves dimension jum ps. Now the checkers are in  positions { in+ i - k ,  jk )-  Cl

L e m m a  2 .3 .5 . / / r 2 ^ ( F . ) n n M(M .) ^  0 then the corresponding oinit configuration is isotropically  

happy.

Proof. Suppose oinit does not yie ld  a happy checker configuration. Then there must be a w hite  

checker in  position ( in+i-fc>jfc) such th a t i n + i - k  +  j k  <  0. Since oinit is the least specialized 

position for V,  there is no way to  decrease d im (F  f l  Fjk H M in+1_fe). Because a w hite  checker 

is located a t ( in+ i-k> jk)>  we have d im (V  n  Fjk C ^  1. B u t according to  the ®init

configuration, we have d im (F jk f l  M in+1_k) =  0, a contradiction. So Q \(M . )  f l  Q,M(F.) =  0.

B y construction o f oin i t , i f  oinit  is happy, then it  is pairwise happy.

I t  remains to  be shown th a t oinit is iso trop ica lly happy. □

2 .3 .2  M id s o r t

D e f in i t io n  10. A  checker diagram is described as midsort  i f  the black and w h ite  checkers are 

positioned in  such a way th a t the black checkers are in one o f the specialization order configura

tions and the  w h ite  checkers are in  positions th a t fo llow  from prescribed moves beginning w ith  

a oin it-configuration.
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We observe the follow ing characteristic o f m idsort configurations:

Labeling columns (and rows) w ith  1 , 2 , . . . ,  2 n + l ,  let (c+1) be the column o f the westernmost 

ris ing black checker. Denote

x  =  2n +  1 — x. (2.2)

Then c =  2n +  1 -  c is the column of the easternmost descending black checker.

W h ite  checkers in  columns 1 <  col <  c tend in the same direction as the black checkers. And 

for w h ite  checkers in columns c <  col <  2 n +  1, a s im ilar trend occurs. We state the follow ing as 

conjectures. These and other characteristics o f m idsort w ill be proven by induction  when analysis 

o f a ll cases is complete.

C o n je c tu re  1. In  a midsort checker diagram, white checkers in  columns 1 <  col <  c and 

columns c < c o l < 2 n + l  decrease in  rows from  west to east.

C o n je c tu re  2. In  a midsort checker diagram, white checkers in  columns c <  col <  c increase 

in  rows from  west to east.

2 .3 .3  R e a d in g  th e  fin a l answer

A  fina l o»-configuration has black checkers in  positions (k , k) for n  <  k <  n. The n  w hite  

checkers are in positions along the same diagonal. We determine v  for D !/( i r.) by recording the 

positions o f the w h ite  checkers in  columns (or equivalently rows) n  <  col <  0. C all these positions 

Qi <  a 2 <  ■ • ■ <  a^(„) <  0. Then v  =  ( a f ,  «£ ,. • ■, a«(i/))-
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2.4 S ta te m e n t o f R u le

2 .4 .1  G e o m e tric  S ta tem en t

C o n je c tu re  3. Let t \  and be Schubert classes fo r  the orthogonal Grassmannian O G r(n ,  2n +  

1), with t \ t n Then the coefficient is equal to the number o f isotropic checker

games with input X,p, and output v.

2 .4 .2  C o m b in a to r ia l S ta tem ent

D e fin it io n  11. Let dE be the row o f the easternmost descending black checker and le t dw  

be the row o f the western descending black checker. For Sj moves, e ither 1 <  d#  <  n  or 

n  +  2 <  dE <  2n +  1. Row dw  has the property  th a t dw  =  2n +  1 — ds- For so moves, d s  =  n  

and there is no row dw-

D e fin it io n  12. Define c as the rightm ost column w ith  a black checker in position (2 n + 2  —c, c) =  

(c, c). In  other words, c is the column o f the righ tm ost (c <  n) black checker on the antidiagonal. 

Then c >  n  +  2 (recall (2.2)) is the column o f the rightm ost descending black checker.

The rules fo r m oving w hite  checkers are as follows:

For an s0 move, there is either a w h ite  checker in  row n  or in row n  +  2, b u t no t both. I f  

there is not a w h ite  checker in  row n, then we call th is  the tr iv ia l case and the w h ite  checkers 

stay. I f  there is a w h ite  checker in  row n, the row o f the descending black checker, then we 

consider columns n  +  2 through c +  1. See F igure 2.11. I f  there is a w h ite  checker in one o f these 

columns, we choose the top  most w h ite  checker. The location o f th is  w hite  checker and the w h ite  

checker in  row n  determine i f  these checkers stay, swap, or stay and swap (in  a sp lit). In  the 

sp lit possib ility, the pa ir o f checkers can stay, or i f  there are no w hite  checkers in  the rectangle 

between them , they can swap. A  w h ite  checker in  the rectangle is called a blocker. See F igure 

2.12 for an example. Table 2.1 summarizes the so w h ite  checker moves (when there is no w hite  

checker in  column c +  1).

In  any Si move, i f  there is no w h ite  checker in  row dE and no w h ite  checker in row dw ,  then 

we call th is  a tr iv ia l move and the w h ite  checkers stay.

In an move w ith  a w hite  checker in row d s  <  n, we consider columns dg +  1 through 

c +  1. See F igure 2.13. I f  there is a w h ite  checker in  one o f these columns, we choose the top  most
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i
t

col c 
col c + 1 

col n + 2

F igure 2.11: I f  there is a w h ite  checker in row n  in an sq move, then look for the northerm ost 
w h ite  checker in  the h ighlighted region (n  +  2 <  col <  c +  1).

— row n 

• blocker

col c + 1
t

col c
col c col c + 1

F igure 2.12: Example o f a blocker in an so move.

Is there a w hite  checker in  row n?
Yes, in  col =  c Yes, in  col >  c No

Top W C  in  column 
rz +  2 < c o i < c + l ?

Yes swap swap i f  no blocker or  stay stay
No stay stay stay

Table 2.1: W h ite  checker moves for the sq case when there is no w h ite  checker in column c +  1
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col c + 1

■ row dg

■ row dw

col dg + 1 
Col C + 1

F igure 2.13: I f  there is a w hite  checker in  row dE <  n  in an Sj move, then look for the northerm ost 
w h ite  checker in the highlighted region (dg +  1 <  col <  c +  1).

•
-©1

• ; *

%
1

9
9

t •
I

• 0

-  row dg 
■ blocker

■ row dw

t
col c +  1

t
col c

col c col c + 1

F igure 2.14: Exam ple o f a blocker in an Sj move.

w h ite  checker. The location of th is w h ite  checker and the w hite checker in  row de determine if  

the move is a stay, a swap, or a sp lit (separate stay and a swap branches). In  the sp lit case, the 

pa ir o f w h ite  checkers can stay, or i f  there is not a blocker, the two w h ite  checkers can swap. See 

F igure 2.14 for an example o f a blocker. Table 2.2 summarizes the s* w hite  checker moves for a 

w h ite  checker in  row dg <  n  (when there is no w h ite  checker in column c +  1).
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W here is the w hite  checker in row dE <  n?
In  col =  c In  col >  c

Top W C  in column 
dE +  1 <  col <  c +  1?

Yes in rising checker square swap swap
Yes, elsewhere swap swap i f  no blocker or stay

No stay stay

Table 2.2: W h ite  checker moves for the case w ith  a w h ite  checker in  row d s  <  n  and when 
there is no w h ite  checker in  column c +  1
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2.5  C leanups

A fte r a particu la r move is completed, the w h ite  checkers may be unhappy (or iso trop ica lly 

unhappy) w ith  respect to  the new •  configuration.

2.5 .1  R e g u la r cleanups

A  w h ite  checker is not be happy i f  there is no longer a black checker either weakly no rth  or 

weakly west of the w h ite  checker.

A fte r an s* move, at most two w h ite  checkers may be unhappy. A fte r an so move, at most 

one w h ite  checker may be unhappy. In  the clean-up phase, i f  a w hite  checker is not happy, 

then move i t  e ither up or le ft u n til i t  becomes happy. Th is  is always possible, in a unique way. 

Cleanups across the m idline involve one checker. Cleanups not crossing the m id line  involve two 

checkers.

Recall th a t a w h ite  checker is no t pairwise happy i f  i t  is in  row n  +  1 or column n  +  1. 

Therefore, a w hite  checker in  row n  +  2 th a t moves up to  become pairwise happy m ust move to 

row n  (no t row n  +  1). S im ilarly, cleanups m oving le ft across column n +  1 w ill never stop in 

colum n n +  1.

A  w h ite  checker m oving from row r  ^  n + 2  to  row r  — k in a cleanup w il have a corresponding 

w h ite  checker in  row 2n +  2 — ( r  — k) th a t moves to  row 2n +  2 — r .  Th is paired move always 

occurs in  the m axim al case because there is no w h ite  checker in row r  — k  im p ly ing  th a t there 

is a w h ite  checker in row 2n +  2 — ( r  — k). To preserve pairwise happiness, we must make th is  a 

paired move. S im ilarly, we also have paired moves when cleaning up w hite  checkers by sh ifting  

left.

Examples o f cleanups occur in the A n case [22], In  the B n case, we see examples o f paired 

and unpaired cleanups even in  very small examples.

E x a m p le  2 .5 .1 . W ith  n  =  2, consider the firs t two moves shown in F igure 2.15 in the game 

A =  (2 ,1 ) and j i  =  0. The firs t move is a tr iv ia l so move (see Section 2.4.2 fo r com binatoria l 

rules on m oving w h ite  checkers). The cleanup raises one w hite  checker across row n  +  1. The 

second move is a tr iv ia l s\ move. The cleanup move shifts two w h ite  checkers up one row each.

,5 !
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So

J •
n

•

J •
0 +

Si

F igure 2.15: The firs t two moves in an n  =  2 game w ith  A =  (2 ,1) and /j, =  0. B o th  sq and s i 
moves are stay moves th a t require cleanups.

2 .5 .2  iso trop ic  cleanups

Given a w hite  checker configuration, we want to  determine i f  the configuration is isotropically 

happy and i f  not, determ ine the least specialized o-configuration th a t is iso trop ica lly happy. I t  

is an open question to  find  com binatoria l rules to  determine i f  a o-configuration is iso trop ic ia lly  

happy.

On the other hand, any particu la r o»-configuration can be determ ined to  be isotropically 

happy or no t by asking about ideal membership in an ideal generated by quadrics. Th is  can, in 

theory, be solved a lgo rithm ica lly  by Grobner basis methods.
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C h a p te r  3

PRELIMINARY LEMMAS
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3.1 O rth o g o n a l B o tt-S am elson  varieties

3 .1 .1  B o tt -S a m e ls o n  v a r ie tie s

In  the p roof o f a Geometric Littlew ood-R ichardson Rule, V akil adds a th ird  row to  (1.3) 

which considers a Bott-Samelson varie ty  instead o f the Grassmann variety. We recall for the 

reader (nearly verbatim ) the de fin ition o f the Bott-Samelson varie ty  B S (Q )  given in [22],

Associate a varie ty to  the fo llow ing data, (Q ,d im , n).

1. Q  is a fin ite  subset o f the plane, w ith  the pa rtia l order -< given by dom ination (a -< b  i f  a 

is weakly northwest o f b ). We require Q  to  have a m axim um  element max and a m inim um  

element m in. (We visualize the plane so th a t m oving south corresponds to  increasing the 

firs t coordinate and m oving east corresponds to  increasing the second coordinate, in  keeping 

w ith  the labeling convention for tables.)

2. d im  : Q  —» {0 ,1 , 2 , . . .  , n }  is an order preserving map, denoted dimension.

3. I f  [a, b] is a covering re la tion in  Q  (i.e. m in im al interval: a -< b, and there is no c g Q  such 

th a t a -< c -< b ), then we require th a t dim  a =  d im b  — 1.

4. I f  s tra igh t edges are drawn corresponding to the covering relations, then we require the 

in te rio r o f the graph to  be a union of quadrilaterals , w ith  four elements o f Q  as vertices, 

and four edges o f Q  as boundary.

We call th is  data a quilt, and abuse no ta tion  by denoting it  by Q  and leaving d im  im p lic it.

Note th a t the poset Q  must be a la ttice , i.e. any tw o elements x , y  have a unique m in im al 

element dom ina ting  bo th  (denoted s u p (x ,y )) , and a unique m axim al element dominated by 

bo th  (denoted in f(x , y ) ) .  A n  element o f Q  a t ( i , j )  is said to  be on the southwest border (resp. 

northeast border) i f  there are no other elements (i ' , j ')  o f Q such th a t i '  >  i  and j '  <  j  (resp. 

i '  <  i  and j '  >  j ) .  Thus every element on the boundary o f Q  is on the southwest border or the 

northeast border. The m axim um  and m in im um  elements are on both.

D e f in i t io n  13. Le t K  be an algebraically closed field w ith  char K  ^  2. Define the Bott-Samelson 

varie ty  B S (Q )  associated to  a q u ilt Q  to  be the varie ty param eterizing a (d im a)-p lane  Va in  K n 

for each a £ Q, w ith  Va C V;, fo r a -< b.

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



B S (Q ) is a smooth [22], closed subvariety o f JlaeQ G r(d im a , n). Elements m  o f Q  w il l be 

w ritte n  in bold font w hile corresponding vector spaces w ill be denoted Vm .

A ny set S of quadrilaterals o f a q u ilt determines a stratum  o f the Bott-Samelson variety. 

The closed s tra tum  corresponds to  requiring the spaces o f the northeast and southwest vertices 

o f each quadrila tera l in S to  be the same. The open s tra tum  corresponds to  also requiring the 

spaces o f the northeast and southwest vertices o f each quadrila tera l not in S to  be d istinct. 

Denote the open s tra tum  by BS(Q)s,  so the dense open s tra tum  is BS(Q)$. The open s tra ta  

give a s tra tifica tion , the closed stra ta  are smooth, and codim bs(Q) BS(Q)s — |5|. We depict 

a s tra tum  by placing an “ = ”  in the quadrilaterals o f S, ind ica ting  the pairs o f spaces th a t are 

required to  be equal.

3 .1 .2  O rth o g o n a l B o tt-S am elson  varieties

Consider a q u ilt (Q, d im , 2n +  1) w ith  d im  max <  n. The orthogonal Bott-Samelson variety  

O B S (Q )  is a subvariety o f the corresponding Bott-Samelson varie ty B S (Q ) defined as

O B S (Q ) =  {V. € B S (Q ) | Vmax is isotropic }

L e m m a  3 .1 .1 . O B S (Q ) is a smooth, closed subvariety o f B S (Q 0), hence o f G r(d im m , 2 n +
m €Q

1)

Proof. We have a smooth pro jection

B S (Q )  —> G (d im (m ax), 2n +  1)

A nd we have a smooth, closed subvariety

O G r(d im (m ax), 2n +  1) c-» G (d im (m ax), 2n +  1)

A nd O B S (Q )  is the pullback:

O B S {Q )  -----------------------------> B S {Q )

V V
O G r(d im (m a x ),2 n -l- 1) (Cl°se> G (d im (m ax), 2n +  1)

Th is  im plies th a t O B S (Q )  is smooth, O B S (Q )  is a closed subvariety o f B S (Q ), and O B S (Q ) 

inherits  a s tra tifica tion  from  B S (Q ). □
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E x a m p le  3 .1 .1  (Q u ilts  generated by a set o f w hite  checkers.). Given a w h ite  checker configu

ra tion , define the associated q u ilt Q 0  by inc lud ing the squares o f the checker board where there 

is a w h ite  checker weakly no rth  and a w h ite  checker weakly west o f the square. Include a “zero 

element” 0 northwest o f the w hite  checkers. For s € Q, le t d im s  be the number o f w hite  checkers 

s dominates, so d im  0 =  0, and d im s  is the edge-distance from s to  0. I f  we allow  Vmax to  vary 

in G (d im  max, 2 n +  1) then we have B S (Q 0), and i f  we add itiona lly  require the m axim al space 

to  be isotropic, then we have O B S (Q 0)- See (among others) figures 4.3 and 4.4.

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.2  G e n e ra l results ab ou t vecto r spaces

Here we collect some general technical lemmas regarding vector spaces. These results w ill 

be referenced in  the proof of conjecture 3.

3 .2 .1  R esults  fo r any vector spaces

L e m m a  3 .2 .1 . Let M s , M b , Vs, and Vb be vector spaces such that M s  C M b , and Vs C Vg. 

And let I  =  d im (Vg f l  M s )  — dim (Vs 0  M s )  and I '  =  d im (V g f l  M b ) — d im (Vs f l  M b )- Then

e> t .

Proof. Since M s  C M g , we have

dim (Vg f l  M g ) — d im (Vs f l  M s )  =  a  >  0

and

dim (V g D M g ) — d im (V g f l  M g ) =  0  >  0

Since Vs C Vb, the increase in dimension from  Vg f l  M s  to  Vg f l  M g  must be at least a. So 

0  >  a. Now,

0  — i  =  d im (Vg f l  M g )  -  d im (V s f l  M g ) -  (d im (Vg n M g ) — d im (Vs n M g ))

=  0 — a 

>  0

□

L e m m a  3 .2 .2 . Let V  and W  be vector spaces (not necessarily isotropic). Then

(a) (v +  w)x =  v x n w ±

(b) (V  n W )x  =  V X +  W x

P roo f o f pa rt (a). I f  a £ (V  +  W )x  then B (a ,b ) =  0 fo r a ll b e V  +  W . Since V  C V  +  W , we 

know B (a , v ) =  0 for a ll v G V , so a G V x . S im ilarly, a € W -1. So v G V x  f l  W x .

Conversely, i f  a e V x  f l  W x  then B (a ,v )  =  0 for a ll v e V  and B (a ,w )  =  0 for a ll w  £ W . 

Now, every element b G V  +  W  can be w ritte n  as b =  v +  w fo r some v G V  and w  £ W . Then

B (a , b) =  B {a , v +  w) =  B (a , v) +  B (a , w) =  0

So a e (V  +  W )x . □
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P roo f o f pa rt (b).

( V x  +  W L )X =  (I'/ "L)"L n  ( IT X )X by pa rt (a)

— V ^ W

So (V 1- +  W x ) =  (V  n  W )x  □

L e m m a  3 .2 .3 . Let V  and W  be vector spaces (not necessarily isotropic). Then

V  C W  <S=  ̂ W x C V 1 .

Proof. Suppose V  C W  and let x £ W x . Then B (x ,w ) =  0 for a ll w £ W . And V  C W  so 

B (x , v) =  0 for all v £ V . Thus x  £ V x .

Now suppose W 1- C V x . Let x £ V . Then B (x ,y )  =  0 for a ll y £ W x . Th is implies 

x £ W .  □

3 .2 .2  R e s u lts  fo r  is o tro p ic  v e c to r  spaces

L e m m a  3 .2 .4 . I f V  and M  are m axim al isotropic spaces, then V x  f l  M i s  not isotropic.

Proof. Le t V  and M  be m axim al isotropic subspaces (d im  V  =  d im  M  =  n). Suppose K x  f l  M x

is isotropic. Then V x  f l  M x  C V  because otherwise the space V  +  {V L f l  M x ) ^  V  is isotropic 

and w ould be larger than V. Th is contradicts m ax im a lity  of V . S im ilary, {V s- f l  M x ) C M .  So 

(K x  f l M x ) C ( V D M ).  B u t an isotropic space is contained in its  perp, s o K C  V x  and M  C M x 

so (V  D M )  C {V x  n  M 1 ). Thus we have (V  n  M )  =  {V x  D M x ) =  {V  +  M ) x . 

d im ((V  +  M ) x ) =  2n +  1 -  d im (V  +  M )

=  2n +  1 — d im  V  — dim  M  +  d im (y  f l  M )

=  2 n  +  l -  n  — n  +  dim(Vr D M )

=  l + d i m  ( V D M )

So we have a contrad iction and V  D M  (V  +  M ) x . In  particu la r, there is a vector e th a t is 

orthogonal to  V  and to  M  bu t no t orthogonal to  itself. So e £ V x  f l  M x  which makes V x  D M x  

not isotropic. □

C o r o l la r y  3 .2 .1 . I f  A  and B  are isotropic spaces, then A x  f l  B x  is not isotropic.

