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ABSTRACT

SIMULATION OF NANOSCALE PATTERNS YIELDED BY ION BOMBARDMENT OF

SOLID SURFACES

This thesis includes numerical investigations into two topics of self-organized topographies

produced on solid surfaces that are bombarded with a broad ion beam. The first topic is the forma-

tion of terraces. When a surface is bombarded at relatively large angles of incidence, the surface

often develops facets that are characterized by large regions of nearly constant gradient in height,

which are called terraces. The second topic is related to the observation that when the surface of a

nominally flat binary material is bombarded with a broad, normally-incident ion beam, disordered

hexagonal arrays of nanodots can form. Shipman and Bradley have derived equations of motion

that govern the coupled dynamics of the height and composition of such a surface [P. D. Ship-

man and R. M. Bradley, Phys. Rev. B 84, 085420 (2011)]. We investigate the influence of initial

conditions on the hexagonal order yielded by integration of those equations of motion.

In our work on terrace formation, we introduce a model that includes an improved approxima-

tion to the sputter yield and that produces a terraced surface morphology at long times for a wide

range of parameter values. Numerical integrations of our equation of motion reveal that the ter-

races coarsen for a finite amount of time after which the coarsening is interrupted, just as observed

experimentally. We also show that the terrace propagation direction can reverse as the amplitude of

the surface disturbance grows. This highlights the important role higher order nonlinearities play

in determining the propagation velocity at high fluences. We study the nanoscale terraced topogra-

phies that arise when a solid surface is bombarded with a broad ion beam that has a relatively high

angle of incidence θ. Our simulations establish that the surfaces exhibit interrupted coarsening,

i.e., the characteristic width and height of the surface disturbance grow for a time but ultimately

asymptote to finite values as the fully terraced state develops. In addition, as θ is reduced, the
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surface can undergo a transition from a terraced morphology that changes little with time as it

propagates over the surface to an unterraced state that appears to exhibit spatiotemporal chaos. For

different ranges of the parameters, our equation of motion produces terraced topographies that are

remarkably similar to those seen in various experiments, including pyramidal structures that are

elongated along the projected beam direction and isolated lenticular depressions.

For our study of the influence of prepatterning surfaces governed by the Bradley-Shipman

equations, the initial conditions studied are hexagonal and sinusoidal templates, straight scratches

and nominally flat surfaces. Our simulations indicate that each of the prepatterned surfaces can lead

to marked improvements in the hexagonal order compared to what is obtained from the nominally

flat surfaces. For the hexagonal and sinusoidal templates with amplitude approximately equal to

one hundredth of the amplitude of the pattern obtained at late times, the greatest improvement in

order is obtained if the initial wavelength is approximately equal to or double the linearly selected

wavelength. Our simulations of sinusoidal templates demonstrate that increasing the amplitude

of the template can improve the effectiveness of templates with longer wavelengths. Scratches

enhance the hexagonal order in their vicinity if their width is close to or less than the linearly

selected wavelength. Our results suggest that prepatterning a binary material can dramatically

increase the hexagonal order achieved at large ion fluences.
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Chapter 1

Introduction

When a surface is exposed to a broad ion beam of sufficient energy, it will erode due to a

process called sputtering. An atom (or atoms) on the target surface is said to be sputtered when

it is ejected from the surface due to the incident ions. The rate of erosion induced by sputtering

is not uniform across the surface. In particular, the local erosion rate depends on the surface’s

slope, curvature, and higher spatial derivatives. The dependence of the erosion rate on the surface

curvature can cause a flat surface to be unstable. When there is an instability, often the surface

roughens without forming patterns – for example, the surface can form disordered mounds and

depressions. However, it is possible for a variety of self-assembled nanoscale patterns to emerge.

Examples include periodic height modulations or “ripples" [14] as well as nanodots arranged in

hexagonal arrays of surprising regularity [6, 8, 15, 16]. This thesis primarily focuses on the study

of the formation of facets, which we call terraces, and the control of hexagonal arrays of nanodots.

Apart from being interesting, ion bombardment has the potential to become a high-throughput,

single-step method of mass producing large-area nanostructures with length scales beyond the

limits of conventional optical lithography. In this introduction, we will focus on the potential

applications that are the most relevant to the work that we discuss in this thesis. The first application

we discuss is based on terrace formation. Harrison and Bradley (HB) have advanced a two-stage

procedure for producing high efficiency blazed diffraction gratings that utilizes the facets that

develop from bombardment with a broad ion beam at a relatively high angle of incidence [17]. In

the first stage of their proposed fabrication method, conventional lithography is used to produce a

periodic height modulation on the surface of the sample. The second stage consists of bombarding

this prepatterned surface with a broad ion beam of noble gas ions at a high angle of incidence.

HB’s simulations strongly suggest that this serves to transform the initial pattern into the periodic

sawtooth form characteristic of high quality blazed gratings if the ion beam and target material are

selected appropriately. More recently, they have recently expanded upon this method by alternating
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between a stage with concurrent deposition and ion bombardment and a stage with only deposition,

leading to the formation of a multilayer blazed diffraction grating [18]. These multilayer blazed

gratings could perform well in the extreme ultraviolet and soft X-ray regimes [18]. Additionally,

Ou et al. have actually made blazed gratings using ion bombardment, using a different method that

does not involve prepatterning the surface [19].

Another application is motivated by the experimental observation that it is possible for a

hexagonally-ordered array of nanodots to form when a binary material is bombarded at normal

incidence. According to the Bradley-Shipman (BS) model of this phenomenon, one of the atomic

species will be concentrated preferentially on top of the nanodots, and the other in the depressions

between them [8, 15, 16]. If the two atomic species have different magnetic properties and the

order of the array is sufficient, the surface could be used for magnetic data storage. However, the

degree of hexagonal order reached in these experiments typically is not sufficiently strong for this

application; this motivated our group to seek a method to improve the quality of order, and our

proposed method is discussed in this thesis. An experimental method that uses ion bombardment

to produce an ordered array of magnetic nanodots was explored in [20, 21]. In these experiments,

a magnetic film was embedded in a GaSb film so that the magnetic film was parallel to the sur-

face. The GaSb surface was eroded by ion bombardment until the surface was part way through

the magnetic film. Furthermore, Facsko et al. have produced hexagonal arrays of semiconductor

quantum dots on GaSb by normal incidence ion bombardment [6].

This thesis is organized as follows. Background material is introduced in the remainder of this

chapter, which is subdivided into the following sections. We begin in Section 1.1 with a basic

overview of a typical ion bombardment experiment, so that we can define terms and the coordi-

nate system that we use to describe the physical situation. In Section 1.2, we explore experiments

and theory for elemental materials bombarded by a broad ion beam. This includes a discussion

of the linear Bradley-Harper (BH) theory, which is essential for understanding the onset of pattern

formation, and then the Kuramoto-Sivashinsky (KS) equation is discussed. The KS equation is

obtained by including the lowest order nonlinear terms in the linear BH theory. These nonlinear
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terms control the exponential growth of the linearly unstable modes. Next, in Section 1.3, exper-

iments on binary materials that produce nanodots arranged in a hexagonal array are introduced,

along with the Bradley-Shipman theory, which can explain the formation of said hexagonal arrays

of nanodots. We review linear stability analysis and shock waves in Section 1.4. In Section 1.5,

we discuss some standard numerical approaches to integration of differential equations and quan-

tifying pattern order, which concludes the background introductory material. We then present our

theory of terrace formation in Chapter 2, which is modeled by an equation of motion that includes

cubic nonlinearities in addition to the usual KS quadratic nonlinear terms. In Chapter 3, we present

our work demonstrating that according to the BS theory, the degree of order of the hexagonal nan-

odot arrays can be improved by appropriately prepatterning the surface. Finally, in Chapter 4, we

wrap up with a summary of the main conclusions of this thesis.

1.1 Definitions and the Physical Situation

In the experiments that we consider, a solid surface that is bombarded by a broad ion beam.

Typically, the solid surface is initially flat, but there have been experiments in which prepatterned

samples were used as well; in this section, we focus on the case in which the target material’s

surface is initially flat. The ion beams are often comprised of noble gas ions, since they have low

chemical reactivity. Let the x− y plane be set to coincide the unperturbed initial flat surface; the z

axis is perpendicular to the unperturbed surface (see Fig. 1.1). The surface will be represented by

a height function h = h(x, y, t), i.e., its height above each point in the x − y plane. Furthermore,

in the experiments we consider in this thesis, the crystal structure near the surface of the solid is

continually disrupted by the ion bombardment. Since the surfaces are amorphous, the symmetries

of the surface topographies that form are dictated by the direction of the ion beam, not the crys-

talline structure of the bulk material. If the ion beam is normally incident on the surface, there is

azimuthal symmetry. However, if the ion beam is obliquely incident on the surface, the azimuthal

symmetry is broken. In this case, we will choose the positive x direction to point antiparallel to the

direction of the ion beam projected onto the x − y plane. Thus, the x direction will be called the
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longitudinal direction, and the y direction will be called the transverse direction. In this thesis, we

will only consider stationary surfaces. We define ∇ ≡ x̂ ∂
∂x

+ ŷ ∂
∂y

and use this notation throughout

this thesis. Let ê be the unit vector whose direction is opposite of the ion flux direction. The angle

between ê and ẑ is defined to be the angle of incidence, which we denote by θ. If the ion beam

is normally incident, then θ = 0. If θ is nonzero, then the angle of incidence is oblique; a near

grazing angle of incidence corresponds to θ near ±90o. Note that θ differs from the local angle

of incidence, which is the angle between ê and n̂, where n̂ is the position-dependent unit surface

normal vector. A depiction of an initially nominally flat surface that is exposed to a broad ion beam

at an oblique angle of incidence is shown in Fig. 1.1 along with the coordinate system described

in this paragraph. When ripples form in experiments, their wave vector is typically either mostly

Figure 1.1: An initially nominally flat surface is exposed to a broad ion beam at oblique incidence.

parallel or perpendicular to the ion beam direction projected onto the solid surface. We distinguish

between these two orientations by referring to them as parallel mode and perpendicular-mode rip-

ples, respectively.

In analysis of ion bombarded surfaces, it is often advantageous to consider the dynamics of a

surface that depends on only one spatial variable and one time variable; that is h = h(x, t). We

will refer to such a system as 1+1 dimensional, in contrast to a system in 2+1 dimensions in which

h = h(x, y, t). A 1+1 dimensional equation of motion can still make accurate predictions for
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a surface in 2+1 dimensions if there is sufficient smoothing in the transverse direction. We will

demonstrate this in the context of terrace formation in Section 2.

1.2 Ion Bombardment of Elemental Materials

This section begins with various experimental results on ion bombardment of elemental mate-

rials, which can lead to the formation of ripple patterns and terraces. Then we presents key aspects

of the Sigmund model of sputtering, followed by an overview of how Bradley and Harper used the

Sigmund model of sputtering to explain the formation of the ripples seen in experiments. We will

also discuss the Carter-Vishnaykov (CV) effect, which can lead to smoothing at small angles of in-

cidence and to ripple pattern formation at sufficiently large angles of incidence. Next, we introduce

the Kuramoto-Sivashinsky equation, which is obtained by adding the lowest order nonlinearities to

the linear BH theory. Finally, we discuss an extension of the Kuramoto-Sivashinsky equation that

can yield hexagonally ordered arrays of nanodots, for appropriately chosen parameter values.

1.2.1 Experimental Results

Often, exposing a nominally flat solid surface of an elemental material to a broad ion beam

simply causes it to flatten further [22]. This can be useful in some situations, but it is not the focus

of this work. We will focus on situations in which the initial nominally flat surface is unstable.

Ripples

Ripples are the most common nanoscale patterns seen on solid surfaces that are ion bombarded

at oblique angles of incidence. Observations of ripple formation date back to 1962 [23]. Figure 1.2

shows surfaces produced by 5 keV Xenon ion bombardment of highly oriented graphite surfaces

at different angles of incidence and ion fluences; these experiments were carried out by Habenicht

et al. in 1999 [1]. The black arrow in the figure shows the direction of the ion beam projected onto

the surface. For the θ = 30o and θ = 60o cases, Habenicht et al. observed parallel-mode ripples.

At the larger angle of incidence θ = 70o, however, they observed perpendicular-mode ripples. This

switch of selected ripple orientation can be understood within the BH theory, which is discussed in
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Section 1.2.2. Another experimental result showing parallel-mode ripples is in Figure 1.3, which

is a result from Adams et al. in 2002 [2]. In their experiment, Adams et al. bombarded a carbon

surface with 20 keV Ga+ ions. Time increases from left to right in the sequence of images. The

white arrow in the figure is the ion beam direction projected onto the surface. An important feature

in the right-most image is that at multiple places in the pattern, ripple crests terminate and the

ripple troughs merge together. These structures are a type of defect called dislocations. Defects and

disorder are commonplace in patterns produced by ion bombardment, and are the main obstacles

to most applications. Figure 1.4 shows a cross-section with y = const of a surface that is similar to

the right-most image shown in Figure 1.3. The bright white layer of material that is concentrated

at the surface has been amorphized by the incident ions. This demonstrates that the underlying

crystal structure did not play a significant role in the formation of the ripples.

In our discussion of Bradley-Harper theory in Section 1.2.2, we will see that the linear theory

predicts that if parallel-mode ripples develop, then they propagate in the direction opposite to the

incoming ions; that is, they propagate towards the beam source. Alkemade tested this aspect of

BH theory by bombarding a SiO2 surface with a broad beam of 30 keV gallium ions; his result

from Ref. [3] is shown in Fig. 1.5. The direction of the ion beam flux projected onto the surface

is to the right. In the first few panels, the ripples are still forming, and it is difficult to discern any

propagation of the ripples. In the last few panels, however, there is a distinct propagation to the

right. This means the ripples propagated away from the beam source, i.e., opposite the direction

that was predicted by the linear BH theory. We believe that the apparent discrepancy is not due to

a flaw in linear BH theory, but rather that the surface is no longer in the linear regime in snapshots

shown in those panels. Indeed, the surface topography in those panels exhibits step-like faceted

structures that we call terraces. In the section on our theory of terracing, it is demonstrated that

nonlinear effects can cause the observed propagation direction to be the opposite of that predicted

by linear BH theory. More experimentally produced terraced structures are shown in the next

section.
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Figure 1.2: Graphite surfaces subjected to 5 keV Xenon ion bombardment. Left column (a)-(c): ion fluence

of 3×1017 ions/cm2; incidence angle θ equal to (a) 30o, (b) 60o and (c) 70o. Right column (d)-(f): incidence

angle of 60o; ion fluence of (d) 5×1016 ions/cm2, (e) 2×1018 ions/cm2 and (f) 5×1018 ions/cm2. Arrows

show the ion beam direction. The height scale varies between panels. This is a figure from Ref. [1].

Figure 1.3: A carbon surface was bombarded with 20 keV Ga+ ions at oblique incidence and parallel-mode

ripples were formed. The sequence of snapshots shows the surface at increasing (from left to right) times.

This figure is from Ref. [2].
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Figure 1.4: A cross-sectional TEM image of the surface shown in Figure 1.3. The bright white layer at the

surface is material that has been amorphized. This figure is from Ref. [2].

Terraces

In the last section, it was shown that when a nominally flat solid surface is bombarded with a

broad ion beam at oblique incidence, nanoscale ripples often develop on the surface. It is frequently

observed in experiments that at the late stages of its time evolution, the surface develops a terraced

form [2, 4, 9, 10, 24–31]. We now clarify the meaning of a terraced surface. A height profile of a

terraced surface taken along the projected ion direction is not sinusoidal (see Figure 1.6). Instead,

as we trace along the height profile, the surface slope is nearly equal to a constant value m+ for

a long spatial interval. At some point, the slope changes rapidly, and then is nearly equal to a

constant negative value m− for a long interval. The slope once again changes rapidly at some

point, and then is approximately equal to m+. The height profile continues in this fashion, and so

takes on an irregular sawtooth form. The two sides of a “tooth" have the slopes m+ and m−. These

slopes have different magnitudes, and so the teeth are asymmetric.

Images of terraced surfaces formed in experiments can be seen in Figs. 1.7 and 1.8. The surface

in Fig. 1.7 was obtained by Adams et al. by bombarding carbon at a large angle of incidence by 20

keV gallium ions, and shows the asymmetric sawtooth shape of the surface in the xz cross section

[2]. The images shown in Fig. 1.8 were produced by Basu et al. by exposing a silicon surface
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Figure 1.5: This figure from Alkemade, Ref. [3], for (a)-(j) and (l) shows SEM images at increasing times

of a glass surface bombarded by a broad beam of 30 keV Ga+ ions. The region boxed in a purple rectangle

in (k) is the magnified region shown in the other figures. The fluence in (a) is 21 × 1020 ions/m2, and the

fluence increases by 5.2 × 1020 ions/m2 in each consecutive image. The direction of the ion flux is to the

right. The red vertical lines are guides to the eye for studying the surface propagation direction. The green

line in (e) can be ignored.
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bombarded by 0.5 keV argon ions at an angle of incidence of 72.5o [4]. The numbers in the top left

indicate the ion fluence in units of ions/cm2, and the insets are autocorrelations of the surface. The

surface forms parallel-mode ripples at early times and then develops terraces at late times. Terraces

form most commonly when the ion beam is close to grazing incidence; however, they have been

observed even when the angle of incidence has been as small as θ = 45o [10, 27]. For example,

Wei et al. demonstrated this in their experiment in which they bombarded pyrochlore with 30

keV Ga+ ions. In their experiments, the terraces had one side perpendicular to the ion beam and

the other parallel to it. This phenomenon has been observed in multiple experiments in which

terraces were formed by ion bombardment. Another experiment exhibiting terraces with one side

perpendicular to the ion beam and other other parallel was carried out by Adams et al. [2]. They

bombarded carbon with 20 keV Ga+ ions over a range of incidence angles θ = 0−80o. They found

that the terraces formed for sufficiently high angles of incidence, specifically θ > 70o. However,

there are also experiments in which the terraces do not have one side perpendicular and the other

side parallel to the ion beam. An example of this is Vollner et al.’s experimental work. They

exposed fused silica surfaces with ripple prepatterns to 2 keV Ar+ ions. The terraced surfaces that

formed had local ion incidence angle distributions that were not peaked at 0o and 90o. Vollner et al.

showed that, in their experiment, sputtering was the dominant physical mechanism. Later we will

discuss the theory Pearson and Bradley introduced that yields terrace formation [32]; this theory is

consistent with the observation that sputtering can lead to terrace formation in experiments carried

out at high angles of incidence.

