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ABSTRACT 

ACTION POTENTIAL INITIATION MECHANISMS: ANALYSIS AND NUMERICAL 

STUDY 

Action potentials (AP) are the unitary elements of information processing in the nervous system. 

Understanding AP initiation mechanisms is a fundamental step in determining how neurons encode 

information. However, variation in neuronal response is a characteristic of mammalian neurons, which 

further complicate the analysis of neuronal firing dynamics. Several studies have associated the variation 

in AP onset with the type and densities of voltage-gated ion channels, diversity in synaptic inputs, neuron 

intrinsic properties, cooperative Na+ gating, or AP backpropagation. But the mechanisms that underlie the 

response variability remain unclear and subject to debate. Even though all these studies tried to answer the 

same question, the definition of AP onset and rapidity differs between them, highlighting the need for a 

more systematic and consistent method to quantify AP onset features, and hence analyzing the variation in 

AP onset.  

Two novel methods were developed to quantify AP rapidity. The proposed methods have lower 

relative variation, higher ability to classify neuron types, and higher sensitivity and specificity to voltage-

gated Na+ channels parameters than current methods. AP rapidity was used to analyze different factors 

impacting the AP activation mechanism. However, the prior rapidity quantification methods are 

subjectively based on the researcher's judgment, which complicates the comparison between different 

studies. Thus, we proposed a more systematic and consistent method based on the full-width or half-width 

at half the rising phase peak of the membrane potential’s second-time derivative (V̈m). First, using an HH-

type model, we showed that the peak width methods are sensitive to changes in the Na+ channel parameters 

and conductance and minimally impacted by changes in the K+ channel parameters compared to the phase 

slope, the standard quantification method. Second, we compared the peak width methods to the two prior 
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methods, phase slope and error ratio, using recordings from cortical and hippocampal pyramidal neurons, 

hippocampal PVBCs, and FS cortical neurons found in online databases. The results showed that the new 

methods have the lowest variation between neurons within a specific type while significantly differentiating 

several neuron types. Together, the two studies showed that the peak width methods provide another 

sensitive tool to investigate the mechanisms impacting AP onset dynamics and provide a better tool to study 

Na+ channels kinetics and AP onset features.  

A conductance-based model that includes dynamics of ion concentration and cooperative Na+ 

channels was developed to investigate the mechanisms responsible for observed neuronal response 

variation. Random response variability has previously been observed in spike trains evoked from individual 

neurons by the same DC stimulus, but we observed systematic variation. The first APs’ in a burst had 

attributes that were comparable regardless of the stimulus strength, while the subsequent APs’ attributes 

monotonically change during bursts, and the magnitude of change increases with stimulus strength. These 

two spike train features were observed in three different neuron types (n = 51), indicating a shared 

mechanism is responsible for the spike train pattern.  Various existing computational models fail to replicate 

the monotonic variation in AP attributes. We proposed incorporating ion concentration dynamics and 

cooperative gating to account for the missing behavior. A model with dynamic reversal potential but 

without cooperative Na+ channel gating reproduces the AP attribute’s variation during bursts, but not the 

first APs’ attributes. The first APs’ attributes were reproduced only in the presence of a fraction of 

cooperative Na+ channels. Cooperative gating also enhanced the magnitude of modeled variation of some 

AP attributes to better match the electrophysiological recordings. Therefore, we conclude that changes in 

ion concentration dynamics could be responsible for the monotonic change in some AP’s attributes during 

normal neuronal firing, and cooperative gating can enhance this effect. Thus, the two mechanisms 

contribute to the observed variability in neuronal response, especially the variation in AP rapidity. 
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1 INTRODUCTION 

1.1 MOTIVATION  

Action potentials (APs) initiation is a key process of neural communication and 

information encoding. Our understanding of AP generation was shaped by Hodgkin and Huxley’s 

(HH) pioneering work in the giant squid axon [1]. However, APs elicited in central mammalian 

neurons are sharper than those in the squid giant axon. Such a notable difference was the center of 

debate in the past two decades. Some studies attributed the sharp AP onset to the location of AP 

initiation, neuron geometry, dendritic size, while other studies suggested a new theory based on 

cooperative gating of sodium channels [2]–[7]. Although all these studies tried to answer the same 

question, the definition of AP rapidity differs across them, complicating the comparison between 

the results between studies.  

In prior literature, the rapidity of AP onset was measured using the phase slope and the 

error ratio methods. The phase slope is the standard approach which calculates the slope on a phase 

space plot at a criterion level (ranging from 5 to 70 mV/ms) [2], [7], [8]. The second method is the 

error ratio method, which was suggested to differentiate between slow and fast AP onset. The error 

ratio method defines rapidity as the ratio of the mean-square errors for two fitting functions 

(exponential and piecewise linear fit) of the initial portion of the AP in the phase plot [9]. However, 

the two existing quantification methods are affected by the researcher's judgment in defining the 

criterion level or the AP portion selected for fitting. Furthermore, other studies have associated the 

slope of the rising phase of the membrane potential (V) or the maximum value of the first-time 

derivative (V̇) to Na+ channels kinetics [10]–[12].  Nonetheless, these methods could not reveal 

any significant difference between the kinetics of Na+ channels activation in different neuron types. 
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Therefore, the subjectivity of current rapidity quantification methods highlights the need for a 

more systematic and consistent method to quantify AP rapidity. Furthermore, determining the 

methods' sensitivity and specificity to Na+ channels is crucial since the whole debate around the 

sharp AP onset in cortical neurons was either to support or oppose the cooperative sodium channel 

opening theory [2], [3]. However, to our knowledge, no prior study has investigated the sensitivity 

and specificity of the rapidity quantification methods to Na+ channels, which control the generation 

of neuron signals.  

Individual neurons might generate a variety of responses even to the same stimulus. The 

variability of neuronal response could reflect several aspects of the variation between neurons of 

the same type and brain regions, such as the diversity in voltage-gated ion channel types and 

densities, synaptic inputs, or the neuron’s intrinsic properties [13]–[15]. Furthermore, 

cooperativity between neighboring Na+ was proposed as a mechanism that accounts for the 

threshold variation and rapid AP initiation observed in cortical neurons [2]. In recent years, several 

studies have supported the cooperativity hypothesis  [16]–[19]. For instance, one study has found 

that neighboring Na+  channels physically interact, consistent with cooperativity theory [17]. 

Furthermore, Na+  channels are localized in a cluster at the axon initial segment [20], which is a 

prerequisite for cooperative gating [21]. Channel clustering and coupled gating also imply that 

more considerable ion concentration changes occur during neuronal activity. Channel clustering 

can cause higher changes in local ion concentration during, compared to uniformly distributed 

channels, and the magnitude of concentration change can increase due to coupled gating. However, 

although fluctuation in K+ and Na+ concentrations were observed in cortical neurons [22]–[25], 

local accumulation and depletion of ions in the vicinity of ion channels are usually overlooked 

when modeling normal neuronal electrical behavior. Thus, most computational models treat the 
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ionic reversal potential as a constant. While such an assumption could be valid in the squid giant 

axon, its validity in mammalian neurons is subject to debate [26]. These studies together have 

suggested that mammalian Na+ channel kinetics might deviate from the canonical HH model, and 

there is a need to reevaluate the role of Na+ channel kinetics and ion concentration dynamics in 

biophysical models.  

This dissertation focuses on studying and modeling AP initiation mechanisms in central 

mammalian neurons. First, two novel methods were proposed to quantify AP rapidity. The two 

methods measure the full-width (FW) or half-width (HW) of the rising phase of the membrane 

potential second-time derivative (V̈), which is well-defined and is not affected by the research 

judgment. The inverse of the FW (IFWd2) and HW (IHWd2) define the rapidity in units of 1/time, 

which are the units usually used for quantifying AP rapidity. Then, the sensitivity and specificity 

of AP rapidity methods to Na+ channel kinetics were analyzed using an HH-type model, showing 

that the proposed methods are more sensitive and specific to Na+ channel kinetics compared to the 

phase slope method. The new methods were used to analyze AP rapidity in intracellular recordings 

from four neuron types. The IFWd2 rapidity was less variable within a specific neuron type while 

significantly differentiating neuron types. Hence, properly quantified AP rapidity can be used as a 

cell classification parameter. Finally, a single-compartment model was constructed to replicate 

recurring spike train patterns shown across different neuron types. The attributes of the first spikes 

in the train have comparable values across different cells despite the stimulus strength. In contrast, 

the average (or last) AP attributes monotonically change during bursts, and the magnitude of 

parameters tilt increases with stimulus strength. The proposed single-compartment model 

successfully replicates these two observed experimental patterns only if dynamical reversal 

potential was implemented and the effect is enhanced with cooperative Na+ gating.  
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1.2 DISSERTATION ORGANIZATION  

 This dissertation consists of six chapters that include three studies focused on the AP onset 

dynamic, followed by several appendices. The first chapter is an introductory chapter with two 

sections, the research motivation and the dissertation organization. The second chapter contain the 

literture review. The third chapter contains the development and analysis of two novel methods 

proposed to quantify the rapidity of AP onset. The sensitivity and specificity of the two novel onset 

rapidity methods to Na+ channels kinetics was analyzed and compared to the existing method using 

the original HH model. The third chapter was published in the Biomedical Sciences 

Instrumentation journal [27]. The fourth chapter contains the analysis and comparison of applying 

the AP rapidity quantification to publically available electrophysiological recordings from four 

different mammalian neuron types, where the results were used to classify neuron types. The fourth 

chapter was published in the PLOS ONE journal [28]. Then, a conductance-based model that 

includes both cooperativity between Na+ channels and dynamical reversal potential was 

constructed in the fifth chapter. The proposed model was used to replicate spike train trends during 

bursts (the third study). The sixth chapter contains the conclusion of this dissertation and sugests 

future works. Finally, the appendices contain the supporting information from each study. 

Appendix A and B contains the supporting information for the second paper. Appendix C and D 

contains the supporting information for the third paper. Appendix E contains the MATLAB code 

for the combined model used in the third paper and Appendix F contains the numerical methods 

used in this disertation and a table describeing various neuroscience databases.  
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2 LITERATURE REVIEW 

2.1 GENERAL VIEW OF ACTION POTENTIAL INITIATION    

Voltage-gated ion channels (VGICs) are transmembrane proteins responsible for neuronal 

electrical signals. Understanding the VGIC gating mechanism is vital to determine how neurons 

process information. More precisely, the VGIC gating mechanism leads to action potential (AP) 

initiation [12]. The classical description of AP initiation is based on Hodgkin and Huxley's 

landmark work in 1952 [1]. In their five-paper series, Hodgkin and Huxley explicated the concept 

of ion channels [29]. They presented a novel mathematical model that can replicate the 

experimental recording in the squid giant axon. The voltage-gated Na+ and K+ channels were 

represented by a fixed reversal potential and a variable ionic conductance, which is controlled by 

independent gating variables, each of which are governed by a first-order differential equation in 

time. The parameters of those equations depend only on the membrane potential. Despite its 

relatively simple nature, the Hodgkin–Huxley (HH) model can replicate the APs elicited from 

more complex neurons, such as central mammalian neurons, with simple parameter changes. 

Because of this remarkable property, the HH model is still one of the most commonly used 

computational neuronal models [29], [30]. Although a growing body of evidence in central 

mammalian neurons has indicated a discrepancy between experimental data and the HH model 

[2], [5], [6], [31], [32], most of the proposed models incorporate the basic functions and equations 

from the HH model [33], [34].  

The nature of VGIC gating has been extensively researched. Contrary to the HH model 

assumptions, coupled gating has been observed in various VGICs [21]. The coupling between 

neighboring channels can be either positive or negative, and the process could be natural or caused 
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by diseases [21]. Positive cooperativity (i.e., the opening of one channel of a particular type 

increases the probability of the opening of neighboring channels of the same type) has been 

observed in cardiac Na+ channels [17], [35], K+ channels [36], and Ca2+ channels [37], [38]. 

Negative cooperativity (i.e., the opening of one channel inhibits the opening of other channels) is, 

however, less observed compared to positive cooperativity [21], and has mainly been observed in 

Na+ channels [39], [40].  

 Negative cooperativity was observed in Na+ channels. Neumcke and Stampfl altered Na+ 

conductance in the frog nerve nodal membrane using tetrodotoxin (TTX) while varying the holding 

membrane potential [40]. They reported an increase in the channel conductance after blocking 

some of the Na+ channels, thereby indicating negative cooperativity between the channels at the 

nodal membrane [40]. Negative cooperativity was also found in neuroblastoma cells. Iwasa et al. 

analyzed voltage-clamped recordings from a neuroblastoma cell membrane patch that contained 

two toxin-modified Na+ channels to determine whether these two channels are independent and 

identical  [39]. They noted a negative interaction between the two channels. Although both studies 

found negative cooperativity between the Na+  channels, their results are unrelated [39]. Neumcke 

and Stämpfli reported that negative cooperativity occurs only where channels are located in high 

density and is based on substantial depletion of number of available ions through a cluster of 

channels. Also, the mechanism described by Iwasa et al. is based on a slower opening rate for a 

channel when an adjacent channel is open. Regardless of the different views, negative interaction, 

although rare, was detected between Na+ channels in different cell types. 
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2.2 Na+ channels inactivation mechanism    

Rosalie C. Hoyt made one of the earliest attempts to apply coupled gating in 1963. Hoyt 

assumed that Na+ activation and inactivation are coupled. Thus, in her work, the gating of Na+ was 

represented by a single variable instead of using two independent gating variables as in the HH 

model [41], [42]. As compared to the HH model, the first Hoyt model provided better agreement 

with experimental data from the squid giant axon, although the differences between the two models 

were marginal [41]. Furthermore, in 1970, Hoyt and Adelman reported that the coupled gating 

model fits the squid axon data better than the HH model for the early part of the Na+ inactivation 

process [43]. While one major criticism of the Hoyt model was the uncompensated series 

resistance, Goldman and Schauf demonstrated that the coupled Na+ channel gating mechanism 

was still valid after adding series resistance, which provided a good fit to the Myxicola axon data 

[44]. Altogether, even though they are less famous than the independent gating models, different 

models based on coupled gating mechanisms have been propounded. These early studies on 

coupled gating have led to the current view of the Na+ channel inactivation process, where it is not 

considered voltage-dependent and is promoted by the activation process [45], [46].  

 The work on the Na+ channel inactivation process had led to the development of the ball-

and-chain model. In 1973, Bezanilla and Armstrong developed a new signal averager that allowed 

them to make the first measurement of Na+ gating current [47]. A few years later, Bezanilla and 

Armstrong, using the voltage-clamp technique and the pronase enzyme to remove the inactivation, 

postulated the ball-and-chain model [48], [49]. The ball blocks the Na+ channel and the inactivation 

gain its voltage-dependence from the channel activation gate. Moreover, with the advances in Na+ 

current single-channel recording, multiple studies have confirmed the coupling between the 

activation and inactivation of Na+  channels [50]–[52], which brought more evidence that the Na+ 
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gating mechanism deviates from the HH model. In addition, it inspired a new set of models that 

used the allosteric mechanism for Na+ channel gating [53], [54]. 

2.3 Na+ channel activation mechanisms   

Na+ activation was another source of discrepancy when applying the original HH model to 

central mammalian neurons [2], [3], [46]. The exponent of the Na+ channel activation gate (m) 

varies according to the depolarization strength from 2, for small depolarization, to 4, for large 

depolarization  [55]. By contrast, Baranauskas and Martina affirmed that the activation delay 

observed in several central mammalian neurons was markedly less than that predicted using the 

HH model [56]. These cumulative studies over the years have confirmed that mammalian Na+ and 

K+ channels' kinetics deviate from the canonical HH model, and thus, there exists a need to 

reevaluate the role of Na+ and K+ channel kinetics in biophysical models [57].  

 Cooperativity between neighboring Na+ channels is a relatively new idea [2] and a subject 

of heated debate. In 2006, Naundorf et al. published their controversial paper on unique features 

of APs in cortical neurons. Specifically, they observed two unique features in electrophysiological 

recordings of somatic APs in cortical neurons: rapid AP initiation and variability of AP onset 

potential [2]. The researchers failed to replicate these features in a single-compartment HH model, 

indicating that the HH model cannot account for these salient features. Therefore, they proposed a 

theory of cooperative Na+ channels, which assumes that each Na+ channel is functionally coupled 

to adjacent channels. The opening of one channel facilitates the opening of neighboring channels 

to shift the cumulative activation curve to more polarized (negative) values [2]. The proposed 

model replicates experimental data when modeling Na+ channels with strong cooperative 

activation, voltage-dependent inactivation from closed states, and slow deinactivation [2]. 
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However, the debate continues about the validity of the cooperative Na+ channels activation 

hypothesis due to the lack of direct experimental evidence.  

The cooperative gating theory engendered opposing opinions. Some studies described the 

theory as radical, unconventional, and even unnecessary [3], [30], [46], [58]. In opposition to the 

cooperative gating hypothesis, some studies attributed the sharp AP onset to compartmentalization. 

The somatodendritic compartment acts as a current sink for sodium current propagating from the 

AP initiation site at the axon, causing a sharp somatic AP [7], [59]. However, the most notable 

opposition came from McCormick et al. In their response to Naundorf et al., McCormick et al. 

asserted that the HH model used in the former’s analysis did not include the spike initiation site 

[30]. They showed that using the original HH model that AP backpropagation from the axon initial 

segment (AIS), where the spike initiated, caused the somatic AP initiation to be sharp, while the 

AP at the AIS was smooth [38]. These results agreed with the onset recordings from injury-induced 

cortical neurons [3].  

However, the AP backpropagation arguments have two main criticisms. First, the axonal 

recordings were obtained from injury-induced swellings of cut axons on the slice surface [3]. The 

bleb caused by the injured axon destroys the sub-membrane network that integrates Na+ channels 

into the supramolecular machinery of the normal AIS [60]. Thus, the smooth AIS AP onset could 

be due to the disorganized state of the injured axon [60]. Second, Na+ channel density in the axon 

was higher than the AIS's suggested density [6], [61], [62]. Thus, after modifying the Na+ channel 

density, more studies investigated the sharp AP onset in multicompartment models. These studies 

concluded that AP backpropagation partially accounts for the sharp initiation of APs observed in 

cortical neurons. However, it is not sufficient to replicate the experimental data alone, and 
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including cooperative Na+ channel gating in addition is necessary to mimic the sharp AP initiation 

in computational models [6], [62]–[64].  

 In the past decade, the cooperative Na+ gating hypothesis has gained some momentum in 

the computational neuroscience field. In 2010, Baranauskas et al. used multicompartment models 

to find the active and passive parameters to replicate cortical neuron recordings [63]. They found 

that AP backpropagation elicited by the classical and modified HH models with fast onset kinetics 

did not necessarily cause sharp somatic AP onset, and hence other factors are required to explain 

these features [63]. Huang et al. investigated what fraction of cooperative Na+ channels were 

needed to reproduce sharp AP onset in cortical neurons [5]. They constructed a conductance-based 

neuron model in which the Na+ gating mechanism was varied from fully independent, like in the 

HH model, to fully cooperative. They found that with a small fraction of strongly coupled Na+ 

channels (5%–15%), the model generated the most rapid onset, produced a biphasic AP waveform, 

and enhanced the neuron’s ability to phase-lock their firing to high-frequency input fluctuation 

[5]. Another modeling study also showed that cortical neurons could phase-lock their firing to 

signals with frequencies up to 400 Hz and respond within 2 ms to small changes in the input signal, 

which was reproduced using a multicompartment model with a fraction of AIS cooperative Na+ 

channels [64]. Furthermore, cooperative gating was proposed to induce memory. Pfeiffer et al. 

showed that clusters of cooperative Na+ channels could form bistable conductances, causing short-

term memory [65]. Therefore, cooperative gating might cause faster neuronal response and 

regulate neuronal activity.   

 In recent years, several studies have shown more biological evidence supporting the 

cooperativity of Na+ channels. In 2014, a study showed using Na+ channel's crystal structure that 

the β3-subunits can bind to multiple sites of Nav1.5 α-subunits [16]. Another study found that the 
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Na+ channels’ α-subunits physically interacted and identified the protein-mediated coupled gating 

[17]. Clatot et al.’s findings supported Naundorf et al. Na+ cooperative model results. Furthermore, 

channel cooperativity was linked to Na+ channel mutation. A study showed that the dominant 

negative effect of mutant Na+  channels is due to trafficking deficiency and cooperative gating 

impairment [18], and uncoupling Na+ channel dimers can rescue the pain caused by Nav1.7 

channel mutation [19]. The growing body of biological evidence on the role of cooperative Na+ 

gating indicates that Na+ channel kinetics diverges from conventional paradigms. Thus, a more 

realistic biophysical model needs to be developed that can explain the experimental data.  

2.4 Ion concentration dynamics in neurons   

Ion movement through VGICs underlies neuronal signaling. Yet, ion concentration change 

is ignored when modeling neuronal normal electrical behavior, assuming that the total number of 

ions flowing through channels is too small to cause any significant change. This, however, might 

not be true in vertebrate neurons. For example, increases in the level of extracellular K+ 

concentration in cortical neurons were associated with physiological stimuli [22] and periodic 

fluctuations during sleep [23]. Also, spontaneous and ultraslow fluctuation in Na+ concentration 

was observed in neonatal neurons, making the cell more vulnerable to seizures, which diminish 

after blocking AP generation [24], [25]. In addition, increasing intracellular Na+ concentration was 

shown to facilitate seizure termination [66]. However, although changes in ion concentration are 

observed in normal and pathological neuronal states, computational models with dynamic ion 

concentration were used mainly to study abnormal neuronal activities. Cressman et al. constructed 

a conductance-based neuron model with Na+ and K+ concentration dynamics. Their study showed 

that changes in ion concentration led to seizure-like events [26], [67]. Tagluk and Tekin also 

studied the influence of ion concentrations on neuronal dynamical behavior [68]. They concluded 
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that while the Na+ concentration had a slight impact on amplitude, it had a smaller influence on 

other AP attributes, whereas the K+ concentration significantly impacted almost all aspects of the 

AP generation [68]. In contrast, other studies emphasized the critical role of changes in Na+ 

concentration on electrical activity. Zylbertal et al. (2015) showed that intracellular Na+ 

concentration's prolonged dynamics control the persistent neuronal activity in mitral cells using 

electrophysiological recordings, imaging, and computational modeling [69]. Furthermore, in 

another computational study, Zylbertal et al. showed that the dynamic of Na+ concentration in 

three neuron types, including cortical pyramidal neurons, has a significant impact on neuron-

bursting activity [70]. These studies indicate the importance of dynamical ion concentration on 

neuronal activities in both normal and abnormal neuronal activities.   

2.5 Models of cooperative Na+ channel gating   

This section contains three cooperative Na+ channel models proposed since 2006. These 

models include; the Naundorf et al model, the Huang et al model, and  the Öz et al model. Table 2.1 

shows a comparison between three Na+ channels cooperative models.  

Table 2.1: Comparison between three cooperative Na+ channels models 

Cooperative 

model 

(Based on*) 

Ion 

channels 

Na+ current 

(coupling)  

Notes 

Naundorf et al 
(2006) 

(Aldrich et al 
(1983)) 

Leak 
Na+ 

𝑔̅𝑁𝑎+𝑜(𝑉𝑁𝑎+ )(𝐸𝑁𝑎+ − 𝑉) 𝑉𝑁𝑎+ = 𝑉 + 𝐾𝐽𝑜 
• one gating parameter - 𝑜(𝑉𝑁𝑎+ ) 

• All Na+ channels are cooperative  

• No K+ channels 

Huang et al 
(2012) 

(Wang-Buzsaki 
(1991)) 

Leak 
K+ 

Na+ 

𝑔̅𝑁𝑎+(𝑚𝑐𝑥(𝑉𝑁𝑎+ )ℎ)(𝐸𝑁𝑎+ − 𝑉) 𝑉𝑁𝑎+ = 𝑉 + 𝐾𝐽𝑚𝑥ℎ 𝑥 = 1-3 

• Neglects activation delay, 𝑚 = 𝑚∞ 

• Fraction of Na+ channels are cooperative  
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Öz et al (2015) 
(Huang et al 

(2012)) 

Leak 
K+ 
Na+ 

𝑔̅𝑁𝑎+(𝑚𝑐3(𝑉𝑁𝑎+ )ℎ)(𝐸𝑁𝑎+ − 𝑉) 𝑉𝑁𝑎+ = 𝑉 + 𝐾𝐽𝑚3ℎ 

• Neglects activation delay, 𝑚 = 𝑚∞ 

• Fraction of Na+ channels are cooperative 

• Varying  𝑔̅𝑁𝑎+ values 

• Includes AP backpropagation  

* Note that Aldrich and WB models are based on HH model with some simplification.  

 Naundorf et al. model [2] 

 In 2006, Naundorf et al. proposed a cooperative Na+ channels model that can replicate two 

unique features observed in cortical neuron recordings: variability of AP onset and fast onset 

rapidity [2]. They used a single channel model since the two features occur in the AP initial part. 

Hence, the features are dependent only on Na+ channels. Therefore, K+ channels are excluded from 

the model and replaced by a large leakage conductance [2].  Naundorf et al. based his model on 

Aldrich et al. (1983) single channel model, in which the channel can be in three states, as shown 

in Figure 2.1 [51]. The transition between open and closed states is voltage-dependent, whereas 

channel inactivation is as a state-dependent from the open state. To make Na+ channels activate 

cooperatively, Naundorf et al. introduced a coupling strength (𝐽) for a number of neighboring 

channels (𝐾) that shift the activation voltage toward more polarized (negative) values. Thus, by 

varying the coupling strength value, Na+ channels activation can be independent when J=0, and 

cooperative when J>0. AP generation dynamics, including the fraction of open Na+ channels (𝑂), 

and the fraction of available Na+ channels (𝐻) is described by the following equations: 

𝐶 𝑑𝑉𝑑𝑡 = 𝑔𝐿(𝐸𝐿 − 𝑉(𝑡)) + 𝑔𝑁𝑎+𝑂(𝑡)(𝐸𝑁𝑎+ − 𝑉(𝑡)) + 𝐼𝑎𝑝𝑝 

𝑑𝑂𝑑𝑡 = 𝛼𝑜(𝑉(𝑡) + 𝐾𝐽𝑂(𝑡))(𝐻(𝑡) − 𝑂(𝑡)) − (𝜏𝐼−1 + 𝛽𝑜(𝑉 + 𝐾𝐽𝑂(𝑡))) 𝑂(𝑡) 

𝑑𝐻𝑑𝑡 = 𝛼𝐶(𝑉)(1 − 𝐻(𝑡)) − 𝛽𝐶(𝑉)(𝐻(𝑡) − 𝑂(𝑡)) − 𝜏𝐼−1𝑂(𝑡) 
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Where 𝑔𝑖 is the maximum conductance, 𝐸𝐿is the channel reversal potential, and 𝐼𝑎𝑝𝑝 represents 

the applied current. 𝛼𝑖 and 𝛽𝑖 represent the rate constant functions and 𝜏𝐼 is the inactivation time 

constant. 

 

Figure 2.1: State transition scheme of the single sodium channel model. H is the fraction of available channels and I 
is the fraction of inactivated channels. 𝜏𝐼−1 is the transition rate between closed and open states. The transitions between 
closed and open states and between inactivated and closed states occur with rates 𝛼𝐴(𝑉) (opening), 𝛽𝐴(𝑉) (closing) 
and 𝛼𝐶(𝑉) (de-inactivation), 𝛽𝐶(𝑉) (inactivation), respectively. The figure is reproduced as in Naundorf et al., 2006.   

 Huang et al. model [5] 

In 2012, Huang et al. introduced their cooperative model to answer two questions: (1) Does 

the cooperative Na+ channels model influence neuronal populations' encoding properties? (2) Can 

a fraction of cooperative Na+ channels reproduce the characteristic properties reported in previous 

theoretical studies? To answer these questions, Huang et al. developed a conductance-based model 

where they continuously varied the coupling strength and fraction (p) of Na+ channels exhibiting 

cooperativity. They showed that with a small p and a strong cooperativity, AP rapidity and 

threshold variability increase together, and the AP exhibits a two-component waveform, similar to 

electrophysiological recordings. Moreover, they showed that the presence of a small fraction of 

cooperative Na+ channels significantly enhanced the neuronal ability to phase-lock their firing to 

high-frequency input fluctuation, similar to experimental data [5].  
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 The AP dynamic was based on an HH-type neuron model, the Wang-Buzsaki (WB) model 

[71]. The WB model is described as the following:  

𝐶 𝑑𝑉𝑑𝑡 = 𝐼𝐿𝑒𝑎𝑘 + 𝐼𝐾+ + (1 − 𝑝)𝐼𝑁𝑎+ + 𝑝𝐼𝑁𝑎𝑐+ + 𝐼𝑎𝑝𝑝 

Where all variables and constants are as described in the original HH model except for the new 

term 𝐼𝑁𝑎𝑐+ , which represents the cooperative Na+ channels current, which is defined as:  

𝐼𝑁𝑎𝑐+ = 𝑔̅𝑁𝑎+(𝑚𝑐𝑥ℎ)(𝐸𝑁𝑎+ − 𝑉(𝑡)) 

𝑚𝑐(𝑉) = 𝑚𝑐(𝑉 + 𝐾𝐽𝑚𝑐(𝑉)ℎ(𝑉)) 

where 𝑥 is the exponent of the activation function (𝑥 = 3 in the original HH model), 𝐽 is the 

coupling constant, 𝐾 is the number of coupled adjacent channels, and 𝑚𝑐 is the cooperative 

Na+ channels activation variable, 𝑚 is the same for the conventional (independent) Na+ 

channels, and ℎ is the inactivation variable for both the cooperative and conventional channels. 

 Öz et al. model [6] 

In 2015, Öz et al. compared the impact of cooperative and independent Na+ channels in the 

AIS on AP initiation. They developed a conductance-based model that includes a multi neuronal 

compartment from a dendrite compartment to a bleb after the first node of Ranvier compartment 

[6]. In this model, only a fraction of the AIS Na+ channels were activated cooperatively, while the 

channels in the other compartments exhibited independent gating. The main findings of Öz et al. 

were that only the cooperative model reproduced the abrupt AP onset observed in cortical neurons, 

and the cooperative model was able to reproduce the sharp somatic AP with the AIS Na+ channels 

density only 3-fold to 10-fold higher than the soma [6]. Also, they found that the coupling strength 

and the fraction of cooperative Na+ channels were ineffective on the localization of action potential 
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initiation, but crucial for increasing AP rapidity. The Öz et al. model was similar to the Huang et 

al. model where only a fraction (p) of the Na+ channels exhibit cooperative gating, but cooperative 

gating is only implmented in the axon intial segment compartment (independent Na+ channel 

gating elsewhere). 
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3 NEW METHOD TO ANALYZE THE RAPIDITY OF ACTION POTENTIAL INITIATION 

Preface 

This chapter was published in the Biomedical Science Instrumentation journal in April 

2020 and was co-authored by Aldohbeyb, Vigh, and Lear. Ahmed A. Aldohbeyb's contributions 

were writing the MATLAB codes for the HH model, obtaining the electrophysiological recordings 

from publicly available databases, calculating the AP attributes, testing the sensitivity and 

specificity of AP rapidity quantification methods to Na+ channels, analyzing the data, identifying 

and describing prior related work, discussing all aspects of the research, conceptualizing many 

figures and creating all of them, writing the original manuscript, editing text and figures based on 

feedback from the other co-authors, and corresponding with the publisher. This chapter is the same 

as the published paper, except for minor formatting edits to follow CSU Graduate School 

formatting and submission guidelines (citation style and tables designs).     

Abstract 

Recent studies show a kink at action potential, AP, onset in some cortical and retinal 

neurons. Several papers have quantified the rapidity of AP onset, i.e., how kinked the AP initiation 

is, and found the rapidity to be faster than predicted by the Hodgkin-Huxley model (HH) and 

conclude the HH model is missing critical biophysics. However, these works typically define AP 

onset rapidity subjectively, often using an arbitrary value of 𝑉̇𝑚 , the first time derivative of the 

membrane potential. Therefore, we propose more systematic methods to analyze the AP initiation 

using the full width at half maximum (FWHM) and half width at half maximum (HWHM) of the 

onset peak in 𝑉̈𝑚, the second time derivative. The maximum 𝑉̈𝑚 occurs when the Na+ current 

changes fastest. Hence, the FWHM and HWHM of 𝑉̈𝑚 are well-defined and intuitive measures of 
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onset rapidity. To examine the proposed methods, we have varied the rate constant parameters in 

the HH model and numerically calculated the resultant FWHM and HWHM of 𝑉̈𝑚 alongside 

previously published approaches. The results show that both the FWHM and HWHM methods are 

more sensitive to changes in HH parameters, giving a wider range of onset rapidity while 

remaining minimally affected by other aspects such as the AP width. Furthermore, we used the 

methods to analyze the onset rapidity in somatosensory cortical neurons. The results from FWHM 

and HWHM methods show a low variation between the neurons analyzed here while exhibiting 

relatively high variation in neurons with high AP shape variability compared to the widely used 

phase slope method. Our results indicate that the FWHM and HWHM methods are more sensitive 

and specific to measure the AP onset dynamics. Thus, quantifying the rapidity of AP onset using 

the FWHM and HWHM methods provides a systematic tool to analyze the AP onset dynamics and 

allow direct comparison between experimental data.  

3.1  Introduction 

The work of Hodgkin and Huxley (HH) has been a cornerstone in forming our current 

understanding of the mechanism of neuron firing. Their work on the giant squid axon has led to 

the development of their famous mathematical model [1]. This simplified model captures the 

overall features of neurons’ firing dynamics and predicts that once the membrane potential, 𝑉𝑚,  
exceeds a certain threshold potential, 𝑉𝑚 rises smoothly and an action potential (AP) is generated. 

