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ABSTRACT

ENABLING PREDICTIVE ENERGY MANAGEMENT IN VEHICLES

Widespread automobile usage provides economic and societal benefits but combustion engine
powered automobiles have significant economic, environmental, and human health costs. Recent
research has shown that these costs can be reduced by increasing fuel economy through optimal
energy management. A globally optimal energy management strategy requires perfect prediction
of an entire drive cycle but can improve fuel economy by up to 30%. This dissertation focuses
on bridging the gap between this important research finding and implementation of predictive en-
ergy management in modern vehicles. A primary research focus is to investigate the tradeoffs be-
tween information sensing, computation power requirements for prediction, and prediction effort
when implementing predictive energy management in vehicles. These tradeoffs are specifically ad-
dressed by first exploring the resulting fuel economy from different types of prediction errors, then
investigating the level of prediction fidelity, scope, and real-time computation that is required to
realize a fuel economy improvement, and lastly investigating a large computational effort scenario
using only modern technology to make predictions. All of these studies are implemented in simu-
lation using high fidelity and physically validated vehicle models. Results show that fuel economy
improvements using predictive optimal energy management are feasible despite prediction errors,
in a low computational cost scenario, and with only modern technology to make predictions. It
is anticipated that these research findings can inform new control strategies to improve vehicle
fuel economy and alleviate the economic, environmental, and human health costs for the modern

vehicle fleet.
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Chapter 1
Review of Research Gaps to Optimal Fuel Economy

Vehicle Control

This study is a comprehensive literature review of predictive energy management. This re-
search is the result of years of effort reviewing literature in the field. It was originally published as
a conference paper [3] but was then expanded into the complete journal paper (in review) repro-

duced in this chapter [4].

1.1 Introduction

Automobiles first achieved global adoption in the early 20th century, and continue to provide
large economic benefits. However, widespread automobile usage poses significant public safety
risks, damage associated with energy consumption, and adversely affects the natural environment.
Ongoing technological advancements have been continually applied to the light duty transportation
sector to reduce these damages, including technologies such as the frontal collision warning, lane
departure warning, limited driver-advised driving, and electrification [5].

These evidence the ongoing vehicular evolution, in which human driving responsibilities are
increasingly deferred to robust computerized systems of sensor technologies. With each stage
of this evolution come advancements in vehicular safety, and opportunities for minimizing fuel

consumption.

1.1.1 The Importance of Minimizing Non-Renewable Fuel Consumption

In terms of global energy consumption, the transportation sector is the second largest consumer
behind only the industrial sector. Transportation accounts for 30% of the world’s energy consump-
tion and the transportation energy demand is projected to increase 30% from current levels by

2040 [6]. Associated utilization of energy conversion devices such as the internal combustion en-



gine, result in issues spanning climate stability, domestic energy security, local air quality impacts,
and human health risks.

The global transportation sector accounted for 64.5% of worldwide petroleum consumption
in 2014 [6]. On a per-country basis, petroleum consumption is often unbalanced from domestic
production, where disparity between the two creates the issue of energy security and vulnerability
to geopolitical stability [7]. For example, a 2016 estimation shows that the United States alone
paid $150 billion to Organization of Petroleum Exporting Countries (OPEC) [8, 9] and estimated
annual costs to ensure continued petroleum importation are around $200 billion [10].

The transportation sector is also responsible for 23% of global greenhouse gas emissions in
2014 [11] which has been linked to climate change [12]. To combat climate impacts, the Paris
climate agreement has been adopted by most countries to limit greenhouse gas emissions and thus
global warming to 2°C [13]. Limiting greenhouse gas emissions from transportation is proposed
to be accomplished primarily through the increasing of fuel economy (FE) with technologies such
as improved vehicle control and electrification [14]. It is widely accepted that without successfully
stabilizing global climate, major human health, ecosystem service, and environmental impacts will
be imminent [12].

The transportation sector is also a major contributor to air pollution. Of the six primary air
pollutants, transportation significantly contributes to worldwide nitrogen oxide/nitrogen dioxide
(NOx), carbon monoxide (CO), volatile organic compounds (Voc), particulate matter (PM), and
sulfur dioxide (SO,) [15]. As aresult, 6.5 million premature deaths were attributed to air pollution
in 2012, making it the worlddAZs fourth-largest threat to human health [16]. Premature deaths
from air pollution is expected to rise to 7.4 million by 2040 but is strongly region dependent [15].

Increases in vehicle FE will reduce petroleum consumption, thus lowering global energy con-
sumption, while decreasing greenhouse gas emissions and air pollution emissions. Automotive FE
standards, such as those adopted by the United States, Japan, Canada, Australia, China, Taiwan,
South Korea, and others, have proven to be one of the most effective tools in controlling petroleum

demand and greenhouse gas emissions in many regions and countries around the world [17].



1.1.2 The Evolution of Modern Vehicles

Modern vehicles are gradually incorporating some form of electrification to evolve from con-
ventional vehicles (CVs) to hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs),
or fully electric vehicles (EVs) with increasing prevalence projected to continue to beyond 2040
[3,18]. But, HEVs and PHEVs are unique in that there are multiple sources of vehicle propulsion
from either battery power, engine power, or a combination of both. This extra source of energy
adds an additional degree of freedom to powertrain propulsion and numerous degrees of free-
dom to on-the-fly powertrain configurations. Examples of how this increased vehicle powertrain
operational freedom can be used to reduce fuel consumption include regenerating energy during
braking, storing excess energy from the engine during coasting [19], and modifying the power-split
powertrain component usage for maximum efficiency [20].

Another trend, which is in stark contrast to the first 100 years of automobile development,
is that the past 10 years have brought forth the most safety and convenience upgrades due to
rapid advancements in computational technology [5]. The modern vehicle is one distinguished
by an ability to perceive its environment by use of sensor technologies and computer systems.
This vehicle intelligence can manifest as driver help, as is provided by advanced driver assistance
systems (ADAS) [21], or can manifest as a vehicle which is afforded responsibility to make driving
decisions independent of a human driver through autonomous technologies [22].

An intelligent vehicle is defined as a system that can sense the driving environment and provide
information or vehicle control to assist the driver in improved vehicle operation [23]. Intelligent

vehicle aspects include the ability to:

e Sense the vehicle’s own status and its environment [24]

e Communicate with the environment [24]

e Plan and execute appropriate maneuvers [23]



Note that the “environment” is defined as the vehicle surroundings which can include other ve-
hicles, traffic lights, pedestrians, and so on. This increased environmental knowledge enables
improved vehicle control strategies that can operate in tandem with inputs from a human driver.

Current examples of intelligent electrified vehicles include the 2017 Toyota Prius, 2017 Ford
Fusion, 2017 Chevrolet Malibu, and others which offer HEV architecture, radar based adaptive
cruise control to assist drivers [25], and vehicle tracking through the global positioning system
(GPS) which has been in high demand since 1998 [26]. Other vehicles are now offering 360
degree cameras to further assist drivers and increase vehicle intelligence [27].

The thesis of many researchers in this field is that the combination of intelligent vehicle control
and electrification is a synergistic means to realize large fuel consumption improvements. This
review summarizes research that incorporates both intelligent vehicle control and electrification to
then identify research gaps preventing large fuel consumption improvements in the next generation

vehicle.

1.1.3 Using Modern Vehicles to Minimize Fuel Consumption

There are three types of vehicle control that reduce fuel consumption for a drive cycle with
a fixed starting point and a fixed ending point: (1) eco-routing, (2) eco-driving, and (3) an im-
proved energy management strategy. Eco-routing and eco-driving decrease fuel consumption by
decreasing the energy output of the vehicle through modification of the drive cycle. An improved
energy management strategy decreases fuel consumption by increasing the efficiency of the vehicle
powertrain without modification of the drive cycle.

Eco-routing reduces fuel consumption for all types of vehicles by exploring alternate vehi-
cle routes between a fixed starting and ending location. Routes that minimize travel time en-
able social efficiency while routes that minimize fuel consumption enable vehicle powertrain ef-
ficiency. Modern commercially available routing techniques are currently designed for minimum
travel time/social efficiency only. Eco-routing is an active research subject which seeks to balance

travel time and fuel consumption to maintain social efficiency and improve powertrain efficiency.



Research on a large geographic scale indicates that a 3.9% FE improvement for a 4.5% travel time
increase is possible in Cleveland, Ohio and a 6.6% FE improvement for a 1.0% travel time increase
is possible in Columbus, Ohio [28]. As vehicles become more intelligent, eco-routing can affect
vehicles in real time but several research gaps have been identified [29].

Eco-driving reduces fuel consumption for all types of vehicles by implementing fuel efficient
driving behaviors along a fixed route which may alter the travel time. Eco-driving can be for-
mulated as an optimal control problem if the driving conditions along the route can be predicted.
Current practical use of eco-driving is realized through a heuristic set of goals such as removing
stops, traveling at a fuel efficient speed (in general this could be a higher or lower overall speed),
and limiting acceleration and deceleration magnitudes, which together can achieve FE improve-
ments of 10% for modern vehicles and 30% for autonomous vehicles [30]. Research has typically
focused on the FE impact of one particular intelligent vehicle technology, such as camera systems,
radar systems, LiDAR, vehicle-to-vehicle (V2V) communication or vehicle-to-infrastructure (V2I)
communication. An example of a typical study on eco-driving used predictions of traffic light
signal phase and timing, a V2I technology, to change driving behavior and demonstrated a FE
improvement of 12%-14% [31].

Improved energy management strategies seek to reduce the energy consumption over a fixed
drive cycle. Typically, an optimal control problem is formulated and an Optimal Energy Man-
agement Strategy (Optimal EMS) is computed. An Optimal EMS realizes FE improvements by
explicitly or implicitly modeling future vehicle operation and controlling the vehicle powertrain
to minimize fuel consumption. An Optimal EMS does not require a change in driver behavior,
thus this FE improvement technique has a consumer acceptance advantage over eco-driving and
eco-routing. An Optimal EMS can realize FE improvements for conventional vehicles and elec-
tric vehicles, but the greatest FE improvements are realized from vehicles with more powertrain
operation degrees of freedom such as HEVs and PHEVs. The effectiveness of the Optimal EMS

FE improvement is strongly dependent on the chosen drive cycle and vehicle architecture. As an



example, one of earliest relevant studies demonstrated a 28% FE improvement in a hybrid electric

truck through optimal control of the gear shifting and battery charging/discharging [32].

Optimal EMS Background

Developing and implementing an Optimal EMS has most commonly been posed as an applica-
tion of optimal control. A mathematical optimization problem is formulated by defining the mass
of fuel used as a cost to be minimized over a fixed drive cycle. This mathematical optimization
problem can be formulated as either a second by second instantaneous optimization, or as a global
optimization which includes future vehicle operation prediction. The result from either of these
schemes is the minimum fuel consumption strategy (Optimal EMS) which can be applied to the

fixed drive cycle.

Instantaneous Optimal EMS

An instantaneous Optimal EMS involves finding the optimal control strategy that minimizes
fuel consumption for the instant in time for which sampled data is available. In practical imple-
mentation, the instantaneous Optimal EMS depends on the vehicle type.

Many aspects of modern CV engine and transmission control techniques are classifiable as an
Instantaneous Optimal EMS including deceleration fuel cutoff (DFCO) [33], fuel enrichment [34],
variable valve timing (VVT) [35], cylinder deactivation [36], and more. A basic example of the
use of an instantaneous Optimal EMS in a CV is choosing the gear in which the vehicle will
operate. When the vehicle is operating at fixed speed and fixed driver torque request, the vehicle
requires a fixed power demand and the vehicle must choose one transmission gear in which to
operate. A control strategy that selects the gear to minimize fuel consumption is an example of
basic instantaneous Optimal EMS.

For HEVs, large FE improvements can be achieved by restricting engine power operation to
the minimum fuel consumption solution (also known as the ideal operating line [37]) which is a

primary fuel saving technique employed by HEVs [38].



In PHEVs such as the Toyota Prius Prime and the Chevrolet Volt, studies using an instantaneous
Optimal EMS have led to the “charge-depleting, charge-sustaining” EMS, where all excess battery
power is used first, then the battery charge is sustained afterwards [39]. This EMS is the standard
operating mode for PHEVs where usage of charge sustaining mode is intended to be minimized.
A standard measurement of charge sustaining mode minimization is the utility factor [40]. In other
words, for PHEVs, the objective is to minimize non-renewable liquid fuel consumption through
maximization of renewably generated electrical energy consumption.

Electric vehicles (EVs) also make use of instantaneous Optimal EMS improvements to mini-
mize energy consumption and improve range through powertrain configuration optimization. Tesla
Motors, an electric vehicle company, has multiple patents related to the use of an instantaneous Op-
timal EMS [41,42].

Instantaneous Optimal EMS remains an active research topic. Such efforts are focused on
an implementation and quantification of the effects of an instantaneous equivalence calculation

between electrical energy and fuel energy [43,44].

Predictive Optimal EMS

A predictive Optimal EMS involves finding the optimal control strategy that minimizes fuel
consumption for the window of time in which prediction data is available. Hundreds of papers
have been written on the development and application of a predictive Optimal EMS in the past
decade alone [45]. Most of these papers describe the development of an Optimal EMS fitting
one of three categories: (1) a globally Optimal EMS with deterministic prediction, (2) an Optimal
EMS with stochastic prediction, and (3) a computationally limited Optimal EMS to enable practical
implementation.

A globally Optimal EMS with deterministic prediction is derived using either dynamic pro-
gramming (DP) [32] or Pontryagin’s minimization principle (PMP), which is based on calculus
of variations [46]. When deriving a globally Optimal EMS using deterministic prediction, DP
has been the overwhelming favorite of researchers due to its ease of use, robustness, and that no

derivatives or analytic expressions are required [45]. A globally Optimal EMS with deterministic



prediction is difficult to implement in practice because of the relatively high computational cost,
but this strategy has the benefit of being able to define the upper practical limit on FE benefits for
a given vehicle and cycle.

An Optimal EMS with stochastic prediction is used in applications where researchers are will-
ing to forgo a guarantee of global optimal FE in favor of a robustness to stochastic prediction
errors. In other words, stochastic derivation strategies are appropriate for applications where a
small increase in FE over a wide range of drive cycles is desired. Stochastic derivation strategies
include stochastic dynamic programming [47] and adaptive equivalent consumptions minimization
strategy [48].

Lastly, a computationally limited practical implementation Optimal EMS also forgoes the guar-
antee of global optimal FE in favor of computationally efficient algorithms that can be used in
current and near future vehicles. Practical implementation derivation strategies in current vehi-
cles include optimized rules-based control [49], equivalent consumption minimization strategy

(ECMS) [50], and model predictive control (MPC) [51].

1.1.4 Contributions of this Literature Review

Based on this precedent understanding of the literature, this review will seek to determine and

develop three contributions:

1. A more holistic and systems-level understanding of the subsystems and integrations needed

to implement an Optimal EMS in vehicles

2. A definition of the research gaps existing between the current state-of-the-art and the end

state of predictive Optimal EMS usage in vehicles

3. A proposal for a set of research directives that will enable progress towards predictive Opti-

mal EMS implementation in vehicles



1.2 Systems Level Viewpoint

Many studies of Optimal EMS conclude that vehicle perception, operation prediction, and
vehicle actuation must all be achieved for successful implementation. However, a systems level
understanding of how each of these pieces fit together is not as well defined.

To improve communication between academic researchers, the automotive industry, and other
entities, the systems level model of an Optimal EMS implementation shown in figure 1.1 is pro-
posed. To define a systems level viewpoint of an Optimal EMS implementation, currently available
systems models from autonomous vehicle literature can be used as inspiration [22,52]. The sys-
tems model is composed of four pieces: vehicle perception, vehicle planning, a vehicle running
controller, and a vehicle plant. The Optimal EMS takes input from a suite of sensors which de-
tect environmental information, thus defining vehicular surroundings (worldview) and ultimately
generating a vehicle operation prediction. From this vehicle operation prediction, the FE can be
maximized through vehicle optimal control. The maximum FE vehicle control is then issued as a
request to the vehicle running controller, which enforces component constraints and may be subject
to various control disturbances such as vehicle operation disturbance or operation environment dis-
turbances. The running controller output is then actuated in the vehicle plant and the FE or energy

consumption can be measured.

Disturbances

Perception VCth%C Planning Controller Vehicle Plant
Sensors and| =——————| Operation _—= Control |=———— - Energy
Signals Cropiise Prediction Compuise Clpbbicel Request Clompoiues e Consumption
Worldview ’ Energy Control Limitations Ae—0O-

Figure 1.1: Systems level viewpoint of predictive Optimal EMS implementation.

1.3 Research Gap Derivation

In order to assess the research gaps for an Optimal EMS implementation, a technology maturity

framework is adopted. The Technology Readiness Level (TRL), originally proposed by the U.S.



National Aeronautics and Space Administration (NASA), is one of the most prominent methods
to assess technological maturity and help improve research and development outcomes [53]. The
TRL scale has since been formally adopted worldwide despite known difficulties in application to
large systems [54]. In response to these challenges, a popular and more comprehensive analysis is
available which requires defining not only individual subsystem TRLs, but Integration Readiness
Levels (IRLs), and an overall System Readiness Level (SRL) [55]. For the purpose of identifying
the technological maturity of an Optimal EMS implementation, we adopt the framework of an SRL

in which the TRL of each subsystem and the IRL of various integrations must be defined.