Proof. Choose m axim al isotropic spaces V  and M  such tha t A c  V  and B  c  M . Then A 1  f l  B x  

contains V x  f l  M x  which is not isotropic by Lemm a 3.2.4. □
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L e m m a  3 .2 .5 . For A and B  isotropic spaces, we have

A  +  B  is isotropic <=> A  c  <=r> B  <z A L

Proof. I f  A  +  B  is isotropic, then every vector in  B  is orthogonal to  every vector in  A, so B  c 

and vice versa, A  C I f  A  C B x  and A  is isotropic, then every vector in A  is orthogonal to  

every linear com bination o f vectors from  A  and B . And B  isotropic w ith  A  C B 1- implies th a t 

every vector in B  is orthogonal to  every linear com bination o f vectors from  A  and B. So A +  B  

is isotropic. □
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Figure 3.1: k =  n  =  4 and 0 < o i  =  l < O 2 =  2 < a 3 =  4 < a 4 =  7 < o o

3 .3  C o d im e n s io n  b o u n d s  fo r  S c h u b e rt c o n d it io n s  g iv e n  b y  c o n ta in m e n t

In  the  main proof, we w ill need to  consider Schubert conditions given by containment. 

Suppose we are given 1 <  a j <  a,2  < • ■ ■ <  an <  2n +  I  (w ith  the convention th a t ao =  0 and 

an + 1 =  oo). In  add ition, a* +  a j 2n +  2 fo r all i ,  j  and a* ^  n  +  1 for a ll i. We are also given 

integers j  and R  such th a t a j <  R  <  a j+

We have a closed subvariety

T '  C O F l{2 n  +  1) x O F l(2 n  +  1)

which is defined by

T / =  { ( ( V i ) i < „ , M . ) | y i c M at}

T '  can be constructed as a tower o f quadrics over O F l(2 n + l)  by inductive ly  choosing M i,  M 2, . . . ,  M n 

such th a t for 1 <  k <  n

1. Mfc_ 1 C Mfc C M j^_ j (w ith  dim (M fc) =  k)

2 . Mfc is isotropic

3. Vm  C M fc c

where i{a )  is defined as in  (4.2) and k =  2n +  1 — k (equation (2.2)). Then complete the flag M . 

by defin ing M ) =  M ^  for 0 <  i  <  n.

Consider a (2n  +  1) x k checker board. S tra tify  O F l ( l , . . . ,  k, 2n  +  1) x  O F l(2 n  +  1) by the 

num erical data d im (V )2 fl M ^ )  fo r 1 <  <  k. The stra ta  correspond to  checkerboards w ith

k  columns and 2 n  +  1 rows (th in k  o f removing the 2n +  1 — k columns w ith o u t w h ite  checkers 

and renam ing the rem ain ing columns 1 through k), w ith  k checkers, no two in  the same row or
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column, no two in  rows th a t sum to  2n  +  2, and none in row n  +  1, such th a t d im (V i2 f l  M q )  is 

the num ber o f checkers weakly northwest o f {1 1 , 1 2 )- See figure 3.1 for an example. The condition 

th a t d j <  R  <  a-j+x means R  is a row between the j th and (j  +  l ) 6t checkers, possibly the same 

row as the j th checker.

We can bu ild  the s tra tum  as an open subset o f a tower of quadric and projective bundles over 

O F l( 2 n +  1): quadric i f  the space th a t Vi2 sits in  (i.e. M ,J  is a perp space ( i 1 >  n ), pro jective 

i f  is isotropic { i \  <  n ).

The dimension o f the s tra tum  is

d im (O F /(2 n  +  1)) +  ( i \  -  ^{checkers weakly northwest of c} -  C jJ (3.1)
checker c at (ii ,12)

where
_  J 1 i f  i i  >  n  

11 1̂ 0 i f  Zi <  n

T '  corresponds to  configurations where there are at least i  checkers in the firs t a, rows, and 

the dense open stra tum  o f T '  corresponds to  the configuration { (a2, i ) 11 <  i  <  n }.  Note th a t th is  

configuration is as much on the diagonal as possible. I f  the w hite  checkers are less specialized, 

for example w h ite  checkers in (1, 2) and (2, 1) then there is no w h ite  checker in  position (1, 1) 

w hich im plies d im (V i f l  M \)  =  0. B u t V\ is supposed to  be contained in M \.  In  particu la r, there 

are j  checkers in  the firs t R  rows.

Let B  be a variety, B  —■> O F l(2 n  +  1) a morphism, and T "  the pullback o f T ' to  B . Then 

we have the follow ing lemma:

L e m m a  3 .3 .1 . F or any S <  k, i f  P  is an irreducible subvariety o f T "  where d im (V5 f l  M r )  =  

j  +  £2 , then codim 7’" (T >) >  £2 - Furthermore, i f  equality holds then one o f the fo llow ing is true:

1 . £ 2  =  0

2. £ 2  =  1, R  >  n  +  2, a j <  R , a j+ \ =  R  +  1, and V j+ 1 C M r  fo r  a ll points o f P

3. £ 2  =  1, R  <  n, a j <  R, d j+1 =  R  +  1, and V j+ i C M r  fo r  a ll points o f P

4- £ 2  =  1, R  — n ,  a j  <  R, d j+ 1 = n  +  2, and V j+ \ C M r  f o r  a l l  po in ts o f  P

5. £ 2  =  1, R  =  n  +  1, d j <  R , d j+ 1 = n  +  2, and V j+ i C M r  f o r  a l l  po in ts  o f  P
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The p roo f o f lemma 3.3.1 requires some p re lim inary lemmas connecting movement o f checkers 

w ith  codimension 1 Schubert conditions. In  the type A n setting, m oving one w h ite  checker from 

row i  +  1 to  row i  is a codimension 1 condition on A =  {M . € F l( n )  | V. C M aj 1 <  i  <  k }. 

Th is  can be seen by looking a t the forgetful map A —> A ' which forgets M i. The dimension of 

the fiber over a general po in t in A ' is 1 because choosing M i  is equivalent to  choosing a line 

in There is no condition from  V. because there is no w h ite  checker in  row i  which

implies Kn(M i) =  i) C M j_ i.  W hen we move the w hite  checker from  row i + 1 to row i , we

require th a t Vm(Mi+1) C M j. Choosing M j such th a t M j_ i  C M i C M i+1 and Vm(Mi+1) C M i is

equivalent to  choosing the line (M j_ i +  Vm^Mi+ i) ) / ^ i - i  C (A 4 i+ i/M j_ i) .  Th is  is a codimension 

one condition on the one dimensional space.

In  the B n setting, we sometimes move two checkers or move one checker two rows. These 

moves correspond to  codimension one conditions, however, the result is no t immediate. We show 

here tha t such moves are indeed associated to codimension one conditions.

We define a varie ty f l  =  f l a ] ttfc (V i , . . . ,  14). Suppose we are given V , a (2n+ l)-d im ens iona l

vector space w ith  a non-degenerate, sym m etric bilinear form  on it, an integer k w ith  1 <  k <  n, 

and a sequence of increasing integers 0 =  oo <  a\ <  ■ • ■ <  ak <  2 n  +  1 w ith

aj +  a j 7̂  2n +  2 fo r any 1 <  i , j  <  k. (3.2)

F ina lly , we are given an integer j  w ith  1 <  j  <  k such th a t a j — a j-1  >  2. I f  there is an i  such

th a t aj =  2n +  3 — a j then call th is  a j =  aj. Note th a t i f  aj- exists, then ay — 1 must be an empty 

row because row a j has a w h ite  checker, so by equation (3.2), row 2n  +  2 — a j =  a j — 1 is empty. 

Consider the variety Y  of pairs (V .,M .)  o f pa rtia l isotropic flags V) C  ■ • • C  V* and fu ll istropic 

flags M. w ith  Vj C  M ai for 1 <  i  <  k. Th is  variety fibers over the varie ty  o f pa rtia l F-flags. We 

define the fiber over a flag V. =  (V i C  ■ • • C  Vjt) 

n  =  n a i , . . . , a f c  ( v ^  V f c )

=  { M .  e O F l{2 n  +  1) I V i C M a j o r  1 <  i  <  k }

B y calculating the dimension o f f l  for the w hite  checker positions before and after the moves, 

we w ill show th a t the difference in  dimension is one, and so the moves described correspond to 

codimension 1 conditions.

We now describe a form ula for d im (O ) in  terms of the a j. For 1 <  a <  2n +  1. We bu ild  f l  

recursively as follows:
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F irs t choose M n , m axim al isotropic, such th a t Vj(n) C M n . Th is is equivalent to  the choice 

o f an element o f O G r(n  -  i ( n ) , V ^ / V i^ n)) the dimension o f which is t’1:. . ' I 1*}*-1! _ N 0W)

assuming M a+\ C ■ ■ ■ C M n have been constructed, we next need to  add M a. I t  must satisfy the 

fo llow ing three conditions.

1. Vi(a) C M a

2. M tt C M a+1

3. Vi(a) C M & =  or equivalently M a C

So we need to  choose M a satisfying V)(a) C M a C (M a+i n ^ ) .  Note th a t isotropy is autom atic 

because M a C M n and M n is isotropic.

There are two possibilities:

1. i ( a  —  1) =  i ( a ) .  In  th is  case, M a+1 C by the previous step o f the construction. The 

cond ition  i ( a  — 1) =  i  (a)  is equivalent to  row a  being empty.

2. i ( a  —  1) =  i(a )  — 1. In  th is  case, fo r a suffic iently general choice o f M a+ i  in the previous 

step, the intersection has dimension a.

In  Case 2, the current step adds zero to  the dimension o f Q and in Case 1, the current step adds 

d im (P (M 0+ i / V i ( 0))*)  =  a -  i { a )  to  the dimension o f 12. So we have a form ula for d im (fi)

I 1 i f  row a is em pty
Uq “  \

10 i f  there is a w h ite  checker in  row a.

Le t f l  =  f i a i ak ( V i , . . . ,  Vfc) be the varie ty corresponding to  the w h ite  checker configuration

before the move, and let f i '  =  f2„/ i0<, ( V i , . . . ,  14) be the variety corresponding to  the new w hite

checker configuration. Then

[n — i(n ) ] [n  — i(n )  +  1] 
2

n —1
d im (f l)  = (3.3)

where

71—1

+  £ < 5 ' [ a - * ' ( a ) ] (3.4)
a — 1

where
1 i f  row a is em pty in the new configuration 

0 i f  there is a w h ite  checker in row a in the new configuration.

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



L e m m a  3 .3 .2 . A checker moved fro m  row n  +  2 to row n  corresponds to a codimension 1 

condition.

C all such a move a type M  move.

Proof.  For a move across the m idline, we are given ax <  ■ ■ ■ <  a t  as above, and there is some 

j  such th a t a j =  n  +  2 and a j-1 <  n. Then a- =  a* for i  ^  j  and a'- =  n. We w ill show tha t 

d im  f i  — d im  f 2' =  1.

W h ite  checkers do not change positions in rows 1 <  a <  n  -  2 nor in  the corresponding rows 

n  +  3 <  a <  2n +  1, so

da[a -  i(a )] =  ] T  5 'a[a ~  ‘ '(a)]- 
0=1 0=1

Th is  gives

d im  SI — d im !! ' =  | ( " - i ( n ) ) ’  - ( " - * ( " »  +  1))]

r ( n -  i ' { n ) ) 2  -  ( n - i ' ( n ) )  , r ,
-  I------------------ g------------------ + < 5 „ _ i ( n -  1 - i  ( n -  1))J.

Now, (5n_ i =  0 since row 2n +  1 — (n  — 1) =  n  +  2 =  ay has a w h ite  checker in  it. And 

5'n_ x =  1 since the w h ite  checker previously in  row n  +  2 has moved to  row n. In  addition, 

i ' ( n  — 1) =  i ( n  — 1) =  i{n )  and i '{ n )  =  i{n )  +  1. This gives us

dim  SI -  d im  f i '  =

_ ^ n - W n l  + l ^ - t n - W n l  + l)) + ( n _ ^  j(n))]

=  1.

□

L e m m a  3 .3 .3 . For a $  { n , n +  1, n  +  2 }, the paired moves a to a — 1 and 2n +  3 — a t o 2 n + l  — a 

correspond to a codimension 1  condition.

Call such a move a type P  move.

Proof. G iven ax <  ■ ■ ■ <  ak as above and j  such th a t a j ^  n  +  2 and ay =  a j as long as such an 

a* =  ay exists. We define o!i  =  a, for i  =£■ j,J , a'j =  a j — 1, and a~ =  ay — 1 i f  ay exists. We w ill 

show th a t d im  Cl — d im  Cl' =  1.
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For th is  s ituation, we are not moving a w h ite  checker in to  row n, so i(n )  =  i '( n )  which means 

(n-t(n )) -(n - i(n ))_ _  (n - i (n)) ~(n~l (n)) The six rows o f interest are rows a j — 2 ,a j  — l , a j  and 

th e ir corresponding rows 2n +  3 — (aj  - 2 ) ,  2n +  3 — (aj — l ) , 2 n + 3  — aj.  O ther than these six rows, 

a ll o ther terms in the sum are the same for f l  and f l ' .  We w ill consider four cases separately:

1. a j <  n  and row 2n +  3 — a j is em pty (i.e. ay doesn’t  exist)

2. a j <  n  and row 2n +  3 — a j has a w hite  checker (i.e. ay exists)

3. a j >  n  +  2 and row 2n +  3 — a j is em pty (i.e. ay doesn’t  exist)

4. a j >  n  +  2 and row 2n +  3 — a j has a w hite  checker (i.e. ay exists).

Case 1

d im f l  — d im f l '  =  [50j _2(a 7- — 2  — i(a j — 2))

+  3 a j - i ( aj  ~  1 ~  i (a j  — 1 ) )  +  Saj (aj  — i (a j ) ) }  — [<5aj._ 2 (aj  — 2 — i  (aj  — 2 ) )

+  8 a j_ i( a j  — 1 — i  (a j — 1)) +  5a j(a j — i  (t i j ))]

In  f l ,  row 2n +  1 — (a j — 2) =  ay is em pty by hypothesis, so <5aj._2 =  1- A nd row 2n +  1 — 

(a j — 1) =  2 n  +  2 — a j is em pty because i t  is the m irro r o f row a j which has a w h ite  checker, so 

d a j - i  =  1- In  f l ' ,  row 2n + l  — (a j — 2 ) =  ayis s ti l l  em pty so S'a . _ 2  =  1 and row 2n + l  — (a j — 1) =  ay 

is em pty because in f l ,  row 2n +  3 —â - was em pty and so was 2 n + 2  — a j. N oth ing  changes in row 

2 n + 1 — a j so &aj =  8 'a . N oth ing  has changed in rows through row a j — 2 so i ( a j  — 2) =  i ' ( a j  — 2). 

A  checker has moved in to  row a j — 1 so i ( a j  — 1) =  i ' ( a j  — 1) +  1. A nd  fina lly, a checker moves 

from  row a j to  row a j — 1 so i ( a j)  =  i '( a j) .  Th is  yields dim  f2 — d im f l '  =  1.

Case 2

d im f l  — d im f l '  =  [Sa j- 2 (a j — 2 — i ( a j  — 2))

+  Sa j- i ( a j  — 1 — i ( a j  — 1)) +  5aj (a j — i(a j,))] — [5 a ._ 2 (a j — 2 — i  (a j — 2))

+  S 'a j- i(aj  ~  1 -  i ' f a j  ~  ! ) )  +  -  *'(%))]

Row 2n +  1 -  (a j — 2) =  ay has a w h ite  checker by hypothesis so d0j -2  =  0. And as in

case 1, <5aj._ i =  1. In  f l ' ,  row 2n +  1 — (a j — 2) =  ay is em pty because th a t checker has moved
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one row up to  row 2n  +  1 — (o j — 1) =  a~, so S'a 2  =  1 an<̂  1 =  0- There is no change to 

row 2n +  1 — (ay) so 5'a . =  5a j. And i ( a j ) =  i '( a j) .  F ina lly, there is no checker m oving in to  row 

a j — 2 so i '(a ,j -  2) =  i ( a j  -  2). Again we have d im  f l  — d im  f l '  =  1.

Case 3

Since a j >  n + 2 ,  the three terms in the sum th a t we are concerned about are a =  ay—2, a =  ay—1, 

and a =  ay.

d im  f l  — d im  Cl1 =  [<5aj_2(ay — 2 — i(ay — 2))

+  <5aj-i(ay — 1 — i ( a y — 1)) +  <50~(ay — i(ay))] — [<5a__2(ay 2 — i  (ay — 2))

+  <5aT- i ( a T -  1 -  i ' ( a7 ~  ! )) +  ^ ( o y -  »'(«?))]

Row 2n  +  1 — (ay -  2) =  ay is fu ll, so <5aj- 2 =  0. A nd  row 2n +  1 — (ay — 1) =  ay — 1 is empty, 

so <5aj - j  =  1- M oving the w h ite  checker from  row ay to  row ay — 1 gives <%_._2 =  1 and =  0. 

N o th ing  changes in  row 2n +  1 — ay =  a j — 2 so 5'a„ =  <5o r And noth ing changes in row ay — 2 so 

i'(ay  — 2) =  i(ay — 2). A nd  fina lly  by hypothesis, row ay is em pty in  $7 so i'(ay) =  i(ay). So we 

have d im  f i  — dim  f l '  =  1.

Case 4

dim  f l  — dim  f l '  =  [<5aT_2(ay — 2 — i(ay — 2))

T  <5aj- 1 (ay — 1 — i(ay — 1)) +  5a j(ay — i(ay))] — [5a._ 2(ay — 2 — i  (ay — 2))

+  < V - i ( a r -  1 ~  ! ) )  + 5aj(aT -  * '(“?))]

As in case 3, 5 a j - 2  =  0 , 5aj_ i =  1, <%__2 =  1, 5,a _ _ 1 =  0, <5̂  =  <5a j, i'(ay) =  i(ay), and 

i'(a y —2) =  i(ay—2). In  f l ,  row ay—1 is em pty since i t ’s the m irro r o f row ay. So i(ay—2) =  i(ay—1). 

Th is  yields d im  f l  — dim  f l '  =  1. □

L e m m a  3 .3 .4 . I f  there is no checker in  row 2n +  3 — a, then the move a to a — 1 is a codimension 

1  condition.

Call such a move a type S move.

Proof. M oving  one checker is ju s t as in  the A n case, a codimension 1 condition. □

We now prove lemma 3.3.1 for <5 =  k <  n  and B  O F l(  1 , . . . ,  k, 2n +  1) (i.e. T "  =  T ') .
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R =  8

Figure 3.2: For the case R >  n  +  2, where n  =  5 and £2 =  3. In  th is  case, the set o f rows weakly 
less than R  th a t must be em pty is { 8,7 , 3 }

Proof. A  dense open set o f P  lies in some s tra tum  where there are at least j  +  £2 checkers in  the 

firs t R  rows. O ur goal is to  move £2 more w hite  checkers in to  rows 1 , . . . ,  R. There are already j  

w h ite  checkers in  rows 1 ,R . We’d like to find the greatest lower bound for the codimension 

o f the space { (V . ,M .) }  w ith  the new constraints. Th is is based on the number o f moves i t  w ill 

take to  get the extra  £ 2  w h ite  checkers in to  rows 1, . . .  ,a,j. We consider a move as one o f the 

types M , P , and S described in lemmas 3.3.2, 3.3.3, and 3.3.4 respectively.

We begin w ith  a checker configuration w ith  exactly j  checkers in  the firs t R  rows. We w ill 

calculate the m in im al number of moves needed to  get £ 2  more checkers in to  the firs t R  rows. 

Since one move corresponds to  a codimension one condition, counting moves is equivalent to  

ca lcu la ting codimension.