However, recent studies in the cortex and some retinal neurons have shown that the initial AP 

depolarization might be faster than predicted by the classical HH model [2], [64]. In these cells, 

the onset of the AP appeared as a sharp kink as opposed to the gradual rise predicted by the HH 

model. As a result, several studies have focused on examining and analyzing the AP onset in these 

neurons [2], [30], [62].  The results from these studies are controversial; some researchers have 
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suggested alternative models while others emphasize that such a rapid onset can be explained with 

a multicompartment HH model [2], [3], [6], [30], [62]–[64], [72].   

 However, the definition of AP onset and onset rapidity differ from one study to another 

and many definitions involve arbitrary AP thresholds. The most common definition of AP onset is 

when the rate of  𝑉𝑚 change equals some value and further defines the rapidity of AP onset as the 

slope of a fitting line that is tangent to that point [2], [3], [8], [73], [74]. Each of these works 

typically defined AP onset rapidity subjectively as they used different onset values (e.g., 10 𝑚𝑉/𝑚𝑠 in [2]; 15 𝑚𝑉/𝑚𝑠 in [30]; 20  𝑚𝑉/𝑚𝑠  in [64]; 50 𝑚𝑉/𝑚𝑠 in [75]). Other studies 

defined the AP onset as the value at which the membrane potential’s second or third derivative 

reaches its maximum value [12], [76], [77]. However, determination of when onset occurs does 

not provide a measure of the rapidity of onset. The wide variety of these definitions – particularly 

the use of arbitrary constants – causes potential confusion, complicates comparison of different 

models and data sets, and may obscure underlying commonalities. Therefore, we propose a more 

systematic and consistent method to analyze AP onset rapidity using the full width at half max 

(FWHM) and the half width at half max (HWHM) of the rising phase of the membrane potential’s 

second time derivative (𝑉̈𝑚). The maximum value of 𝑉̈𝑚 indicates the highest acceleration of 𝑉𝑚 

reflecting the fastest change in Na+ current. Thus, the HWHM of 𝑉̈𝑚 measures the length of time 

needed to reach the fastest change in Na+ current starting from a time when the rate of change is 

only half that fast. Likewise, the FWHM of 𝑉̈𝑚 indicates the length of time needed to transition 

from half the maximum rate, through the maximum, and back down to half the maximum rate of 

change in Na+ current. Together, the FWHM and HWHM of 𝑉̈𝑚  provide a robust measure of the 

rapidity of AP onset. Further, as will be shown below, these methods are more sensitive to small 

changes in the HH rate constant parameters affecting AP onset rapidity than the commonly used 
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first derivative methods. Beneficially, the FWHM and HWHM measures of onset rapidity are 

minimally influenced by other aspects of the AP that extend beyond onset such as the AP width. 

Moreover, when these methods are used to analyze current clamp recordings from mice 

somatosensory cortex neurons, the HWHM method has the lowest variation across pyramidal 

regular-spiking cortical neurons, is least impacted by backpropagation signals, and shows higher 

relative variation in neurons that have high AP shape variability. Thus, the HWHM method is more 

sensitive and specific to measure the AP onset dynamics.  

3.2 Methods 

 Data Source for AP Recordings 

 Electrophysiological recordings were obtained from the GigaScience Database. The 

experimental procedures and recording are found in da Silva Lantyer et al., 2018 [78].  The 

recordings we used were current clamp recordings from pyramidal regular-spiking neurons in 

primary somatosensory cortex of adult female mice. The recordings were obtained from 11 

pyramidal regular-spiking neurons from 8 mice ranging from 165 to 282 days old. The data 

analyzed here was obtained and uploaded to the database by Angelica da Silva (AL) and were 

found to be the cleanest recordings with the lowest noise in that database.  The recording labels in 

the database are given in da Silva Lantyer et al. Supporting Information [78].  

 We analyzed the AL-series recordings that satisfied the following criteria. Each current 

step recording had to contain at least 2 APs. Each AP had to be separated by at least 30 ms from 

the preceding AP to exclude the variability caused by the incomplete deinactivation of the sodium 

channels as described in Naundorf et al., 2006 [2]. For each AP that fulfilled the above criteria, 
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𝑉̇𝑚and 𝑉̈𝑚 are computed using MATLAB’s diff function and then interpolated to a resolution of ∆t = 1 μs using MATLAB’s spline function (MATLAB V9.5 (R2018b)).   

 Quantification of the Rapidity of the AP onset 

 The rapidity of AP onset was determined using two novel methods, the FWHM method 

and the HWHM method, and one existing method, the slope of the curve in the AP phase plot [2], 

[3]. First, the rapidity of AP onset was quantified using the FWHM of the rising phase of 𝑉̈𝑚. After 

computing 𝑉̈𝑚 as described above, the initial portion of 𝑉̈𝑚 vs time was selected from 3 ms before 

the peak up to the point when 𝑉̈𝑚 drops to zero after peaking. Then, the FWHM was determined 

to be the time difference between when 𝑉̈𝑚  rises past half the maximum value (Fig. 3.1C dotted 

line) and when it decays below it. The HWHM was calculated in a similar manner, except the 

HWHM was defined as the time it takes 𝑉̈𝑚 to rise from half its maximum value to its maximum 

value. The inverse of the FWHM and HWHM is used to measure the rapidity of AP onset in units 

of 1/time. For the slope method, 𝑉̇𝑚 was plotted against 𝑉𝑚 to yield the phase plot. A tangent line 

to the plot at the vertical coordinate of 𝑉̇𝑚 = 10 𝑚𝑉/𝑚𝑠 is determined as in Naundorf et al, 2006 

[2] (Fig. 3.1D). The slope of that tangent line, or equivalently the slope of the phase curve at that 

point, is defined as the rapidity of a AP onset [2], [3], [63].  

 

Figure 3.1: Comparsion between AP quantification methods. A)  𝑉̈𝑚 plots of 5 overlapped APs elicited by a 240 
pA current step for 0.5 s. B) Phase plots of the same APs in A, C) The second-time dervitive of the APs in A. The 
double arrowheads indicate the FWHM and the dashed line indicates the maximum value, so, the HWHM is measured 
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from the left arrowhead to the dashed line. The dashed line and the double arrow are for illustration purposes and not 
exact. D) The slope of the line (blue trace) fitting one of the AP’s phase plot (black dashed trace) in B. The blue trace 
indicates the tangent at 10 mV ms-1. 

 HH model for cortical neurons 

 The model used here is a single compartment HH model [79]. In this model, the membrane 

potential dynamically follows the equation: 

𝐶 𝑑𝑉 𝑑𝑡⁄ = −𝑔̅𝐿𝑒𝑎𝑘(𝑉 −  𝐸𝐿𝑒𝑎𝑘) − 𝐼𝑁𝑎+ − 𝐼𝐷𝐾+ − 𝐼𝑁𝐾+ − 𝐼𝑖𝑛𝑗     (Eq. 1)   
where V is the membrane potential; C =  1 𝜇𝐹/𝑐𝑚2 is the specific membrane capacitance; g̅Leak = 0.0045 mS/cm2 is the leakage maximum conductance, and 𝐸𝐿𝑒𝑎𝑘 = −80 𝑚𝑉 is the leak 

reversal potential. 𝐼𝑁𝑎+  is the voltage-gated sodium channels’ (VGSCs’) current. 𝐼𝐷𝐾+ and 𝐼𝑁𝐾+  are the voltage-gated delayed-rectifier potassium channels’ (VGdKCs’) current and the non-

inactivating potassium channels’ (VGnKCs’) current, respectively. 𝐼𝑖𝑛𝑗 is the injected stimulus 

current.  

 The VGSCs’, VGdKCs’, and VGnKCs’ current densities as described in Destexhe et al., 

1999 [79] are governed by the following dynamical equations: 

𝐼𝑁𝑎+ = 𝑔̅𝑁𝑎+  𝑚3ℎ(𝑉 −  𝐸𝑁𝑎+) 𝐼𝐷𝐾+ = 𝑔̅𝐾+  𝑛4(𝑉 −  𝐸𝐾+) 𝑑𝑚𝑑𝑡 = 𝛼𝑚(1 − 𝑚) − 𝛽𝑚𝑚        𝑑ℎ𝑑𝑡 = 𝛼ℎ(1 − ℎ) − 𝛽ℎℎ             𝑑𝑛𝑑𝑡 = 𝛼𝑛(1 − 𝑛) − 𝛽𝑛𝑛   𝑑𝑝𝑑𝑡 = 𝛼𝑝(1 − 𝑝) − 𝛽𝑝𝑝      (Eq. 2) 
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Where g̅Na+ is VGSCs’ maximum conductance (g̅Na+ = 120 mS cm2⁄  unless stated otherwise). ENa+ = 40 mV is the VGSC reversal potential. 𝑚 and ℎ are the activation and inactivation 

variables of the VGSCs. VGdKCs’ maximum conductance is g̅K+ = 36 mS cm2⁄  unless stated 

otherwise [2]. EK+ = −95 mV is the VGdKCs reversal potential. 𝑛 is the activation variable of the 

VGdKCs. g̅NK+ = 0.005 mS cm2⁄  is VGnKCs maximum conductance. 𝑝 is the activation variable 

of the VGnKCs. 𝛼𝑖 and 𝛽𝑖 are the rate constants functions for each ion channel gate. The equations 

of 𝛼𝑖 and 𝛽𝑖 are shown in Table. 3.1.   

 

Table 3.1 Rate constants equations. Nominal values for a, b, and c are shown as described in [79].  

Type Gate 𝜶𝒊 𝜷𝒊 
VGSCs 𝑚 −0.32(𝑉 − 𝑉𝑇 − 13)𝑒𝑥𝑝 (𝑉 − 𝑉𝑇 − 134 ) − 1 

0.28(𝑉 −  𝑉𝑇 − 40)𝑒𝑥𝑝 (𝑉 −  𝑉𝑇 −  405 )  −  1 

ℎ 0.128 𝑒𝑥𝑝 (− 𝑉 −  𝑉𝑇 − 𝑉𝑆 −  1718 ) 
41 + 𝑒𝑥𝑝 (𝑉 − 𝑉𝑇 − 𝑉𝑠 − 405 ) 

VGdKCs 𝑛 −0.032(𝑉 − 𝑉𝑇 − 15)𝑒𝑥𝑝 (𝑉 − 𝑉𝑇 − 155 ) − 1 0.5 𝑒𝑥𝑝 (− 𝑉 − 𝑉𝑇  − 1040 ) 

VGnKCs 𝑝 0.0001(𝑉 +  30)1 − 𝑒𝑥𝑝 (− 𝑉 + 309 ) 
−0.0001(𝑉 + 30)1 − 𝑒𝑥𝑝 (𝑉 + 309 ) 

 The rate constants parameters (Table 3.1) are chosen as the best values to fit the 

experimental data [80], [81]. Thus, these equations influence many aspects of the AP’s shape such 

as the spike width, onset potential, and the rapidness of AP onset. Therefore, we examined the 

sensitivity of onset rapidity, as quantified by each of the methods, to changes in the rate constant 

parameters. Each rate constant’s equation has three parameters. For example, Eq. 3 shows the 

equation for VGSCs’ activation gate, 𝑚, and we called the constant multiplying the equation a, 
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the constant subtracted from the membrane potential b, and the constant dividing the membrane 

potential c. Then, we varied the values of a, b, or c from half the nominal HH values to one and a 

half the nominal HH values for each parameter. All the rate constants equations were treated in 

the same manner.  Parabolic and linear fits were used to determine the maximum and half 

maximum values, respectively. Special care was taken to ensure that the membrane potential has 

a normal dynamic behavior.   

𝛼𝑚 = −𝑎(𝑉 − 𝑉𝑇 − 𝑏) 𝑒𝑥𝑝 (𝑉 − 𝑉𝑇 − 𝑏𝑐 ) − 1⁄       (Eq. 3) 

3.3 Results 

 Measuring the impact of 𝛼𝑖 and 𝛽𝑖 parameters on the rapidity of AP onset 

 We varied the three parameters – a, b, and c – of each αi and βi rate constant from 0.5 to 

1.5 of the parameter’s original value in the normal HH model, aHH, bHH, and cHH. All the results 

presented here are for stable numerical solutions. If, at a given parameter value, the membrane 

potential is not stable or an AP is evoked before the stimulus current is injected, the result from 

that simulation is considered unrealistic and is not included in the analysis. All the results from the 

parameter variations presented here are from APs that maintain the general features of APs from 

the original HH model. 

To test the robustness of FWHM and HWHM methods in quantifying the rapidity of AP 

onset, first we applied them to APs generated by the HH model and compared the resulting rapidity 

to that provided by the phase plot slope method. Using the three methods, we quantified the 

rapidity of AP onset as a function of each a, b, and c parameter in the stable range. The nominal 

values of rapidity for each of the three methods was obtained from the neocortical pyramidal 

neuron HH model [79], and the normalized values of rapidity were defined as the ratio of rapidity 
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to the normal value of rapidity obtained from the original HH model. Different rate constants’ 

parameters lead to different effects on the AP shape such as changing the AP width and onset 

rapidity (Fig. 3.2).  Rapidity determined using the FWHM and HWHM methods is generally more 

sensitive to changes in the rate constant parameters of VGSCs’ activation and inactivation gates 

compared to the phase slope method. For example, the largest changes in the FWHM and HWHM 

rapidity occur when varying the a parameter in αm. Varying a in the range 0.75 <  𝑎/𝑎𝐻𝐻  <  1.5 

yields 60% change in the FWHM or HWHM rapidity while it produces less than 13% change using 

the phase slope method (Fig. 3.3). Higher sensitivity of the FWHM and HWHM methods to 

parameters can be observed in 11 out of 12 VGSCs’ parameters (Fig. 3.3-3.4) with the exception 

being the c parameter for VGSCs activation.  

 

Figure 3.2: Variation of AP shape with changes in the rate constants’ parameters in the HH model. A) APs 
when varying the parameter 𝑎 in 𝛼𝑚. B) APs when varying the parameter 𝑎 in 𝛼𝑛.  
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Figure 3.3: Comparison of the rapidity quantification methods’ sensitivity to changes in the 𝜶𝒎 and 𝜷𝒎 
parameters. The horizontal axis represents the parameter value normalized to the nominal value in the HH model, 
and the vertical axis represents the rapidity of the AP onset normalized to the rapidity of the AP onset at the nominal 
HH value. Black asterisks represent the values obtained by the FWHM method. Blue open circles represent the values 
obtained by the HWHM method and frequently fall directly on top of the black asterisks. Red squares represent the 
values obtained by the phase space slope method. 

 

Figure 3.4: Comparison of the quantification methods’ sensitivity to changes in the 𝜶𝒉 and 𝜷𝒉 parameters. The 
horizontal axis represents the difference in the parameter value compared to the value in the original HH model, and 
the vertical axis represents the rapidity of the AP onset normalized to the rapidity from the original HH values. Black 
asterisks represent the values obtained by the FWHM method. Blue circles represent the values obtained by the 
HWHM method. Red squares represent the values obtained by the phase slope method. 
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 Next, we analyzed the results from varying the rate constant parameters of VGdKCs’ 

activation gates. Contrary to the results from varying the rate constants parameters of VGSCs’ 

activation and inactivation gates, the phase slope method is more sensitive to VGdKCs’ rate 

constant parameter variation. Varying the value of a in βn causes around 9 % change in the rapidity 

of AP onset using the phase slope method while it only altered the rapidity of AP onset by less 

than 2.6 % using the other methods introduced in this paper (Fig. 3.5). Thus, the analysis of the 

variation of rate constants parameters reveals that the FWHM and HWHM methods have a higher 

sensitivity to changes in the VGSCs’ dynamics while being minimally influenced by changes in 

the VGdKCs’ dynamics compared to the phase slope method. 

 

Figure 3.5: Comparison of the quantification methods’ sensitivity to changes in the 𝜶𝒏 and 𝜷𝒏 parameters. The 
horizontal axis represents the difference in the parameter value compared to the value in the original HH model, and 
the vertical axis represents the rapidity of the AP onset normalized to the rapidity from the original HH values. Black 
asterisks represent the values obtained by the FWHM method. Blue circles represent the values obtained by the 
HWHM method. Red squares represent the values obtained by the phase slope method. 

 Moreover, to better understand the relation between the VGSCs, VGdKCs, and the 

rapidity quantification methods, we increased the VGSCs’ or VGdKCs’ 𝑔̅𝑖 by factors of 2 to 5 
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from the original values. As expected, the rapidity increased with increasing the VGSCs’ 

maximum conductance using the three methods, but the sensitivity to such an increase is 

significantly different. With 5 times VGSCs’ maximum conductance, the FWHM and HWHM 

rapidity doubled while the phase plot rapidity increased by less than 14 % (Table 3.2). On the other 

hand, although the variation was small with VGdKCs’ conductance for the three methods, the 

phase slope shows higher sensitivity to VGdKCs’ conductance compared to the FWHM and 

HWHM methods (Table. 3.3). Therefore, the FWHM and HWHM methods show a higher 

sensitivity and specificity to VGSCs’ dynamics compared to the phase slope method.  

Table 3.2: Values corresponding to increasing VGSCs 𝒈̅𝑵𝒂+ (𝐦𝐒 𝐜𝐦−𝟐⁄ ) 

FWHM (𝐦𝐬−𝟏) 
HWHM (𝐦𝐬−𝟏) 

Phase slope (𝐦𝐬−𝟏) 
AP height (𝐦𝐕) 

AP Width (𝐦𝐬) 
120 14.53 21.75 3.26 93.21 0.49 

240 20.21 30.12 3.47 96.49 0.59 

360 24.03 35.72 3.58 97.57 0.66 

480 26.98 40.01 3.65 98.21 0.71 

600 29.43 43.55 3.71 98.66 0.76 

Table 3.3: Values corresponding to increasing VGKCs 𝒈̅𝑲+  (𝐦𝐒 𝐜𝐦−𝟐⁄ ) 
FWHM (𝐦𝐬−𝟏) 

HWHM (𝐦𝐬−𝟏) 
Phase slope (𝐦𝐬−𝟏) 

AP height (𝐦𝐕) 
AP Width (𝐦𝐬) 

36 14.53 21.74 3.26 93.21 0.49 

72 14.48 21.66 3.29 91.66 0.41 

108 14.42 21.55 3.32 90.30 0.37 

144 14.36 21.44 3.35 89.01 0.34 

180 14.23 21.22 3.43 87.27 0.32 

 The rapidity of AP onset in recorded primary somatosensory cortical neurons 

 Current clamp recordings were obtained from Layer 2/3 regular spiking neurons  (n = 11) 

in the adult female mice primary somatosensory cortex, as detailed in da Silva Lantyer et al., 2018 
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[78]. Each recording has between 59 and 221 APs, with higher injected currents generating higher 

firing frequency and thus more APs. The mean and standard deviation of onset rapidity across all 

the APs in each recording are shown in Fig. 3.6.  The HWHM method shows the lowest relative 

variation with less than 9 % difference between neurons (4.1± 0.4 ms-1).  The FWHM method 

shows a slightly higher relative variation with 12% difference between neurons (2.2 ± 0.3 ms-1). 

On the other hand, the phase slope exhibits the highest relative variation between neurons with 18 

% difference (7.2 ± 1.3 ms-1).  

 

Figure 3.6: The average and standard deviation of the rapidity of AP onset in 11 neurons. The horizontal axis 
shows the recording labels for individual neurons in the database from da Silva Lantyer et al., 2018  [78]. The FWHM 
and FWHM give a smaller mean and standard deviation values than the phase slope.     

 In cortical neurons, the stimulus strength can alter the shape of the APs [10]. The difference 

in the APs’ shape was observed in some of the neurons analyzed here. Such neurons show higher 

variabilities in the AP width, height, and the rapidity of AP onset. For example, two neurons, AL 

258 and AL 223, with respectively high and low variabilities in AP shape are compared in Fig. 

3.7. In the neuron with high AP shape variability, the amplitude and width have a range from 49.4 

to 93.6 mV and 1.75 to 3.25 ms. In contrast, the other neuron shows low variability with only a 

range from 69.7 to 78.5 mV in amplitude and a range from 1.42 to 2.03 ms in width. Such a 
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variation in AP shape influences the rapidity of AP onset. In this case, all the onset rapidity 

quantification methods exhibit a relative higher variation for neurons with high AP shape 

variability. Nevertheless, the HWHM method yields the lowest relative variation in AP onset 

rapidity across different pyramidal regular-spiking cortical neurons as shown in Fig. 3.8. 

 

Figure 3.7: Variation in neuronal response between individual  neurons. A1) Normalized APs of a neuron that 
exhibited low AP variability with changes in stimulus strength. B1) Normalized membrane potential of a neuron that 
exhibited high AP variability with changes in stimulus strength. A2) The rate of membrane potential change for APs 
shown in A1. B2) The rate of membrane potential change for APs shown in B1.  A3) Acceleration of membrane 
potential for APs shown in A1. B3) acceleration of membrane potential for APs shown in B1. AL 258 & AL 223 are 
the labels of the neurons recorded in the database from da Silva Lantyer et al., 2018  [78]. 

 

Figure 3.8: The coefficient of variation of the rapidity of AP onset in neurons. The coefficient of variation is the 
standard deviation divided by average. The horizontal axis shows the recordings label for individual neurons in the 
database from da Silva Lantyer et al., 2018  [78]. 
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 In some of the neurons analyzed here, the somatic recordings exhibited a different AP 

waveform which can be shown clearly in the 𝑉̈ plots as double peaks and two humps in the phase 

plot (Fig. 3.9). The double peak in the second derivative plots indicates two processes contribute 

to the AP’s rising phase. The double peak is characteristic of AP backpropagation from an 

initiation site in the axon to the soma [3], [9]. Such APs contain two components, somatic AP, and 

axonal backpropagation AP. Moreover, no significant difference in the AP onset dynamics of 

cortical neurons was found between single and double component APs [9]. However, in the two 

neurons that have a two clear AP components APs (labeled AL 200 and AL 215), both the FWHM 

and phase slope method show high sensitivity to the backpropagation signal. The HWHM method, 

however, did not show any significant impact (Fig. 3.9). These results indicate that the HWHM 

method can quantify the rapidity of APs onset more reliably than the other methods.  

 

Figure 3.9: Neurons evoked different AP waveforms. A) APs recorded from the  neuron labeled AL 200 from da 
Silva Lantyer et al., 2018 [78]. B) phase plots of the APs in A. C) Second derivative plots of the APs in A. 

 Finally, we looked at the correlation between the three methods and the AP amplitude and 

width. Previous work had shown that in cortical neurons AP height decreases are correlated with 

wider APs and lower phase slope, which indicate a high degree of VGSCs inactivation [10]. 
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Therefore, here we demonstrate that the HWHM method shows a lower variation from one neuron 

to another, while exhibiting a high relative variation in neurons that have high AP shape variability.  

3.4 Discussion 

 Variation of HH 𝜶𝒊 and 𝜷𝒊 parameters to assess the quantification methods  

The voltage-dependent rate constants in the HH model play an essential role in reproducing 

APs with shapes similar to the ones for experimental recordings of cortical neurons. Although αi 
and βi functions are obtained by fitting the experimental data, they still effectively reflect the 

overall dynamics of AP generation in neurons [1], [79], [82]. Thus, varying the parameters in αi 
and βi functions affect some AP features such as the rapidity of the AP onset and the AP width 

[2]. For instance, variation of αi and βi parameters of VGSCs’ activation and inactivation gates 

has a higher impact on the rapidity of AP onset than VGdKCs’ parameters since VGSCs are 

responsible for AP initiation (Fig. 3.2A). In contrast, VGKCs are responsible for repolarizing the 

AP, and hence, variation of αi and βi parameters of VGKCs activation gates will have a significant 

impact on the AP hyperpolarization but a minimal impact in the rapidity of AP onset as shown in 

(Fig. 3.2B).  

Our findings show that the FWHM and HWHM methods for quantifying onset rapidity are 

more sensitive than phase slope when the VGSCs’ parameters are altered, but less sensitive to 

changes in the VGKCs’ parameters, consistent with the general expectations for the roles of 

sodium and potassium channels. Therefore, varying the αi and βi parameters in the HH model 

provided a good test to examine the sensitivity and specificity of the methods to changes in HH 

parameters that lead to change in the rapidity of AP onset. Here we show that the FWHM and 

HWHM methods are better methods than the phase slope method to sense changes in the VGSCs’ 
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activation and inactivation parameters while not being significantly impacted by VGKCs 

activation parameters.   

 Advantages of the FWHM and HWHM methods 

 We have used the FWHM and HWHM methods to quantify the rapidity of AP onset. The 

choice of these methods is supported by the following reasons. First, the points used to determine 

the half-width or full width of the 𝑉̈ trace are clearly defined without the need for additional 

numeric parameters, such as the potential at which a slope is to be measured, and thus not sensitive 

to voltage scaling factors. Second, the FWHM and HWHM methods show a lower variation 

compared to the phase space slope across neurons of the same type, while showing high variation 

with neurons exhibiting high AP variability. Finally, since AP initiation is due to the activation of 

VGSCs, and VGSCs’ activation dominates the rising phase of 𝑉̈, the FWHM and HWHM methods 

can provide a quantification tool to assist investigations into VGSCs activation mechanisms 

suggested to cause the fast AP onset dynamics in cortical neurons [2], [6], [64].   

 We showed that double components in experimental APs, which can result in two peaks in 𝑉̈, can lead to a high variation in the FWHM method and the phase space slope method, but it did 

not impact the HWHM method. However, it should be noted that the second peak in the 𝑉̈ traces 

appeared after the maximum 𝑉̈ value for the two AL neurons exhibiting double component AP 

examined here. Had the first peak not been the maximum 𝑉̈ value, the HWHM model could be 

highly impacted by double component APs. This latter case requires further investigation and 

likely refinement of the HWHM method.  



34 

 

3.5 Conclusions 

 We present a novel method to quantify the rapidity of AP onset. The FWHM and HWHM 

methods are highly sensitive and specific to changes in the VGSCs dynamics compared to the most 

common method, the phase slope method. The FWHM and HWHM methods, while sensitive to 

changes in the neurons firing behavior, exhibit only a small variation among regular spiking 

somatosensory cortical neurons. Thus, the FWHM and HWHM methods can be used to 

quantitively study the factors that specifically contribute to AP onset dynamics. These methods 

can provide a systematic tool that allows direct comparison between experimental data in addition 

to direct comparison between the AP onset rapidity between different neuron types.  
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4 NEW METHODS FOR QUANTIFYING RAPIDITY OF ACTION POTENTIAL ONSET 

DIFFERENTIATE NEURON TYPES 

Preface 

This chapter was published in the PLOS ONE journal in April 2021 and was co-authored 

by Aldohbeyb, Vigh, and Lear. Ahmed A. Aldohbeyb's contributions were obtaining 

electrophysiological recordings from publicly available databases, writing the MATLAB codes, 

calculating the AP attributes from experimental data, testing AP attributes' ability to classify 

neuron types, analyzing the data, identifying and describing prior related work, discussing all 

aspects of the research, conceptualizing many figures and creating all of them, writing the original 

manuscript, editing text and figures in response to feedback from the other co-authors and outside 

reviewers, and corresponding with the publisher. This chapter is the same as the published paper, 

except for minor formatting edits to follow CSU Graduate School formatting and submission 

guidelines (citation style and tables designs).     

Abstract 

 Two new methods for quantifying the rapidity of action potential onset have lower relative 

standard deviations and better distinguish neuron cell types than current methods. Action potentials 

(APs) in most central mammalian neurons exhibit sharp onset dynamics. The main views 

explaining such an abrupt onset differ. Some studies suggest sharp onsets reflect cooperative 

sodium channels activation, while others suggest they reflect AP backpropagation from the axon 

initial segment. However, AP onset rapidity is defined subjectively in these studies, often using 

the slope at an arbitrary value on the phase plot. Thus, we proposed more systematic methods using 

the membrane potential's second-time derivative (V̈m) peak width. Here, the AP rapidity was 
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measured for four different cortical and hippocampal neuron types using four quantification 

methods: the inverse of full-width at the half maximum of the V̈m peak (IFWd2), the inverse of 

half-width at the half maximum of the V̈m peak (IHWd2), the phase plot slope, and the error ratio 

method. The IFWd2 and IHWd2 methods show the smallest variation among neurons of the same 

type. Furthermore, the AP rapidity, using the V̈m peak width methods, significantly differentiates 

between different types of neurons, indicating that AP rapidity can be used to classify neuron types. 

The AP rapidity measured using the IFWd2 method was able to differentiate between all four 

neuron types analyzed. Therefore, the V̈m peak width methods provide another sensitive tool to 

investigate the mechanisms impacting the AP onset dynamics.

4.1 Introduction 

The initiation and propagation of action potentials (APs) are key processes of neural 

communication. Our understanding of the generation of APs advanced greatly by using the 

Hodgkin and Huxley (HH) model of AP generation. It states that an AP is generated in the giant 

squid axon due to rapid discharging and recharging of the axon membrane by ionic sodium and 

potassium currents through a single type of membrane channel for each ion [1]. However, 

subsequent investigations, aided by continuous improvement of imaging and measurement 

techniques, clarified that APs recorded from neuronal somas are more complicated than those in 

the giant squid axon [46]. For example, typical neurons in mammals express voltage-gated ion 

channels (VGICs) that are permeable to calcium ions in addition to the sodium and potassium 

channels. Furthermore, the same neuron might express more than a single type of membrane 

channel for each ion; channels containing various subunits result in differences in biophysical and 

pharmacological properties [46], [83], [84].  The presence of various VGIC sets across different 
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neurons causes the shape of the AP to vary significantly in the same animal [85]. This variability 

in ion channels and the resultant APs adds to the complexity of understanding the role of each type 

of VGIC in neuronal firing behavior. 

 Nevertheless, the role of voltage-gated sodium channels (VGSCs) in AP generation is 

thought to be well defined: the depolarization-induced opening of VGSCs is a critical step in AP 

initiation. The gating properties of VGSCs of mammalian central neurons are considered to be 

similar to those in the giant squid axon, including the notion that individual VGSCs open 

independently upon membrane depolarization [46]. However, several studies in cortical neurons 

reveal that actual AP initiation appears faster than classical HH-type models predict [2], [5], [6]. 

Some studies suggested that a more complex gating property of VGSCs (i.e., “cooperative gating”) 

could be responsible for the deviation from the classic HH-type models [2], [5], [6], whereas others 

suggested that the discrepancies could be explained by a multicompartmental HH model in which 

AP backpropagation from the axon can alter the AP onset rapidity in somatic recordings [3]. 

Several other studies suggested that the rapidity of AP onset is influenced by resistive coupling 

between the axon and soma [7], [59], and by the size of the dendritic tree [4]. Nonetheless, the 

ongoing debate on AP initiation mechanisms demonstrates the importance of the topic [2]–[7], 

[30], [59], [63], [86]. 

 Notably, the method for quantifying AP onset rapidity differs from one study to another. 

One common approach, the phase-slope method, evaluates the slope of the phase plot, i.e., the first 

time derivative of the membrane potential (V̇m) as a function of the potential (Vm), at arbitrary 

values of V̇m (ranging from 5 to 50 mV/ms) termed the “criterion level” [2], [7], [8]. Such arbitrary 

choices of criterion level can confuse and complicate the comparison between different models 

and experimental data across studies. Another way to analyze AP onset is the error ratio method, 
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which has been shown to quantitively differentiate fast-onset APs in rats' cortical neurons from 

slow-onset APs in snail neurons [9]. Recently, we have shown that the full width at half maximum 

(FWHM) and the half-width at half maximum (HWHM) of the rising phase of the membrane 

potential's second-time derivative (V̈m) provides systematic and consistent methods to quantify the 

rapidity of AP onset [27].  Here, we compare these V̈m peak width methods [27]  to the phase slope  

[2], [3], [7]  and the error ratio method [9] via analysis of onsets of APs recorded from cortical and 

hippocampal neurons. The results suggest that the two V̈m peak width methods of quantifying AP 

onset rapidity more robustly distinguish between somatosensory cortical neurons and hippocampal 

neurons in mice than the phase plot slope and error-ratio methods. Overall, we propose that the 

two V̈m peak width methods are sensitive and robust methods to differentiate neuron types based 

on AP rapidity, and hence might be used as a classification parameter across APs. 

4.2 Methods 

 Data source for AP recordings  

Electrophysiological recordings were obtained from two databases. Recordings from the 

somatosensory cortex were obtained from the GigaScience database [78], whereas recordings from 

hippocampal neurons were obtained from the CRCNS database [87]. For the somatosensory 

cortical recordings, the experimental procedures and data are found in da Silva Lantyer et al., 2018 

[78]. The analyzed cortical data were from current-clamp recordings of pyramidal regular-spiking 

(RS) neurons (n=27) and fast-spiking (FS) neurons (n=7) in layers (L2/3) of the primary 

somatosensory cortex in adult mice. These recordings were obtained and uploaded to the database 

by Angelica da Silva Lantyer (AL) and were found to be the lowest noise recordings in that 

database. The recording labels in the database are given in da Silva Lantyer et al. Supporting 

Information [78]. For the hippocampal neurons, the experimental procedures and recordings are 
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found in Lee et al., 2014 [87], [88]. These current-clamp recordings were made from adult mice 

hippocampal CA1 neurons. The recordings analyzed here are from 17 RS pyramidal neurons and 

6 FS interneurons. The RS pyramidal neurons were further divided into two groups: neurons 

located in the CA1 superficial sublayer are labeled as superficial pyramidal cells (sPCs) (n=8), and 

neurons located in the CA1 deep sublayer are labeled as deep pyramidal cells (dPCs) (n=9). 