If the target is crystalline and remains so when it is bombarded, the faces of the terraces may

coincide with low index crystal facets. Under these circumstances, at least part of the driving force

for terrace formation must come from the tendency to minimize the surface free energy. Terraced

surfaces can develop, however, on the surfaces of amorphous materials or on materials with a

surface layer that has been amorphorized by ion bombardment [2, 4, 9, 10, 25, 26, 29–31]. In

these cases, the appearance of a terraced ripple structure at the late stages of ion erosion cannot

be attributed to surface faceting. Moreover, the anisotropic KS equation does not yield terraced
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Figure 1.6: An idealized terraced surface with selected slopes m+ and m−. The angle of incidence of the

impinging ions is θ and the height of the surface above the x− y plane is denoted by h.

Figure 1.7: A result from Ref. [2]. A cross-sectional TEM image of a surface obtained by bombarding

carbon at a high angle of incidence with 20 keV gallium ions. The bright white layer at the surface is

material that has been amorphized. The dark layer is amorphous platinum that was deposited prior to

sectioning in order to increase contrast. The arrow shows the direction of the ion beam.
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Figure 1.8: AFM images of a silicon surface bombarded by 0.5 keV argon ions at an angle of incidence of

72.5o. A surface shown at different fluences, given in the top left of each panel, in units of ions/cm2. The

surface formed parallel-mode ripples at early times, and evolved into a terraced structure at late times. The

red arrow indicates the ion beam direction projected onto the surface. The insets are autocorrelations of the

surface. Note that the scale is 200 nm in (a) and (b), and 400 nm in (c)-(f). This figure is from Basu et al. in

Ref. [4].

surfaces. Two questions therefore present themselves: Why do terraced topographies form when

the surface of the target is not crystalline? How are the slopes m+ and m− selected by the system?

In this thesis, we will study an equation of motion for the surface of an ion-bombarded ele-

mental material that differs from the usual KS equation by the inclusion of a cubic nonlinearity.

Our results establish that this term has a crucial influence on the dynamics — it can lead to the

formation of a terraced topography that coarsens with time, in accord with experimental observa-

tions [2, 4, 9, 25–31]. The rapid variation in the slope in a spatial region connecting the selected

slopes is due to the formation of a so-called undercompressive shock. Finally, we show that the

cubic nonlinearity can lead to a reversal of the ripple propagation velocity as the ripple amplitude

grows. This could explain why the ripples were observed to move in the direction opposite to that

predicted by the linear Bradley-Harper theory in most experiments [3, 5, 27, 33–36].
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1.2.2 Theory – Elemental Materials

Sigmund Theory of Sputtering

When an ion is incident on a solid, the ion itself can strike an atom at the surface and so eject

it from the solid. However, the process that leads to an atom (or atoms) sputtering off the surface

can be more complicated. With sufficient energy, the incident ion can penetrate some distance into

the solid and collide with interior atoms that then recoil. Those recoiling atoms can then strike

other atoms, and the process repeats resulting in a collision cascade. Meanwhile the ion continues

to strike additional atoms. Ultimately one or more of the atoms in the collision cascade may strike

atoms at the surface with sufficient energy to eject them from the surface. This complicated process

can be simulated using molecular dynamics. A sequence of images obtained from a molecular

dynamics simulation of an ion striking a solid surface that was computed by Gnaser et al. is shown

in Fig. 1.9 [5].

Figure 1.9: A molecular dynamics simulation of an ion impact on a solid surface causing several surface

atoms to be sputtered. The color shows the ratio of the atoms’ kinetic energy to the average thermal energy

per atom at the melting point. One of these sputtered atoms can be seen at the top of the middle-left image.

The simulation was done by Gnaser et al. in Ref. [5].
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When there is a sufficiently large flux of ions striking the surface, the detailed process by

which the sputtering occurs is not needed to obtain good statistical approximations to the physics

of sputtering. This idea is used in the Sigmund model of sputtering. In the Sigmund model, the

ion flux striking the surface at position r′ (see Figure 1.10) deposits maximal power at a point that

is a distance a along the beam direction from r′, and the deposited energy decreases away from

that point according to Equation (1.1), which gives the power per unit volume deposited at r due

to ions striking at r′,

P (r, r′, t) = P0 exp

(

−
d2‖
2α2

− d2⊥
2β2

)

, (1.1)

where d‖ is the magnitude of the component of the displacement (r − r′) that is parallel to the

ion direction and is d‖ is the magnitude of the perpendicular component. The parameters α and

β quantify how quickly the deposited power falls off. Eq. (1.1) is grounded in analytical work

by Sigmund on the transport equation that describes the collision cascades [37]. It is clear from

the functional form of the power distribution that the contours of equal energy deposition are

ellipsoidal. The other key aspect of the Sigmund model is that the rate of erosion at a point on the

surface is assumed to be directly proportional to the power per unit volume deposited there. Hobler

et. al. tested the validity of the Sigmund model using Monte Carlo simulations of ion impacts on

Si at with incidence angles from perpendicular to grazing [38]. They found that for Ar and Xe ions

at 2 and 20 keV and nongrazing incidence, the Sigmund model’s predictions are within a factor

of 2 of the Monte Carlo results. The Sigmund model was found to be a poor approximation if the

angle of incidence was near grazing or if the ion energy was too high. This occurs because the

assumptions that the number of sputtered atoms is proportional to the power deposited per unit

volume and that the distribution of power deposited is independent of the surface shape are both

invalid under these conditions [38].

Bradley-Harper Theory

The Bradley-Harper theory is a continuum model that applies to elemental materials bom-

barded by a broad ion beam [33]. It takes into account two physical effects: sputtering and surface
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Figure 1.10: A focused ion beam with flux J is incident upon the surface h(x, y, t) at point r′. In the

Sigmund model of sputtering, maximal power is deposited at a point in the solid that is a distance a along

the beam direction from r
′. The point of maximal power deposition is indicated by the red dot. The power

deposited in the solid decreases as the parallel and perpendicular distances (d‖ and d⊥) increase, and the

contours of equal power deposition are ellipsoidal.

self-diffusion. While these are not the only effects present, BH took them to be the most impor-

tant. Sputtering leads to the onset of pattern formation, as will be shown in this section. Surface

self-diffusion is a smoothing process that is necessary for the theory to be well-posed. Specifically,

it damps short wavelength modes and leads to a finite selected wave number for the ripple pattern.

The BH theory uses the Sigmund model of sputtering and from it develops an equation of

motion (EOM) for an initially nominally flat bombarded surface [33]. The linear EOM that BH

obtained is

∂h

∂t
= −v0 + v′0

∂h

∂x
+ κ1

∂2h

∂x2
+ κ2

∂2h

∂y2
− B∇2∇2h. (1.2)

The first term on the right-hand side, −v0, is the erosion rate of a completely flat surface. The

second term, v′0
∂h
∂x

, is the contribution to the erosion rate at linear order that arises if the surface is

sloped. The coefficients κ1 and κ2 describe the curvature dependence of the sputter yield. Ripples

develop from a nominally flat surface if and only if at least one of them is negative. Prior attempts

to explain the formation of ripples in these systems neglected the curvature dependence of the

sputter yield, and so were unsuccessful in explaining the onset of pattern formation [39]. The last

term, −B∇2∇2h, accounts for surface self-diffusion that is taken be thermally-activated in the BH

theory [33].
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According to the BH analysis, κ2 is always negative and for angles of incidence less than

some critical value, κ1 is also negative. Thus, in the linear BH theory, the nominally flat surface

is always unstable. If κ1 < κ2, then the BH theory predicts that the observed ripples will be

parallel-mode ripples. Parallel-mode ripples that are observed in experiments do propagate, which

coincides with the prediction of the BH theory [3, 33, 34]. If κ2 < κ1, then the BH theory

predicts that the observed ripples will be perpendicular-mode ripples. The BH theory predicts that

the perpendicular-mode ripples will be stationary, which is clear from symmetry. Furthermore,

experiments show that the crossover from parallel-mode ripples to perpendicular-mode ripples

occurs at a critical angle of incidence, and this coincides with the predictions of the linear BH

theory as well [1, 33]. The BH theory also predicts the wavelength of the observed ripples and the

order of magnitude obtained is in reasonable agreement with experiment [33].

Carter-Vishnaykov effect

Sputtering is not the only physical mechanism that can produce an instability required for the

formation of ripple patterns. Another is mass redistribution, also called the Carter-Vishnaykov

effect. This effect refers to the incident ions imparting momentum to the atoms near the surface,

causing them to move. The CV effect, unlike sputtering, conserves the mass of the target material,

hence the alternate term mass redistribution. However, the CV effect cannot produce an instability

in the transverse direction and so perpendicular-mode ripples cannot arise due to this effect. Since

perpendicular-mode ripples are observed experimentally, it is clear that sputtering is a stronger

effect in those systems for the angles of incidence for which perpendicular-mode ripples are ob-

served. On the other hand, the BH theory predicts that a nominally flat surface is unstable for

all angles of incidence θ. However, in experiments with small θ, the surface often smooths. The

reason for this discrepancy is that the BH theory only takes into account two physical mechanisms:

sputtering and surface self-diffusion. We will now derive a simple model for the CV effect and

perform a linear stability analysis on it to show that the CV effect leads to smoothing at small

angles of incidence.
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The unit normal to the unperturbed surface (which coincides with the x− y plane) is simply ẑ.

Perturbing the perfectly flat surface yields a position dependent surface normal vector given by

n̂ ≡ ẑ−∇h
√

1 + h2
x + h2

y

. (1.3)

We denote the incident ion flux by ~J; its direction is given by

Ĵ = (− sin θ) x̂+ (− cos θ) ẑ. (1.4)

The CV effect produces a flux of atoms within a thin surface layer. To find this flux, first we

calculate the tangential component of the force, d~F‖ experienced by an infinitesimal surface area

element n̂dA:

d~F‖ = d~F− d~F⊥

= ~J · n̂dA [~p− (~p · n̂) n̂] , (1.5)

where ~p is the incident ion momentum, d~F is the force experienced by n̂dA, and d~F⊥ is the

perpendicular component of the force experienced by n̂dA. Now, we use ~p = pĴ and divide

Eq. (1.5) by dA to obtain the tangential force per unit area, denoted by ~τ‖ and given by

~τ‖ = pJ
(

Ĵ · n̂
) [

Ĵ−
(

Ĵ · n̂
)

n̂
]

. (1.6)

Next, we combine Eqs. (1.3) and (1.4) with Eq. (1.6). Since the goal is to perform a linear stability

analysis, we will drop all nonlinear terms that arise in this derivation. To linear order, we find that

τ‖ = −pJ

{[

sin (2θ)

2
+ cos (2θ)hx

]

x̂+
[

cos2 (θ)hy

]

ŷ +

[

sin (2θ)

2
hx

]

ẑ

}

. (1.7)

Since the tangential force per unit area τ‖ is nonzero for a perturbed surface, the incident ions cause

an atomic surface flux, which we denote by ~JS . We assume that ~JS is proportional to τ‖ and choose
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the constant of proportionality to be µ/p, where µ > 0 is a dimensionless constant. Thus, we find

that

~JS = −µJ

{[

sin (2θ)

2
+ cos (2θ)hx

]

x̂+
[

cos2 (θ)hy

]

ŷ +

[

sin (2θ)

2
hx

]

ẑ

}

. (1.8)

Let Ω be the atomic volume of the target; i.e., Ω = 1/n, where n is the number density of the atoms

in the solid. When an incident ion causes a surface atom to move on the surface, a volume of Ω is

evacuated from surface at the atom’s original location. Therefore, the dynamics of the surface due

solely to the CV effect are governed by

ht = −Ω~∇ · ~JS, (1.9)

where the subscript t on h denotes partial differentiation with respect to t. Note that in the CV

model, the surface atoms only move – they are not ejected. Furthermore, implantation of incident

ions in the surface is considered a negligible effect and is not included in the CV model (or the BH

model). Thus, in the CV model we expect the total mass of the surface to be conserved, which is

consistent with Eq. (1.9). After combining Eqs. (1.8) and (1.9), we obtain

ht = ΩµJ
[

cos (2θ)hxx + (cos2 θ)hyy

]

, (1.10)

where the subscripts x and y on h denote partial differentiation. Note that for θ = 0, Eq. (1.10)

reduces to the diffusion equation. Now, we consider the evolution of a single arbitrary Fourier

mode in the linearized CV model. The single mode is given by

h(~x, t) = AeRtei(
~k·~x−ωt), (1.11)

where R = R(~k) is the real-valued growth rate of the mode with wave vector ~k = kxx̂ + kyŷ,

and ω is its angular frequency. Inserting the ansatz Eq. (1.11) into the linearized CV equation of

motion (1.10), we find that ω = 0 and
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R(~k) = −ΩµJ
[

cos (2θ)k2
x + (cos2 θ)k2

y

]

. (1.12)

This growth rate is negative for θ < 45o, which in particular implies that the CV effect is smoothing

for normal incidence bombardment. If the angle of incidence exceeds 45o, the CV effect will cause

parallel-mode ripples to grow exponentially. Since ω = 0, the surface ripples do not propagate

in the linearized CV theory, even for oblique angles of incidence. This fact may seem odd for

θ 6= 0 since the incident ions carry a nonzero x − component of momentum, and intuitively one

would expect as a consequence that the surface ripples would propagate in the same direction.

However, the analysis we performed only applies if the surface perturbation is sufficiently small

in amplitude – for larger amplitudes, the ripples can propagate. If θ > 45o, the fastest growing

mode has |kx| = ∞ according to Eq. (1.12). This corresponds to a zero wavelength mode, which

would imply that the observed wavelength would be on the cutoff length scale of the continuum

approximation, i.e., the spacing of the surface atoms. Since the wavelength of ripples observed in

experiments is several orders of magnitude larger than the atomic spacing, an additional smoothing

term must be included, as was the case with the BH theory. After including surface self-diffusion

in the CV model, Eq. (1.10) is replaced by

ht = ΩµJ
[

cos (2θ)hxx + (cos2 θ)hyy

]

− B∇2∇2h, (1.13)

and the growth rate is then

R(~k) = −ΩµJ
[

cos (2θ)k2
x + (cos2 θ)k2

y

]

− Bk4. (1.14)

If θ > 45o, then this growth rate is maximal for the mode with ~k = ~kc, where

~kc = ±
√

µΩJ |cos (2θ)|
2B

x̂. (1.15)

19



Thus, in this simple model of the CV effect, the observed ripple orientation will always be parallel

to the ion flux projected onto the surface, and so it cannot explain the appearance of perpendicular-

mode ripples that occur in experiments.

Kuramoto-Sivashinsky equation

The linear BH EOM (1.2) is only valid for sufficiently early times during the bombardment.

Once ripples of sufficiently large amplitudes form, the nonlinearities contribute significantly to the

surface dynamics. For example, they prevent the formation of arbitrarily large ripple amplitudes.

We first consider the equation of motion for normal-incidence ion bombardment of an elemental

target that is obtained by appending the lowest order nonlinear dependence of the erosion rate on

surface slope to the linear Bradley-Harper (BH) equation [22, 40]. The equation obtained is

∂h

∂t
= −v0 − A∇2h− B∇2∇2h+ λ |∇h|2 , (1.16)

where A = −κ1 = −κ2 is positive. The term −v0 can be eliminated by letting u(x, t) = h(x, t) +

v0t. This results in the dimensional form of the isotropic Kuramoto-Sivashinsky (KS) equation,

∂u

∂t
= −A∇2u− B∇2∇2u+ λ |∇u|2 . (1.17)

By rescaling u, x, y and t, Eq. (1.17) can be reduced to a dimensionless one that involves no free

parameters. These rescalings are given by

ũ =
λ

A
u, (1.18)

x̃ =

√

A

B
x, (1.19)

ỹ =

√

A

B
y (1.20)

and
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t̃ =
A2

B
t. (1.21)

Inserting Eqs. (1.18)-(1.21) and dropping the tildes yields the dimensionless isotropic KS equation,

∂u

∂t
= −∇2u−∇2∇2u+ |∇u|2 . (1.22)

Note that it is not necessary to study a form of Eq. (1.22) with the quadratic nonlinearity subtracted

instead of added, because the solutions of the two equations are related by u → −u. The isotropic

KS equation has been studied extensively, partly because it causes a low amplitude white noise

initial condition to spontaneously evolve into spatiotemporal chaos [22, 40]. The KS equation has

been used to deduce scaling properties of ion bombarded surfaces [22]. The KS equation yields

dynamics akin to those seen in the experiments that produce disordered mounds. The surface

governed by the KS equation has no substantial hexagonal order, which can be verified by the

methods discussed in Section 1.5.2, where we describe a quantitative method of characterizing

hexagonal order.

If the angle of incidence is oblique, then the isotropic KS equation is not valid, since the

rotational symmetry is broken; i.e., the x and y directions are distinguishable. Thus, for sys-

tems bombarded at oblique incidence, the isotropic KS equation is replaced by the anisotropic

Kuramoto-Sivashinsky (AKS) equation. The AKS equation is

∂u

∂t
= α

∂u

∂x
+ κ1

∂2u

∂x2
+ κ2

∂2u

∂y2
− B∇2∇2u+ λ1

(

∂u

∂x

)2

+ λ2

(

∂u

∂y

)2

, (1.23)

where we will assume that κ1 and/or κ2 is negative so that there is a surface instability. The

term α∂u
∂x

can be eliminated by by setting x̃ ≡ x + αt and then dropping the tildes. Rescaling

cannot be used to reduce Eq. (1.23) to an EOM with no free parameters; however, it could be

used to eliminate up to three parameters. Note that since B is a scalar in Eq. (1.23), we have

assumed that the surface self-diffusion is isotropic. It is of course possible to generalize the model

to one with anisotropic surface self-diffusion, but this would also increase the complexity of the
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model by increasing the number of free parameters. Furthermore, a scalar value for B is a good

approximation under appropriate conditions: for example, if the dominant physical mechanism

that contributes to B is thermally activated surface self-diffusion [41].