Case R >  n  +  2

The m in im a l number o f moves w ill occur when the m axim um  £ 2  rows from  the set o f rows 

{R  — i \ l  <  R — i  <  /7 } - {m in ( .R  -  i ,  2n +  2 -  (R  -  i) )  \

R — i  and 2n +  2 — (R  — i)  are bo th  in  the previous set } 

are empty. See figure 3.2 for an example. Each checker th a t is queued to  rise w ill rise £ 2  rows 

(not inc lud ing  row n +  1). Each row the checker moves up is a type M , P , or S move. There are 

£ 2  such checkers, y ie ld ing  a to ta l o f £ | moves. So the m in im al codimension o f the new space is 

bounded above by £3- A nd  £| >  £2- 

Case R <  n

The m in im a l number o f moves w ill occur when there are at least £2 em pty rows beginning w ith  

R  and decreasing consecutively, and there are checkers in the m in im um  £ 2  available rows where
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R =  4

F igure 3.3: For the case R  <  n, where n  =  5 and £2 =  2. In  th is  case, the set o f rows greater 
than R  th a t must have checkers is { 5 ,8}

R  =  3

Figure 3.4: For the case R <  n,  where n  =  5 and £2 =  2. In  th is  case, the set o f rows greater 
than R  th a t must have checkers is {4, 5}

available rows come from  the set

{R  +  i  \ R < R  +  i < 2 n  +  1} — {m a x ( / i +  i ,  2n  +  2 — (R +  i ) )  \

R  +  i  and 2n  +  2 — (R  +  i )  are bo th  in  the previous set }

See figure 3.3 for an example. We have two subcases here.

1. n  >  R  +  £2. In  th is  case a ll the checkers queued to  move in to  row R  or above start above

row 72+1.

2. n  <  R  +  £2- In  th is  case, some o f the w h ite  checkers queued to  move in to  row R  or above 

s ta rt in  rows greater than n  +  1.

Subcase 1

See figure 3.4 for an example. Each checker th a t is queued to  rise w ill rise £2 rows. Each row 

the checker moves up is a type P  or S move. There are £2 such checkers, y ie ld ing  a to ta l o f £\  

moves. So the m in im al codimension. o f the new space is bounded above by £|. A nd £| >  £2- 

Subcase 2

See figure 3.5 for an example. In  th is  case, the m in im um  £2 rows in  our queued lis t are not a ll
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0

0

0
0

0

F igure 3.5: For the case R  <  n, where n  =  5 and £2 =  3. In  th is  case, the set o f rows greater 
than R  th a t must have checkers is {5 ,8 ,9 }

above row n  +  1. In  particu la r, exactly n  — R  o f our queued checkers are above row n  +  1. We 

raise each o f these n  — R  checkers £2 rows. Each row the checker rises is a type P  or S move. 

So we have a to ta l o f (n  — R )lz  moves. In  fact, these moves are a ll type P  and we now have 

£2 — (n  — R ) checkers in  rows n  +  2, n  +  3 , . . . ,  1 +  £2 +  i?. I f  there is a type S move, the there is an 

em pty row somewhere in rows n  +  2, n  +  3 , . . . ,  1 +  £2 +  R  and we would have to  add add itiona l 

moves. So we may assume all o f these moves are o f type P.

For the  checker now in row n +  2, we perform  a type M  move to  b ring  i t  to  row n. Then we 

perform  £2 — 1 type P  moves by raising th is  checker £2 -  1 rows. Note th a t the checkers in rows 

n  +  3 , . . . ,  R  +  1 +  £2 are now in rows n  +  2 , . . . ,  R  +  1 +  £2 — 1. In  general, fo r the i th checker 

th a t is queued below row n  +  2 (after the in it ia l (n  — R )£2 moves), we perform  one type M  move 

and £2 — i  type  P  moves, for a to ta l o f £2 — i  +  1 moves. So the to ta l moves needed to  add £2 

checkers in to  row R  or above is a t least 

h - (n -R )
( n - R ) e 2 +  £  {e2 - i  +  i )  =  ^ l  +  - i 2  +  { n - R ) [ - - + £ 2 - - { n - R ) ]

i —1

Here, bo th  n  — R  and — |  +  £2 — | ( n  -  R)  are non-negative. For the m in im um  to ta l moves to  

equal £2 one o f the fo llow ing must occur.

1. £2 =  0 (which forces n =  R).

2. £2 = 1  w ith  n  =  R

3. £2 =  1 w ith  — | +  £2 — 5 (ft — R) =  0. Th is implies R  =  n — 1, b u t n  <  R  +  £2 which implies 

n  <  n,  a contradiction.
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So in th is  case, i f  we have equality, e ither £2 =  0 or £2 =  1 w ith  n  =  R.

In  these calculations, we’ve always kept checkers in  increasing rows across increasing columns. 

Suppose we move to  a s tra tum  th a t can be described by a checker configuration th a t has some 

checkers in  non-increasing rows (as columns increase). We are only interested in  m in im al numbers 

o f moves and so in  the case o f equality (£2 =  m in im a l number o f moves ) we consider the cases 

where £2 =  l.T hen  we have the ( j  +  l ) st checker in  row R +  1 th a t we’d like to  move in to  row 

R.  I f  we move any o f checkers numbered j  +  2 , j  +  3 , . . .  in to  row R , we must move them  more 

th a t one row (in order to  bypass checker j  +  1). Thus we no longer have a m in im al number of 

moves. So the only way for £2 to  be the number o f moves is to  move checker j  +  1 in to  row R.  

Th is  forces Vj+ 1 C M r  for a ll points in P .

F ina lly , for the case R  =  n  +  1, we know V$ D M n+1 =  Vg D M n since V$ is isotropic. So i f  

R  =  n  +  1, we s till need to  move checkers in to  row n,  so R  =  n  is equivalent to  R  — n  +  1. □
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m 771+1

.771+1 771+1-771 771+1
771 777+1 771+1

771+1 771 + 2777 771 + 2

content, - 1 content 0 content 1

Figure 3.6: Possible labeled quadrilaterals, where j  is labeled w ith  d im (V) D M )  for some fixed 
vector space M.  (Q uadrila tera l * arises in lemma 3.4.1)

3 .4  C o n te n t o f  q u a d r i la te ra ls

Lemma 3.4.1 discusses content o f a quadrila tera l from  a q u ilt Q 0. Suppose we are given a 

vector space M  C C2n+1 and an element ( V m ) m e Q 0 o f O B S (Q 0). We label each element m  of 

the q u ilt w ith  labe l(m ) =  d im (F m n  M). For each quadrila tera l in  Q 0, define the content o f the 

quadrila te ra l as

labe l(m /vB ) +  labe l(m svv) -  labe l(m ;vw ) -  labe l(m sE ) (3.5)

where m ^ B  is the northeast element o f the quadrila tera l, m g iy  is the southwest element of the 

quadrila te ra l, m jw v  is the northwest element o f the quadrila tera l, and u is b  is the southeast 

element o f the quadrila tera l. The qu ilts we are w orking w ith  have a m axim al space V  th a t is 

isotropic, so a ll subspaces associated to  the q u ilt Q 0  are isotropic w ith o u t extra  conditions. So 

Lemm a 5.5 in  [22] can be used in the B n case directly. We restate the lemma here (see also 

F igure 3.6):

L e m m a  3 .4 .1 . Suppose we are given a locally closed subvariety

U c F l ( l , . . . , k , n )  x G(R,n) =  ((Vj), M R)

where the rank data (Vj f l  M /j) i< j< fc  is constant, and (Vj -) i<j<k corresponds to the northwest 

border o f some given Q 0  ■ Define P  via the pullback diagram

P  =-------> B S (Q 0)s  x  G (R ,n )

Y Y
U F l ( l , . . . , k , n )  x  G (R ,n )
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where B S (Q 0)s is a given open stratum  o f B S (Q 0) (and elements o f S are marked w ith  

Let ({Vm)m£Q0, M r ) be a general po in t o f P . Label m  w ith  dim(V/m n  M r ).

(a) Then no quadrilaterals o f type * in  Figure 3.6 appear.

(b) Assume furtherm ore that no negative-content quadrilaterals appear, and a ll quadrilaterals 

marked “=  ” have positive content.

( i)  I f  the northern two vertices o f a quadrilateral are labeled m , then the southern two 

vertices are also labeled m , and the quadrilateral is not marked “=

( i i)  I f  the western two vertices o f a quadrilateral are labeled m , then the eastern two edges 

are labeled the same (both m  o r m +  1 ), and the quadrilateral is not marked

Proof. See proof o f lemma 5.5 in [22], □

We include an additiona l observation here invo lv ing content o f quadrilaterals.

L e m m a  3 .4 .2 . I f  we have a content 1  quadrilateral w ith associated vector spaces Vn w , Vn e , Vs w , Vse  

labeled m ,m  +  1 ,m  +  1 ,m  +  1 respectively where the label is given by d im (V ra f l  M r ). Then 

Vn e  =  Vsw-

Proof. d im (V jvE H M r ) =  d im (V sw  f l  M r ) =  d im (VsE f l  M r ) =  m  +  1 means th a t V ^ e  H M r  =

Vsw  f l  M r  and there is a line L  w ith  L  c  Vn e  f l  M r =  Vsw  f l  M r  such th a t Vn e  P M r  =  

(Vn w  H M r ) © L  and L  <f. Vn w  n  M r . Now, L  c  M r  since L  c  Vn e  H M r , so it  must be th a t 

L  Vn w - Since d im  Vn e  =  d im  Vn w  + 1 we have Vn e  =  Vn w ® L .  S im ila rly  Vsw  =  Vn w ® L .

So Vn e  =  Vsw- □
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C h a p te r 4

PARTIAL PROOF OF THE TYPE B N GEOMETRIC 
LITTLEWOOD-RICHARDSON RULE
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4.1  S tra te g y  o f p ro o f

The overall strategy of the proof o f conjecture 3 is the same as developed by V ak il in  [22]: 

Instead of considering the divisor D  on the closure o f X om in  O G r(n , 2 n +  1) x (V .  we

consider the corresponding divisor D q  on the closure of O B S (Q 0) x  (X .  U X , nelt). See diagram 

(4.1). The map ir is the pro jection from  a po in t (V .,M .,F .)  G  C l o B S ( Q 0 ) x ( x . u x . ne!<t) X o .  to  

(V , M . ,F .) 6 C l o G r ( n , 2 n + i ) x ( x . u x . n e x t ) X o .  th a t drops a ll subspaces associated to  the q u ilt except

t / m a x -

C loB S {Q „)y.X .X 0.  r  ° P e n  > CloBS(Q„)x(X.UX.nejIt)X 0.  < Cl°S6d ^ D q

C l o G r ( n , 2 n + l ) x X . X o »  CloGr(n,2n + l)x (X .U X .neJlt) X 0.  <--------- 11 D  (4.1)

X .  c------------- — ------------> V .  U

In  th is  chapter, we prove certain cases of the type B n geometric L ittlew ood-R ichardson rule 

(conjecture 3). In  each case, we prove the following.

1. In  section 4.2 we show the result holds in  the tr iv ia l cases. For s* moves, th is  occurs when 

there is no w h ite  checker in  either o f the descending black checker rows (rows ds  and dw) .  

A nd  for so moves, th is  occurs when there is no w h ite  checker in  row n. Follow ing th is 

section, we w ill assume there is a w h ite  checker in row n  for sq moves and a w hite  checker 

e ither in row d ^  or dw  or bo th  for s* moves.

2. We describe C l o B S ( Q 0 ) x ( x . u x . n e x t ) X 0 ,  as the intersection o f two spaces, W 0  and W „ next. 

Th is  is theorem 4.4.1.

3. We iden tify  the irreducib le components { D $ }  o f D q  (theorem 4.5.1).

4. We show a ll b u t one or two o f the D s  are contracted by 7r (section 4.6). The statement of 

the theorems in  th is  section vary depending on the case.

5. We then prove theorem 4.7.1 which states th a t in the rem aining irreducib le components, 

the m u ltip lic ity  o f D q  is one.

6 . F ina lly , in  theorem 4.8.1 we show the D s map b ira tiona lly  to  X 0stay, next or X 0swap, n ix t, 

g iv ing  us the expected answers which occur w ith  m u ltip lic ity  one.
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4.2  P r o o f  o f  th e  ru le  in  t r i v ia l  cases

4 .2 .1  T r iv ia l  case fo r  s, m oves

The tr iv ia l case for Sj moves, i ^ O  occurs when there is no w h ite  checker in row d s  and no 

w h ite  checker in row dw  (recall de fin ition  11).

T h e o re m  4 .2 .1 . For an Si move, i f  there is no white checker in  row dE and no white checker 

in  row dw  then D  =  X 0stay. ncxt.

Proof.

Case 1: d& <  n

Let X'ot be the pro jection  of

X 0» —» O G r(n , 2 n + l )  x O F l(  1, • • • ,d s , ■■■ , d w , ■ ■ ■ , 2n +  1) x  O F l(2 n  +  1)

by fo rge tting  M dE and M dw . Note th a t M dw =  M ^E since 2n  +  1 -  dg =  d w  In  th is case we 

assume th a t ds  <  n.

To recover X ot, we can choose MdB such th a t M de- i  C MdE C MdE+1- Since M dE+1 C  

M n, MdE w ill au tom atica lly  be isotropic because Mn is. The fu ll P 1 o f choices for MdE gives 

CloGr(n,2n + i ) x ( x , u x . ne!rt) X 0, ,  the pLbund le  over X ' .  corresponding to  choosing M dE as above. 

The extra  po in t in each fiber is the po in t at in fin ity , i.e. the choice o f M dE w ith  the property 

th a t (M dE n  F cx ) C so D  is the section of C l0 Gr(n,2n + i ) x ( x . u x . next) X 0.  given by {M dE \

(M dE fl F x ) C Tw o loose ends remain to  be checked:

1. The choice o f M dB is completely independent o f V  6 O G r(n , 2n  +  1) when V  is described 

by a w h ite  checker configuration w ith  no w hite  checkers in rows dE nor dw - In  other words, 

V  imposes no conditions on M dE, so any choice o f M dE such th a t M dE- 1 C M dE C M dE+ 1 

w ill y ie ld  a po in t (V ,M .,F .)  e  C l0 Gr(n,2n + i ) x ( x . u x . „ ext) X 0. .

D  X  Ostay*next

Choosing M dE is independent o f V : Let 0 <  a j <  a2 <  • • • <  an <  2n +  1 be the n  rows 

w ith  w h ite  checkers given by the o-configuration. Define

i (a)  =  m a x {i | <  a }. (4.2)
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For (V, M .,F .)  e C l0 Gr(n,2 n + i)x ( x .u x .next)X 0. ,  we have the properties d im (F  n M a) >  i {a)  for

1 <  a <  2n +  1 and M. and F. meet in  e ither the #-way or the ‘ next-way. Now the fiber over the 

pro jection  of (V ,M .,F .)  is the set o f all M dB such th a t d im (F H M dE) >  ( {ds) ,  d im ( V f lM dw ) >  

i ( dw ), M dE- X C M dB C M dE+1, and (M ds_ j n F cx ) C F^+ v

Now, d im (F  fl M dE- 1) >  i (dE — 1) =  *(dg ) since there is no w h ite  checker in  row dg. A nd 

d im (F  fl M dw- \ )  >  i { d w  — 1) =  i { d w ) since there is no w hite checker in row dw - So M dE- i  C  

M dE implies th a t d im (V n M dB) >  i(d g )  and M dw- i  C M dw implies th a t d im (V f)M dw ) >  i ( d w )■ 

So no knowledge of V  is needed to  choose M dE ■

The d iv isor D : We have a P 1 o f choices for M dE where M dE- i  C M dE C M dB+ i-  The single 

choice o f M dE such th a t (M ds D F t )  C F ^ - i  gives the po in t over X , next. So X 0atay. next is the 

section given by the divisor

Case 2: dg  >  n  +  2

Again, let A ' ,  be the pro jection of

A 0.  —* O G r{n , 2n  +  1) x O F l{  1 , . . . ,  dw , - - - , d s , . . . ,  2n +  1) x O F l(2 n  +  1)

by fo rge tting  M dw and M dB. Note th a t M de =  since 2 n +  1 — dw  =  dg. In  th is case, we 

assume th a t dw  <  n.

To recover X a, ,  we can choose M dw such th a t M dw- \  C M dw C M dw +\. Since M dw +\ C 

M n , M dw w il l au tom atica lly  be isotropic because i t  sits inside an isotropic space. I f  we look at the 

fu ll P1 o f choices for M dw then we get more than ju s t X o t, we get C loG r(n ,2n + i ) x ( x .u x r .nf,Tt) X o . .  

A nd  we say C l o G r ( n , 2 n + i ) x ( x . u x . n e x t ) X 0 .  is the P ^bund le  over X 0 .  corresponding to  choos

ing M dw as above. The extra  po in t in  each fiber is the po in t at in fin ity . I t  is the choice 

o f M dw w ith  the property  th a t ( M tw n  F t )  =  (M dB fi F t )  C F'c+j, so D  is the section of 

CloGr(n,2n + i ) x ( x . u x . next)X o .  given by { M dw | (M £w n  F t )  C The rest o f th is  proof is

almost exactly the same as the case dg <  n, replacing dg w ith  dw - □

D  =  { M dB | (M dE C F ^ )  C F t+1}

See diagram  (4.3) where s(X 'o t) =  D.

Xo.  CloGr(n,2n+l)x{X.UX.next) X 0.

(4.3)
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4 .2 .2  T r iv ia l  case fo r  sq m oves

The tr iv ia l case for So moves occurs when there is no w hite  checker in  row n.

T h e o re m  4 .2 .2 . For an sq move, i f  there is no white checker in  row n  then D  — X 0siay»next-

Proof. Let X'a% be the image o f the pro jection

Pn '■ X o . —■' O G r(n , 2 n +  1) x  O F l(h )  x  O F l(2 n +  1)

by fo rge tting  M n and ALX =  M n+X. For a general po in t pn ( t ) £ pn (X om), the fiber Pn l {t) is 

isom orphic to an open subset o f Y  =  O P (M n+2/M n_ i)  C P (M n+2/M n_ i) .  The closure of th is 

set in  O G r(n , 2n +  1) x (X m U X , nexi ) is a ll o f Y . Since there are no w hite  checkers in row n  or 

n  +  1, there are no restrictions coming from  V  £ O G r(n , 2n  +  1) on the choice o f M n .

Consider the section s o f pn , defined as follows: for the po in t

pn {t) =  (V, M i C ■ • • C M n _x,F .)

we need M n such tha t

M n_ i C M n C M „ _ i  +  (M n+2 H F ^ . j )

where d im (M n) =  n  and M n is isotropic.

Le t L  =  M n+2 f l  Fc+ i. B y  the •-configuration, L  has dimension 1. Define M n =  M n_ i +  L. 

Th is  choice o f M n gives us a po in t in  O G r(n , 2n  +  1) x X , next\

(M .,F .) £ X , ncxt d im (M „ D Fcx ) =  d im (M „ D F -̂+1)

<J=̂ > d im ((M n_ j +  L )  D F x ) =  d im ((M „ _ 1 +  L )  n  F ^ ,x) 

which are equal since L  C Fc+1 C F f -+ 1  C F f-  and f i  Fcx  =  M n_ j C in the • -

configuration. We now show th a t th is  choice for for M n is the unique choice such th a t (M .,F .)  £ 

instead o f in X . .

B y  the  black checker configuration, we have

M n+i  C  F x  =  M n+i  n  F x+1 £  X . n„ t

Now, M n+1 n  F x  =  (M n +  F c)x  and M n+1 n  F f+ X =  (M n D F c+i ) x . So 

(M .,F .)  £ X , nel( <=► M „  +  Fc =  M n +  Fc+X

d im (M n f l  F c) =  d im (M „ f l  F c+ i)  — 1 

<=> there is a line £  C Fc+1 such th a t M n =  M n_ i +  £
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A nd M n C M n+2 means C C M n+2. So £  C M n + 2  H F c+ j .  Now, d im (M n+2 f l  Fc+i )  =  1, so C

is unique and C =  L. W e’ve shown there is a unique divisor D  in  CZoGrfn,2n + i)x (x .u x .  t )-X'o«

th a t satisfies the conditions for X mncxt.