Finally, the 6 FS hippocampal interneurons were identified as 6 parvalbumin-positive basket cells 

(PVBCs). 

Recordings included in our analysis had to satisfy criteria regarding numbers and spacing 

of APs: each current step must have contained at least 2 APs with an interspike interval that was 

at least 30 ms for RS pyramidal neurons and 12 ms for fast-spiking neurons. The 30 ms limit 

between RS neurons' APs was set to exclude the variability caused by incomplete deinactivation 

of the sodium channels [2]. This limit did not exclude many APs since RS neurons firing rate is 

32 ± 7 Hz, whereas such a limit can exclude up to half the APs from FS neurons, which have a 

higher firing rate of 61 ± 9 Hz [89]. Thus, for FS neurons, the lower limit on the interspike interval 

between APs was set to be 12 ms. That value was chosen because, within the data analyzed here, 

it was the minimum interval between APs needed to calculate the error-ratio, which requires the 

AP trace to be fit starting 5 ms to 10 ms before AP onset [9]. The number of AP spikes that satisfied 

the interspike interval criteria ranged between 58 to 222 APs for each pyramidal cortical neuron 

recording, between 210 to 514 APs for each FS cortical neuron, between 103 to 182 for each 

pyramidal hippocampal neuron, and between 80 to 199 for each PVBC. Then, for each AP that 

fulfilled the above criteria V̇m and V̈m were computed using MATLAB's diff function and then 

interpolated to a resolution of Δt = 1 μs using MATLAB's spline function unless stated otherwise 

in the Results section (MATLAB V9.5 (R2019b)). 
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 Quantification of rapidity of AP onset 

The rapidity of AP onset was determined using four methods: the inverse FWHM of the V̈m peak (IFWd2) [27], the inverse HWHM of the V̈m peak (IHWd2) [27], the slope of the curve in 

the AP phase plot [2], [3], [7], and the error ratio method [9]. The first three methods measure 

onset rapidity in units of inverse time, while the last method yields a dimensionless value. The 

IFWd2 and IHWd2 methods were described previously in [27]. In short, the initial portion of the 

rising phase of V̈m versus time was selected from 3 ms before the AP peak, although this starting 

point is not critical for the IFWd2 and IHWd2 calculation, up to the time when V̈m drops to zero 

after peaking. The FWHM and HWHM quantified from the selected V̈m portion and the width 

values, with units of time, were inverted to obtain rapidity. The FWHM was determined to be the 

time difference between when V̈m rises past half the maximum value and when it decays below 

half the maximum value as shown in Fig. 4.1C. The HWHM was similarly calculated, except the 

HWHM was defined as the time it takes V̈m to rise from half its maximum value to its maximum 

value (Fig. 4.1C). For the phase slope method, the rapidity was quantified exactly as described in 

previous studies [2], [3], [7]. The slope of the tangent line in the phase plot at the criterion level of V̇m= 10 mV/ms defines the phase slope rapidity of AP onset for this study, unless a different 

criterion level is stated.  
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Figure 4.1: The AP rapidity quantification methods. A) A normalized AP from a mouse RS somatosensory cortical 
neuron (black), and its normalized 𝑉̈𝑚. B) The initial portion of the phase plot of the same AP in A. The black asterisk 
indicates the criterion level (10 mV/ms), and the dashed black line represents the phase slope. C) The normalized 𝑉̈𝑚.  
of the same AP in A on a smaller time scale. The black circle indicates the points at which  𝑉̈𝑚 .  reaches half its 
maximum value before and after peaking, while the yellow asterisk represents the maximum normalized 𝑉̈𝑚 . value. 
The time between the black dashed lines is the FWHM, and the time between the first black dashed line and the yellow 
dashed line is the HWHM. The IFWd2 and IHWd2 are defined as the reciprocal of the FWHM and HWHM, 
respectively. D) The red line shows the selected portion of the phase plot in A. The blue line shows the exponential 
fit, and the yellow line shows the piecewise linear fit of the selected portion of the phase plot. The error ratio is 
calculated as the ratio of errors of exponential fit to the piecewise-linear fit. 

The final method for quantifying AP onset rapidity was the error-ratio method, which was 

introduced by Volgushev et al. [9]. It was defined as the ratio of the errors for an exponential fit 

to a two-segment piecewise linear fit (Fig. 4.1D). Volgushev et al. specified the fitted portion of 

the AP trace to be 5-10 ms before the AP onset to the point when either V̇m reaches 20 to 30% of 

its maximum value or Vm is 3 to 10 mV above the AP onset voltage. In this study, we choose the 

30% 𝑉̇𝑚 maximum value as the upper limit unless stated otherwise. The 30% V̇m maximum value 

gives enough data points above the onset voltage to capture the upward increase of the AP trace in 

the phase plot before the rightwards curving of the AP trace toward the maximum value. The ratio 
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of the exponential fit error to piecewise linear fit error can determine if the AP onset is fast or slow. 

An error-ratio higher than 3 indicates a sudden, fast onset best fit by two piecewise linear segments, 

while a ratio below 2 indicates a slow continuous onset best fit by a smoothly increasing 

exponential curve. Following Volgushev et al.'s paper, the data were interpolated using MATLAB 

spline interpolation function. The fitting functions were implemented as described in reference [9], 

except all three exponential parameters were obtained from a single fitting procedure using the 

MATLAB  fit function with a starting estimate for the three parameters rather than the two-step 

fitting process described by Volgushev et al. 

 Other AP parameters  

 In addition to analyzing the rapidity of each AP, the onset voltage, amplitude, and width 

of each AP were also analyzed. The AP onset voltage was taken to be the voltage at which V̇m 

reaches 10 mV/ms as defined by Naundorf et al. [2]. The AP amplitude was measured as the 

difference between the membrane voltages at AP onset and the peak voltage, and the spike width 

was measured as the full width at half the AP amplitude.  

 Statistical analysis  

The mean and standard deviations of rapidity of multiple APs from multiple neurons of the 

same type were calculated using two statistical approaches: neuron-level pooled statistics using all 

APs (58-514 per neuron) meeting the selection criteria and conventional statistics on the combined 

first 50 APs from each neuron.  Pooling combines the means or variances for each neuron of a 

particular type by weighting them by the number of selected APs of each neuron [90]. For 

conventional statistics, each neuron of a given type was effectively weighted equally in that each 

one contributed 50 APs to the combined sample and no mean or standard deviation was computed 

for individual neurons. After calculation of the pooled and conventional means and standard 
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deviations, the relative standard deviation (RSD), which is defined as the ratio of the standard 

deviation to the mean for each neuron type was calculated using the values from the two statistical 

approaches. Pairs of neuron types were then compared using two-tailed Student's t-tests, the Mann-

Whitney U test, and effect size using two test methods; Cohen’s d and common language effect 

size (CLES) [91]. While both the t-test’s t-score and the Mann-Whitney U-test z-score are 

enhanced by the large AP sample sizes (hundreds of spikes), the effect size is not. Thus, the first 

two reflect statistical differences in the mean rapidity of neuron types, and the latter one provides 

an indication of the ability to classify individual neurons. 

4.3 Results 

 Comparison between the AP rapidity quantification methods 

4.3.1.1 Somatosensory cortical neurons 

 The recordings from cortical neurons were analyzed to determine the mean and standard 

deviation of AP rapidity using the four quantification methods for each RS and FS neuron's spike 

train; values are plotted in Fig. 4.2. When comparing the mean rapidity for each type of neuron of, 

the IFWd2 and IHWd2 methods show the lowest variation within each neuron type compared to 

the other methods. The cell-to-cell conventional RSD of the spike train rapidity measured using 

the IFWd2 method was 22.2% for RS neurons and 14.7% for FS neurons. Corresponding RSDs 

using the IHWd2 method were 18.2% and 15.7%, respectively. The phase slope method gave 

higher relative variation with RSDs of 33.4% and 16.7%, respectively. The error-ratio method 

produced yet higher variation across the same neuron type with 104% and 81.4% RSDs, 

respectively, for RS and FS neurons. Table 4.1 summarizes the conventional mean and standard 

deviation of each rapidity quantification method as well as other electrophysiological properties 
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for RS and FS neurons. Furthermore, the choice of either conventional or pooled statistics did not 

alter the basic results. Using the pooled statistics, the V̈m peak width methods still show the 

smallest relative variation among the AP rapidity calculations methods (Table S1). 

 

Figure 4.2: The AP rapidity calculated using the four quantification methods for cortical neurons.  Comparison 
between the rapidity quantification methods for RS pyramidal cortical neurons (left) and FS cortical neurons (right). 
The units for IFWd2, IHWd2, and phase slope are in ms-1 while the error-ratio is dimensionless. Error bars indicated 
standard deviations for each neuron. The red bar at the end of each figure indicates the pooled mean value for all 
neurons and its error bar indicates the pooled standard deviation.  
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Table 4.1: Electrophysiological properties using conventional mean and standard deviation 

  
Cortex Hippocampus 

RS 
(pyramidal) 

FS 
RS 

(pyramidal) 
FS 

(PVBCs) 

Number of neurons 27 7 17 6 

IFWd2 

(ms-1) 
2.2 ± 0.5 2.9 ± 0.4 4.7 ± 0.8 6.8 ± 0.5 

IHWd2 

 (ms-1) 
4.1 ± 0.7 4.8 ± 0.8 7.9 ± 1.9 12.0 ± 1.1 

Phase Slope 

(ms-1) 
7.1 ± 2.4 8.6 ± 1.4 

70.7 ± 103.5 12.6 ± 7.7 

46 ± 19.4a 13.6 ± 7.5a 

Error ratio 

(dimensionless) 
8.7 ± 9.0 13.2 ± 10.8 

7.7 ± 3.2 0.8 ± 0.6 

7.4 ± 3.4 b 8.6 ± 3.2b 

Amplitude 

(mV) 
64.3 ± 12.3 61.1 ± 3.9 72.7 ± 7.1 48.3 ± 6.7 

Width 

(ms) 
1.9± 0.6 0.7 ± 0.1 1.3 ± 0.2 0.3 ± 0.03 

Onset potential 

 (mV) 
-28.3± 9.9 -39.2± 7.1 -33.4 ± 3.4 -33.1 ± 2.4 

All data expressed as mean ± SD. a using piecewise cubic interpolation. b the upper limit was set to 3 mV above the 
AP onset. The number of APs used to obtain the mean and SD values are 1350 for RS cortical neurons, 350 for FS 
cortical neurons, 850 for RS hippocampal neurons, and 300 for FS hippocampal neurons.  

4.3.1.2 Hippocampal neurons 

 The analysis of the hippocampal neuron recordings also showed that the IFWd2 and IHWd2 

methods had much lower RSD than either the phase slope or error ratio methods, as seen in 

Fig. 4.3. Also, as shown in Table 4.2, despite the slightly lower rapidity of superficial pyramidal 

neurons compared to the deep pyramidal neurons, none of the methods shows a statistically 

significant difference between superficial and deep neurons using pooled statistics. Thus, all the 
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hippocampal pyramidal neurons, despite their varying location, were treated as the same cell 

population (Table 4.1).  

 
Figure 4.3: The AP rapidity calculated using the four quantification methods for hippocampal neurons. 
Comparison between the onset rapidity quantification methods applied to hippocampal neuron APs. All the values 
here are obtained using the spline interpolation function except for phase slope values, which were obtained using the 
pchip interpolation function. 

The hippocampal neuron’s conventional RSD of the spike train rapidity measured using 

the IFWd2 method was 17.4% for RS pyramidal neurons and 8.0% for FS PVBCs. Corresponding 

RSDs using the IHWd2 method were 24.4% and 9.6%. The error ratio method had a high relative 

variation with RSDs of 42.0% and 73.3%, respectively. For the hippocampal neurons, the phase 

slope method produced the highest variation with 147.9% and 61.2% RSDs, respectively, for RS 

pyramidal neurons and FS PVBCs. Strikingly, the V̈m peak width methods indicate that the FS 

PVBC have more rapid onset than the RS neurons, similar to the cortical neuron results, while the 

error ratio and the phase slope methods gave the opposite relation. The error ratio’s much smaller 

mean and SD values for FS hippocampal neurons can be attributed to the data selection, which is 
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discussed in a following section. Also, the high variation in the phase slope value was due to low 

sampling rates, motivating the adoption of a different interpolation function for further analysis 

using the phase slope method as discussed in the next section.  

 Impact of sampling rate and interpolation method 

Sampling rates used during data acquisition and interpolation formulas impact AP onset 

rapidity, especially when quantified with the phase slope or error ratio methods. For hippocampal 

RS pyramidal neuron recordings, the phase slope method produced high standard deviations, 

which can be attributed to the sampling rate of the recordings and the interpolation function. The 

sampling rate for the hippocampal recordings was 10 kHz, giving one data point every 100 µs. In 

contrast, the sampling rate for the cortical recordings analyzed in this paper was 20 kHz. The lower 

sampling rate (i.e., the longer time between consecutive samples of Vm in hippocampal recordings) 

results in only a few data points during the rising phase of the AP. Although such a lower sampling 

rate is acceptable to reconstruct most AP details with high fidelity, high precision analysis of AP 

onset dynamics benefits from faster sampling rates and accurate interpolation. Consequently, the 

choice of interpolation function can impact the value of the AP rapidity, especially when 

evaluating the phase slope at a specific criterion level in the phase plot.  

Spline interpolation can cause significant excursions, i.e., bowing between two measured 

data points resulting in a huge variation in the phase slope rapidity from one AP to another in the 

same spike train. Such excursions were apparent in 3 pyramidal neuron recordings and caused the 

high standard deviation value for the phase slope method given in Table 4.2. Thus, the piecewise 

cubic interpolation function (the function pchip in MATLAB R2019b) was used to interpolate the 

pyramidal hippocampal neuron recordings. Table 4.3 shows a comparison of the mean and 

standard deviations of AP onset rapidity for the two interpolation methods in combination with 
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each rapidity quantification method. Using the cubic piecewise interpolation function substantially 

reduced both the mean and standard deviation values obtained using the phase slope method. Such 

a significant reduction in the phase slope values is expected since the slope is calculated at a 

specific criterion level (at 10 mV/ms) of the dependent (vertical axis) variable in phase space plots. 

As soon as an interpolated value of the dependent variable, V̇m, is at or above the chosen criterion 

level, the neighboring data points are used to find the tangent line (i.e. the slope) on the phase plot. 

This can occur prematurely if the spline interpolation reaches dependent values greater than either 

data point. Unlike the spline interpolation, the cubic piecewise (pchip) interpolation never 

produces an excursion beyond the data points between which it is interpolating, and hence the 

variation in the phase slope values decreased when pchip interpolation was employed. However, 

for the error-ratio method, pchip interpolation increased the mean and standard deviation of AP 

rapidity values by more than 40% compared to spline interpolation. This increase in the error ratio 

can be primarily attributed to the increase in the exponential fit error. Unlike the cubic piecewise 

interpolation function, the cubic spline interpolation function has a smooth transition between the 

points, which causes a better overlap between the interpolated AP portion and the exponential fit. 

Hence, the mean square error will be lower with spline interpolation than that with cubic piecewise 

interpolation.    

In contrast, the IFWd2 and IHWd2 mean values are minimally affected by the choice of the 

interpolation function with less than a 5% difference. While changing the interpolation functions 

altered the standard deviation of rapidity for the IFWd2 method by less than 1%, the IHWd2 

standard deviation roughly doubled. The higher variation in IHWd2 values occurs because, in a 

few recordings, the peak of V̈m can be missed and partially truncated by the piecewise cubic 
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function (Fig. S4). Regardless of the interpolation function, the IFWd2 and IHWd2 methods show 

consistent mean values and smaller variation across the same neuron type. 

Table 4.2: the mean and standard deviation of rapidity for RS hippocampal neurons using pooled statistics 

Interpolating 
function 

Cell type 
IFWd2 

(ms-1) 

IHWd2 

(ms-1) 

Phase slope 
(ms-1) 

Error ratio 
(dimensionless) 

Spline 

dPCs (n = 9) 4.5 ± 0.5 7.3 ± 1.2 43.3 ± 38.9 6.8 ± 2.9 

sPCs (n = 8)  4.1 ± 0.5 7.1 ± 1.0 53.4 ± 86.7 5.2 ± 2.4 

Piecewise 
cubic 

dPCs (n = 9) 4.3 ± 0.4 7.2 ± 1.7 32.2 ± 12.4 8.1 ± 4.0 

sPCs (n = 8)  4.0 ± 0.5 7.4 ± 2.2 38.5 ± 17.8 6.55 ± 3.8 

 Impact of phase slope criterion level 

 The rapidity determined by the phase slope method appears to depend on the criterion level 

at which it is calculated [7], [63]. Typically, the criterion level should be set to be in the linear 

region just above “the kink” and higher than the baseline noise [2], [3]. If onset is characterized 

by a phase plot that is linear over a wide range of V̇m values, changing the criterion level will not 

significantly alter the phase slope and thus the rapidity. However, if the phase plot is non-linear or 

has multiple linear segments just above AP onset, or the criterion level was set very close to the 

onset kink, then the phase slope value will depend on the chosen criterion level. For example, 

varying the phase slope criterion level from 10 to 40 mV/ms resulted in less than a 20% change in 

mean rapidity for hippocampal RS pyramidal neurons. Such a small change is expected since the 

phase plot is nearly linear over the chosen range, as shown in Fig. 4.4B for a typical case. However, 

for the hippocampal FS PVBCs, varying the V̇m criterion level caused the phase slope to increase 

significantly, as shown in Fig. 4.4D. The 10 mV/ms criterion level is near the transition between 

the baseline and the vertical rise of the phase plot. Thus, the PVBCs phase slope measured at 40 
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mV/ms is almost 4 times larger than the value measured at 10 mV/ms (Fig. S5). Nonetheless, when 

the phase slope is measured in a single linear range, for example above 25 mV/ms for the FS 

PVBCs, the phase slope values are more consistent. Notably, changing the criterion level reversed 

the relative rapidity between the hippocampal RS pyramidal neurons and the FS PVBCs (Fig. S5). 

In contrast, the mean rapidity of AP onset of cortical FS neurons was always greater than the mean 

rapidity of RS neurons as quantified by the phase slope method over the full 10 to 40 mV/ms 

criterion level range. 

 

Figure 4.4: Comparison of the impact of the phase slope criterion level between a hippocampal pyrmidal 
neuron and a hippocampal PVBC. A: A cumulative phase plot of the APs from a hippocampal pyrmidal neuron 
(gray), and their average (black). B: The portion of the phase plot of A near onset. C: A cumulative phase plot of the 
APs from a hippocampal PVBC (gray), and their average (black). D: The portion of the phase plot of C near onset. 
The red astericks in C and D represent the points at which the average 𝑉̇𝑚 reached 10 mV/ms and 40 mV/ms, and the 
values next to the astericks are the phase slopes at those points.  
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 Impact of data selection limits on error ratio method 

Volgushev et al. used the error ratio to distinguish between rapid rat cortical neurons (error 

ratio > 3) and slow onset snail neurons (error ratio < 2), but a few percent of the neurons in their 

analysis would be incorrectly categorized by the error-ratio method. They found 49 cortical 

neurons had an average error ratio of 8.46 ± 3.87 with all neurons except one having a value above 

3 [9]. In contrast, 29 snail neurons had an average error ratio of 0.96 ± 0.57, with all neurons except 

two having a value below 2 [9].  

Mean values similar to those obtained by Volgushev et al. [9] were observed in the cortical 

data analyzed here, as shown in Table 4.1. However, consistent with the high value of the standard 

deviation in this analysis, 7 of the 27 RS cortical neurons had an average error ratio below 3 as 

seen in Fig. 4.2, which would categorize them as having slow onsets. This low error ratio for these 

7 RS cortical neurons can be attributed to the recording noise, which can bias the error ratio value 

lower toward one, and the selection of the range of the AP trace that is used for the fit [63]. Varying 

the data selection limits significantly impacts the error ratio of the neurons analyzed in this study. 

Changing the upper limit from 30% of V̇m maximum value to 3 to 10 mV above the onset potential 

increased the error ratio of the 7 previously miscategorized RS neurons, so that 6 out of the 7 have 

an error ratio higher than 3 using this alternative upper limit. The only neuron maintaining an error 

ratio below 3 after altering the upper limit is the neuron showing the slowest AP onset by all the 

quantification methods (RS neuron number 10 in Fig. 4.2). A comparison of the impact of the data 

selection limits on two neurons is shown in Fig. S3. Furthermore, similar to the results from 

cortical neurons, the error ratios for the FS interneurons will shift from below 1 to above 3 as the 

portion of the AP data selected for fitting is varied. Changing the upper limit to be 3 mV above 

onset changed the error ratios for PVBCs to be 8.5 ± 2.8 (All values are presented as mean ± SD). 
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While the other quantification methods do not depend on the data selection limits, the error ratio 

value can be significantly impacted by the limits of the data selection. Thus, the subsequent 

classification of a neuron as having slow or fast AP onset depends on the data selection when using 

the error ratio method.  

 Classification of neuron types based on AP rapidity  

4.3.1.3 Differences in onset rapidity between RS and FS neurons 

Differences in the AP shapes of RS and FS cortical neurons, including quantitative features 

such as the AP width and amplitude, are well-known from the literature [11], [85], [89]. However, 

in prior studies, the AP onset rapidity has not been reported as one of the AP features used to 

differentiate RS from FS cortical neurons. Here, the results show that the AP onset rapidity is 

significantly different between RS and FS neurons, and hence provides another measure to 

differentiate between the two neuron classes. Based on mean rapidities of the above two 

populations of neurons as shown in Table 4.1 and Table 4.3, FS cortical neurons have significantly 

higher rapidity than RS cortical neurons using all the quantification methods. However, the IFWd2 

and IHWd2 methods have the highest scores of all methods in Table 4.3 according to all three 

statistics. The nonparametric, Mann-Whitney test, indicated all the AP quantification methods 

show a significant difference between RS and FS cortical neurons, as reflected in a z-score > 6 

(Table 4.3).  

The results from hippocampal neurons show similar patterns. For example, the FS PVBCs 

have AP onset that is 60 % more rapid than pyramidal neurons based on analysis using the IFWd2 

method. However, the RS neurons mean rapidity was higher than the FS neurons mean rapidity in 

the hippocampus as quantified by the phase slope method using spline or pchip interpolation 

functions with a criterion level of 10 mV/ms and the error ratio method with the original upper 
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limit set to 30% of the maximum V̇m. This relationship is denoted with a negative sign on all three 

statistical measures in Table 4.3, and reversed from what was found in the cortex, and thus 

expected in the hippocampus. Changing the upper limit on data selection for the error ratio method 

returned the mean FS rapidity to being larger than the mean RS rapidity in the hippocampus but 

resulted in degrading the effect size. Cohen’s d, for comparison, decreased from large effect size 

of 2.47 to 0.36, a medium effect size. No reversal of FS and RS rapidity between cortex and 

hippocampus was observed for the IFWd2 and IHWd2 methods regardless of the interpolation 

technique.  

In addition to AP rapidity, Table 4.3 summarizes how well AP amplitude, width, and onset 

potential differentiate RS and FS neuron recordings in this study. For both cortical and 

hippocampal neurons, a significant difference between RS and FS neurons is observed in all the 

AP parameters analyzed here except the AP onset potential between RS and FS hippocampal 

neurons. As shown in Table 4.1, the FS neurons, on average, have smaller AP amplitude, narrower 

AP width, lower onset voltage, and faster AP rapidity compared to the RS pyramidal neuron.  

Together, results from the cortical and hippocampal neurons indicate that AP rapidity is 

clearly different between RS and FS neurons using parametric and nonparametric statistical tests 

(Table 4.3). The differences in rapidity using the V̈m peak width methods were not only significant 

as indicated by p-values but also have the largest effect size. As shown in Table 4.3, the only AP 

properties that produced an effect size larger than the IFWd2 method in any of the comparisons is 

AP width in the intracortical and intrahippocampal comparisons and AP amplitude in the 

intrahippocampal comparison. AP width is known as providing a clear difference  between RS and 

FS neurons [11], [85]. Both IFWd2 rapidity and AP width score in the large effect size range. 
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Therefore, the rapidity of AP onset can be used as another electrophysiological property to 

differentiate between these classes of neurons. 

Table 4.3: Comparison between electrophysiological properties of four neuron types using conventional statistics 

 

Cortical 
FS and RS 

neurons 

Hippocampal 
FS and RS neurons 

Hippocampal and cortical 
pyramidal neurons 

t z 

Cohen
's d 

(CLES
) 

t z 

Cohen
's d 

(CLES
) 

t z 
Cohen's d 
(CLES) 

IFWd2 
(ms-1) 

24.
9 

20.
0 

1.36 
(0.84) 

49.
6 

25.
3 

2.77 
(0.98) 

79.8 39.4 
3.89 
(1.0) 

IHWd2 
(ms-1) 

16.
2e 

15.
6 

0.97 
(0.75) 

43.
5 

24.
4 

2.31 
(0.97) 

55.6 35.6 
2.89 

(0.97) 

Phase 

Slope 
(ms-1) 

14.
7 

10.
9 

0.67 
(0.70) 

-
16.
0 

-
24.
9 

-0.64 
(-0.71) 

17.7 39.1 
0.98 

(0.72) 

-
40.
8a 

-
24.
2a 

-1.89a 

(-0.94a) 
58.1c 39.5c 

3.18c 

(0.98c) 

Error 

ratio 
(dimensio

nless) 

7.3 9.4 
0.48 

(0.62) 

-
59.
4 

-
25.
5 

-2.47 
(-0.98) 

-3.8 -6.2 
-0.14 

(-0.54) 
5.3b 6.4b 

0.36b 

(0.60 b) 

Amplitude 
(mV) 

-
8.1 

-
6.3 

-0.29 
(-0.60) 

-
51.
8e 

-
25.
5 

-3.48 
(-0.99) 

20.2 16.7 
0.79 

(0.72) 

Width 
(ms) 

-
71.
4 

-
28.
9 

-2.34 
(0.98) 

-
133 

-
25.
8 

-5.54 
(-1.0) 

-40.2 -36.1 
-1.46 

(-0.87) 

Onset 

potential 
(mV) 

-
23.
3 

-
18.
6 

-1.16 
(0.81) 

1.9n 1.2n 
0.11 

(0.53) 
-17.6 -14.8 

-0.64 
(-0.69) 

Student’s t test and Mann-Whitney test were performed to compare neuron types, and Cohen’s d and common 
language effect size (CLES) were used to measure the effect size. For the t-score, e indicates that the equal variance 
hypothesis was accepted, however, the unequal variance t-score was within 4% within both cases. n the difference is 
not significant; otherwise, the difference is significant (p<0.05). a using piecewise cubic interpolation. b the upper limit 
was set to 3 mV above the onset. c using piecewise cubic interpolation for hippocampal pyramidal neurons and cubic 
spline for cortical pyramidal neurons. The minus sign indicates that the RS neuron's mean was higher than the FS 
neuron's mean, and the cortical pyramidal neuron's mean was higher than hippocampal pyramidal neuron's mean.   



55 

 

4.3.1.4 Differences in onset rapidity between cortical and hippocampal pyramidal neurons 

Pyramidal neurons are the most abundant excitatory neurons found in most mammalian 

forebrain areas such as the cerebral cortex and the hippocampus [92]. Pyramidal neurons in 

different areas have some family resemblance, but they vary in their morphology and behavior 

[93]. For example, a study showed that cortical pyramidal and CA1 hippocampal pyramidal 

neurons have similar Na+ entry ratio and AP amplitude, but different AP width [94].  Therefore, 

differences between cortical and hippocampal pyramidal neuron AP onset rapidity, as well as the 

other AP parameters, are of interest. 

AP onset rapidity is significantly different between cortical and hippocampal pyramidal 

neurons. Using the IFWd2 method, the rapidity of hippocampal pyramidal neurons is more than 

double the rapidity of cortical pyramidal neurons. A very clear difference in rapidity is observed 

using all the quantification methods as shown in Table 4.3. Furthermore, comparing other 

electrophysiological properties revealed a significant difference between hippocampal and cortical 

pyramidal neurons in amplitude, onset potential, and width. The width of cortical neuron APs was 

more than 35% wider than those of the hippocampal neurons, which is typical [94]–[97]. Notably, 

the IFWd2 method provided the highest significant difference among all the rapidity methods used 

in this analysis. Also, the V̈m peak width methods showed a significantly larger effect size 

compared to the other AP rapidity methods as shown in Table 4.3. 

Double peaks in the rising phase of the V̈m trace, which have been associated with AP 

backpropagation in central mammalian neurons, were observed in a small minority of the analyzed 

APs and resulted in significantly lower rapidity than single-peaked V̈m traces in the rising phase. 

The double-component AP is characteristic of signal backpropagation from the AP initiation site 

[3], [9]. However, less than 7% of APs analyzed in this study had a clear shoulder or dip that 
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corresponded to the double-component AP as examples given by Volgushev et al [9]. No FS 

neurons in the dataset exhibited a double-component AP. The rapidity of double-component APs 

was statistically significantly smaller than for single-component APs. The difference in rapidity of 

single and double component APs was most significant using the IFWd2 method (cortex: Mann-

Whitney Z = 12.8, p<0.0001, CLES = 0.79, hippocampus: Mann-Whitney Z = 23.2, p<0.0001, 

and CLES = 0.97). Similarly, the mean double-component rapidity found using the IHWd2 and 

phase slope methods was less than the mean rapidity for single-component APs, but the level of 

significance and effect size was smaller or in some cases insignificant as shown in Table 4.4.  

Table 4.4: Comparison between single-component and double-component APs  

Neuron 
type 

Cortical pyramidal neuron Hippocampal pyramidal neuron 

𝐕̈𝐦 peaks single double Z 

Cohen’s 
d 

(CLES) 

single double Z 

Cohen’s 
d 

(CLES) 

IFWd2 (ms-1) 
2.2 ± 
0.5 

1.5 ± 
0.6 

12.8* 
1.35 

(0.79) 
4.6 ± 0.8 

2.9 ± 
0.4 

23.2* 
2.17 

(0.97) 

IHWd2(ms-

1) 

4.0 ± 
0.7 

3.6 ± 
1.7 

0.95 
0.58 

(0.52) 
7.8 ± 1.8 

3.9 ± 
1.3 

22.4* 
2.25 

(0.96) 

Phase Slope 

(ms-1) 

7.0 ± 
2.2 

5.3 ± 
2.9 

6.5* 
0.73 

(0.65) 

34.4 ± 
16.9a 

32 
±13.5a 

0.93 
0.14 

(0.52) 

Z-score from Mann-Whitney test were used to compare AP waveform, Cohen’s d and common language effect size 

(CLES) were used to measure the effect size. a using piecewise cubic interpolation. * the difference is significant 
(p<0.0001).  

4.4 Discussion 

 The results presented above not only support the V̈m peak width methods as improvements 

on existing methods of quantifying AP onset rapidity, but also support their utility in categorizing 
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types of neurons. The V̈m peak width methods can capture the difference in AP rapidity between 

different neuron types while showing smaller relative variation across the same neuron type than 

prior methods. Therefore, the V̈m peak width methods can be used to classify different neuron 

types and hence enable quantitative analysis of factors impacting AP onset dynamics.  

 The AP rapidity quantification methods 

The results from the IFWd2 and IHWd2 methods are more reliable measures of AP rapidity 

than the other methods for two primary reasons. First, the points at which the rapidity values are 

calculated are well defined and don’t require arbitrary choices of parameters. The IFWd2 and 

IHWd2 are measured at specific points on the V̈m trace, where the location of those points is defined 

using only their values relative to the peak value of V̈m without requiring an arbitrary or unscaled 

value or being influenced by extending the range of data analyzed. Unlike the IFWd2 and IHWd2 

methods, the phase slope is measured at an arbitrary value on the phase plot, which differs from 

one study to another, while the error-ratio value depends on the portion of the AP recording 

selected for fitting. Thus, the IFWd2 and IHWd2 methods provide more consistent rapidity values 

that simplify comparison between different studies.  Second, the second derivative peak width 

methods provide rapidity values that are independent of the definition of AP onset. The 

determination of AP rapidity, AP onset voltage variability, and the relationship between them are 

subjects of interest and great debate in many studies [2], [59], [63], [64]. The widely used phase 

slope method defines the AP onset voltage and rapidity at the same value of the phase slope. 

Shifting the criterion level at which the slope was measured was shown to have little effect in 

cortical neurons but can cause a large shift in the rapidity in computational models [7], [63]. 

However, shifting the criterion level can alter the results when the AP has a smooth onset [63], or 

when the V̇m value is in close proximity to the kink. As a result, the phase slope value tripled when 
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the criterion level was shifted from 10 mV/ms to 40 mV/ms. Furthermore, the comparison in Table 

4.2 shows that the choice of interpolation function significantly influences the interpolated phase 

slope, leading to different rapidity values for many APs. While the onset voltage might not be 

significantly impacted by the choice of the interpolation function, the slope often is. The slope is 

more sensitive to excursions that can occur in the spline fit, while the onset voltage variability in 

this steep part of the phase space plot would be limited. As a result, the choice of the interpolation 

function could cause high variation in the phase slope that does not reflect the real differences in 

rapidity, which might in turn influence the analysis of the relationship between AP rapidity and 

threshold variability.  

While the IFWd2 and IHWd2 are more reliable methods on good recordings, they are 

susceptible to noise, which is more pronounced when computing the second derivative. Noise can 

also introduce uncertainty in the peak position of the rising phase. Thus, analysis of a noisy 

recording requires the data to be filtered before calculating the IFWd2 and IHWd2. Nonetheless, 

the noise in the recordings analyzed here was quite small, and thus the calculation of the IFWd2 

and IHWd2 was done without using any noise filters. 