Extended Kuramoto-Sivashinsky equation

Castro et al. developed a theory that in addition to sputtering and surface self-diffusion also

includes a mobile surface layer [42–44, 44]. The equation of motion they obtained adds a second

nonlinear term to the KS equation:

∂u

∂t
= −ν∇2u− κ∇2∇2u+ λ1 |∇u|2 − λ2∇2 |∇u|2 . (1.24)

Here ν > 0, κ > 0, λ1 and λ2 are constants that depend on the properties of the ion beam and

target material. The signs of λ1 and λ2 must be the same to prevent the uncontrolled growth of

cancellation modes [44]. Eq. (1.24) can be rescaled so that u, x, y and t are dimensionless to give

∂u

∂t
= −∇2u−∇2∇2u+ |∇u|2 − r∇2 |∇u|2 , (1.25)

where r > 0 is a constant and equals

r =
νλ2

κλ1

. (1.26)

We will refer to Eq. (1.25) as the extended Kuramoto-Sivashinsky equation (eKS equation).

Castro et al. found that if r is appropriately chosen, then Eq. (1.25) yields a surface with short-

range hexagonal order if the initial condition is low amplitude spatial white noise [42–44].

1.3 Ion Bombardment of Binary Materials

We have seen in the previous section that ion bombardment of a nominally flat elemental sur-

face can lead to the formation of ripple and terraced topographies. In this section, we discuss

pattern formation on the surfaces of materials composed of two elements.
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1.3.1 Experimental Results

The formation of nanodots arranged in hexagonal array was first observed by Facsko et al.,

and the results were published in Science [6]. In their experiment, they bombarded GaSb at nor-

mal incidence with 0.42 keV Ar+ ions. After 40 seconds of exposure, nanodots with an average

diameter of 18 nm formed, and their number density was 4 × 1017 dots/cm2. After 200 seconds

of bombardment, the average diameter of the nanodots had increased to 34 nm. At 400 seconds

of exposure, the average dot diameter saturated at the value of 50 nm, and the dot diameter was

approximately equal to the dot spacing. The pattern did not change appreciably after the pattern at

400 seconds was reached [6]. We show a SEM result from Ref. [6] in Figure 1.11.

Figure 1.11: (a) A SEM image of a surface of initially nominally flat GaSb that evolved into an array of

nanodots with a high degree of local hexagonal order after normal-incidence ion bombardment. (b) The

autocorrelation of the surface. These results were published in 1999 by Facsko et al. in Ref. [6].

Another experiment in which hexagonally ordered nanodots were formed was carried out by

Frost et al. in Ref. [7]. In this experiment, InP surfaces were rotated with concurrent 0.5 keV Ar+

ion bombardment at oblique incidence. Some of their results are shown in Figure 1.12; this figure

shows surfaces obtained at four different angles of incidence.
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Figure 1.12: AFM images (scan size 3 mm) of Ar+ sputtered InP surfaces (Eion = 500 eV, jion = 150

mA/cm2 , t = 1200 s) at an incidence angle of 10o (a), 30o (b), 70o (c), and 80o (d). This figure and caption

are from Ref. [7].

1.3.2 Theory – Binary Materials

Bradley-Shipman Theory

Bradley and Shipman have developed a continuum model for normal-incidence ion bombard-

ment of a solid composed of two atomic species, which we will call the BS theory [8, 15, 16]. In

their model, it is assumed that one of the atomic species is sputtered more easily than the other,

which we will refer to as preferential sputtering. An essential aspect of the BS theory is the cou-

pling of the surface composition to the surface height, which was an idea first studied by Shenoy,

Chan, and Chason [45]. The BS theory is also relevant to experiments in which the target material

is elemental, and the ion beam implants a second non-volatile ion species into the material while

eroding it; however, this idea will not be explored further in this thesis. In the BS theory, under

appropriate experimental conditions, there can be a narrow band of linearly unstable wave vec-

tors. Since there are also quadratic nonlinearities in the equation of motion they found to govern

the surfaces, hexagonal pattern formation can occur and can be understood using standard pattern

formation theory [46, 47]. When the initial surface is nominally flat, the hexagonal ordering will
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be local only, due to the isotropic nature of the governing equation of motion and the initial con-

dition. In other words, the surface will develop distinct regions of hexagonal order with different

orientations. The BS equations of motion are

∂u

∂t
= φ−∇2u−∇2∇2u+ λ (∇u)2 (1.27)

and

∂φ

∂t
= −aφ+ b∇2u+ c∇2φ+ νφ2 + ηφ3, (1.28)

where φ is the deviation of the composition from its steady-state value, and λ, a, b, c, ν and η are

real constants that depend on the properties of the target material and the ion beam [8, 15, 16].

Note that Eq. (1.27) is the same as the KS equation, except for the first term on the right hand side,

which couples the dynamics to the surface composition and arises from preferential sputtering.

The terms on the right hand side of Eq. (1.28) that are proportional to powers of φ also arise from

sputtering. The c∇2φ term is due to surface diffusion. The CV effect is the physical origin of the

term b∇2u, and this term is responsible for a surprising result within the BS theory: the elemental

species that is more easily sputtered actually ends up concentrated at the top of the nanodots. This

occurs because the preferentially sputtered species is influenced less by the CV effect, and the

combination of sputtering and mass redistribution are necessary for formation of hexagonal arrays

of nanodots [8, 15, 16]. Bradley and Shipman performed a linear stability analysis on the BS

equations (1.27) and (1.28) in Ref. [8]. They presented the region of the (a,b,c) parameter space

that results in a linearly unstable surface, first partitioning the (a,c) space into three regions, and

then they provided the conditions on b in each of those regions that lead to an instability. The three

regions of the (a,c) parameter space are depicted in Fig. 1.13. In region I, the threshold value of

b for an instability is denoted by bT . If b is slightly less than bT in region I, then there exists a

narrow band of linearly selected wave vectors, which is shown in Fig. 1.14. The combination of

the narrow band of linearly selected wave vectors with the quadratic nonlinearity in Eq. (1.28) can

lead to the formation of hexagonally arranged nanodots. This was analytically demonstrated using
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Figure 1.13: The parameter space is partitioned into three different regions based on the linear stability

analysis. This figure is from Ref. [8].

amplitude equations obtained from a multiple scales analysis and numerically verified by direct

integration of Eqs. (1.27) and (1.28) [8, 15, 16].

Figure 1.14: This plot shows the linear growth rate’s dependence on ripple wave number in region I of the

parameter space shown in Fig. 1.13. If b is slightly less than the threshold value bT , then there is a narrow

band wave vectors that are linearly unstable. If b exceeds bT , then every mode is linearly damped, and the

nominally flat surface will flatten. This figure is from Ref. [8].

Motta, Bradley, and Shipman extended the BS theory to the case where the angle of incidence

can be oblique [48]. In the theory they derived, they showed that well-ordered ripples formed for

a range of parameter values. This is in accord with an experimental work in which well-ordered
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ripple patterns on SiC after oblique incidence ion bombardment [49]. They also demonstrated that

defects in the surface tend to occur where the surface is low. This phenomenon is observable in

our simulations of the BS equations in this work as well.

1.4 Analytical Background

1.4.1 Linear Stability Analysis

In order to determine whether a nominally flat surface is stable or unstable, one performs a

linear stability analysis. Although the governing equation of motion is nonlinear, at sufficiently

early times, the surface dynamics is approximated well by the linearized equation. The deviation

of surface height from its unperturbed steady-state value is represented by a function u = u(x, y, t),

and since it is nominally flat initially, u0 ≡ u(x, y, 0) satisfies |u0| ≪ 1 for all x and y. The linear

stability analysis determines the growth rates and propagation velocities of the Fourier modes so

one can predict how u will evolve at early times. In particular, the mode with the largest growth

rate will be the one observed. To demonstrate this, a linear stability analysis will be performed on

the AKS equation of motion, Equation (1.23). Linearizing the AKS equation of motion about the

uniform solution, which describes a surface that is perfectly flat, one obtains

∂u

∂t
= α

∂u

∂x
+ κ1

∂2u

∂x2
+ κ2

∂2u

∂y2
− B∇2∇2u., (1.29)

which is BH equation (1.2) written in terms of u = h+ v0t and with v′0 = α. Now, we let

u = exp (Rt) exp [i(k1x+ k2y − ωt)], (1.30)

where R is the rate of growth of the Fourier mode’s amplitude and ω is the angular frequency.

Inserting Eq. (1.30) into Eq. (1.29), one finds that

R = −(κ1k
2
1 + κ2k

2
2)− B(k2

1 + k2
2)

2 (1.31)
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and

ω = −v′0k1. (1.32)

Thus, if κ1 < κ2 and κ1 < 0, the growth rate is maximized for the selected wave vector

(k1, k2) =

(

±
√

|κ1|
2B

, 0

)

(1.33)

and these parallel-mode ripples would propagate with velocity −α in the x-direction. If κ2 < κ1

and κ2 < 0, the growth rate is maximized for the selected wave vector

(k1, k2) =

(

0,±
√

|κ2|
2B

)

(1.34)

and these perpendicular-mode ripples would not propagate. If both κ1 and κ2 are positive, the

surface is stable and ripples do not form.

1.4.2 Shock Waves

In Section 2.4, we will demonstrate that the terrace formation observed in our simulations is

closely related to the formation of undercompressive shock waves. For convenience and clarity,

some essential background on shocks is included in this section. Comprehensive treatments of this

topic may be found in Refs. [50] and [51].

Consider a partial differential equation of the form

ρt + ∂xF (ρ) = νD(ρxx, ρxxxx), (1.35)

where ρ = ρ(x, t), ν > 0 is a constant and the functions F and D are given. In the ν → 0 limit,

equation (1.35) reduces to

ρt + ∂xF (ρ) = 0, (1.36)

which is a conservation law for the quantity ρ. The flux of ρ is clearly F (ρ). Equation (1.36) may

also be written
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ρt + F ′(ρ)ρx = 0, (1.37)

which shows that the advection velocity of a point with ρ = ρ0 is F ′(ρ0).

Suppose that there is a traveling wave solution to (1.35) of the form ρ(x, t) = q(x − Ut) with

q(τ) → q± for τ → ±∞, where U , q+ and q− are constants. If in the limit that ν tends to zero, q(τ)

tends to q− for all τ < 0 and if q(τ) tends to q+ for all τ > 0, then ρ(x, t) = q(x − Ut) is called

a shock wave. Thus, the solution develops a step discontinuity in the ν → 0 limit if it is a shock.

For ν > 0, on the other hand, the term νD(ρxx, ρxxxx) on the right-hand side of (1.35) prevents the

formation of a discontinuity and yields an interface of nonzero width between the regions in which

ρ is very nearly equal to q+ and q−.

The propagation velocity of a shock is given by the Rankine-Hugoniot condition

U =
F (q+)− F (q−)

q+ − q−
. (1.38)

Most shocks that occur in physical situations are compressive shocks; these satisfy the Lax entropy

condition

F ′(q+) < U < F ′(q−). (1.39)

However, shocks that violate this condition do exist and are called undercompressive shocks [51].

For a given value of q−, an undercompressive shock may exist for a few special values of q+ or for

none at all. Undercompressive shocks can occur only if the flux F is not a convex function of ρ

[51].

1.5 Numerical Methods

We now turn our attention to the various numerical methods used throughout this work. These

include numerical integration techniques and methods of quantifying pattern order.
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1.5.1 Numerical Integration

Galerkin Method with VODE Integration

For reasons of computational speed, we only use the Galerkin method with VODE integration

when the surface depends one spatial independent variable, and so we restrict our attention to one

space and one time dimension in this section. We assume a finite spatial domain and impose pe-

riodic boundary conditions in order to model the nearly infinitely-extended domain. As is well

known, the Fourier representation of the surface allows one to obtain exact solutions to the lin-

earized equation of motion. One can also attempt to solve a nonlinear PDE with Fourier analysis;

the difficulty, however, is that the rate of growth (or decay) of a given mode kg directly depends on

all modes ki and kj such that ki + kj = kg. Thus, in order to find the exact solutions to nonlinear

equations, one would have to solve infinitely many coupled nonlinear ordinary differential equa-

tions (ODEs). Since this is not feasible, we instead find approximate solutions by truncating the

Fourier expansion after a certain wave number. This wave number is chosen so that the amplitudes

of the dropped modes are small enough that they do not contribute appreciably to the dynamics of

the surface. Inserting the truncated expansion into the equation of motion will yield a finite system

of coupled ordinary differential equations, which may be numerically integrated using any one of

a variety of standard integration routines. The integration method we chose to use to integrate the

system of ODEs is called VODE [52].

Exponential Time Differencing

Our primary tool for numerically integrating equations of motion is a fourth-order Runge-Kutta

Exponential Time Differencing (ETD) routine. This routine was originated by Cox and Matthews

[53], and improved by Kassam and Trefethen [54]. The main advantage of this method over the

Galerkin method with VODE integration is speed. The idea behind ETD is as follows. Consider

an equation of motion of the form

ut = Lu+N(u), (1.40)
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where u = u(x, y, t) describes the surface topography, L is a linear differential operator and N(u)

is the nonlinear part of the equation. Multiply both sides by the integrating factor e−Lt to get

e−Ltut − e−LtLu = e−LtN(u), (1.41)

which is simply

∂te
−Ltu = e−LtN(u). (1.42)

Integrating over one time step, the duration of which we denote by ∆, one obtains the exact equa-

tion

un+1 = eL∆un + eL∆
∫ ∆

0

e−LτN(u(tn + τ))dτ, (1.43)

where un is the surface at time step n, and tn is the time at step n [53]. This integral is then

evaluated numerically with a fourth-order Runge-Kutta method. Therefore, we can obtain the

surface at time step n+ 1 from the surface at step n. We elaborate on how this is done in the next

section.

The Runge-Kutta Method

We now discuss how the Runge-Kutta (RK) method is a can be applied to solving initial value

problem (IVP) ODEs; this will clarify how RK can be used to approximate the exact formula

Eq. (1.43). The first order Runge-Kutta (RK1) method is a synonym for the forward Euler method,

and so we will first discuss Euler’s method then generalize the idea to higher order Runge-Kutta

schemes. The RK1 method is the most direct way of numerically solving the IVP for a system

of first-order ODEs; note, however, that it can also be applied to IVPs of higher order because

an ODE of order p is equivalent to a system of p first-order ODES [55]. Consider the following

system of ODEs

d~y

dt
= ~F [t, ~y (t)] , (1.44)

where we have chosen to use vector notation to write our system compactly. Suppose we know

the value of ~y at some time tn and want to determine its value at a later time tn+1, where m is an
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integer. Then from Eq. (1.44) we have that

~yn+1 = ~yn +

∫ tn+1

tn

~F [t, ~y (t)] dt, (1.45)

where ~yn+1 ≡ ~y (tn+1) and ~yn ≡ ~y (tn). A direct implementation of Eq. (1.45) is not possible,

since the integral depends on the values of ~y for times greater than tn, and we only know the values

of tn and ~yn. Instead, the integral must be approximated using only the known data tn and ~yn. We

define ∆ ≡ tn+1 − tn. By choosing a sufficiently small ∆ and if ~F is sufficiently smooth, then ~F

will not change much as the integral in Eq. (1.45) is performed, and so

~yn+1 ≃ ~yn + ~F (tn, ~yn)∆, (1.46)

which is the formula used to compute one step of the RK1 method. After this step is performed,

the value of ~yn+1 has been determined, and clearly tn+1 is also known. Thus, Eq. (1.46) can be

applied iteratively to generate a sequence of values {~yp} for integers p ≥ m. The sequence {~yp}

is a discrete approximation to the exact solution ~y that satisfies Eq. (1.44) and depends on the

continuous variable t. The reason the RK1 method is called first order is the error accumulated

over multiple iterations is of order ∆. The RK1 method is also a one step method because each

iteration only requires one evaluation of ~F . Higher order RK methods use a weighted average of

evaluations of ~F to obtain a better approximation. In general, the number of steps required to obtain

a given order of accuracy is greater than or equal to order of accuracy. The RK4 method is unique

in that it is the highest order method for which the number of steps equals the order. Thus, the

RK4 method is a good balance between speed and accuracy. The most common implementation

of RK4 is given by

~yn+1 ≃ ~yn +
1
6

(

~F1 + 2~F2 + 2~F3 + ~F4

)

∆, (1.47)

where
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~F1 ≡ ~F (tn, ~yn) , (1.48)

~F2 ≡ ~F
(

tn +
1
2
∆, ~yn +

1
2
~F1

)

, (1.49)

~F3 ≡ ~F
(

tn +
1
2
∆, ~yn +

1
2
~F2

)

, (1.50)

~F4 ≡ ~F
(

tn +∆, ~yn + ~F3

)

. (1.51)

Now we return to our discussion of Eq. (1.43). Using a Fourier Series representation for u,

Eq. (1.43) becomes a system of equations that is similar to Eq. (1.45), except with additional

exponential factors multiplying the terms on the right hand side. As a consequence, the usual RK4

method given by Eq. (1.47) cannot be used directly. Cox and Matthews derived a RK4 method for

Eq. (1.43), which is given by

un+1 = eL/∆ +∆−2L−3{[−4− L∆+ eL∆(4− 3L∆+ L2∆2)]N(un, tn)

+ 2[2 + L∆+ eL∆(−2 + L∆)](N(An, tn +∆/2) +N(Bn, tn +∆/2))

+ [−4− 3L∆− L2∆2 + eL∆(4− L∆)]N(Cn, tn + h)}, (1.52)

where

An ≡ eL∆/2un + L−1(eL∆/2 − I)N(un, tn), (1.53)

Bn ≡ eL∆/2un + L−1(eL∆/2 − I)N(An, tn +∆/2), (1.54)

Cn ≡ eL∆/2An + L−1(eL∆/2 − I)(2N(Bn, tn +∆/2)−N(un, tn)), (1.55)

and where I is the identity matrix [53]. The terms in the square brackets of Eq. (1.52) suffer

from numeric instability [53, 54]. Kassam and Trefethen modified the way in which these terms

are evaluated and thereby improved the stability of the algorithm. We followed the approach of

Kassam and Trefethen in our use of the ETDRK4 method in the simulations presented in this

thesis. Their paper Ref. [54] is a good reference for further reading.
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1.5.2 Quantifying Pattern Order

Persistent Homology

In this subsection, we describe a method of quantifying hexagonal order that is based on a

topological data analysis technique known as persistent homology [56]. A brief overview of our

method is given in this subsection; for details and the larger mathematical context, see Ref. [57].