1.3.1 Technology Readiness Levels

Table 1.1 describes the authors’ assessment of the TRL for each of the subsystems defined in
figure 1.1. The technologies are: vehicle perception for worldview building and prediction, ve-
hicle planning for fuel consumption reductions through optimal control, and usage of a running
controller in a vehicle plant to achieve a fuel consumption reduction. The perception subsystem re-
ceives sensor and signal inputs, defines vehicle surroundings, and thus derives a vehicle operation
prediction as an output. The planning subsystem receives the vehicle operation prediction as an
input, and computes the optimal control as an output. Note that the planning subsystem is only re-
quired to compute the optimal control and issue a control request, this subsystem is not tasked with
achieving the optimal control in the vehicle; achieving the optimal control is accomplished with
the vehicle running controller. The final subsystem is comprised of the vehicle running controller
and the vehicle plant. This system receives the optimal control request and instantaneous vehicle
state as inputs, determines physically feasible vehicle operation that does not violate torque, bat-
tery state of charge, speed, acceleration, etc. limits and actuates the vehicle plant thus producing a

measurable FE or energy consumption as an output.
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Table 1.1: The Technology Readiness Level (TRL) analysis demonstrates that the individual technologies
involved in predictive Optimal EMS implementation are very mature.

Technology Technology TRL TRL Justification

and TRL Description Definition

Perception ~ Receives sen- “System proto- The success of au-

TRL: 7 sor/signal  data type demonstra- tonomous vehicle
and derives a tion in an oper- grand challenges [22]
vehicle operation ational environ- and adoption of ADAS
prediction ment” technology in modern

vehicles [21]

Planning Receives vehicle “Actual sys- Hundreds of research

TRL: 8 operation predic- tem completed paper demonstrations
tion and computes and  qualified for various EMS types,
the maximum FE through test and vehicles, and drive
control demonstration”  cycles [45]

Controller Receives driver “Actual system Modern vehicles cur-

and Vehicle requests and proven through rently use running con-

Plant TRL: component sta- successful mis- trollers to enforce com-

9 tuses and actuates sion operations” ponent constraints and

vehicle operation

meet power demands

1.3.2 Integration Readiness Levels

Table 1.2 describes the authors’ assessment of the IRL for the three integration points possible
in figure 1.1. While the TRL is used to evaluate individual subsystems, the IRL is used to evaluate
the readiness for each subsystem to integrate with one another [54]. An accurate evaluation of each
subsystem integration requires a larger scope than that of the individual subsystem, which typically
consists of a simple input/output framework. Three conceptually unique integration points exist

if the vehicle running controller and the vehicle plant are treated as one subsystem of high IRL:

11



perception and planning integration, planning and control disturbances integration, and lastly plan-
ning and running controller/vehicle plant integration. Each of these integration points was found to
have a low technological maturity, due to the limited amount of research that has sought to define

and evaluate the integration.

Table 1.2: The Integration Readiness Level (IRL) analysis demonstrates that the technology integrations

involved in predictive Optimal EMS implementation require significant research.

Integration  Integration IRL Definition IRL Justification
and IRL Description
Perception Receives sen- “An interface between Data transfer types are not
and Planning  sor/signal data technologies has been standardized and world-
IRL: 1 and computes identified with suffi- views are not standardized
the maximum FE cient detail to allow
control characterization of the
relationship”
Planning Receives incorrect “There is some level There is limited research
and Control vehicle operation of specificity to char- demonstrating improved
Disturbances prediction but acterize the interaction FE with incorrect predic-
IRL: 2 still requests FE between technolo- tions
improved control gies through their
interface”
Planning Receives  vehicle “There is compatibil- There are a few demon-
and Use of a operation predic- ity between technolo- strations of this integration

Vehicle Plant

IRL: 3

tion and achieves
maximum FE
control in the

vehicle

gies to orderly and ef-
ficiently integrate and

interact”

in the literature
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1.3.3 System Readiness Level

Where the TRL analysis has been applied to individual subsystems, and the IRL has been ap-
plied to the integration between subsystems, an SRL method is the appropriate means of evaluation
for the entire system of predictive Optimal EMS implementation. SRL provides clear insight to
specific research tasks which can be undertaken to improve technology maturity. Additionally,
ensuring safe and reliable operation, also known as verification and validation, for autonomous
vehicles (conceptually similar to predictive Optimal EMS implementation) is an active subject of
research due to challenges of working with an entire system of perception, planning, and con-
trol [52]. Accurate assessment of verification and validation requires understanding and usage of
a scope higher than IRLs.

From assessing the SRL by applying various integration scopes, three research gaps have been
identified based on their low IRL, each of which will be discussed in the following sections. Once
research efforts can improve predictive Optimal EMS IRLs, the overall SRL can be improved to
suffice incorporation into demonstration and production vehicles. Table 1.3 describes the authors’

assessment of the SRL of an Optimal EMS implementation.

Table 1.3: The System Readiness Level (SRL) argues that significant research is required before predictive
Optimal EMS implementation can be achieved in practice.

System and System SRL Definition SRL
SRL Description Justification
Optimal Perception and “Reduce technology IRLs are too

EMS Imple- planning subjected risks and determine low and there

mentation to disturbances and appropriate set of tech- is almost no
SRL: 2 implemented in a nologies to integrate research  that
vehicle plant into a full system” includes a fully

realized system

13



1.4 Research Gap 1: What Worldviews Can Enable an Opti-

mal EMS?

Although numerous vehicle sensor and signal information could be used, an Optimal EMS may
only require a perception limited worldview to achieve optimal FE control. This first research gap
was identified by applying an integration scope to include the perception and planning technologies
shown in figure 1.2. To understand this integration, studies should consider (1) a perception model
with sensor/signal inputs and future vehicle operation prediction as an output, (2) a planning model
that uses future vehicle operation prediction to derive an Optimal EMS, and (3) FE results. Studies
that include perception, Optimal EMS planning, and FE results would contribute to the overall goal

of identifying the worldviews that can enable a prediction based Optimal EMS.

Research Gap 1 Disturbances

| ion | Vehicle i | "Goniroller | Vehicle Plant
1Sensors and Perception Operation Planning [ Controller

Control _
Compute ‘ Component —| —‘gﬁ\r

Compute Optimal |- Energy

i Signals icti Request - | [Consumption
£ Worldview Prediction Energy Control || 4 Limitations w P

Figure 1.2: The integration scope defined in research gap 1: perception, Optimal EMS planning, and FE
results.

A small number of existing studies include vehicle perception, Optimal EMS planning, and
FE results. Perception technology is mature due to the recent success and proliferation of the au-
tonomous vehicle, and as a result, there are numerous sensors and signals that can be used. Existing
sensors/signals on modern vehicles include cameras, radar, and GPS. Commercially available sen-
sors/signals include weather information, previous trip data, and traffic information. Near future
sensors/signals include V2V and V2I communication, and vehicle-to-everything communication
(V2X). A perception model used in research could include any or all of these sensors/signals.

The earliest and presently most cited research pertaining to perception, Optimal EMS planning,

and FE results comes from researchers at the University of Florida and the University of Wisconsin-
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Milwaukee. These researchers used V2I and GPS signals as inputs into a perception model. The
perception model was able to output vehicle operation predictions using an analytical traffic model
[56], and the approach was later revised to employ a neural network defined vehicle operation
prediction [57]. The use of a neural network to characterize a driving pattern was found to be
effective, and FE improvements using an Optimal EMS in a PHEV were realized.

Researchers at the University of Stuttgart have begun integrating a perception model and a
planning model. Their perception model is based on repeated driving cycles of a hydraulic hybrid
garbage truck. They use GPS and current vehicle state to characterize and store a drive cycle. The
perception model creates predictions by using the stored drive cycle data for current vehicle oper-
ation. The planning Optimal EMS only determines the optimal time to implement the hydraulic
power. This team demonstrated significant FE improvements when driving behavior was predicted,
but noted that inclusion of traffic information is required for real-world implementation [58].

Researchers at the University of Minnesota applied a traffic model to predict future vehicle
velocity with V2V and V2I as inputs. They employed Pontryagin’s Minimization Principle as
their Optimal EMS planning, but realized a modest FE improvement. FE gains were limited by the
difficulty of incorporating constraints [59].

Researchers from the University of California at Berkeley have also recognized the important
relationship between perception and planning. In their research, they investigate three percep-
tion models and use model predictive control as their Optimal EMS planning. They use previous
driving data and the current vehicle state as inputs to test an exponentially varying perception

model, a stochastic Markov chain perception model, and an artificial neural network (NN) percep-

tion model [60]. Their results show that the artificial neural network perception model with model
predictive control as the Optimal EMS produced the best FE results, though this result was not
a full realization of globally optimal FE. Additional studies by this group have shown FE results
closer to optimal with the inclusion of traffic information [61].

Researchers at Colorado State University have also investigated perception, Optimal EMS plan-

ning, and FE results. One recent study uses a perception model with sensor/signal inputs of current
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vehicle status, previous drive data, and GPS data. Vehicle velocity predictions are formulated us-
ing a NN, and an Optimal EMS is computed using dynamic programming. The FE results are
measured using a validated model of a 2010 Toyota Prius. A trade-off between vehicle prediction
accuracy and vehicle prediction time length was discovered, and the maximum FE improvement
was achieved using 30 seconds of prediction [62].

Lastly, a variety of studies analyze ECMS in the perception, planning, and FE integration scope.
ECMS only requires computation of an equivalence factor to determine engine/battery operation.
Though for real-world driving, the optimal equivalence factor must be continually updated, thus
requiring prediction [48]. Although several prediction-limited formulations have been proposed,
it has been shown that ECMS benefits from a velocity prediction perception model. For example,
researchers at the Bejing Institute of Technology demonstrated greater and more consistent FE
improvements with the aide of perception [63].

Each of these studies has been summarized in table 1.4. Initial successes in addressing this
research gap was achieved using a NN to derive a vehicle velocity prediction. However, many new
research opportunities exist pertaining to the FE impacts of existing, state-of-the-art, and novel
prediction techniques implemented with novel groups of sensors/signals. Additionally, existing
research has focused on vehicle velocity prediction in the time domain which is only one of many
potential worldviews that are possible. Examples of an alternate worldview that could be used to
assist the development of a predictive Optimal EMS is prediction of stop locations and wind speed

in the distance domain or inclusion of electric grid status when charging [64].
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Table 1.4: Summary of existing research that includes the integration scope of perception, Optimal EMS
planning, and FE results.

Research Sensors/ Perception Planning Vehicle
Group Signals Model Technique Model
University of GPS, Traffic Dynamic Generic
Wisconsin V21 Model, Program- Hybrid
-Milwaukee Neural ming SUv
2009 [56,57] Network
University of Vehicle Database Custom Parallel
Stuttgart State, Look-up Hydraulic =~ Hydraulic
2013 [58] Drive Data, Power Hybrid
GPS Opt. Truck
University of V2V, Traffic Pontryagin Generic
Minnesota V2I Model Minimum  Power-Split
2014 [59] Principle HEV
University of Vehicle Exp. Varying, Model Generic
California at State, Markov Chain, Predictive Power-Split
Berkeley Drive Data, Neural Control HEV
2015 [60,61] V2I Network
Colorado Vehicle Neural Dynamic Validated
State State, Network Program- 2010
University ~ Drive Data, ming Toyota
2017 [62] GPS Prius
Beijing Vehicle Neural Adaptive Generic
Institute of State, Network ECMS Power-Split
Technology  Drive Data HEV
2017 [63]
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1.5 Research Gap 2: How Sensitive Are Optimal Fuel Econ-
omy Strategies To Worldview/Prediction Scope, Fidelity,

And Uncertainty?

Optimal FE vehicle control is derived based on predictions of vehicle velocity, configuration,
weight, and environmental conditions, none of which can be perfectly and exactly accurate thus
potentially affecting the achieved FE. This second research gap was identified by applying an
integration scope to include Optimal EMS planning technology subjected to disturbances as shown
in figure 1.3. To understand this integration, studies were sought to consider (1) a planning model
that uses future vehicle operation prediction to derive an Optimal EMS, (2) disturbances, and (3) FE
results. Studies that include Optimal EMS planning, disturbances, and FE results would contribute

to the overall goal of understanding the sensitivity of worldview prediction scope on FE.

3 Research Gap 2 Disturbances :
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Figure 1.3: The integration scope defined in research gap 2: Optimal EMS planning subject to disturbances.

Though academic literature has investigated Optimal EMS planning, disturbances, and associ-
ated FE results, there exists a relatively vast array of vehicle architectures, drive cycles, Optimal
EMS types, and disturbance types. In the author’s assessment, the imbalance between the scope
and scale of the challenge and level of research performed to date makes this research gap worthy
of further investigation. For example, a globally Optimal EMS, Real-Time EMS, and Stochastic
EMS may all have different sensitivities to stochastic disturbances, driving-derived disturbances,
and vehicle power disturbances. In addition, series, parallel, and power-split HEVs or PHEV's may

produce different results over city, highway, aggressive, or elevation varying drive cycles.
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An early study from researchers at the National Renewable Energy Lab performed dynamic
programming to half battery size and full battery size PHEVs to compare optimal solutions for
drive cycles of various lengths. They found that for drive cycle distances exceeding PHEV all
electric range (charge depleting strategy), the optimal solution seeks a "blended" strategy (a mix
of charge depleting and charge sustaining strategies) such that the minimum battery state of charge
is achieved at the end of the drive cycle [65]. But, in considering the "cost of being wrong",
they demonstrated that if the vehicle distance is less than predicted for optimal control, there is
a significant FE loss. In other words, if the Optimal EMS assumes the trip will be longer than it
actually is, the vehicle will not use all the stored electrical energy thus requiring more liquid fuel
consumption.

Researchers at The Ohio State University conducted a study using alternate drive cycles as a
prediction input error for two real time implementable Optimal EMS: a modified model predictive
control strategy, and an adaptive ECMS [66]. They found that the FE cost of prediction of the
wrong drive cycle was small for both Optimal EMS, but no baseline FE results were shown.

Another study including Optimal EMS planning, disturbances, and FE results came from re-
searchers at Clemson University who investigated the effects of stochastic misprediction errors on
a stochastic Optimal EMS known as adaptive-ECMS [67]. This group used the U.S. EPA drive
cycles of UDDS, US06, and HWFET for 25, 50, 75, 100, and 150 miles. Their results show a
degradation in FE at all values of mean absolute percent error greater than zero. But, no correla-
tion between error magnitudes and FE was found.

Researchers at the University of Michigan have taken their initial Stochastic Dynamic Program-
ming derived Optimal EMS [47] and have studied the impact of driving alternate drive cycles [68].
These researchers used a large real-world drive cycle data set to derive a stochastic Optimal EMS.
The stochastic Optimal EMS was demonstrated to improve FE over a baseline strategy when tested
on alternate drive cycles.

Researchers at the University of Minnesota investigated an Optimal EMS which was focused on

fast computation through separable programming while also being subjected to disturbances [69].
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Using a traffic simulator to develop drive cycles and 30 different vehicle platforms, they compared
their Optimal EMS to dynamic programming and showed favorable results. When the drive cycle
predictions were subjected to a normally distributed random prediction error, FE improvements
were maintained at a 3% mean absolute deviation percentage, but FE improvements were lost at a
6% mean absolute deviation percentage.

Our research group at Colorado State University has also investigated Optimal EMS plan-
ning, disturbances, and FE results. Initial research [70, 71] was expanded to rigorously investigate
driving-derived and vehicle parameter disturbances on optimal FE. A set of driving-derived distur-
bances such as mispredicted stops, traffic, and route changes were compared to a validated model
of a 2010 Toyota Prius. It was found that with an Optimal EMS based on dynamic programming,
FE improvements between 1.7% and 10.8% out of 10.9% possible could still be achieved when
compared to the standard 2010 Toyota Prius [72].

Each study addressing this research gap has been summarized in table 1.5. To date, research has
concentrated on using stochastic disturbances, but the use of driving-derived disturbances should

be used to quantify the robustness or uniqueness of Optimal EMS control requests.
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Table 1.5: Summary of existing research that includes the integration scope of Optimal EMS planning,

disturbances, and FE results.

Research Drive Planning Error Vehicle
Group Cycle Technique Type Model
National LA92, Dynamic Drive Half-size,
Renewable approx- Program- Cycle Full-size
Energy Lab imated ming Distance PHEVs
2006 [65] UDDS
Ohio State Real MPC, Alternate Generic
University World Adaptive Drive Parallel
2011 [66] ECMS Cycle HEV
Clemson UDDS, Adaptive  Stochastic Generic
University USoe, ECMS Power-Split
2012 [67] HWFET PHEV
University of Real Stochastic ~ Alternate  Prototype
Michigan World Dynamic Real Volvo
2014 [68] Program. World S-80
University of Traffic Separable  Stochastic Generic
Minnesota  Simulation = Program- Power-Split
2016 [69], ming HEV
Colorado Real Dynamic Driving Validated
State World Program- Derived, 2010
University ming Vehicle Toyota
2017 [72] Power Prius
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1.6 Research Gap 3: What Operational Challenges Have Not

Been Validated And Qualified In The Conceptual Work?