 Factors affecting AP onset rapidity 

APs in central mammalian neurons have sharper and more abrupt onset compared to 

invertebrate neuron APs. An initial proposal to explain the “kink” in cortical neuron APs was 

introduced by Naundorf et al (2006), where cooperative VGSCs gating was proposed to explain 

the sharp AP onset in cortical neurons. Naundorf et al. showed that the rapid AP onset and the 

variability of AP onset observed in cortical neurons can be replicated using a cooperative VGSC 

model instead of a canonical HH model, which failed to reproduced these two features [2].  

However, an alternative explanation was introduced by Yu et al. (2008) showing that the two 
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features can be replicated using a multicompartment HH model without the need for cooperative 

VGSC gating, an explanation which was supported by patch-clamp recordings obtained from the 

soma of cortical neurons as well as from axonal bleb. They showed that the sharp somatic AP 

onset in cortical neurons is influenced by the distance from the axon initial segment (AIS) to the 

soma, with the rapidity increasing as the AP propagated away from the AIS and become biphasic 

[3]. Therefore, AP rapidity can indicate distance between the somatic recording site and the AP 

initiation site, where neurons exhibiting lower AP onset rapidity indicate that the AP was initiated 

closer to the soma [98].  However, double-component APs were present in only a small portion of 

the APs analyzed here, and in those double-component APs, the rapidity was smaller compared to 

single-component APs, indicating that the AP backpropagation did not lead to an increase in 

neuron rapidity in this study. The analysis here agrees with Volgushev et al’s (2008) results where 

APs with double-components had a lower rapidity than single-component APs, although their 

results did not show a significant difference between the two groups in cortical neurons. While AP 

backpropagation can contribute to the sharpness of the somatic AP, it was found that the AP 

backpropagation is necessary but not sufficient alone to reproduce the observed kink in cortical 

neurons [63].  

Subsequent to publication of the AP backpropagation and cooperative gating theory, 

neuron geometry was proposed to explain the sharp AP rapidity observed in central mammalian 

neurons. In 2013, Romain Brette demonstrated theoretically that the abrupt AP onset observed in 

cortical neurons could be due to a different mechanism elucidated in resistive coupling theory [59]. 

The theory states that Na+ current originating in the AIS is primarily sunk by the soma, due to its 

large size, and subsequently exits as capacitive current. Hence, the neuron geometry significantly 

influences the sharpness of the AP [7], [59], [99]. Other studies similarly confirmed the role of 
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neuron size by demonstrating the large impact of dendritic tree size on AP rapidity [4], [100]. Eyal 

et al. (2014) showed, using computational models, that rapidity increased by 30% when the axon-

to-somatodendritic conductance ratio was increased from 12 to 370, and increased by 450% when 

the ratio was altered in the presence of ultrafast VGSC kinetics [4], which might also indicate the 

importance of specific VGSC subtypes. For example, while both the somatosensory cortex and 

hippocampus express similar VGSC subtypes, Nav1.1, Nav1.2, Nav1.3, and Nav1.6, the level of 

expression differs [101], which could be one of the factors contributing to the difference in rapidity 

between pyramidal neurons in the two regions. Moreover, another direct explanation of the 

difference in rapidity can be attributed to input resistance. For instance, the slower rapidity in 

cortical pyramidal neurons, compared to that in hippocampal pyramidal neurons, could be 

attributed to the higher input resistance of cortical pyramidal neurons [102], [103]. Nonetheless, 

these studies indicate the complexity of factors mediating the rapidity and highlight the importance 

of a better and sensitive tool to measure the impact of these factors on AP rapidity.  

 The second derivative peak width methods for neuron classification  

The ability to distinguish different neuron types is essential for understanding neuronal 

circuits and functions. Cortical and hippocampal neurons have been classified based on different 

properties such as morphology, location, and electrophysiological properties. Here, as shown in 

Fig. 4.5, the rapidity of AP onset can also be used to differentiate various neuron types. Analysis 

of the rapidity shows a significant difference between RS and FS neurons both in the 

somatosensory cortex and the CA1 hippocampus, and between cortical and hippocampal 

pyramidal neurons. These results agree with a previous study using the phase slope method that 

showed a significant difference in AP rapidity between two cell types, CA3 pyramidal neurons 

and dentate granule neurons [98]. Here, the V̈m peak width methods provide better separation 
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between different cell types compared to the phase slope and the error ratio methods based on 

parametric and non-parametric statistical tests. The cortical and hippocampal recordings used in 

this study were obtained from two different research groups, and thus the recording and preparation 

conditions might contribute to the different rapidity between the two brain regions. However, the 

results from these datasets reproduced relationships of other AP parameters such as amplitude and 

width between cortical and hippocampal pyramidal neurons found in a previous study [94]. Carter 

and Bean (2009) reported that cortical pyramidal neurons had wider and slightly higher amplitude 

APs than those recorded from hippocampal pyramidal neurons [94]. While varying experimental 

conditions could influence conclusions about the relative rapidity of hippocampal and cortical 

pyramidal neurons, it would be expected to have a similar effect on all rapidity quantification 

methods. Therefore, the IFWd2 method is expected to still better quantify any differences between 

hippocampal and cortical neuron rapidity than the other methods, as shown in Table 4.5. 

 
Figure 4.5: Comparison of the electrophysiological properties of all the neurons analyzed in this study. The 
vertical axis represents the values normalized to the mean value for cortical pyramidal neurons, and the error bar 
represents the RSD for each neuron population. The phase slope value for hippocampal pyrmidal cells is obtained 
using pchip interpolation, and the error ratio value for PVBCs are obtained with the upper limit was set to 3 mV above 
the onset. 
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Table 4.5: Two-tailed p-value from the t-score between the IFWd2 values from different neuron types, and Cohen’s 
d effect size (in parentheses). Green cells indicate a p-value below 0.05. 

IFWd2 
Cortex Hippocampus 

PCs FS PCs PVBCs 

Cortex 
 

PCs  <0.0001 
(1.36) 

<0.0001 
(3.89) 

<0.0001 
(9.07) 

FS 
<0.0001 
(1.36) 

 <0.0001 
(2.52) 

<0.0001 
(8.13) 

Hippocampus 
PCs 

<0.0001 
(3.89) 

<0.0001 
(2.52) 

 <0.0001 
(2.77) 

PVBCs 
<0.0001 
(9.07) 

<0.0001 
(8.13) 

<0.0001 
(2.77) 

 

“PCs” indicates pyramidal cells, and “PVBCs” indicate parvalbumin-positive basket cells. 

 Sodium channel parameters affect modeled rapidity 

Parameters of AP features have been correlated to differences in voltage-gated ion channel 

subtypes, such as the connection between VGKCs and AP width. In this study, the other AP feature 

that provides a good separation between the different neuron types is the AP width (Table S2). The 

significant difference in the AP width between all the neuron types analyzed here is consistent 

with a difference in the types and densities of potassium channels expressed in these neurons since 

the AP width is mainly determined by VGKCs [46], [94], [104]. The significant difference in AP 

width is evidence of the key role of different VGKCs types whose activation and inactivation 

control many aspects of AP waveforms [46], [104]–[106].  

In contrast to the variation in VGKCs associated with AP width, the activation of VGSCs 

has been proposed to be similar for hippocampal interneurons and their principle counterparts, 

pyramidal neurons [105]. Furthermore, some investigations have even shown that the gating 

properties of mammalian central neurons are similar to those in the giant squid [46]. Although 

several studies have shed light on the differences in VGSC kinetics between different neuron types, 

the role of VGSC activation in AP initiation is thought to be similar since the slope factor and time 

course of VGSCs was comparable [107]. Such conclusions agree with other studies in cortical 
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neurons that show the rate of maximum rise was indistinguishable between RS and FS neurons 

[11], [85], indicating similar densities and behavior of sodium channel activation in both RS and 

FS cortical neurons. However, several other studies have argued that the fast AP onset observed 

in cortical neurons are due to cooperative VGSC activation, as evident by the high rapidity 

measured using the phase slope [2], [5], [6]. Whether the studies supported the role of VGSC 

activation, such as those proposing cooperative activity, or found no differences in VGSC 

activation, all these parameters were used to study VGSCs kinetics since the upstroke of APs is 

dominated by sodium current. Hence, it is reasonable to expect that the peak of the rising phase of 

the V̈m trace is dominated by sodium current.  Moreover, in a recent study, we showed with a 

computational model that the V̈m peak width methods are more sensitive and specific to VGSC 

conductance and rate constant parameters than the phase slope method [27]. For instance, tripling 

the VGSC conductance caused a 65% increase in rapidity as quantified by the IFWd2 method, but 

it caused only a l0% increase as quantified by the phase slope method [27]. Thus, the V̈m peak 

width methods are better tools to study the potential role of VGSCs in AP onset dynamics. These 

improved tools showed significant differences in AP rapidity between all 4 neuron types, albeit 

using recordings that may have had some different experimental procedures. Future analysis of RS 

and FS neuron recordings acquired from the cortex and hippocampus under comparable conditions 

using the V̈m peak width methods could further elucidate VGSC differences in these neurons.  

4.5 Conclusions 

Two novel methods, IFWd2 and IHWd2, are more reliable and systematic tools to quantify 

the rapidity of AP onset than other existing methods. These V̈m peak width methods provide a 

smaller relative variation among APs from a single neuron type while still distinguishing between 
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different neuron types more robustly than the phase slope and error ratio methods. Using the new 

second derivative methods, AP onset rapidity has been demonstrated as useful for neuron 

classification. Thus, the IFWd2 and IHWd2 tools should prove valuable for studying and analyzing 

the kinetics of VGSCs and their role in AP dynamics, such as examining different hypotheses 

proposed to cause the rapid AP initiation in central mammalian neurons.  
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5 THE IMPACT OF DYNAMIC REVERSAL POTENTIAL AND COOPERATIVITY ON 

THE EVOLUTION OF RAPIDITY AND OTHER ACTION POTENTIAL ATTRIBUTES 

DURING SPIKE TRAINS 

Preface 

This chapter closely corresponds to a manuscript co-authored by Aldohbeyb, Vigh, and 

Lear that is intended to be submitted to a peer-reviewed computational neuroscience journal. 

Ahmed A. Aldohbeyb's contributions were investigating neuron firing patterns in response to 

multiple current pulses, identifying common firing patterns across different neuron types, writing 

the MATLAB codes for different neuron models, identifying and describing prior related work, 

modifying the models to include dynamic and cooperative gating, calculating the AP attributes 

from experimental data and computational models, replicating the observed firing patterns in 

models including the effect of cooperative gating and ion concentration dynamics, analyzing the 

data, identifying and describing prior related work, discussing all aspects of the research, 

conceptualizing many figures and creating all of them, writing the manuscript, and editing text and 

figures in response to feedback from the other co-authors.   

Abstract 

Action potentials (AP) are the basic elements of information processing in the nervous 

system. Understanding the AP generation mechanisms is a critical step to understand how neuron 

encode information. However, individual neuron fires various AP shapes even in response to the 

same stimulus, and the mechanisms responsible for this variability remain unclear. Therefore, we 

analyzed four AP attributes during bursts from three neuron types using published 

electrophysiology recordings. In response to consecutive step currents, the AP attributes in evoked 
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spike trains show two distinctive patterns across different neurons. The first APs from each 

stimulus always have comparable properties regardless of the stimulus strength, while the 

attributes of the subsequent APs during each pulse monotonically change (i.e., tilt) during the burst 

and the magnitude of AP attribute change during each pulse increases with increasing stimulation 

strength. Various conductance-based models were explored to determine if they replicated the 

observed AP bursts. The observed patterns could not be replicated using the classical HH-type 

models. However, adding ion concentration dynamics to the model reproduced the AP attribute 

tilt, and the magnitude of change during a pulse correlated with change in dynamic reversal 

potential (DRP), but  the first APs attributes remained unchanged. Then, the role of cooperative 

Na+ gating on neuronal firing dynamics was investigated.  Cooperative gating of Na+ channels has 

been proposed as the mechanisms underlying the rapid AP initiation and threshold variation in 

cortical neurons. Inclusion of cooperative gating restored the first APs attributes, and enhanced the 

magnitude of modeled tilt of some AP attributes to better agree with observed data. We conclude 

that this work indicates changes in local ion concentrations could be responsible for the monotonic 

change in APs attributes during neuronal bursts, and cooperative gating can enhance the effect. 

Thus, the two mechanisms could contribute to the observed variability in neuronal response.  

5.1 Introduction  

Neurosciences uses neuron models to seek some understanding through the complexity of 

neural dynamics. The choice from large variety of neurons models “follows a simple trade-off rule 

of what to include to make the model realistic but simple enough to implement” [108]. For this 

reason, a simple single-compartment model such as the Hodgkin and Huxley (HH) model, or even 

the simpler integrate-and-fire model, has been used for decades. Although growing evidence in 

central mammalian neurons indicates a discrepancy between experimental data and the HH model 
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[2], [5], [6], [31], [32], most of the proposed models incorporate the basic functions and equations 

from the HH model  [33], [34]. The HH model simplifies the effect of ion concentrations assuming 

constant electrical gradients and neglects ion concentration change, but successfully reproduces 

neuronal signals' general features.  

While neglecting ion concentration changes during neuronal firing could be valid in 

invertebrate neurons, its validity in mammalian neurons is subject to debate. Fluctuation in K+ and 

Na+ concentrations was noted in healthy cortical neurons [22]–[25] but more abundantly observed 

during abnormal activities such as seizure [26], [67], [109]–[113]. Thus, most computational 

models with dynamical ion concentration have been used to study neuronal abnormal activities. 

Cressman et al. (2009), for example, showed changes in ion concentration led to seizure-like 

events using a conductance-based neuron model with Na+ and K+ ion concentration dynamics [26], 

[67]. Krishnan and Bazhenov showed, in combination with electrophysiological recording and 

modeling, changes in K+ ,Na+, and Na+/K+ pump during seizures [66], [114]. However, ion 

concentration dynamics should be applied as well to understanding normal conditions [22], [23]. 

Using computational models that include only Na+ and Ca2+ dynamics, Zylbertal et al showed that 

the dynamic of Na+ concentration in models of three neuron types has a huge impact on neuron 

bursting activity [70]. Nonetheless, the vast majority dynamical ion concertation models 

constructed to study the neuron pathological states, not normal neuronal behavior.  

AP initiation features are another source of discrepancy between simple neuron models 

and experimental data. Rapid AP initiation and threshold variability are a characteristics of somatic 

cortical neurons APs. Among many explanations, cooperativity between neighboring Na+ channels 

was proposed to account for two AP initiation features [2],  and was the subject of debate [3], [4], 

[7], [30], [59]. A major criticism of the cooperativity model has been the absence of supporting 
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biological evidence. However, several studies have bridge this gap [16]–[19]. For instance, a study 

showed using Na+ channel's crystal structure that the β3-subunits can bind to multiple sites of 

Nav1.5 α-subunits [16]. Clatot et al. (2017) found that Nav1.5 α-subunits physically interact, in 

which their results were consistent with Naundorf et al. . [17]. Also, coupled gating was linked to 

Na+ channel mutations [18], [19].These cumulative studies  in recent years have made it clear that 

mammalian Na+ channel kinetics deviate from the canonical HH model, emphasizing the need to 

reevaluate the role of channel kinetics and ion concentration dynamics in biophysical models. A 

detailed model that includes cooperative gating and ion concentration dynamics should provide 

more insight into neuronal response to repetitive stimulus.  

Understanding the AP initiation mechanisms is essential in determining how neurons 

process information and the variability in AP shapes. Variability in neuronal response was 

observed even in individual neurons in response to the same stimulus [14]. The observed 

variability of neuronal response could arise from several factors such as the diversity in voltage-

gated ion channel types and densities, diversity in synaptic inputs, or the neuron’s intrinsic such 

as axial resistance or the size of the soma and dendritic tree properties [3], [13]–[15]. Although 

neuronal response is usually studied in terms of firing rate and spike timing [14], [115], [116], i.e., 

the temporal position of APs, looking at the attributes of each AP’s waveform, i.e., details of its 

shape and size, and how those attributes vary during a spike train provides another perspective on 

neuronal coding. While a neuron’s firing pattern might has more importance than the AP shape 

when studying neuron behavior, and there was little correlation between them, the two cannot be 

clearly separated [46]. In addition, AP attributes were found to have four times larger correlation 

with the stimulus history than the instantaneous spike rate [10]. 
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Our study here similarly shows variability in response but based on systematic changes in 

ion concentrations resulting from prior APs rather than due to randomness, such as that associated 

with natural stimulus. Analysis of electrophysiology recordings in public databases for three 

neuron types demonstrate that AP attributes including AP rapidity and threshold display recurring 

monotonic patterns in response to multiple current pulses, and the magnitude of change in these 

patterns during each pulse increases with increasing current. Despite the stimulus-dependent 

evolution of AP attributes during a pulse, the AP attributes of the first spikes in each stimulus pulse 

are strikingly similar despite the stimulus strength. A variety of existing computational models 

were investigated, but all failed to replicate the observed AP attribute patterns during spike trains. 

Thus, a novel conductance-based model that includes ion concentration dynamics and cooperative 

Na+ channels was constructed to replicate the observed patterns. Changes in the dynamical 

reversal potential (DRP) due to changes in ion concertation was responsible for the evolution in 

AP attributes during stimulus pulses but also predicted monotonic changes in AP attributes in the 

first AP of each sequential pulse, contrary to the analysis of neural recordings. Notably, adding 

cooperative Na+ channels to the model equalized first-AP attributes while not only retaining but 

enhancing the magnitude of AP attribute evolution during each pulse. Both consequences of 

including cooperativity, first-AP attribute equalization and increased intra-pulse evolution 

magnitude, resulted in better agreement with analysis of public experimental recordings. With 

cooperativity, the modeled magnitude of intra-pulse variation in some AP attributes, such as 

rapidity, approximately agrees with experimental observations, while the model still 

underestimates the magnitude of systematic variation for other AP attributes, in particular 

threshold potential. The impact of selected model parameters such as cell volume ratio were also 
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investigated. Our study predicts that ion concentration dynamics and cooperative Na+ channels 

could have a role on neuronal encoding by adjusting AP features during repetitive firing.    

5.2 Methods  

 AP parameters  

 The AP threshold voltage, amplitude, rapidity, width of each AP were analyzed. The AP 

threshold was measured as the membrane potential at which V̇m exceeds 25 mV/ms. The AP 

amplitude was measured from the threshold potential to the peak value, and the spike width was 

measured as the full width at half the AP amplitude. The AP rapidity was measured using two 

methods: the inverse of the full width at half the maximum value of the rising phase of V̈m (IFWd2 

method) [27], [28], and the phase slope method [2]. The phase slope was measured as the slope of 

the phase plot reached a specific criterion level. The criterion level was adjusted in some cases. 

The reason for choosing different criterion levels is that the phase slope could be significantly 

impacted if the criterion level is near the transition between the baseline and the vertical rise in the 

phase space plot [28].  

 Data source for AP recordings 

 Experimental intracellular recordings were obtained from two databases. The 

somatosensory cortex recordings were from the GigaScience database [78], whereas the 

hippocampal neurons recordings were from the CRCNS database [87]. The experimental 

procedures for the somatosensory cortical recordings and data are found in da Silva Lantyer et al., 

2018 [78]. The data were from current-clamp recordings of pyramidal regular-spiking (RS) 

neurons (n=27) and fast-spiking (FS) neurons (n=7). The experimental procedures for 

hippocampal neurons are found in Lee et al., 2014 [87], [88]. These current-clamp recordings from 
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the17 RS pyramidal neurons were made from adult mice hippocampal CA1 neurons. The same 

APs selections criteria was used as previously described [28], except the inter-spike interval (ISI) 

was set to be 10 ms for all neuron types.  

 Computational models 

 All simulations presented here were done using MATLAB 2021. The dynamical equations 

were solved using the fourth order Runge-Kutta method with 1 µs time step, unless stated 

otherwise. The model describes a single-compartment conductance-based model for different 

cortical neuron types. The model includes Na+ and K+ voltage-gated channels and the membrane 

potential is described by the following equations [82]:  

𝐶𝑚 𝑑𝑉𝑑𝑡 = −𝑔𝑙𝑒𝑎𝑘(𝑉 − 𝐸𝑙𝑒𝑎𝑘) + 𝐼𝑁𝑎 + 𝐼𝐾𝑑 + 𝐼𝑎𝑝𝑝 

Where V is the membrane potential, 𝐶𝑚 = 1 μF/cm2 is the specific membrane capacitance, 𝑔𝑙𝑒𝑎𝑘 

and 𝐸𝑙𝑒𝑎𝑘 are the membrane conductance and its reversal potential. 𝐼𝑁𝑎 is the Na+ channels current, 𝐼𝐾𝑑 is the "delayed-rectifier" K+ current. The gating variables and their rate equations were used 

exactly as described Pospischil et al (2008) [82], except for the activation of Na+ channels, which 

is described below. 𝐼𝑎𝑝𝑝 is the applied (stimulus) current, which consists of 1s step pulses separated 

by 5s inter sweep interval, unless stated otherwise.    

5.2.1.1 Cooperative sodium current 

 The voltage-dependent Na+ channels current was modified from Hodgkin and Huxley (HH) 

type model described by Pospischil et al. (2008) [82] to include a fraction of cooperative Na+ 

channels. The cooperative Na+ channels were described similar to Hunag et al. (2012), where the 

activation of Na+ channels (𝑚) was assumed to be instantaneous, and hence it was replaced by its 

steady-state value 𝑚∞ [5]. The following equations determine the dynamic of Na+ channels: 
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𝐼𝑁𝑎 = (1 − 𝑝)𝑔𝑁𝑎𝑚∞3 (𝑉)ℎ(𝑉 − 𝐸𝑁𝑎(𝑡)) + 𝑝𝑔𝑁𝑎𝑚𝑐∞3 (𝑉𝑁𝑎)ℎ(𝑉 − 𝐸𝑁𝑎(𝑡)) 

𝑚∞ = 𝛼𝑚𝛼𝑚 + 𝛽𝑚 

𝑑ℎ𝑑𝑡 = 𝛼ℎ(1 − ℎ) − 𝛽ℎℎ 

𝑉𝑁𝑎 = 𝑉 + 𝐾𝐽𝑚𝑐∞3 (𝑉𝑁𝑎)ℎ 

Where 𝑝 represents the fraction Na+ channels exhibiting cooperative gating and 𝐾𝐽 is the coupling 

strength voltage between cooperative channels. α and β are the transition rate constants, which 

were adopted exactly as described in [82]. 𝐸𝑁𝑎(𝑡) represents the Na+ dynamic reversal potential. 

5.2.1.2 Dynamical reversal potential 

 The model includes variable concentrations of intracellular and extracellular Na+ and K+, 

which are used to calculate the dynamic reversal potential (DRP) for each ion channel. The 

evolution of K+ concentration is determined, as described by Cressman et al (2009I) [26], by the 

following equation:  

[𝐾+]𝑖 = 140𝑚𝑀 + (18𝑚𝑀 − [𝑁𝑎+]𝑖) 

𝑑[𝐾+]𝑜𝑑𝑡 = 𝛾𝐼𝐾+ − 2𝐼𝑝𝑢𝑚𝑝 − 𝐼𝑔𝑙𝑖𝑎 − 𝐼𝑑𝑖𝑓𝑓 

𝐼𝑝𝑢𝑚𝑝 = ( 𝜌1 + exp((25 − [𝑁𝑎+]𝑖)/3)) ( 11 + exp(5.5 − [𝐾+]𝑜)) 

𝐼𝑔𝑙𝑖𝑎 = ( 𝐺𝑔𝑙𝑖𝑎1 + exp((18 − [𝐾+]𝑜)/25)) 

𝐼𝑑𝑖𝑓𝑓 = 𝜀([𝐾+]𝑜 − 𝑘𝑜∞) 
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Here𝛾 is a factor to convert current density to rate-of-change of concentration. 𝐼𝑝𝑢𝑚𝑝 represents 

the sodium-potassium pump. 𝐼𝑔𝑙𝑖𝑎 represents the capacity of glial cells to remove excess K+ from 

the extracellular space, and 𝐼𝑑𝑖𝑓𝑓 represents the diffusion of K+ away from the local extracellular 

micro-environment. The remaining factors and their values are described in Table 5.1. The 

equation for Na+ concentration was also adopted from Cressman et al (2009I). The Na+ 

concentrations are given by: 

𝑑[𝑁𝑎+]𝑖𝑑𝑡 = 𝛾𝐼𝑁𝑎+ − 3𝐼𝑝𝑢𝑚𝑝 

[𝑁𝑎+]𝑜 = 144𝑚𝑀 − 𝛽([𝑁𝑎+]𝑖 − 18𝑚𝑀) 

Table 5.1: model parameters and values 

Parameters Value Description 𝜸 0.33  Conversion factor from current density to rate-of-change of 

concentration (mM.cm2/μC) 𝜷 7 Ratio of intracellular to extracellular volume of the cell 𝝆 1.25  Pump strength (mM/s) 𝑮𝒈𝒍𝒊𝒂 66.67  Strength of glial uptake (mM/s) 𝜺 1.2  Diffusion constant (s-1) 𝒌𝒐∞ 4  Steady state extracellular potassium concentration (mM) 𝜑 0.35 Voltage dependence parameter 𝑬𝑳𝒆𝒂𝒌 -70 Leak channels reversal potential (mV) 𝑽𝑻 -63 Variable to adjust spike threshold (mV) 𝒈𝑳𝒆𝒂𝒌 0.15 Leak channels maximum conductance (mS/cm2) 
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𝒈𝑵𝒂 50 Sodium channels maximum conductance (mS/cm2) 𝒈𝑲𝒅 10 Potassium channels maximum conductance (mS/cm2) 

L = W 61.4 Length and width of the modeled membrane area(µm) 

Finally, in some cases, we assumed that the available intracellular Na+ concentration might 

differ for the channels and Na/K pump. Thus, the concentration was adjusted to be:   

𝑑[𝑁𝑎+]𝑖𝑑𝑡 = 𝛾𝐼𝑁𝑎+ − 𝐼𝑁𝑎𝑑𝑖𝑖𝑓 

𝑑[𝑁𝑎+]𝑝𝑢𝑚𝑝𝑑𝑡 = 𝐼𝑁𝑎𝑑𝑖𝑖𝑓 − 3𝐼𝑝𝑢𝑚𝑝 

𝐼𝑁𝑎𝑑𝑖𝑖𝑓 =  𝜀𝑁𝑎([𝑁𝑎+]𝑖 − [𝑁𝑎+]𝑝𝑢𝑚𝑝) 

The intracellular Na+ concentration adjacent to the channels would increase while channel 

current flows to drive ion diffusion from the channel to the locations of Na/K pump proteins. 

Therefore, 𝐼𝑁𝑎𝑑𝑖𝑖𝑓 represents the diffusion current of sodium ions away from the channels to the 

nearest pump. The Na+ diffusion constant, 𝜀𝑁𝑎, was obtained following Fick's law (𝜀𝑁𝑎 =2𝐷𝑁𝑎/∆𝑥), where we used 𝐷𝑁𝑎= 0.3 µm2/ms [70] and ∆𝑥 is the typical spacing between Na+ 

channels and the pump. Here, the pump current is governed by the extracellular K+ concentration 

and Na+ concentration near the pump ([𝑁𝑎+]𝑝𝑢𝑚𝑝), instead of intracellular Na+ concentration near 

channels ([𝑁𝑎+]𝑖). Note the Na+ concentration was assumed to be the same for the pump and 

channels in most sections of the results, unless stated otherwise.  
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5.3 Results  

 Neurons alter AP parameters during continuous firing 

  Neurons firing patterns continuously change their during stimulation. Neuronal response 

variability has been studied for identical or varying stimuli and was often described in terms of 

spike timing, mean firing rate, or AP shape[10], [14], [89], [115]. The results in this study show a 

similar response, but the variability is more systematic than random. The neuronal response is 

shown in terms of AP attributes in three cell types: RS cortical neurons, FS cortical neurons, and 

RS hippocampal pyramidal neurons. All the neurons analyzed show two distinct spike train 

features in response to current pulse stimulation. First, quantitative AP attributes monotonically 

change during spike trains evoked by each current pulse. Second, the first AP evoked by each 

current pulse has similar AP attributes independent of the stimulation strength. Figure 5.1 shows 

examples of RS and FS cortical neuron burst in response to multiple-step current. The quantitative 

AP attributes, except threshold, are normalized to their values for it’s the first spike value evoked 

by the first current pulse. The threshold potential is shown as the threshold for each AP minus the 

threshold of the first AP due to the first current pulse (∆𝑡ℎ𝑟), so positive threshold indicates a more 

depolarized threshold and negative threshold change indicates a more hyperpolarized threshold 

compared to the first spike. For example, the first spike evoked by the fifth (red) current step for 

cortical FS neuron was only 4.5% more rapid than the first spike evoked by the first (minimum) 

current step. In contrast, the rapidity of the last spike in the fifth current step was reduced by 45% 

compared to the first spike of the first current pulse. Even though a high current step depolarizes 

the membrane potential, and a higher AP threshold potential is expected, the onset threshold of the 

first spikes in all current steps was similar. The largest change in the threshold of the first APs of 

each step is only 4 mV, while the average threshold for the fifth spike train was 15 mV higher than 
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the first spike train. These spike train pattern shown in Figure 5.1 was observed in all 51 neuron 

recordings analyzed here. 

 

Figure 5.1: Changes in AP attributes from whole-cell intracellular recordings of a typical RS and a typical FS 
somatosensory cortical neuron. The color of the spike train reflects the strength of the stimulus where black traces 
show the spike train evoked by the minimum current step and red shows the spike trains evoked by the highest current 
step. ∆𝑡ℎ𝑟 is the potential difference between the onset threshold of each spike and the threshold of the first AP in 
black. Rapidity is calculated using the IFWd2 method. The current pulses stimulation protocol included 5 steps of 0.5s 
long depolarization pulses (step size 40 pA and 6.5s inter-sweep interval between the pulses) For more information 
about the recordings, see da Silva Lantyer et al (2018) [78] 

The magnitude of neuronal response varies between individual neurons. The first spikes’ 

attributes are clustered around the same value as its first AP evoked by the first pulse across 

different cells despite the increasing stimulus strength, while the variability between individual 

neurons is more distinct when considering the average or final values of the AP bursts. For 

instance, comparing the rapidities of the first APs of the first and fifth spike train shows a slight 

increase but with an insignificant difference between them (FS cortical neurons, Mann Whitney z 

= 0.87, t = 0.54, p-value = 0.38, common language effect size, CLES = 0.41). On the other hand, 

comparing the average rapidity of the first and fifth spike trains shows a significant reduction 

(Mann Whitney z = 2.07, t = 2.56, p-value = 0.03, CLES = 0.82). Similar AP attribute patterns 

were observed across different neuron types. The average AP amplitude and rapidity decrease, and 
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the average AP threshold and width increase during the multiple step stimulation protocol. The 

average intra-pulse AP attribute variation also increases with each subsequent spike train. Table 

5.2-5.4 summarizes the mean and standard deviation values for each of the three neuron types in 

response to 5 current steps. These features are robust and could not be replicated using the classical 

HH or cooperative models without other mechanisms. However, the model containing dynamical 

reversal potential (DRP) can replicate the trends in the spike patterns observed in 

electrophysiological recordings, which is discussed in the following sections.  

Table 5.2: AP attributes of 7 FS cortical neurons in response to 5 current steps (mean ± SD).  

𝐈𝐚𝐩𝐩 
Step 

IFWd2 rapidity 
 (ms-1) 

Threshold 
 (mV) 

Amplitude  
(mV) 

Width 
 (ms) 

1st APs Average 1st APs Average  1st APs Average 1st APs Average 

1st 
3.10 ± 

0.3 
2.97 ± 

0.3 
-39.2 ± 

8.1 
-35.2 ± 7.0 63.0 ± 4.9 57.5 ± 4.2 0.66 ± 0.1 0.66 ± 0.1 

2nd 
3.14 ± 

0.3 
2.87 ± 

0.4 
-40.7 ± 

8.1 
-34.2 ± 7.4 66.4 ± 1.2 56.4 ± 3.6 0.65 ± 0.1 0.67 ± 0.1 

3rd 
3.17 ± 

0.3 
2.77 ± 

0.4 
-40.2 ± 

8.3 
-32.6 ± 8.0 66.7 ± 1.1 54.1 ± 3.5 0.65 ± 0.1 0.69 ± 0.1 

4th 
3.17 ± 

0.3 
2.67 ± 

0.5 
-39.9 ± 

8.7 
-30.5 ± 8.9 67.1 ± 1.3 51.3 ± 4.1 0.65 ± 0.1 0.70 ± 0.1 

5th 
3.19 ± 

0.2 
2.56 ± 

0.5 
-39.2 ± 

8.9 
-28.3 ± 10 67.3 ± 1.2 48.2 ± 5.3 0.65 ± 0.1 0.72 ± 0.1 

Table 5.3: AP attributes of 27 RS cortical neurons in response to 5 current steps (mean ± SD).  