We now show th a t the divisor D  has m u ltip lic ity  1. We give a test fam ily  T  th rough a general 

po in t t  €  (V ,M - ,F . )  o f C lOGr(n,2n + i)x (x .u x .„ext)X 0.  meeting the d iv isor D  =  X 0stay, next w ith  

m u ltip lic ity  1. For our general po in t o f CloGr(n,2n + i)x (x .u x ,nBJrt)X 0. ,  we know (M . ,F . )  6 X %. 

We choose a basis for F. and M . :

•  Le t F. have the standard basis w ith  F j  =  ( e i , . . . ,  ej).

•  L e t M .  have the basis th a t depends on the *-configuration. In  particu la r,

M n- 1 =  (e2n + l, 62m • • • ,e2n + 2 -c; ec+2, ec+3 ,. . . ,  en )

and

Afn+2 ~  M n—\ "t- (Cc, Cn+1> ^c+1) •

B u ild  the one-dimensional test fam ily  T  =  { ( W ,  M .', A1.')} as follows:

•  Le t V '  =  V

•  Le t F !  =  F.

•  For 1 <  i  <  n  -  1, le t M- =  M i  and (M /)-1 =  M ^

•  Th is  leaves M'n and M'n+ l  =  (M ^ )x . Define

M'n =  (M n_ i,  —— s2e£ +  sten+i  +  t 2ec+\)

fo r [s, t] £ V .  M'n is isotropic because (M „_ i,  — \ s 2ec +  sten + \ +  t 2ec+ \ )  C M n+2 =  M ^ - i  

and { —\ s 2ec +  sten+1 +  t 2ec+i )  is itse lf isotropic.

We define the fam ily  T  to  be the the open subset o f { ( V ' , M ! , F ! ) }  described above where 

t  ^  0. W hen s ^ O  then (M .', F ' )  € X ,  so T  gL D .  And when [s, t] =  [0,1] then (M ',  F !)  € X , ncxt. 

So T  meets D.

The d iv isor D  on T  is given by

M ’n n  F ^  c  F ^  dim  ( M ' n  Fc+i )  =  1

<=> d im ((M n_ i +  C) f l  Fc+i )  =  1
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Now, in  bo th  X .  and X , next we have th a t d im (M n_ i n F c+ 1 ) =  0, so d im ((M n_ i +  C) fl F c+1 ) =  

1 C  C F c+\. Th is is equivalent to

(—- s 2e£ +  sen+ i +  ec+ i)  C T c+ j,

w hich is true  i f  and on ly  i f  — | s 2 =  0 and s =  0, a m u ltip lic ity  one condition. So T  meets D  w ith  

m u ltip lic ity  one and thus D  has m u ltip lic ity  one.

□
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4 .3  A  d e s c r ip t io n  o f  C l 0 B S ( Q o ) x ( x . u x . n e j ! t ) X 0 .

S im ila r to  [22], we describe a closed subscheme o f O B S (Q 0) x  (X .  U X , next) and show it  

is CloBS(Q0)x (x» u x ,next)Xo* (th is is theorem 4.4.1). The subscheme w ill be constructed as the 

intersection o f two subvarieties o f an open subset o f a tower o f pro jective and quadric bundles 

over OBS(Qo)-

A  note on abusive no tation: We say X ot C  O B S (Q 0) x X ,  when in  fact, X ot is a subset o f 

O G r(n ,  2n  +  1) x X , .  There is however, a na tura l in jection

A 0.  O B S (Q 0) x  X .

which takes (V , M . , F '.) i—> ((Vm)m€Qc, M ., F.)  such th a t for m  € Q 0 in position ( i , j )  on the 

checker board, Vm =  V  f l  M * ft F j.  So w ith o u t fu rthe r note, we say X 0.  C  O B S (Q a) x X .  and 

leave the in jec tion  im p lic it.

4 .3 .1  H o w  to  b u i ld  T

D e f in i t io n  14. Le t m (M ;)  (1 <  i  <  2n +  1) be the m axim um  element m  o f Q 0 in rows up 

th rough i. Define m (F j)  s im ila rly  to  be the m axim um  element m  G Q 0 in  columns up through 

j .  In  pa rticu la r, we define a =  m (F c+i ) (c is defined in de fin ition  12), an element we w ill refer 

to  often.

W e’ve already dealt w ith  the tr iv ia l cases so we w ill assume for the remainder o f the discus

sion th a t there is a w h ite  checker in  row n  (for the sq moves) or there is a w hite  checker in  row 

d s  or dw  or both (for the s* moves).

Remark: We assume also th a t there is no w h ite  checker in column c +  1. A  w hite  checker in 

columns c +  1 requires more thought and w ill be determ ined later.

Consider a subspace

T  C O B S (Q 0) x  O F l(2 n  +  1) x  O F l ( l , - -  - ,c;c, ••• , 2 n +  1).

We describe how to  bu ild  T  and discuss some o f its  properties. We w ill then define spaces 

Q, W 0, and W „ next which are fibered over T.

T  is b u ilt like this:

S ta rt w ith  the base space O B S (Q 0). For a po in t (Va)aeq 0 6  O B S (Q 0), bu ild  M . in the follow ing 

way “ from  outside to inside.”  Let Mo  =  (0), then for 1 <  i  <  n, choose M i  such th a t
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1. M i_ ! C M i  C M t x

2. M i  is isotropic

3. Vm [ Mi )  C M i  c  V^(Mi)

Com plete the isotropic flag M. by defining for 0 <  i  <  n, M ^ n + i - i  — M A .

For a po in t ( ( K ,  M .), bu ild  the pa rtia l isotropic flag F < c in a s im ila r way to  M . . Let Fo =  (0), 

then fo r 1 <  j  <  c, choose F j  such th a t

1. F j_x C F j  c

2. F j is isotropic

3. Vm{F j )  C Fj C V £ lFj )

4. F j  is transverse to  the flag M.

Then for 0 <  j  <  c define F ^ n + i - j  =  F j- .  Th is  completes the space T.

T h e o re m  4 .3 .1 . A t  each midsort (conjecture 1) step in  the degeneration, the space T  is reduced 

and irreducible.

Proof. We build  T  on O B S {Q a) by choosing M i,  M 2, . .  ■, M „  and then F j , . . . ,  F c. I f  there is 

no w h ite  checker in row i  +  1 then choosing M j+ j is equivalent to choosing an isotropic line in 

(M A  f l  +1 ) ) /M i -  I f  there is a w hite  checker in  row i  +  1 then there is exactly one choice for 

M i+ 1, namely M i+1 =  M t +  Vm(Mi+1)- We choose the F j ’s in  a s im ila r way w ith  the additiona l 

open condition th a t F j  is transverse to  the M . flag.

W e’d like to  show th a t T  is reduced and irreducible. Together these am ount to  showing th a t

a t each step where we add M j+ 1 when there is no w h ite  checker in  row i  +  1, th a t the rank of

the sym m etric b ilinear form , ra n k (B ) ,  on (M A  f l  V ^(m <+i ) ) / ^  greater than or equal to  3.

Le t W  =  V ^ M .+ iy  d im (W ) =  k , r a n k ( B \w )  =  r  where r  is odd. A lso le t V  =  W 1  =

Vm(Mi±1) and M  =  M i.  Note th a t C C M A  s o  M  =  M , C =  W .  Our

cla im  is now reworded: ra n k (B )  on ( M 1- f l  W ) / M  is greater than or equal to 3.

We do a change o f basis so th a t our form  B  is nicer looking. See F igure 4.1. r  is odd so 

le t r  =  2q +  1. So the center 1 o f the r  x r  b lock (call th is b lock R) o f the m a trix  is in position
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k

Figure 4.1: The form  fo r the change o f basis m atrix .

(q +  l , q  +  1). M  is isotropic so the block M  cannot meet the antidiagonal o f ones in  block R. 

Thus we must have i  +  q +  1 <  k. Th is implies th a t i  <  k — q.

We have two cases to  consider depending on i f  blocks R  and M  overlap or not.

Case 1

They do not overlap, i.e. i  <  k — r. Then =  W  and ra n k ((M /- f l  W ) / M i )  =  r. Since r  

is odd, e ither r  — 1 o r r  >  3. I f  r  — 1 then Vm(Mi+1) is m axim al isotropic. Th is  is because 

W  =  is the perp o f an isotropic space and i f  ra n k ( B \w )  =  1, then we’ve only added the

m iddle vector so must have been dimension n. Th is means there are n  w h ite  checkers

in rows 1 , . . . ,  i  +  1. I f  there are n  w h ite  checkers in  rows 1 , . . .  , i  +  1 then we must be in the 

m axim al case. A nd  i f  we are in  the m axim al case and we’ve assumed no w hite  checker in row 

i  +  1, then there must be a w hite  checker in  row 2 n  +  2 — ( i +  1) =  2n +  1 — ( i +  1) +  1 =  i  +  1 +  1. 

So there cannot be n  w hite  checkers in rows 1 , . . . ,  i  +  1. Thus r  ^  1, which implies r  >  3.

Case 2

Blocks R  and M  overlap, i.e. i  >  k — r. See F igure 4.2. M  and are spanned by the basis 

vectors

M  =  (efc, e* ._i , . . . ,  ek - i+ x )

M  (Cfc, . . . , 1, . . . ,

so in the quo tien t space we have

{ M  n  W ) / M  =  q , . . . ,  ek - i)
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q+1

k

Figure 4.2: This is the form  o f the change o f basis m a trix  i f  M  and R  blocks overlap, i.e. i  >  k — r  

and

ra n k ( B )  =  (k  — i )  — ( r  +  1 — (k  — i ) )  +  1 

=  2 (k  — i )  — r

We know r  =  2q +  1 and by hypothesis we have both i  >  k — r  and i  <  k — q. Th is  implies 

2 (fc — i )  — r  >  0. And 2 (k - i )  — r  is odd because r  is odd and 2(k -  i ) is even. We again consider 

the two possibilities 2 (k — i )  — r  =  1 and 2 (k — i)  — r  >  3. Suppose 2 (k — i)  — r  =  1. Then we 

have

2 (k — i )  — r  — I  

2 (k — i)  =  r  +  1 

2 (k -  i )  =  (2 q +  1) +  1 

k — i  =  q +  1

T h is  means the upper le ft corner o f the M  block is a t position (q +  2, q +  2).

Recall th a t i (m )  is the number o f w h ite  checkers in rows 1 , . . . ,  m  o f the checker board. Then

k =  d im  W  

=  2 n  +  1 -  d irn(Vm (M l±l))

=  2 n  +  1 — i ( i  +  1).
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A nd  r  =  2 n +  1 — 2i ( i  +  1). Th is  is because we have 1 con tribu ting  to  the rank from  the m iddle 

row and then we have 2n  possible more to  contribu te  to  the rank r .  For each row w ith  a w h ite  

checker, we do not have th a t basis vector nor do we have its  m irro r pa ir con tribu ting  to  the 

rank, a to ta l non-contribu tion  of 2i ( i  +  1). Then noting  th a t r  =  2q +  1, we can conclude th a t 

q =  n  — i ( i  +  1). From the follow ing calculation, we get th a t n =  i.

k — i  =  q +  1 

2n  +  1 — i ( i  +  1) — i  =  n  — i ( i  +  1) +  1 

2 n  — i  =  n  

n  — i  =  0 

n  =  i

B u t i  <  n  (recall th a t we’re find ing M j+ j which is at largest M n so i  +  1 <  n  and thus i  <  n)  so 

we have a contradiction. Thus ra n k (B )  =  2(fc — i)  — r  ^  1 so ra n k (B )  > 3 .  □

4 .3 .2  Spaces b u i l t  o n  T

Let in f  e Q a. in f is an im portan t element of Q a for the p roof o f theorem 4.4.1. We w ill 

define precisely which element of Q 0 is named in f for each case ind iv idua lly.

D e f in i t io n  15. For a fixed po in t t  =  ( ( F m ) m 6 Q0 , M., F < c) £  T,  choose Fc+i such tha t

1. F c C F c + 1  C Fcx

2. F c+1 is isotropic

3. VW C F c\ ,

For fixed t  € T  le t Qt be the set o f a ll such Fc+i.

Note th a t i f  F c C F c+1 and Fc+i is isotropic then the condition Fc+i  C F x  is met autom at

ically.

D e f in i t io n  16. Q  =  {(£, Fc+i ) | t  £ T , F C+1 £ Q t }. Q is fibered over T  w ith  fibers Q t .

For (t , Fc+1) £  Q, we have the fo llow ing lemma.

L e m m a  4 .3 .1 . (F cx  n  M dE_ i)  C F cx  1 d im (F c+i D M dw+X) >  1
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Proof. F x  n  M dB-1  C F ^ j  implies th a t F c+ j  C f c +  ^ d E- i  ~  ^c +  M dw+\.  By construction 

o f T, F c is transverse to  the M. flag, so F c H M dw+ i  =  (0). Thus we can w rite  Fc+1 =  Fc +  L  

where L  is a line in M dw + i ,  and we have d im (F c+i fl M dw+ 1) =  1.

Now, suppose d im (F c+ i fl M dw+ i )  =  1. B y  construction o f T,  we know Fc fl M dw + i =  (0). 

T h is  implies th a t there is a line L  C M dw + i  such th a t F c+ i  — Fc +  L.  So F c-|_i — (Fc +  L )  C 

(F c +  M dw +i) .  Equivalently, (F c +  M ^ + i ) - 1- C F -̂+1. And

(F c +  M d w + l)±  =  (F x  n  M xw+1) =  (F x  n  M dE- i )

thus F x  f l  M dE- i  C F ^p j. □

D e fin it io n  17. For a fixed po in t t  =  ((Vrm)meQ0, M., F < c) £ T , choose Fc+J such tha t

1. F c C Fc+1 C F x

2. Fc+1 is isotropic

3. Vinf C F ^ j

4. K n (F c+1) c Fc+1 c Fx

For fixed t  £  T  le t St be the set o f a ll such F c+\.

D e fin it io n  18. W 0  =  { ( f , F c+i ) | f  £ T , Fc+i  £ S )}. fF 0 is fibered over T  w ith  fibers Ft- 

D e fin it io n  19. For a fixed po in t t  =  ((Fm)meQ0, M .,F < C) £ T , choose Fc+i such tha t

1. F c C F c+1 C F x

2. F c+1 is isotropic

3. Vinf c F x+1

4. ( F ^ n M d ^ C F ^

5. ( F x  fl M dE+ \ )  <£. F - ( t h i s  is an open condition)

For fixed t  G T  let Rt  be the set o f a ll such F c+j.

D e fin it io n  20. W , , next =  { ( t , F c+i ) | f  £ T , Fc+i £ Rt }. W „ ncxt is fibered over T  w ith  fibers Rt-
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L e m m a  4 .3 .2 . W „ nexl has a natural immersion

W . .nxxt^ O B S ( Q 0 ) x ( X . \ J X . rixxt)

Proof. G iven a po in t ((Vm)meQ0, M . ,F < C+1) 6 W , , next, complete the F < (c+1) flag as follows:

For F j ,  c +  2 <  j  <  n, column j  has a black checker in  row r j .  Let F j  =  (M r j  PI Fc+ l)  +  Fc+1 -

Note th a t

1. F j  is isotropic. Th is  is because Fc+i  is isotropic and F ^ j  C\Mrj  is isotropic because M rj  is 

iso trop ic since r j  < n  for c +  2 <  j  <  n. In  add ition , ( F ^  fl M r j ) C F ^ j  so every vector 

in  fl M rj  is orthogonal to  every vector in  F c+i.

2. F j  has dimension j .  There are two cases:

(a) r j  <  r c+ i- Then d im (F cJj_1 n M r j ) =  j  -  (c +  1) and ( F ^ j  f l  M r j ) n Fc+1 =  (0) so

d im (F j)  =  d im (F ci j_1 n  M r j ) +  d im (F c+ i)  -  d im (F c+ 1 PI M rj  PI Fc+i)

=  j  -  (c +  1) +  ( c +  1) -  0 

=  3-

(b) r j  >  r c+1. Then d im (F (̂ .1 Pi M r j ) =  j  — c since the black checker in column c +  1 is 

now included in the dimension count. Th is  also means d im (F c-tj_j Pi M rj  D Fc+ i)  =  1. 

So
d im (F j)  = d im (F cJ; 1 Pi M r j ) +  d im (F c+i)  -  d im (F 4 i H M rj  Pi Fc+1)

=  ( j  -  c) +  ( c +  1) -  1

□
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4 . 4  Wo n  W . , next =  C10 BS(Q0) X (X *U X «next ) ^ ° *

T h e o re m  4 .4 .1 . We have the scheme-theoretic equality

Wo n  W ,,next =  C l0 B S (Q „)x (X .U X .nejt, ) X 0.

P roo f o f theorem 4.4.1 depends on the type o f move. We w ill prove theorem 4.4.1 for Sj 

moves w ith  dp <  n  in  section 4.4.1 and for so moves in section 4.4.3. A ll proofs assume there is 

no w h ite  checker in column c +  1 (recall rem ark in  section 4.3.1).

In  each case, the strategy o f the p roof is th is: We fix  an irreducib le component Z  o f W 0  D 

W . . next and describe an open subscheme o f Z  e xp lic itly  as a tower o f pro jective and quadric 

bundles over the dense open subset 0 B S { Q o)a- Through a description o f the open subscheme o f Z  

as a tower o f bundles, we w ill show th a t Z  has the expected codimension. Note th a t W 0n  W . ,next 

is irreducib le  because T  is irreducib le and the fibers over O B S {Q 0)$ are equidimensional. Since 

W 0  fl is irreducib le and, as we w ill show, Z  is a component o f the same dimension, we

get th a t Z  must be unique and thus Z  — W 0  fl W ..nea,t .

The fo llow ing defin ition  w ill p lay a large role in the proof o f theorem 4.4.1.

D e fin it io n  21. The expected codimension over Q  o f Wa fl W , ,neT) is

expcod(W 0 (~l W „ next) =  codimQ(Wo) + c o d im Q (W ..nelt)

4 .4 .1  Si m ove w ith  dg <  n

In  th is  section, there is a w h ite  checker in  either row dg, row dw ,  or both . F ix  an irreducible 

component Z  o f W 0 fl W „ nelct. Necessarily, we have codimQ Z  <  expcod(H /0 H W ..next). We w ill 

show th a t Z  is unique and codimQ Z  =  expcod(W 0 fl W ..next).

The reader may wish to  refer to  Figures 4.3, 4.4, 4.5, and 4.8 as examples. Le t x  be the 

w h ite  checker on the western end o f the northernm ost diagonal o f Q 0  whose eastern end is in a 

row greater than or equal to  ds  and in a column greater than or equal to  c. Let d be the checker 

on the eastern end o f the diagonal.

Define R  =  (row o f checker d) — 1. Le t in f =  x ,a  =  m (F ^_ 1 ) , x '  =  m ( M n + i ) , x "  =  

and sup =  sup (x ,x ') .

8 7
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We have three cases: ( i) in f  =  a, (u ) in f  ^  a, x", and (n i) in f  =  x". For the proofs o f cases 

(w )in f ^  a ,x "  and ( in ) in f  =  x", i f  there is a w h ite  checker in row dp,  then R  =  ds  — 1 and the 

proofs s im p lify  in  obvious ways.

Case (i) in f =  a

In  th is  case there are no w h ite  checkers in any columns from  the column o f x  through c +  1- No 

w h ite  checkers in  columns east o f checker x  th rough column c +  1 indicates th a t x  =  a =  m (F c+1). 

To be in  Q, F c+1 must contain Vx , so the W 0  condition th a t F c+ \ also contain Va is not a new 

condition. Thus W 0 =  Q  and we have Z  =  W t , next. So Z is unique and

codim Q Z  =  cod im (W .#r,e jt) =  expcod(W 0 n  W „ nlxt)

Case (ii) in f ^  a ,x "

For th is  case, there must be at least one w h ite  checker in  a row d irectly  north  o f row R +  1 (the 

row o f checker d) and at least one w h ite  checker in  a column between the column of x  and column 

c +  1. See Figures 4.3 and 4.4.