To quantify the hexagonal order in a pattern of nanodots, we start by obtaining a discrete set

of points from a surface pattern by recording the (x, y) coordinates of each nanodot peak, as in

Fig. 1.15(a). As in Fig. 1.15(b), a circle of radius p is drawn around each of these points. The

radius p is called the connectivity parameter; it will be increased from 0 to some maximum value.

Clearly, for sufficiently large p, some of the circles will enclose each other’s centers. For every

two circles that enclose each other’s centers, we connect the corresponding center points by an

edge, as shown in Fig. 1.15(c). Every time three circles enclose each other’s centers, we fill in the

triangle that has the centers of the circles as its vertices (Fig. 1.15(d)), yielding a face. Finally, for

a given value of p, a hole is identified whenever edges form the boundary of an unfilled region. For

example, Fig. 1.15(e) shows 8 holes for p = 12.5. Note that hole #5 corresponds to the largest

defect seen in Fig. 1.15(a).

A hole’s persistence interval length equals pend − pstart, where pstart is the p value at which the

hole forms, and pend is the p value at which the hole gets filled in and ceases to exist. Summing

up the lengths of all the persistence intervals gives a nonnegative number that we will call the H1

sum.

There are multiple open-source software packages capable of computing persistence intervals

for a set of discrete points. We used the R software package called phom in our analysis [58].

In Fig. 1.15(f), each hole phom identified in Fig. 1.15(a) is represented by a square. The

coordinates of the square are the values of pstart and pend for the hole in question. The persistence

interval lengths are the vertical distances of the squares above the blue line. The 8 green squares

are those with pstart ≤ 12.5 ≤ pend and so can be seen in Fig. 1.15(e); the red squares are holes not

seen in Fig. 1.15(e).
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Since a perfect hexagonal array of points is composed of equilateral triangles, every time three

edges form a triangle, the corresponding three circles will enclose each other’s centers, and there-

fore every triangle will be filled in at the same value of p. Thus, a persistent homology computation

of a perfectly ordered hexagonal array of points will find no holes for any value of p, and so the H1

sum will be zero. Whenever there is a vacancy or another type of defect in the hexagonal lattice,

the persistent homology analysis will reveal the presence of one or more holes. Therefore, we can

quantify the amount of disorder in an imperfect hexagonal array of points using the H1 sum: The

smaller the H1 sum, the better the hexagonal order.

Nearest-Neighbor Distribution

A second approach we will use to quantify hexagonal order involves computing the number

of nearest neighbors each nanodot has. As in the persistent homology approach, we first identify

the nanodot peaks and obtain the (x, y) coordinates of these peaks. Let m be the number of points

obtained and call the points qi for i = 1, ...,m. From this set of points, we construct the Voronoi

tessellation — this partitions the plane in way such that each qi lies within the polygon consisting

of all points closer to qi than to any qj with j 6= i. The number of polygons in the tessellation with

n sides will be denoted by Λ(n). Thus, Λ(n) is the number of points qi with n nearest neighbors

and will be referred to as the nearest-neighbor distribution. For a perfectly hexagonal lattice, the

mean and variance of the nearest-neighbor distribution are exactly six and zero, respectively. Thus,

to quantify hexagonal order, we will compute the mean and variance of Λ(n) and compare them to

these numbers.
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Figure 1.15: (a) A section of the simulation result shown in Fig. 3.2 with blue dots indicating the nanodot

peaks. (b) Around each peak, a circle of radius p = 5 has been drawn. (c) The connectivity parameter p has

increased to 10.5 and red edges have been placed between the centers of circles that enclose each other’s

centers. Only the circles that enclose each other’s centers are shown for clarity. (d) When p = 11, there

are four filled in triangles where three circles all enclose each other’s centers. Only the circles related to the

filled in faces are shown. (e) When p = 12.5, many faces have been filled in and holes have emerged. The

8 white polygonal regions with red edge boundaries are identified as holes at this value of p. (f) A plot of

pend versus pstart for the holes found by our persistent homology analysis of (a). The green (red) squares

are holes that are present (absent) in (e), and the blue diagonal is the line pend = pstart. A square’s vertical

distance above the blue line is the corresponding hole’s persistence interval length.
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Chapter 2

Theory of Terracing of Ion Bombarded Solid

Surfaces

Consider a nominally flat elemental solid surface that is bombarded with a broad ion beam at

an oblique angle of incidence. If there is an instability, then at early times the surface is governed

by the linear BH equation of motion to a good approximation, and ripples form with amplitude that

grows exponentially in time. However, nonlinear effects must be taken into account once the ripple

amplitude has become sufficiently large. The lowest order nonlinearities are quadratic and come

from the angular dependence of the sputter yield [22, 40]. When these terms are included, the

equation of motion for the surface becomes the anisotropic Kuramoto-Sivashinsky (KS) equation

that was discussed in Section 1.2.2. This equation yields disordered ripples whose amplitude

saturates at sufficiently long times.

The anisotropic KS equation does not produce terraced topographies. However, Pearson and

Bradley (PB) recently introduced a model that includes a better approximation to the sputter yield

than the one that is used in deriving the KS equation [32]. This more refined approximation yields

a cubic nonlinearity that does not appear in the KS equation. Numerical integrations of the PB

equation of motion reveal that the cubic term can have a profound effect on the dynamics — it can

lead to the formation of a terraced topography that coarsens with time, in accord with experimental

observations [2, 4, 9–12, 24–28, 30, 59]. The regions in which the surface slope changes rapidly

are undercompressive shocks [51].

We next study an equation of motion that generalizes the PB equation to the case in which the

surface height can vary in both the transverse and longitudinal directions. This extended equation

of motion produces terraced ripple morphologies that undergo interrupted coarsening, just as the

PB equation does. For different ranges of the parameters, it yields other topographies that are

remarkably similar to those seen in experiments. For example, for a certain range of the parameters,
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the extended equation of motion produces pyramidal structures that protrude from the surface and

that are elongated in the projected ion beam direction. Analogous topographies were observed by

Carter et al. when they bombarded a silicon sample with a 40 keV argon ion beam with a 70◦ angle

of incidence [10]. Teichmann et al., on the other hand, bombarded silicon with xenon ions that had

an energy of 1.2 keV and a 75◦ angle of incidence [12]. The isolated lens-shaped depressions they

observed are very similar to structures found in numerical integrations of our extended equation of

motion.

2.1 Equation of Motion

Consider an initial surface that is perturbed slightly from a completely flat state. We define the

x− y plane so that the unperturbed surface lies in it. Furthermore, we orient the x axis so that the

ion beam direction lies in the positive quadrant of the x− z plane. The angle of incidence θ is the

angle that the ion beam makes with the z axis. We will confine our attention to the case in which

the target is an elemental material and the beam consists of noble gas ions. We will assume that

the target material is amorphous or that a surface layer is amorphized by the impacting ions.

Let h(x, y, t) be the height of the surface above the point (x, y) in the x − y plane at time t.

The most widely used equation of motion for the solid surface is

ht = −v0 + αhx + κ1hxx + κ2hyy − B∇2∇2h+ λ1h
2
x + λ2h

2
y, (2.1)

where the coefficients v0, α, κ1, κ2, B, λ1 and λ2 depend on the ion species, energy and angle

of incidence and on the choice of target material [14, 22, 40]. The term −v0 accounts for the

erosion that would be experienced by a perfectly flat surface. We eliminate this term by working

in terms of the deviation of surface height from its unperturbed steady state value; that is, we let

u(x, y, t) ≡ h + v0t. The only effect on the dynamics produced by including the term αux in

Eq. (2.1) is to cause surface features to propagate laterally at a constant velocity of −α. Therefore,

we can eliminate this term by transforming to a frame of reference that propagates at velocity −α
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with respect to the lab frame. This is done formally by setting x̃ ≡ x + αt and then dropping the

tildes. We will assume that κ1 and/or κ2 is negative, so that a flat initial surface is unstable. The

equation of motion (2.1) is reduced to the AKS equation (1.23) in this way.

The AKS equation generates ripples with an exponentially growing amplitude at early times.

Since the linearized form of the AKS equation is the BH equation, we know from the linear stability

analysis performed in Section 1.4 that if κ1 < κ2, then the observed pattern at early times is

propagating parallel-mode ripples. Conversely, if κ2 < κ1, then the observed pattern at early times

is stationary perpendicular-mode ripples.

We will assume that λ1λ2 > 0 so that unphysical cancellation modes in which the ripple

amplitude grows without limit do not occur [60]. The quadratic nonlinearities in Eq. (1.23) then

eventually control the exponential growth, the ripple amplitude saturates, and the surface exhibits

spatiotemporal chaos [22]. At any instant during the chaotic behavior, the surface is statistically

invariant under the two transformations x → −x and y → −y. Additionally, the surface does not

coarsen according to this model. These observations are significant because experiments carried

out at high angles of incidence produce terraced topographies that are not statistically invariant

under the transformation x → −x and that coarsen [2, 4, 9–12, 24–28, 30, 59]. Since the AKS

equation fails to reproduce these two important effects, it is insufficient to model the dynamics

produced in these experiments.

In this thesis, we investigate the effects of augmenting Eq. (1.23) with cubic nonlinear terms

proportional to u3
x and uxu

2
y. This yields the EOM

ut = κ1uxx + κ2uyy − B∇2∇2u+ λ1u
2
x + λ2u

2
y + γ1u

3
x + γ2uxu

2
y. (2.2)

The cubic terms in Eq. (2.2) result from expanding the rate the surface recedes to third order in ux

and uy; as such, Eq. (2.2) applies only so long as the surface slope remains small. Equation (2.2)

represents an improvement on the AKS equation (1.23) since only terms of second order in the

slope are retained in the derivation of the latter equation.
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When an elemental material is bombarded by a beam of noble gas ions, a number of physical

effects can influence the surface dynamics. These effects are sputtering, momentum transfer from

the incident ions to atoms near the solid surface [61–63], surface diffusion, ion-induced surface

viscous flow [64] and ion implantation [65]. The cubic terms in the equation of motion (2.2) do

not conserve mass, but momentum transfer, surface diffusion and ion-induced surface viscous flow

all do. These effects therefore cannot contribute to the coefficients of the cubic nonlinearities γ1

and γ2. This means that sputtering and ion implantation are the only physical effects that can

contribute to γ1 and γ2. In Ref. 21, Pearson and Bradley found the contribution of sputtering to γ1,

but they did not consider the contribution of ion implantation.

Note that the terms u3
x and uxu

2
y are unchanged by the transformations y → −y and u →

u + const., as they must be. However, they are not invariant under the transformation x → −x,

and so Eq. (2.2) does not in general produce surface morphologies that are statistically invariant

under this transformation. As we shall see, Eq. (2.2) reproduces many features that are observed

in experiments in which elemental materials are bombarded with noble gas ions at relatively high

angles of incidence, including terraced topographies that are not invariant under the transformation

x → −x.

Equation (2.2) reduces to the PB equation of motion if u does not depend on the transverse

coordinate y [32]. It has already been studied by Harrison and Bradley for the case in which the

initial surface has a periodic height modulation [18]. In this thesis, we will study the complex and

intriguing behavior predicted by Eq. (2.2) when the initial surface is nominally flat.

Consider a term in an equation of motion for the surface height u of the form

n
∏

j=1

(∂pj
x u)qj , (2.3)

where n is a natural number, and pj and qj are natural numbers for all j ∈ {1, ..., n}. We define

the order of the term in Eq. (2.3) to be the integer given by
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max pj +
n
∑

j=1

qj. (2.4)

Equation (2.2) does not include all terms that are of lower order than u3
x and uxu

2
y and that are

invariant under the transformations y → −y and u → u+ const. In particular, it does not include

the terms ux, uxxx, uxyy, uxuxx and uxuyy. As we have already mentioned, the term proportional to

ux can be eliminated from the EOM by a Galilean transformation and so it is unnecessary to include

it. The influence of a term proportional to uxxx has already been investigated in one dimension

(1D): it produces a propagating train of solitons if its coefficient is sufficiently large [66]. Soliton

trains are not observed in experiments and we are focused on the formation of terraces, and so we

will omit the term uxxx in this work. The effect of a term proportional to uxuxx has been studied

in 1D, and it was found that its inclusion leads to the formation of unphysical singularities in finite

time [67]. A detailed investigation of the effects of adding the terms uxyy and uxuyy to the EOM is

left for future study.

Castro et al. and Muñoz-García et al. have demonstrated that adding a term

2
∑

i=1

2
∑

j=1

Ki,j
∂2

∂x2
i

(

∂u

∂xj

)2

(2.5)

to the AKS equation leads to interrupted coarsening [42–44]. The equation that they obtained for

bombardment at normal incidence was discussed in the extended Kuramoto-Sivashinsky part of

Section 1.2.2. They have also shown that this term can arise as a result of mass redistribution near

the surface of the solid and have given explicit expressions for the parameters Ki,j . This term

will be omitted from our EOM because its effects are already well understood and because it is

expected to play a less prominent role in the dynamics for high angles of ion incidence. In addition,

it does not break the x → −x symmetry and so cannot produce asymmetric terraced topographies.

Finally, as we shall see, Eq. (2.2) produces interrupted coarsening even though it does not include

a term of the form (2.5).
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Eq. (2.2) does not take shadowing of the incident ions into account. Shadowing occurs if the

surface slope ux exceeds cot θ at any point on the surface. If the nonlinearities do not adequately

control the amplitude of the pattern and shadowing does occur, the equation of motion (2.2) no

longer applies. In these circumstances, Eq. (2.2) is valid only for sufficiently early times. The

same is true of the widely employed AKS equation (1.23), however.

It is important to note that shadowing need not occur even at long times. Indeed, in the careful

experiments of Engler et al. [59], shadowing did not occur, and nevertheless terracing was ob-

served. Our equation of motion (2.2) applies in just these circumstances. From a mathematical

standpoint, shadowing does not occur if the coefficients of the nonlinear terms (λ1, λ2, γ1 and γ2)

are sufficiently large in magnitude.

In order to study Eq. (2.2), we integrated it numerically using the fourth-order Runge-Kutta

exponential time-differencing method of Cox and Matthews that was discussed in Section 1.5,

starting with small amplitude white noise as the initial condition [53, 54]. This method uses peri-

odic boundary conditions, which best approximate the physical system that is effectively infinitely

extended. The linear terms were computed exactly in Fourier space, while the nonlinear terms

were evaluated approximately in real space using finite differencing. The finite differences were

central differences accurate to second order in the grid spacing. In the case of our simulations in

two dimensions (2D), this means that the partial derivative ∂u
∂x
(x, y) was approximated by

u(x+∆x, y)− u(x−∆x, y)

2∆x
, (2.6)

where ∆x is the grid spacing. The time step used was ∆t was 0.0025 in the 2D simulations, which

was sufficiently small to avoid numerical blow up in any of our simulations.

The 2+1 dimensional equation of motion, Eq. (2.2), involves seven parameters, and so it is dif-

ficult to characterize the dynamics of the solutions in a simple way. In order to reduce the number

of parameters, we begin by considering the evolution of a surface with no transverse variations,

u = u(x, t). The 1+1 dimensional EOM is
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ut = κuxx − Buxxxx +
1

2
c2u

2
x +

1

6
c3u

3
x, (2.7)

where the we have set κ1 ≡ κ, c2 ≡ 2λ1 and c3 ≡ 6γ1, because this will result in simpler

expressions for formulas that involve these quantities. The coefficients c2 and c3 depend on θ and

the material parameters in a manner that we will discuss in the following subsection.

Equation (2.7) may be simplified by introducing the dimensionless variables

ū ≡ c2
κ
u, (2.8)

x̄ ≡ sgn(c3)

√

|κ|
B

x, (2.9)

and

t̄ ≡ κ2

B
t. (2.10)

After dropping the bars, the equation of motion becomes

ut = −uxx − uxxxx −
1

2
u2
x +

1

6
γu3

x, (2.11)

where

γ ≡ |c3κ3/2|
c22
√
B

(2.12)

is a non-negative, dimensionless parameter.

2.1.1 Nonlinear Coefficients

In order to obtain the coefficients c2 and c3, it is sufficient to consider the time evolution of

a planar surface with small slope hx. The local angle of incidence θlocal is the angle between the

vector ê and the surface normal n̂ ≡ (ẑ− hxx̂)/
√

1 + h2
x; thus,

cos θlocal = n̂ · ê =
cos θ − hx sin θ
√

1 + h2
x

. (2.13)
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Expanding θlocal to cubic order in hx, we obtain

θlocal ∼= θ + hx −
1

3
h3
x. (2.14)

The rate of erosion due to sputtering is

ht = −ΩJ
√

1 + h2
xY (θlocal) cos (θlocal)

= −ΩJ(cos θ − hx sin θ)Y (θlocal), (2.15)

where Ω is the atomic volume and we remind the reader that J is the incident ion flux. Expanding

to third order in hx, we find that

ht
∼= −v0 − Ahx +

c2
2
h2
x +

c3
6
h3
x, (2.16)

where the coefficients are given by

v0 = ΩJY (θ) cos θ, (2.17)

A = ΩJ [Y ′(θ) cos θ − Y (θ) sin θ] = v′0(θ), (2.18)

c2 = ΩJ [2Y ′(θ) sin θ − Y ′′(θ) cos θ] , (2.19)

c3 = ΩJ {3Y ′′(θ) sin θ + [2Y ′(θ)− Y ′′′(θ)] cos θ} (2.20)

= c′2(θ),

and the primes denote differentiation with respect to θ. Interestingly, c3(θ) is exactly the first

derivative of c2 with respect to θ.