𝐈𝐚𝐩𝐩 
Step 

IFWd2 rapidity 
 (ms-1) 

Threshold 
 (mV) 

Amplitude  
(mV) 

Width 
 (ms) 

1st APs Average 1st APs Average  1st APs Average 1st APs Average 

1st 
2.84 ± 

0.3 
2.57 ± 

0.3 
-34.5 ± 

9.2 
-28.9 ± 

8.8 
79.6 ± 7.8 69.3 ± 9.2 1.43 ± 0.2 1.54 ± 0.3 

2nd 
2.86 ± 

0.2 
2.47 ± 

0.3 
-34.1 ± 

9.90 
-26.2 ± 

9.3 
80.7 ± 7.7 65.7 ± 8.3 1.42 ± 0.3 1.62 ± 0.3 

3rd 
2.89 ± 

0.2 
2.37 ± 

0.3 
-34.1 ± 

10.1 
-23.8 ± 

9.5 
81.6 ± 8.1 61.4 ± 9.1 1.42 ± 0.3 1.68 ± 0.3 

4th 
2.90 ± 

0.2 
2.32 ± 

0.4 
-33.2 ± 

10.7 
-22.1 ± 

10.9 
81.9 ± 8.3 59.5 ± 10.7 1.42 ± 0.3 1.72 ± 0.3 

5th 
2.90 ± 

0.2 
2.26 ± 

0.3 
-32.4 ± 

11.1 
-20.1 ± 

11.5 
81.7 ± 8.6 56.2 ± 11.4 1.42 ± 0.3 1.75 ± 0.3 
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Table 5.4: AP attributes of 17 RS hippocampal neurons in response to 5 current steps (mean ± SD).  

𝐈𝐚𝐩𝐩 
Step 

IFWd2 rapidity 
 (ms-1) 

Threshold 
 (mV) 

Amplitude  
(mV) 

Width 
 (ms) 

1st APs Average 1st APs Average  1st APs Average 1st APs Average 

1st 
5.53 ± 

0.6 
5.20 ± 

0.5 
-36.5 ± 

2.7 
-35.6 ± 

2.7 
78.5 ± 7.4 76.6 ± 6.8 1.04 ± 0.08 1.07± 0.08 

2nd 
5.54 ± 

0.5 
4.84 ± 

0.6 
-35.5 ± 

2.8 
-33.6 ± 

2.8 
77.1 ± 7.4 73.2 6 ± 6.6 1.03 ± 0.07 1.15 ± 0.10 

3rd 
5.57 ± 

0.4 
4.64 ± 

0.7 
-35.1 ± 

2.8 
-32.1 ± 

3.0 
75.8 ± 7.6 71.0 6 ± 6.5 1.02 ± 0.08 1.26 ± 0.15 

4th 
5.45 ± 

0.5 
4.51 ± 

0.7 
-34.5 ± 

3.1 
-30.8 ± 

3.4 
74.9 ± 7.6 69.26 ± 6.5 1.00 ± 0.08 1.38 ± 0.20 

5th 
5.51 ± 

0.6 
4.38 ± 

0.8 
-34.0 ± 

3.4 
-29.4 ± 

3.7 
74.2 ± 7.7 67.56 ± 6.6 1.00 ± 0.08 1.50 ± 0.25 

 Ion concentration changes dictate monotonic variation in AP attribute 

 The generation of neuronal spikes is due to the movement of ions through the voltage-gated 

channels embedded in the membrane wall. Prior works assumed that changes in ion concentrations 

at each end of the channel can be neglected since the AP was viewed as too sudden and brief to 

cause any significant change in ion concentration. The change in ion concentration was primarily 

considered in long-time scales (in seconds or minutes) when the neuron exhibits epileptic events, 

but not usually during the regular firing regime [25], [26], [70]. However, this study supports the 

view that changes in ion concentration influence normal neuronal dynamics both in the short and 

long timescale.  

Varity of HH models for different classes of neurons produces different AP shapes and 

firing patterns but fails to replicate the variation in AP attributes during bursts. Simple model of 

FS cortical neurons (incorporating only I𝑁𝑎+, and I𝐾+) were sufficient to generate the intrinsic 

firing characteristics of experimental recording [82]. In some cases, it was necessary to add slow 

K+ (I𝑀) channels for initial frequency adaption observed in several neuron types [82]. However, 

all these models fail to replicate the monotonic variation in AP attributes observed in intracellular 
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recordings (Figure 5.2). Although the threshold onset potential increases within the first few APs 

due to I𝑀, the threshold stay constant for the remaining APs within a burst (Figure 5.2). Various 

HH types with different rate functions were investigated as well, but none of these models produce 

the attributes variation [5], [71], [82], [115]. However, AP attribute variation emerges once DRP 

is included in any of the HH models. Thus, the remainder of this research employed a simple model 

of a FS cortical neuron with only I𝑁𝑎+and I𝐾+ as the base for any modifications.  

 

Figure 5.2: AP attribute evolution in spike trains resulting from different HH-type models. All the models are 
used as described in Pospischil et al. (2008). The models include three ionic currents ( 𝐼𝑁𝑎+, 𝐼𝐾+ , and 𝐼𝑀), except the 
FS model for a visual cortical neuron (Vc) that includes only 𝐼𝑁𝑎+ and 𝐼𝐾+ . The variation of normalized AP amplitude, 
width, and rapidity is less than 1% for all models. 

Dynamic ion concentration changes are responsible for the monotonic variation in AP 

attributes during neuronal stimulation. Ionic currents partially deplete or accumulate ion 

concentrations in the vicinity of ion channels when those concentrations are restored via diffusion 

rather than directly fixed to bulk reservoir concentrations. The shift in ions concentrations adjacent 

to channels during current pulses alters the channels’ reversal potential, which in turn affects 

neuronal excitability. As shown in Figure 4.3, DRP causes AP attributes to vary in a manner 

resembling experimental data during a step-current protocol. AP broadening and amplitude 

reduction was previously been widely observed in experimental recordings and was attributed to 
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Na+ and K+ channels [10], [117]–[120], where each channels influence the spike train waveform 

differently. The low K+ channels inactivation recovery was shown to be the primary factor in AP 

broadening [119]. On the other hand, reduction in AP amplitude was ascribed to blocking voltage-

dependent calcium current in Purkinje cell [121], and by Na+ channels activation in cortical 

pyramidal neurons [122]. Classical models are inconsistent with these experimental observations, 

unless DRP is considered for both channels. In multicompartment models that account for Na+ 

concentration dynamics only, Zylbertal et al. reproduced the amplitude adaptation in a cortical 

pyramidal cell model but not with a Purkinje cell model, which agrees with experimental 

observations that Na+ channels cause the amplitude reduction in cortical neurons but not in the 

Purkinje cell [70]. Furthermore, we used a simple cortical neuron model that includes Na+ and K+ 

concentration dynamics to reproduce similar AP broadening and amplitude reduction. Although, 

the magnitude of modeled variation is smaller than the observed experimental change, ion 

concentration dynamics could be another factor effecting AP width and amplitude patterns.  

The impact of DRP is more significant on AP initiation attributes (threshold voltage and 

rapidity). Previous studies had linked the variation in AP initiation features to the rate of membrane 

potential changes prior to the AP, stimulus history, Na+ channels density and activation or 

inactivation processes, or AP backpropagation [2], [5], [10], [12], [123], [124]. The maximum AP 

rising slope was used as indication of sodium channel kinetics, and hence as a parameter to analyze 

AP initiation variation. Henze and Buzsaki found high variation in threshold potential and the 

rising slope of individual  hippocampal neurons. They argued that the mechanism behind high 

variation in AP initiation attributes must be activated by preceding individual APs and have long 

recovery time, which is a characteristic of Na+ channels kinetics [12]. These criteria also apply to 

the dynamics of ion concentration, especially Na+, that are change by individual APs and have 
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slow recovery (Figure 5.3). The change in accumulated intracellular Na+ is small but its removal 

is slow [66], while the percentage change in K+ is large but rebalances faster after excitation. For 

example, a rise in EK+ by 16 mV at the end of the current pulse decays back to near the steady-

state value within 3s since (~1s time constant). At the same time, ENa+ drops by a much smaller 

value (~ 1.7 mV), but slowly increases and does not reach its steady-state value after 5s (~11s time 

constant). Thus, the systematic variation in AP rapidity, and to lower extend part of the threshold 

variation, is due to  ENa+ and EK+ change during the pulse, and the slow recovery of ENa+lead to 

the first AP attributes reduction of the subsequent burst. The slight reduction in attributes of the 

first APs of sequentially increasing stimulus pulses diverges from experimental data where AP 

initiation attributes slightly increase (Table 5.2-5.4). However, DRP model can mimic the intra-

pulse variation of AP attribute found in experimental data. 

 

Figure 5.3: Membrane potential (V) and reversal potentials (𝑬𝑵𝒂+ and 𝑬𝑲+) change during two current pulses 
(𝑰𝒂𝒑𝒑 = 3.1 µA/cm2). The right column shows five attributes of each AP as well as the firing rate during the first (blue) 
and second (red) current pulse. Note that the change in 𝐸𝑁𝑎+ during the stimulus pulse does not recover to within 1% 
of its resting value during the 5s between pulses, unlike the change in 𝐸𝐾+ . 
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 Cooperativity and DPR replicates the spike patterns observed in intracellular recordings 

 Clusters of voltage-gated ion channels exist in  in various parts of neurons, creating 

concentrations of ionic currents and thus larger changes in ion concentrations near these clusters.. 

The corresponding changes in reversal potential during AP bursts impact neuron firing dynamics. 

Yet larger concentration changes and thus more impact on AP dynamics results if many of the 

clustered channels open in unison. Cooperative Na+ channels, where the opening of one channel 

enhances the probability of neighboring channels opening, were suggested as one of the 

mechanisms responsible for the rapid AP initiation observed in cortical neurons [2], [5]. The 

interdependence of ion concentration dynamics on more rapid changes in membrane voltage 

associated with cooperative channel gating and the evolution of cooperative gating in the presence 

of altered ion concentrations raise an interesting question about how the combination of 

cooperativity and ion concentration changes modify neuronal firing. The impact of concentration 

change depends primarily on the instantaneous magnitude of ionic current (as described in the 

methods), which is enhanced by cooperative gating. Here, the combined effect of cooperativity 

and DRP is analyzed to investigate how the two mechanisms alter AP attributes and firing patterns 

compared to classical HH and cooperative models and how these changes fit experimental data.  

   Cooperative Na+ gating enhances the variation of AP attributes during spike trains. DRP 

without cooperative gating causes the monotonic variation in AP attributes, but the magnitude of 

modeled variation is smaller than the experimental data, as shown above. Combining cooperativity 

and DRP increases the magnitude of modeled variation in all AP attributes except AP width. The 

insensitivity of AP width to Na+ channel cooperativity is expected since cooperativity increase INa+  and the AP width is mainly determined by IK+ [46], [104]. Although the magnitude of 

modeled threshold change is still small compared to experimental data, the magnitude of changes 
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in AP initiation attributes almost doubled in the presence of strong cooperative Na+ gating (Figure 

5.4). Cooperativity boosted DPR change so that APs fire at a less depolarized (higher) threshold 

and reduced rapidity in response to strong stimulus. For example, with cooperativity the last AP 

was triggered at a 0.85 mV higher threshold and with 21% lower rapidity than the first AP, 

compared to 0.49 mV higher threshold and 12 % rapidity reduction without cooperativity. the 

impact of cooperative Na+ channels on the first spike attrbuites diverges from the classical HH 

model. Cooperative gating kept the first APs shape comparable despite the strength of the stimulus.  

Figure 4.5 illustrates the difference between the models’ impact on AP features, compared to 

intracellular recording. First APs are initiated at a more hyperpolarized membrane potential in 

response to strong stimulus in the HH model. The relationship between stimulus strength and 

threshold is reversed in the presence of cooperative Na+ channels where first spikes are triggered 

at the same threshold voltage (Figure 5.4). Likewise, the first APs rapidity slightly increase with 

each current step with cooperative gating in manner resemble experimental data. The first AP of 

the fifth spike train has 1.5% higher rapidity than the first AP from of first spike train (red Figure 

4.5), which is similar to the FS recordings (1.6% increase in Figure 5.4 blue). The increase in the 

modeled first AP rapidities is almost the same with or without DRP. However, the systematic 

attribute variation disappears without DRP. Therefore, the results show that both observed spike 

train features are only replicated by combining DRP and cooperative Na+ gating, where the 

magnitude of modeled variation agrees with experimental observations for some AP attributes. 

 



84 

 

 

Figure 5.4: Comparison between AP attributes in different modeling conditions and experimental recordings. 
Left: the model was run with fixed dynamical reversal, black circles represent the values obtained from the original 
HH model, and red circles represent the values obtained from the cooperative channels model (p = 50% and KJ = 400 
mV). Middle: the model with dynamical reversal potential with independent Na+ channels (black circles), and with 
50% cooperative Na+ channels (red circles, KJ = 400 mV). The models were evoked by 5 1s-current steps (1.6, 2.4, 
3.2, 4, and 4.8 µA/cm2) with 5s inter sweep interval. Right: AP rapidity and threshold difference from a somatosensory 
cortical neuron in response to five step current (0.5s steps of 80, 120, 160, 200, and 240 pA with 6.5s intra sweep 
interval) [78]. 

 Cell volume and pump strength effect on AP attributes 

The magnitude of AP attributes variation differs significantly between individual neurons. 

For example, the reduction in average rapidity ranges from 10% to 43% in the recordings from FS 

cortical neurons. The spread in the magnitude of monotonic variation was also observed in 

hippocampal and cortical RS neurons, indicating that other factors might contribute to the observed 

attribute variation. Neurons volume changes during abnormal and normal activities, and even 

neuron dilation during individual AP has been estimated [125], [126], where the neuron size 

stability is regulated through ions pump [127].  Thus, the ratio of intracellular to the extracellular 

volume of the cell, Na+/K+ pump strength, and Na+ concentration near the pump were adjusted to 

explore their impact on spike train patterns. 

Altering cell volume ratio significantly impact the magnitude of AP attributes variation 

(Figure 5.5). The rate of concentration change is directly impacted by the intracellular volume to 
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the extracellular volume ratio (see methods).  A ratio of 7 was reported to reflect the normal 

condition value (β=7) [26]. Increasing the volume ratio did not influence the first AP of each pulse 

but did lead to higher variation of AP attributes during pulses, as shown in Figure 4.6. The change 

in the magnitude of variation is expected since the volume ratio is directly proportional to ion 

concentration dynamics (see methods). However, although all the results presented here are from 

normal firing behavior, unrealistic change in cell volume (such as increasing the volume ratio by 

50%) is needed to observe any substantial difference in the neuron dynamics. A 60% swelling was 

observed in pyramidal cortical neurons during anoxic depolarization [128], and even a 10% change 

in the cell diameter can lead to seizure-like events [125]. Furthermore, pyramidal neurons were 

shown to maintain their volume during normal condition [129]. Nonetheless, from a modeling 

perspective, neuron swelling can influence normal neuronal firing behavior and its effect increase 

in the presence of cooperative channels.     

 

Figure 5.5: Impact of the intracellular to extracellular volume ratio on AP threshold and rapidity. The AP 
rapidity is normalized to the rapidity of the first spike and ∆𝑡ℎ𝑟= 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 − 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1𝑠𝑡. Left: the values with 
no cooperative Na+ channels. Right: the values with 50% cooperative Na+ channels (KJ = 400 mV). The results were 
obtained with 3 steps current and intra sweep interval of 5 s.  

 The Na/K pump strength was modeled with two extreme values to explore the Na/K pump 

impact on AP onset dynamics. The average pump strength was reported to be around 1.1 mM/s 

[67]. An order of magnitude increases in Na/K pump speed made minimal changes to predicted 
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AP initiation attributes while an order of magnitude decrease led to either much smaller variation 

of attributes, and thus widened disagreement with experimental observations or in the absence of 

cooperativity pathological behavior of runaway ion concentration changes (Figure 5.7). 

Furthermore, changes to the pump activity can lead to abnormal neuronal activities such as seizures 

[130], and can desynchronizes neuronal firing and transmitter release [131].  

 

Figure 5.6: Impact of the Na/K pump strength on AP threshold and rapidity. The AP rapidity is normalized to 
the rapidity of the first spike and threshold difference. Left: the values with no cooperative Na+ channels. Right: the 
values with 50% cooperative Na+ channels (KJ = 400 mV). The results were obtained with 3 steps in current and inter-
pulse intervals of 5 s. Note that the scale is not the same between independent and cooperative gating to show the 
difference in all three cases.  

 

Figure 5.7: Impact of the Na/K pump strength on ion concentrations and reversal potential. The dashed-dotted 
line represents the concentrations and reversal potential in the presence of 50% strongly cooperative Na+ channels (KJ 
= 400mV). Note that the changes with cooperative channels and fast pump strength (dashed-dotted line) are more 
slightly more significant than the case with no cooperativity.  
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Finally, the impact of Na+ diffusion between channels and the pump is investigated to see 

if it could account for the underestimation of changes in threshold potential and AP amplitude. 

The pump current is determined by [K+]o and [Na+]i, assuming that any change in [Na+]i is 

immediately available to Na/K pumps. Such an assumption implies that the spacing between the 

Na+ channels cluster and the nearest pumps is either very small or the diffusion of ions is fast so 

that [Na+]i is assumed to be the same at the channels and pumps.  We hypothesized that [Na+]i is 

near the channels must be higher than near the pump to drive diffusion between them. So, the 

model was adjusted to have [Na+]i for the Na+ channels and [Na+]p for Na/K pump (see methods). 

The distance between the channels and the pump (∆𝑥) and Na+ diffusion coefficient (𝐷𝑁𝑎) were 

varied. The distance was varied from 0.25 µm, which the approximate diameter of observed Na+ 

channel somatic cluster [132], to 25 µm. The diffusion constant,𝐷𝑁𝑎, was varied from the reported 

value 0.3 to  0.03 µm2/ms [70]. Even across this broad range of parameters, the results did not 

show any significant differences with or without strong cooperative gating (Figure C1-2). The 

difference in Na+ concentration between the pump and channels site is too small to cause any 

noticeable effect on AP attributes. Therefore, even if there might be a difference in concentration 

between the pump and the channels, our simulations did not reveal any change in AP attributes. 

5.4 Discussions  

 Here we described a single compartment conductance-based model that takes into account 

cooperative channel gating and the dynamics of ion concentration in normal neuronal conditions. 

Our analysis shows that the combined model reproduces the spike train pattern observed in central 

mammalian neurons, where we examined the impact of several factors on neuronal dynamics. The 

results show that the dynamic change of reversal potential due to changes in the local ion 
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concentration alters the AP attributes during neuronal firing, and the level of AP attribute change 

is enhanced in the presence of a fraction of cooperative Na+ channels.  

 Factors influencing neuronal variability  

 Understanding AP initiation is an integral part of determining how neurons encode 

information. The variability in neuronal response has interested scientists for decades, where the 

variability was observed between individual  neurons of the same cell type [133], and for the same 

neuron in response to the same DC stimulus [14]. The observed variability of neuronal response 

could arise from several factors such as the diversity in voltage-gated ion channel types and 

densities, diversity of synaptic inputs, or the neuron intrinsic properties [13], [14]. Here, we 

observed variability in neuronal response, but the variability followed a specific pattern across 

different cell types. Applying multiple consecutive step currents, the evoked spike trains have 

similar first AP attributes regardless of the amplitude of the stimulus. Then, the AP attributes 

continuously change, and the parameters change magnitude increases with the amplitude of the 

stimulus. Even though the extent of systematic variation in AP attributes differed between 

individual neurons, the two spike train features were observed in all the neurons analyzed here. 

For example, the first spikes rapidity of 27 RS cortical neurons were comparable (2.90 ± 0.2 ms-

1) and higher by 17% than average AP rapidity (2.26 ± 0.3 ms-1) in response to strong stimulus 

(Table 5.3). Mainen and Sejnowski showed that the timing of first spikes was tightly locked to the 

stimulus onset while being highly variable for last spikes [14].  Our result shows similar 

observation regarding the first AP spikes, but we observed similar pattern for last spike parameters.  

 The shape of action potentials differs significantly between neuron types. FS neurons 

exhibit narrower AP width and higher frequency than RS neurons [11], [85], [94]. Previous body 

of work associated the activity-dependent decrease in AP amplitude and broadening AP width to 
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Na+ and K+ channels [10], [117]–[119]. Geiger and Jonas showed the broadening of AP width in 

somatic granule cell AP and presynaptic hippocampal mossy fiber boutons APs  [119], similar to 

the observed AP width pattern shown above (Figure 4.1). They found that broadening of AP width 

is mediated by fast-inactivating K+ current [119]. While the model could not produce the observed 

percentage of AP broadening, the results indicates that changes in K+ concentration could be 

among the factor contributing to AP broadening during firing.  

The variation in AP initiation parameters was observed in hippocampal and cortical 

neurons. Threshold potential variation was linked to previous neuronal activities and Na+ channel 

gating. The threshold variation observed in pyramidal hippocampal neurons was attributed to the 

effect of previous APs, within 1s, on subsequent APs and the inactivation Na+ channels [12]. 

Higher threshold was found to coincide with lower spike rise (the slope of the AP from resting 

potential to the AP peak) as well, which is an indication of the degree Na+ channel inactivation 

[10] . Our analysis of publicly available experimental intercellular recordings agrees with these 

observations that higher threshold coincides with lower AP rapidity. A simple one-compartment 

model that includes DRP replicates the relationship between threshold and rapidity, and shows a 

good correspondence with experimental observations for AP rapidity, but not threshold. The 

magnitude of simulated rapidity variation was within the lower range of the observed change in 

experimental recordings, indicating that ion concentration changes could be responsible for the 

variation in AP initiation. Thus, ion concentration dynamics can have a major role in neuronal 

excitability during normal neuronal dynamics.  

  Ion concentration impact on spike train is enhanced with cooperative gating 

The movement of ions mediates neuronal signaling through the voltage-gated channels, 

but usually ignored in neuronal models However, fluctuation in [Na+] and [K+] was observed in 
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normal cortical neuron behavior[22]–[25]. In addition, increasing [Na+]i was shown to facilitate 

seizure termination [66], and their slow dynamics can impact normal neuronal firing and synaptic 

activities [70]. Here, we showed that the continuous change in AP attributes due to concentration 

fluctuations alter normal spike train patterns, especially AP rapidity. The slow and steady increase 

in ENa+ between current steps causes the change in first APs' rapidity. Combining cooperativity 

and dynamical reversal potential offset the slight decrease in the first spikes rapidity and enhance 

the magnitude of modeled variation. Cooperative Na+ channels was proposed for the sharp AP 

onset variability and rapidity in cortical neurons [2], [5]. Thus, cooperative gating can set the level 

of AP initiation attributes, and their impact on ion concentration dynamics increase the magnitude 

of tilt during bursts.  The two bursts’ features could not be replicated in a variety of HH-type 

models without including DRP and cooperative gating.  

5.5 Conclusions 

Analysis of publicly available experimental intercellular recordings for three different 

neuron types show that AP attributes monotonically change during bursts while the first APs of 

each burst have comparable APs attributes. A single compartment model that includes DRP 

replicated the observed trends in AP attributes, and adding cooperative Na+ gating enhanced those 

trends. The magnitude of modeled variation agrees with experimental observations for some AP 

attributes (rapidity, width) but not threshold and amplitude. Further investigations are needed to 

resolve this disagreement. 
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6 CONCLUSIONS 

 The overall objective of this Ph.D. dissertation is to develop analysis tools and construct 

computational models to study the AP initiation mechanism in central mammalian neurons. To 

achieve these goals, the proposed tool and model were verified against electrophysiological 

recordings from different neuron types. The rapidity quantification methods were judged based on 

their sensitivity and specificity to sodium channels using a classical HH model, the degree of 

variation among the same neuron types, and the degree of classification ability among different 

cell types using electrophysiological recordings. Then, a conductance-based model was developed 

to replicate AP train pattern in response to multiple current steps. The following sections 

summarize the achieved milestones and future works based on the findings.  

6.1 Two novel methods for AP rapidity quantification methods 

Two novel methods were developed for AP rapidity quantification. Previous quantification 

methods are affected by on the researcher's judgment on defining where the AP rapidity is 

measured. Thus, many studies exploring the same phenomena reported different values, 

complicating the comparison between their findings. The subjectivity in quantifying AP rapidity 

in prior methods highlighted the need for a more systematic and consistent method. Therefore, we 

proposed two novel methods to quantify AP rapidity that are well-defined and provide higher 

sensitivity and specificity to Na+ channels kinetics than prior methods. The proposed methods were 

based on the full-width and half-width at half the rising phase peak of the membrane potential 

second-time derivative, where the rapidity is defined as the inverse of the full-width at the half 

maximum of the V̈m peak (IFWd2), and the inverse of half-width at the half maximum of the V̈m 
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peak (IHWd2). The sensitivity and specificity to Na+ channels kinetics were verified using a 

conductance-based model.  

The IFWd2 and IHWd2 methods showed higher sensitivity to Na+ channels kinetics than 

the standard AP rapidity quantification method, the phase slope method. The two V̈m peak methods 

showed significantly higher sensitivity to all Na+ channels parameters and maximum conductance 

than the phase slope method. On the other hand, the phase slope method showed higher sensitivity 

to K+ channels parameters and maximum conductance than the proposed methods. For example, 

IFWd2 rapidity doubled by increasing Na+ conductance 5-folds, but only 2% with K+ 

conductance. In contrast, the phase slope increased by 14% with five times the Na+ conductance 

and 5% with K+ conductance. Thus, we showed that the two V̈m peak methods are better 

approaches to quantitively study Na+ channels kinetics and the factors that contribute to AP onset 

dynamics in experimental data.  

6.2 AP rapidity as a tool to classify neuron types 

Differences in the AP shapes between neuron types, including quantitative features such 

as the AP width and amplitude, are well-known in the literature. However, AP onset rapidity had 

not been reported as one of the AP features used in classifying neuron types. Therefore, the V̈m 

peak width methods alongside the two prior methods were used to quantify the rapidity of four 

central mammalian neuron types and analyze their ability to use rapidity as a classification 

parameter. The results showed that IFWd2 and IHWd2 methods provide a smaller relative variation 

among APs from a single neuron type while still distinguishing between different neuron types. 

Rapidity obtained using the phase slope and error ratio methods were significantly impacted by 

the selected data, criterion level, or the data interpolation function, which hampers their ability to 
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categorize neuron types when used with different researchers’ parameters. On the other hand, the V̈m peak width methods do not depend on subjective data selection, and they are minimally 

impacted by the choice of interpolation functions. Such benefits were reflected in the methods' 

ability to classify neuron types. 

Analysis of rapidity shows a significant difference between the four neuron types 

(pyramidal hippocampal and cortical neurons, hippocampal PVBCs, and FS cortical neurons). The V̈m peak width methods provide better separation between different cell types compared to the 

phase slope and the error ratio methods based on parametric and non-parametric statistical tests. 

In fact, the IFWd2 method provides the highest classification ability of all the methods and hence 

provides a sensitive tool to investigate the mechanisms impacting AP dynamics. Moreover, the 

other AP feature with a good classification ability was the AP width, which is known to be one of 

the best classification parameters. Interestingly, the utility of both AP onset rapidity, which could 

be associated with Na+ channels, and AP width, which is mainly associated with K+ channels, to 

differentiate neuron types is intriguing since the two underlying mechanisms of Na+ and K+ 

channel types need not be correlated.  

6.3 Mechanisms underlying AP variation in intracellular recordings   

Variation in neuronal response was observed among the same neuron type from the same 

brain regions and even in individual neurons in response to the same stimulus [14]. The source of 

such variation can arise from several factors such as channel types and densities, dendritic tree 

size,  AP initiation sites, or the intrinsic neuron properties [13]–[15]. Although neuronal response 

variability was previously shown in individual neurons receiving the same DC current, we showed 

that some variability is more systematic than random. An evoked spike train exhibits two 
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distinctive features in response to multiple-step currents. The first APs in a spike train usually have 

comparable attributes despite the stimulus strength, while the following APs during each stimulus 

pulse exhibit a continuous change (variation) that increases with the stimulus strength. The two 

distinctive spike train features were observed in 52 neurons of three different types, indicating a 

common mechanism that determines these features despite their biological differences.  

We developed a conductance-based model that replicates the two distinctive spike train 

features observed in mammalian neurons. The observed trends could not be replicated using 

various standard computational models, indicating that the mechanism responsible for the 

attributes variation deviates from the classical models. However, the attributes variation was 

reproduced once dynamical reversal potential was incorporated into the models. The first spikes 

attributes can be better represented using cooperative Na+ gating, which also boosted the variation 

magnitude for some attributes to match the experimental data, but failed to reproduce the 

magnitude of threshold variation. Thus, different mechanisms might be responsible for the high 

threshold variation in cortical neurons such as the conductance stimulus history or changes in the 

availability of active sodium channels (Na+ inactivation mechanism). Finally, several model 

parameters were adjusted to investigate their impact on spike train patterns. Increasing cell volume 

ratio increases dynamic ion concentration changes and thus AP parameter variation, but realistic 

cell volume ratios still did not significantly affect AP bursts pattern. We conclude that changes in 

ion concentration dynamics are responsible for some of the AP parameters' variation during regular 

neuronal firing, and cooperative gating can enhance their effect. Therefore, the two mechanisms 

could contribute to some of the observed variability in neuronal response. 
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6.4 Future works   

 AP rapidity measured at the single-channel level    

AP rapidity is a relatively new term in neuroscience. The importance of rapidity can 

probably trace back to the Naundorf et al. paper challenging the general view regarding Na+ 

activation mechanisms [2], [46].  Thus, it would be of interest to study changes in AP rapidity 

from single-channel recording and how different mutations could affect AP generation. A 

complete analysis of the effect of channels mutations on AP rapidity could be valuable, especially 

with recent studies indicating that Na channels physically interact and specific mutations impaired 

the coupled gating of Na+ channels [17], [18]. To my knowledge, such a recordings are not 

available in public databases., which pose an obstacle  for such a study. However, in collaboration 

with the Tamkun lab, recordings from three SCN8A encephalopathy-causing mutations in one of 

the Na+ channel subtypes, Nav1.6, were analyzed. The initial results indicate a reduction in the 

mean IFWd2 rapidity with some of these mutations, while other mutations did not alter the mean 

rapidity. Interestingly, the V216D mutation, the mutation associated with the most severe 

phenotype and the one causing the most significant electrophysiological changes [134], was the 

mutation that produced similar mean rapidity to the wild-type. On the other hand, the G214D and 

N215D mutations, which produced similar current density to the wild type, according to Solé et 

al. (2020), have a slower rapidity [134]. However, it should be noted that the rapidity results were 

not sufficient to make any conclusions since the number of recordings for each mutation is small, 

and the recording noise needs to be carefully filtered before any analysis. Further filtering and 

analysis for more recordings will provide a better understanding of the role of Nav1.6 mutations 

on AP rapidity. Analyzing the impact of these three mutations on AP rapidity could provide an 

insight into the mechanism of disease-causing mutations.    
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In addition to Nav 1.6 mutations, analysis of the abrupt spikes in retinal ipRGCs is a topic 

of interest. In collaboration with the Vigh lab, I analyzed AP trains elicited by intrinsically 

photosensitive retinal ganglion cells (ipRGCs) in response to dim and bright light stimuli. Initial 

results indicate that APs evoked by dim light were more rapid than APs evoked by bright light, 

which agrees with the idea of activity-dependent plasticity observed in retinal cells [135]. 

However, similar to Nav 1.6 data, more recordings and data preparation are needed before 

analyzing the AP rapidity due to noise in the existing recordings.  

 Improvement in Na+ concentration modeling 

To better understand the role of Na+ concentration on neuronal firing, missing mechanisms 

might be necessary to include in computational models. Na+ concentration dynamics are usually 

determined by the interactions of Na+ current and Na+/ K+ pump in models. However, different 

mechanisms such as astroglia uptake and Ca+/ Na+ exchanger could influence Na+ concentration. 

Astrocytes were found to affect Na+ concentration fluctuations and vice versa [136]. An increase 

in the glia sodium influx was observed during action potential generation, indicating the important 

rule of glia cells in regulating Na+ concentration [137]. However, in computational models, the 

glia-neuron interaction is only considered to influence K+ concentration [26]. Ca+/ Na+ exchanger 

is another factor that could influence Na+ concentration and subsequently AP generation. 

Intracellular Na+ concentration was shown to regulate the intracellular Ca+ stable state through 

Ca+/ Na+ exchanger. Also, the exchanger was shown to reverse their direction under normal 

conditions [114], which raises an interesting question on how it affects neuronal dynamics and tis 

firing pattern.  
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 Cooperativity model that accounts for channels spacing and their influence on conduction 
velocity  

 Published cooperative Na+ channels models were based on the mean-field approximation, 

in which the cooperativity strength constant was varied until the model replicates the sharp AP 

observed in electrophysiological recordings. While these cooperative models can replicate the 

sharp cortical AP onset, they did not provide insight into the coupled channels' spatial arrangement. 

Since channel co-localization is a prerequisite for cooperative gating [21], a cooperative Na+ 

channels model that considers the channels spacing is of interest. The model could be constructed 

to incorporate the cable equation and cooperative model. Although previous studies such as Öz et 

al. (2015) analyzed the impact of cooperative gating in a multicompartment model, the focus will 

be on continuously varying the intra-channel spacing within a cluster. Moreover, another future 

project is to investigate the impact of cooperative Na+ channels on the velocity of AP propagation. 

Freeman et al found that the density of different Na+ channel types changes during neuron 

maturation [138]. Interestingly, they found that channels clustering accelerate conduction velocity 

prior to myelination [138]. Thus, studying the effect of somatic cooperative Na+ channels on the 

velocity of AP propagation in myelinated and unmyelinated axons could show another functional 

role of cooperative gating during maturation.  
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Appendix A: Supporting information for neuron classification (published) 

Appendix A contains the supporting information published with the PLOS One paper.  