We w ill construct a dense open subscheme o f Z. Let Z y  be the image o f Z  in  O B S (Q 0), Zm  

be the image o f Z  in  O B S (Q 0 ) x { M . } ,  and Z p  be the image o f Z  in  T  C O B S (Q 0 ) x { M . } x { F < c}. 

See D iagram  (4.4).

Wo n w . . _ t

T  ? ■

7TV
Y

0 B S { Q o)

c o d i m — i Q Pf  (*)

* y { V . )
c o d i m — i t i

P v ( V . )

P F

Z F

P m  (4.4)

Z m

p v

Z v

Let

c o d i m — £ \

=  codim o b s ( q 0 ) Z y  ■ Z y  is contained in some closed s tra tum  o f codimension at

most £i, which corresponds to  a set S o f at most t \  quadrilaterals o f Q 0  (recall s tra ta  in  section

3.1). Thus l \  >  |5|. I f  |5| =  £\, then Z y  is the s tra tum  O B S (Q 0 )s-

We next consider the choices for M .  w ith  the conditions described in  section 4.3.1. Let 

be the codimension o f Zm  in  the  fib ra tion

7 r y 1 ( Z y )  - >  Z y
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Figure 4.3: An example w ith  ds  <  n  w ith  no w hite  checker in  column c +  1. in f ^  a, x " .  In  th is 
example, there is a w h ite  checker in row dw  bu t not row d&.
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F igure 4.4: A n  example w ith  dE <  n  w ith  no w h ite  checker in  column c +  1. in f ^  a, x "  and 
R  =  ds  — 1. In  th is example, there are w hite  checkers in rows d s  and dw-
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dE

Western good 
quadrilaterals

Eastern good 
quadrilaterals

F igure 4.5: A n  example o f an Si move w ith  a w h ite  checker in  row ds  <  n. The shaded regions 
and vertices b, b', and b" are discussed in  section 4.5
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For a general point of Z , define

t 2  =  dim(Vrsup n M dE- 1 ) -  dim(14<< D

and

=  dim (Vrsup f l  M r )  -  d im ( 1 4 "  H  M r ) .

B y lemma 3.3.1 w ith  R  as above, j  =  d im (m (M /{)) =  d im a :",5  =  d im (sup ),i?  =  Z y ,  and 

B  —> O F l (  1 , . . . ,  (5,2n +  1) the map g iv ing the spaces o f the northeast border o f O B S (Q 0), we 

have £4 >  1 '2.

By lemma 3.2.1, we also have £'2  >  £2, so

£4 >  4 > h -

Note th a t i f  there is a w h ite  checker in row cfg, then R  — dE -  1 and £ 2  =  £2 immediately. Let

be the codimension o f Z p  in the fib ra tion

* Z m

Then

co d im r Z p  =  £ 1  +  £ 4  +  £ 5 .

For a general po in t t  =  (V . ,M . ,F <C) e Zp,  consider the set {F 'c+ i} where

1. F c C F c+1 C F i-

2. d im ( i?c+i )  =  c +  1

3. F c+1 is isotropic

4. 14i (f c+i) C F c+1 C 141-

5. F c+i  C  ( F ^ n M ^ - i ) 1

Note th a t no w hite  checker in  column c +  1 implies th a t the containm ent Vm(pc+1) C Fc+i is 

already satisfied. Call th is  space £t. The dimension o f &  is calculated here.

d im £ t =  d im (y aL n  (F cx  n  M dE_ 1) x ) -  d im (F c) -  1 -  1
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The firs t —1 is for the isotropy condition and the second —1 is for choosing a line in V,0X f l  

{M dB- \  H F x ) x . The isotropy condition is a non triv ia l condition since V^~ f l  (M d B - 1 D F x )x  is 

not iso trop ic by C oro llary 3.2.1. 14x n(MdB_ in F x )x satisfies the hypotheses for C oro llary 3.2.1 

because d s  -  1 <  n  so M dE- i  H F x  is isotropic. A nd  Vjnf C 14 so V* C V & . Thus F c + 1  C VJ-

im plies Fc+i C VAf . A nd F c C J4+ i  w ith  F c+ i isotropic implies th a t F c + 1  C F x . So we have

d im  =  d im (F ax  n ( F x  n Mdfi_ i ) x ) -  c -  2

=  d im ((14 +  ( F x  f l  M d z - i ) ) - 1) -  c -  2

=  2n +  1 -  d im (14 +  ( F x  n  M Ab- i ) )  -  c -  2

=  2n +  1 -  (d im  14 +  d im (F x  n  M dB- i )  -  d im (V r0 C F x  C M dE- 1)) -  c -  2

=  2n +  1 -  d im  14 -  d im (F x  n  M dE- \ )  +  dim(14 C M dB- i )  -  c -  2 .

A  note on the last line: 14 =  Vm(p± j  C Fcx  x c  F x . We now derive an expression for 

expcod(W4 n  W „ next).

dim  Qt =  dim(14X ) -  c -  2

=  2n +  1 — d im (14) -  c — 2. 

d im (W 0)t =  2n +  1 — d im (14) — c -  2.

codim g(W 4 ) =  d im (Q t ) -  dim(M4 )t 

=  d im (14) -  d im (14). 

d im (W ..„e it) t =  d im (V x  n  ( F x  n  M d£._ i ) x ) -  c -  2

=  2 n +  1 -  d im (14) -  d im (F x  D M dE- \ )  +  d im (14 C M dE- i )  -  c -  2.

cod im Q(W ..neit) =  d im (Q t ) -  d im (W 4 .„ „ t )t

=  d im (F x  n  M dB- i )  -  d im (14 C M dE- \ ) .

So

expcod(W 0 f l  W,,ncxt) =  d im (14) -  d im  14 +  d im (F x  n M dB- i )  -  d im (14 C M dB- \ ) .  (4.5)

Now, codimQ, is

codimQ, =  dim  Qt -  dim

=  expcod(W Q C W „ next) +  d im Q t -  d im £ t -  expcod(W 0 n  W ..nelt)

=  expcod(W 0 n  W 4.neIt) -  [d im (14 n  M dB- 1) -  d im (14 C M dB- i ) \

=  expcod(W 0 C W.,next) -  e3
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y

Reg

Figure 4.6: A  general outline o f the region defined by x y z w .

where

£3 =  d im (i/0 n M dE_ j)  -  dim (Vrcc n M dB- i ) -

Since Vx C Va, £ 3  is non-negative. Le t £ 3  be the codimension o f the fiber p F l (t) C Z  —> Z p  in

£t- See D iagram  (4.4). Then codim Qt (pF (t))  =  codim g, + £ 6 and we have

codim  Z  -  expcod(W 0 n W „ next) =  {£\ + £ 4 + £ 5  +  codiniQ, (p ^ 1^ ) ) )  -  expcod(W 0 f i  W „ next)

=  £ 1  +  £ 4  +  i 5 +  c o d in g  +  £ 6 -  expcod(hF0 n W , . naxt)

=  £ 1  +  £ 4  +  £ 5  +  (expcod(W 0 D W „ nexl ) -  £3 )

+  £ 3  -  expcod(W 0 n W m, next)

=  £\ +  £ 4  +  £ 5  +  £q — £3 .

Now, £5 >  0 and £ 3  >  0 because these are codimensions. A nd  £ 4  >  £ 2  by lemma 3.3.1. So we 

have

codim Z  -  expcod(W 0 n W ,mnext) > £ \ + £ 2 ~  £3 -

Since Z  is a component of W 0 O W ,tnext, i t  must be true th a t co d im Z  <  expcod(W/0 f l  

W ,%riaxi) .  Thus codim Z  — expcod(VF0 H W ,,next) <  0 (nonpositive). We w ill show th a t £ 1  +  £ 2  — 

£ 3  >  0, w hich w ill force codim Z  =  expcod(W 0 D W „ ncxt).

Consider the region defined by x x "s u p a .

D e f in it io n  22. Name the northwest, northeast, southeast, and southwest vertices x , y , z ,  and w  

respectively. See F igure 4.6. The region defined by x y z w  has boundary edges defined as follows: 

For the  northe rn  boundary (between x  and y ) , choose the southern most path  from  y  to  x  such

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



th a t i f  m  € Q 0 is a node on the path, then x  -*< m  X y. For the eastern boundary (between z 

and y ) ,  choose the western most path from  y  to  z such th a t i f  m  €  Q 0 is a node on the path, 

then y  -< m  -< z. S im ilarly, the southern boundary is the northern most path between z and w  

and the  western boundary is the eastern most path  between x  and w .

The total content o f the quadrilaterals in  th is region is the sum over the content o f a ll 

quadrila tera ls in  the region. Th is is a linear com bination o f the labels of the vertices (see equation 

(3.5)). The net con tribu tion  o f a vertex m  £ Q0 is the number o f quadrilaterals in the region of 

which i t  is the northeast or southwest corner, minus the number o f which i t  is the northwest or 

southeast corner. Hence the only non-zero con tribu tion  to  the to ta l content is the fo llow ing (see 

also [22]):

•  A ny in terna l diagonal edge contributes the label o f its larger edge minus the label o f its 

smaller edge (a non-negative con tribu tion ).

•  The northeast and southwest corner vertices contribute  the ir labels and the northwest and 

southeast corner vertices contribu te  the negative of the ir labels.

For the region defined by x x "  sup a, label vertex m  o f Q0 w ith  the value dim (Vrm f l  M dE_ 1). 

Then the to ta l content o f th is  region is 

T C  =  (in te rna l diagonal con tribu tion ) +  d im (V rQ f l  M djs_ 1) -I- d im (H X" f l  M dB- 1)

-  d im (14 n M dB- { )  -  d im (Vrsup n M dE^ x)

>  — (d im (l/sup n M dE.. i )  -  d im (Hx// n M dE- X)) +  (dim (Vra D M dB_ x) -  d im (H x n M dE_ i) )

=  - * 2 +  *3-

The content is bounded above by |5| (lemma 3.4.2) which in tu rn  is bounded above by £x and 

we have

£x > \s\ > - e 2 +  e3

w hich implies

£ 1  +  I 2  ~  4  >  0 .

So we have equality in  a ll inequalities. In  particu la r, £5 =  £g =  0, £4 =  £ '2  =  £2 , the in ternal 

diagonal con tribu tion  is zero, and £x =  |5 | =  to ta l content.

N ext we use lemma 3.4.1(6) b u t firs t must confirm  tha t the hypotheses for th is  lemma hold.
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content —1

m +  1

m + 1
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m

771+1+ 1D
m +  1

m  +  2

content 0 content 1

F igure 4.7: The five types of quadrilaterals we are interested in  for lemma 4.4.1.

L e m m a  4 .4 .1 . I f  t \  =  |S| then the hypotheses fo r  lemma 3.4.1(b) are satisfied. In  particular, 

there are no negative-content quadrilaterals and there are no zero-content quadrilaterals with “= ” 

signs.

Proof. We know £\ =  to ta l content and |,S>| =  of quads w ith  “ = ”  signs and we know i \  =  |5|. 

From lemma 3.4.1, there are five types o f quadrilaterals th a t we are interested in. See Figure 4.7.

i \  =  to ta l content =  (—1)|j4| +  (—1)|B | +  |f?| 

where \X \ =  #  o f quads o f type X . And

|S'| =  #  o f quads w ith  “ = ” signs =  \B\ +  |C| +  |Z?| +  |25|.

Now, l \  =  |S| implies

( -1 ) |A |  +  (—1)|S | +  \E\ =  \B\ +  \C\ +  \D\ +  \E\

^ Q = \ A \  +  2\B\ +  \C\ +  \D\

W hich im plies \A\ =  |B | =  |C| =  |£)| =  0. In  particu la r, \A\ =  |S | =  0 means there are no 

negative-content quadrila tera ls, and \C\ =  |H | =  0 means there are no zero-content quadrilaterals 

w ith  “ = ” signs. So the hypotheses for lemma 3.4.1 are satisfied. □

Since a ll in te rna l diagonals have the same label on bo th  vertices, edge x d  has the same 

label on bo th  vertices. Using lemma 3.4.1 (b)(i) , we move south from  x d  and conclude th a t 

d im (14 n  M dB- i )  =  dimCFo l~l M dE- 1). So £3 =  0.
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We also have th a t £4 =  4  =  £2- We w ill show th a t 4  =  0 . Consider the same region, defined 

by x x "s u p a , bu t now label vertex m  S Q 0  w ith  d im (V m f l  M r ) for a general po in t o f Z.  The 

to ta l content, T C r  of the region is

T C r  =  (in terna l diagonal co n tr ib u tio n )r  +  dim(Va f l  M r ) +  dim (Vrx"  H M r )

-  d im (Vx n M r ) -  d im (F sup D M r )

>  -(d im (V 'sup D M r ) -  d im  Vxn D M r ) +  (d im (F0 D M r ) -  d im  (14 n  M r ))

=  - l ' 2 + t ‘:3

=  d im (V0 n  M r )  — d im (I4  f l  M r ) .  In  the case where R =  ds  -  1, we have T C  =  T C r .where

B y  lemma 3.2.1, we have £3 >  £3. The to ta l content is s till bounded above by £1 so we have 

£1 >  ~ 4  +  £3 >  - 4  +  £3 =  —£2 +  £3. (4.6)

We already have equality in l \  =  —£2 +  £3, so we get equality across (4.6) as well. In  particu la r, 

£3 =  £3 — 0 an4 the in terna l diagonal con tribu tion  is zero.

M oving east from edge x d  and using lemma 3.4.1(6) (m ), we get tha t

dim (14 ' f l  M r )  =  d im ( V x n  f l  M r )  =  d im (F X'/) <  d im (14 ').

T h is  implies th a t Vx> <£. M r . By lemma 3.3.1, w ith  equality 4  =  £4 and Vx> <jL M r , we must 

have 4  =  0. Thus £4 =  4  =  £2 =  0 and we have 0 =  l \  +  £2 — £3 =  £1. And

codim  Z  -  expcod(W a 0  W , .ncxt) =  l \  +  £ 4  +  £ 5  + — £3 =  0.

For th is  case, we have described an open subscheme o f Z  exp lic itly  as a tower o f pro jective and 

quadric bundles over O B S (Q 0 )ih. Thus Z  is unique and we’ve shown th a t Z  has the expected 

codimension.

C ase ( i i i )  in f =  x "

T h is  case occurs i f  and only i f  there are no w h ite  checkers d irectly  above row R + 1  in columns c 

or greater. See F igure 4.8 as an example. The argument for the case in f a, x "  applies verbatim  

u n til we conclude th a t 0 >  codim Z  — expcod(W 0 fl W „ ntxt) >  l \  +  £2 — £3- Consider the region 

defined by vertices x  =  in f =  x " ,x ',s u p ,  and a. Label vertex m  G Q 0  w ith  dim (Vrm PI M d B- 1). 

Now, Vxn is a hyperplane in Vx< so

dim(T4 / f l  M dE- \ )  -  d im (VrJ!/< f l  M dE^ x) =  e

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



F igure 4.8: dg <  n  w ith  no w h ite  checker in column c +  1. in f =  x "  and R  =  dw  -  1-
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where e =  0 or 1. The to ta l content o f region x x 's u p a  is

T C  — (in te rna l diagonal con tribu tion ) +  dim(V'a f l  M dE- 1) +  d im (’!4 ' H M dE~ 1)

-  d im (yx n  M dE- 1) -  dim(14Up H M dB- \ )

=  (in te rna l diagonal con tribu tion ) +  d im (Vra D M dE- 1) +  (e +  d im (I4»  f l  M d B- 1))

-  dim(V"x n  M dB- \ )  -  dim(V'sup D M dE- i )

>  e +  (d im (U a n  M dB- \ )  -  dim  (14 n  M de- 1)) -  (d im (Ksup n  M dE~ 1) -  d im ( I4 "  n  M de- 1))

=  £ +  £ 3  — £2 -

Th is  is bounded above by £\ so £\ >  e +  £ 3  — £ 2  and thus £ 1  +  £ 2  -  £3  >  £• So we have 

0 >  £\ +  £ 2  — £3 >  £ and so e =  0, and equality holds in all previous inequalities. In  particu la r, 

£ 4  =  £ '2  =  £ 2  and the in terna l diagonal con tribu tion  is zero. Using lemma 3.4.1 (b) ( i)  and m oving 

south from  edge x d , we have £ 3  =  0. We now show th a t C2 — 0. Relabel region x x ' sup a w ith  

labels dim(V)n f l  M r ) .  The new to ta l content, T C r  is

T C r =  (in ternal diagonal con tribu tion ) r  +  dim(V'a f l  M r ) +  d im (I4 ' f l  M r )

-  d im (V i n  M r ) -  dim (Vrsup D M r )

=  (in ternal diagonal co n tr ib u tio n )r  +  dim (U 0 f l  M r ) +  (e^ +  d im (I4 "  f l  M r ))

-  dim (14 n  M r ) -  dim (Vrsup D M r )

>  6r +  (d im (V a n  M r ) -  d im (14 D M r )) -  (dim (Vrsup ("I M r ) -  d im (V rx» n  M r ))

=  £r +  £ 3 — £'2

where £r =  d im (I4 ' f l  M r ) — d im (I4 "  f l  M r ) >  0. I f  there is a w h ite  checker in row ds  then 

R  =  ds  — 1 and T C r  =  T C .  B y lemma 3.2.1 we have £ '3 >  £3 .

The to ta l content o f the region is bounded above by £\ so

^1 >  — ^ 2  +  ^3 +  eR — +  ^3 — —̂ 2 +  ^3 =  — (-2  +  ^3- (4.7)

We already have equality in £\ =  — £ 2  +  £ 3  so we now have 6 r  =  0, £'s =  £ 3  =  0, and the

(in te rna l diagonal con tribu tion )R is zero. Since €r  =  0, we have

d im (I4 / f l  M r ) =  d im (14" n  M r ) =  d im (I4 " )  <  d im (14').

Th is  implies th a t Vx> <f- M r .  By lemma 3.3.1, w ith  equality i 2  =  £ 4  and 14' M r ,  we must

have £ '2  =  0. Thus £ 4  =  £ 2  =  £ 2  — 0 and we have 0 =  £\ +  £ 2  — £ 3  =  l \  ■ So for in f =  x "  we have

described an appropriate subscheme o f Z  and thus completed the p roo f in  th is  case.
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4 .4 .2  Si m o ve  w i t h  dg >  n +  2

There are pa rtia l results for the case o f an Si move w ith  dp > n  +  2 . We om it them  for th is 

dissertation.

4 .4 .3  so m ove

For a n on triv ia l so move, there is a w hite  checker in row n. Let in f =  in f(a , a "), a =  m ( F ^ . 1), 

a ' =  m ( M n), a "  =  and sup =  sup(o, a'). Figures 4.9 and 4.10 are examples of

non tr iv ia l So moves. We have three cases.

C ase (i) in f  =  a

I f  there are no w h ite  checkers in  columns n +  2 <  col <  c +  1 then in f =  a. No w h ite  checkers 

in  th is  region implies th a t Va C V)nf +  F c which means f l  F^- C V ^ . We already know 

th a t a ll elements o f Q  satisfy the conditions Fc+\ c  V ^ { and F c + 1  c  Fc\  so Fc+1 c  V j-  is not 

a new condition. Thus W 0 =  Q  and we have Z  =  W „ n<,xt. So Z  is unique and codim q Z  =  

c o d im (W ..n„ t ) =  expcod(W 0 n  W , .next).

Case ( i i)  in f  /  a, a "

See Figures 4.9 and 4.10. There must be at least one w hite checker in  columns n  +  2 <  col <  

c +  1, and at least one w h ite  checker in  the region bounded by 1 <  row  <  n  and c <  col <  2n + 1. 

We w ill construct a dense open subscheme o f Z. Let Z y ,  Zm,  and Zp  be described as in section

4.4.1. See D iagram  (4.4).

Let =  codim O B S ( Q 0 )  Z v ■ Z y  is contained in some closed s tra tum  o f codimension at 

most t \  which corresponds to  a set S o f a t most i \  quadrilaterals of Q 0  (recall s tra ta  in section

3.1). Thus l \  >  |S|. I f  |S| =  t \  then Z y  is the s tra tum  O B S (Q 0 )s-

We next consider the choices for M .  w ith  the conditions described in section 4.3.1. Let 

be the codimension o f Zm  in the fib ra tion

K y X { Z y )  — > Z y .