Incorporation of optimal FE vehicle control with physical vehicle components or full vehicles
has been limited. This third research gap was identified by applying an integration scope to include
Optimal EMS planning technology with the use of a physical vehicle plant as shown in figure
1.4. To understand the challenges associated with this integration, studies should consider (1) a
planning model that uses future vehicle operation prediction to derive an Optimal EMS, (2) real-
world vehicle plant considerations such as software, hardware, or an actual vehicle, and (3) FE
results. Studies that include Optimal EMS planning, vehicle plant considerations, and FE results
would contribute to the overall goal of understanding the operational challenges that have not been

addressed in the literature.

Disturbances Research Gap 3
N A — i
Perception | | Vehlc%e Planning Controller Vehicle Plant !
Sensors and| ————>"——| ! Operation 2 Control p—— Energy |
Signals Compute '"Prediction Compute Optimal Request Component —| =% k\- Consumptionl
) Worldview | | Energy Control 77 | Limitations Qe —0) - |
| _— |

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 1.4: The integration scope defined in research gap 3: Optimal EMS planning with actual vehicle
plant considerations.

There is limited research that includes Optimal EMS planning, vehicle plant considerations,
and FE results because software-in-the-loop, hardware-in-the-loop, and vehicle-in-the-loop re-
search is expensive and the technologies for specific vehicles are proprietary. The initial research
in this area has been focused on rules-based implementation an Optimal EMS because of the ease
of implementation [73—76]. But, research programs designed to overcome cost and proprietary
information challenges such as FutureCar and EcoCAR have had significant success.

An initial, computationally limited, Optimal EMS implementation was achieved by researchers

at The Ohio State University who implemented ECMS in an SUV as part of the FutureTruck
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program [77]. This initial demonstration produced promising FE results and inspired more rigorous
research of ECMS at The Ohio State University [78].

Researchers at the Eindhoven University of Technology have successfully implemented an
Optimal EMS using Pontryagin’s minimization principle to achieve a moderate FE improvement
over a baseline, rules-based, control strategy on a hybrid electric truck. The FE improvement was
demonstrated on a variety of drive cycles, including road grade variations. With the assistance of
stored solutions from offline computations, they achieved success in implementing the Optimal
EMS on the vehicle’s engine control unit (ECU) [79].

Researchers at Shanghai Jiao Tong University have demonstrated FE improvements over a
baseline rules-based control strategy using a hard-ware-in-the-loop real time simulation based on
dynamic programming. These researchers derived an Optimal EMS using a form of dynamic
programming, and then used the solution to train an artificial neural network. The trained neural
network then accepted drive cycle inputs and output an improved control strategy [80].

Researchers at IFP Energies Nouvelles, French Institute of Petroleum have successfully imple-
mented an Optimal EMS in a hardware-in-the-loop simulation for a diesel hybrid vehicle. Diesel-
powered vehicles add the extra challenge of incorporating emissions minimization into the opti-
mization scheme. Using ECMS, they were able to significantly improve FE, while reducing and
oxides of Nitrogren (NOx, an emissions constituent) by parallel HEV architecture. [81, 82] [83].

Researchers at the University of Michigan have taken their initial stochastic dynamic program-
ming derived Optimal EMS [47] and first included engine-in-the-loop simulations to closer ap-
proximate a real vehicle [84] and have since applied it in a prototype vehicle [85]. Although a
hardware problem prevented them from attaining a full FE assessment from their stochastic dy-
namic programming controller, they conclude that an Optimal EMS can be implemented in a real
vehicle and requires minimal tuning.

Researchers at the University of Stuttgart have incorporated a perception model and a planning
model into an actual vehicle. Perception and planning were discussed in section 1.1.2, and they

were also able to incorporate planning and the use of a vehicle plant. They were able to test
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their Optimal EMS using a rapid prototyping unit on their hybrid hydraulic truck. When testing
on a closed track, this team found FE improvements as well as instances of reduced FE when
compared to the baseline control strategy, though these results were briefly mentioned and no
detailed analysis was shown [58].

Lastly, researchers at the University of Salento have investigated the implementation of a Pon-
tryagin’s minimization principle Optimal EMS in a hardware-in-the-loop simulation of a custom
built series PHEV. These researchers investigated both full and multiple local drive cycle section
prediction cases. The researchers were able to demonstrate an overall FE improvement despite
needing to reduce complexity on their Optimal EMS planning formulation, as required due to high
computational cost [86].

Each of the initial studies addressing this research gap have been summarized in table 1.6.
To date, research addressing this research gap has achieved success using a gradual incorporation
of vehicle plant components through software-in-the-Loop, hardware-in-the-Loop, and vehicle-in-
the-Loop experiments. Numerous research opportunities still exist that could fill this research gap
by focusing on the demonstration of an Optimal EMS in a variety of vehicle operational environ-

ments with a variety of vehicle types, platforms, and powertrains.
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Table 1.6: Summary of existing research that includes the integration scope of Optimal EMS planning, a

vehicle plant, and FE results.

Research Drive Planning Vehicle Vehicle
Group Cycle Technique Plant Model Realization
Ohio State Real ECMS 2000 Actual
University World Chevrolet Vehicle
2001 [77] Suburban
French NEDC, ECMS Micro- Hardware-
Institute of FTP Hybrid, in-the-
Petroleum Parallel Loop
2011 [83] Hybrid
Eindhoven Real Pontryagin Parallel Hardware-
University of  World ~ Minimum Hybrid in-the-
Technology Principle Electric Loop
2012 [79] Truck
Shanghai CTBDC  Iterative Power-Split ~ Hardware-
Jiao Tong Dynamic Hybrid in-the-
University Program- Electric Loop
2012 [80] ming Bus
University of Real Stochastic Prototype Actual
Michigan World Dynamic Volvo S-80 Vehicle
2013 [85] Program.
University of OC Bus Custom Parallel Actual
Stuttgart Cycle,  Hydraulic Hydraulic Vehicle
2013 [58] Real Power Hybrid
World Opt. Truck
University of Real Pontryagin Prototype Hardware-
Salento World  Minimum Series in-the-
2013 [86] Principle PHEV Loop
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1.7 Conclusions

In this literature review, vehicle control for optimal FE was introduced and discussed through
methods that decrease vehicle energy output (eco-routing, eco-driving) and methods that fix vehi-
cle energy output while increasing powertrain efficiency (Optimal EMS). Focusing on efficiency
improvements towards the optimal FE through implementation of an Optimal EMS, it was demon-
strated that there are hundreds of relevant research papers, although integration and system-level
research gaps still exist. In applying systems level analysis, three research gaps were identified
which are derived from consideration of various integration scopes: Optimal EMS planning with
perception, Optimal EMS planning including disturbances, and Optimal EMS execution with a ve-
hicle plant. In other words, gaps in optimal FE vehicle control academic knowledge exist regarding
(1) an understanding of essential sensors and signals for perception and prediction enabling opti-
mal FE vehicle control, (2) a deep understanding of disturbance types that can affect optimal FE
vehicle control, and (3) the operational and real-world vehicle implementation challenges of opti-
mal FE vehicle control. A review of insightful research efforts in each of these areas was presented
and recommendations for future efforts that can advance the body of knowledge of Optimal EMS
was discussed.

Engineering research is responsible for providing actionable ideas for industry incorporation.
Because there are hundreds of combinations of vehicle architectures, drive cycles, and optimiza-
tion routines, there have been hundreds of research papers [45] showing the same result: an Opti-
mal EMS can increase FE. We present this comprehensive literature review on the Optimal EMS
concept with the objective of focusing the efforts of the research community on increasing the
readiness level associated with the key interfaces in the vehicle. Once the integration readiness
level of the various subsystems is increased, Optimal EMS can be incorporated in the automotive
industry. Once an Optimal EMS has achieved widespread usage in vehicles, the burdens of low FE

such as oil importation, climate change, and air pollution can be reduced.
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Chapter 2

Research Questions and Definition of Research Scope

2.1 Primary Research Question

Based on the research gaps outlined in the previous chapter, a primary research question can
be posed:

Primary Research Question: What are the tradeoffs between information sensing, compu-
tation power requirements for prediction, and prediction effort when implementing predictive
energy management in vehicles?

To answer this question, the research effort will establish the methods and framework for pre-
dictive energy management implementation. First a small systems-level scope will be used to
investigate types of prediction errors. Then the systems-level scope will be expanded to include a
limited prediction case. Finally, the systems-level scope will be expanded one more time to include
current sensing technologies will be used to generate predictions.

These individual steps can be broken down into research questions of smaller scope. These

smaller scope research questions then have associated tasks.

2.2 Research Question 1 - Prediction Errors

As stated in Chapter 1, section 1.5, a major research gap is understanding how sensitive optimal
fuel economy (FE) strategies are to worldview/prediction scope, fidelity, and uncertainty. The first
research question addresses this research gap.

Research Question 1: What are the effects of different types of prediction errors on the FE
results enabled by predictive energy management?

This research question has not been directly approached in the literature to date. Researchers

have instead opted to derive stochastically robust but suboptimal control strategies. If it can be
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established that prediction errors with a globally optimal control strategy maintain a FE improve-
ment, this may impact future research directions of the field.

Hypothesis 1: Certain misprediction types will result in FE improvements being maintained
while other misprediction types will result in a FE loss.

There are two tasks associated with testing this hypothesis.

Task 1.1: Develop drive cycles that represent various types of mispredictions such as mispre-
dicted stops, route changes, traffic, and compounded mispredictions for FE improvement evalua-
tion.

Task 1.2: Develop vehicle parameter mispredictions such as vehicle mass changes, drag changes,
and rolling resistance changes for FE improvement evaluation.

Upon completion of these tasks the hypothesized misprediction impacts can be understood. If
it can be shown that FE improvements are maintained despite misprediction when using a globally
optimal control strategy, near-term implementation feasibility of predictive energy management
is improved. This also provides a metric to compare against stochastically robust but suboptimal

control strategies.

2.3 Research Question 2 - Prediction Fidelity and Scope

To expand upon the results from Research Question 1, the systems-level scope can be expanded
to include limited perception.

As stated in Chapter 1, section 1.4, another major research gap is understanding what world-
views can enable an Optimal EMS. This second research question begins addressing this research
gap by building upon Research Question 1 and incorporating a prediction scheme.

Research Question 2: What level of prediction fidelity and scope is required to realize a FE
improvement through predictive energy management and potentially eliminate the need for real-
time computation?

Since this research question builds on the results from Research Question 1, it can continue to

progress new understanding about predictive energy management implementability.
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Hypothesis 2: Implementing a general prediction solution for the acceleration portions of a
drive cycle will result in FE improvements without the need for perfect prediction.

There are two tasks associated with testing this hypothesis.

Task 2.1: Build, organize, and demonstrate a statistical understanding of general AE control
for improved FE.

Task 2.2: Investigate the FE improvements from limited AE prediction in full drive cycles.

Upon completion these tasks, an improved understanding of prediction and computational re-
quirements can be realized. If it can be shown that FE improvements are possible using an Optimal
EMS on short sections of driving such as AEs, implementability of predictive energy management
improves. Additionally, if it can be shown that the exact AE doesn’t need to be predicted, then
a previously computed Optimal EMS can be used thus further improving the implementability of

predictive energy management.

2.4 Research Question 3 - Prediction and Computational Ef-

fort

The research gap in Chapter 1 section 1.4, understanding what worldviews can enable an Op-
timal EMS, can further be explored using actual sensor and signal data from current vehicle tech-
nologies. This third research question investigates this research gap by integrating a perception
model.

Research Question 3: What prediction and computational effort is required to realize a FE
improvement when using current technology integrated with predictive energy management?

This research question has not received significant emphasis from researchers and the studies
that do exist only consider future technologies that could enable full drive cycle prediction.

Hypothesis 3: FE improvements can be realized using only current vehicle technology.

There is one task associated with testing this hypothesis.

Task 3.1: Use currently available vehicle technology outputs to train an artificial neural net-

work to make predictions for repeated city and highway drive cycles.
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Upon completion of this task, an improved understanding of the prediction capabilities of cur-
rent vehicle technologies can be realized. If it can be shown that FE improvements are possible
using current vehicle technologies to make predictions combined with an Optimal EMS, feasibil-
ity of predictive energy management can be improved. Additionally, since this framework has a
larger computational cost, this result can be compared to the results from Research Question 2 to

elucidate computation tradeoffs.

2.5 Definition of Research Scope

The research effort will focus on improving feasibility for predictive energy management using
HEVs. HEVs have a significant potential for FE improvements due to their two modes of vehi-
cle propulsion, electric power and engine power (more degrees of freedom). As stated in Chapter
1, predictive energy management can improve performance of all vehicle architectures but HEVs
provide a convenient architecture for feasibility studies. The research effort is focused on simula-
tions using high fidelity and physically validated vehicle models. The methods developed for this

research effort are general and have wide applicability.
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Chapter 3
Prediction Error Applied to Hybrid Electric Vehicle

Optimal Fuel Economy

This study investigates the FE impacts of various types of mispredictions and involves devel-
opment of numerous drive cycles, a dynamic programming algorithm, a high fidelity model of
a 2010 Toyota Prius, and a technique to evaluate mispredictions with the optimal control matrix
result from the dynamic programming algorithm. This research was originally funded by Toyota
where I assisted with translation into two conference publications [70,71]. I was able to expand

the scope into the complete journal paper reproduced in this chapter [72].

3.1 Introduction

Modern plug-in hybrid electric vehicle (PHEV) and hybrid electric vehicle (HEV) fuel econ-
omy (FE) can be optimized for a fixed drive cycle using a vehicle predictive optimal energy man-

agement strategy (EMS).

3.1.1 What Enables an Optimal EMS: Modern Vehicles

Modern vehicles are incrementally incorporating autonomous technologies and transitioning
to intelligent vehicles. An intelligent vehicle is defined as a system that can sense the driving
environment and provide information or vehicle control to assist the driver in improved vehicle

operation [23]. Intelligent vehicle aspects include the ability to:

e Sense the vehicle’s own status and its environment [24]
o Communicate with the environment [24]

e Plan and execute the most appropriate maneuvers [23]
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As modern vehicles continue to evolve into intelligent vehicles, controls can utilize this new envi-
ronmental information in addition to inputs from the human driver.

Along with the evolution of modern vehicles into intelligent vehicles, conventional vehicles are
being subverted by PHEVs and HEVs [3] which provide more degrees of freedom for powertrain
operation. As an example, HEVs can be powered by either stored electric energy from the battery,
or mechanical energy from the engine. This increase in powertrain degrees of freedom provides
energy management capabilities such as regenerating energy during braking and storing excess

energy from the engine during coasting [19].

3.1.2 Why an Optimal EMS is Important: Fuel Economy

Worldwide, transportation is the second largest consumer of energy behind only the industrial
sector. Transportation accounts for 30% of the world’s energy consumption and the transportation
energy demand is projected to increase 30% by 2040 [6]. Additionally, energy consumption by

combustion engine powered vehicles has the following negative impacts:

e Requires policy costs for oil importation [10] and to prevent supply disruptions [7]

e Results in the release of greenhouse gas emissions which are responsible for climate change

[11]

e Results in the release of air pollution [87] which is the fourth leading cause of premature

death worldwide [16]

Increases in vehicle FE reduces energy consumption, oil importation, greenhouse gas emission,
and air pollution. It has been shown that implementing FE standards, labels, and policies has
improved the development of fuel saving technologies which have helped combat these issues [17].

But, although FE has been steadily increasing, there is still a lot of fuel economy that can be gained.
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3.1.3 Optimal EMS Background

An HEV Optimal EMS is an application of optimal control. A mathematical optimization
problem is formulated by defining the mass of fuel used as a cost to be minimized over a fixed
drive cycle. The result from the mathematical optimization scheme is the minimum fuel control
strategy that can be used for the fixed drive cycle. The mathematical optimization problem can be
implemented using either instantaneous information or with prediction information from a drive

cycle. But, a consistent globally optimal control is achieved with drive cycle prediction.

Instantaneous Optimal EMS

An instantaneous Optimal EMS is derived by finding the optimal control strategy that mini-
mizes fuel consumption for the instant in time for which sampled data is available. For HEVs,
large FE improvements can be achieved by restricting engine operation to minimum fuel con-
sumption solution (also known as the ideal operating line [37]) which is the primary fuel saving
technique employed by current HEVs [38]. In PHEVs, studies using an instantaneous Optimal
EMS have led to the "charge-depleting, charge-sustaining” EMS, where all excess battery power
is used first, afterwhich the battery charge is sustained [39]. Research in instantaneous optimal
energy management is an active topic of research with efforts focusing on a realization of the min-
imal fuel consumption through instantaneous equivalence calculations between electrical energy

and fuel energy [44].

Predictive Optimal EMS

A predictive Optimal EMS seeks to find and achieve the absolute minimum fuel consumption
in the full drive cycle by enforcing global optimal control at every point. The solutions require
prediction of the full drive cycle because energy trade-offs occur between all points in the drive
cycle.