 

Figure S1: Pooled mean values for hippocampal pyramidal neuron rapidity. The first 9 neurons are deep 
pyramidal neurons, while the following 8 neurons are superficial pyramidal neurons. Blue circle: values using spline 
interpolation. Red diamond: values using pchip interpolation.    

 

Figure S2: Pooled standard deviation values for hippocampal pyramidal neuron rapidity. The first 9 neurons are 
deep pyramidal neurons, while the following 8 neurons are superficial pyramidal neurons. Blue circle: values using 
spline interpolation. Red diamond: values using pchip interpolation.  
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Figure S3: The effect on the error ratio of changing the upper and lower limits of data selection is compared 
for two neurons. Top left: the error-ratio value when the upper limit was set at varying voltages above onset potential 
and the lower limit was 9 ms before onset. Top right: the error-ratio value when the upper limit was set at varying 
percentages of the maximum 𝑉̇𝑚 and the lower limit was 9 ms before onset. Bottom left: the error-ratio value when 
the upper limit was set at varying absolute voltages above onset potential and the lower limit was 5 ms before onset. 
Bottom right: the error-ratio value when the upper limit was set at varying percentages of the maximum 𝑉̇ and the 
lower limit was 5 ms before onset. Blue diamonds represent the error ratio for the neuron labeled AL 133, and orange 
circles represent the error ratio for the neuron labeled AL 215 [19]. 

 

Figure S4: The impact of interpolation function on the shape and thus height of the 𝑽̈𝒎 peak. Black circles 
represent the 𝑉̈𝑚 points calculated from the raw recordings before applying any interpolation functions. The dotted red 
line shows the 𝑉̈𝑚 trace after applying the quadratic regression interpolation function (pchip), while the dashed blue 
line shows the 𝑉̈𝑚 trace after applying the cubic spline interpolation function (spline) 
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Figure S5: The impact of the onset criterion level on the phase slope for hippocampal neurons. Blue circles show 
the mean phase slope value at different criterion levels for the hippocampal RS pyramidal neurons. Red squares show 
the mean phase slope value at different criterion levels for the hippocampal FS PVBCs. All APs that have maximum 𝑉̇𝑚 less than 45 mV/ms were excluded. Note that the rapidity for RS and FS hippocampal neurons cross using the 
phase slope method. 

 

Figure S6: The impact of the onset criterion level on the phase slope for cortical neurons. Blue circles show the 
mean phase slope value at different criterion levels for the cortical RS pyramidal neurons. Red squares show the mean 
phase slope value at different criterion levels for the cortical FS neurons. All APs that have maximum 𝑉̇𝑚 less than 45 
mV/ms were excluded.  
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Table S1: Electrophysiological properties using the pooled mean and standard deviation 

 
Cortex Hippocampus 

RS FS t  d RS FS t d 

n 27 7 ---- ---- 17 6 ---- ---- 

IFWd2 

(ms-1) 
2.1 ±0.3 2.7± 0.2 

4.94e

* 
2.38 4.3 ±0.5 6.9 ±0.4 

11.29
e* 

5.61 

IHWd2 

(ms-1) 
4.0 ±0.5 

4.6 ± 
0.3 

2.91e

*  
1.41 7.2 ±1.1 

12.1 
±1.0 

9.18e* 4.75 

Phase Slope 

(ms-1) 
6.9 ±1.3 

8.1 ± 
1.1 

2.27e

* 

1.00 
47.8 

±64.6 
10.4 
±4.5 

2.37* 0.82 

 
35.2±15.2

a 
11.1 
±4.6a 

5.75* 2.15 

Error ratio 

(dimensionles

s) 

7.9 ±6.4 
11.2 
±7.5 

1.85e  

0.48 6.1 ±2.7 0.7 ±0.5 7.92* 2.79 

 8.5 ±2.5 b 8.5 ±2.8b 0.00e 0.01 

Amplitude 

(mV) 

61.7 ±8.
6 

58.0 
±5.2 

1.06e 0.51 67.5 ±5.3 
48.9 
±2.1 

11.96
* 

4.58 

Width 

(ms) 
2.0 ±0.3 

0.8 ± 
0.1 

19.0
2* 

5.59 1.6 ±0.4 
0.3 

±0.01 
13.81

* 
4.74 

Onset 

potential 

(mV) 

-
26.3±6.

0 

-
39.5±3.

3 

5.56e

*  
2.74 

-30.2 
±3.5 

-33.4 
±1.1 

3.30* 1.23 

All data are expressed as mean ± SD. The RS neurons is pyramidal neuron, and the FS hippocampal neurons are 
PVBCS. a using piecewise cubic interpolation. b the upper limit was set to 3 mV above the onset. * the difference is 
significant at p<0.05. d is the Cohen’s d effect size, and t is the t-score. For the t-score, e indicate that the equal variance 
hypothesis was accepted. 

Table S2: Two-tailed p-value from the t-score between the IFWd2 values from different neuron types, and Cohen’s d 
effect size (in parentheses). Green cells indicate a p-value below 0.05. 

AP width 
Cortex Hippocampus 

PCs FS PCs PVBCs 

Cortex 
PCs  <0.0001 

(2.34) 
<0.0001 
(1.46) 

<0.0001 
(3.04) 

FS 
<0.0001 
(2.34) 

 <0.0001 
(3.08) 

<0.0001 
(4.09) 

Hippocampus 
PCs 

<0.0001 
(1.46) 

<0.0001 
(3.08) 

 <0.0001 
(5.53) 

PVBCs 
<0.0001 
(3.04) 

<0.0001 
(4.09) 

<0.0001 
(5.53) 
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Appendix B: Supporting information for neuron classification (not published) 

Appendix B contains some of the results and analysis related to the PLOS One paper 

(chapter 3), but it was not part of the published paper. Also, it contains extra analysis such as using 

outlier detection methods on the recordings, which was not part of paper. The extra analysis was 

done after the paper was published.  

 Error ratio Quantification 

 The error ratio was calculated in four steps. First, the AP peak and the maximum V̇ 

value. Second, the AP onset voltage was defined as the voltage at the best breaking points of a 

continuous piecewise linear function (Eq. 4) fitted to the AP trace 5 ms from its peak to 0.1 ms 

before peaking. Third, using the identified AP onset, the AP portion in the phase plot was selected 

to be 5 ms before the onset voltage to either 20-30% of the maximum V̇ value or 3-10 mV above 

onset. Finally, the selected portion in the phase plot was fitted to an exponential function and 

continuous piecewise linear function. The error ratio value is defined as the mean square error 

(MSE) of the exponential fit to the MSE of the continuous piecewise linear fit.  

The exponential fit function was set to be:  

𝑦 = 𝑎 + exp(𝑐 × (𝑥 + 𝑏))     (Eq. 1) 

Here we used MATLAB fit function with initial guess for the three parameters a, b, and c. 

The initial guess was obtained using MATLAB exp1 fit function. The exp1 function is define as 𝑦𝑒𝑥𝑝1 = 𝑎𝑒𝑥𝑝1 × exp(𝑏𝑒𝑥𝑝1 × x). We fit the selected AP portion on the phase plot to exp1. Then, 

we assumed that at the beginning:    

• 𝑐 = 𝑏𝑒𝑥𝑝1 



112 

 

• 𝑏 = 0 
• a + exp (cx(1)) = exp(bexp1x(1)) 

Thus,  

𝑎 = y(1) − exp( 𝑏𝑒𝑥𝑝1x(1))      
𝑏 = x(1) − ln( |x(1)|) − ln( |𝑎|)𝑐      

Although these initial guesses for a, b, and c might not be accurate, it provides a good 

starting point to solve the exponential fit function and find the best values that minimize the MSE 

of the exponential function from the data points. We used this approach instead of solving the 

exponential fit function with predetermined value of the parameter c because it requires 

significantly less computation time and provide smaller MSE value.  

The continuous piecewise linear fit function was set to be:  

𝑦 = {𝑎1𝑥 + 𝑏1                0 < 𝑥 < 𝐶𝑎2𝑥 + 𝑏2         𝐶 < 𝑥 < 𝑋𝑚𝑎𝑥      (Eq. 4) 

 Where C is the breaking point between the two linear fit, at which two linear parts 

converge, and 𝑋𝑚𝑎𝑥 is the maximum value of the breaking point. The remaining parameters was 

calculated using MATLAB polyfit (the first order polynomial fit) for the first line. for fitting the 

second line, we used the first order MATLAB polyfix function, which is a polynomial fit but ensure 

that the second line fit is continuous to the first fit.   

 Impact of the data selection on the error ratio  

The choice of the upper limit can alter the error ratio value. The impact of the upper limit 

can be demonstrated by comparing two neurons, one showing the slowest AP onset using all 

quantification methods (labelled AL 215 which is neuron number 10 in figure 2), and another 
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neuron showing a fast AP onset (labelled AL 133 which is neuron number 1 in figure 2) by all the 

quantification methods.  The difference in AP onset dynamics can be clearly seen in the phase plot 

of the average AP for the two neurons (Fig. B1).   

 

Figure B1: phase plot of averaged APs from two neurons. AL 133 and AL 215 represents the neurons labels in the 

GigaScience Database [19]. 

The slowness of the neuron labeled AL 215 is clear with the error ratio method where the 

error ratio is 1.5, which about 80 % below the average rapidity of all the RS neurons analyzed 

here. For the fast AL133 neuron, the error ratio is 17.3, which is more than double the average 

value. When changing the selected AP portion for fitting, the error ratio value can be significantly 

altered with neurons exhibiting fast AP onset but has a lower impact on neurons with a slow onset 

neuron.  For example, while setting the lower limit to be 9 ms before onset potential, the mean 

error ratio the neuron labeled AL133 varied from around 7 to 22 as the upper limit of the fitted 
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portion was varied from 20% to  40% of the maximum 𝑉̇. In contrast, the mean error ratio for a 

slow neuron is minimally impacted by the choice of the upper limit, in most cases. For example, 

changing the upper limit only increases the error ratio value from around 1 to less than 3, whereas 

the only significant change is observed when the lower limit was set to be 5 ms before the onset 

and the upper limit to be more than 3 mV above onset (Fig. S3 bottom left). Thus, these results 

show the huge impact of the limit of AP portion on the error ratio value, and hence its implication 

on categorizing a neuron as having a fast or slow onset.  

The lack of distinguishability between the different neuron types using the error ratio could 

be because the error-ratio method is more like a binary method that can indicate whether the 

rapidity of AP onset is slow or fast, but not a continuous range in the same way as the other 

methods. Therefore, the error ratio can indicate the dividing line separating slow and fast onset for 

the other quantification methods. For that, here we can use the AP rapidity of the neurons with 

slowest onset (AL 215) as the dividing line. These values correspond to 1.2 ms-1 using the IFWd2 

method, 2.0 ms-1 using the IHWd2 method, and 2.8 ms-1 using the phase slope method.  

 Differences among hippocampal pyramidal neurons  

The PV+ basket cells have been found to evoke greater inhibition to the deep pyramidal 

neurons while receiving more frequent excitation from the superficial pyramidal neurons [88]. 

Here, we looked at the electrophysiological properties of these subpopulation of the hippocampal 

pyramidal neurons. The results show that the hippocampal pyramidal neurons have the same 

electrophysiological properties despite their location. Although, the deep pyramidal hippocampal 

neurons show slightly higher AP amplitude, rapidity and lower AP onset voltage and width than 

the pyramidal superficial neurons, but the difference is not significant. Also, for the hippocampal 

pyramidal neurons, we did another analysis that included the APs that were separated by less than 
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30 ms (the new limit was set to 12 ms (see Methods)). The 30 ms separation limit between APs 

was chosen as the onset potential of two APs with short inter-spike-intervals, ISI, (<25 ms) 

between them are substantially different [6]. Changing ISI lead to increase the APs analyzed in 

each recording by around 34 APs, on average.   Nonetheless, including these APs did not cause 

any significant difference for all the electrophysiological properties as shown in Table B1. Thus, 

regardless of the time limit between the APs, the hippocampal pyramidal neurons show similar 

electrophysiological properties in the data analyzed here. 

Table B1: Comparison between deep and superficial PCs with 12 and 30 ms ISI.  

PCs 

location 

ISI 

(ms) 

IFWd2 

(ms) 

IHWd2 

(ms) 

Phase slope 

(ms) 

Amplitude 

(mV) 

Width 

(ms) 

Onset 

(mV) 
APs 

superficial 

30 
4.1 ± 

0.5 

7.1 ± 

1.0 
53.4 ± 86.7 65.1 ± 5.9 

1.7 ± 

0.4 

-28.8 ± 

4.3 
131 

12 
4.1 ± 

0.5 

7.2 ± 

1.0 
50.1 ± 199 65.1 ± 5.7 

1.7 ± 

0.4 

-28.7 ± 

4.1 
174 

deep 

30 
4.5 ± 

0.5 

7.3 ± 

1.2 
43.3 ± 38.9 69.3 ± 4.9 

1.5 ± 

0.3 

-31.3 ± 

2.8 
146 

12 
4.5 ± 

0.4 

7.3 ± 

1.0 
43.7 ± 27.6 69.5 ± 4.5 

1.6 ± 

0.3 

-31.4 ± 

2.6 
172 

 AP onset potential quantification methods 

 The definition of AP onset potential is a subjective process [8], where multiple methods 

are used to estimate AP onset potential. One of the most common method define the AP onset 

potential as the point at which the AP rate of change exceed a certain value [2], [3], [5]. Other 

definitions used the potential correspond to the maximum V̈ [139], the maximum V⃛ value [12], or 
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the best breaking point of continuous piecewise linear function (AP BP in Table B2) [9]. Also, we 

define the AP onset potential as the potential correspond the best breaking point of continuous 

piecewise linear function on the phase slope (phase plot BP in Table B2). Here, we apply these 

five quantification methods to the hippocampal and cortical neurons and compare the results. Table 

B2 summarize the results of the five AP onset potential quantification methods.  

Table B2: Comparison of the AP onset potential quantification methods. 

methods sPCs (hipp.) dPCs (hipp.) PVBCs (hipp.) RS (cortex) FS (cortex) 

𝑽̇ =10 mV/ms -28.8 ± 4.3 -31.3 ± 2.8 -33.4 ± 1.1 -26.3 ± 6.0 -39.5 ± 3.3 

𝑽̈ max -25.6 ± 4.7 -27.6 ± 3.6 -31.5 ± 1.4 -19.3 ± 5.0 -30.5 ± 2.9 

𝑽⃛ max -33.4 ± 3.4 -35.7 ± 2.1 -41.8 ± 2.2 -32.3 ± 5.5 -48.5 ± 2.5 

AP BP -26.7 ± 4.0 -30.0 ± 2.4 -30.3 ± 1.1 -23.3 ± 5.3 -35.3 ± 2.8 

Phase plot BP -29.2 ± 4.1 -31.6 ± 2.7 -33.1 ± 1.2 -27.9 ± 5.6 -40.7 ± 3.0 

 The V⃛ method produces the lowest AP onset potential and the smallest RSD, whereas the 

AP BP produce the highest onset potential values and the highest RSD. Also, the results show that 

the V̇ method at 10 mV/ms produce AP onset potential values that are very similar to the values 

given by the PS BP method. These results indicate that V̇ method estimation of the onset potential 

reflect the kink at the best breaking point in the phase plot in very accurate way, even though the 

change in the criterion level could change the rapidity value significantly as shown in the results 

section. For example, for hippocampal PVBCs, shifting the criterion level from 10 to 40 mV/ms, 

lead to 1.1 mV change in the AP onset value while the phase slope increased from 10.6 to 48.6 ms-
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1. Therefore, although the V̇ method is not the best way to measure the AP rapidity, it provides the 

easiest way, with a good approximation, to measure the AP onset potential.  

 Outliers’ detection methods 

 The cubic spline interpolation caused a huge variation in the phase slope values for 

hippocampal pyramidal neurons, as discussed in the results section (chapter 5). The high phase 

slope SD value was caused by 3 neurons, which labeled as D206, S104, and S313. Excluding these 

three neurons led to smaller variation of the phase slope values while it did not change the variation 

significantly for the other methods and AP parameters (Table B3). The phase slope RSD value 

was reduced 135.3% to 64.8%, which was higher than the RSD obtained with pchip interpolation 

method (n =17, RSD = 43.1%). Furthermore, taking a closer look at the phase slope values for 

each of the three neurons with high SD values reveal that the cause of such high variation is only 

several APs within some spike train. Therefore, we applied three outlier detection methods to 

exclude the outlier APs in each of the three neurons. 

Table B3: Comparison of the AP properties after excluding the three neurons with high phase slope SD  

 n 
IFWd2 

(ms) 

IHWd2 

(ms) 

Phase 
slope 
(ms) 

Error 

ratio 

Amplitude 

(mV) 

Width 

(ms) 

Onset 

(mV) 

Mean 

14 

4.5 7.6 43.7 6.0 66.7 1.6 -29.8 

SD 0.5 1.1 28.3 2.8 5.1 0.4 3.6 

RSD 11.1% 14.6% 64.8% 46.5% 7.7% 24.3% -12.1% 

Mean 

17 

4.3 7.2 47.8 6.1 67.5 1.6 -30.2 

SD 0.5 1.1 64.6 2.7 5.3 0.4 3.5 

RSD 11.4% 15.0% 135.3% 44.4% 7.9% 23.6% -11.7% 
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 MATLAB isoutlier function was used to detect the outlies phase slope values for the three 

neurons with high SD values (using spline interpolation). The isoutlier function detected the outlier 

based on five methods, which was applied to the phase slope values from the three neurons. The 

five methods exclude 20 APs at most, which represents less than 15% of the total APs as shown 

in Table B4. As expected, excluding the outlier APs have insignificant impact on the mean AP 

properties since all the variation between the values was small. For the V̈ peak width methods and 

the error ratio method, excluding some APs did not change the mean value significantly while it 

had a small impact on the SD values (>25% change). On the other hand, the phase slope values 

changed significantly. By excluding the highest number of APs in each of the three neurons, the 

median method led to the lowest pooled mean and SD of the phase slope value, and hence the 

lowest variation.  Whereas the mean method caused a substantial change in the pooled SD of the 

phase slope value (> 50% decrease) by excluding only 9 APs from all the three neurons (Table. 

B5). Nonetheless, even after applying the outlier test methods on the APs from the three 

hippocampal PCs, the phase slope RSD was still very high compared to the value obtained with 

the pchip interpolation method (RSD = 43.1%).  

Table B4: Number of APs excluded by each outlier test method for the three hippocampal PCs 

Label N median mean quartiles grubbs gesd 

S104 145 20 4 15 15 15 

S313 126 12 1 10 4 9 

D206 103 13 4 9 9 9 
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Table B5: Pooled statistics after applying the outlier test methods for the three neurons with the highest phase slope 
SD.  

Hippocampal PCs 
(n = 17) 

IFWd2 

(ms) 

IHWd2 

(ms) 

Phase 
slope 
(ms) 

Error 
ratio 

Amplitude 

(mV) 

Width 

(ms) 

Onset 

(mV) 

Original 
Mean 4.3 7.2 47.8 6.1 67.5 1.6 -30.2 

SD 0.5 1.1 64.6 2.7 5.3 0.4 3.5 
RSD 11.4% 15.0% 135.3% 44.4% 7.9% 23.6% -11.7% 

Median 
Mean 4.3 7.3 45.4 6.1 67.2 1.6 -30.0 

SD 0.5 1.1 27.9 2.7 5.2 0.4 3.5 
RSD 11.1% 14.7% 61.4% 44.2% 7.7% 23.5% -11.6% 

Mean 
Mean 4.3 7.3 47.6 6.1 67.4 1.6 -30.1 

SD 0.5 1.1 35.6 2.7 5.3 0.4 3.5 
RSD 11.2% 14.8% 74.8% 44.2% 7.8% 23.5% -11.7% 

quartiles 
Mean 4.3 7.3 45.9 6.1 67.2 1.6 -30.1 

SD 0.5 1.1 28.4 2.7 5.2 0.4 3.5 
RSD 11.1% 14.7% 61.9% 44.2% 7.7% 23.5% -11.6% 

grubbs 
Mean 4.3 7.3 46.2 6.1 67.3 1.6 -30.1 

SD 0.5 1.1 29.0 2.7 5.2 0.4 3.5 
RSD 11.1% 14.7% 62.8% 44.2% 7.7% 23.5% -11.6% 

gesd 
Mean 4.3 7.3 45.9 6.1 67.2 1.6 -30.1 

SD 0.5 1.1 28.4 2.7 5.2 0.4 3.5 
RSD 11.1% 14.7% 62.0% 44.2% 7.7% 23.5% -11.6% 

 Relationship between the 𝑉̈ peak width and the integrated area 

 The relationship between the rapidity, using the V̈ peak width methods, and the integrated 

area under the rising phase of  V̇ and V̈ were analyzed. Assuming a constant membrane capacitance, 

the integrated area under the rising phase of V̇ represent the total inward charge, whereas the 

integrated area under the rising phase of V̈ represent the total inward current. Also, we looked at 

the relationship between the IFWd2 and IHWd2 verses the integrated V̇ area up to the peak. The 

value for the membrane capacitance for each cell types were taken as the mean value reported in 

the NeuroElectro project website. Therefore, the mean membrane capacitance was set to 90 pF for 

CA1 hippocampal PCs, 162 pF for CA1 hippocampal basket neurons, 153 pF for CA1 

hippocampal OLMs, and 174 pF for cortical pyramidal neurons. For the FS cortical neurons, the 
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specific cell type was not reported and was identified only by its firing pattern [78]. Thus, we 

choose a 60 pF membrane capacitance since it is within the range of the reported values for deep 

cortical interneurons (44 pF), cortical basket cells (59 pF), and uncharacterized cortical neurons 

(61 pF).  

 The normalized integrated area of V̇ and V̈ were not significantly different between the 

hippocampal deep and superficial PCs (Table B6).  The only significant difference between deep 

and superficial PCs were between the area under the rising phase of V̈ and the area of V̇ up to the 

peak value. However, it should be noted that one superficial PC is responsible for the significant 

difference. More specifically, the late APs in the spike train of the neuron labelled S147. Once this 

neuron was eliminated, there was no significant difference in the area under the rising phase of V̈ 

between the hippocampal deep and superficial PCs (t = 1.61, p = 0.13), but the difference is still 

significant in the area of V̇ up to the peak value (t = 3.24, p = 0.006) even though the clusters seems 

to lay in the same region as shown in Figure B2.  

Table B6: Relationship between the 𝑉̈ peak width and the integrated area in hippocampal pyramidal neurons. 

CA1 hipp. Deep PCs (n =9) Superficial PCs (n =8) t p 

Mean ± SD RSD Mean ± SD RSD 

IFWd2 4.5 ± 0.5 11.2% 4.1 ± 0.5 11.6% 1.635 0.123 

IFWd2  7.3 ± 1.2 15.8% 7.1 ± 1.0 13.8% 0.370 0.716 

AP amplitude  69.4 ± 4.9 7.0% 65.1 ± 5.8  9.0% 1.658 0.118 

AP width  1.5 ± 0.3 20.6% 1.7 ± 0.4 26.2% 1.175 0.25 

onset 
potential  

-31.3 ±2.8 -8.8% -28.8 ± 4.3 -14.9% 1.437 0.171 

𝐶𝑚 ∫ 𝑉̈𝑟𝑖𝑠𝑒𝑉̈𝑚𝑎𝑥 𝑑𝑡 
20.9 ± 2.2 10.4% 23.0 ± 2.8 12.3% 1.72 0.107 

𝐶𝑚 ∫ 𝑉̈𝑉̈𝑚𝑎𝑥 𝑑𝑡 
-0.8 ± 0.6 -79.2% -1.3 ± 1.7 -128.5% 0.89 0.389 

𝐶𝑚 ∫ 𝑉̇𝑝𝑒𝑎𝑘𝑉̇𝑚𝑎𝑥 𝑑𝑡 
12.4 ± 1.9 15.1% 15.0 ± 5.0 33.5% 1.45 0.168 
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𝐶𝑚 ∫ 𝑉̇𝑟𝑖𝑠𝑒𝑉̇𝑚𝑎𝑥 𝑑𝑡 
33.0 ± 3.0 9.0% 40.9 ±13.2 32.2% 1.76 0.099 

𝐶𝑚 ∫ 𝑉̇𝑉̇𝑚𝑎𝑥 𝑑𝑡 
2.1± 2.8 131.0% 4.9 ± 12.1 245.6% 0.68 0.51 

𝐶𝑚 ∫ 𝑉̈𝑟𝑖𝑠𝑒 𝑑𝑡 
17720 ± 2523 14.2% 14497 ± 2655 18.3% 2.565 0.0215 

𝐶𝑚 ∫ 𝑉̈ 𝑑𝑡 
-522.0 ± 297.9 -57.1% -484.1 ± 275.9 -57.0% 0.27 0.79 

𝐶𝑚 ∫ 𝑉̇𝑝𝑒𝑎𝑘 𝑑𝑡 
2420.1 ± 63.4  2.6% 2228.6 ± 127.5 5.7% 3.997 0.0012 

𝐶𝑚 ∫ 𝑉̇𝑟𝑖𝑠𝑒 𝑑𝑡 
6490.7 ± 

392.0 
6.0% 6077.0 ± 482.2  7.9% 1.95 0.07 

𝐶𝑚 ∫ 𝑉̇ 𝑑𝑡 
317.8 ± 412.2 129.7% 274.3 ± 431.6  157.3% 0.212 0.83 

 

Figure B2: Comparison between IFWd2 the integrated area of the rising phase of  𝑉̈ for hippocampal neurons (top)and 
the integrated area of the 𝑉̇ up to the peak value (bottom). 

 Hippocampal Interneurons  

  The hippocampal database contain recording from 6 inhibitory interneurons. However, in 

the main manuscript, we only include the neuron type with a sample size of 3 or more. Thus, here, 

we present the results from all the inhibitory interneuron types including the interneuron types 

with a sample size less than 3. These interneurons can be classified based on their firing patterns 
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as Fast-spiking (FS), Regular-spiking (RS), and Late-spiking (LS). The details of each interneuron 

type are shown in Table B7. Table B8 and B9 shows the pooled mean and pooled SD values, while 

Table B10-B13 shows the p-value obtained from the two tailed t score for the IFWd2, IHWd2, 

phase slope, and AP width.  

Table B7: recording details for each hippocampal interneuron.  

Interneuron type n Firing patterns Number of APs 

Axo-axonic (AACs) 3 FS 64 - 159 

Bistratified (BiCs) 3 FS 31 - 41 

PV+ Basket (PVBCs) 6 FS 80 - 199 

Oriens-lacunosummoleculare (OLM) 3 RS 316 - 463 

Schaffer Collateral Assoc. (SCAs) 2 RS 18 - 23 

CCK+ Basket (CCKBCs) 1 RS 12 

Ivy (IvCs) 2 LS 352 - 2149 

Neurogliaform (NGFCs) 2 LS 99 - 250 

Table B8: electrophysiological properties mean and standard deviations values.  

Mean 

values 

IFWd2 

(ms-1) 

IHWd2 

(ms-1) 

Phase slope 

 (ms-1) 

 

Error 

ratio 

amplitude 

(mV) 

width 

(ms) 

Onset 

 (mV) 

Cortical 

PC 

2.1 ± 

0.3 
4.0 ± 0.5 6.9 ± 1.4 

7.9 ± 

6.4 
61.7 ± 8.6 

2.0 ± 

0.3 
-26.3 ± 6 

Cortical 

FS 

2.7 ± 

0.2 
4.6 ± 0.3 8.1 ± 1.1 

11.2 ± 

7.5 
58.0 ±5.2 

0.8 ± 

0.1 

-39.5 ± 

3.3 

Hipp. PC 
4.3 ± 

0.5 
7.2 ± 1.1 47.8 ± 64 

6.1 ± 

2.7 
65.8 ±5 

1.6 ± 

0.4 

-30.2 ± 

3.5 
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NGFCs 
4.0 ± 

0.7 

10.3 ± 

1.3 
75.3 ± 140 --- 36.1 ±4 

1.2 ± 

0.2 

-31.4 ± 

2.8 

IvCs 
5.8 ± 

0.5 

10.7 ± 

1.0 
134.9 ± 6984 --- 46.2± 3.9 

0.8 ± 

0.1 
-29.6 ± 5 

AACs 
5.7 ± 

0.3 

10.0 ± 

0.7 
17.8 ± 5.2 

1.4 ± 

0.9 
43.2 ± 1.5 

0.5 ± 

0.0 

-30.1 ± 

1.1 

BiC 
6.2 ± 

0.3 

10.9 ± 

0.7 
7.5 ± 3.3 

0.4 ± 

0.3  
44.0 ± 1.7 

0.4 ± 

0.0 

-29.8 ± 

0.8 

PVBC 
6.9 ± 

0.4 

12.1 ± 

1.0 
10.4 ± 4.5 

0.7 ± 

2.4 
48.9 ± 2.1  

0.3 ± 

0.0 

-33.4 ± 

1.1 

OLM 
6.8 ± 

1.2 

12.2 ± 

3.2 
31.0 ± 20 4.4 65.5 ± 5.6  

0.8 ± 

0.1 

-42.3 ± 

2.1 

CCKBCs 
4.8 ± 

0.4  

10.9 ± 

1.1 
95.8 ± 670 ---- 63.2 ± 1.1 

1.3 ± 

0.1 

-37.7 ± 

0.4 

SCAs 
4.9 ± 

0.3 

10.3 ± 

1.0 

-1300.1 ± 

8708 
---- 58.2 ± 0.6 

1.2 ± 

0.1 

-33.7 ± 

9.8 
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Figure B3: Comparison of the electrophysiological properties. The y-axis is the values normalized to the 
valuesobtained from the cortical pyramidal neurons, and the error bar represents the RSD for each neuron 
population. Note the data from neurons with n<3 was excluded since the size number was insufficient 

Table B9: P-values from t test score for IFWd2 

IFWd2 cPCs cFS hPCs AACs BiCs PVBCs OLMs NGFCs IvCs SCAs 

cPCs 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

cFS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

hPCs 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.42 0.00 0.14 

AACs 0.00 0.00 0.00 0.00 0.11 0.00 0.18 0.03 0.84 0.04 

BiCs 0.00 0.00 0.00 0.11 0.00 0.05 0.41 0.02 0.30 0.02 

PVBCs 0.00 0.00 0.00 0.00 0.05 0.00 0.95 0.00 0.02 0.00 

OLMs 0.00 0.00 0.00 0.18 0.41 0.95 0.00 0.06 0.32 0.11 

NGFCs 0.00 0.00 0.42 0.03 0.02 0.00 0.06 0.00 0.10 0.24 

IvCs 0.00 0.00 0.00 0.84 0.30 0.02 0.32 0.10 0.00 0.14 

SCAs 0.00 0.00 0.14 0.04 0.02 0.00 0.11 0.24 0.14 0.00 
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Table B10: P-values from t test score for IHWd2 

IHWd2 cPCs cFS hPCs AACs BiCs PVBCs OLMs NGFCs IvCs SCAs 

cPCs 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

cFS 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

hPCs 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

AACs 0.00 0.00 0.00 0.00 0.19 0.01 0.32 0.79 0.42 0.78 

BiCs 0.00 0.00 0.00 0.19 0.00 0.11 0.55 0.50 0.81 0.42 

PVBCs 0.00 0.00 0.00 0.01 0.11 0.00 0.96 0.07 0.14 0.06 

OLMs 0.00 0.00 0.00 0.32 0.55 0.96 0.00 0.50 0.60 0.49 

NGFCs 0.00 0.00 0.00 0.79 0.50 0.07 0.50 0.00 0.73 0.99 

IvCs 0.00 0.00 0.00 0.42 0.81 0.14 0.60 0.73 0.00 0.68 

SCAs 0.00 0.00 0.00 0.78 0.42 0.06 0.49 0.99 0.68 0.00 

Table B11: P-values from t test score for phase slope 

Phase slope cPCs cFS hPCs AACs BiCs PVBCs OLMs NGFCs IvCs SCAs 

cPCs 0.00 0.04 0.00 0.00 0.56 0.00 0.00 0.00 0.90 0.30 

cFS 0.04 0.00 0.12 0.00 0.65 0.21 0.01 0.16 0.95 0.64 

hPCs 0.00 0.12 0.00 0.44 0.30 0.18 0.67 0.61 0.95 0.41 

AACs 0.00 0.00 0.44 0.00 0.04 0.06 0.33 0.49 0.98 0.79 

BiCs 0.56 0.65 0.30 0.04 0.00 0.35 0.11 0.43 0.97 0.79 

PVBCs 0.00 0.21 0.18 0.06 0.35 0.00 0.04 0.21 0.96 0.67 

OLMs 0.00 0.01 0.67 0.33 0.11 0.04 0.00 0.60 0.98 0.79 

NGFCs 0.00 0.16 0.61 0.49 0.43 0.21 0.60 0.00 0.99 0.84 

IvCs 0.90 0.95 0.95 0.98 0.97 0.96 0.98 0.99 0.00 0.87 

SCAs 0.30 0.64 0.41 0.79 0.79 0.67 0.79 0.84 0.87 0.00 

Table B12: P-values from t test score for AP width 

AP width cPCs cFS hPCs AACs BiCs PVBCs OLMs NGFCs IvCs SCAs 

cPCs 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

cFS 0.00 0.00 0.00 0.00 0.00 0.00 0.39 0.00 0.88 0.00 

hPCs 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.24 0.01 0.16 

AACs 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.01 0.01 0.00 

BiCs 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 

PVBCs 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

OLMs 0.00 0.39 0.00 0.02 0.01 0.00 0.00 0.08 0.54 0.05 

NGFCs 0.00 0.00 0.24 0.01 0.01 0.00 0.08 0.00 0.10 0.69 

IvCs 0.00 0.88 0.01 0.01 0.00 0.00 0.54 0.10 0.00 0.02 

SCAs 0.00 0.00 0.16 0.00 0.00 0.00 0.05 0.69 0.02 0.00 

 Differences in onset rapidity between CA1 hippocampal interneurons 

 In the hippocampus, GABAergic interneurons account for 7-11% of the total 

neuron population [140]. The interneurons, although they are a minority in the hippocampus, have 
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a major role in determining almost all aspects of neuronal circuits and regulation [105]. Thus, to 

explore the role of AP onset rapidity in this diversity among interneurons as well as their principle 

excitatory neuron counterparts, the pyramidal neurons, the rapidity of 3 hippocampal FS 

interneurons used to construct the CA1 neural network model [141]  were analyzed.  