Define for a general po in t of Z ,

h  =  d im (VrSUp H A f„_ i)  -  d im (K n(Afn_l ) ) 

=  dim (Vrsup n  M n- i )  -  dim(V'a" ) .
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in f . . .

c +  1
c c +  1

F igure 4.9: Example o f an so move where there is no w h ite  checker in column c +  1 and there is 
a w hite  checker in  row n. in f (a, a ") ^  a, a"
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r  =  5

row n
INW  good 
i jquad :

&  —  9m

r  =  16

sup

c +  1 c
c +  1

F igure 4.10: Example o f a n on triv ia l So move. Labels r, s, t, and h i  are discussed in section 
4.7.3.
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B y lemma 3.3.1, tak ing  R  =  n  -  1, j  =  d im (m (M „_ i) )  =  d im (a "), 5 =  dim (sup(a, a ')), B  =  Z y ,  

and B  —> O F l (  1 , . . . ,  <5,2n +  1) the map g iv ing the spaces o f the northeast border o f O B S (Q 0), 

we have £ 4  >  £ 2  ■

be the codimension o f Z p  in the fib ra tionLet

Km { Z m ) — > Z m -

Then we have

co d im r Z p  =  £\ +  £ 4  + 1$.

For a general po in t t =  (V., M . ,F < C) £ Zp,  consider the set {F c+i }  where

1. F c C Fc+\ C F t

2. F c+ i isotropic

3- Fm(Fc+l) C Fc+1 C V t

4. F c + 1  C ( F t  n  M n_ i ) x  

C all th is  space £t- The dimension o f is calculated here:

d im  &  =  d im (V ax  n  ( F x  n  A r „ _ i ) x ) -  d im (F c) - 1 - 1 .

We subtract 1 because we choose a line in  the space ( V t  H ( F t  0  M „ _ i ) x ) /F c and we subtract

1 fo r isotropy. Here, Va is isotropic and so is F x  since M n_ 1 is isotropic, so by C orollary

3.2.1, V t  H ( F t  f l  A f „ _ i ) x  is not isotropic. C ontinuing the calculation: 

d im  =  d im (Vrax  C ( F x  C M „ _ i ) x ) -  c -  2

=  d im ((H a +  ( F x  0  M „ _ i ) ) x ) -  c -  2 

=  2n +  1 -  d im (F a +  (F x  f l  M n_ i) )  -  c -  2

=  2n  +  1 -  d im  (Ho) -  d im (F x  n  M „ _ i )  +  d im (Fa n  F x  D M n_ j)  -  c -  2

=  2n  +  1 — dim (Vra) — d im (F x  f l  M n_ i)  +  dimCFa f l  M n_ 1) — c — 2.

Note th a t for the last step o f the calculation we have Va C Vm(pc) C F£ =  F x .

Recall from  D e fin ition  21 th a t expcod(W 0 f l  W/ . #nex() =  codimQ W a +  codimQ W „ next. So 

we need

dim(<2t) =  d im (V jxf ) -  c -  2

=  2n +  1 — d im (V inf ) — c — 2.
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and

d im (W 0)t =  d im (VraJ" n  Vjxf ) -  c -  2

=  2n +  1 — d im (V a) — c — 2. 

d im (W ..„ex, ) f =  dim(V5nf n  (F x  D M n^ ) x ) -  c -  2

=  dim((V5nf +  (F x  n  M n_ 0 ) x ) -  c -  2

=  2 n  +  1 -  d im (F n f +  ( F t  n  M n - 1)) -  c -  2

=  2ra +  1 -  d im (F n f) -  d im (F x  n  M „ _ i)

+  dim(V^nf n  F x  n  M n_ i)  -  c -  2

=  2n +  1 — d im (F x  D M n_ i)  — c — 2.

codimQ(W'o) =  d im (Q t ) -  d im (W 0)t 

=  dim(Va) -  dim(Vinf)- 

co d im Q (fF ..next) =  d im (F x  n  M „ _ ,)  -  d im (F n f)-

so

expcod(W 0 n  W . .next) =  d im (V „) +  d im (F x  n  M n^ )  -  2 d im (V inf). (4.8)

We now calculate codimQ, f t .

codimQ, f t =  d im Q t -  d im f t

=  expcod(W 0 n  W ..neit) +  d im  Q t -  d im f t -  expcod(W/0 D W ..neit)

=  expcod(W 0 n +  2n  +  1 -  d im (V |nf) -  c -  2

-  (2n  +  1 -  d im (Vra) -  d im (F x  n  M „ _ x) +  d im (V a n  M n_ i)  -  c -  2)

-  (d im (V ra) +  d im (F x  D M n_ i)  -  2d im (V in f))

=  expcod(W 0 D W ..next) -  [d im (Fa n  A f „ _ i )  -  d im (F n f)]

=  expcod(W Q n  W ..next) -  £ 3

where £3 =  d im (F a f l  M n_ j )  — d im (F n f)- Let 1 % be the codimension o f the fiber p F l ( t ) c Z -

Z p  in  f t .  See D iagram  (4.4). Then codim Q ,( p ^ i t ) )  =  codimQ, f t  +  £q. A nd  we have

codim  Z  -  expcod(W 0 D W , ,next) — £\ +  £4 +  £5 +  codimQ, f t +  £ 6  -  expcod(W 0 D W . ,ncxt)

=  t \  +  £ 4  +  £ 5  +  £§ — £3 .

Now, £ 5  and £q are codimensions, so £3 , £ 3  >  0. And £ 4  >  £% by lemma 3.3.1, so 

co d im Z  -  expcod(W 0 D W „ next) >  £\ + £ 2  -  £3 -
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Since Z  is a component o f W 0  f l  W „ next, i t  must be true  th a t codim  Z  <  expcod(W 0 H W „ next). 

So 0 >  codim  Z  — expcod(W4 D W „ next)  >  £\ +  £2 — £3. We now show th a t £\ +£2  — £3 >  0.

Label vertex m  o f Q 0  w ith  the value dim(V'rn f l  M n_ 1 ) for a general po in t of Z. So in f is 

labelled dim(VSnf)  and a " is labelled d im (I4 ") -  Consider the region defined by x  =  in f ,y  =  

a ", z =  sup, and w  =  a (see D efin ition  22). The to ta l content o f region in f a " sup a is:

T C  =  (in te rna l diagonal contribu tion ) +  d im  (14 D M „_  1)

+  d im (I4 "  D M n_ i)  -  d im (V jnf f l  M n_ i)  -  dim (Vrsup n  M „_  1 )

>  — (d im (ysup C M n_ 1) -  d im (14 ")) +  (dim (14 n  M n_ j)  -  d im (V jnf))

=  —(-2 +  ^3 -

The content is bounded above by |5| (lemma 3.4.2) which in tu rn  is bounded above by £\, so 

£1 >  |>S| >  — £ 2  +  ^3 and we have l \  +  I 2  — >  0. Th is  means 0 =  codim Z  -  expcod(W Q f l

W»»neit) =  1̂ +^2  — £ 3  and we have equality on a ll inequalities. In  particu la r, Z y  =  O B S (Q 0 )s, 

£ 2  =  £4 , £ 5  — £q =  0, the in terna l diagonal con tribu tion  is zero, and £\ =  |5| =  to ta l content.

In te rna l diagonal con tribu tion  is zero implies th a t a ll in terna l diagonals have the same labels 

on e ither end. Let d  be the vertex o f the w h ite  checker in  row n, then in f d  is an in ternal diagonal 

and in f and d  have the same label: d im (in f). B y  lemma 3.4.1(6)(m), we can deduce th a t a " and 

a ' have the  same label. So we have

d im (14/ D M n_ i)  =  d im (14" H M „_  1) =  d im (14») <  d im (14/).

So 14' M n- \ .  B y  lemma 3.3.1, since we have the equality £ 4  =  £2 , i t  must be th a t either £2 =  0

or V j+ i  C M r , i.e. 1 4 ' C M n_ i,  for all points in  Z. Since th is is not the case, £2 =  0.

B y lemma 3.4.1 (t>)(z), we work our way south from  the in terna l diagonal in f d  to  conclude

th a t in f  and a have the same label. Namely, dim(V)nf)  =  dim (14 fl M n^ i ) ,  so £ 3  =  0. W hich also 

gives us l \  =  0.

Thus codim  Z  — expcod(W 0 D W „ next) =  £1+^2 — £ 3  =  0. So for the so-case: no w hite  checker 

in colum n c +  1, w h ite  checker in  row n, in f ^  a, a ", we have described an open subscheme o f Z  

e x p lic it ly  as a tower o f pro jective and quadric bundles over O B S (Q 0 )i$=S' Thus Z  is unique and 

we’ve shown Z  has the expected codimension.

C ase ( i i i )  in f =  a "

The p roof is verbatim  the case in the s, moves when there is a w h ite  checker in  row ds  <  n. The
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pictu re  is a lit t le  b it d ifferent (there are only two black checkers moving) bu t otherwise sim ilar. 

Replace dg  w ith  n  and the p roo f is equivalent.
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4 .5  Ir re d u c ib le  com ponents o f D q  are  a subset o f th e  £>s’s

We describe the components of D q  in terms o f s tra ta  o f O B S (Q 0). Theorem 4.5.1 is va lid

for the case o f an s» move where there is a w h ite  checker in  row ds  <  n  and the case o f a non triv ia l 

so move. We give some definitions, state the theorem, then prove i t  for each case ind iv idua lly ,

4 .5 .1  Si m ove w ith  ds  <  n

T h e re  is a  w h ite  checker in  row  dg

Let d be the vertex of Q a where the w h ite  checker in row dg is located. Define the western 

good quadrilaterals o f Q 0  to  be those quads w ith  eastern two vertices dom inating d and western 

two vertices dom inated by a =  m (F c+ 1). Let the eastern good quadrilaterals be those quads 

whose vertices all dom inate d, and are east o f a western good quad. Let b be the southwestern 

corner o f the region o f good quads and b' be the southeastern corner of the region o f good

quads. The region of good quads is in f(a , a ')a 'b b ' (possibly em pty). I t  may be helpful to  refer

to  F igure 4.5.

Define W ,nexi C  Q, fibered over T, w ith  fibers {F c + i}  such th a t

1. F c C  Fc+1 C  F ^

2. F c+ 1 is isotropic

3. v;nf c  f c\,
4 . (F± n M dB) C Fc\ ,

5. (F^- f l  M dE+ i )  <£ F^_-y (th is  is an open condition)

In  other words, W ,next is the pullback o f the C artie r d iv isor X , next C X . . next to  W ..nex(. Le t D q  

be the pullback o f the C artie r d iv isor X , ncxt c  X „ next to  the irreducib le variety W 0 f l  W ..nelt C  

Q. Thus D q  =  w.next n Wo c  w..next n Wo.

Le t S  be a set o f good quadrilaterals w ith  none weakly southeast of another. Define a 

subvariety D s  o f W ,nexl f l  W 0 as follows. Le t T§ be the open subvariety o f the the pullback 

o f O B S (Q 0)s  to  T , on which dim(V'tt f t  MdE) is constant. Let D $  be the closure in D q  of the 

pullback o f Ts  to  D q  C  W 0  f l  W „ next. T  is irreducib le  and fibers over general points of Ts  C  T
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are irreducible and equidimensional (equidimensional because d im (V0 n M d E) is constant on Ts). 

So the pullback of Ts  to  D q  is irreducible, im p ly ing  th a t D s  is irreducible.

Le t S run over a ll subsets o f good quads w ith  none weakly southeast of another. Let Z  be 

an irreducib le component o f D q  (not to  be confused w ith  Z  used in earlier proofs). We w ill show 

th a t there is a set S such th a t Z  =  Ds-

T h e o re m  4 .5 .1 . The irreducible components o f D q  are a subset o f the set o f D s  where S is 

some set o f good quadrilaterals w ith none weakly southeast o f another.

Proof. Here we w ill use d s  and a' instead of d s  — 1 and a".

Case ( i) in f(a ,a ')  =  a.

Then W ,next f l  W 0 =  W ,next and W ,next =  H g  since there are no good quadrilaterals.

Case (ii) inf (a, a') ^  a

Z  is an irreducible component o f D q , so  Z  has the same dimension as D q  and D q  is a divisor 

of r w „  so

codimQ Z  =  codimQ ( W „ ncxt D W 0) +  1 

Le t Z 0 b s {q 0 ) iZ m , Z f  be the image o f Z  in O B S (Q 0 ) ,O B S {Q 0) x {M .} ,  and T  C 0 B S (Q o) x

{M .}  x {F < c} respectively. Let t \  =  codim OBs(Qo) Z q BS(q 0) and let S be the set o f (at most 

£\) quadrilaterals corresponding to  the smallest closed s tra tum  o f O B S (Q 0) in which Z o b s (q 0) 

£ 4  be the codimension o f Zm  in  p J I(Z m )  and fo r a general po in t in Z ,  letis contained. Let

12 =  d im (F8up(o,0/) H M dB) -  dim(Va/)

Using lemma 3.3.1, le t R  =  d B , j  =  dim (Vra') , and B  =  Z o b s ( q 0) ■ Then £ 4  >  £ 2 .  Note: R  =  a j  

since there is a w hite  checker in  row R  =  d E  and so a j  =  d B  =  R. Thus we get equality ( £ 4  =  £2) 

only i f  £ 2  =  0.

Let £ 5  be the codimension o f Z p  in  7Tpl (Z p ). So we get as before,

co d im r Z p  =  £\ +  £4  +  £5 

For a general po in t t  =  {V., M .,F < C) e Z p , consider the set { l ^ + i }  where

1. F c C Fc+1 C Fcx

2. F c + 1 is isotropic
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3- Vm(Fs+1) C Fc+i C

4. Fc+1 C

We w ill ca ll th is  space £t . For general t  6 Z p , the dimension o f is 

d im  £t =  d im (F x  n  v£- f l  ( F x  n M dE)x ) -  d im (F c) -  1 -  1 

=  dim(14x  n  (F x  n M dE)x ) -  c -  2 

=  d im ( (K  +  ( F X n M dB) )x ) - c - 2

=  2n +  1 -  d im (14) -  d im (F x  n  M dB) +  d im (14 H F x  f l  M dE) -  c -  2

=  2n +  1 -  d im  (14) -  d im (F x  f l  M dB) +  d im (14 n M dB) -  c -  2

In  the firs t line o f the above calculation, the firs t —1 is for choosing a line in  the space given.

The second —1 is for the condition th a t the line must be isotropic. Here, f l  (F x  n  M dE) x  is

not iso trop ic by corollary 3.2.1 so th is  is a non triv ia l condition.

We now calculate the codimension o f in  Q t . Note tha t expcod(W 0n W ..neit) =  codim Q(W 0n 

W „ n„ t ) was shown in section 4.4.1.

codimQ, =  cod im (W 0 D W ..next) +  d im Q t -  d im £ t -  cod im (W Q f l  W „ ncxt)

=  cod im (W 0 f l  W ,,next) +  (2n +  1 -  d im (^ nf(0iQ»)) -  c -  2)

-  (2n +  1 -  d im (14) -  d im (F x  n  M dE) +  d im (14 ("I M dE) -  c -  2)

-  (d im (I4 ) +  d im (F x  n  M dis- i )  -  2d im (H inf))

=  codim(W4 n  W „ ncxt) +  d im  in f +  d im (F x  D M dB)

-  d im (F x  D M dB^ )  -  d im (14 D M ds)

=  cod im (W 0 n  W ,9ncxt) +  d im  in f +1  -  d im (14 D M dE).

In  the last line o f the calculation above, d im (F x  f l  M dE) =  d im (F x  f l  M dE- i )  +  1.

Let

e3  =  d im (14 n  M dB) -  d im (l^nf).

Then l 3  >  0 because Mnf C 14 D M de . Th is step contributes a codimension o f 1 — t 3  compared 

to  cod im (W 0 D W ..nelt).
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Let 4  be the codimension o f the fiber pF x(t) C Z  —* Z p  in  £t . P ic tu re  a diagram sim ilar 

to  D iagram  (4.4). Then codimQ, (p ^ 1(t)) =  codimQ, +  4 -  So we have 

1 =  codim Z  -  codim(VK0 H W ,,ncxt)

=  (£i + £ 4  +  4  +  codim £t +  4 )  -  cod im (W 0 n

=  4  +  4  +  4  +  (cod im (W 0 n  +  1 -  4 )  +  4  -  cod im (W 0 H W ,.next)

— 1 +  £\ +  £ 4  +  4  — 4  +  4

>  1 +  £ 1  +  4  — 4 -

The fina l inequality  is because £ 4  >  4  and 4 , 4  — 0- We w ill now show th a t 4  +  4  — 4  >  0.

Label vertex m  o f Q 0 w ith  d im (Vm n  M dE). We w ill compute the content o f the region 

in f(a , a ')a ' sup(a, a ')a . Each in terna l diagonal edge contributes the label o f its  larger vertex minus 

the  label o f its  smaller vertex, a non-negative contribu tion . The defining corners contribu te  the ir 

labels (positive for a ,a ' and negative for in f(a ,a ')  and sup(a, a ')). Thus the to ta l content is 

T C  =  (in terna l diagonal con tribu tion ) +  d im (P a D M dE) +  d im (Vra/ f l  M dB)

-  d im (V jnf n  M dE) -  d im (Vrsup D M dE)

>  (d im (Vo') -  d im (Vrsup n  M dB)) +  (d im (Pa D M dB) -  d im (V jnf))

=  —4  +  4 -

T o ta l content is bounded above by |S| which is bounded above by 4 -  Th is implies 4  >  |>SI| >

- 4  +  4  and so 4  +  4  — 4  >  0, which gives us

l > l + 4 + 4 - 4 > l + 0 = l

So £\ +  4  — 4  =  0. Thus equality holds in  a ll inequalities above. In  particu la r, 4  =  4  =  0 

and 4  =  4  =  0 and 4  =  4 -  Note th a t 4  and 4  are not necessarily zero. A nd Z o b s {q 0) is 

the  s tra tum  corresponding to S. A nd  so a ll quadrilaterals have content zero except for 4  quads 

w ith  content 1 in  region in f(a , a ')a ' sup(a, a ')a . We w ill consider two cases here:

C ase b / a

The reader may wish to  refer to  F igure 4.5 for an example. Let b "  6 Q a be the vertex of the 

o ther end o f the northernm ost diagonal edge em anating southeast from  b. By equality above, 

the in te rna l diagonal con tribu tion  is zero, so b  and b "  have the same label. A pp ly ing  lemma 

3.4 .1 (b )(i) to  the region below edge b b " ,  we have th a t a ll vertices below b b "  have the same label
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as well. In  pa rticu la r, the labels of b  and a are the same. Le t E  be the set o f edges due south 

o f b "  union the edge b b " . B y  m idsort conjecture 1, there are no w h ite  checkers in  the region 

d irec tly  east of E , so th is  region is a grid  of quadrilaterals. Using lemma 3.4.1 (b ) ( ii) , we get th a t 

the labels on b ' and sup(a, a ') are the same. Thus, we do not add content by th is new region 

east o f E , and so the to ta l content of the region o f good quads, in f (a, a ')a 'b 'b , is the same as 

the content of the region in f (a, a ')a 'su p (a , a ')a . Th is content is l \ .  Thus the i \  positive-content 

quadrila tera ls S are a subset o f the good quads.

Case b  =  a

The result th a t the positive-content quads S are a subset of the good quads is immediate.

We now show th a t no element of S is weakly southeast of another. Th is  po rtion  of the proof 

is exactly section 5.11 in  [22]. We include the paragraph here for completeness.

F ix  a positive-content quadrila tera l. Then its  northeast, southeast, and southwest vertices 

have the same label. Thus by repeated application o f lemma 3.4.1 (6)( i ) , all vertices south o f its  

southern edge are labeled the same, and there are no positive-content quadrilaterals (elements 

o f S) south of th is edge. Le t E ' be the union o f edges due south o f the northeast vertex o f our 

positive-content quadrila tera l. Repeated applications o f lemma 3.4.1(6)(m) im p ly  th a t any two 

vertices east of E ' in  the same column have the same label, and there are no positive content 

quadrila tera ls here either.