There have been hundreds of papers written on predictive optimal energy management over the

last ten years [45], most of which describe predictive Optimal EMS that are either: derived to be the
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global optimal FE, derived for practical/real-time implementation, or derived based on stochastic
or random drive cycle predictions. Global optimal FE derivation strategies are developed through
either dynamic programming (DP) [32] or through Pontryagin’s minimization principle which is
based on calculus of variations [46]. For global minimum derivation strategies, DP has been the
overwhelming favorite of researchers due to its ease of use, robustness, and that no derivatives or
analytic expressions are required [45]. Globally optimal control strategies are difficult to imple-
ment in practice because of the large number of computations that are required. Practical imple-
mentation derivation strategies are used in applications where researchers are willing to forgo the
guarantee of global optimal FE in favor of computationally efficient algorithms that can be used in
current and near future vehicles. Practical implementation derivation strategies in current vehicles
include optimized rules based control [49], equivalent consumption minimization strategy [50],
and model predictive control [51]. Lastly, stochastic derivation strategies also forgo a guarantee
of global optimal FE in favor of a robustness to stochastic prediction errors. Stochastic derivation
strategies include stochastic dynamic programming [47] and adaptive equivalent consumptions

minimization strategy [48].

Prediction Error

Prediction errors applied to a predictive Optimal EMS is theorized to have a large impact [88]
but has not been adequately studied [3,45]. There are five relevant studies that include some aspect
of prediction error on a HEV Optimal EMS. But, none of these studies are strictly focused on
general results regarding fuel economy from prediction errors applied to an Optimal EMS.

An early study considered the “cost of being wrong” when comparing a prediction-based Op-
timal EMS to charge-sustaining/charge-depleting EMS for PHEVs. They concluded that if the
vehicle distance is less than predicted for the Optimal EMS, there is a significant FE loss [65].
This study suggests that prediction of the drive cycle length is important for an Optimal EMS in a

PHEYV, but no further conclusions can be drawn.
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Another study used two stochastic Optimal EMS and applied one prediction error of a different
drive cycle. It was demonstrated that FE results are approximately equivalent but no baseline FE
results are shown [66]. This study has limited misprediction scope and because no baseline FE
results are shown, there is no way to know if these strategies are better than a modern vehicle
EMS.

Another group of researchers continued the use of a stochastic Optimal EMS and applied var-
ious levels of stochastic prediction error. They show that FE is degraded by stochastic mispredic-
tions but are unable to find a correlation with the mean absolute percent error [67]. This study
has limited applicability because it only uses stochastic prediction errors applied to a stochastic
Optimal EMS.

A later study again uses a stochastic Optimal EMS but these researchers test their Optimal
EMS against a large number of real world drive cycles. They were able to demonstrate FE im-
provements over the baseline EMS even when subject to drive cycle variations [68]. This is the
most comprehensive study to date but it is only applicable to a stochastic Optimal EMS and there
is no focus on the FE results from a globally Optimal EMS.

The last prediction error study investigated a real time implementable Optimal EMS subject to
stochastic mispredictions. They computed the FE results for two different values of mean absolute
deviation percentage and showed that FE improvements are lost at 6% mean absolute deviation
percentage [69]. This study is limited in that only two mispredictions are analyzed and that the
mispredictions are both stochastic.

A study that is often cited as providing insight about the aspects of prediction that are most
important for an Optimal EMS needs mention. These researchers included various levels of pre-
diction to determine a parameter for a predictive Optimal EMS [88], but their approach is strictly
applicable to their chosen Optimal EMS. Additionally their study uses various levels of prediction
information rather than investigating prediction error.

This research is unique in that it focuses on the effect of driving-derived prediction errors such

as a mispredicted stopping event or an excess vehicle mass subjected to a globally Optimal EMS.
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This research is intended to aid researchers and automotive industry professionals that are seeking

to develop and implement a prediction-based Optimal EMS for FE improvements.

3.1.4 Research Novel Contributions

This research makes the following novel contributions to the HEV Optimal EMS body of
knowledge: (1) dynamic programming is used to evaluate mispredictions, (2) driving-derived mis-
predictions are analyzed, (3) vehicle parameter mispredictions are analyzed, and (4) the dynamic
programming solution matrix time state variable is converted to a distance state variable for im-

proved misprediction robustness.

3.1.5 Organization of this paper

There are four important concepts that compose the methods of this research: expected and
mispredicted drive cycle development (study 1), a validated vehicle model with expected and mis-
predicted parameters (study 2), the Optimal EMS derivation, and prediction error handling. Study
1 focuses on the FE impact of driving-derived velocity prediction errors, while study 2 focuses
on the FE impact of real world vehicle parameter prediction errors. The FE results are compared
using baseline control, perfect prediction optimal control, and mispredicted optimal control for
every type of misprediction from study 1 and study 2. Relevant vehicle parameters for discussion
are included and a comprehensive report of all vehicle parameters is included with this article as

supplementary material.

3.2 Methods

To investigate the FE results from a predictive Optimal EMS, we define: drive cycle(s), the
vehicle model, and the Optimal EMS. To analyze the FE results from prediction errors requires the
addition of two more definitions: prediction error type and prediction error handling in the Optimal

EMS.
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3.2.1 Drive Cycle Development

To study the effect of driving-derived velocity prediction errors (study 1), an expected drive

cycle was developed along with 14 drive cycles to serve as mispredictions.

The Expected Drive Cycle

To analyze the desired aspects of the Optimal EMS, a custom drive cycle with a second-by-
second velocity trace is required that concentrates the features of interest into a short drive cycle.

The required drive cycle features are:

e Short in length
e Urban driving conditions

e (Capability to modify for multiple driving variations

A drive cycle which meets all of these criteria was chosen that starts from a parking lot in south
Fort Collins, Colorado and ends at a Colorado State University research facility. A map of this

drive cycle is shown in figure 3.1a and the associated velocity trace is shown in figure 3.1b.
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Figure 3.1: The 6.9 mile chosen drive cycle in Fort Collins, Colorado as shown from a Google Maps image
(a) and a velocity trace (b).

Study 1: Mispredicted Drive Cycles

Study 1 focuses on vehicle velocity mispredictions which originate from driving-derived pre-

diction errors along the route shown in figure 3.1, such as excess traffic or a sudden stopping
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event. Four different types of mispredicted drive cycles were chosen: mispredicted stops (3 cases),
mispredicted route changes (3 cases), mispredicted traffic levels (4 cases), and a compounded mis-
prediction composed of all other types of mispredictions (4 cases). To isolate the mispredictions
of stops, route changes, and traffic, the velocity trace was artificially modified so that only these
mispredictions would exist in the drive cycle and ensuring the drive cycle preserves its overall dis-
tance. For the cases of compounded mispredictions, real driving data was recorded while driving
the same route.

The stopping event mispredictions include 1, 2, or 3 mispredicted decelerations, pauses, and
accelerations associated with having not predicted a stopping event such as a pedestrian in a cross-
walk or a road obstruction. The route change mispredictions abruptly end the drive cycle at three
different times. The traffic mispredictions adjust the velocity trace by a factor of 1.15, 0.85, 0.75,
and 0.65 for the first 335 seconds of the 791 second drive cycle while maintaining equivalent drive
cycle distance. For compounded mispredictions, there are differing levels of traffic along the drive
cycle, different stoplight statuses, and one of the cases includes a wrong turn. Each of the drive

cycle mispredictions is shown in figure 3.2.

39



Velocity (mph)

ed

40 /’\W 1 'Added Stop|

AR

2 Added Stops|

N ARV T RGRATAAY

3 Added Stops|

‘ Route Change

4OPW\/\W [ ]

1

“Pan

Routeé Change

2

3

Higher Speed from

40 /\WW"\/\/\ Low Traffic|

Low Speed‘ from

40 -High affic WW\
\/ an

Lower Speéd from
40 | Higher Traffic W{M\[\\/\
/—\ | |

Lowest Spéed from I T

4() | Highest Traffic /\\WV\M
[\

40 ﬂmmﬂmmapoundedl

POV e

Corﬁpounded 2

Conllpounded 3
40 wi
Wrong Turn

ith

200 400 600

Time (sec)

40 /\/\\ M Corﬁpounded 4 |
(A
800

1,000

Figure 3.2: All of the drive cycles used for study 1.
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3.2.2 Vehicle Model: 2010 Toyota Prius

(a) (b)

Figure 3.3: Front (a) and rear (b) view of the 2010 Toyota Prius HEV simulated in studies 1 and 2.

The Toyota Prius is state of the art HEV technology and it was the first modern HEV [89];
even today it still has better FE than any other vehicle in its class [90]. Because of these reasons, a
2010 Toyota Prius is an ideal vehicle to demonstrate the potential FE improvements of the Optimal
EMS.

To create the model of a 2010 Toyota Prius, the publicly available parameters shown in table

3.1 were used in the Autonomie vehicle modeling software.
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Table 3.1: Table of significant model parameters that define the 2010 Toyota Prius (EM=electric motor,
BSFC=brake specific fuel consumption).

Mechanical Parameters

Vehicle Mass 1580.87 kg

Maximum Engine Power 73 kW

Engine BSFC map (&/kw-h) f (Engine Torque, Engine Speed) [91]
Max Generator EM Speed 10,000 rpm

Max Traction EM Speed 13,500 rpm
Coeff. of Drag 0.259
Frontal Area 2.6005 m?

Coeff. of Rolling Resistance | 0.008
Final Drive Ratio 3.543
Ring Gear Number of Teeth | 78

Sun Gear Number of Teeth | 30
Wheel Radius 0.317 m

Battery Parameters

Internal Resistance, €2 0.373 2
Capacity 6.5 A-h
Open Circuit Voltage 219.7V

Study 2: Mispredicted Vehicle Parameters

Of the parameters shown in table 3.1, several of them are subject to change due to daily driving
scenarios. Study 2 assumes exact vehicle velocity prediction and seeks to analyze vehicle power
mispredictions. The vehicle power mispredictions chosen for analysis include mass mispredic-
tions, drag mispredictions, and rolling resistance mispredictions. The numbers used for each of the

power mispredictions are shown in table 3.2 where the average vehicle power difference along the

42



same drive cycle was calculated from the output of Autonomie as

Average Vehicle Power Difference =
Expected Parameter Average Vehicle Power—

Mispredicted Parameter Average Vehicle Power (3.1)

Vehicle mass mispredictions could come from extra passengers, cargo, or both. As a worst case
scenario, the maximum cargo specification of 825 lbs (374 kg) from the 2010 Toyota Prius manual
was used [92]. To provide a contrasting case, an elimination of an equivalent mass was used as an
alternate prediction error.

Vehicle drag mispredictions could come from the addition of cargo outside the vehicle (roof
rack), driving with the windows down, or even from unpredicted high winds. Research in this area
suggests a loaded roof rack can cause a coefficient of drag increase of 44% and a frontal area load
increase of 7% [93]. These results are dependent on the car and roof rack used for testing. As a
worst case, a coefficient of drag increase of 50% and a frontal area increase of 38% was used. A
similar low drag contrasting case of a coefficient of drag decrease of 50% and a frontal area of
38% was also analyzed. This low drag case also serves as a worst case prediction scenario.

Vehicle rolling resistance mispredictions could come from the over-inflated/under-inflated ve-
hicle tires or from road conditions. A flat tire is known to cause a rolling resistance value to increase
to 30 times its original value [94] and inflation pressures can cause rolling resistance changes of
50% [95]. A 100% increase in rolling resistance was analyzed as a misprediction as well as a 50%
decrease.

Additional discussion in regard to changing vehicle parameters and justification for the ranges
chosen can be found in the literature [96]. Note that these researchers identified these parameter
mispredictions as being important to an Optimal EMS but never strictly studied them in future

work.
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Table 3.2: The modeling errors explored in study 2.

Vehicle Coeff. | Frontal | Mass | Coeff. of | Average
Parameter of Area | Change | Rolling | Veh. Power
Drag (m?) (kg) Resist. | Difference
Expected | 0.259 | 2.6005 0 0.008 0%
Higher 0.259 | 2.6005 +825 0.008 -26.2%
Mass
Lower 0.259 | 2.6005 -825 0.008 26.6%
Mass
Higher 0.3885 | 3.6005 0 0.008 -51.8%
Drag
Lower 0.1295 | 1.6005 0 0.008 33.7%
Drag
Higher
Rolling 0.259 | 2.6005 0 0.0016 -53.1%
Resistance
Lower
Rolling 0.259 | 2.6005 0 0.004 26.5%
Resistance
Model Validation

Autonomie is a physics based vehicle FE model that has been demonstrated to show excellent
correlation between real world operation of a 2010 Toyota Prius and a simulated 2010 Toyota Prius
[97]. But, since the model of a 2010 Prius is not publicly available, the model of a 2010 Toyota

Prius must be created by modifying the generic power split HEV model that comes preloaded in
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Autonomie. To update the generic power split HEV model to a 2010 Toyota Prius, the parameters
shown in table 3.1 were modified. Note that the BSFC map was created by matching values to data
from the 2010 Toyota Prius in the public domain [91].

To validate the 2010 Toyota Prius Autonomie model, the resulting FE numbers were compared
to the real world measured FE numbers from Argonne National Labs [98] over the three standard
U.S. Environmental Protection Agency drive cycles as shown in table 6.1. Because the FE for each
of the three drive cycles has less than 1.5% difference, the model was considered to be validated

for further FE investigations.

Table 3.3: A comparison of the model simulated FE and physically measured FE for standard EPA drive
cycles.

EPA Simulated Measured Percent

Drive Cycle | Fuel Economy | Fuel Economy [98] | Difference

UDDS 75.4 mpg 75.6 mpg 0.3%
USo06 45.9 mpg 45.3 mpg -1.4%
HWEFET 70.4 mpg 69.9 mpg -0.7%

This validated model of a 2010 Toyota Prius provides the Baseline EMS which will be con-

trasted with various applications of an Optimal EMS in the results section.

3.2.3 Optimal Energy Management Derivation

Derivation of an optimal solution requires numerous iterations which is computationally costly
for a model as detailed as Autonomie. Therefore, to derive the Optimal EMS, a simplified equation
based power split model must be used. But, once the Optimal EMS has been calculated, it can be
incorporated into Autonomie as an override of the “engine power demand” and “engine on”” model

parameters. A schematic of the context for optimal control derivation is shown in figure 3.4.
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(a) Baseline EMS simulation (b) Optimal EMS simulation

Figure 3.4: Comparison of the simulations defined as Baseline EMS (a) and Optimal EMS (b).

Dynamic Programming Optimization Justification

Prediction errors in general have not been rigorously studied but prediction error applied to
a globally Optimal EMS has not been studied at all. As mentioned in the introduction, of the
five studies that address prediction error [65-69], none use a globally Optimal EMS to investigate
specific types of driving-derived prediction error over a full drive cycle. The study of prediction
error on a globally Optimal EMS is required because it establishes the FE difference from the

absolute optimal FE. If it can be shown that driving-derived prediction error does not degrade FE
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from a globally Optimal EMS, then development of any non globally Optimal EMS would be
unnecessary.

DP provides a convenient method of evaluating mispredictions because, as a by-product of
solution computation, it creates the globally optimal solution for all evaluated state variables while
ensuring the constraints are met. This solution by-product is an optimal control matrix which
serves as a lookup table to generate near optimal solutions for all feasible states of the chosen state
variables. For mispredictions where the state variables are at new values, the optimal control matrix
still produces a near optimal control. DP provides a unique ability to understand and quantify the

FE results from prediction errors and it is well understood by other researchers.

Dynamic Programming Formulation

DP finds the optimal solution using backwards recursion, which avoids solutions that are not
optimal as defined by the Bellman principle of optimality [99,100]. For every feasible state variable
value, the optimal solution is stored. An appropriate DP scheme consists of a dynamic equation, a

cost function, and state and control variable feasibility constraints

S(k+1) = S(k) + f1(S,u,w, k)At (3.2)
N-1
J = fo (S, u,w, k, At) (3.3)
k=0
Umin (k) < u(k) < tUmax (k) (k=0,..N—1) (3.5

where S is the state, u is the control, w is the exogenous input, k is the timestep number, At is the
timestep value, .J is the cost, and N is the final timestep number.
For an HEV Optimal EMS derivation, the state is chosen to be the state of charge (SOC),

the control is chosen to be the engine power, (Picg), the exogenous input is the vehicle velocity
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(v), and the cost is chosen to be the fuel mass required (my,). This formulation with the added

feasibility constraints for a 2010 Toyota Prius yields the following modified equations

SOC(k + 1) = SOC(k) + f3(SOC, Pycg, v, k) At (3.6)
N-1
Cost =~ Mgy (3.7)
k=0
SOCpin < SOC(k) < SOCpax (K =0,...N) (3.8)
Picemin < Pice(k) < Pcgmax (B=0,..N —1) (3.9

This HEV Optimal EMS derivation can then be tailored to a 2010 Toyota Prius by deriving a

power-split model.

2010 Toyota Prius Power-Split Model

The dynamic equation is derived using equations from the literature that describe a Toyota
Hybrid System II [20, 101] and the parameters shown in table 3.1. The total force on the vehicle,
Fenicle, 18

1
Fienicte = Crrmg + éodpairv(k)QAfrom + ma(k) + mg sin (0) (3.10)

where (., is the coefficient of rolling resistance, m is the mass of the vehicle, g is the acceleration
due to gravity (9.81 m/sec?), Cy is the coefficient of drag, p,; is the density of air (1.1985 k9/m3),
v is the vehicle velocity, Agoy is the frontal area, © is the vehicle acceleration (calculated using a
numerical derivative), and @ is the elevation angle which is zero over the course of the drive cycle.