To get an idea of how c3 depends on θ, let us consider the erosion of a silicon sample by a

beam of 1 keVAr+ ions. Following Madi et al. [68], we employ the Yamamura-corrected sputter

yield Y (θ) ≡ Y0 sec
f (θ) exp (−Σ(sec θ − 1)), where Y0 ≡ 0.93, Σ ≡ f cos θopt, θopt ∼= 1.21,

f ≡ 1.85[1 + 1.25(1 − ξ)/ξ], ξ ≡ 1 −
√

Eth/E, Eth ≡ 33 eV, and E ≡ 1 keV. (The Yamamura

44



correction ensures that the sputter yield decreases at sufficiently high angles of incidence, as ob-

served experimentally.) A plot of c3 versus θ is shown in Figure 2.1. Notice that the magnitude

of c3 is largest when the ion beam is near grazing incidence and so the cubic nonlinearity takes

on its most important role in that regime. This regime is also the one in which terracing is most

commonly observed in experiments.
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Figure 2.1: A plot of c3(θ)/max (c3) versus the angle of incidence θ for bombardment of silicon with a 1

keV Ar+ ion beam.

2.2 Numerical Methods

The surface is taken to be initially flat with small amplitude Gaussian white noise, and periodic

boundary conditions are assumed to reduce finite size effects. Since the solutions are then spatially

periodic, a natural approach to integrating (2.11) is the Galerkin method with complex exponentials

as the basis functions [69]. On the domain −L ≤ x ≤ L, define
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φn(x) ≡ exp

(

iπnx

L

)

, (2.21)

where n is an arbitrary integer. The exact solution to the equation of motion (2.11) with periodic

boundary conditions can be written

u(x, t) =
∞
∑

n=−∞

an(t)φn(x), (2.22)

where the time-dependent Galerkin coefficients an(t) are determined as follows. First, we insert

Eq. (2.22) into the equation of motion (2.11). Next, we use the orthogonality of the basis functions

to simplify the resulting equation; multiplying both sides by φ∗
m and then integrating over the

domain −L ≤ x ≤ L yields

dam
dt

=

[

(πm

L

)2

−
(πm

L

)4
]

am

+
1

2

(π

L

)2
∞
∑

j,n=−∞

jnajanδj+n,m (2.23)

−i
γ

6

(π

L

)3
∞
∑

j,ℓ,n=−∞

jℓnajaℓanδj+ℓ+n,m.

Solving Eq. (2.23) would determine the time evolution of the values of the Galerkin coefficients

an(t) exactly. However, since we cannot solve this system of infinitely many coupled ODEs, we

must truncate the sum in Eq. (2.22). The truncated sum

u(x, t) ∼=
N
∑

n=−N

an(t)φn(x). (2.24)

has 2N + 1 terms and yields an approximation to the exact solution. Using the truncated sum

Eq. (2.24) and eliminating all Kronecker deltas appearing in Eq. (2.23), we obtain the system of

ODEs that we will solve numerically:
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dam
dt

∼=
[

(πm

L

)2

−
(πm

L

)4
]

am

+
1

2

(π

L

)2
N
∑

n=−N

n(m− n)anam−n (2.25)

−i
γ

6

(π

L

)3
N
∑

j,n=−N

jn(m− j − n)ajanam−j−n,

where m ∈ {−N,−N + 1, ..., N − 1, N} and an = 0 for |n| > N . A variable-coefficient or-

dinary differential equation solver was implemented with Python to integrate these ODEs. In all

simulations shown in this work, a half interval length of L = 250 is used so that the wavelength λc

selected by linear stability analysis of equation of motion (2.11) is small compared to the domain

length. Since λc = 2
√
2π, about 56 selected wavelengths are expected to be seen during the linear

regime of the evolution of the surface height. This means that a reasonable physical scale for L

is about several hundred nanometers. Furthermore, in the simulations we used N = 1000 to en-

sure there was a sufficient number of Galerkin coefficients to obtain accurate solutions. Figure 2.2

confirms the validity of using the truncated sum with N = 1000 in our numerical method be-

cause the Galerkin coefficients’ magnitudes decrease roughly exponentially as the Galerkin index

m increases.

2.2.1 Determination of the Ripple Propagation Velocity

The method we used to calculate the ripple propagation velocity from our numerical results is

conceptually simple: determine the spatial translation ∆x that minimizes the difference between

the height functions of two consecutive time steps t1 and t2. Once ∆x has been found, the propa-

gation velocity s is determined by

s =
∆x

∆t
, (2.26)

where ∆t ≡ t2 − t1 is the time interval between consecutive time steps. Consider the Galerkin

expansion of the height u(x, t) on the domain −L ≤ x ≤ L at a particular time step t1,
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Figure 2.2: The Galerkin coefficient magnitude |am| versus the coefficient index m for a simulation of the

equation of motion (2.11) with γ = 0.7 at time t = 1000. The data point for m = 0 has been omitted.

u1 ≡ u(x, t1) ≡
N
∑

n=−N

an(t1)e
iπnx/L (2.27)

and the expansion of u(x+∆x, t) at the following time step t2 = t1 +∆t,

u2 ≡ u(x+∆x, t2) ≡
N
∑

n=−N

an(t2)e
iπn(x+∆x)/L. (2.28)

Since u1 and u2 are both real, the difference between u1 and u2 is minimized when

M(∆x) ≡
∫ L

−L

(u2 − u1)
2 dx (2.29)

is minimized with respect to ∆x. Inserting the Galerkin expansions of u1 and u2 into Eq. (2.29)

and carrying out the integral yields
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M(∆x) = 2L
N
∑

n=−N

{|an (t1) |2 + |an (t2) |2 − [a−n (t1) an (t2) e
iπn∆x/L + c.c.]}, (2.30)

where “c.c.” is an abbreviation for complex conjugate. Thus, using the Galerkin coefficients found

by numerically integrating the equation of motion (2.11) and a minimizing algorithm, we can

determine the propagation velocity s of the surface ripple.

2.3 Terracing Simulation Results: 1+1 dimensions
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Figure 2.3: Plots of u versus x at the equally spaced times shown, produced by integrating the equation of

motion (2.11). The time for each curve is to the right of the plots. (a) γ = 0.3. (b) γ = 0.7.

In this section, we will discuss the results of numerical integrations of Eq. (2.11) with an

emphasis on the development of terraced surfaces. Additional numerical results — including our

results on the ripple propagation velocity — will be given in Section 2.4 once we have developed

the analytical results needed to understand them.

The results of two numerical integrations of the equation of motion (2.11) with differing values

of γ and a nominally flat initial condition are shown in Figure 2.3. For both γ = 0.3 and γ = 0.7, a

terraced topography develops in which two selected slopes are readily apparent. Figure 2.4, which
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shows the distribution of slopes obtained for a simulation with γ = 0.7, has two sharp peaks by

time t = 1000. Figure 2.3 demonstrates that the selected slopes depend on γ.
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Figure 2.4: The slope distribution (normalized counts versus ux) for a simulation with γ = 0.7 at time

t = 1000.

All the simulations we carried out with γ ≥ 0.28 yielded terraced topographies by the time

t = 103. These terraced structures slowly coarsened with time and propagated to the left. In con-

trast, for smaller values of γ, the behavior we observed was “KS-like" in that the ripple amplitude

saturated, selected slopes did not develop, the surface appeared to exhibit spatiotemporal chaos,

and the characteristic length scale did not increase appreciably. For small values of γ, we cannot

analytically rule out a crossover to a terraced topography at long times. A simulation with γ = 0.26

did not produce any terraces after integrating to time t = 4× 104, however.

We define the surface width

σ(t) ≡
√

〈u2(t)〉 − 〈u(t)〉2, (2.31)
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to be the root-mean-square deviation of u from its spatial average, where 〈f(t)〉 denotes the spatial

average of the function f = f(x, t) at time t. Naturally, for all values of γ, the time evolution

begins with a linear regime, during which the surface width σ increases exponentially with time.

The time dependence of σ is shown in Figure 2.5 for the simulations with γ = 0.3 and γ = 0.7.

The exponential growth of σ(t) at times less than about 100 is evident in the inset of Figure 2.5(b).

When the ripple amplitude becomes comparable to the wavelength, nonlinear effects begin to

play an important role in the dynamics. In our simulations with γ values between roughly 0.28 and

0.5, we observed a period of KS-like behavior after the linear regime. During this time interval,

the surface width was approximately constant; this behavior occurred between about t = 100 and

t = 300 in the simulation shown in Figure 2.5(a). Terrace formation then sets in. For γ values

greater than about unity, on the other hand, the system seems to make the transition from the linear

to the terrace forming regime directly, without passing through an intermediate KS-like regime.

Once terraces have formed, they undergo interrupted coarsening: the surface width σ grows in a

roughly linear fashion for some time and then levels off.
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Figure 2.5: Surface width σ versus time t for (a) a simulation with γ=0.3 and (b) a simulation with γ = 0.7.

The inset in (b) is plotted on a semilog scale to exhibit the exponential growth of σ at the early times.
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2.4 Terrace Slope Selection

In this section, we will apply two transformations in order to reduce the equation of motion

(2.11) to an equation with no free parameters. Ultimately, these transformations will allow us to

predict the behavior of the surface at late times.

First, by using an appropriate invertible point transformation, the quadratic nonlinearity can

be removed from Eq. (2.11), yielding a simpler equation of motion. Henceforth, we will refer to

Eq. (2.11) as the untransformed equation of motion and u = u(x, t) as the untransformed height.

Let

P (x, t) ≡
√

γ

6

[

u(x, t)− 1

γ
x+

1

3γ2
t

]

(2.32)

be the transformed height corresponding to u(x, t). Applying the transformation given by Eq. (2.32)

to the untransformed equation of motion (2.11) yields

Pt = −Pxx − Pxxxx + P 3
x − 1

2γ
Px. (2.33)

The term proportional to Px can be eliminated by transforming to a moving frame of reference.

Let x̃ ≡ x− t/(2γ) and t̃ ≡ t. Equation (2.33) then reduces to a partial differential equation with

no quadratic nonlinearity and with no free parameters:

Pt̃ = −Px̃x̃ − Px̃x̃x̃x̃ + P 3
x̃ (2.34)

or, equivalently,

pt̃ = −px̃x̃ − px̃x̃x̃x̃ + ∂x̃p
3, (2.35)

where p(x̃, t̃) ≡ Px(x̃, t̃) will be called the transformed slope.

Motivated by the appearance of traveling wave solutions in the simulation results at late times,

we seek solutions for which the untransformed height takes the form

u(x, t) = w(x− st)− µt, (2.36)
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where s is the propagation velocity in the x direction and µ is the downward drift speed. The

corresponding ansatz for the transformed slope is

p(x̃, t̃) = q(τ), (2.37)

where q(τ) ≡
√

γ/6 [φ(τ)− 1/γ], τ ≡ x̃ − str t̃, φ(τ) ≡ w′(τ) is the untransformed slope, and

str satisfies

s = str +
1

2γ
. (2.38)

A solution for the transformed slope of the form given by Eq. (2.37) is a traveling wave that has

the propagation velocity str in the moving frame of reference.

Inserting the ansatz (2.37) into the transformed equation of motion (2.35) and integrating once

yields the following ODE:

q′′′ = −q′ + q3 + str q + µtr. (2.39)

Here the primes indicate differentiation with respect to τ and µtr is a constant of integration. We

will seek shock wave solutions to Eq. (2.35); i.e., we will look for solutions to Eq. (2.39) that

asymptote to constants as τ → ±∞. If q(τ) → q± as τ → ±∞, then Eq. (2.39) shows that q+ and

q− must be roots of the cubic

q3 + str q + µtr = 0. (2.40)

Clearly, if Eq. (2.35) has the solution p(x̃, t̃), then −p(x̃, t̃) is a solution as well. As a conse-

quence, if q(τ) is a solution of Eq. (2.39), then −q(τ) must be also be a solution to this equation.

This leads us to the conclusion that

µtr = 0. (2.41)

The roots of the cubic Eq. (2.40) are therefore q−1 ≡ −√−str, q0 ≡ 0, and q+1 ≡ +
√−str. Any

shock wave solution q(τ) must asymptote to one of these transformed slopes as τ → −∞ and to a

different one as τ → +∞. Because q is real, this is only possible if str is negative. We will assume

that this is the case in what follows. The validity of this assumption is supported by our numerical
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integrations of the equation of motion (2.11), which yield negative values of s. Equation (2.38)

shows that the corresponding values of str are negative as well.

Equation (2.39) can be recast as a system of three first order ODEs by setting X1 ≡ q(τ),

X2 ≡ q′(τ), and X3 ≡ q′′(τ). Recalling that µtr = 0, we obtain

X ′
1 = X2

X ′
2 = X3 (2.42)

X ′
3 = −X2 +X3

1 + str X1.

Let X ≡ (X1, X2, X3) be a point in the phase space with coordinates X1, X2 and X3. The

system of ODES (2.42) has the three fixed points X−1 ≡ (q−1, 0, 0), X0 ≡ (q0, 0, 0), and X+1 ≡

(q+1, 0, 0) with the transformed slope values q−1, q0 and q+1, respectively. In this formulation, a

shock wave is represented by a trajectory in the three dimensional phase space that begins at one

of the fixed points at τ = −∞ and that asymptotes to a different fixed point at τ = +∞. Such a

trajectory is known as a heteroclinic orbit.

In the heteroclinic orbit, as τ is increased from −∞, the phase point X(τ) at first moves very

slowly away from the initial fixed point X−. Its motion then accelerates for a time before an

increasingly slow approach to the final fixed point X+ sets in. The q values associated with the

fixed points X+ and X− are the selected slopes for the transformed equation of motion (2.35).

These must be transformed back to the untransformed problem using Eq. (2.32) to obtain the

selected slopes for the equation of motion (2.11) that governs the behavior of the solid surface.

We may readily take the results of a numerical integration of Eq. (2.11) and compute P (x, t)

using Eq. (2.32). When the resulting P (x, t) is plotted as a function of x for long times t and for

γ > 0.28, a sawtooth form with symmetric teeth is obtained. This indicates that the selected values

of the transformed slopes are ±
√

|str|. As a consequence, the heteroclinic orbits are trajectories

from X−1 to X+1 and vice versa. A trajectory from X−1 to X+1 and back again is called a

heteroclinic cycle.
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The fact that only two selected slopes appear in our simulations strongly suggests that there is

a single allowed value of str. If this is so, then there is a heteroclinic cycle that passes through both

X−1 and X+1 for this particular value of str and for no others.

Repeating our traveling wave analysis on the untransformed equation of motion (2.11), we

obtain a system of three ODEs with three fixed points. The slopes φ associated with these fixed

points satisfy the cubic

γφ3 − 3φ2 + 6sφ+ 6µ = 0. (2.43)

Equation (2.32) shows that the untransformed slope corresponding to q0 = 0 is φ0 = 1/γ. This

value of φ must be a solution of Eq. (2.43). As a consequence, the untransformed downward drift

rate and propagation velocity are related by

µ =
1

3γ2
− s

γ
. (2.44)

Using Eq. (2.38), the downward drift speed can be written in terms of the transformed propagation

velocity as

µ = − 1

6γ2
− str

γ
. (2.45)

Differentiating Eq. (2.32) with respect to x, we find that

φ =
1

γ
+

√

6

γ
p. (2.46)

The roots of the cubic in Eq. (2.43) are obtained by setting p equal to q−1, q0 and q+1 in this result.

Explicitly, the roots are

φ±1 =
1

γ
±
√

6 |str|
γ

(2.47)

and

φ0 =
1

γ
. (2.48)

Note that φ+1 and φ−1 are the selected slopes for the untransformed problem.

55



Equations (2.38), (2.45) and (2.47) show that once we have determined the value of str, we

will have the shock propagation velocity s, the downward drift rate µ, and the selected slopes φ+1

and φ−1. Moreover, we will have these quantities for all positive values of γ. Accordingly, we will

now turn to the task of computing str.

We used the shooting method to find an approximate value of str. In particular, we integrated

the system of ODEs given by Eq. (2.42) numerically for varying values of str with an initial condi-

tion displaced from X−1 by a small distance in the direction along the unstable eigenvector of the

linearized flow near that fixed point. We found a single value of str that yielded a trajectory that

passed close to X+1, in accord with what we expected based on our numerical integrations of the

untransformed equation of motion (2.11). The value of str that we adopted as our estimate is

str ≈ −2.387 962 295 205. (2.49)

This value produced a trajectory that came within a distance of 5.11× 10−3 of the point X+1. Our

predictions for the terrace properties given by Eqs. (2.38), (2.45) and (2.47) are not highly sensitive

to the value of str; however, the trajectory obtained by integrating Eq. (2.42) is sensitive to its value.

The approximate heteroclinic trajectory yielded by the shooting method was transformed back to

the untransformed problem for the case γ = 0.7 and is plotted in Figure 2.6. Also shown is

the result obtained by numerical integration of the equation of motion (2.11) with γ = 0.7. The

agreement between the two results is very good.

Now that we have found the approximate value of str, we can determine the shock propagation

velocity s, the downward drift velocity µ, and the selected slopes φ+1 and φ−1 for the untrans-

formed equation of motion (2.11). We will compare the values yielded by Eqs. (2.38), (2.45) and

(2.47) to results obtained by direct numerical integration of Eq. (2.11) for a range of γ values.