Thus Z  =  D s  for the S described above and we’ve shown th a t the irreducible components 

o f D q  are a subset o f { D s } s • □

T h e re  is n o  w h ite  checke r in  ro w  d s , b u t  th e re  is a w h ite  checke r in  ro w  dw  >  n  +  2

Th is case remains to  be proven.

4 .5 .2  Si m o ve  w i t h  dg >  n  +  2 

Th is case remains to  be proven.

4 .5 .3  so m ove

Th is case is almost exactly the same as the case for an Sj move w ith  a w h ite  checker in  row 

d s  <  n. Replace references to  row d s  w ith  row n. Otherwise the proof is the same and theorem

4.5.1 holds for n on tr iv ia l so moves.

I l l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4 .6  C o n tra c tio n  o f a ll b u t one or tw o  divisors by it

We show in th is  section th a t all divisors bu t possibly D $ and jOnw good quad are contracted 

by 7T. P a rt (a) o f the theorem shows th a t a ll o ther D s  are contracted by n. P art (6) shows th a t 

D$ is contracted by 7r when predicted.

We w ill state and prove the theorem separately for each case, however, the general strategy 

is as follows. In  a ll parts, we w ill construct for a general po in t (V ,M .,F .)  6 n (D s )  a positive 

dimensional fam ily  in D s  which collapses to  (V , M ., F.). This w ill prove th a t D s  is contracted by 

7r to  a component of codimension greater than one in CloGr(n,2n + i)x (x .u x . t ) X 0«, hence does 

not con tribu te  to  D.

4 .6 .1  so m ove

T h e o re m  4 .6 .1 . (a) 7 /S  ^  0 and S ^  {northw est good quad} then D s  is contracted by ir.

(b) I f  S  =  0 and the white checker in  row n  is in  the descending checker’s square (n ,c ) and 

there is a white checker in  a column n  +  2  <  col <  c +  1 then D s  is contracted by tc.

Proof o f  P a r t  (a). Given a general po in t o f D s ,  ({Vm)m eQ oiM .,F .)  €  D s,  we w ill produce a 

one-parameter fam ily  {{Vfn)meQ0, M., F.) th rough (Fm)m€q 0 in  the s tra tum  O B S (Q 0)s,  fix ing 

those Vm on the northeast border o f O B S {Q 0) and those Vm where a -< m  along the southwest 

border and any m  along the southwest border in  checker board columns l , . . . , c .  Note: For 

1 <  i  <  2n  +  1 we have 14n(M*) C M i  since Vm(Mi) is on the northeast border so is fixed. Also 

note th a t for 1 <  j  <  c +  1 and c +  1 <  j  <  2n +  1 we have Vm(Fj) C  F j  c V ^ F y  These two 

comments hold for any element ((V'm)meQ0, M . , F .) in  the fam ily we w ill describe. Note also th a t 

Vrnax(Q0) is fixed so th is  one-parameter fam ily  in  D s  w ill be contracted by n.

Here is a description o f the one-parameter fam ily. The description is exactly as in  the proof 

o f proposition 5.13(a) in  [22], We re iterate the p roo f here for the purpose o f checking details.

Choose a quadrila tera l s tu v  in  S. Name the elements o f Q 0 as in  F igure 4.11. gm is the 

w h ite  checker in the column containing s. f m_ i  is the next w h ite  checker to  the west o f gm. A 

few comments:

1. gm is no t necessarily a vertex w ith in  the “good quad”  region; i t  may be north  o f the region.
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fm- l
' m - 1

Figure 4.11: Let quadrila tera l stuv  be an element o f S. Label the elements o f Q 0 as in th is figure.

2. The s, g i , . . . ,  gm column is never a subset o f the northeast border because there is always 

a column east o f s , g i , . . . ,  gm and the w hite  checker in th a t column is in  a more northern 

row than gm by m idsort conjecture 1.

3. I f  s tu v  is the northwest good quad then s =  gm =  in f(a ,a " ) .  So i f  in f(a ,a " )  =  a " 

then s =  g m =  in f (a, a ")  is on the northeast border and is required to  be fixed. A nd  i f  

in f (a, a ")  ^  a, a " then s =  gm =  in f (a, a " )  has a th ird  southeastern edge po in ting  due east 

(toward a ").

So when s tu v  is not the northwest good quad, then gm always has exactly one edge po in ting  

northwest and two edges po in ting  southeast.

We define our fam ily  as follows: Le t Vfn =  Vm for m  /  s, g i ,  ■ • ■ , g m . Then choose V ' from 

the open set of f { V v/V e) =  P 1 such th a t d im (V r3/.) =  d im (g ;) for 1 <  i  <  m  and V'g, is defined 

as Vg. =  VJ f l  Vhi ■ We do not get the fu ll P 1 o f choices here because we must choose VJ so its 

intersection w ith  the “ h j colum n” gives spaces w ith  the expected codimensions. We double check 

th a t Vg. is valid. Note th a t Vj. =  V j{ is contained in V'. since Vg. — Vfi =  Vj. =  14

and 14 C V / so our containments Vj. C V ’gi make sense. □

P roo f o f P a rt (b). We now suppose there is a w h ite  checker in  the descending black checker 

position, (n ,c ). Consider F igure 4.12. Call the w h ite  checker in position (n ,c ), d. Let t  be the
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a! row n

Jim

there are r  
white checkers 
in this c x c  
block

F igure 4.12: D iagram for S =  0 and there is a w hite checker in  row n  in  the descending black 
checker’s square.

northwestern-m ost w hite checker in columns n + 2  <  col <  c +  1. g i , . .  •, gm are the m  w hite 

checkers in columns n +  2 <  col <  c +  1. These w h ite  checkers are in columns n +  2 <  a \  <  c*2 <  

• • ■ <  a m <  c +  1. Le t r ai be the row of the w h ite  checker called g^. B y m idsort conjecture 2, 

n  +  2 <  r a i <  r a 2  <  • <  r Qm <  2n +  1. hy  G Q 0 is in column ctj and row o f the i th w hite

checker in the southwest c x c  block. There are r  such white checkers in  th is block. We know 

th a t Vji ^  Vt since 5  =  0.

In •  next i the black checker configuration te lls us tha t

F*c n M n =  F g-j_i n M n =  F c+2 n M n =  • • • — F n _̂ 2 n M n

In  pa rticu la r,

F j. n M n  =  F am n M n =  • • • =  F a i n M n

where at is the column o f the  i th w h ite  checker in  the region weakly south o f the c ritica l diagonal. 

We are given ( (V m ) , M . , F . )  such th a t

1. ( M . , F . ) e x . next

2. (Vm)m€Qo e O B S (Q 0)v
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3- Vm Cl M row of m f l  Fcol of m fo r a ll fTl ^  Qo 

Some other observations:

1. S =  0 so we may assume th a t Vm yf Vmi for m ,m ' opposite corners o f any quadrila tera l o f 

Qo-

2 . V i  C  M n n  Fc =  M n n  Fa i .

3 .  Vt C  F ai

4. Vs =  ( V d ,  Vt ) so Vs C F a,. Note also th a t Vs =  ( 1 4 ,  V9I) and V-̂ . =  ( 1 4 ,  Vg.) w ith  VBj C Faj

and Vd C M n r  Fa =  M n n  FQj. so V/3. C Fa . for 1 <  j  <  m.

We w ill describe an m -dim ensional fam ily  (V ^ )weQ0 through (I4)w eQ o in the stra tum  OBS{Qo)qi 

preserving a ll spaces on the northeast border and a ll spaces on the southwest border in  columns 

1 <  col <  n  4-1  and in  columns c <  col <  2n +  1. In  particu la r, we fix  Vmax.

Let IF  =  Vw fo r w  7̂  g i , . . . ,  gm and w  yC hy  for 1 <  i  <  r  and 1 <  j  <  m . Choose IF  

from  the open subset o f P (Vs/V jnf(0,a')) such th a t IF j 7C 14 and V-̂  =  (14^ , 1̂ )  has d im h u

for 1 <  i  <  r. Some notes: Since Vs C F a i , we know th a t Vgi C F ai also. A nd Vgi has the

correct M . row containm ent because Vs is in  the same row. And V^ =  ( I4 i0> Vg i) has the correct 

M . and F. containm ent because o f I 4 i0 and Vgi have the correct containments. In  particu la r, 

V£rl  C F ai because IF  c  F ai and Vh r 0  C Fn + 1  c  FQ l.

Now, fo r 2 <  j  <  m , choose IV. from the open subset of IP ty fj/V g  x) such th a t IF . ^  V/ j _ 1 

and V^ =  ( IF . , Vfr. )  has d im  for 1 <  i  <  r .  Note th a t IF . C  Vfj  and Vfj C  Fa j so

IF . C Fa j . And V I .  =  ( K ^ . ^ I F . )  C  F aj because C  F a j _ 1 C  Faj and IF . C  Fa j .

Since the orig ina l po in t ((Vw)w^ q 0 , M ., F.) is in  th is  fam ily, i t ’s nonempty. So we’ve described 

an m -dim ensional (to  >  1) fam ily  in D $  th a t collapses when we apply 7r. So D s  is contracted 

by 7T. □

4 .6 .2  Si m o ve  w i t h  ds <  n
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fm = a!

Qm —

row < d,E

i

row d.E 

row d,E +  1

F igure 4.13: D iagram for the case S =  0  and there is a w hite  checker in  the ris ing black checker 
square (row ds +  1).

T h e re  is a w h ite  checke r in  ro w  ds

T h e o re m  4 .6 .2 . (a) I f  S  0 ,  {northw est good quad}  then D s  is contracted by i t .

(b) ( i)  I f  S =  0  and there is a white checker in  the ris ing black checker square (in  row dE +  1), 

then D s  is contracted by t t .

( i i)  I f  there is a white checker in  the eastern descending black checker square (position  

and there is at least one white checker in  columns d s  +  1 <  col <  c +  1 then 

D s  is contracted by i t .

P roo f o f P a rt (a). Th is is exactly as the so-case. □

P roo f o f P a rt (b )( i). There is a w h ite  checker in row d# +  1 in  the ris ing black checker position. 

Name the elements o f Q a as in  F igure 4.13. Here t  is the w hite  checker in  row c£e +  1 and d is 

the w h ite  checker in  row We w ill describe a one-parameter fam ily  (V ^ )m6Q0 in 0 B S (Q o) 

th a t preserves a ll spaces on the northeast and southwest borders, except Va> (note th a t Vmax is 

preserved). In  order to  show ( (V ^ )m<=Q„,M .,F .)  £ D s = 0  for a ll elements o f the fam ily, we w ill 

need to  ve rify  th a t fo r all V'a, in  the fam ily, we have V'a, C M a E .

Let Vfn =  Vm for m ^ d , g i , . . . ,  g m . Now choose V'd from the open set o f P(Vrs/ ’K nf(tIia/)) =  

P 1 such th a t d im (V^.) =  d im #* where Vg. =  for 1 <  i  <  m. In  particu la r, Vgm =

=  (V},va,.).

Now, Va» C  M dB- 1 C  M dB, and V'd C Vs w ith  Vs =  (Vt, Vd). We show here th a t Vs C  M ds 

which w ill give V'd C  M dE. Vd C  M dB and Vt C  M dE+ i  f l  F c+\ (th is  is where the hypothesis 

th a t t  is in  row d s  +  1 is used). Now we have the containment M de H  F c + i  C  M ds+ 1 f l  F c + i .  

B y  the • nea;t-configuration, we have d im (M dB f l  F c+ i)  =  d im (M de+1 f l  jF c+ i )  s o  the two spaces
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are equal. Th is  gives us Vt C  M dE H  Fc+i  C  M dB■ So Vs =  (Vt,Vd } C  M dE• F inally, we have 

V L  =  ( K V f m) c M dB.

W e’ve described a one-dimensional fam ily  in D s  which collapses to  a general po in t in  tt( D s ), 

so D s  is contracted by i t .  □

P roo f o f P a rt (b )( ii). Here there is a w hite  checker in the descending black checker position in 

row d s -  Rows d s  and d w  +  1 are m irro r image rows. Since there is a w hite  checker in  row d s ,  

there is no t w h ite  checker in  row d w  +  1, the row o f the rising black checker th a t corresponds to  

the western descending black checker. W ith  th is in m ind, th is p roo f is almost identical to  the so 

move proof, w ith  a few small, obvious changes. M ain ly, Fn is replaced w ith  FdE and references 

to  colum n n  +  2  w ill be replaced w ith  the column o f the ris ing black checker in  row dg +  1. □

T h e re  is no w h ite  checker in  row  d s , b u t th e re  is a w h ite  checker in  ro w  dw  > n  +  2

Th is  case remains.

4 .6 .3  Si m ove w ith  d &  >  n  +  2 

Th is  case remains.
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4 .7  M u lt ip lic ity  1

We now show th a t the D s  th a t are no t contracted by tt appear w ith  m u ltip lic ity  1 in  the 

C artie r d iv isor D q . We state the  theorem once and prove i t  for ind iv idua l cases.

T h e o re m  4 .7 .1 . (a) When D q is not contracted by it, the m u ltip lic ity  o f the C artie r d iv isor

D q  along the Weil d iv isor D q is 1.

(b) I f  there are good quadrilaterals, the m u ltip lic ity  o f D q  along D {n w  good quad} 1-

4 .7 .1  Si m ove w ith  djg <  n  

T h e re  is a w h ite  checker in  ro w  6 e

P roo f o f P a rt (a ). Consider the open set T ' o f T  th a t lies in  the preimage o f the dense open 

s tra tum  (5  =  0 )  o f O B S (Q 0), and where Va fl M dB =  VX =  V;nf. Let Q ' be the preimage o f T ' 

in Q. Then

Q, nDQ = Q, n(W0nw.ll'Xt).

We want to  show th a t Q ' fl {W 0  fl W ,next) is generically reduced. We know T ' is reduced because 

T ' c T  and T  is reduced. Thus i t  is sufficient to  show th a t the general fiber o f Q'C\(W 0 r \W .ne:ct) —► 

T ' is reduced. Once we’ve shown this, then we know W 0D W ,next in  W an W : ne:t.t has m u ltip lic ity  

one along the d iv isor D q .

We now show th a t the general fiber is reduced. To bu ild  Q ' fl (W 0  fl W ,next) over a general 

po in t {V., M .,F < C) 6 T \  we choose Fc+ \ such th a t

1. F c C F c + 1  C  F cx

2. F c+ j  is isotropic

3. Va C  F ^ !

4. (M dE n  Fĉ )  C Fci ,

These conditions are equivalent to  choosing an isotropic F c+i such th a t

Fc C  F c+i  C  [Va +  (M dE f l  Fcx )]x  
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Now,

[Va +  (M dB n  F X )]X =  {(Va +  M dE) n  f x ]x 

=  (Va +  M dE)X + F c 

=  (V x  n  M x  ) +  F c

Note th a t (V ^  PI M ds) +  F c is actua lly  the d irect sum {V x  f l  M ^b ) © F c because M ^ e D Fc =  (0). 

Thus choosing F c+i is equivalent to  choosing a po in t in  OP(Vax  f l  M d ). Keeping in  m ind tha t 

M dB n V a =  Vini, we define a basis such th a t

•  VJnf =  ( e j , . . .  ,e k)

•  Va — (ei> • ■ •. e*;, efc+i , . . . ,  ee)

•  M dB =  ( e i , . . . , e k , f i , . . . , f r )

where k +  r  =  <1%. We choose the sym m etric b ilinear form  B  so i t  is standard w ith  respect to 

( e i , . . . ,  e2n + i)  =  C 2n+1. Note th a t Va f l  ( f i , . . . ,  f r ) =  (0). W ith  th is  choice o f basis, the rank of 

O P (v x  n  m x  ) is the same as the rank o f B  on ( e ^ + i , . . .  ,e2n+ i_^) f l  ( / i , . . . ,  / r ) x .

We consider C 2m+1 where m  =  n — k. Le t V  =  ( e ^ + i , . . .  ,ee) and M  =  ( / i , . . . ,  f r ). V  

and M  are isotropic, V  is m axim al in  C2m+1 i f  and on ly i f  Va is m axim al in  C 2n+1, and M  is 

m axim al in  C 2m+1 i f  and on ly i f  M de is m axim al in  C 2" +1. O ur question is now rephrased as: 

show ra n k B \(V ±nM ±') >  3 fo r a general point. Since we are looking to  find a lower bound on 

rank for a general po in t, i t  is sufficient to  find an example o f a pa rticu la r V  and M  th a t yie ld 

ra n k B \(V ± nM x) >  3.

E x a m p le  4 .7 .1 . We choose a new basis for V  and M  and a sym m etric b ilinear form  th a t is 

standard w ith  respect to  th is  new basis. Let

M  =  (g i, ■ ■ ■ ,gm- i )

and

V  =  {9m T  9m+31 9m+4i ■ ■ ■ > 92m+l)-

Here we have d im (M ) =  d im (H ) =  m  — 1, but th is  example can generalize to  M  and V  w ith  

smaller dimensions. Then

M  =  (<7i , . . .,  9m—1 > 9m > 9m+1)
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in f (a, a')

fm — a

9 m  —

Figure 4.14:

row <  Ae 

row rig, Ae  <  n 

row r \  r'  >  d,E

and

^  =  { d im  9 m + l>  9 m +  3 i  9 m + 2 ~~ 9 m — l i  f lVn+4i  • ■ • i  f f 2 m + l } ’

Then the intersection is

M  ( IF = {9 m i9 m + li9 m + 2 ~ 9 in —l}

and rank B \v ±nM i. =  3.

The example shown is for nonm axim al isotropic V  and M  in C 2m+1 which means the example 

is on ly va lid  i f  d im (14) <  n  and d im (M dB) <  n. Now, dg < n  by hypothesis. A nd i f  dim(V'a) =  n  

then there are no w h ite  checkers in columns c +  1 <  col <  2 n + 1. In  particu la r, there is no w hite  

checker in  column c. B u t th is  implies there is a w hite  checker in column c +  1, a contradiction 

to  our hypothesis th a t column c +  1 is devoid of w hite  checkers. Thus th is  example is va lid  and 

is sufficient for showing the rank o f the bilinear form  is at least three for the general fiber of 

Q ' n  W 0 f l  W .next —> T ' which shows our fiber is reduced. □

P roo f o f P a rt (6).

We give a test fam ily  T  th rough a general po in t (V., M .,F .)  o f C l o B S ( Q 0 ) x ( x . u x . n o x t ) X o »  meeting 

D q  along -D{nw g o o d q u a d }  w ith  m u ltip lic ity  1. Label the elements o f Q a as in  F igure 4.14. t  is 

the highest w h ite  checker in  columns d s  + 1 <  col <  c + 1 and r 1 is the row o f checker t. We w ill 

define a fam ily  T  =  {((K J J m €Q0 > M ',F ! ) }  as follows:

•  v m =  v m for m ^ d , g x , . . . , g m

•  Choose et £ V* and e so th a t et is a generator o f V t/V jnf and is a generator o f 

Vd/V inf. Let V'd =  ( V i n f +  ved) where [/z, v] £ P1, so V'd varies in  the pencil P(Vs/ l /inf). 

Le t V'3i =  (Vf i ,Vi).
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•  To bu ild  M .', we have two possibilities: either r '  <  dw  or r '  >  dw-

1. I f  r '  <  dw  then let =  M i for 1 <  i  <  ds  and r '  <  i  <  n. A nd  le t =  M x .

Define M ^e =  +  ued), and M'dw =  For dE +  1 <  i  <  m in (r ' -

l , n ) ,  choose M [  such th a t

(a) M U  C M ! C  ( M U ) X

(b) M [  is isotropic

(c) C M [  (th is condition is not necessary becuse there is no t a w h ite  checker 

in row i)

(d) Vm {M t) C ( M ') x

Then define =  (M / ) X -

2. I f  r '  >  dw  then there are no w h ite  checkers in  rows d# +  1 <  row  <  n  in columns 

d s  +  1 <  col <  c +  1. In  the m axim al case, th is means a t least one of the follow ing 

occur:

(a) There is a w hite  checker in row n  in  a column c <  col <  2n +  1.