The power required by the vehicle, Pyepicle = Frenicle?(k), can come from either the engine or

the battery, but excess engine power can also charge the battery. This can be expressed as

B = Fvehiclev(k‘) — Pice (3.11)
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where F,, is the battery power, Fcg is the engine power. Note that when B, is negative, the
battery is recharging.

The battery power shown in equation 3.11 does not account for the electric machine’s effi-
ciency. An overall efficiency map for a 2010 Toyota Prius is available in the literature [102] but
the map changes as a function of voltage. It was found that incorporating a three dimensional
interpolation function that would appropriately evaluate the efficiency maps was computationally
prohibitive for the low level power-split model.

The change in the state of charge of the battery is given by GltSOC = —lut/Quu, Where Ty

can be obtained by solving the quadratic electrical dynamic equation of the battery system of

Voe— \ V;% 74PballRint

2Rim

Boa = Voelparw — Rim]gatt for the viable solution as Iy, = . Thus the change in

state of charge of the battery is calculated as

— V& — 4Py (k) Rin

SOC (k + 1) = SOC (k) — o o

At (3.12)

where V. is the open circuit voltage, I, is the internal resistance, and Qa0 1S the battery capacity.

Combining equations 5.2-5.3 produces the dynamic equation required in the DP algorithm

SOC (k + 1) = SOC (k) - C1 + CQ\/Cg - C4U(k) + C5U(k)3 + C’w(k)v(k) — C7PICE (313)

where all C' values are constants and are expressed as such for simplicity.
The cost function is derived by first obtaining a BSFC map through a cubic response surface
[103] since a quadratic response surface would not match the structure of the BSFC map available

in the public domain [91]. A BSFC cubic response surface has the form of

BSFC = A; + Aswicg + AsTice + AswiceTice + A5w12c13 + 146TI2CE+

A7WICETICE + ASWICETICE + AQ ICE (3.14)
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where all A values are constants, wicg is the engine speed, and Tjcg is the engine torque. The
surface developed is shown in figure 3.5. Once the BSFC response surface was developed, an ideal
operating line can be computed that shows the minimum fuel consumption for any desired power

(also shown in figure 3.5).

150 T T T T T

100

Engine Torque, Nm

()]
e

—— Operation Boundary

Ideal Operating Line
D BSFC (pis)

0 1000 2000 3000 4000 5000 6000
Engine Speed, rpm

Figure 3.5: The approximated BSFC map response surface created.

For a specified power and desired minimal fuel consumption, the associated engine speed,
engine torque, and fuel rate is fixed which is the concept of the ideal operating line discussed in

the introduction. This idea is expressed by the following equation

wice =f (Picg) (3.15)
Tice =f (Pice) (3.16)
Muwel =J (PicE) (3.17)

The functions in equation 3.17 could be expressed as an analytical function fit, but since DP

uses discrete time, expression as a look up table is sufficient.
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Note that it is not required to limit solutions to exist only along the ideal operating line; it
is possible that overall system loss could be lessened by straying from the ideal operating line.
Several test cases were completed which allow straying from the ideal operating line, but the
solution for the Optimal EMS derived in the low level power-split model always ended up on
the ideal operating line anyway. Significant computational savings were achieved by then only
considering solutions along the ideal operating line.

A dynamic final state of charge value penalty function of

Penalty = W (SOC; — S(N))?; (3.18)

is also required where W is an arbitrary weight value which was selected to be 100,000 and
SOC;=SOC;=50%.

The cost is then expressed as

N-1
Cost = Y fi(Picg) + W (SOC; — S(N)) (3.19)

k=0

Lastly, feasibility constraints must be incorporated into the model such as maximum ring gear
speed, battery power, generator electric motor torque, generator electric motor speed, and generator
electric motor power. It was found that the most limiting constraint was the generator electric motor
speed which must be added to the DP formulation. The other constraints were incorporated in this
research but are not shown due to their minimal effect.

To derive the maximum generator electric motor speed constraint, the following gearing rela-
tionship can be used

p 1

WICE = Wgenerator 7 +

Wrin 3.20
1+p f1+p (3:20)

where p = ]I\\;—g, Niceth,generator = 30, and Nieernring = 78. The ring gear speed is based on the vehicle

speed as

_ Tfinal arive¥ (K)
Wring = — &

(3.21
Rwheel )
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where 7na drive 18 the final drive ratio and R, e 1S the wheel radius.

The constraint is then be expressed as

Cs [f5 (Pice)] + Cov(k) < C10

where all C values are constants.

(3.22)

Putting everything together, the dynamic programming formulation of the global EMS deriva-

tion for a 2010 Toyota Prius is

SOC (k + 1) = SOC (k) — C4 + Ca+/Cs — Cav(k) + Csv(k)? + Cev(k)v(k) — CrPce (3.23)

N—-1
Cost =Y fi(Pcg) + W (SOC; — SOC(N))*
k=0

40 % < SOC(k) <80 %  (k=0,...N)
0kW < Peg(k) <73kW  (k=0,..N —1)

Cs [f5 (Pice)] + Cov(k) < C10

where the following timestep, state, and engine power discretization values were used

At =1 sec
ASOC = 0.001%

APcg = 0.1 kW
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Optimal Control Model Validation
To validate this process, the Baseline EMS and the derived Optimal EMS were compared for
three EPA cycles. The results are shown in table 3.4. The percent improvement numbers were

calculated as

Optimal FE — Baseline FE

3.31
Baseline FE ( )

Percent Improvement =

where the FE is adjusted for differing SOC; values according to the SAE J1911 “Recommended
Practice for Measuring the Exhaust Emissions and FE of Hybrid-Electric Vehicles, Including Plug-
in Hybrid Vehicles” standard [104].

Since there is a significant improvement in FE using the optimal control strategy implemented
in Autonomie, the optimal control derivation technique is considered validated for further FE in-
vestigations. Globally Optimal EMS have been applied to these standard EPA cycles by numerous
other researchers and the results in table 3.4 can also serve as validation for future researchers.

Table 3.4: A comparison of the baseline control FE and DP derived optimal control FE over three EPA drive
cycles.

EPA Baseline Control | Optimal Control Percent
Drive Cycle | Fuel Economy Fuel Economy | Improvement
UDDS 75.4 mpg 83.2 mpg 10.4%
USo06 45.9 mpg 48.9 mpg 6.5%
HWEFET 70.4 mpg 72.6 mpg 3.1%

Optimal Control with Mispredictions

A key aspect of this research is the evaluation of mispredictions using DP derived optimal
control. DP provides an optimal control solution matrix which is valid for any state of charge

and time during the drive cycle. The optimal control solution matrix for the expected drive cycle
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(shown in figure 3.1b) was computed and is shown in figure 3.6. This matrix is used to evaluate
all the mispredictions from study 1 and study 2. As a basis for comparison, the solution using the

optimal control matrix for perfect prediction for each case was also computed.

Time (sec)

0 ) 10 15 20 25 30

Figure 3.6: The optimal control matrix derived using DP for the expected drive cycle.

Drive cycle mispredictions are handled by converting the time state variable to a distance state
variable numerically as distance = Zszo v(k) since all mispredictions occur over the same route.
The mean absolute percent error (MAPE) applied to vehicle velocity has been defined in other

prediction error research [67] as

MAPE =

N : . .
1 |Actual Velocity — Predicted Velocity|
N E (3.32)

— Actual Velocity
and is under 20% in almost misprediction cases studied. Examples of the mispredictions when the
time state variable is converted to a distance state variable are shown in figure 3.7.

For any state not in the design space, the Baseline EMS is employed.
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Figure 3.7: Examples of the drive cycles when time is converted to a distance for the velocity prediction
errors associated with study 1.

3.3 Results and Discussion

The results are organized into subsections for study 1 and study 2. For each type of mispre-
diction, FE results are shown for perfect prediction and misprediction (prediction of the expected
drive cycle or prediction of the expected vehicle parameters). A discussion of the results from each
instance of misprediction are shown with the relevant vehicle signals. Additional vehicle signals

over each drive cycle are provided in the supplementary report.
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3.3.1 Study 1: Optimal Energy Management Under Vehicle Velocity Mis-

predictions
T T
Expected | 7 110.9% L
Drive Cycle T 710.9%
1 Added | [ 10.9% i
Stop C110.8%
2 Added | T 110.7% |
Stops C7.9%
3 Added | e 11.2% i
Stops C151%
Route | O 113.6%
Change 1 | —4.3% [
Route | O 112.9% |
Change 2 [13.5%
Route | T 1102% L
Change 3 T 7.9%
| 9% |
Low Traffic : 86%
. | ] 134%
High Traffic 0 1.7%
Higher | 16.8%
Traffic C14.7%
Highest | 1 22.6%]|
Traffic [ 1.8%
Compounded | 8.8% B
1 -1.1% [
Compounded | 9.5% B
2 | —5.1% ]
Compounded | 9.3% L
3 | —7% T
Compounded | 10.3% B
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= Prediction of Expected Drive Cycle
= Prediction of Actual Drive Cycle

Figure 3.8: FE results that compare Optimal EMS using incorrect and correct drive cycle predictions (drive
cycles shown in figure 3.2).
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FE was improved over the 2010 Toyota Prius Baseline EMS in every case except for under
a fast route change and compounded misprediction drive cycles. The FE numbers from study 1
shown in figure 3.8 motivates the following five results about globally Optimal EMS: (1) exact
drive cycle prediction increases FE as expected from the literature, (2) FE gains are maintained
under mispredicted stops, (3) FE gains may not be maintained under route-change mispredictions,
(4) FE gains are maintained under mispredicted traffic, and (5) FE gains may not be maintained

under compounded mispredictions.

Result 1: Exact Prediction Increases Fuel Economy
Figure 3.8 shows a 10.9% increase in FE if the exact drive cycle is predicted. This increase in

FE over the Baseline EMS comes from four sources:

1. Elimination of low power engine operation (fig 3.9a)
2. Reduction of high power engine operation (fig 3.9b)
3. Reduction of battery charging at the beginning of the drive cycle (fig 3.10a and 3.10b)

4. Increase in battery charging at the end of the drive cycle (fig 3.10a and 3.10b)

150 T T
—e— Baseline —— Optimal ZE
~— 100 - R
40 T 40 =
= o'
= 5
= 30 - 30 =
: 20 20 s s0r 1l
— * B Operation Boundary
Q? L’_%:D :33 I[l]uu' Operating Line
© K —nape (g
= ) D BSFC (gifs)
2 10 1 10 -
=
3 0e ‘ ‘
0 : o : 0 : ‘ 2,000 4,000 6,000
280 300 320 470 480 490 )
Time (sec) Time (sec) Engine Speed (rpm)

Figure 3.9: Low engine speed operation (a), high engine speed operation (b), and engine brake specific fuel

(a)

consumption (BSFC) comparisons (c).

(b)
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The elimination of low power engine operation and the reduction of high speed engine op-
eration allows the engine to operate in a region on the brake specific fuel consumption map that
has high efficiency, as shown in figure 3.9c. The Optimal EMS demonstrates the behavior shown
in figures 3.9a and 3.9b over the entire drive cycle while maintaining the desired final state of
charge and accumulates small decreases in fuel consumption which accumulate into a significant

improvement in FE.
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Figure 3.10: Comparison of Baseline EMS and Optimal EMS engine operation and state of charge results
for the expected drive cycle.

The Optimal EMS increases FE through a reduction of battery charging at the beginning of the
drive cycle and an increase in battery charging at the end of the drive cycle. This is accomplished
through lowered peak engine power (closer to an optimal value) during the approximate first half
of the drive cycle and increased peak engine power (closer to an optimal value) during the approxi-
mate second half of the drive cycle. Both of these engine power modifications result in an increase

in engine efficiency as shown on the brake specific fuel consumption map in figure 3.9c.

58



Result 2: Fuel Economy Gains are Maintained Under Stop Misprediction

Related to the Baseline EMS, figure 3.8 shows a +10.8% (out of +10.9% possible) increase
in FE if one stop is mispredicted, a +7.9% (out of +10.7% possible) increase in FE if two stops
are mispredicted, and a +5.1% (out of +11.2% possible) increase in FE if three stops are mis-
predicted. This demonstrates that FE gains through the Optimal EMS are maintained under stop
mispredictions because a FE increase is still achieved in every misprediction case that was studied.

Figure 3.11 shows the details of the “1 Added Stop” misprediction case. The actual and ex-
pected drive cycle differences are shown in figure 3.11b. When the stop is mispredicted, the Opti-
mal EMS misapplies engine power as shown in figure 3.11c. This misapplication of engine power
occurs because the Optimal EMS was derived assuming that the vehicle is traveling at 40 mph
but the vehicle actually stops, remains stationary, and then accelerates. Overall, the engine power
misapplication is a slight delay and does not affect fuel economy and state of charge significantly

as shown in figures 3.8 and 3.11c.
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Figure 3.11: Baseline, optimal control, and mispredicted optimal control results for the “1 Added Stop”
misprediction case.

Result 3: Fuel Economy Gains May be Lost from Route Change Misprediction

Related to the Baseline EMS, figure 3.8 shows a -4.3% (out of +13.6% possible) FE result if
the drive cycle is the same as expected but then is suddenly ended shortly after it has begun (Route
Change 1). This figure also shows a +3.5% (out of +12.9% possible) increase in FE if the drive

cycle is suddenly ended midway through the predicted drive cycle, and a +7.9% (out of +10.2%
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possible) increase in FE if the drive cycle is suddenly ended most of the way through the predicted
drive cycle. This demonstrates that FE increases through the Optimal EMS may be decreased when
a route change is mispredicted.

The Optimal EMS seeks to equate the state of charge at the beginning and the end of the drive
cycle only. During the drive cycle, the optimization routine is only constrained by the physical
maximum and minimum battery charge limitations. Therefore, when a route change is mispre-
dicted, the battery state of charge could be excessively high or low which could result in a loss
of battery state of charge adjusted FE. This battery state of charge discrepancy is shown in figure
3.12a, which presents results for “Route Change 1”. Additionally, as can be seen in figure 3.12b,
the mispredicted optimal control case seeks engine operation in anticipation of a forthcoming ac-

celeration shown in figure 3.12a. But, since the acceleration shown in figure 3.12a is not realized,

the FE is decreased.
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Figure 3.12: Baseline, optimal control, and mispredicted optimal control results for the “Route Change 1’
misprediction case.

Result 4: Fuel Economy Gains are Maintained Under Traffic Misprediction

Related to the Baseline EMS, figure 3.8 shows an +8.6% (out of +9.0% possible) increase
in FE if traffic levels are lower than expected (higher than expected vehicle speeds), a +1.7%
(out of +13.4% possible) increase in FE if traffic is higher than expected (low vehicle speed),
a +4.7% (out of +16.8% possible) increase in FE if traffic is significantly higher than expected

(lower vehicle speed), and +1.8% (out of +22.6% possible) increase in FE if traffic is much higher
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than expected (lowest vehicle speed). This demonstrates that the fuel economy gains from the
Optimal EMS are maintained under traffic mispredictions because a FE increase is still achieved in
every misprediction case with the caveat that if traffic is higher than predicted, there is a significant
loss in potential FE improvements through the Optimal EMS.

For the “High Traffic” misprediction, the actual drive cycle is at speeds much lower than the
predicted drive cycle as shown in figure 3.13b. This speed discrepancy results in the mispredicted
Optimal EMS operating the engine at an excessively high power as shown in figure 3.13c. The
higher than required engine power drives the battery state of charge up as shown in figure 3.13a.
The Optimal EMS is still designed to end the state of charge at 50% so the state of charge is de-
creased over the second half of the drive cycle and a fuel economy improvement over the Baseline

EMS is maintained.
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Figure 3.13: Baseline vs optimal control results for the “High Traffic” misprediction case.

Result 5: Fuel Economy Gains May be Lost from Compound Prediction Errors

A real world driven alternate drive cycle along the same route produces mispredicted stops,
traffic, and potentially route changes. Figure 3.8 shows a -1.1% (out of +8.8% possible) FE result
for an alternate drive cycle driven along the same route, a -5.1% (out of +9.5% possible) FE result
for another alternate drive cycle driven along the same route, a -7.0% (out of +9.3% possible) FE
result for an alternate drive cycle driven that includes a wrong turn but was intended to be driven
along the same route, and a +2.7% (out of +10.3% possible) FE result for a fourth alternate drive

cycle driven along the same route.
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Despite the conversion of the time state variable to a distance state variable, the velocities
are significantly different along the entire drive cycle as shown in figure 3.7. The sections with the
most drastic velocity discrepancies as shown in figure 3.14b result in sections of high power engine
operation at completely inappropriate points in the drive cycle as shown in figure 3.14c. Because

of these large discrepancies in engine operation, the FE is worse than the Baseline EMS in almost

every case of compounded prediction errors.
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Figure 3.14: Baseline vs optimal control results for the “Compounded 2” misprediction case.