In order to estimate φ+1 for a simulation with particular value of γ, we first take the solution at

time t = 1000 and calculate the slope ux at 104 equally spaced position points. We then average

over all slopes satisfying max (ux)/2 < ux < max (ux) to yield our estimate of φ+1. The same

approach is used to estimate φ−1, except that the slopes must satisfy min (ux) < ux < min (ux)/2
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Figure 2.6: The shooting method result transformed back to the untransformed problem for γ = 0.7 (red)

is superimposed upon the result obtained by integrating the equation of motion (2.11) with γ = 0.7 (blue).

The green dots are the fixed points of the equivalent system of ODEs (2.42) transformed back for γ = 0.7.

in that case. These estimates tend to underestimate the magnitude of the selected slopes φ±1. As

shown in Figure 2.7, the selected slopes predicted by Eq. (2.47) are in very good agreement with

the estimates obtained from numerical integrations of Eq. (2.11).

The downward drift rate µ is plotted versus γ in Figure 2.8. Since the Galerkin coefficient a0(t)

is the spatial average value of u(x, t), µ was obtained from our simulation results using a linear

fit to the form a0(t) = −µt at late times. The agreement with the prediction from Eq. (2.45) is

excellent.

A plot of the propagation velocity s versus γ is shown in Figure 2.9. The propagation velocities

obtained from numerical simulations of the equation of motion (2.11) were determined using the

method described in Section 1.4.2. The results are very close to the values predicted by Eq. (2.38).

In this paragraph, we will use ideas and notation introduced in Section 1.4.2. To see that the

shock waves in our model are undercompressive, we note that Eq. (2.35) has the form Eq. (1.35)

with the flux F (p) = −p3. For a shock with q− = q−1 = −
√

|str| and q+ = q+1 = +
√

|str|,
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Figure 2.7: The terrace slopes φ+1 and φ−1 plotted versus γ. The red squares are the results obtained by

integrating the equation of motion (2.11). The blue curves are the predicted slopes obtained from Eq. (2.47).
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Figure 2.8: The downward drift rate µ plotted versus γ. The red squares are the results obtained by inte-

grating the equation of motion (2.11). The blue curve is the prediction obtained from Eq. (2.45).
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Figure 2.9: The propagation velocity s plotted versus γ. The red squares are the results obtained by inte-

grating the equation of motion (2.11). The blue curve is the prediction obtained from Eq. (2.38).

Eq. (1.38) gives U = str. Since this is the velocity of the shock, the Rankine-Hugoniot condition

is satisfied. However, F ′(q−) = F ′(q+) = 3str and so the Lax entropy condition Eq. (1.39) is not

satisfied. By definition, therefore, the shock is undercompressive. In the same way, a shock with

q− = q+1 = +
√

|str| and q+ = q−1 = −
√

|str| satisfies the Rankine-Hugoniot condition, violates

Eq. (1.39) and is undercompressive.

The 1+1 D equation of motion that applies to the original physical problem in the lab frame of

reference is

ht = −v0 − Ahx + κhxx − Bhxxxx +
1

2
c2h

2
x +

1

6
c3h

3
x. (2.50)

The selected slopes will be denoted by m±1 and are given by

m±1 = −sgn(c3)
|κ|3/2
c2B1/2

(

1

γ
±
√

6 |str|
γ

)

, (2.51)
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where γ was defined in Eq. (2.12) and our approximate result for str appears in Eq. (2.49). The

shock propagation velocity S, on the other hand, is

S = A+ sgn(c3)
|κ|3/2
B1/2

(

str +
1

2γ

)

. (2.52)

The net rate of erosion will be defined to be d〈h(t)〉/dt and will be denoted by v. For long times t

it is given by

v = v0 +
κ3

c2B

(

str
γ

+
1

6γ2

)

. (2.53)

The result Eq. (2.52) is particularly interesting. For θ less than a critical value θ1, the propaga-

tion velocity for low amplitude ripples A is positive, which means that the ripples propagate into

the ion beam. Let us assume that θ < θ1. Equation (2.52) gives the propagation velocity at long

times when the surface has a well-developed terrace morphology. It is important to note that S can

be negative. In particular, this occurs if

B1/2A

|κ|3/2 < sgn(c3)

(

|str| −
1

2γ

)

. (2.54)

If A is positive and S is negative, the linearized theory initially applies and the surface ripple

propagates into the ion beam. However, as the ripple amplitude grows, the importance of the cubic

nonlinearity increases and the ripple velocity begins to decline. At long times, the surface develops

terraces that propagate in the negative x direction, away from the ion beam. The propagation

direction therefore reverses as time passes [44].

2.5 Terracing Results: 2+1 dimensions

So far, we have studied the solutions to Eq. (2.2) for the special case in which u is independent

of the transverse coordinate y, i.e., the 1D case. We will now explore the behavior predicted by

Eq. (2.2) when u depends on x, y and t. We will refer to this as the 2D case.
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In Section 2.3, we demonstrated that including the cubic nonlinearity u3
x in the EOM can lead to

terrace formation in 1D, but the question of whether this also holds true in 2D was not addressed. In

this section, we present simulation results in 2D that display topographies that are terraced analogs

of parallel-mode ripples. In addition, we find that inclusion of the cubic nonlinearities u3
x and uxu

2
y

in the EOM can yield surface morphologies that resemble those observed in various experiments.

Among these are elongated pyramidal structures [10, 11] and lenticular depressions [12]. We also

compare the predictions from the 1D theory with our simulations in 2D when there is smoothing

in the transverse direction and find that key predictions from 1D carry over to 2D.

2.5.1 Parallel-Mode Terraces

The most significant effect of including the cubic nonlinearity u3
x in the EOM (2.2) is that it

can lead to the formation of a terraced topography. The results of a simulation in 2D are shown in

Fig. 2.10. The topographies that develop are quite similar to those found in an experiment in which

a silicon sample was irradiated with a 60 keV Ar+ ion beam with a 60◦ angle of incidence (see

Fig. 2.11). In both the experiments and the simulations, terraces develop that resemble parallel-

mode ripples, except that the regions between the crests and troughs have nearly constant slope.

We call these structures parallel-mode terraces, in analogy with parallel-mode ripples. Figure 2.12

shows the mean curvature, which we shall denote by H , for the surface in Figure 2.10 (b); the

distinctive nearly vertical dark and light lines are undercompressive shocks that are associated

with terrace formation. In between these shocks is a complicated cellular structure of small scale

ripples. Small scale ripples are ubiquitous in simulations with κ1 < 0 and κ2 < 0 once terraces

have formed.

From Fig. 2.13 we see that the gradient distribution for Fig. 2.10 (b) (i.e., a 2D histogram of

ux and uy values) has two preferred values for ux: this confirms that the surface is indeed terraced.

The spread in uy occurs because of the transverse instability; if κ2 were positive instead of negative,

the gradient distribution would be strongly peaked in the transverse direction at long times.
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Figure 2.10: The surface height obtained from a simulation of Eq. (2.2) at times (a) t = 1000, (b) t = 3000
and (c) t = 5000. By the end of the simulation, parallel-mode terraces have developed, with slight bends in

the terrace edges due to the presence of a transverse instability. The parameter values used were κ1 = −0.5,

κ2 = −0.1, λ1 = 0.5, λ2 = 0.5, B = 1, γ1 = 1 and γ2 = 0.

2.5.2 Steady-state solutions

In the 1D theory, the terraced solutions are traveling waves that propagate and descend at a

constant rate. We assume the same to be true of the terraced solutions to Eq. (2.2). Thus, we seek

solutions to Eq. (2.2) of the form u(x, y, t) = f(x − st, y) − µt, where f is a function that gives

the shape of the traveling wave, s is the lateral propagation velocity and µ is the downward drift

speed. This yields the following time-independent partial differential equation:

κ1fxx + κ2fyy − B∇2∇2f + λ1f
2
x + λ2f

2
y + γ1f

3
x + γ2fxf

2
y + sfx + µ = 0. (2.55)

Since a terraced surface is dominated by regions of constant slope, we seek solutions in which the

surface is flat, i.e., in which uxx = uxy = uyy. Thus, we expect that the terraced surfaces’ gradient

distributions are most heavily weighted at the values of (fx, fy) satisfying the algebraic equation

λ1f
2
x + λ2f

2
y + γ1f

3
x + γ2fxf

2
y + sfx + µ = 0. (2.56)

The set of points (fx, fy) satisfying Eq. (2.56) is the union of up to three nonintersecting curves.

The gradient distributions are concentrated close to two subsets of these curves, as shown in

Fig. 2.14 for three different sets of parameter values. This is in direct analogy with the 1D case in
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Figure 2.11: A sequence of snapshots of a silicon surface observed by Datta et al. The surface was bom-

barded 60 keV Ar+ ions at a 60o angle of incidence. The black arrows indicate the ion beam direction

projected onto the surface. Terraces with relatively little transverse variation develop at late times. The

surface coarsens laterally and roughens as the terraces form. This figure is from Ref. [9].
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Figure 2.12: The mean curvature of a surface obtained from a simulation of Eq. (2.2) at time t = 3000. The

figure shown is the mean curvature of the surface seen in Figure 2.10 (b).
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Figure 2.13: The gradient distribution of the surface obtained from a simulation of Eq. (2.2) at time t =
3000. The figure shown was obtained from the surface seen in Fig. 2.10 (b).
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which there are only two selected slopes even though there are three zeros for the cubic equation

that yields the selected slopes [32].

Simulations of Eq. (2.2) with different values of κ1 and κ2 (and with all other coefficients held

fixed) produce surfaces with gradient distributions that are more heavily weighted on different

subsets of the curves satisfying Eq. (2.56). This is illustrated in Figs. 2.14 (a) and (b), which are

gradient distributions obtained from two surfaces produced by simulations with different values

of κ2 but the same parameter values κ1 = λ1 = λ2 = −0.5, B = 1, γ1 = 1 and γ2 = 0.

Equation (2.56) also works well if γ2 is nonzero, as can be seen in Fig. 2.14 (c), which was obtained

from a simulation with coefficient values κ1 = 0, κ2 = −0.5, λ1 = λ2 = −0.5, B = 1, γ1 =

1 and γ2 = −1. The values of s and µ used to produce the red curves in these figures were

determined directly from the simulations. The method we employed to compute s was introduced

in Section 2.2.1. We calculated an average s by comparing the surface at each of the final 10 time

steps with the surface at its previous time step. The values of µ were determined by the slope of a

linear fit of the average value of u versus time during the last 10 time steps.

Figure 2.14: The gradient distributions of three surfaces obtained from a simulation of Eq. (2.2) integrated

up to time t = 750 with the solutions to Eq. (2.56) plotted as red curves. The parameter values used in the

simulations were (a) κ1 = −0.5, κ2 = −0.5, λ1 = −0.5, λ2 = −0.5, B = 1, γ1 = 1 and γ2 = 0; (b)

κ1 = −0.5, κ2 = 0.5, λ1 = −0.5, λ2 = −0.5, B = 1, γ1 = 1 and γ2 = 0; (c) κ1 = −0.5, κ2 = 0.5,

λ1 = −0.5, λ2 = −0.5, B = 1, γ1 = 1 and γ2 = −1.
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2.5.3 Comparison with the predictions of the one-dimensional theory

We now investigate how well the predictions made in Section 2.3 for the 1D case apply to

simulations in 2D, with a focus on the case in which there is smoothing in the transverse direction.

Figure 2.15 shows a line scan along the x axis of a surface obtained by integrating Eq. (2.2) with

the parameter values κ1 = −0.5, κ2 = 1, λ1 = −5, λ2 = −5, B = 1, γ1 = 100 and γ2 = 0.

From this figure, it is evident that terraces have formed. Moreover, the line scan is quite similar to

surfaces obtained in simulations in 1D (see Fig. 2.3).
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Figure 2.15: A line scan along the x axis slice of a surface with transverse smoothing at time t = 2000.

Note that the vertical scale has been enlarged by a factor of 40 to make the pattern easily discernible; the

magnitude of the surface slope nowhere exceeds 0.1. The parameter values used were κ1 = −0.5, κ2 = 1,

λ1 = −5, λ2 = −5, B = 1, γ1 = 100 and γ2 = 0.

In Section 2.3, we derived formulas for the propagation velocity, downward drift speed and

selected slopes of the terraces that form on a surface governed by Eq. (2.11), i.e., a surface that

has no transverse variations in height. In Figure 2.16, we compare the selected slopes φ±, the

propagation velocity s and the downward drift speed µ as given by Eqs. (2.47), (2.38) and (2.45)

with the values obtained from numerical integrations of Eq. (2.2) as γ ≡ 6γ1 is varied while the

other coefficients are held fixed at the values κ1 = −1, κ2 = 20, B = 0, λ1 = −0.5, λ2 = −0.5
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and γ2 = 0. (Note the large positive value of κ2 we selected.) We used a smaller domain for

these simulations so that an approximate steady state would be reached at an earlier time than it

was in the figures previously shown. The methods of determining the values of s and µ from the

simulations were the same as we discussed earlier in this section. The error bars for s are obtained

from the standard deviation of the 10 values averaged to give s. The error bars on µ were calculated

from the R-squared value of the linear fit using µerr = (1 − R2)µvalue. We used the same method

as in 2.4 to calculate φ± from the simulations. The results from the simulations in 2D with strong

smoothing in the transverse direction are in excellent agreement with predictions of the 1D theory

given by Eqs. (2.47), (2.38) and (2.45).

Figure 2.16: (a) Downward drift speeds µ, (b) selected slopes φ± and (c) propagation velocities s. The data

points are values obtained from simulations of Eq. (2.2). The red curves are predictions from the 1D theory:

(a) µ as given by Eq. (2.45), (b) φ± as given by Eq. (2.47) and (c) s as given by Eq. (2.38). The surfaces

were simulated to time t = 500 and the parameter values used were κ1 = −0.5, κ2 = 10, λ1 = −0.5,

λ2 = −0.5 and γ2 = 0.

Our simulations in two dimensions exhibit interrupted coarsening. Evidence for this is seen in

Fig. 2.17, which is a plot of the surface width (i.e., the standard deviation of the surface height)

versus time for the simulation that produced the surface seen in Fig. 2.10. The surface width grows

for some time and then appears to asymptote to a finite value. Furthermore, inspection of Fig. 2.10

itself shows that both the lateral and vertical scales of the surface grow from (a) to (b) but are not

substantially changed from (b) to (c). We observed interrupted coarsening in all of our simulations

that yielded terraced topographies.
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Figure 2.17: The surface width σ versus time obtained from a simulation of Eq. (2.2). The figure shown is

produced from the same simulation that yielded Fig. 2.10.

2.5.4 Elongated pyramidal structures

Next we present simulation results that resemble the topography seen in Fig. 2.18, which shows

images from experiments performed by Carter et al. at high angles of incidence [10]. Both the

experimental surfaces and our simulated surfaces exhibit pyramidal structures that protrude from

the surface and that are elongated in the projected ion beam direction. We see these structures

form in our numerical integrations of Eq. (2.2) when there is a linear instability in the transverse

direction (i.e., κ2 < 0) and the magnitudes of both γ1 and γ2 are sufficiently large. Since the

pyramidal structures only form in simulations with nonzero values of γ2, the term uxu
2
y plays an

critical role in their formation. One such simulation result is shown in Fig. 2.19. Notice that the

pyramidal structures that form in our simulation have ends that tend to line up, just as is seen

in Fig. 2.18. The gradient distribution for Fig. 2.19 is shown in Fig. 2.20. Clearly, there is a

strongly selected negative value of ux in this simulation. Furthermore, the gradient distribution

demonstrates that the elongated portion of the pyramidal structures have ux > 0 and the ends of

the elongated pyramids have ux < 0; i.e., these pyramidal structures protrude from the surface

with their ends facing the ion source. This is again consistent with Carter et al.’s experimental

68



Figure 2.18: SEM images of a silicon surface produced by Carter in Ref. [10] by bombarding silicon with

40 keV argon ions at an angle of incidence of 70o. The surface shown on the right is a magnification of the

surface on the left. The red arrows indicate the ion beam direction projected onto the surface. There are

elongated pyramidal structures that are protruding out of the surface and facing towards the beam. The ends

of the structures appear to have a tendency to line up.

observations. The mean curvature of the surface — which is shown in Fig. 2.21 — shows that

shocks that are elongated in the longitudinal direction can form. These shocks are close to being

aligned with the x-axis but are not parallel to it. To see this, note that if we consider a surface that

has no longitudinal variations, then Eq. (2.2) reduces to

ut = κ2uyy − Buyyyy + λ2u
2
y. (2.57)

This is the KS equation and it does not lead to shock formation.

In the simulation we just discussed, perpendicular-mode ripples formed at early times. How-

ever, elongated pyramidal structures can also form when parallel-mode ripples are present for low

fluences. Figure 2.23 demonstrates this with two snapshots of a surface obtained by simulating

Eq. (2.2): (a) shows the surface at time t = 150 and (b) shows the same surface at a later time

(t = 850). Our simulation results are remarkably similar to the topographies obtained by Datta et

al. when they irradiated a germanium surface with 100 keV krypton ions at a 60◦ angle of inci-

dence: see Fig. 2.22. Datta et al. found that the parallel-mode ripples that developed at early times

ultimately evolved into elongated pyramidal structures, just as in our simulations.
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Figure 2.19: A surface obtained by integrating Eq. (2.2) up to time t = 1800, starting from a low amplitude

white noise initial condition. The surface is still evolving at the time shown. At early times, perpendicular-

mode ripples formed. Later, these ripples evolved into the elongated pyramidal structures seen in the figure.

The parameter values used were κ1 = 0, κ2 = −0.6, B = 1, λ1 = 0.5, λ2 = 0.5, γ1 = 1 and γ2 = −3.

ux

-2 -1 0 1 2

u
y

-5

0

5

0

500

1000

1500

2000

2500

3000

counts

Figure 2.20: The gradient distribution of the surface obtained from a simulation of Eq. (2.2), integrated up

to time t = 1800. The figure was obtained from the surface seen in Fig. 2.19.
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Figure 2.21: The mean curvature H of the surface shown in Fig. 2.19. Shocks that are elongated in the

longitudinal direction are evident.