First, since the available sample size for BiCs and AACs are small (n =3), the Kruskal-

Wallis test was performed to see if the available data is sufficient to do a comparison between the 

hippocampal FS interneurons. The results from the Kruskal-Wallis test showed that only AP 

properties are significantly different between the 3 hippocampal FS interneurons are the AP width 

(H = 6.7, p = 0.035) and the AP rapidity calculated using the IFWd2 method (H = 6.9, p = 0.032). 

However, it must be noted that with such a small size for the BiCs and AACs, the combination of 

sample sizes with neuron type with higher sample size such as hippocampal pyramidal cell (n=17) 

does not allow to find a critical value for this Kruskal-Wallis test. Thus, a higher sample size is 

needed before drawing any conclusions about the differences between the BiCs and AACs and 

their counterpart, the pyramidal neurons.  

The interneuron analysis reveals that IFWd2 and IHWd2 methods are not only the best 

methods to distinguish the onset rapidity of cortical and hippocampal pyramidal neurons, but also 

excel at distinguishing various hippocampal FS interneurons compared to the other rapidity 

quantification methods as evidenced by higher t-scores. More specifically, the IFWd2 method 

shows the highest t-score between all FS interneurons. The t-score for the IFWd2 method is higher 

than 3 between the FS interneurons except between BiCs and AACs (t = 2.06, P = 0.108).  
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Appendix C: supporting information for spike train patterns (intend to publish)  

 

Figure C1: Impact of different coupling strength on AP parameters with three current steps (1s step duration and 
inter sweep interval of 5s) with no cooperative channels (black) and 30% of Na+ channels activated cooperatively 
(red).  

 

Figure C2: Impact of varying the distance between the pump and Na+ channels on ion concentrations (𝐷𝑁𝑎 = 0.3 
um/ms). 
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Figure C3: Impact of varying the distance between the pump and Na+ channels and Na+ diffusion constant on AP 
initiation attributes, Na+ reversal potential, and the difference between intracellular Na+ concentration. The results 
obtained with all Na+ channels exhibit independent gating (KJ =0). The blue symbols represent the value when 𝐷𝑁𝑎= 
0.3 µm2/ms. The red symbols represent the value when 𝐷𝑁𝑎= 0.03 µm2/ms. 

 

Figure C4:  Impact of varying the distance between the pump and Na+ channels and Na+ diffusion constant on AP 
initiation attributes, Na+ reversal potential, and the difference between intracellular Na+ concentration. The results 
obtained in the presence of 50% cooperative Na+ channels (KJ =400 mV).  
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Figure C5: Normalized AP rapidity (top) and threshold potential difference from the value of the first AP. The step-
and-hold stimulation protocol included 5 steps of 0.5s long depolarization pulses with an inter-sweep interval of 6.5 
s. The stimulus train was repeated 3 times with a 20 s interval. The recordings obtained from the GigaScience database 
[78]. 
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Appendix D: Comparison and analysis of the models used to replicate spike train patterns  

Cooperative gating increases AP onset rapidity 

 Cooperative gating was proposed as a mechanism responsible for the fast AP phase slope 

rapidity observed in central mammalian neurons [2], [5], [6]. Here we used the same mechanism 

for cooperativity, but first two points need to be addressed. First, AP rapidity increases with 

increasing cooperativity level. Huang et al showed that the highest rapidity occurs with a small 

fraction of strongly coupled channels [5]. However, changing the criterion level, where rapidity is 

measured, to a higher value led to higher phase slope rapidity. As shown in Figure D1, the 

maximum rapidity occurred at a higher cooperativity level when the criterion level was shifted. 

Also, the maximum rapidity value increases with higher criterion level. Such a significant 

difference is due to the shift in criterion levels position between the baseline and the vertical rise 

in the phase space plot, which had been discussed previously in the literature [7], [28], [63]. 

Second, including cooperativity gating in the Wang-Buzsaki model (cWB) can produce biphasic 

APs, but it can lead to unrealistic features. The biphasic nature of an AP can be seen by the two 

humps in the phase-plot or double-peak V̈. However, the two V̈ peaks produced by the cWB model 

have significantly different amplitudes, where the 1st peak’s amplitude is five times higher than 

the 2nd peak (Figure D2). On the other hand, double-peak’s V̈m in electrophysiological recordings 

usually have a similar amplitude [9], [142], [143]. To address the difference between the model 

and experimental data in terms of V̈m shape, we added cooperative gating on several HH-type 

models. A comparison of the resulting  V̈m shapes is shown in Figure 2D using the cWB model, 

the modified Cressman et al model with cooperative gating, and the combined model as described 

in the method using Traub and Miles’ (TM) version of HH model. The huge difference between 

the position and amplitude of the double V̈ peaks was not present using a modified version TM 
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HH model, producing V̈m shapes that are comparable to experimental data as shown in Figure D3. 

It should be noted that the double peak can significantly influence the IFWd2 rapidity. The IFWd2 

might overestimate the AP rapidity when the two peaks have significantly different amplitude or 

underestimate the AP rapidity with comparable V̈m peaks. Thus, we used the phase slope method 

to quantify AP rapidity when comparing the different HH-type methods.   

 

Figure D1: Replication of figure 4A from Huang et al (2012) paper at different criterion level obtained using their 
published code. The critical values of coupling strength and fraction where the maximum rapidity occurred increase 
as the criterion level increase. Also, the phase slope values increase with higher criterion level. The maximum values 
are 970, 1356, 1517, and 1574 ms-1 from the smallest to the highest criterion level.  

 

Figure D2: Comparison on the impact of coupling strength on V̈ traces using three different models (p =10%). A) V̈ 
traces using Huang et al (2012) model [5].  B) V̈ traces using a modified Cressman et al (2009) [26] model to include 
cooperative gating.  C) V̈ traces using the combined model, which is based on Pospischil et al model [82].  
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Figure D3: Comparison of V̈ traces from intracellular recordings of cortical and hippocampal pyramidal neurons and 
the combined model. The recording from cortical and hippocampal pyramidal neurons was obtained from GigaScience 
and CRCNS databases, and the experimental procedure are found in [78], [87]. The V̈ traces from the combined model 
were obtained with p =10% and KJ = 150 (blue) and 300 mV (red).  

The rising phase of central mammalian neuron APs can exhibit monotonic or non-

monotonic voltage increase [9]. The double-component rising phase was suggested as a 

characteristic for APs backpropagation from the spikes initiation site at the axon initial segment to 

the soma [3]. Also, the same phenomena were reproduced with a small fraction of strongly 

cooperative Na+ channels, where the rising phase of AP becomes monotonic with a high fraction 

of cooperative Na+ channels [5]. However, a higher percentage of cooperative channels, such as p 

= 80%, produces a small peak near the minimum value of V̈ (Figure D4). This can be attributed to 

the base model, the Wang-Buzsaki (WB) model, which describes a FS PV+ inhibitory basket cell. 

On the other hand, following TM description for FS neurons or RS pyramidal neurons with a 

modification to include slow non-inactivating K+ current did not produce the small peak near the 

minimum value of V̈ (Figure D4). In addition, the afterhyperpolarization (AHP) in FS neurons is 

more pronounced than the AHP in RS neurons. However, the TM model for a pyramidal cell 

produced more hyperpolarization than the WB PV+ inhibitory basket cell model, which oppose 

experimental data  [144]. Therefore, the TM version of the HH model was chosen as the base 

model to add dynamic reversal potential and cooperative gating (The model used in chapter 5).  



133 

 

 

Figure D4: AP dynamics with strong coupling strength (KJ = 320 mV). Top: shows the normalized phase plots with 
a small and a large fraction of cooperative channels. Bottom shows the normalized  V̈ trace for the same APs on top. 
Inset box show the negative portion of the V̈ trace. The red traces represent a FS hippocampal neuron, which was 
reproduced using Huang et al (2012) published model without any modification to the main code [145]. Blue and 
black traces represent a RS excitatory (PC) neuron and RS inhibitory neuron as described in [82], where they modified 
Traub and Miles (1991) model to include a slow potassium current as described in Yamada et al. (1989) [82], [146], 
[147]. 

Table D1: Comparison between the rate functions used in Figure D4.  

Model 

Wang-Buzsaki (1996) 

 (As used in Huang et 
al) 

Gutkin et al (2001) 

 (As used in Cressman et 
al) 

Traub and Miles (1991) 

(Used in the combined 
model) 

𝛼𝑚 
0.1(𝑉 + 35)1 − exp(−0.1(𝑉 + 35)) 

 

0.1(𝑉 + 30)1 − exp(−0.1(𝑉 + 30)) 
0.32(𝑉 − 𝑉𝑇 − 13)1 − exp (− (𝑉 − 𝑉𝑇 − 13)4 ) 

𝛽𝑚 4 exp (− 𝑉 + 6018 ) 4 exp (− (𝑉 + 55)18 ) 
0.28(𝑉 − 𝑉𝑇 − 40)exp (𝑉 − 𝑉𝑇 − 405 ) − 1 

𝛼ℎ 
0.35 exp(−0.05(𝑉+ 58)) 

0.21 exp(−0.05(𝑉+ 44)) 
0.128 exp (− 𝑉 − 𝑉𝑇 − 1718 ) 

𝛽ℎ 
51 + exp(−0.1(𝑉 + 28)) 

31 + exp(−0.1(𝑉 + 4)) 
4exp (− 𝑉 − 𝑉𝑇 − 4018 ) + 1 

𝛼𝑛 0.05(𝑉 + 34)1 − exp(−0.1(𝑉 + 34)) 
−0.03(𝑉 + 34)exp(−0.1(𝑉 + 34)) − 1 

0.032(𝑉 − 𝑉𝑇 − 15)1 − exp (− 𝑉 − 𝑉𝑇 − 154 ) 

𝛽𝑛 0.625 𝑒𝑥𝑝 (− 𝑉 + 4480 ) 0.375 𝑒𝑥𝑝 (− 𝑉 + 4480 ) 0.5 𝑒𝑥𝑝 (− 𝑉 − 𝑉𝑇 − 1040 ) 
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Table D2: Models parameters used in the combined model for the four cell type models in the published code.  

Cell type 

Parameters 

RS FS 

Excitatory 

(Somatosensory) 

Inhibitory 

(Somatosensory) 

Inhibitory 

(Visual) 

Inhibitory 

(Somatosensory) 𝑬𝑳𝒆𝒂𝒌 (mV) -70.3 -65 -70 -70.4 𝑽𝑻 (mV) -56.2 -67.9 -63 -57.9 𝒈𝑳𝒆𝒂𝒌 (mS/cm2) 0.0205 0.0133 0.15 0.038  𝒈𝑵𝒂 (mS/cm2) 56 10 50 58 𝒈𝑲𝒅 (mS/cm2) 6 2.1 10 3.9 𝒈𝑴 (mS/cm2) 0.075 0.098 - 0.079 𝝉𝑴 (sec) 0.608 0.934 - 502 

L = d (µm) 61.4 61.8 67 56.9 

 

 

Figure D5: Different AP waveforms due to change in coupling strength (KJ), with 20% of Na+ channels activated 
cooperatively. The normalized membrane potential is shown with their 1st and 2nd time-derivative. The bottom plots 
show the conductance of independent Na+ channels (black), cooperative Na+ channels (blue), and K+ channels (red) 
during the same AP on top.   
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Figure D6: Different AP waveforms due to change in the fraction of cooperative Na+ channels with strong coupling 
strength (KJ = 400 mV). The normalized membrane potential is shown with their 1st and 2nd time-derivative. The 
bottom plots show the conductance of independent Na+ channels (black), cooperative Na+ channels (blue), and K+ 
channels (red) during the same AP on top. 

 

Figure D7: Limit of cooperativity to produce single 𝑉̈𝑚 peak (white area), double 𝑉̈ peak with positive minimum 
value (dip) between them (grey area), and double 𝑉̈ peak with negative dip (black area) using Huang et al code [145]. 
The curved line indicates where the ratio of 𝑉̈𝑚peaks (𝐴1/𝐴2) is below 2 (blue) and above 5 (yellow).  
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Figure D8: ratio of the minimum value between V̈ two peaks to the maximum value. Note that double-peak 𝑉̈ occur 
at small percentage with moderate to high coupling strength. Otherwise, the value in white indicates a single 𝑉̈ peak. 
I=0.65 which produce a single AP. The model is based on Trub and Milles description of a RS pyramidal neuron [82]. 

 Ion concentration impact with weak stimulus 

Including dynamical reversal potential causes a slight change to AP parameters in response 

to weak stimulation. As shown in Table D4, some AP parameters shift slightly with dynamical 

reversal potential instead of the steady-state value. Thus, choosing steady-state reversal potentials 

can be justified since the differences is trivial, especially for a short-time scale. However, the 

difference is more apparent when looking at the AP parameters change in a spike train than the 

average values, especially after multiple spike trains. With dynamical reversal potential, the AP 

parameters continuously change during stimulation instead of the same value as the classical 

model. As shown in Figure D9, most AP parameters continuously change during the spike train 

and from one spike train to another. For example, the AP amplitude decreased by 0.3 mV and the 

width increased by around 15 µs between the first and last AP in each spike train. These trends 

were absent when using steady-state reversal potential.  

Furthermore, to identify how each ion concentration influences AP parameters, the reversal 

potential of each voltage-gated channel was set to its steady-state value while the other channel 

has a dynamical reversal potential. As expected, K+ mainly control the AP width and firing rate, 
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while Na+ influence AP amplitude and rapidity. The threshold potential was almost the same 

regardless of the reversal potential condition with weak stimulation. Increasing the current pulse 

magnitude causes a greater change in reversal potential, leading to higher threshold potential 

during the pulse. Nonetheless, even though these changes are small with weak stimulus, having 

dynamical reversal potential produces spike train patterns similar to electrorheological recordings. 

The magnitude of change in AP parameters is influenced by the size of the change in reversal 

potential and the duration between the stimuli.   

Table D4: Comparison on the effect of dynamical reversal potential on AP parameters of FS neuron model 

Current pulse 
Fixed reversal potential Dynamical reversal potential 

1st 2nd 3rd Average 1st 2nd 3rd Average 

Amplitude (mV) 97.8 97.8 97.8 97.8 97.8 98.1 98.4 98.1 

Width (ms) 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 

Threshold (mV) -45.8 -45.8 -45.8 -45.8 -45.8 -45.8 -45.8 -45.8 

IFWd2 (ms-1) 16.0 16.0 16.0 16.0 16.0 16.1 16.1 16.1 

PS (ms-1) 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 

Firing rate (Hz) 5.3 5.3 5.3 5.3 5.4 5.5 5.6 5.5 

 

Figure D9: Effect of dynamical reversal potential on AP parameters (FS neuron model). The  AP parameters are 
shown during two spike trains with no dynamical reversal potential (black circles), both channels have dynamical 
reversal potential (green circles), only K+ channels have dynamical reversal potential (blue circles), or only Na+ 
channels have dynamical reversal potential (red circles). The two current steps have the same magnitude and duration 
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(1s), with a 5s inter-sweep interval. The impact of concentration changes for each ion channel on the other channels 
is negligible (>0.2%).  

 The combined effect of cooperativity and ion concentration on average AP parameters  

Combining cooperativity and dynamical reversal potential did not alter the average AP 

parameter values compared to the classical model (Figure D10), and it has a small effect on a 

single spike train pattern with a weak current step (Figure D11). The change of rapidity values 

from declining to steep increase with coupling strength (KJ=100-350mV) is due to the change of 

the AP waveform from single to double V̈ peaks. The opposite relationship between coupling 

strength and IFWd2 will be reversed with a higher percentage of cooperative channels. A higher 

percentage of cooperative Na+ produce APs with single V̈ peaks. Therefore, the IFWd2 increases 

with higher coupling strength in a similar pattern as the phase slope.   

 

Figure D10: AP parameters in response to a 1s depolarizing current that evoke 10 APs (p =10%). The hollow black 
circles represent the value from the original TM model, while the filled circles represent the results from the combined 
model with no cooperative channels.  
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Figure D11: impact of different cooperativity strengths on AP parameters. The first row shows the time course of a 
single AP (left), the phase plot for the same APs (middle), and the second time derivative of the same AP (right). The 
second and third rows show the spike patterns with different coupling strengths. Black trace shows an AP without any 
cooperative Na+ channels. The blue and red trace shows an AP when 10% of Na channels activates cooperatively 
with 200 and 400 mV coupling strength.  

The impact of cooperativity on the spike train pattern becomes apparent in response to 

strong stimuli, as opposed to the minimum current required to evoke a spike train. The percentage 

change in AP parameters during spike trains increases with a stronger current pulse. For example, 

the IFWd2 rapidity decreases by 5.5% with strong cooperativity and 3 % without cooperativity 

(Figure D12). The reduction in rapidity is a coupled effect. While we showed above that changes 

in reversal potential during spike train lead to the change in AP parameter, cooperative Na gating 

increased that effect. Adding cooperativity (p = 30% and KJ = 400 mV) to the model led to an 

increase in the maximum ENa change by 10%, causing a 6% increase in EK maximum change. 

Thus, the firing rate increased indirectly in the presence of cooperative gating. Also, with a strong 

stimulus, the threshold shifted to a more depolarized value. The change in the threshold between 

the first and last AP increased by 0.15 mV. The results reflect the competing effect of the two 

mechanisms in the long timescale. While cooperativity was shown to shift the AP threshold to 

more hyperpolarized values, its effect on dynamical reversal potential competes against its main 

contributions. Cooperativity acts like positive feedback, whereas a change in concentration alters 
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reversal potential to act as negative feedback. Together, the two mechanisms provide a better 

agreement to experimental data.  

 

Figure D12: Impact coupling strength on AP parameters with strong stimuli and 30% of Na+ channels activated 
cooperatively.  

 Changing the current pulse's magnitude or duration alters the spike train pattern. Here, we 

applied five current steps and varied the inter sweep interval between the pulses. With more than 

5s inter sweep interval, the K+ reversal potential reset to its steady potential before the next current 

pulse, but not Na+. Even with 10 s between the current pulses, 𝐸𝑁𝑎 increased by less than 0.7 mV, 

which is around the maximum change in 𝐸𝑁𝑎 resulting with the minimum applied current step. 

Therefore, increasing the current pulse causes a higher reduction in Na+ concentration that will not 

be replenished before the following stimulus, which is reflected in the decrease of mean rapidity 

with each spike train. Including cooperative, Na+ channels lead to more reduction in the rapidity 

and threshold potential and a slight increase in the first spikes in each spike train (Figure D13). 

The slight increase of first APs with strong cooperative gating is similar to the average increase 

observed in first APs in cortical neurons (Figure 5.4). In contrast, the first APs decrease with 

independent Na+ channels (1.5% decrease Figure D14, black circles). Furthermore, even though 

cooperative gating had been shown to lower threshold potential to a more hyperpolarized value, it 
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kept the threshold potential of first spikes almost identical with dynamical reversal potential in 

response to strong stimuli but lower threshold with fixed reversal potential, compared to the first 

spike. Thus, the results show that two spike train features observed in experimental data are 

replicated only with the combined model.  

 

Figure D13: Impact of the current step amplitude and the time between consecutive current steps on ion concentration 
and AP parameters. A) shows the changes in intracellular concentration (left), extracellular concentration (middle), 
and reversal potential (right) for Na and K+ channels. Circles indicate the value at the beginning of the current pulse, 
while squares indicate the value at the end of the current pulse. The color of the symbols indicates the duration between 
the multiple-step current. All the values are obtained without cooperative gating except the values in cyan (KJ=400 
mV, p =50%). B) The normalized rapidity and the threshold difference of the spike trains to the first spike. Squares 
indicate the value of the first spikes, and circles indicate the value of the last spike in each spike train. 
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Appendix E: MATLAB Codes 

 Here I describe how the electrophysiological recordings were obtained from public 

databases and provide the codes used in this dissertation. The three codes were for AP extraction 

and interpolation (used in chapters 3 and 4), AP attributes calculation (used in chapters 3-5), and 

the code for the model developed to replicate the APs’ attribute variation (chapter 5).   

 Electrophysiological recordings were obtained from two databases. First, the recordings 

from the somatosensory cortex were obtained from the GigaScience database [78]. The recordings 

were stored as MATLAB files in the databases. The information about each file can be found in 

the excel sheet in da Silva Lantyer et al additional information [78], [148]. The excel sheet contains 

the date of the experiment, the scientist's initial, the mouse age and gender, the neuron 

classification, and other information for each experiment. The recording file name (Mat file) 

contains some of this information. For example, the MATLAB file named “161214_AL_113_CC” 

includes the current-clamp recording (CC) done by Angelica da Silva Lantyer (AL) on 16/12/2014 

(the date in British format). This information is unique to this experiment, and extra information 

can be found in the excel sheet. Each MATLAB file (current clamp files) contains two types of 

recordings (current and voltage), and each variable contains two columns (time and current or 

voltage). The variable names provide the information for each recording. The variable name is in 

this format: Trace_ a_b_c_d, where a is the cell and experiment ID, b is the data type, c is the 

current step number, and d is either current (1) or voltage (2) trace. For example, Trace_ a_b_8_2 

in the file named 161214_AL_113_CC is the voltage recording from the 8th current step.  

Second, the recordings from hippocampal neurons were obtained from the CRCNS 

database [87]. The recordings can be found in the hippocampus section in a file named “hc10”. 

https://ftp.cngb.org/pub/gigadb/pub/10.5524/100001_101000/100535/CurrentClamp/StepProtocol/161214_AL_113_CC.mat
https://ftp.cngb.org/pub/gigadb/pub/10.5524/100001_101000/100535/CurrentClamp/StepProtocol/161214_AL_113_CC.mat
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The file contains a PDF document describing the data such as cell type and an archive file 

containing the current clamp recordings. Each recording was stored as an ATF file, which can be 

opened using Microsoft Excel. Thus, the recordings can be easily transferred to MATLAB from 

excel. The first column contains the time steps, and the following columns contain the membrane 

potential in response to each current step.  

 Then, the raw data from the electrophysiological recordings will be sorted and analyzed. 

The steps are: 

1. Identify the voltage vectors that have at least two action potential  

2. Store all voltage vectors with two or more APs in one variable for each induvial neuron. 

The first column should contain the AP train evoked by the minimum current step and the 

last column should contain the spike train evoked by the maximum current step. The vector 

was named “Vr” in the code. 

3. Store the time vector in a variable named t. 

4. Convert the units, if necessary, for membrane potential to mV and time to ms. 

5. Save the voltage matrix and the time vector. 

6. Load the file from step 5 into the AP extraction and interpolation code.  

7. Specify the criteria for the AP selection (minimum AP peak height and minimum distance 

between peaks). Note that the minimum AP height is measured from the resting potential, 

usually between -80 and -65 mV. Thus, -20 mV or 0 mV minimum AP peak height is 

sufficient to detect the AP peak, but the choice of the minimum AP peak could differ 

between various recordings.  

8. Specify the length of the AP trace (how many milliseconds before and after the peak). 
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9.  Specify the interpolation method (spline or pchip) by commenting the undesirable method 

(see the code below). 

10. Run the AP extraction code. 

11. The output file contains three variables: AP traces (Vsn), the APs’ first-time derivative 

(dVsn), and the APs’ second-time derivative d2Vsn).  

12. Check that each column has only one AP trace. If parts of other APs appear in a trace, 

reduce the length of the AP trace (step 8).  

13. The output file is an input file for the AP analysis code, which calculates all the AP 

attributes (amplitude, width, threshold potential, and rapidity using four methods). 

AP extraction and interpolation code 

clc  
% close all 
load('C:\.mat'); % input file location  
HH = length(Vr(1,:));  
M1 = 1; 
min_time_bwn_APs = 10;    % min time separating two APs 
t = (t-t(1)); 
tic 
for JJ = 1:HH 
V = Vr(:,JJ);                                         % AP train  
dt =t(2)-t(1);                                        % time step (raw data) in ms 
dt_spline = 1e-3;                                     % time step (for interpolation) in ms 
ts = 0:dt_spline:10;                                  % ms 
L = floor(5/dt);                                      % specify the length of the AP trace 
[pks,locs_V] = 
findpeaks(V,'MinPeakHeight',0,'MinPeakDistance',round(min_time_bwn_APs/dt));  % find 
theAPs peaks index 
N = length(pks);                                                % number of APs 
%% separate each AP (raw data) 
for j=1:N 
   E(:,j)=  V(locs_V(j)-L:locs_V(j)+L);     % separate each AP by "L" ms before & after the peak 
   dE(:,j) = diff(E(:,j))./(2*dt);          % Calc dV/dt for each AP 
   d2E(:,j) = diff(E(:,j),2)./(dt)^2;       % Calc d^2V/dt^2 for each AP 
end 
te = t(1:length(E(:,1)));                   % time vector for E  
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tde = t(1:length(dE(:,1)));                 % time vector for dE                           
td2e = t(1:length(d2E(:,1)));               % time vector for d2E  
%% Interpolate each AP and its derivatives 
% for pchip interpolation  
for j=1:N 
Vs(:,j)= spline(te,E(:,j),ts) ;                   % spline fit for E 
dVs(:,j) =spline(tde,dE(:,j),ts) ;                % spline fit for dE 
d2Vs(:,j) = spline(td2e,d2E(:,j),ts);             % spline fit for d2E 
% for pchip interpolation uncomment the following lines and comment the 
% spline lines 
% Vs(:,j)= pchip(te,E(:,j),ts) ;                   % spline fit for E 
% dVs(:,j) =pchip(tde,dE(:,j),ts) ;                % spline fit for dE 
% d2Vs(:,j) = pchip(td2e,d2E(:,j),ts);             % spline fit for d2E 
end 
Ns = length(Vs(1,:)); 
Vsn(:,M1:M1+Ns-1)=Vs;  
dVsn(:,M1:M1+Ns-1)=dVs; 
d2Vsn(:,M1:M1+Ns-1)=d2Vs; 
M1 = M1+Ns; 
  clearvars -except  HH Vr tr t M1 M2 Vsn dVsn d2Vsn min_time_bwn_APs X Y clear_spike  JJ 
ts onset 
end 
 filename ='C:\$$.mat'; % Output file location 
 save(filename,'Vsn','dVsn','d2Vsn');  

AP analysis code 

clear 
clc 
load('C:\\.mat') 
V = Vsn; 
dV =dVsn; 
d2V =d2Vsn; 
dt = 1E-3;                                             % Time step 
[M,N] = size(V);                                       % Number of spikes 
[MV MVI] =max(V);                                      % Find the spike peak and index 
T_max = M*dt -dt;                                      % Max time 
ts = 0:dt:T_max;                                       % Time 
CH = 0; 
%% 1) Calculate FWHM & HWHM of d^2V/dt^2 
% Set the limit of the rising phase of d^2V/dt^2  
U_limit = MVI+round(2.5/dt);                           % Set upper limit to be 2.5 ms before spike peak     
L_limit = MVI-round(2.5/dt);                           % Lower limit. 2.5 ms after the spike peak to 
cover wide AP  
[Min_d2V Min_d2V_IN] = min(d2V(L_limit:U_limit,:));    % find the index of min d2V 
UL_d2V = L_limit + Min_d2V_IN; 
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[MAX MaxIndex]= max(d2V(L_limit:UL_d2V,:));            % Find the max d^2V/dt^2 within the 
chosen limit 
halfMax = MaxIndex/2;                                  % Half the d^2V/dt^2 max value 
Norm_d2Vs = (d2V(L_limit:U_limit,:)./MAX);             % Normalized  d^2V/dt^2          
T_norm = 0:dt:length(Norm_d2Vs)*dt - dt;               % Time corresponds to d^2V/dt^2 selected 
portion 
for j = 1:N 
    for i=1:length(Norm_d2Vs) 
         if(Norm_d2Vs(i,j)>= 0.5)&&(CH==0) 
            t1st(1,j) = T_norm(i);                     % The time index of d^2V/dt^2 exceeds half Max 
           CH = 1; 
           M1(j) = Norm_d2Vs(i,j); 
         end 
         if(Norm_d2Vs(i,j)== 1)&&(CH==1) 
            tmax(1,j) = T_norm(i);                     % The time index of d^2V/dt^2 reaches Max value 
            CH = 2; 
           MM(j) = Norm_d2Vs(i,j); 
         end  
          if(Norm_d2Vs(i,j)<= 0.5)&&(CH==2) 
           t2nd(1,j) = T_norm(i);                      % The time index of d^2V/dt^2 drop below half Max 
            CH = 3; 
           M2(j) = Norm_d2Vs(i,j); 
          end 
    end 
    FW(j) = t2nd(1,j)-t1st(1,j);                         % FWHM 
    HW(j) = tmax(1,j)-t1st(1,j);                       % HWHM 
     CH = 0; 
end 
%% 2) Calculate the phase slope at a specific dV/dt value 
% find phase slope at dV/dt = 10 mV/ms (following Naundorf, et cl, P7) 
targeted_dV = 10;                                     % The selected dV/dt value 
for j= 1:N 
dV_index=find(dV(1000:end,j)>=targeted_dV,1,'first');  dV_index=dV_index+1000; 
slope(j) = (dV(dV_index+1,j)-dV(dV_index-1,j))/(V(dV_index+1,j)-V(dV_index-1,j)); 
Thrshold_dV(j) = V(dV_index,j); 
end 
%% 3) Apply Volgushev method to calculate the error ratio 
% I) Find dV/dt max value and the value at which dV/dt = 30% of the max value 
[Max_dVs Max_index_dVs] = max(dV); 
dVs_20 = Max_dVs*0.20; 
dVs_30 = Max_dVs*0.30; 
dVs_40 = Max_dVs*0.40; 
% II) Fit the V trace from 5 ms to 0.1 ms from the peak with a continuous piecewise-linear 
function 
tic 
for j = 1:N 
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i =1; 
AP = V(MVI(j)-floor(5/dt):MVI(j)-floor(0.1/dt),j);          % The selected portion from - 5 ms to 
0.1 ms back from AP peak 
index_1st_pt(j) = MVI(j)-floor(5/dt);                       % The index of the first point of the selected 
AP portion 
APlen = length(AP);                                         % Length of the selected AP 
t = (0:dt:(APlen-1)*dt)';                                   % The time of the selected AP 
MSE =[]; 
for bp = 2:APlen-1                                          % Find the breaking point at the min MSE 
fit_low = polyfit(t(1:bp),AP(1:bp),1);                      % Fit the lower portion of the PL function 
APfit_low =polyval(fit_low,t(1:bp)); 
fit_high = polyfix(t(bp+1:APlen),AP(bp+1:APlen),1,t(bp+1),APfit_low(bp)); % Fit the higher 
portion of the PL function 
APfit_high = polyval(fit_high,t(bp+1:APlen)); 
APfit_onset(1,1:bp) = APfit_low; 
APfit_onset(1,bp+1:APlen) = APfit_high; 
MSE(i) = immse(APfit_onset',AP); 
i =i+1; 
end 
[MIN(j) Min_in(j)] =min(MSE);                         % Index of the minimum MSE represent the best 
breaking point 
onset(j) = AP(Min_in(j));                             % AP onset as defined by Volgushev et al (2008) 
method  
 Min_in(j)=find(AP>=onset(j),1,'first'); 
index_onset_in(j) = index_1st_pt(j)+Min_in(j);             % Index of the AP onset 
% III) Select the AP portion in the phase plot to be 5 ms before the AP 
% onset to 30% of dV/dt max value  
lower_limit(j) =index_onset_in(j)-floor(5/dt);       % Lower limit index 
Upper_limit(j) = find(dV(:,j)>=dVs_30,1,'first');    % Upper limit index  
end 
% III) Fit the selected the AP portion to exponential and piecewise-linear function 
tic 
for j = 1:N 
 x = V(lower_limit(j):Upper_limit(j),j);             % Selected Vm  
 y = dV(lower_limit(j):Upper_limit(j),j);            % Selected dV/dt  
%% MATLAB EXP function (exp1)  
% use matlab fit function to provide a better intial guess for the exp function 
% coffecients  
Fit1 = fit(x,y,'exp1'); 
coeffvals1(j,:)=coeffvalues(Fit1); 
 APfit_exp = coeffvals1(j,1)*exp(coeffvals1(j,2)*x); 
 MSE_exp1(j) = immse(APfit_exp,y); 
%% volgushev EXP function using the coffecient of exp1 as starting points 
% exp function as described by volgshev paper was f(x) = a+exp(b*(x+c)). We 
% used the following as a starting guess for the function coffecients 
a = y(1)-exp(coeffvals1(j,2)*x(1)); 
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b = coeffvals1(j,2); 
c = - x(1) + (log(abs(y(1)))-log(abs(a)))/coeffvals1(j,2) ; 
fun1 = fittype('a+exp(b*(x+c))'); 
Fit2 = fit(x,y,fun1,'StartPoint',[a b c]); 
coeffvals2(j,:)=coeffvalues(Fit2); 
 MSE_exp(j) = immse(Fit2(x),y); % Mean squre error for the exp function  
 % if the MSE is large, redo the previous calculation use another starting 
 % guess from the previous trace 
 if(MSE_exp(j)>=2)&&(j>1) 
     MMM(Q)= MSE_exp(j) ; 
     III(Q) = j; 
     Q = Q+1; 
    a = coeffvals2(j-1,1); 
    b = coeffvals2(j-1,2); 
    c = coeffvals2(j-1,3); 
    fun1 = fittype('a+exp(b*(x+c))'); 
 Fit2 = fit(x,y,fun1,'StartPoint',[a b c]); 
 coeffvals2(j,:)=coeffvalues(Fit2); 
 MSE_exp(j) = immse(Fit2(x),y);  
 end 
%% Piecewise-linear function function   
MSE_PL = []; 
YL = length(y); 
APfit_PL = zeros(1,YL); 
 i=1; 
 for bp = 2:YL-1                            % Find the breaking point at the min MSE 
fit_lo = polyfit(x(1:bp),y(1:bp),1);        % Fit the lower portion (the baseline) 
APfit_lo = polyval(fit_lo,x(1:bp)); 
fit_hi =polyfix(x(bp+1:YL),y(bp+1:YL),1,x(bp+1),APfit_lo(bp)); 
APfit_hi = polyval(fit_hi,x(bp+1:YL));      % Fit the upper portion (the vertical rise) 
APfit_PL(1,1:bp)=APfit_lo; 
APfit_PL(1,bp+1:end)= APfit_hi; 
MSE_PL(i) = immse(APfit_PL',y); 
i=i+1; 
end 
[MIN_PL(j) Min_PL_in(j)] =min(MSE_PL(:));       % Find the index of the min MSE_PL  
ERR(j) = MSE_exp(j)./MIN_PL(j);                 % calc the error ratio 
onset2(j) = x(Min_PL_in(j));`                   % the potential at the breaking point of the PL function 
end 
%% 4) Calculate the spikes width and amplitude  
for j= 1:N  
E = (V(:,j)-Thrshold_dV(j));                    % AP trace from the threshold potential  
AP_Amplitude(j) = max(E);                       % The AP amplitude 
HV = 0.5*max(E);                                % Half the AP amplitude 
for i = 1:length(E) 
if(E(i)>=HV)&&(CH==0) 
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    T1 = ts(i); 
    CH = 1;  
elseif(E(i)<=HV)&&(CH==1) 
    T2 = ts(i); 
    CH = 2;  
end 
end 
AP_Width(j)= T2-T1;                                    % The AP width  
CH = 0;              
end 
elapsedTime2 = toc; 
% save the results. Change the variable names to match the neuron label  
 filename = 'C:\ \AP_parameters_S104'; 
FW_S104 = 1./FW;             % IFWd2 rapidity  
HW_S104 = 1./HW;             % IHWd2 rapidity  
slope_S104 = slope;          % phase slope rapidity  
ERR_S104 = ERR;              % error ratio rapidity 
MSE_exp_S104 = MSE_exp; 
MSE_PL_S104 = MIN_PL; 
AP_width_S104 = AP_Width; 
AP_Amplitude_S104 = AP_Amplitude; 
onset_S104 =onset;            % threshold potential as defined by Volgushev et al (2008) 
onset2_S104 =onset2;          % threshold potential as defined by the breaking point of the PL 
function in the phase plot 
onset_dV_S104 = Thrshold_dV;  % threshold potential as defined by Naundorf et al (2006) 
save(filename,'ERR_S104','MSE_exp_S104','MSE_PL_S104','FW_S104','HW_S104','slope_S10
4','AP_width_S104','AP_Amplitude_S104','onset_S104','onset2_S104','onset_dV_S104'); 
 