Study 1 Summary

The following results were obtained in study 1:

1. Fuel economy gains from the Optimal EMS are maintained under stop mispredictions

2. Fuel economy gains from the Optimal EMS are maintained under traffic mispredictions

3. Fuel economy gains from the Optimal EMS may be lost under route change mispredictions

4. Fuel economy gains from the Optimal EMS may be lost under compounded mispredictions
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3.3.2 Study 2: Optimal Energy Management Vehicle Under Power Mispre-

dictions
T T
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Figure 3.15: FE results that compare Optimal EMS using incorrect and correct vehicle parameter prediction
(vehicle parameters shown in table 3.2).

FE was improved over the 2010 Toyota Prius Baseline EMS in every type of power mispre-
diction except when the vehicle mass is severely under predicted ("Lower Mass" case) which is
unlikely to occur in standard vehicle operation. The FE numbers from study 2 shown in figure
3.15 motivate the following two results: (1) FE gains are maintained under higher than expected
vehicle power mispredictions and (2) FE gains are maintained under lower than expected vehicle

power mispredictions.

Result 6: Fuel Economy Gains are Maintained Under Higher than Predicted Vehicle Power

Related to the Baseline EMS, figure 3.15 shows an +10.0% (out of +8.1% possible) FE result

for a higher than expected vehicle mass, a +7.3% (out of +3.2% possible) FE result for a higher than
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expected vehicle drag, and a +7.5% (out of +3.0% possible) FE result for a higher than expected
rolling resistance.

When predicting vehicle power to be higher than actual vehicle power (“Higher Mass”, “Higher
Drag”, and “Higher Rolling Resistance” cases), the Optimal EMS solution behaves in nearly the
same as perfect prediction, except at a lower engine power, as seen in figure 3.16b. The result
is a state of charge value well below 50% for the majority of the drive cycle as shown in figure
3.16a. The ending state of charge value is then significantly below the target value which results

in a higher state of charge adjusted FE than the optimal solution based on the SAE J1711 standard
[104].
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Figure 3.16: Baseline vs optimal control results for the “Higher Mass” misprediction case.

Result 7: Fuel Economy Gains are Maintained Under Lower than Predicted Vehicle Power

Related to the Baseline EMS, figure 3.15 shows a -1.5% (out of +17.9% possible) FE result for
a lower than expected vehicle mass, a +2.9% (out of +15.3% possible) FE result for a lower than
expected vehicle drag, and a +5.3% (out of +14.4% possible) FE result for a lower than expected
rolling resistance.

When predicting vehicle power to be lower than actual vehicle power (“Lower Mass”, “Lower
Drag”, and “Lower Rolling Resistance” cases), the Optimal EMS solution behaves in nearly the
same as perfect prediction, except at a higher peak value as seen in figure 3.17b. The result is a

state of charge value well above 50% for the majority of the drive cycle as shown in figure 3.17a.
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The ending state of charge value is significantly above the target value which results in a lower

state of charge adjusted FE than the optimal solution based on the SAE J1711 standard [104].
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Figure 3.17: Baseline vs optimal control results for the “Lower Mass” misprediction case.

Study 2 Summary

The following results were obtained in study 2:

1. Fuel economy gains from the Optimal EMS are maintained under vehicle parameter mis-

predictions

2. Vehicle parameter mispredictions that result in lower average vehicle power result in a

higher operating battery state of charge

3. Vehicle parameter mispredictions that result in higher average vehicle power result in a

lower operating battery state of charge

3.4 Conclusions

In this study, an Optimal EMS with driving-derived mispredictions and vehicle power mispre-
dictions was studied to quantify the fuel economy cost of misprediction. First, an expected drive
cycle and fourteen drive cycle mispredictions were developed. Then, a validated 2010 Toyota
Prius model was developed by updating the generic power-split HEV model in Autonomie with
publicly available 2010 Toyota Prius data. Six cases of vehicle parameter mispredictions were

also developed based on plausible values from the literature to investigate the effects of required
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vehicle power mispredictions. A globally Optimal EMS derivation was developed using DP and
an equation based model for the Toyota Hybrid System II used by the Toyota Prius. A mispre-
diction analysis technique was developed using the optimal control solution matrix from DP and
converting the time variable to a distance variable.

For many of the driving-derived mispredictions (stops, traffic, and vehicle power), a fuel econ-
omy improvement of the Optimal EMS over the Baseline EMS is maintained. For compounded
mispredictions and route change mispredictions the fuel economy gains from the Optimal EMS
may be lost. The results from studies 1 and 2 suggest that FE improvements over the Baseline
EMS through a globally Optimal EMS are possible without perfect prediction.

Evaluating driving-derived mispredictions puts any alternate EMS into a more realistic con-
text. The techniques presented in this research can be applied to an alternate EMS such as Equiv-
alent Consumption Minimization Strategy (ECMS), adaptive Equivalent Consumption Minimiza-
tion Strategy (a-ECMS), Stochastic Dynamic Programming (SDP), or Model Predictive Control
(MPC). But, an EMS designed to be stochastically robust such as a-ECMS or SDP, may not main-
tain a FE improvement when subjected to certain driving-derived mispredictions because driving-
derived mispredictions (mispredicted stops, route change, etc.) are not stochastic. The results from
this study indicate that a globally Optimal EMS may provide the best fuel economy improvements
even when mispredictions exist.

Future work can consider the application of driving-derived mispredictions to other Optimal
EMS from the literature, sensors/signals/algorithms required for vehicle operation prediction, and
implementability of an Optimal EMS in a modern vehicle operating in the current driving environ-
ment. An initial study using only current vehicle speed and GPS location shows promising fuel

economy results from an Optimal EMS [105].

3.5 Chapter Conclusions

This section of the research effort has allowed us to address Research Question 1, which is

restated here:
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Research Question 1: What are the effects of different types of prediction errors on the fuel
economy results enabled by predictive energy management?

Research Question 1 is associated with Hypothesis 1:

Hypothesis 1: Certain misprediction types will result in FE improvements being maintained
while other misprediction types will result in a FE loss.

This research effort has provided support for this hypothesis. Through development of real
world drive cycles that represent various types of misprediction, development of a dynamic pro-
gramming algorithm that derives the globally Optimal EMS, and a high-fidelity 2010 Toyota Prius
model, it has been determined that stop, traffic, and vehicle parameter mispredictions result in
FE improvements being maintained while route changes and compounded mispredictions result in
a FE loss. This informs prediction strategies since highly accurate predictions of the number of
stops, traffic levels, and vehicle parameters are not required to improve FE with predictive energy

management.
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Chapter 4
Improved Fuel Economy through Acceleration Event

Prediction Part 1: Optimal Control

This study investigates the FE impacts of acceleration event (AE) prediction within a drive
cycle and involves development of an AE dataset, organization of the AE dataset, application of
the dynamic programming algorithm, a high fidelity model of a 2010 Toyota Prius, a technique to
identify characteristic AEs, and a technique to evaluate AE mispredictions with the optimal control
matrix result from the dynamic programming algorithm. This research is part of an ongoing project
funded by Toyota. David A. Trinko has also made significant contributions to this project by im-
proving the vehicle model and expanding the study to include numerous organization schemes and
results for each AE category. This monumental research effort is just now reaching the publication
phase with a conference publication [106] and the recently submitted journal paper reproduced in

this chapter [107].

4.1 Introduction

Advanced vehicle powertrain control strategies have the potential to improve fuel economy
(FE) by up to 30%, but additional research is required before vehicle implementation can be re-
alized [4]. An investigation of the trade-offs between prediction scope and the FE improvement

result is required.

4.1.1 Fuel Economy Improvement Needs

Transportation accounts for approximately one third of worldwide energy consumption [108].
When this energy is generated from combustion engines, petroleum importing and exporting is
required, air pollution is released, and global warming is exacerbated. On a per-country basis,

petroleum consumption is often unbalanced from domestic production, creating the issue of energy
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security and vulnerability to geopolitical stability [7] such as the 1973-1974 oil embargo on the
United States [109]. The greenhouse gas emissions from transportation combustion engines [110]
contribute significantly to the increasing global temperature which can severely inhibit animal and
human life [111]. Transportation combustion engines also contribute to air pollution [87] which is
the fourth-leading cause for premature death worldwide [16].

To combat these issues, countries from all over the world have implemented FE regulations
[17,112,113] with many countries taking the initiative to ban gasoline and diesel powered vehicles
outright between the years 2025 to 2040 [114-118]. In the U.S., FE is regulated by the Corporate
Average Fuel Economy (CAFE) rules, first established in 1975, as well as other regulations such
as the Environmental Protection Agency Clean Air Act [119], and the California Air Resources
Board [120].

In 2009, the CAFE requirements were increased and research at the time showed that the
increases could be met through improved vehicle design [121]. This CAFE increase affected model
year vehicles from 2012-2016 with the 2016 requirement being an average fuel economy of 34.1
mpg for cars and light trucks [122]. This increase was projected to save up to 96 billion gallons of
fuel and provide up to $170 billion in net societal benefits [123]. In 2011, the CAFE requirements
were increased again affecting model year vehicles from 2017-2025 with the 2025 requirement
being an average fuel economy of between 48.7 and 49.7 mpg for cars and light trucks [124]. This
increase is projected to save up to 269 billion gallons of fuel and provide up to $483.2 billion
in net societal benefits [125]. A review to determine the efficacy of meeting the 2022-2025 mpg
standards was completed in 2016. This review notes that, on average, the automotive industry is
over-complying with CAFE rules, a wide range of technologies exists for manufacturers to use
to meet the 2022-2025 FE rules, and the 2022-2025 FE rules should not be adjusted [126, 127].
Despite these findings, the current CAFE rule effective date is being delayed [128] while the FE

requirement is being reconsidered based on a perceived high cost to comply [129].
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4.1.2 Optimal Energy Management to Increase Fuel Economy

Technologies used to increase FE for CAFE compliance include engine sizing, advanced engine
control, friction/mass/drag reduction, and powertrain electrification [126]. But, there are numerous
technologies that are not currently being utilized for CAFE compliance such as implementation of
an optimal energy management strategy (Optimal EMS) which has demonstrated FE improvements
of up to 30% for hybrid vehicles [130].

An Optimal EMS is the application of optimal control to vehicle powertrain operation with the
objective of minimizing fuel consumption (maximizing FE). The earliest roots of optimal control
can be traced back to the development of Calculus of Variations [131]. In the early 1960s, calculus
of variations was modified to handle various constraints in an application known as Pontryagin’s
Minimization/Maximization Principle [132]. In the 1950s with the advent of the digital computer,
a numerical scheme was invented known as dynamic programming (DP) [100]. These two meth-
ods are the main techniques still in use today to derive the globally optimal solution under the
assumptions of discretization and they have been applied to numerous control problems [99]. To
achieve a globally optimal control, knowledge of future events is required.

In the early 2000s, optimal control was applied to hybrid electric vehicles (HEVs) to deter-
mine the optimal usage of battery propulsive power versus engine propulsive power to produce the
minimum fuel consumption, in other words, the Optimal EMS [32]. This foundational research
focused on obtaining the globally optimal control through DP using 100% accurate prediction of
an entire discretized drive cycle. Since then, researchers have investigated stochastically robust
strategies [47,48,85,133,134] as well as fast computation strategies [49-51, 135, 136] which also
require drive cycle predictions. The overall goal of HEV Optimal EMS research is to realize glob-
ally optimal FE from vehicle control. The main challenge with Optimal EMS implementation is
the computational cost in processing sensor data to make predictions which are then used to derive
the Optimal EMS [4]. As a subset of this general problem, this research investigates potential FE

improvements from a DP derived Optimal EMS applied to acceleration events (AE) only.
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4.1.3 Optimal Energy Management of Acceleration Events

Acceleration portions of driving require the most propulsive power and consume the most fuel
relative to distance [137], thus they may represent the ideal place to apply optimal control. The
proposed prediction requirement for optimal control of AEs is feasible since it can be accomplished
using GPS location and speed limit information.

Initial research on AEs suggests that velocity and fuel consumption can be accurately modeled
with sinusoidal and polynomial models that satisfy a zero jerk condition consistent with real world
driving [138] but it is difficult to capture an inclusive set of AEs due to the variability introduced by
obstacles such as roundabouts, intersections, and crossings for different vehicles’ traffic conditions
and road types [139, 140]. Additionally, substantial variations in driver behavior in regard to AEs
results in significantly different fuel consumption rates [137] and many studies of AEs have become
experimental and data-driven [141].

The goal of this study is to derive an Optimal EMS for general, real-world, AEs but then apply
the Optimal EMS to many similar AEs thus eliminating the need for real-time calculations. This
paper expands upon a previous research finding that FE improvements are possible for a DP derived
Optimal EMS despite mispredictions [142] and is part one of two in this investigation. In part one
of the study, a rigorous investigation of an Optimal EMS applied to AEs is undertaken. In part two
of this study, the technique of Optimal EMS applied to AEs is implemented in several full drive

cycles.

4.1.4 Novel Aspects/Unique Contributions of this Research

This research makes the following new and novel contributions to the HEV Optimal EMS body

of knowledge:

1. Comprehensive analysis of thousands of AEs using an Optimal EMS
2. Feasibility investigation of applying precomputed AE Optimal EMS

3. Performance categorization of an Optimal EMS applied to AEs
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4. Use of optimal control solutions that are a function of velocity which only works for mono-

tonic drive segments

4.2 Methods

To understand the FE improvement potential of AE prediction, first a large database of real
world AEs is extracted from real world drive cycles. These AEs are then organized into various
categorization schemes. Next, two control methods are developed to implement in a model of a
2010 Toyota Prius: a baseline energy management strategy (Baseline EMS) and an Optimal EMS.
Lastly, a custom battery state of charge (SOC) adjusted FE calculation technique is developed for

AE:s to ensure unbiased FE comparison.

4.2.1 Acceleration Event Dataset Development
Data was recorded from several 2010 Toyota Prius drivers in the California area. The data is

composed of 384 drive cycles measured at at 10 Hz (0.1 second timesteps) with an average time

length of 1086 seconds and an average velocity of 28.05 mph (). An example drive cycle is

hour

shown in Fig. 4.1.
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Figure 4.1: One of the drive cycles in the real world drive cycle data set.

AEs can be extracted by identifying sections of speed data where v; — v;_; > 0. But, for real-
world accelerations, there are moments of steady or even decreasing speed within an AE and a two
timestep evaluation will yield erroneous results. Additionally, the real world drive data has a high

resolution and a strict equality evaluation for steady sections (v; — vj_; = 0) is insufficient. To
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address these issues, AEs were extracted by searching for sections satisfying the following logic

statement where A represents logical conjunction (i.e. an ‘and’ statement)
(Uj — Uj—l) A (Uj+1 — Uj) VAN (’Uj+2 — vj-i-l) VAN (’Uj+3 — Uj+2) S 0.05 rnph (41)

If equation 4.1 is true, then this section of the drive cycle is labeled as an AE. From these
extracted AEs, if they either start from a negative speed, last for one second or less, or only increase

speed by 5 mph or less then they are ignored. A conceptual plot of the identification of AEs in an

example drive cycle is shown in Fig. 4.2.
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Figure 4.2: Example of the results from the AE extraction algorithm. Note that one AE is ignored for
having a velocity increase less than 5 mph.

Using this process, 7,708 AEs are extracted from the 384 drive cycles for analysis. Next, each
AE is prepended with 8 seconds of the initial velocity to ensure the vehicle is at steady state at the
beginning of each AE and appended with 12 seconds of the final velocity to ensure the vehicle is

at steady state at the end of each AE. An example of the resulting AE cycle is shown in Fig. 4.3.
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Figure 4.3: Example of prepending and appending constant velocity to each AE to ensure steady state.
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The 7,708 AEs with the prepended and appended velocity states range from 22 seconds long
to 76 seconds long and include speeds from 0 mph to 50 mph. To derive generalized improved

control strategies, this dataset of AEs must now be categorized.

4.2.2 Acceleration Event Categorization

Three different AE categorization schemes were chosen for this analysis on the basis of prin-

ciple component analysis applied to the dataset:

1. Starting velocity and ending velocity categorization; v;, vy

2. Time duration and ending velocity; ¢, vy

3. Average acceleration and ending velocity; £ ;Ui , Uy

where the variables v;, vy, and ¢ are shown in figure 4.3.

The first categorization scheme, starting velocity and ending velocity, is shown in Fig. 4.4. The
x-axis shows the assigned AE category number, e.g. category 1, 2, 3, etc. The left y-axis shows
the velocity range. For example category 1 captures all AEs that start at 0 mph and end at 7.8+1.5
mph. The right y-axis shows the number of AEs in the AE category, for example there are about
321 AEs in category 1 (starting around 0 mph and end around 7.8+1.5 mph). Overall, Fig. 4.4
shows there are a high number of low velocity AEs and a small number of high velocity AEs in

the dataset.
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Figure 4.4: Plot showing the velocity range and the number of AEs in each category for the starting velocity
and ending velocity categorization scheme.
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The second categorization scheme, time duration and ending velocity, is shown in Fig. 4.5.
The x-axis and right y-axis are consistent with first categorization scheme plot, Fig. 4.4. But now
the left y-axis shows the ending velocity (as red X’s) and the total time duration (as blue dots) of
each category. For example, category 1 has a total time duration of 6.2+1.4 seconds and an ending
velocity of 12.2+2.2 mph for which there are 274 AEs. Note that the total time duration is shown
without prepended and appended velocity (Fig. 4.3) that is used to ensure steady state. Overall
Fig. 4.5 shows that, in general, there is a high number of short duration AEs and a low number of

long duration AEs in this dataset.
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Figure 4.5: Plot showing total duration, end velocity, and the number of AEs in each category for the time
duration and ending velocity categorization scheme.