Figure 2.22: AFM images that show the evolution of a germanium surface bombarded by 100 keV kryton

ions at an angle of incidence of 60o, obtained in an experiment by Datta et al. The height scales are (d) 20.7

nm, (e) 315.7 nm, and (f) 2 nm. The top left of each image shows the 2D autocorrelations of the surface.

The top right shows its 2D slope distributions. The direction of the incident beam projected onto the surface

was from right to left, and so the ripples in the leftmost image are parallel-mode ripples. This figure is from

Ref. [11].
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Figure 2.23: (a) A surface obtained by integrating Eq. (2.2) up to time t = 150, starting from a low

amplitude white noise initial condition. Parallel-mode ripples are evident. (b) At time t = 850, the surface

exhibits elongated pyramidal structures. The parameter values used in this simulation were κ1 = −0.5,

κ2 = −0.3, B = 1, λ1 = −0.05, λ2 = −0.5, γ1 = 1 and γ2 = −3.

2.5.5 Lenticular Depressions

Lenticular depressions are another interesting topographical feature that have been observed

in experiments. These lens-shaped depressions are prominent, for instance, in Fig. 2.24, in which

silicon was bombarded with a 1.2 keV xenon ion beam with a 75o angle of incidence. We have

also seen lenticular depressions in some simulations of Eq. (2.2) in which the initial condition was

low amplitude spatial white noise — see Fig. 2.25 (a) for an example. The mean curvature of that

surface is shown in Fig. 2.25 (b). This figure shows that the pit’s edge is a shock and there is a

complicated cellular structure outside of the pit. There is also a shock that crosses the bottom of the

pit. In the experiments, the outlines of the lenticular depressions appear to be shocks and shocks

traverse the base of the pits, just as in our simulations.

Lenticular features arise in our simulations if the value of γ1 is slightly larger than the threshold

value for terrace formation. They are transient structures that appear when the surface is transi-

tioning from KS-like behavior to a terraced topography. In fact, in this simulation, the emergence

of the depression corresponds to the emergence of the first undercompressive shock. Since γ2 = 0

in the simulation that produced Fig. 2.25, it is clear that the term uxu
2
y is not necessary for the

formation of lenticular depressions. However, its inclusion can modify their shape.
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Figure 2.24: A silicon surface obtained in an experiment by Teichmann et al. after bombarding it with

1.2 keV xenons ions at an angle of incidence of 75o. The value of z indicates the difference between the

maximum and minimum values of the surface height. The darker color indicates lower surface heights. The

ion fluence was 1.35× 1019 ions/cm2. The arrow indicates the direction of the ion beam projected onto the

surface. This figure is from Ref. [12].

Figure 2.25: (a) A surface obtained by integrating Eq. (2.2) up to time t = 465, starting from a low

amplitude spatial white noise initial condition. A lenticular depression is shown, surrounded by a region

of the surface that looks very much like what would be seen in simulations of the isotropic KS equation.

(b) The mean curvature H of the surface in (a). The parameters were κ1 = −0.5, κ2 = −0.5, B = 1,

λ1 = −0.5, λ2 = −0.5, γ1 = 0.11 and γ2 = 0.
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2.6 Discussion

Terraced topographies are frequently observed in experiments in which a solid surface is bom-

barded at high angles of incidence [2, 4, 9, 10, 24–31]. The terraced structures are also found to

coarsen as time passes.

In 1976, Hauffe suggested that terraced structures coarsen as a result of sputtering by reflected

ions [24]. He did not derive or study an equation of motion for the solid surface, and offered

no explanation for the formation of the terraces themselves. Hauffe also neglected the effect of

redeposition, which would tend to counteract the coarsening caused by ion reflection. In contrast,

the equation of motion we studied in this thesis produces ripples as a result of curvature dependent

sputtering and/or mass redistribution. As nonlinear effects grow in importance, terraces emerge

because undercompressive shocks form. The terraced surfaces that result from our model coarsen

with time even though it does not include the effects of ion reflection and re-impingement on

the solid surface. Therefore, the so-called “Hauffe mechanism" does not appear to be needed for

terrace coarsening to occur.

In obtaining our equation of motion, we assumed that the surface height is slowly varying, and

retained terms up to third order in the surface slope hx. This represents an improvement to the

approximation that has almost universally been employed; in that approximation terms of third

order and higher in hx are neglected [22, 40].

It is typically found in experiments that the selected terrace slopes are of order of magnitude

unity. The faces of the terraces are often nearly parallel and perpendicular to the ion beam, although

there are exceptions to this rule of thumb [2, 29, 30]. The approximate equation of motion we

studied in this thesis does not apply if the surface slope is not small. However, our work shows

how higher order nonlinearities in the equation of motion can lead naturally to terraced surfaces

that coarsen in time. Our equation of motion is also quite generic, and, as we showed, by applying

appropriate transformations it can be reduced to a parameter-free form. In contrast, including terms

of order u4
x and higher would introduce additional parameters into the model. The values of these
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parameters would depend upon the detailed angular dependence of the sputter yield, and so the

generality of the model would be reduced.

The linear BH theory predicts that if the angle of incidence θ is less than a critical angle θ2,

then κ1 < κ2 and κ1 < 0. This means that parallel-mode ripples (i.e., ripples with their wave

vector parallel to the projected ion direction) will form. If θ is also less than θ1, then A > 0 and

hence the ripples propagate into the ion beam. Thus, the BH theory predicts that if parallel-mode

ripples develop, they propagate in the direction opposite to the incoming ions, except possibly for

high angles of incidence.

In most experiments carried out to date, the ripples have been observed to propagate in the di-

rection opposite to that predicted by the BH theory [3, 5, 27, 34–36], although there is an exception

[70]. In this thesis, we analyzed the propagation velocity in the nonlinear regime and our results

provide a possible explanation for this discrepancy. During the early stages of the time evolution

in which the linear BH theory applies, the ripple amplitude is small and hence measurements of

the ripple velocity would be difficult. Most (if not all) experimental observations have likely been

carried out in the late-time, nonlinear regime as a consequence. As we have seen, the ripples can

propagate in the projected ion direction in this regime. It should be noted that we neglected the uxxx

term in our equation of motion (2.11) and this term affects the propagation velocity at early times;

in fact, this term itself could lead to ripples propagating in the projected ion direction. However,

including this term does not affect our aforementioned conclusion that the propagation direction

could switch as time progresses.

One of the key findings of this thesis is that terraced surfaces develop with two special selected

slopes because undercompressive shocks form. The formation of undercompressive shocks during

the ion bombardment of a solid surface has already been observed experimentally in a different

context. Chen et al. etched a cylindrical pit into an initially planar silicon surface and then sub-

jected the entire sample to normal-incidence ion bombardment [13, 71, 72]. As shown in Fig. 2.26,

the pit radius increased, but its sidewalls remained quite steep. Undercompressive shocks formed

between a portion of the sidewall with a selected slope and the flat surface outside the pit.
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In the theory that Chen et al. advanced to account for their experimental observations, the form

of the sputter yield valid for arbitrary angles of incidence was employed. The destabilizing effect

of the curvature dependence of the sputter yield was omitted, however. The undercompressive

shocks that formed connected a region of slope zero to a region with a selected slope. Thus, there

is a single selected slope in the model of Chen et al. In contrast, there are two selected slopes in

our model and the terraced structure develops from a surface that is nominally flat initially.

Figure 2.26: An initial circular pit is etched and is shown in (a). After bombarding at normal incidence,

the pit radius has increased but the slopes of the pit walls are unchanged, seen in (b). This experiment was

carried out by Chen et al. , see Ref. [13].

2.7 Conclusions

When the nominally flat surface of an elemental solid is bombarded with a broad ion beam at

oblique incidence, parallel-mode nanoscale ripples can develop on the surface. These ripples often

evolve into terraces as time passes.

In this thesis, we appended the third order nonlinear term c3u
3
x/6 to the usual one-dimensional

Kuramoto-Sivashinsky equation for the surface height. This term appears in the equation of motion

when an improved approximation for the slope dependence of the sputter yield is adopted. Our

numerical integrations of this equation of motion revealed that a terraced topography with two

distinct selected slopes emerges at long times for a range of values of the parameter c3. Adjacent

regions of nearly constant surface slope are connected by an undercompressive shock; within a
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shock, the slope varies rapidly. Once the heteroclinic cycle had been constructed numerically for

the transformed equation of motion, we were able to predict how the selected slopes, the terrace

propagation velocity and the net erosion rate depend on c3. These predictions are in excellent

agreement with our numerical integrations of the untransformed equation of motion.

Simulations of our model show that the terraces coarsen as time passes, as observed in many

experiments. We also established that for a range of parameter values, the ripple propagation di-

rection reverses as the ripple amplitude grows and nonlinear effects become important. This may

explain why most experiments indicate that the ripple propagation direction is opposite to the di-

rection predicted by the linear Bradley-Harper theory. Experiments in which the ripple propagation

velocity is measured from the early-time, linear regime to the long-time, nonlinear regime would

be very valuable.

We also studied an equation of motion that generalizes the PB equation to the case in which

the surface height depends on both the longitudinal and transverse coordinates. This equation

differs from the usual equation of motion (the anisotropic two-dimensional Kuramoto-Sivashinsky

equation) by the inclusion of the cubic nonlinearities u3
x and uxu

2
y. Although it is not the most

general equation of motion that includes terms up to cubic order in u, the generalized PB equation

captures many of the features that are observed in experiments in which the angle of ion incidence

is relatively high. For example, for a range of parameter values, it yields parallel-mode ripples at

early times. These ripples then evolve into a terraced structure that coarsens with time. For other

ranges of the parameters, the surface develops other morphologies reminiscent of those seen in

experiments, such as isolated lenticular depressions and elongated pyramidal structures that tilt up

out of the surface and towards the beam.

The strong similarities between the surfaces produced by our model and those observed in ex-

periments indicates that the cubic nonlinearities u3
x and uxu

2
y play a crucial role in the dynamics

for sufficiently high angles of ion incidence. These nonlinearities could be eliminated in an exper-

iment by bombarding the surface with identical, diametrically opposed beams, or by periodically

and rapidly rotating the sample through 180◦ increments about its surface normal. In experiments
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of this kind, the equation of motion is invariant under the transformation x → −x and the mor-

phologies produced should differ markedly from those that develop when the sample is stationary

and a single, near glancing incidence ion beam is employed.
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Chapter 3

Patterning Surfaces Before Ion Sputtering can Yield

Nanodot Arrays with Improved Hexagonal Order

The primary obstacle to the widespread adoption of ion-induced pattern formation as a nanoscale

fabrication tool has been the presence of numerous defects in the patterns that are typically pro-

duced. In the case of surface ripples, some ripples terminate, while others fuse with their neighbors.

In contrast, penta- and hepta-defects are found in hexagonal arrays of nanodots produced by ion

bombardment of binary materials.

A promising concrete strategy for producing more highly ordered patterns is to bombard a

topographically templated surface rather than an initially flat surface [73]. The template should

have a regular structure on a length scale that is longer than the natural spacing of the patterns

formed by ion sputtering, so that it can be fabricated by, e.g., optical lithography with a mask or

optical standing-wave lithography. The purpose of the template is to guide the ion-induced self-

organization that occurs at shorter length scales, leading to a more highly ordered nanostructure

than would be formed on an initially flat surface.

Some steps toward utilizing templates in ion-induced ripple formation on elemental materials

have been taken. If a silicon surface is prepatterned with parallel trenches with a width equal to

a few times the ripple wavelength, for example, the ripples that form in the trenches tend to align

with the trench walls, and the number of defects in the ripple patterns is small [73].

An intriguing recent experiment suggests another possible route to enhanced ordering. In the

experiment, a silica surface was polished mechanically, producing a set of parallel scratches [74].

This surface was then subjected to normal-incidence bombardment with a beam of 1.8 MeV gold

ions. The result was an array of nanodots with a much higher degree of order than would have been

present had the surface not been polished before bombardment. In particular, chains of nanodots

that were presumably parallel to the scratches were observed. Similar results have been obtained
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if scratch-like structures are made by prepatterning the surface using near-grazing-incidence ion

bombardment rather than by mechanical polishing [75–77].

In this chapter, we investigate the efficacy of using a template to improve the order in nan-

odot arrays produced by normal-incidence ion bombardment of binary materials. Using numerical

simulations, we explore the degree of order produced by a template with a hexagonal array of

nanoholes. The nanohole spacing is chosen to be longer than the linearly selected wavelength

λT , i.e., the natural spacing of the nanodots. We find that this type of template dramatically im-

proves the order when the nanohole spacing is approximately equal to certain integer multiples

of λT . Comparable results are obtained for a template with a sinusoidally varying surface height.

Finally, we study the effect of an initial condition that is meant to resemble a single, long, straight

scratch on an otherwise nominally planar surface. Our simulations show that if the scratch width

is appropriately chosen, the degree of hexagonal order is strongly enhanced in its vicinity.

We use three different methods to characterize the degree of hexagonal ordering present in

the simulated nanodot arrays. The first is a qualitative method that involves inspection of the

peaks in the magnitude of the Fourier transform of the surface height. The other two methods are

quantitative. One uses the topological data analysis technique called persistent homology. The

second quantitative method involves constructing a Voronoi tessellation for the nanodot peaks and

computing its nearest-neighbor number distribution. The details of the two quantitative methods

were discussed in Section 1.5.2.

3.1 Equation of Motion and Initial Conditions

In order to study the influence of prepatterning on binary materials subjected to ion bombard-

ment, we will numerically integrate the BS equations (1.27) and (1.28) with periodic boundary

conditions. The integrations are performed using the exponential time differencing method dis-

cussed in Section 1.5. The choice of coefficients used in our simulations were a = 0.25, b = 0.37,

c = 1, λ = 0, ν = 1 and η = 10. The coefficients of the linear terms is in region I that was

discussed in Section 1.3, and the linearly selected wavelength is λT ≃ 10.36. Since b ≃ 0.9bT ,
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there is a narrow band of unstable wave vectors. The coefficient ν was chosen to be equal to unity

so that the surface would form nanodots instead of ripples. The analytical work in Ref. [8] made

the assumption that η was of order ǫ−1, where ǫ is the distance of b from the threshold value as

defined by b = (1 − ǫ)bT . Thus, we set the parameter η to 10 so that our numerical results can be

readily compared with the analytical results of Ref. [8].

Three types of initial conditions will be considered in this thesis: hexagonally ordered arrays

of nanoholes, sinusoidal ripples and straight scratches. We superimposed small amplitude spatial

white noise on the initial conditions to account for the randomness that would exist on a real

prepatterned surface. The initial condition for the composition was small amplitude spatial white

noise in all simulations. The noise had an amplitude of 10−4 for both the height and composition

in all of the simulations.

The hexagonal initial condition was formed by superimposing three sine waves. If a square

domain were used for the hexagonal initial condition, there would be an unphysical discontinuity

at the boundary. Thus, in order to satisfy the periodic boundary conditions, we chose to do the

simulations in the rectangular domain given by −L ≤ x ≤ L and −L/
√
3 ≤ y ≤ L/

√
3, where

L = 200. The functional form used for the hexagonal initial condition was

uhex,0(x, y) = 10−2
[

sin2 (ka · r) + sin2 (kb · r) + sin2 (kc · r)
]

+ ρ(x, y), (3.1)

where ρ(x, y) is the low amplitude spatial white noise, r ≡ xx̂+ yŷ, k̂a ≡ x̂, k̂b ≡ cos (2π/3)x̂+

sin (2π/3)ŷ, k̂c ≡ cos (4π/3)x̂ + sin (4π/3)ŷ, and ka, kb and kc are set to a common value that

we will call kI . Since each of the sinusoids is squared, λ1 ≡ π/kI is their wavelength. We

varied the parameter λ1 from simulation to simulation while keeping L fixed. For convenience,

let k1 ≡ 2π/λ1 = 2kI . The wavelength λ1 cannot be chosen arbitrarily, since 2L/λ1 must be a

positive integer. If 2L/λ1 were not an integer, then, because of the periodic boundary conditions,

there would be an unphysical discontinuity in the height profile of the initial condition, which

would produce unphysical results.
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The functional form for the sinusoidal initial condition was

usin,0(x, y) = A0 sin (k2x) + ρ(x, y), (3.2)

where A0 is the amplitude of the initial sinusoid, and k2 ≡ 2π/λ2 and λ2 is the wavelength of the

initial sinusoid, which we varied between different simulations. The spatial domain was taken to

be square: −L ≤ x, y ≤ L. Again, the initial wavelength could not be chosen arbitrarily: 2L/λ2

must equal a positive integer.

The functional form for the scratch initial condition was motivated by an experiment in which

an atomic force microscope was used to scratch a Ni-Fe surface [78]. The scratching process

produced ridges on each side of the groove — a feature that we included in our initial condition.

The form of the initial condition used for the scratch template was

uscratch,0(x, y) = 10−2

(

x2

1.25σ2
− 1

)

exp

(

− x2

2σ2

)

+ ρ(x, y), (3.3)

where σ is a parameter that determines the half-width of the scratch. Varying σ does not affect

the scratch’s maximum or minimum values. The number 1.25 appears only in order to make the

scratch depth several times larger than the ridge height. Its precise value does not have a significant

influence on the results we obtain. Since we are using periodic boundary conditions, this single

scratch on a finite spatial domain can be thought of as a series of widely-spaced, parallel scratches

on an infinitely extended domain. The scratches lie parallel to the y-axis.

3.2 Results

We separate our simulation results into four subsections: (1) nominally flat initial surfaces, (2)

hexagonal templates, (3) sinusoidal templates and (4) scratch initial conditions.
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3.2.1 Nominally Flat Initial Conditions

First, we present the control case in which the initial condition of the simulations was small

amplitude spatial white noise; i.e., there was no templating. In Fig. 3.1 (left), the surface height at

time t = 104 is shown; it is evident that multiple domains of hexagonally ordered nanodots have

formed. The magnitude of the Fourier transform of the surface height is plotted in Fig. 3.1 (right).