(b) There is a w h ite  checker in  row n +  2 in a column dg +  1 <  col <  c +  1.

(c) There is a w hite  checker in  row n +  2 in  a column c <  col <  2n  +  1.

For the firs t possibility, the column o f such a w hite  checker w ould be less than the

column o f the w hite  checker labeled d  by m idsort conjecture 1. So th is  w hite  checker 

w ill serve as a blocker, causing no northwest good quadrila tera l. So th is  possib ility 

does not occur here. For the second possibility, we would have n  +  2 <  dw  ■ Then 

r '  =  n  +  2 <  dw  which goes against our hypothesis th a t r '  >  dw - The th ird  possib ility 

is like the firs t: such a w hite checker would serve as a blocker to  any checkers in columns 

d fi +  1 <  col <  c +  1.

So for the m axim al case, we cannot have r '  >  d w  and s ti l l  have a northwest good 

quadrila tera l. We assume th a t r '  <  dw  fo r the rest o f th is  proof.

•  N ext we b u ild  F !. Le t F j =  F j for 1 <  j  <  c and c <  j  <  2n +  1. Now choose K + i  such 

th a t

1. Fc c F U  C Fx
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2. F '+1 is isotropic

3- Va C ( i?c+1) ‘L

4- Kn(Fc+1) C F'c+l

5. ( M ^ n a c t ^ , ) 1 

For c +  2 <  j  <  c +  2, define

F j =  F ' + 1  +  [(Fc'+1)x  n  M r .] 

where r j  is the row o f the black checker in column j .

W ith  th is  construction, and /j, =  0, we get our orig ina l general po in t in CloBS(Q0)x (x ,u x .n(,xt)X 0 

So F  <£ D q . Also, when u =  0, we get V ’d =  V / so (Vfn)meQo €  O B S (Q 0) {n w  good quad) and 

thus F  meets Z?{nw good quad} at v  =  0. We w ill see th a t D q  contains the d iv isor v  =  0 w ith  

m u ltip lic ity  1, proving the result.

Keep in m ind th a t (Fc'+1)x  contains Va =  V ’a, V ^ (Fe+l) =  Vm(Fc+l) C F'c+ u  and (F^+1)x  

contains M dB-1 n  F x  fo r a ll points of F .

The d iv isor D q  on F  is given by

1- Va C (F '+1)±

2. ( M ^ n F x ) c ( F ' +1)x 

3- Vm(Fc+l) C F'c+l 

These three conditions are equivalent to

A nd  since we already know th a t Va C ( F ^ j ) 1- and (F,(+1)x  C V ^ F  ̂ for a ll points in  F ,  the 

d iv isor condition on F  is equivalent to

M B n F x ) c ( F ' +1)x

Now, consider (M dB- 1, F x ) =  K m (th is is fixed for all points o f F ) .  Choose a basis e i , . . . ,  ek 

for F x  and f i , .  ■ ■ , f j  for M de ~ i . Here, k  =  2 n + l  —c and j  =  dF — 1. Let I =  d im (M dE- i n F x ) =  

dF — 1 — c and ei =  f i  fo r 1 <  i  <  I. Then K m =  { e \ , . . .  ,eu, f i+ \ ,  ■ ■ ■, f j )  ■ Define the
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pro jection  a : K m —> F x  by aie-i) =  ej and a ( f i )  =  0. a  vanishes on M dB- \ / ( M d B- \  H F x ) so 

( Id  -  a ) ( K m) C  M ds- \ ■ Now, M'dB =  (M dB- i,£ tet +  ued), so by our condition above, D q  is 

given by

W £ n F ci ) c ( F £'+1)i  

<=> (M dB- i , p e t +  ued) n F^- c  ( F ^ ) - 1 

(M dB- i ,o (n e t  +  ved)) n F x C  ( F ^ ) - 1 

<S=> (MdB_i n F x ) 4- +  ued)) C  ( F ^ ) - 1 since ^(Fe* +  ved) € jFX

fj,<j(et ) +  vcr(ed) € ( i?c/+ i ) X since (M dB-x  D F 1 ) C  (F'c+ i ) x  fo r a ll points in T  

/lie* +  va (ed) € ( i ^ + i ) X

since et € F x  since t  is in  a column less than c and a  is the id e n tity  on F x  

va(ed) € (-F'c+1)X

since t  -<  a  so et e V a  and Va C  (F'c+ j )-1 

Since the fina l statement is only true i f  we are in the divisor D q ,  we know th is  condition is not 

satisfied by a ll elements o f T  (as F  <f. D q ) .  This tells us th a t a(ed) $  (Va, M dB- \  Pi F x ) because 

i f  i t  were, then cr(ed) € (-F’c+ l)"1-

Thus the restric tion  of D q  to  T  has two components, each w ith  m u ltip lic ity  1. They are:

1. the hyperplane section {(F ’c + l)-1 I a (ed) € (-F’c+l)"1} c  / (Va, M dB- i  P lF 1 ))* . This 

verifies th a t the m u ltip lic ity  o f D q  along D g is 1 (in  the special case where there is a 

northwest good quadrila tera l).

2. The fiber for u =  0 is also a component, appearing w ith  m u ltip lic ity  1 as desired.

□

T h e re  is no w h ite  checker in  ro w  d s ,  b u t th e re  is a  w h ite  checker in  ro w  d w  > n  +  2

Th is case remains.

4 .7 .2  Si m ove w ith  d# >  n  +  2 

Th is case remains.
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4 .7 .3  sq m ove

P roo f o f P a rt (a).

Consider a general po in t (V ,M .,F . )  € CloBS(Q0) x (x .u x .next)X 0.. The reader may wish to  refer 

to  F igures 4.9 and 4.10 as examples. W ith o u t loss o f generality, le t F. be the standard flag where 

F j =  ( e j , . . . , ej). and M i =  (eCl, . . .  ,e Ci) where c*, is the column o f the black checker in  row 

k o f the *-configuration. Since we are considering a general po in t o f CloBS(Q0)x (x .u x .n(,xt)Xo», 

V  D M i  D F j =  Vm for m  £ Q0 in  position ( i , j )  on the checker board. In  particu la r, d  is the 

w h ite  checker in position (n, c j)  and

Vd =  ( l^n f) ^  +  e£)

where
n eg

w =  a ^  biCi.
1= 1+ col of inf i=c+ l

B y d ’s position, (n, cd), we can assume th a t the coefficient in  fron t o f e£ is 1 and bCi ^  0. B y 

hypothesis, we are looking a t Dg and are only interested in D$ when i t  is not contracted by w.

So by theorem 4.6.1, we may assume c<j >  c.

We give a test fam ily  F  through the general po in t (V .,M .,F .)  G C loBS(Q „)x(x.uX.noxt)X 0. 

meeting D q  along Z?g w ith  m u ltip lic ity  1. The fam ily  F  =  { { V ! , M .', F !) }  is given by

•  F ix  F '  =  F ..

•  Le t M [  =  M i and (M /)-1 =  A +  for 1 <  * <  n  — 1.

•  Define M'n =  M „ _ i  +  { \ s 2 ec+1 +  sten+ i  — i 2e£) for [s,f] G P 1. Then M'n+ l =

•  For m  G Q 0 where d / m ,  let V^  =  Vm .

•  Define

’Ki =  ^ n f +  (ui +  - s 2ec+i +  sten + 1 — f 2e£).

Note th a t V'd is completely determined by the choice o f [s ,t] for M'n .

•  For m  G Q 0  w ith  d  -< m  and m  ^  d, inductive ly  define V^  as V ^ B +  VgW , the span o f the 

vector spaces associated to the northeast and southwest corners o f the quadrila tera l where 

m  is the southeast corner.

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The set o f a ll such {V ! , M .', F !)  is the 1-dimensional fam ily  F .

For a po in t {V f , M .', F !)  G F ,  consider a quadrila tera l in  Q 0, w ith  northeast corner a t position 

(rN E ,C N E ) and associated vector space V ne  and w ith  southwest corner a t position ( r s w F s w )

and associated vector space V s w ■ V ne  has a vector v =  Y i ^ f 1 ai Ri  where aCNE =£ 0 . I f  V ne

is in  column ca, then aCNE =  bCd ^  0 because {w  +  ( \ s 2 ec+ \ +  sten+ \ — £2e£)) C V n e • I f  V ne  

is in  a column not equal to  c^, then V ne  inherits the nonzero coefficient acNE from  the general 

po in t (V .,M .,F .) . Now, because V sw  C F Csw — (e i , - - -  ,ecsw) and csw  <  c n e , all vectors of 

Vsw  are o f the form w  =  Y i ^ f 1 where bCNE =  0. So V ne  7̂  Vsw  f ° r any quad in Q 0. Thus 

V ' G O B S (Q 0 )q) for every element o f F .

W hen [s,f] =  [0,1], (V . ',M !,F ! )  is the orig ina l general po in t (V .,M .,F .). So F  <£. D%. 

W hen [a, t] =  [1,0], M'n =  M n- \  +  (ec+ i)  which implies {M'n D F^-) C F ^ l t  which makes 

( M ! ,F ')  G  X , next. So F  meets D 0.

Now, m oving away from  the orig ina l general po in t, le t s =  1. Then we have M'n =  M'n_ \ +  

{ ^ec+ i  +  ten+ i — t 2 ef). A  po in t in  F  is in D$ i f  and only if 

M'n n  ( f?c)"L C ( F '+1)x  

4=4- d im (M ^  f l  Fc+i )  > 1  by lemma 4.3.1 

4=> d im ((M ^ _ j +  (^ e c+ i +  fen+i  -  £2e£)) n  Fc+1) >  1.

Now, for (M ', F .') G X .  U X ,ntJI, we have th a t d im (M ^ _ ! f i F c+i)  =  0, so

d im ((M ^_ 1 +  (^ e c+i  +  te n + 1  -  t 2 e fj)  n  F c+i )  >  1 4=4- (^ e c+i  +  ten+x -  f 2e£)) C Fc+1.

Th is  is true  i f  and only i f  —t 2  — 0 and t  =  0 (since n - 1-1 >  c - I-1 and c >  c +  1), a m u ltip lic ity  1

condition. So F  meets D q w ith  m u ltip lic ity  1 a t a po in t o f D$, and therefore D q has m u ltip lic ity

one along D®. □

P roo f o f P a rt (b).

We give a test fam ily F  through a general po in t (V .,M .,F .)  o f CloBS(Q0)x (x .u x .ne)it)Xo. meeting 

D q  along D { NW good quad} w ith  m u ltip lic ity  1. Label the elements o f Q 0 as in Figure 4.15. See 

F igure 4.10 as an example.

•  t  is the highest w h ite  checker in  columns n  +  2 <  col <  c + 1 .

•  r  is the row o f checker t ,  r  — 2 n  +  1 — r  <  n.
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in f (a, a')

fm =  a"

ft.
9m =  a.

row <  n

row =  n

row =  r  >  n

Figure 4.15:

The fa m ily  T  =  { ( V / , M ! , F ') }  is given by

•  =  Vm for m  ^  d , g i , . . . ,  gm

•  Choose et G Vt and e<f G Vd so th a t et is a generator o f V t/V m{ and is a generator of 

Vd/V inf. Let V'd =  (Vinf,fj,et +  ved) where [n ,u \ G P 1 and V'. =  (Vf i ,V^) has dim(Vg'.) =  

d im (g j). So varies in  an open subset o f P ^ /V in f ) .  Le t Vg. =

•  For 1 <  i  <  r ,  le t M / =  M i and { M l ) - 1  =

•  We make the fo llow ing observation: there is no w h ite  checker in  row r  +  1 because r  +  1 =  

2n +  1 -  r  +  1 =  2 n + 2 - r  and row r  has checker t  in it. B y m axim ality, since there 

are no w h ite  checkers in rows n  +  2 <  row  <  r  — 1, we must have w h ite  checkers in  rows 

r  +  2 <  row  <  n.

•  Choose a line L  such th a t

1. L < £ M r

2 . L c M r =  M ±

3. L  is isotropic

4. L  C n l ^ )  =  n  (iie t +  ved)± )

5- L  C Fcx

Then define

T h is  is a valid choice for M ^+1 i f  the fo llow ing are true:

1 , M f C  M r+ 1 C  M r
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2. d im (M j+1) =  r  +  1

3. M j+1 is isotropic

4' ^m(Mr-t-i) ^ t + l

5- C (M ,_ 1) C (M r + l ) ± =  M r - 1

We w ill show th a t the above are a ll satisfied by our choice o f M'r + l . M z  C M L +  L  =  M j+1 

and both M n and L  are contained in M r  so 1 is satisfied. L  (f. M £ so dim  (M r +  L ) =  r  +  1, 

proving 2. L  is isotropic and contained in M x  so M r +  L  is isotropic which is 3. There is 

no w h ite  checker in  row r  so 4 is not a new condition. There are also no w hite checkers in 

rows n  +  1, . . . ,  r  — 1 so

V m ( M r - i )  =  V m ( M „ ) =  V g m =  (M e t  +  v e d )  +  Vfm.

Now, {net +  ved) +  Vfm C Vs C M r  which implies M z  C ((net +  ved) +  V/m)x . And  

L  C ({fie t +  ved) +  V/m) x  by hypothesis. So

M L +  L  =  M l+ i C {(net +  v ta )  +  V fm)±

(net +  ved) +  Vfm C M x+1

K ( M r ^ )  C M x+1 

Thus showing 5.

•  Now define for r  +  2 <  i  <  n

=  M ' +1 +  V ^ M i) .

Then w ith  perps, we have AT.'.

•  We now bu ild  the F '  p a rt o f the fam ily. Le t F j =  F j for 1 <  j  <  c. Choose F j+1 such th a t

1. Fc C F 'c + 1  C F x

2. F j+1 is isotropic 

3- V '  C (F c'+1)x

4. V ^ F  ̂ C F j+1 (There is no w h ite  checker in column c +  1, so th is  is not a new 

condition.)

5. ( M ;_ 1 n F x ) c ( F c'+1) x
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Consider condition 5. n F x  =  (M ' +1 +  Vfm ) n  F x  =  (M z +  L  +  V /m) D F x . So

« - i n F x ) c ( F ' +1)x

K + i C ( ( M r  +  L  +  Vfm ) n F cx )±

-F'c+1 C (M r +  L  +  V/m) x  +  Fc 

Fc+i C (M r  fl L x  n  Fj-m) +  F c 

Note th a t L  c  F x  so Fc c  I / X . So we have

f ' +1 c  ( M r  n i x n l / ^ )  +  Fc c  (Lx +  Fc) =  l x

which implies

•  Now define F- for c +  2 <  j  <  n  as

F ' =  JF '+ i +  ( i ^ ± i n M ; . )

where f j  is the row o f the black checker in column j  o f the •-configuration. W ith  perps, 

th is  gives F ! .

W ith  /x =  0 we get the orig ina l po in t (V . , M . , F so F  <£. D q . W ith  v  =  0, V'd =  V( so 

(1F , M ! , F ! )  e U n w  good quad and F  meets £>nw good quad- We w ill see th a t D q  contains the 

d iv isor v  =  0 w ith  m u ltip lic ity  1, proving the result.

The d iv isor D q  on F  is given by

1 - Va C  ( F ' + 1 ) X

2- Kn(Fc+1) C T c+i

3. ( W i n f ^ l c C

Note th a t (M 'n_ x H F X ) C F +̂1 along w ith  conditions 1 and 2 are satisfied by a ll points o f F . A  

po in t of F  is in  D q

( M ' n  n  F x ) C

f e  +  i D n F ^ c ^

( ( M r  +  L  +  V fm +  (fxet +  v e ^ )  H F x ) C F {,+1 

( M n +  V /m +  (/^e* +  ved))  H F x  +  L C  F '+1 

[ (Mr  +  V fm) +  (fxet +  ved)] C F x  C F c'+1
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The last equivalence is because L  C 4 t i -

Le t I  =  d im ((M r +  V/m) f lF ^ ) .  Choose a basis e1(. . . ,  e*, for F x  and f i , . . f j  for M L +  V /m 

such th a t ej =  / j  for 1 <  i  <  Then

(A 4  +  K h J  +  ^  =  ( d .  ■ • •. e*. / / + i ,  • • ■, f j ) -

Define a pro jection

+  Vfm ) +  F c± ^ F CX

by cr(ei) =  ej fo r 1 <  i  <  k and a ( / j )  =  0 for I  +  1 <  i  <  j .  The pro jection cr vanishes on

(M z +  Vfm) / [ ( M r  +  Vfm) f l  F x ] so ( Id  -  cr)((Mz +  Vfm) +  F x ) c  M n +  V jm. Note th a t a  is fixed

for all points in the fam ily  T . So we can continue the equivalence:

[(M r +  V fm) +  (pet +  vea)} n  F x  C F e'+1

''— *’ [ ( ^ r  +  Vfm) +  (a (p et +  ved))} l~l Fc c  Fc+X

(M z +  Vfm) D F x  +  (a (pe t +  ved)) C F'c+l since a(pet +  ved) 6 F x  

+=+> cr(pet +  ved) S F 'c + 1  since M z  +  V fm C M'n_ x and M'n_ x D F x  c  F 'c + 1  V pts o f T  

+=> po(e t ) +  va (ed) € F'c+X

<!=> pet +  va(ed) € F^+i since a  is the iden tity  on F x

<=> va(ed) S F'c+l since t  ~< a, so (et ) C Va C F'c+l V pts of T

The final statement is true  only i f  we are in the divisor D q . Since T  <£. D q , th is  statement is 

no t satisfied by a ll points in T .

Thus the restric tion  of D q to  T  has two components, each w ith  m u ltip lic ity  1. They are:

1. the hyperplane section {F,f+1 | a(ed) € -F'c+l} C T

2. the fibe r for v  =  0 is also a component, appearing w ith  m u ltip lic ity  1 as desired.

□
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4 .8  C on n ectin g  divisors to  w h ite  checker moves

For the cases o f non triv ia l so moves and Sj moves w ith  a w h ite  checker in  row cLe  <  n, 

we have two loose ends to  tie  up to  conclude the proof of the type B n geometric L ittlew ood- 

R ichardson rule. These loose ends are exactly section 5.16 o f [22]. We state them and include 

the proofs nearly verbatim .

The loose ends:

1. 7r( I? 0) =  X astav. next and /  or 7t(.Dnw g o o d  q u a d )  =  X 0,wav*neli ■

2. Furtherm ore X 0stay. next appears w ith  m u ltip lic ity  1 in C l 0 B S ( Q o ) x ( x . u x . „ e x t ) X 0 .  i f  £>0 ap

pears w ith  m u ltip lic ity  1 in  C l O B S ( Q 0 ) x ( x . u x . n B X t ) X o . ,  and s im ila rly  for X 0swap. next and 

£ * N W  g o o d  q u a d  •

B oth  are a consequence o f the next result ((2) using the fact th a t 7r is b ira tiona l).

T h e o re m  4 .8 .1 . The m orphism  7r induces b ira tiona l maps from

(a) Dm t o X 0stay. next and

(b) DpfW good, q u a d  to X o swap»ncxt ■

Proof, (a) The inverse ra tiona l map X 0stay. nl!xt D<& is given by the morphism  X 0stay. ncxt -> 

O B S (Q 0) x X , next : by de fin ition X 0stay, riext parameterizes isotropic flags M. and F. in 

•nezt-position, as well as the m axim al isotropic space V  and isotropic spaces V  f l  M i f l  Fj, 

which correspond to  elements o f Q a (and d im (F ClMiDFj) equals the corresponding element 

o f Q 0).

(b) The inverse ra tiona l map X 0swap, next £ > n w  g o o d q ua d  is s im ila rly  given by the morphism 

X o3Wap. next -> O B S {Q 0) x X , ncxt, b yw a y  o f the locally closed immersion O B S (Q 0swap)$ =  

O B S {Q o ) n W  g o o d  q u a d  c *  OBS{Qo)>

a
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