The third categorization scheme, average acceleration and ending velocity, is shown in Fig.
4.6. The x-axis and right y-axis are consistent with the other two categorization scheme plots, Fig.
4.4 and 4.5. The left y-axis shows the ending velocity (as red X’s) and the average acceleration (as
blue dots) of each AE category. For example, AE category 1 has an average acceleration of about
0.11£0.01 g’s (g-force) and an ending velocity of approximately 34.2+2.2 mph. Overall Fig. 4.6

shows that the majority of AEs in this dataset have a low magnitude.
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Figure 4.6: Plot showing average acceleration, end velocity, and the number of AEs in each category for
the average acceleration and ending velocity categorization scheme.

4.2.3 Baseline Energy Management Strategy Development

The vehicle model chosen for analysis is a 2010 Toyota Prius because it is a popular and well
documented vehicle. It also has the highest FE of any vehicle in its class (excluding electric
vehicles) [143], implying that if a FE improvement can be demonstrated with this vehicle, it is
likely that FE improvements for other vehicles will be higher. A 2010 Toyota Prius is shown in

Fig. 4.7.

(b)

(a)

Figure 4.7: Front (a) and rear (b) view of the 2010 Toyota Prius hybrid electric vehicle simulated.

The Baseline EMS must be a high accuracy simulation of current real world vehicle FE perfor-
mance. Additionally, to compare alternate control strategies over thousands of short segments of
driving, such as AEs, the vehicle model must also have a low computational cost and high fidelity

to model FE changes due to control systems changes.
To satisty these requirements, a combination of a high fidelity vehicle model developed in the

Autonomie modeling software is used with an equation-based power-split model. The Autonomie
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modeling software has shown strong correlation with 2010 Toyota Prius physical vehicle operation
[97]. The Autonomie model was used to derive the engine torque, engine speed, and engine power
which was then implemented in the equation-based power-split model. FE and SOC with respect
to time are then recorded.

To ensure that this model does not sacrifice FE prediction accuracy, a detailed model validation
was conducted. The simulated FE from this model is validated against 2010 Toyota Prius FE
data physically measured by Argonne National Laboratory [98]. The publicly available data is
measured for the three standard U.S. Environmental Protection Agency (EPA) Drive Cycles: the
city driving focused Urban Dynamometer Drive Schedule (UDDS), the highway driving focused
Highway Fuel Economy Driving Schedule (HWFET), and the aggressive driving focused US06
cycle. All simulated FE was within 1.5% of the physically measured data as shown in Table 5.2.
Additional, second-by-second, validation of engine speed and battery state of charge (SOC) for

each of these drive cycles is shown in Appendix ??.

Table 4.1: A comparison of simulated and measured fuel economy for standard EPA drive cycles.

EPA Simulated Measured Percent
Drive Cycle | Fuel Economy | Fuel Economy [98] | Difference
UDDS 76.6 mpg 75.6 mpg 1.3%
HWEFET 69.0 mpg 69.9 mpg -1.4%
US06 44.9 mpg 45.3 mpg -1.0%

The equation-based power-split model was developed using information from the literature
[20,91, 101, 102]. Each of the 7,708 AEs is input into the 2010 Toyota Prius Autonomie model
and the engine torque, speed, and power output is recorded. For a given engine power, the required

electric power can be determined by subtracting the total propulsive power requirement as

Pelec = Fpropv - PICE (42)

where Fi,p is determined from a force balance on the vehicle as
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) 1
Fprop =muv + Crrmg + §CdpairU2Afr0nt (43)

where C)., is the coefficient of rolling resistance, m is the mass of the vehicle, ¢ is the acceleration
due to gravity (9.81 m/sec?), Cy is the coefficient of drag, p,; is the density of air (1.1985 k9/m3), v
is the vehicle velocity, Agon 1s the frontal area, and o is the vehicle acceleration (calculated using
a numerical derivative). Note that the additional force component due to an elevation angle is not
a part of this study.

The resulting battery SOC at the next timestep is then calculated as a numerical approximation

by

‘/oc — \/‘/:)20 - 4PbattFiint

SOC,eyy = SOC —
2Rinthatt,0

At (4.4)

where V. is the open circuit voltage of 201.6 V, R;, is the battery internal resistance of 0.373 (2,
and Qpay o 1S the battery capacity of 6.5 A-h.

The overall efficiency of the electrical components can then be captured using response surface
fits [103] of data available in the literature [102]. Using the speed and torque, the electrical system

efficiency is determined and applied as

Pbatt - _Pelec (45)
Tlelec

where 7). 1s a function of electric motor speed wgy, electric motor torque 7gy;, generator speed
Ween, and generator torque 7y.,. The electric motor and generator efficiency maps are extracted
from the Autonomie modeling software, shown in Figs. 5.4 and 5.5, which are used to compute

Nelec as @ function of the torques and speeds of the electric components.
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Figure 4.8: The electric motor map response surface.
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Figure 4.9: The generator response surface.



The fuel consumption is then obtained by first obtaining a Brake Specific Fuel Consumption
(BSFC) map through a cubic response surface [103] since a quadratic response surface does not
adequately match the structure of the BSFC map available in the public domain [91]. A BSFC

cubic response surface has the form of

BSFC = A, + Aswicg + AsTice+
AywrceTice + A5W12(:E + A6TI%ZE+

A7WICETI2CE + ABWIQCETICE + AQTISCE (4.6)

where all A values are fitted constants, wicg is the engine speed, and 7Ticg is the engine torque. The
surface developed is shown in Fig. 5.6. Once the BSFC response surface is developed, the ideal
operating line [37] can be computed which shows the minimum fuel consumption for any desired

power (also shown in Fig. 5.6).
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Figure 4.10: The approximated BSFC map response surface created.
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Lastly, the engine, generator, and wheel speed are constrained according to

1

e,

4.7)

WICE = W S
— Wgen
1+p

Pbatt = WgenTgen (48)

where p = %, Nicethgenerator = 30, and Nieewnring = 78 and is subject to operational speed limits of
ring
13,500 rpm for the electric motor and 10,000 rpm for the generator. The ring gear speed is based

on the vehicle speed as

o Tfinal driveV
Wring =

49
Rwheel ( )

where 7gua1 drive 1S the final drive ratio of 3.267 and Ry 18 the wheel radius of 0.317 m.

4.2.4 Optimal Energy Management Strategy Development

Deterministic DP is used to derive the Optimal EMS. Previous research has shown that despite
prediction errors, the DP derived control matrix results in maintained FE improvements [72]. This
research investigates deriving an Optimal EMS using DP for a single AE in a category and applying
the control matrix results to every other AE in the category.

The AE for which the Optimal EMS is derived is referred to as the “expected AE” and is an
estimate of the most common AE within the category. As an example, category 1 in Fig. 4.4 has a
starting velocity of O mph and an ending velocity of 7.8+1.5 mph. All of the AEs within category
1 are plotted in Fig. 4.11a. If the total duration of each of the AEs in category 1 is recorded,
shown in Fig. 4.11b, it can be seen that a duration between 4.5 and 5 seconds is most common
(this duration spans 40 occurrences). This implies that for category 1, a total duration of 4.5 to 5
seconds is an expected AE and all other durations are associated with “mispredictions”. Note that
only one AE is used to derive the Optimal EMS in the 4.5 to 5 second duration which is chosen at

random. This ensures that only one Optimal EMS is used for every category.
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Figure 4.11: A visual representation of the characteristic AE selection process. The AEs with the most
common total duration are labeled in black while all other AEs are shown in brown.

After the expected AE is determined for each category in each AE categorization scheme, the
Optimal EMS can be derived using DP. DP finds the optimal solution using backwards recursion,
which avoids solutions that are not optimal as defined by the Bellman principle of optimality
[99,100]. For every feasible state variable value, the optimal solution is stored. An appropriate DP
scheme consists of a dynamic equation shown in Equation 4.10, a cost function shown in Equation

4.11, and state and control variable feasibility constraints shown in Equation 4.13:

S(k+1)=S(k)+ fi(S,u,w, k)At (4.10)
N-1
J =Y fol S;u,w, k, At) 4.11)
k=0
Smin(k) < S(k) < Siax (k) (k=0,..N) (4.12)
Umin(K) < u(k) < Umax (k) (k=0,..N—-1) (4.13)
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where S is the state, u is the control, w is the exogenous input, k is the timestep number, At is the
timestep value, ./ is the cost, and N is the final timestep number.

For an HEV Optimal EMS derivation, the state is chosen to be the battery state of charge
(SOC), the control is chosen to be the engine power (Pcg), the exogenous input is the vehicle
velocity (v), and the cost is chosen to be the fuel mass consumed (7724,e1). This formulation with

the added feasibility constraints of engine operation and battery SOC yields the following modified

equations
SOC(k + 1) = SOC(k) + f3(SOC, Pcg, v, k) At (4.14)
N-1
Cost =Y My (4.15)
k=0
SOCpin < SOC(k) < SOC ax (k=0,...N) (4.16)
BCE,min S PICE(k> S -PICE,max (k - 07 N — 1) (417)

This HEV Optimal EMS derivation can then be tailored to a 2010 Toyota Prius using the
equation-based power-split model described in section 4.2.3. The resulting DP formulation for a

2010 Toyota Prius is

SOC (k’ + 1) = SOC (k’) - Cl + CQ\/C3 — 04’0(/{5) + 05’0(/{5)3 + C(ﬂ)(k’)v(k‘) — C7PICE (418)

N-1

Cost = > fi (Pice) + W (SOC; — SOC(N))? (4.19)
k=0

40 % < SOC(k) <80 %  (k=0,..N) (4.20)

0kW < Beg(k) <73kW  (k=0,..N —1) (4.21)

Cs [f5 (Pice)] + Cov(k) < Ch (4.22)
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where C' through (' are constants and IV is an SOC target penalty weight set arbitrarily at 10,000.
This process is described in more detail in the previous publication [72].
The following timestep, state, and engine power discretization values are used which were

determined from a convergence test:

At = 0.4 sec (4.23)
ASOC = 0.001% (4.24)
APcg = 0.1 kW (4.25)

The solution to this problem is an optimal control matrix which provides the minimum fuel
consumption engine power for any feasible time and battery SOC during the AE. The optimal
control matrix for a low velocity AE is shown in Fig. 4.12 and the optimal control matrix for a

high velocity AE is shown in Fig. 5.10.
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Figure 4.12: The optimal control matrix derived using dynamic programming for a low velocity acceleration
event.

For example, if the battery SOC is 40% and the time since beginning the AE is 3 seconds, Fig.
4.12 shows that approximately 20 kW of engine power will provide the minimum fuel consumption
solution (for a low velocity AE) while Fig. 5.10 shows that approximately 30kW of engine power

will provide the minimum fuel consumption solution (for a high velocity AE).
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Figure 4.13: The optimal control matrix derived using dynamic programming for a high velocity accelera-
tion event

4.2.5 Battery State of Charge Correction

When evaluating alternate control strategies it is likely that ending battery SOC (SOC/) for
each strategy will be different. For full drive cycles, the Society of Automotive Engineers (SAE)
J1711 standard describes how to determine a corrected FE [104]. Unfortunately, this technique
gives erroneous results when applied short sections of driving such as AEs.

SAE J1711 assumes a constant engine efficiency of 25% which is not appropriate for a large
dataset of AEs since engine efficiency can be significantly different for different AEs. Additionally
the FE results for AEs are very sensitive to the FE correction technique since the fuel consumption
relative to full drive cycles is very low.

To address these issues, a FE correction technique was employed that is a slight modification to
the SAE standard. Each relative increase in FE and SOC result for every AE within one category

are plotted in Fig. 4.14, with relative increases defined as

AFE = FEOptimal EMs — FEBuscline EMS (426)

ASOC = SOCf,Optimal EMS — SOCf,Baseline EMS (427)
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Figure 4.14: Illustration of SOC correction method.

Also shown in Fig. 4.14 is a linear fit of all of the AE results (shown in blue). The point where
this blue line crosses the y-axis is the average FE improvement for all AEs in this category.

Individual AE results for this category are determined by tracing a point to where it crosses
zero on the y-axis using the slope of the fit line. For example, the blue circle represents an AE with
a SOC difference of 0.7% and a FE difference of -6%. The SOC adjusted FE improvement is 3%

which can be seen by following the blue arrow to the blue X.

4.3 Results

The results include an investigation of the FE improvement mechanism, a FE improvement
calculation for every AE in every AE category for each categorization scheme, and the impact of
fewer or more AE categories on the overall FE improvement. Other impacts will be investigated

in part 2 of this research which applies the control strategy outlined here to new full drive cycles.
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4.3.1 Fuel Economy Improvement Mechanism

Applying the DP-derived Optimal EMS to AEs results in a FE improvement. For a low ve-
locity AE, Fig. 5.12a compares the Baseline EMS and Optimal EMS engine operation points and
shows that the Optimal EMS results in more efficient engine operation since the operation points
are closer to the region of highest efficiency. For a high velocity AE, Fig. 5.12b compares the
Baseline EMS and Optimal EMS engine operation points and shows that the Optimal EMS results
in more efficient engine operation since the operation points are concentrated in the region of high-
est efficiency. Low velocity accelerations typically result in a FE improvement of approximately

5% while high velocity accelerations typically result in a FE improvement of approximately 2%'.
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Figure 4.15: A comparison of baseline control and optimal control results for engine power (a) and engine
operation (b).

4.3.2 Acceleration Event Categorization Scheme
Investigation of the overall FE improvement from each of the AE categorization schemes can

be investigated next. The FE improvement was determined using equation 4.28 but the Optimal

The FE improvement is calculated as

FE im —FE in
Optimal EMS Baseline EMS « 100% (4.28)

FE Improvement =
FERBaseline EMS
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EMS was only derived for one expected AE in each category but was applied to every AE in the
category.

In Fig. 4.164, results for categories defined by starting and ending velocity are shown, sorted
according to FE improvement. Fig. 4.16b shows that the highest FE improvement is achieved for
low velocity accelerations, of which there are many instances in the driving dataset. This figure
also shows a FE loss for high velocity accelerations, of which there are few instances in the driving

dataset.
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Figure 4.16: Plot comparing characteristic velocities to FE performance for each category, sorted by de-
creasing mean FE improvement.

In Fig. 4.17a, results for categories defined by time duration and end velocity are shown, sorted
according to FE improvement. When correlating the results with the FE improvement shown in
Fig. 4.17b, it can be seen that the largest FE improvements are for low velocity AEs that have a
relatively long duration. Additionally, AEs with the longest duration tend to result in a general FE

improvement. High velocity, short duration AEs give the lowest FE improvement.
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Figure 4.17: Plot comparing characteristic velocities to FE performance for each category, sorted by de-
creasing mean FE improvement.

In Fig. 4.18a, results for categories defined by average acceleration and end velocity are shown,
sorted according to FE improvement. When correlating the results with the FE improvement shown
in Fig. 4.17b, it can be seen that low magnitude low velocity AEs achieve the highest FE improve-

ment. Additionally, high magnitude, high velocity AEs give the worst FE results.
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Figure 4.18: Plot comparing characteristic velocities to FE performance for each category, sorted by de-
creasing mean FE improvement.

In general each of the categorization schemes has a similar weighted total FE improvement
(shown in the inset table in Figs. 4.16b, 4.17b, and 4.18b) with the duration and average accelera-
tion categorization schemes have a higher overall variance than the starting velocity categorization
scheme. It was also found that greater FE improvements are achieved when the actual AE duration
is equal to or longer than the expected AE duration. This phenomenon may warrant investigation

in future work.

4.3.3 Number of Acceleration Event Categories

Lastly, we investigate the tradeoff between FE improvement and the number of categories.
With too few categories, the drive cycle data will have a large FE improvement variance and with
too many categories the data is overfit and lacks generalization.

FE results for various numbers of starting velocity and ending velocity categories can be seen
in Fig. 4.19. This figure shows that when few starting and ending speed categories are used, there

is a large FE variance. This figure also shows that when 100s of starting and ending velocity
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categories are used, the FE improvement is slightly higher, but we are approaching the point of
an Optimal EMS derived for every single AE which results in an overfitting of data and a lack of
generalization. For around 15 starting and ending categories there is a significant and robust FE
improvement. This figure also shows that constraining the end velocity is more important than
constraining the starting velocity. High numbers of end velocity categories (and therefore stronger
constraints on end velocity error) result in robust FE improvements, with little regard to the number
of start velocity categories; conversely, if there are few end velocity categories, no number of start

velocity categories can produce reliable FE benefits.
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Figure 4.19: Plot comparing the number of starting and ending velocity categories to FE performance,
sorted by decreasing mean FE improvement.

FE results for various numbers of time duration and ending velocity categories can be seen
in Fig. 4.20. For few numbers of categories (e.g. AE categorization scheme number > 120) the
variance in FE improvement is very large, but when 100s of categories are used the FE results are

actually worse. Significant and robust FE improvement is achieved with approximately 10 time
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duration and end velocity categories. Fig. 4.20 also shows that the end velocity error is more

important to constrain than duration error.
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Figure 4.20: Plot comparing the number of duration and ending velocity categories to FE performance,
sorted by decreasing mean FE improvement.