Fig. 3.1 should be compared with the simulation results in Sections 3.2.3 and 3.2.5, since those

simulations were performed on square domains. Fig. 3.2 is the analogue of Fig. 3.1 but with the

simulation performed on the same rectangular domain that will be used in the hexagonal template

simulations described in Section 3.2.2. The Fourier transforms in both Figs. 3.1 and 3.2 exhibit

a narrow band of unstable wave vectors as a diffuse annulus with mean radius 2π/λT ≃ 0.61,

where λT denotes the linearly selected wavelength. Although there is some structure within the

two annuli, it is not very pronounced. This indicates that the hexagonal ordering is only strong

locally; globally, there is no preferred orientation for the hexagons.
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Figure 3.1: The height (left) and the magnitude of the Fourier transform (right) of a non-templated surface

after integrating to time t = 104. White coloring indicates larger values and the black coloring indicates

smaller values.
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Figure 3.2: The height (left) and the magnitude of the Fourier transform (right) of a non-templated surface

after integrating to time t = 104.

3.2.2 Hexagonal templates

For the simulations using a hexagonal initial condition, we find that there can be either little

effect or a dramatic improvement of the global hexagonal order of the nanodots. Dramatic im-

provement of the hexagonal order was only observed when the wavelength of the initial sine waves

was approximately equal to λT or 2λT . For example, this effect can be seen clearly in Figs. 3.3 and

3.4, which were generated from the simulations with λ1 ≃ 2λT and λ1 ≃ λT , respectively. The

Fourier transforms of these surface heights also demonstrate the strong global hexagonal order by

exhibiting six equally spaced peaks in the annulus of unstable wave vectors. On the other hand, if

λ1 was not close to 2λT or λT , no strong improvement in order was observed, as in Fig. 3.5.

In order to quantify the dependence of global hexagonal order on the initial wavelength λ1,

we simulated the evolution of the surface for 24 different initial wavelengths. Furthermore, we

performed 10 simulations at each of these wavelengths. Using the persistent homology method

described in Section 1.5.2, we computed H1 sums for each of the initial wavelengths, and then

averaged the results over the 10 realizations. In all our H1 sum calculations, we filtered out per-

sistence intervals with lengths less than the one pixel resolution of the local maximum finder. The

results are shown in Fig. 3.6. The error bars were obtained from the standard deviations of the

10 trials at each wavelength. The H1 sum characterizes the hexagonal order in a way that agrees
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Figure 3.3: The height (left) and the magnitude of the Fourier transform (right) of a hexagonally templated

surface after integrating to time t = 104. The initial wavelength was λ1 = 20 ≃ 2λT . Typical patterns

that form in experiments have dots that are about 50 nm in diameter; this template has height variations that

would need to be about 100 nm in diameter for an ion beam experiment.
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Figure 3.4: The height (left) and the magnitude of the Fourier transform (right) of a hexagonally templated

surface after integrating to time t = 104. The initial wavelength was λ1 = 400/38 ≃ λT .
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Figure 3.5: The height (left) and the magnitude of the Fourier transform (right) of a hexagonally templated

surface after integrating to time t = 104. The surface is very slowly evolving at the time shown. The initial

wavelength was λ1 = 400/18 ≃ 22.2.

with how one would qualitatively describe the order based on a visual inspection of the real space

results. In particular, it shows the excellent global hexagonal order that occurs for λ1 ≃ 2λT and

λ1 ≃ λT . There is also a much larger H1 sum for the simulations that had λ1 ≃ 22.2, or equiva-

lently k1/kT ≃ 0.46. One such simulation is shown in Fig. 3.5. A visual inspection corroborates

the H1 sum’s indication that the hexagonal ordering of these surfaces is on par with the results

of the non-templated surfaces, such as Fig. 3.2. Furthermore, there is improved order for many

simulations with initial wavelengths near the linearly selected wavelength. This is also observed

in the real space results, such as Fig. 3.4.

We further analyzed the hexagonal templates using the nearest-neighbor number distribution

introduced in Section 1.5.2. For the results, see Figs. 3.7 and 3.8. Recall that for a perfectly

hexagonal lattice the mean and variance of Λ(n) would be 6 and 0, respectively. The results are

qualitatively in agreement with those obtained using the H1 sum. The advantage of the H1 sum

over the Voronoi method is that the H1 sum plot clearly shows that each of the simulations with

λ1 ≃ 2λT evolved to a perfectly ordered hexagonal array of nanodots, while the Voronoi plots

only indicate improved order for those simulations. This occurs despite the fact that the H1 sum

is more sensitive to small perturbations than Λ(n). The reason the H1 sum identifies the perfectly
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ordered hexagonal arrays and the Voronoi method does not is that we could filter out noise caused

by the finite resolution of the local maximum finder when calculating the H1 sum but not when

calculating Λ(n).
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Figure 3.6: The H1 sum versus the ratio k1/kT for the hexagonal templates after integrating to time t = 104,

averaged over 10 realizations. The two horizontal blue lines show the H1 sum averaged over 10 non-

templated initial surfaces after integrating to time t = 104, plus or minus the standard deviation.

3.2.3 Sinusoidal templates – low amplitude templates

In this section, we continue our analysis of templates with amplitude 10−2, but now with si-

nusoidal prepatterns instead of hexagonal. Since this is small compared to λT ≃ 10.36, we refer

to these prepatterns as low amplitude templates. For the simulations that began with a sinusoidal

initial condition, again dramatic improvement of the hexagonal order was only seen when the

wavelength of the initial sine wave was approximately equal to λT or 2λT . For example, this effect

can be seen clearly in Figs. 3.9 and 3.10, which were generated from simulations with λ2 ≃ 2λT

and λ2 ≃ λT , respectively. The Fourier transforms of these surface heights also demonstrate the

strong global hexagonal order by exhibiting six equally spaced peaks in the annulus of unstable
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Figure 3.7: The mean of the nearest-neighbor distribution Λ(n) versus the ratio k1/kT for the hexagonal

templates after integrating to time t = 104, averaged over 10 realizations. The two horizontal blue lines

show the mean of Λ(n) averaged over 10 non-templated initial surfaces after integrating to time t = 104,

plus or minus the standard deviation.
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Figure 3.8: The variance of the nearest-neighbor distribution Λ(n) versus the ratio k1/kT for the hexagonal

templates after integrating to time t = 104, averaged over 10 realizations. The two horizontal blue lines

show the variance of Λ(n) averaged over 10 non-templated initial surfaces after integrating to time t = 104,

plus or minus the standard deviation.
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wave vectors. On the other hand, if λ2 was not close to 2λT or λT , no strong improvement in order

was observed. This can be seen in Fig. 3.11, which shows how the H1 sum varies with k2/kT .
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Figure 3.9: The surface height (left) and the magnitude of the Fourier transform (right) after integrating to

time t = 104 for a sinusoidal template with A0 = 10−2 and λ2 = 20 ≃ 2λT .

3.2.4 Sinusoidal templates – larger amplitude templates

Our numerical study of the influence of templating a surface prior to bombardment has so far

been limited to low amplitude (10−2) templates. We have seen that the low amplitude templates

can dramatically enhance the pattern order at late times only if the template wavelength is approx-

imately equal to or twice the linearly selected wavelength. This motivated us to test whether larger

wavelength templates could be effective if the template amplitude was increased. In Fig. 3.12, we

show a surface with a high degree of global hexagonal order obtained from integrating Eqs. (1.27)

and (1.28) to time t = 104 starting from a sinusoidal template with A0 = 1 and λ2 = 40 ≃ 4λT .

This shows that using higher amplitude templates can allow longer wavelength templates to be ef-

fective. We varied the template amplitude while keeping λ2 ≃ 4λT fixed and calculated the NND

variances to produce Fig. 3.13, which shows that the templates with A0 ≥ 0.4 lead to a substantial

improvement in the global hexagonal order.
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Figure 3.10: The surface height (left) and the magnitude of the Fourier transform (right) after integrating to

time t = 104 for a sinusoidal template with A0 = 10−2 and λ2 = 400/39 ≃ λT .
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Figure 3.11: The H1 sum versus the ratio k1/kT for the sinusoidal templates with A0 = 10−2 after inte-

grating to time t = 104, averaged over 150 realizations. The data point at k1/kT = 0 is from simulations

with no templating.
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Figure 3.12: The surface obtained after integrating to time t = 104 for a sinusoidal template with A0 = 1
and λ2 = 40 ≃ 4λT .
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Figure 3.13: The variance of the nearest-neighbor distribution Λ(n) versus the template amplitude A0 for

sinusoidal templates with λ2 ≃ 4λT after integrating to time t = 104, averaged over 10 realizations.
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3.2.5 Scratch prepatterns

If we start with a scratch initial condition, again improved ordering can be observed. In the case

of scratch initial conditions, however, the ordering is localized along a strip centered on the initial

scratch. This strip is along an elevated region of a long-wavelength roll that is aligned with the y

axis. Furthermore, this improved ordering lasts for the full duration of the simulation (t = 104)

only if the width of the scratch 2σ is close to or less than the linearly selected wavelength. The real

space surface produced after integrating to t = 104 starting from a scratch of width 4 ≃ 0.39λT

is shown in Fig. 3.14 (left). The corresponding Fourier transform exhibits 6 peaks in the annulus,

each separated by 60o as is expected for a surface with global hexagonal order. However, if the

initial scratch width is substantially larger than the linearly selected wavelength, as was the case

in Fig. 3.15 with 2σ = 13.86, then there is no improvement in the global hexagonal order at time

t = 104. The Fourier transform substantiates this claim since it exhibits a diffuse annulus devoid

of any noticeable peaks. Even if the scratch width is chosen to be approximately twice the linearly

selected wavelength, there is still no substantial improvement in the global hexagonal order at time

t = 104, as is seen in Fig. 3.16.
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Figure 3.14: Surface height (left) and the magnitude of the Fourier transform (right) after integrating to

time t = 104 with a scratch along x = 0 of width 2σ = 4.
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Figure 3.15: Surface height (left) and the magnitude of the Fourier transform (right) after integrating to

time t = 104 with a scratch of width 2σ ≃ 13.86.

From the surface shown in the left panel of Fig. 3.14, it can be seen that, when the improved

ordering occurs, it is most dramatic in a strip centered along the initial scratch. To measure this

localization of the order quantitatively, we used the persistent homology method of Section 1.5.2 on

strips of different widths. The strips were the rectangular regions (x, y) ∈ [−w/2, w/2]× [−L,L],

where w denotes the strip width. Since changing the strip width also changes the total area over

that one is measuring holes, it is more appropriate to calculate the H1 sum per unit area instead

of the raw H1 sum. The result of this analysis after averaging over 10 simulations each with an

initial scratch of width 4 is shown in Fig. 3.17 (left). The result from averaging 10 simulations with

scratch width approximately equal to 2λT is shown in Fig. 3.17 (right). Comparing the two plots

shows that the scratch of width 4 led to much better order near the initial scratch than when the

scratch had the larger width 20.4 ≃ 1.97λT . In fact, there is better order for the scratch of width

4 even when the entire domains are compared; this corresponds to the data points for strip width

400.
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Figure 3.16: Surface height (left) and the magnitude of the Fourier transform (right) after integrating to

time t = 104 with a scratch of width 2σ ≃ 20.40.
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Figure 3.17: The H1 sum per unit area versus strip width for the initial conditions with a scratch of width 4

(left) and with a scratch of width approximately 2λT (right) after integrating to time t = 104, averaged over

10 realizations.
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3.3 Conclusions

Our simulation results show that templating the surface of a binary material prior to ion bom-

bardment can significantly improve the order of nanoscale patterns produced by sufficiently high

ion fluences. When the template amplitude was small (10−2) and the initial wavelengths were ap-

proximately one or two times the linearly selected wavelength, the hexagonal and sinusoidal tem-

plates both produced dramatically improved global hexagonal order. In particular, the hexagonal

templates with initial wavelength approximately double λT evolved to a final state that was defect

free and nearly perfectly ordered. We demonstrated that longer wavelength sinusoidal templates

can lead to substantial improvements in order if the template amplitude is increased. In particu-

lar, we showed that sinusoidal templates with wavelength approximately equal to four times the

linearly selected wavelength lead to significant enhancements in order if the template amplitude

A0 ≥ 0.4. Impressive improvements in order were also obtained from the scratched templates

when the scratch widths were close to or smaller than the linearly selected wavelength. More-

over, the well-ordered regions of nanodots were centered on the scratches. The results of these

simulations with initial scratches demonstrate the potential of using templated samples to produce

controllable and localized improvements of the order in nanoscale patterns.

In addition to the positive aspects just discussed, our simulations expose a couple of limitations

to the effectiveness of prepatterning. For example, the scratch initial condition has little effect

on the surface at long times if the scratch width is significantly larger than the linearly selected

wavelength. Additionally, both the templated and scratched surfaces developed an underlying,

long-wavelength rolling topography, which could be problematic in some applications.

The prepatterns investigated in this thesis are not just of academic interest; there are also prac-

tical methods of producing them. Sinusoidal and hexagonal templates could be produced using

standard lithographic methods. Scratches could be produced either by dragging an atomic force

microscope tip across a sample [78], or by scanning a laser or focused ion beam across it. These

fabrication techniques would not only produce the desired prepatterns, but could produce them at

the length scales that our simulations indicate are needed to observe enhanced ordering.
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Chapter 4

Summary

In this thesis, we focused on the numerical simulation of two types of topographies that form

on solid surfaces subjected to ion bombardment from a broad beam: terraces on elemental surfaces

and hexagonally-ordered arrays of nanodots on binary material surfaces. Both of these topogra-

phies can be created over large areas on the surface in a single processing step, and so they have

considerable potential for applications. For example, terraces can be used to produce both single

layer and multilayer diffraction gratings, as was discussed in Refs. [17–19]. On the other hand, the

arrays of nanodots with a high degree of hexagonal order could be used for magnetic storage using

a technique explored in Refs. [20, 21]. Ion bombardment of binary materials can also lead to the

formation of hexagonal arrays of semiconductor quantum dots, as was achieved by Facsko et al. –

see Ref. [6]

The formation of terraces on elemental solid surfaces exposed to a broad ion beam has been

observed in experiments for over four decades [10, 24]. In Chapter 2, we presented the first the-

ory that demonstrates that the combination of sputtering and surface self-diffusion can cause a

nominally flat surface evolve into a terraced surface. When we assumed there were no transverse

variations in the surface, our equation of motion was the 1+1 dimensional KS equation plus an

additional term that was proportional to the slope cubed, see Eq. (2.11). We found that this cu-

bic nonlinearity can lead to terrace formation. We were able to seek traveling wave solutions and

transform the equation of motion into an system of three first order ODEs with a single unknown

real parameter str. For a single value str ≃ 2.388, we numerically found a solution that was a

heteroclinic trajectory that connected the selected slopes of the transformed surface. Undoing the

transformations allowed us to relate the numerically-determined str to the selected slopes, propaga-

tion velocity, and overall erosion rate of surface at late times for all values of the coefficients in the

equation of motion. In our theory, we found that the abrupt change in the slope in a spatial region

connecting the selected terrace slopes is due to the formation of an undercompressive shock. These
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undercompressive shocks are nonclassical shocks because they violate the Lax entropy condition

Eq. (1.39).

We next extended the numerical analysis of our theory to include transverse variations. The

equation of motion we used was the anisotropic KS equation with additional cubic terms, see

Eq. (2.2). First, we demonstrated that if the equation of motion was strongly smoothing in the

transverse direction, the predictions of the analysis in 1+1 dimensions were still accurate for the

terraces that developed. When a transverse instability was present, we found various topographies

that are also observed in experiments. For example, we numerically obtained parallel mode terraces

that were very similar to those seen by Datta et al. [9]. Furthermore, we found elongated pyramidal

structures that protrude out of the surface are aligned with the ion beam direction projected onto

the surface. These simulated pyramidal structures strongly resemble those seen in experiments

by Carter et al. [10] and Datta et al. [11]. Our simulations also produced lenticular depressions

like those seen by Teichmann et al. in Ref. [12]. The terraces that formed in our simulations

exhibited interrupted coarsening, in agreement with experiments. Hauffe had posited in 1976

that ion reflection was the cause of the coarsening [24]. However, coarsening occurs without any

ion reflection in our model. Finally, our theory of terracing is consistent with the experimental

observation that terraces often form when the angle of incidence is near grazing.

In Chapter 3, we investigated a practical method of improving the quality of the order of the

hexagonal arrays of nanodots that can form on binary material surfaces when ion bombarded at

normal incidence. The method was to prepattern the surface with either a sinusoidal template, a

hexagonal template, or scratches. We studied the influence of prepatterning by using them as initial

conditions for the Bradley-Shipman equations (1.27) and (1.28). The degree of hexagonal order

was quantified using a standard method known as the nearest-neighbor number distribution and

different method that used persistent homology, an approach in topological data analysis. Using

persistent homology, we were able to compute a quantity called the H1 sum that is zero for a per-

fectly hexagonal lattice and increases for each defect in an imperfect lattice. We found that using

low amplitude (about 10−2 times the final pattern amplitude) sinusoidal and hexagonal templates
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resulted in dramatic improvements in the degree of hexagonal order at late times if the template

wavelength was close to one or two times the linearly selected wavelength. Then we showed that

sinusoidal templates of even longer wavelength could also enhance the pattern order if the tem-

plate amplitude was made larger. Specifically, we demonstrated that sinusoidal templates with

amplitudes greater than or equal to 0.4 and wavelength equal to four times the linearly selected

wavelength produce hexagonal arrays of nanodots with significantly improved order at late times.

We also demonstrated that scratching the surface can produce improved hexagonal order in the

vicinity of the scratch if the scratch’s width is less than the linearly selected wavelength.

In conclusion, we hope that our theory of terracing and our study of improving the hexagonal

order of arrays of nanodots will be useful for understanding and controlling these topographies pro-

duced by ion bombardment. It would be exciting to see our results on terracing and prepatterning

explored in experiments.
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