The combined model code 

clear 
clc 
tic 
%% %%%%%%%%%%%% (c)2021, Ahmed Aldohbeyb & Kvein Lear (10/7/2021) 
%%%%%%%%%%%  
% A single-compartment HH-type model that combining the effect of cooperative 
% Na+ channels and dynamical reversal potential, which we called the  
% Combined Model. The model is based on Pospischil et al (2008) paper, which  
% described different type of neurons and their VGICs. The dynamical reversal potential was  
% adopted from Cressman et al (2009I) full model and cooperative Na+ channels  
% were used as described in Huang et al (2012) model.  
% Note that some of the parameters was based on Cressman et al(2009) published  
% model in ModelDB where several corrections was made in order to accurately  
% reproduce their results.    
%% cell type as described in Pospischil et al (2008):  



150 

 

% 1) regular-spiking (RS) excitatory (pyramidal) neuron & inhibitory neuron 
% 2) fast-spiking (FS) neuron, 
% Note: changing some the parameters such as g, VT, or tau can reproduce the response of 
different cells that fall 
% under the same categorize. for example, depending on the choise of Na, Kd, Ks, and leak 
channels 
% parameters, you can get the response from a RS excitatory or RS inhibitory cell.  
% So, this code can reproduce some of the figures in  Pospischil et al 
% (2008) paper by choosing the cell type and setting dyn_con = 0 & KJ or p = 0. 
% for example: to reproduce figure 2A in Pospischil et al (2008), set  
% dyn_con =0; type = 1; p=0;KJ=0;  
%% neuron types  
% 1: RS (exc (PC)) based on somatosensory cortex in vitro fig.2a in  Pospischil et al (2008), 
% 2: RS(inh), based on somatosensory cortex in vitro fig.2b in  Pospischil et al (2008), 
% 3: FS (inh), based on ferret visual cortex in vitro Fig.3 in  Pospischil et al (2008),  
% 4: FS (inh), based on somatosensory cortex in vitro Fig.4 in  Pospischil et al (2008),  
% model parameter for each cell type. Each coulum represent a neuron type and 
% the rows represent the model parameters as following: 1)Na+ conductance, 
% 2)g_Kd conductance, 3) g_Ks conductance,  4) g_leak conductance 5) E_leak,  
% 6) VT 7)time const. for g_Ks, 8) model dimension in  
% um (L = d). Units: conductance (mS/cm2), potential (mV), time (ms), and 
% length and depth in um. 
tic 
% dyn_cond = 1 : dynamical reversal potential & 0 : steady-state value (fixed)  
dyn_cond = 1;           
type = 3;  
para =  [56 10 50 58;6 2.1 10 3.9;7.5E-2 9.8E-2 0 7.87E-2;... 
         2.05E-2 1.33E-2 1.5E-1 3.8E-2;-70.3 -65 -70 -70.4; ... 
        -56.2 -67.9 -63 -57.9;608 934 4000 502;61.4 61.8 67 56.9];        
KJa = 0; 
pa  = 0.0;                                       % vector for fraction of coop. chs' (%) 
for W = 1:length(pa) 
    p = pa(W);                    % percentage of coop. Na+ channels 
for Q = 1:length(KJa) 
       KJ = KJa(Q);             % coupling strength (mV); 
%% Parameters 
dt = 1E-3;                                                   % time step (ms) 
T_max = 20E3;                                               % max time (ms) 
t = 0:dt:T_max;                                              % time vector (ms)  
N = length(t);                                               % number of steps  
A =  (para(8,type)*1e-4)^2;                                  % Area para(10,type) is in um, so x1E-4 to have 
A in cm^2 
C = A*1;                                                     % Membrane capacitance (1 uF/cm^2) 
gNa = para(1,type);                                          % Na+ max conductance (mS/cm^2) 
gKd = para(2,type);                                          % K+ (delayed-rectifier) max conductance 
(mS/cm^2)                       
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gKs = para(3,type);                                          % K+ (Slow) max conductance (mS/cm^2) 
gL  = para(4,type);                                          % Leak max conductance (mS/cm^2)  
EL = para(5,type);                                           % Leak reversal potential (mV)    
VT = para(6,type);                                           % Variable to adjusts spike threshold 
tau_nsMax = para(7,type);                                    % maximum time const. for slow K+ ch's 
deg = 34.1;                                                  % °C 
V_thermal = 1000*(deg + 273)*(1.38E-23/1.6E-19);             % Thermal voltage                                 
B = 7;                                                    % Ratio of intracellular to extracellular volume of the cell 
Ps = 10*1.125 ;                                                 % Pump strength (mM/ms) 
G_glia = 200/3;                                              % Strength of glial uptake (mM/ms) 
epsilonK =4.0/3.0;                                           % Diffusion constant (1/ms) 
kbath = 4.0;                                                 % Steady state extracellular potassium concentration 
(mM) 
gamma = 0.044495;                                            % factor to convert current density to d[conc]/dt 
(mM.cm2/?coul) 
tau =1000;                                                   % to convert mM/s to mM/ms 
Na_i = zeros(1,N);Na_o=zeros(1,N); % preallocate vectors for ion concentration  
K_i=zeros(1,N);K_o= zeros(1,N); 
Na_i(1) = 18.0; % Initial intracellular Na+ conc at the channels (mM) 
% Na_p = Na_i;     % Intial intracellular Na+ conc at the pump (mM) 
Na_o(1) = 145;                                               % Initial extracellular Na+ conc (mM) 
K_i(1) = 140 ;                                               % Initial intracellular K+ conc (mM) 
K_o(1) = 3.7;                                                % Initial extracellular K+ conc (mM) 
kna =  87.5;                                                 % Na+ dissociation constant (mM) 
kca =  1.38;                                                 % Ca2+ dissociation constant(mM) 
ksat = 0.1;                                                  % the saturation factor 
GM  = 0.35;                                                  % voltage dependence factor 
q10 = 3^((deg - 37)/10);   
% D_Na = 3e-6; 
% delta_X = 1E-4; 
% epsilonNa = 2*D_Na./(delta_X)^2; 
ENa = zeros(1,N);                                            % preallocate vectors for reversal potential  
EK = zeros(1,N); 
ENa(1) = V_thermal*log(Na_o(1)./Na_i(1));                    % Initial Na+ reversal potential  (mV) 
EK(1)  =  V_thermal*log(K_o(1)./K_i(1));                     % Initial K+ reversal potential Na+ (mV)                      
%% Intial Conditions 
V = zeros(1,N);                                              % preallocate vectors for Vm and gating variables 
Vcoop=V;m=V; 
mc=V;h=V; 
n=V;ns=V;                                     
V(1)  = EL;                                                  % initial membrane potential 
m(1)  = alphaM(V(1),VT)/(alphaM(V(1),VT) + betaM(V(1),VT));  % independent Na+ channels 
activation   
mc(1) = m(1);                                                % cooperative Na+ channels activation   
h(1)  = alphaH(V(1),VT)/(alphaH(V(1),VT) + betaH(V(1),VT));  % Na+ channels inactivation   
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n(1)  = alphaN(V(1),VT)/(alphaN(V(1),VT) + betaN(V(1),VT));  % K+ (delayed-rectifier) 
channels activation   
ns(1) = Ns_inf(V(1));                                        % K+ (slow) channels activation  
INai = zeros(1,N);INac = INai;INa = INai;                    % preallocate vectors for ch's current  
IKd = zeros(1,N);IKs = IKd;IK = IKd; 
ILeak = zeros(1,N);Ipump=ILeak;Iglia=ILeak;IKdiff =ILeak; 
%% current pulse & synaptic parameters 
I = 0;                                               % Vector for  current pulse 
I_app = 0; 
PL_T = round(1000/dt);                                        % length of the current pulse  
T_bw_pulses = round(5000/dt);                                 % Time between current pulses  
I_on =  round(1000/dt);                                       % on time for 1st current pulse 
I_off =  I_on + PL_T;                                         % off time for 1st current pulse 
I_on2 =  I_off + T_bw_pulses;                                 % on time for 2nd current pulse 
I_off2 =  I_on2 +PL_T;                                        % off time for 2nd current pulse 
I_on3 =  I_off2 + T_bw_pulses;                                % on time for 3rd current pulse 
I_off3 =  I_on3 +PL_T;                                        % off time for 3rd current pulse 
I_on4 =  I_off3 + T_bw_pulses;                                % on time for 4th current pulse 
I_off4 =  I_on4 + PL_T;                                       % off time for 4th current pulse 
I_on5 =  I_off4 + T_bw_pulses;                                % on time for 4th current pulse 
I_off5 =  I_on5 + PL_T;                                       % off time for 4th current pulse 
%% the main loop 
for i = 1:N-1 
%% Current through each voltage-gated ion channels & Membrane potential  
INai(i)  = (1-p)*gNa*m(i)*h(i)*(ENa(i) - V(i));                            % Independent Na+ channels 
current 
INac(i)  = p*gNa*mc(i)*h(i)*(ENa(i) - V(i));                               % Cooperative Na+ channels 
current 
INa(i)   = INai(i) +INac(i);                                               % total Na+ current 
IKd(i)   = gKd*n(i)^4*(EK(i) - V(i));                                      % delayed-rectifier K+ current 
IKs(i)   = gKs*ns(i)*(EK(i) - V(i));                                       % slow non-inactivating K+ current                                 
IK(i)    = IKd(i) +IKs(i);                                                 % total K+ current  
ILeak(i) = gL*(EL-V(i));                                                   % leak channel current 
% membrane potential (4RK method) 
Vrk(1)   = (dt/C)*A*(INa(i) + IK(i) + ILeak(i) +  I);  
kV = V(i) +Vrk(1)/2; 
Vrk(2) = 0.5*(dt/C)*A*((1-p)*gNa*m(i)*h(i)*(ENa(i) - kV) + p*gNa*mc(i)*h(i)*(ENa(i) - 
kV)... 
    +  gKd*n(i)^4*(EK(i) - kV)+ gKs*ns(i)*(EK(i) - kV) + gL*(EL-kV) + I);  
kV = V(i) +Vrk(2)/2; 
Vrk(3) = 0.5*(dt/C)*A*((1-p)*gNa*m(i)*h(i)*(ENa(i) - kV) + p*gNa*mc(i)*h(i)*(ENa(i) - 
kV)... 
    +  gKd*n(i)^4*(EK(i) - kV)+ gKs*ns(i)*(EK(i) - kV) + gL*(EL-kV) + I);  
kV = V(i) +Vrk(3); 
Vrk(4) = (dt/C)*A*((1-p)*gNa*m(i)*h(i)*(ENa(i) - kV) + p*gNa*mc(i)*h(i)*(ENa(i) - kV)... 
    +  gKd*n(i)^4*(EK(i) - kV)+ gKs*ns(i)*(EK(i) - kV) + gL*(EL-kV) + I);  
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V(i+1) = V(i) + (Vrk(1) + 2*Vrk(2) + 2*Vrk(3) + Vrk(4))/6; 
%%  Conc. & Reversal potential (Dynamical (dyn_con = 1) or Fixed (dyn_con = 0)) 
if(dyn_cond ==0)   %  For fixed reversal potential use conc. SS value 
ENa(i+1) = V_thermal*log(Na_o(1)./Na_i(1)); 
EK(i+1)  = V_thermal*log(K_o(1)./K_i(1)); 
else             %  For dynamical reversal potential   
ENa(i+1)  = V_thermal*log(Na_o(i)./Na_i(i));                               % Na+ reversal potential (mV) 
EK(i+1)   = V_thermal*log(K_o(i)/K_i(i));                                  % K+ reversal potential (mV) 
Ipump(i)  = (Ps/(1.0+exp((25.0-Na_i(i))/3.0)))*(1/(1+exp(5.5-K_o(i))));    % Na+/K+ pump 
(mM/s) 
Iglia(i)  = G_glia/(1.0+exp((18.0-K_o(i))/2.5));                           % glial capacity to remove 
excess K+ from the extracellular space (mM/s) 
IKdiff(i) = epsilonK*(K_o(i)-kbath);                                       % diffusion of potassium away 
from the local extracellular micro-environment (mM/s) 
% INadiff(i) = epsilonNa*(Na_i(i)-Na_p(i));                                  % diffusion of Na from the 
channels to the Na/K pump 
Na_o(i+1) = 145 - B*(Na_i(i)-Na_i(1));                                     % Extracellular Na+ 
concentration (mM) 
K_i(i+1) = 140 +(Na_i(1) - Na_i(i));                                       % Intracellular K+ concentration 
(mM) 
% 4RK for [Na+]i & [K+]o 
% Intial values  
INa0 = INa(i); 
Iglia0 = Iglia(i); 
IKdiff0 = IKdiff(i); 
% INadiff0 = INadiff(i); 
IK0 = IK(i); 
INaK = Ipump(i); 
dt0=dt; 
for j = 1:4      % Calculate the 4 RK coefficients for each ion species 
k_K(j)=  dt0*(-gamma*B*IK0 - 2*B*INaK -Iglia0-IKdiff0)/tau;      
k_Na(j)   =  dt0*(gamma*INa0-3*INaK)/tau; 
% k_Nap(j)   =  dt0*(-3*INaK + INadiff0)/tau; 
if(j==3)        % for the fourth coefficients, the values are  multiplied by 1 
Na_i0 = Na_i(i) + k_Na(j); 
% Na_p0 = Na_p(i) + k_Nap(j); 
K_o0  = K_o(i) + k_K(j); 
dt0 = dt;  
else    
Na_i0 = Na_i(i) + k_Na(j)/2; 
%  Na_p0 = Na_p(i) + k_Nap(j)/2; 
K_o0  = K_o(i) + k_K(j)/2; 
dt0 = dt/2; 
end 
ENa0 = V_thermal*log(Na_o(i)./Na_i0);  
INa0  = (1-p)*gNa*m(i)*h(i)*(ENa0 - V(i)) + p*gNa*mc(i)*h(i)*(ENa0 - V(i));  
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EK0  = V_thermal*log(K_o0./K_i(i));  
Iglia0  = G_glia/(1.0+exp((18.0-K_o0)/2.5));                           
IKdiff0 = epsilonK*(K_o0-kbath);  
%  INadiff(i) = epsilonNa*(Na_i0-Na_p0); 
IK0 = gKd*n(i)^4*(EK0 - V(i)) + gKs*ns(i)*(EK0 - V(i)); 
INaK = (Ps/(1.0+exp((25.0-Na_i0)/3.0)))*(1/(1+exp(5.5-K_o0)));    
end 
K_o(i+1)=K_o(i) + (k_K(1) + 2*k_K(2) +2*k_K(3) +k_K(4))/6;                 % Extracellular K+ 
concentration (mM) 
Na_i(i+1)=Na_i(i) + (k_Na(1) + 2*k_Na(2) +2*k_Na(3) +k_Na(4))/6;           % Intracellular Na+ 
concentration (mM) 
%  Na_p(i+1)=Na_p(i) + (k_Nap(1) + 2*k_Nap(2) +2*k_Nap(3) +k_Nap(4))/6;       %  Na+ 
concentration at the pump(mM) 
end 
%% gating variables (4RK method for differential eq's) 
Vcoop(i) = V(i) + KJ*mc(i)*h(i);                                           % V for Na+ coopetive channels 
% Na+ gating varibles  
mc_inf = alphaM(Vcoop(i),VT)/(betaM(Vcoop(i),VT) + alphaM(Vcoop(i),VT));    
tau_mc = 1/(alphaM(Vcoop(i),VT)+betaM(Vcoop(i),VT)); 
mc(i+1) = mc_inf^3 + (mc(i)-mc_inf^3)*exp(-dt/tau_mc); 
m_inf = alphaM(V(i),VT)/(betaM(V(i),VT) + alphaM(V(i),VT)); 
tau_m = 1/(alphaM(V(i),VT)+betaM(V(i),VT)); 
m(i+1) = m_inf^3 + (m(i)-m_inf^3)*exp(-dt/tau_m); 
fh = @(h0,V,dt) dt*(0.128*exp(-(V-VT-17)/18)*(1-h0) - h0*4./(exp(-(V-VT-40)/5)+1)); 
h(i+1) = RK4_function(fh,dt,h(i),V(i)); 
% K+ gating varibles 
fn = @(n0,V,dt) dt*(-0.032*(V-VT-15)/(exp(-(V-VT-15)/5) - 1)*(1-n0) - n0*0.5*exp(-(V-VT-
10)/40)); 
n(i+1) = RK4_function(fn,dt,n(i),V(i)); 
fns = @(ns0,V,dt) dt*((1/(1+exp(-(V+35)/10))) - ns0)/(tau_nsMax/(3.3*(exp((V+35)/20)) + 
exp(-(V+35)/20))); 
ns(i+1) = RK4_function(fns,dt,ns(i),V(i)); 
  if (i>I_on)&&(i<I_off)            % 1st pulse 
      I = I_app;  
  elseif(i>I_on2)&&(i<I_off2)       % 2nd pulse 
      I =1.5*I_app; 
  elseif(i>I_on3)&&(i<I_off3)       % 3rd pulse 
      I = 2*I_app; 
  elseif(i>=I_on4)&&(i<I_off4)      % 4th pulse 
      I = 2.5*I_app;  
   elseif(i>=I_on5)&&(i<I_off5)      % 4th pulse 
      I =  3*I_app; 
  else  
        I = 0; 
  end 
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% check if V(i) becomes a complex number & break if it is a complex number or V> or < +- 300 
mV 
  tf = isreal(V(i));  
if(tf == 0) || (abs(V(i))>300)  
mass = [' Error occured. V = ',num2str(round(V(i))),' mV at t = ',num2str(t(i)),' ms']; 
disp(mass) 
    break 
end 
end 
[pks,locs_V] = findpeaks(V,'MinPeakHeight',0,'MinPeakDistance',50);        % APs peaks index 
%% APs' parametes  
ISI = t(locs_V(2:end)-locs_V(1:end-1));                                    % Intracellular-spike interval in 
ms(ISI). in case of multiple pulses ignore the first value after the first pulse 
N = length(pks);                                                           % number of APs 
r =zeros(1,length(V));                                                     % vectror for spike time 
r(locs_V)=1;                                                               % 1 for each spike, zero elsewhere 
AP_t_HW = round(4/dt);                                                     % the number of data points selected 
before and after each AP peak 
tVs = t(1:2*AP_t_HW +1);                                                   % time vector for the selected AP 
(ms) 
t_d2Vs = t(1:2*AP_t_HW -1);                                                % time vector to calc IFWd^2  
c_level1 = 25;                                                             % criterion level 1 : for phase slope and 
threshold (mV)  
c_level2 = 70;                                                             % criterion level 2 : to calc slope between 
c_level 1 & 2(mV)  
for i = 1:N 
   Vs = V(locs_V(i)-AP_t_HW:locs_V(i)+AP_t_HW);                            % seperate each AP  
   dVs = diff(Vs)/dt;                                                      % AP 1st derivative  
   d2Vs = diff(Vs,2)/(dt*dt);                                              % AP 2nd derivative 
   FW(i) = 1./fwhm(t_d2Vs,d2Vs);                                           % rapidity using IFWd^2 method 
(1/ms). Fwhm calc using  Patrick Egan (2022). fwhm 
%(https://www.mathworks.com/matlabcentral/fileexchange/10590-fwhm) 
   PS_i = find(dVs>= c_level1,1,'first');                                  % find the index of criterion_level 
   PS(i) = (dVs(PS_i+1)-dVs(PS_i-1))/(Vs(PS_i+1)-Vs(PS_i-1));              % AP rapidity using the 
phase slope (1/ms) 
   Thr(i) = Vs(PS_i);                                                      % AP threshold (mV)  
   AP_h(i) = max(Vs)-Thr(i);                                               % AP Amplitude from thrshold to 
peak (mV) 
   AP_w(i) = fwhm(tVs,Vs-Thr(i));                                          % AP width at half the amplitude 
(ms) 
   t_thr(i) = tVs(PS_i);                                                   % time of Thrshold 
   PS_ic = find(dVs>= c_level2,1,'first');                                 % find the index when dVcoop/dt 
>= criterion level 
   PSc(i) = (dVs(PS_ic+1)-dVs(PS_ic-1))/(Vs(PS_ic+1)-Vs(PS_ic-1));         % VNa rapidity 
using the phase slope (1/ms) 
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   Ss(i,:) = polyfit(Vs(PS_i:PS_ic),dVs(PS_i:PS_ic),1);                    % slope of a line between 
criterion_level 1 & 2 
   Thrc(i) = Vs(PS_ic);                                                    % AP threshold at c_level2(mV)             
end 
 %% mean AP parameters  
onset(W,Q) = mean(Thr);                     % mean onset potential at 1st criterion level (mV) 
onset2(W,Q) = mean(Thrc);                   % mean onset potential at at 2nd criterion level (mV) 
SD_1(W,Q) = std(Thr); 
SD_2(W,Q) = std(Thrc);  
slope(W,Q) = mean(PS);                      % mean rapidity using phase slope (point) method at 1st 
criterion level (ms^-1) 
slope2(W,Q) = mean(Ss(:,1));                % mean rapidity using phase slope (line)method bwn 1st 
& 2nd criterion level (ms^-1) 
IFWd(W,Q) = mean(FW);                       % mean rapidity using the inverse of the full-width 
method at half max (ms^-1) 
width(W,Q) = mean(AP_w);                    % mean AP width (ms) 
amplitude(W,Q) = mean(AP_h);                % mean AP amplitude (mV) 
Thr_var(W,Q)=max(Thr)-min(Thr);             % onset variability (mV), which is the difference 
between the max and min onset value as defined by Naundorf et al (2006) 
num(W,Q) = N                               % AP number 
ISIt(W,Q) = 1/(mean(ISI)/1000);                % mean ISI (ms) 
ENa_d(W,Q) = ENa(I_on)-ENa(I_off);          % Na+ reversal potential difference bwn the 
begginig and the end of injected current pulse 
EK_d(W,Q) = EK(I_on)-EK(I_off);             % K+ reversal potential difference bwn the begginig 
and the end of injected current pulse 
clearvars -except para type dyn_cond pa KJa W Q tic p onset slope onset2 slope2 Thr_var... 
             ENa_d EK_d Vec_str IFWd width amplitude Time_diff num Threshold_diff ISIt   
end 
end 
time = toc/60;                             % Simulation time in minutes   
%% rate functions 
% alpha 
function aM = alphaM(V,VT) 
aM =  -0.32*(V-VT-13)/(exp(-(V-VT-13)/4) - 1); 
end 
 function aH = alphaH(V,VT) 
aH = 0.128*exp(-(V-VT-17)/18); 
 end 
function aN = alphaN(V,VT) 
aN = -0.032*(V-VT-15)/(exp(-(V-VT-15)/5) - 1); 
end 
% beta 
function bM = betaM(V,VT) 
bM = 0.28*(V-VT-40)/(exp((V-VT-40)/5) - 1); 
end  
function bH = betaH(V,VT) 
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bH = 4./(exp(-(V-VT-40)/5)+1); 
end 
function bN = betaN(V,VT) 
bN = 0.5*exp(-(V-VT-10)/40); 
end 
function Ns_i = Ns_inf(V) 
Ns_i= 1/(1+exp(-(V+35)/10)); 
end 
function tns_i = tau_ns(V,tau_nsMax) 
tns_i= tau_nsMax/(3.3*(exp((V+35)/20)) + exp(-(V+35)/20)); 
end 
%% 4th RK for channels variables 
function RK4g= RK4_function(f,dt,a0,V) 
dt0 =dt; 
m1 = a0; 
for j = 1:3 
    k(j) = f(m1,V,dt0); 
    m1 = a0 + k(j)/2; 
    dt0 = dt/2; 
end 
m1 = a0 + k(j); 
    dt0 = dt; 
    k(4) = f(m1,V,dt0); 
  
RK4g = a0 + (k(1) + 2*k(2) +2*k(3) +k(4))/6; 
end 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



158 

 

Appendix F: Numerical analysis and data source 

 Numerical analysis is an area of mathematics that provides algorithms to solve difficult 

problems using approximate solutions. One of the main advantages of numerical analysis is to 

convert real-world problems such as heat transfer or wave equation to an accurate numerical 

approximation that can be solved using a computer. The choice between many numerical methods 

to solve a particular problem depend on trade-off between accuracy, stability, and computation 

time. Thus, the type of the problem and required accuracy must be determined before choosing 

and implementing the numerical methods.  

A description of the two methods used in this dissertation is shown below. The two 

methods are the Forward Euler (FE) method, and the fourth order Runge-Kutta (4RK) method. 

The FE method is a finite difference formula derived from a Taylor series expansion. For example, 

the approximation for a function of space, 𝑓(𝑥𝑖), at the next point (𝑥𝑖+1) is:   

𝑓(𝑥𝑖+1) = 𝑓(𝑥) + (𝑥𝑖+1 − 𝑥𝑖)𝑓′(𝑥𝑖) + (𝑥𝑖+1 − 𝑥𝑖)22! 𝑓′′(𝑥𝑖) + ⋯ 

Assuming a fixed space step ∆𝑥 =  (𝑥𝑖+1 − 𝑥𝑖) and rearranging the equation leads to the 

approximation of the function first derivative: 

𝑓′(𝑥𝑖) = 𝑓(𝑥𝑖+1) − 𝑓(𝑥)∆𝑥 + ∆𝑥22! 𝑓′′(𝑥𝑖) + ⋯ 

This method is called the Forward Euler since the derivative at certain point is determined by the 

value of the function at that position and the next position. The accuracy of the method is 

determined by the exponent of the leading form, which is 
∆𝑥22 𝑓′′(𝑥𝑖). In general, the accuracy of 

the method with a leading term ∆𝑥𝑗 is on the order of 𝑗 − 1. Thus, the FE method is a first-order 
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accuracy scheme. A first-order scheme means if the step size is reduced by a factor of 10, the error 

will be also reduced by a factor 10. Thus, the choice of a reasonable step size is crucial for obtaining 

accurate results.  

Furthermore, the same steps can be applied to the HH model. The HH model is represented 

as the following:  

𝐶 𝑑𝑉𝑑𝑡 = 𝐼𝑁𝑎+ + 𝐼𝐾+ + 𝐼𝑙𝑒𝑎𝑘 + 𝐼𝑎𝑝𝑝 

Approximating the derivative using the FE method and rearranging the equation yields the 
following numerical scheme: 𝐶 𝑉(𝑡 + 1) − 𝑉(𝑡)∆𝑡 = 𝐼𝑁𝑎+ + 𝐼𝐾+ + 𝐼𝑙𝑒𝑎𝑘 + 𝐼𝑎𝑝𝑝 

𝑉(𝑡 + 1) = 𝑉(𝑡) + ∆𝑡𝐶 (𝐼𝑁𝑎+ + 𝐼𝐾+ + 𝐼𝑙𝑒𝑎𝑘 + 𝐼𝑎𝑝𝑝) 

This numerical scheme can produce very accurate results for the HH model, given a small-time 

step (∆𝑡). One of the main advantages of the FE methods is that the numerical scheme is easy to 

implement and has a low computation cost. However, the low accuracy and limited stability of the 

method can be problematic when the model is modified to include another mechanism such as ion 

concentration, which increasea the complexity of the model. Thus, a significant reduction in the 

time step is required to maintain the accuracy and stability of the results. However, with smaller ∆𝑡, the computation time will significantly increase, losing one of the main advantages of the FE 

method. Thus, the model should be solved using a more advanced numerical method.   

The 4RK method is one of the widely used numerical schemes to obtain approximate 

solutions. The method includes the same steps as the Euler methods but adding intermediate points 

between 𝑥𝑖 and 𝑥𝑖+1. The 4RK method uses four points (steps) to obtain the solution at the next 

step. For example, let assume that the initial value of the membrane potential  𝑉(𝑡0) is 𝑉0. Solving 
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the HH model for next time step require 4 steps in the 4RK method. The first step of the 4RK 

method (𝑘1) is obtained using the initial condition and a fixed step size (∆𝑡): 

𝑑𝑉𝑑𝑡 = 𝑓(𝑉, 𝑡) 

𝑘1 = ∆𝑡𝑓(𝑉0, 𝑡0)  
Now each step (𝑘𝑖) in the 4RK method is based on the previous step (𝑘𝑖−1). Therefore, the other 

points and final solution are as follows: 

𝑘2 = ∆𝑡𝑓 (𝑉0 + 12 𝑘1, 𝑡0 + ∆𝑡2 )  
𝑘3 = ∆𝑡𝑓 (𝑉0 + 12 𝑘2, 𝑡0 + ∆𝑡2 ) 

𝑘4 = ∆𝑡𝑓(𝑉0 + 𝑘3, 𝑡0 + ∆𝑡)  
𝑉(𝑡 + 1) = 𝑉(𝑡) + 16 (𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4) 

As can be seen by the multiple steps to obtain the next point solution, the 4RK method requires 

more computation time per step than the FE method. However, the 4RK method is fourth order 

accurate scheme and has a higher stability limit compared to the FE method. Also, it can provide 

a stable solution with a bigger time step, compared to the FE method. Therefore, the 4RK method 

is widely used with more complex models. For a further explanation on numerical analysis, see 

Parviz Moin book “Fundamentals of Engineering Numerical Analysis” [149].  

Electrophysiological recordings sources 

The following table shows a description of several databases for electrophysiological recordings.  
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Table F1: Electrophysiological recording and information databases 

Database Description  

Allen Brain 

map  

(Link) 

Intracellular recordings from different brain regions.  The data are from 

normal or diseased human and mouse.  

GIGADB 

(Link) 

Data repository supporting scientific publications in the Life/Biomedical 

Sciences domain (cortical neurons recording was obtained from this 

database) 

CRCNS 

(Link) 

Intracellular and extracellular recordings from different brain regions, as 

well as shared stimuli and analysis tools. (hippocampal neurons recording 

was obtained from this database) 

FigShare 

(Link) 

A repository where many studies share their research results or tools 

available.  

ModelDB 

(Link) 

Database for computational neuroscience models 

NeuroElectro 
(Link) 
 

A Project to extract information about the electrophysiological properties 

from the literature  
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