FE results for various numbers of time duration and ending velocity categories can be seen in
Fig. 4.21. For few numbers of categories the variance in FE improvement is large, but with 100s
of categories the FE results are actually worse. Fig. 4.21 also shows that end velocity error is more

important to constrain than average acceleration error based on the similar relationship to the time

duration categorization case.
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Figure 4.21: Plot comparing the number of average acceleration and ending velocity categories to FE
performance, sorted by decreasing mean FE improvement.

Overall AE misprediction is most prone to end velocity error, reasonably prone to duration
and acceleration error, and least prone to start velocity error. An categorization of AEs accord-
ing to starting and ending velocity yields the largest FE improvements. This informs real world

implementation of this technique.

4.4 Conclusion

In this study, a dataset of 7,708 AEs was extracted from 384 real world drive cycles. These
AEs were organized according to multiple categorization schemes: end velocity and (1) starting
velocity, (2) time duration, and (3) average acceleration. A Baseline EMS for a 2010 Toyota
Prius was derived using a combination of the Autonomie modeling software and an equation-based
power-split model which was rigorously validated against real world performance. An Optimal
EMS was derived using DP for only the most common AE in each category, which expands upon
a previous research finding that FE improvements are maintained for a DP derived Optimal EMS

on a similar drive cycle [72]. The results show that FE improvements can be obtained because the
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engine is operated at higher efficiency. The most significant and robust FE improvements can be
obtained using starting velocity and ending velocity AE categorization with around 15 categories
of each. Battery SOC impacts will be investigated in part 2 of this paper which applies the control
strategy outlined here to full drive cycles.

Since a DP derived Optimal EMS can realize FE improvements for a variety of drive cycles, it
may not be required to compute an Optimal EMS via DP in real time during vehicle operation. The
Optimal EMS could be implemented as a look-up table thus making a real world Optimal EMS
implementable with the limited computation power of vehicle controllers in use today. This FE

improvement technique does not require new hardware to implement.

4.5 Chapter Conclusions

This section of the research effort has allowed us to partially address Research Question 2,
which is restated here:

Research Question 2: What level of prediction fidelity and scope is required to realize a fuel
economy improvement through predictive energy management and potentially eliminate the need
for real-time computation?

Research Question 2 is associated with Hypothesis 2:

Hypothesis 2: Implementing a general prediction solution for the acceleration portions of a
drive cycle will result in FE improvements without the need for perfect prediction.

This research effort has provided support for this hypothesis. Through development, organi-
zation, and organization discretization of AEs, it was determined that significant and robust FE
improvements are possible. The limited AE prediction strategy can then be investigated within a

drive cycle to further investigate the hypothesis.
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Chapter 5
Improved Fuel Economy through Acceleration Event

Prediction Part 2: Drive Cycle Application

This study investigates the FE impacts of AE prediction within a drive cycle and involves drive
cycle development, application of the AE prediction control scheme discussed in Chapter 4 to full
drive cycles, application of the dynamic programming algorithm to full drive cycle prediction as
well as drive cycle AE prediction, and a high fidelity model of a 2010 Toyota Prius. This research
is part of an ongoing project funded by Toyota. David A. Trinko has also made significant contribu-
tions to this project by improving the vehicle model and expanding the study to include improved
drive cycle application techniques, and the analysis of more drive cycles. This monumental re-
search effort is just now reaching the publication phase with a conference publication [106] and

the recently submitted journal paper reproduced in this chapter [144]

5.1 Introduction

Advanced vehicle powertrain control strategies such as predictive optimal energy management
can improve fuel economy (FE) by up to 30% but additional research is required before vehicle
implementation can be realized. This is due to the complicated requirement of making future
vehicle operation predictions and controlling the vehicle powertrain based on those predictions [4].
An investigation of the trade-offs between prediction scope versus the FE improvement result for

a variety of drive cycles is required.

5.1.1 Fuel Economy Improvement Needs

Transportation provides significant economic benefits but is responsible for approximately one
third of the global total energy consumption [108]. Generating this energy from petroleum fuel cre-

ates economic risks since petroleum reserves are finite and are not evenly distributed by country.
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The European Union, the U.S., China, India, Japan and others are required to import petroleum
thereby exposing themselves to high oil supply risk [7]. Meeting transportation energy needs
through petroleum combustion generates significant air pollution from five of the six major air
pollution constituents [87]. This air pollution has contributed to 6.5 million premature deaths
across the world in 2012, making air pollution the fourth-leading cause for premature death world-
wide [16]. Meeting transportation energy needs through petroleum combustion also generates
greenhouse gas emissions and the transportation sector is the second largest contributor of these
emissions [11,110]. Greenhouse gas emissions have been linked to global warming which has
major human health, ecosystem, and environmental impacts [111].

A new global policy that addresses these issues by limiting greenhouse gas emissions, known as
the Paris Climate Agreement, has been signed by every country in the world [145, 146]. It is antic-
ipated that the signing of this agreement will result in near future greenhouse gas emission reduc-
tions [13, 147] but more aggressive greenhouse gas reduction solutions are required [13, 148, 149].
The U.S. initially helped establish the Paris Climate Agreement [150] but has since expressed a
desire to leave the agreement to support government deregulation [151-153]. Despite this, indi-
vidual states and cities within the U.S. have expressed that they will still uphold the requirements
of the Paris Climate Agreement [154].

Improving vehicle FE is a major initiative for meeting the reduction in greenhouse gas emis-
sions outlined in the Paris Climate Agreement which also, by extension, limits petroleum impor-
tation and air pollution [14]. Because of the Paris Climate Agreement, many countries have FE
related goals such as the 50% fuel economy improvement worldwide by 2050 challenges (50 by

50) [112,155-158].

5.1.2 Drive Cycle Analysis

Drive cycles are a series of vehicle velocity versus time or distance data points. Over time, stan-
dardized drive cycles have been developed that represent various types of driving which includes

city driving, highway driving, and aggressive driving for small vehicles [159], heavy duty vehi-
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cles [160], buses [161], and others. Current U.S. policy is to use a small number of city, highway,
and aggressive drive cycles to represent the concept of operation [162] so vehicle performance
can be evaluated [163]. Most researchers typically limit their concept of operations to one or two
drive cycles [159,161,164—168]. But, new research has shown that to ensure robust operation over
a variety of driving conditions, as many drive cycles as are available should be included in the

study [169].

5.1.3 Optimal Energy Management to Increase Fuel Economy

Technologies used to increase FE include engine sizing, advanced engine control, friction/
mass/ drag reduction, and powertrain electrification [126]. But, there are numerous technologies
that also have the potential to significantly improve FE, such as implementation of an optimal
energy management strategy (Optimal EMS) which has demonstrated FE improvements of up to
30% for hybrid vehicles [130].

An Optimal EMS is the application of optimal control to vehicle powertrain operation with the
objective of minimizing fuel consumption (maximizing FE). To achieve globally optimal control,
knowledge of future events is required. In the early 2000s, optimal control was applied to hybrid
electric vehicles (HEVs) to determine the optimal usage of battery propulsive power versus engine
propulsive power to produce the minimum fuel consumption, in other words, the Optimal EMS
[32]. This foundational research focused on obtaining the globally optimal control through DP

using 100% accurate prediction of an entire discretized drive cycle.

5.1.4 Optimal Energy Management Implementation

Accurate prediction of an entire drive cycle and real time derivation of the Optimal EMS
is difficult to achieve in modern and near-future vehicles due to limited understanding of pre-
diction techniques and the high computational cost of Optimal EMS derivation [4]. To address
these issues, researchers have begun investigating prediction techniques for use with an Optimal

EMS [57-59,61-63,170, 171], real time Optimal EMS derivation strategies that may compromise
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optimality [49-51,135,136], and stochastically robust Optimal EMS derivation strategies that may
compromise optimality [47,48, 85,133, 134].

A potential solution to implementation of an Optimal EMS is to use a precomputed globally
Optimal EMS rather than a real-time computed nonglobally Optimal EMS. This option did not
seem feasible until recent research established that FE improvements are still achieved when a
globally Optimal EMS is subjected to mispredictions [70-72]. Each precomputed, real-time, and
stochastically robust Optimal EMS requires some form of prediction, but a correctly applied pre-
computed globally Optimal EMS eliminates the need for real-time computation and also eliminates
the need for stochastic robustness [72, 106].

Prediction modeling is not within the scope of this research. Instead a limited prediction of
acceleration events (AE), which are a small percentage of the total drive cycle, is assumed. Part
one of this research has shown that prediction of only the start time of an AE, the approximate
initial velocity (v;) of the AE, and the approximate final velocity (vy) of the AE are all that is
required to realize a significant and robust FE improvement [107]. In part two of this research,
this analysis is extended to investigate the total FE improvement and battery state of charge (SOC)

impacts of this AE category precomputed Optimal EMS over a variety of drive cycles.
5.1.5 Novel Aspects/Unique Contributions of this Research
This research makes the following novel contributions to the Optimal EMS body of knowledge:

1. FE results of a precomputed Optimal EMS in a drive cycle, eliminating the need for real

time calculations

2. FE results of AE prediction in a drive cycle reducing the scope of prediction required for an

Optimal EMS

5.2 Methods

To determine the impact of AE category prediction in drive cycles, several steps are required.

The first is to develop a set of drive cycles representing various styles of driving. Next four control
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strategies are compared: (1) a baseline energy management strategy (Baseline EMS), (2) a full
drive cycle prediction Optimal EMS, (3) an exact AE prediction Optimal EMS, and (4) a category
AE prediction Optimal EMS. Comparing these control strategies will reveal the potential of a

category AE prediction Optimal EMS.

5.2.1 Drive Cycle Development

To rigorously investigate the FE costs and benefits of AE prediction, numerous drive cycles
are investigated. The drive cycles include standard Environmental Protection Agency (EPA) drive
cycles as well as developed real-world drive cycles. All real-world drive cycles were recorded from
the controller area network (CAN) bus of an instrumented vehicle using the CANoe software. The
drive cycles can be divided into three categories: (1) city drive cycles, (2) highway drive cycles,
and (3) aggressive drive cycles.

Four city drive cycles are analyzed. These include one city drive cycle recorded in Denver,
Colorado, USA which drives directly through downtown with moderate traffic levels and one city
drive cycle recorded in Fort Collins, Colorado, USA in low traffic conditions. Two EPA city drive
cycles were also selected which include the Urban Dynamomoter Driving Schedule (UDDS) and
the New York City Cycle (NYCC). These four city cycles are summarized in Table 5.3 and the
velocity traces are shown in Fig. 5.1.

Three highway drive cycles and one aggressive drive cycle are also analyzed. The highway
drive cycles include one drive cycle recorded in Denver, CO, USA, that transitions across two
major highways and one drive cycle recorded on and around I-25 in Fort Collins, CO, USA. The
last highway drive cycle used is the EPA’s Highway Fuel Economy Test (HWFET). The aggressive
drive cycle used is the EPA’s US06 cycle. These four drive cycles are shown in Table 5.3 and the

velocity traces are shown in Fig. 5.2.
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Figure 5.1: All of the city drive cycles analyzed which include the Denver City Cycle (a), the NYCC (b),
the UDDS (c), and the Fort Collins City Cycle (d).
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Figure 5.2: All of the highway drive cycles analyzed which include the Denver Highway Cycle (a), the Fort
Collins Highway Cycle (b), and the HWFET (c). Also included is the aggressive drive cycle, the US06 (d).
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Table 5.1: All drive cycles analyzed.

Drive Cycle Drive Cycle Source
Name Type
Denver City City Real World
NYCC City EPA
UDDS City EPA
Fort Collins City City Real World
Denver Highway Highway | Real World
Fort Collins Highway | Highway | Real World
HWEFET Highway EPA
USo06 Aggressive EPA

5.2.2 Baseline Energy Management Strategy

No Drive Cycle
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Figure 5.3: A conceptual diagram of how vehicle powertrain control is currently implemented, the Baseline

EMS.

The Baseline EMS represents the current real world control of modern hybrid vehicles. The

Baseline EMS controls the vehicle according to a set of rules and because of this, the a Baseline

EMS is sometimes referred to as a “Rules-Based Control Strategy”. The control conceptual dia-

gram for the Baseline EMS is shown in Fig. 5.3. The vehicle model chosen for analysis is a 2010

Toyota Prius because it is a popular and well documented vehicle. This vehicle is shown in the

“vehicle plant” subsystem of Fig. 5.3.
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To model and compare the effects of alternate control strategies applied to short segments of
driving, a responsive and high fidelity vehicle model is required. To satisfy this requirement, a
combination of a high fidelity vehicle model developed in the Autonomie modeling software is
used with an equation-based power-split model. The Autonomie modeling software has shown
strong correlation with 2010 Toyota Prius physical vehicle operation [97] and is used to derive
the engine torque, engine speed, and engine power. These inputs are then implemented in the
equation-based power-split model with which FE and SOC with respect to time are calculated.

To ensure that this model does not sacrifice FE prediction accuracy, a detailed model validation
was conducted. The simulated FE from this model is validated against 2010 Toyota Prius FE data
physically measured by Argonne National Laboratory [98]. The publicly available data is mea-
sured for the three standard U.S. Environmental Protection Agency (EPA) Drive Cycles: UDDS,
HWEFET, and the US06. All simulated FE was within 1.5% of the physically measured data as
shown in Table 5.2. Additional second-by-second validation of engine speed and battery state of

charge (SOC) for each of these drive cycles is presented in [107].

Table 5.2: A comparison of simulated and measured fuel economy for standard EPA drive cycles.

EPA Simulated Measured Percent
Drive Cycle | Fuel Economy | Fuel Economy [98] | Difference
UDDS 76.6 mpg 75.6 mpg 1.3%
HWEFET 69.0 mpg 69.9 mpg -1.4%
US06 44.9 mpg 45.3 mpg -1.0%

The equation-based power-split model was developed using information from the literature
[20,91,101, 102]. Each drive cycle is input into the 2010 Toyota Prius Autonomie model and the
engine torque, speed, and power output is recorded. For a given engine power, the required electric

power can be determined by subtracting the total propulsive power requirement as

Pelec = L'propV — PICE (51)

where F,,, is determined from a force balance on the vehicle as
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1
Fprop =mv + C.,mg + Ecdpairv2Afrom (5.2)

where C.,. is the coefficient of rolling resistance, m is the mass of the vehicle, g is the acceleration
due to gravity (9.81 m/sec?), Cy is the coefficient of drag, p,; is the density of air (1.1985 k9/m3), v
is the vehicle velocity, Agqn 1s the frontal area, and o is the vehicle acceleration (calculated using
a numerical derivative). Note that the additional force component due to an elevation angle is not
a part of this study.

The resulting battery SOC at the next timestep is then calculated as a numerical approximation

by

‘/oc - \/‘/;)2(; - 4PbattRint
2Rinthatt,0

SOC\ey = SOC — At (5.3)

where V. is the open circuit voltage of 201.6 V, Ry, is the battery internal resistance of 0.373 (2,
and Qpay,o 1S the battery capacity of 6.5 A-h.

The overall efficiency of the electrical components can then be captured using response surface
fits [103] of data available in the literature [102]. Using the speed and torque, the electrical system

efficiency is determined and applied as

1
Pbatt - _Pelec (54)

elec

where 7). 1s a function of electric motor speed wgy, electric motor torque 7gy, generator speed
Ween, and generator torque Tye,. The electric motor and generator efficiency maps are extracted
from the Autonomie modeling software, shown in Figs. 5.4 and 5.5, which are used to compute
Nelec as a function of the torques and speeds of the electric components.

The fuel consumption is then obtained by first deriving a Brake Specific Fuel Consumption
(BSFC) map through a cubic response surface [103] since a quadratic response surface does not
adequately match the structure of the BSFC map available in the public domain [91]. A BSFC

cubic response surface has the form of
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Figure 5.4: The electric motor map response surface.
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Figure 5.5: The generator response surface.

BSFC = Al + AQWICE + ASTICE+

AywrceTice + A5WI2CE + AGTI%:E+

AqwnceT g + AswingTice + AoTiog  (5.5)
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where all A values are fitted constants, wicg is the engine speed, and Ticg is the engine torque. The
surface developed is shown in Fig. 5.6. Once the BSFC response surface is developed, the ideal
operating line [37] can be computed which shows the minimum fuel consumption for any desired

power (also shown in Fig. 5.6).
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Figure 5.6: The BSFC map response surface created.

Lastly, the engine, generator, and wheel speed are constrained according to

1

+ Wringrp

(5.6)

WICE = Wgen%
p

Pbatt = WgenTgen (57)

where p = ]]\%‘;, Nieethgenerator = 30, and Nieeinring = 78 and is subject to operational speed limits of
13,500 rpm for the electric motor and 10,000 rpm for the generator. The ring gear speed is based
on the vehicle speed as

T'final driveV (5.8)

Wring =
£ Rwheel
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where 7gna dgrive 18 the final drive ratio of 3.267 and Rypee 1S the wheel radius of 0.317 m.

5.2.3 Optimal Energy Management Strategy: Perfect Full Drive Cycle Pre-

diction
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Figure 5.7: A conceptual diagram of how globally optimal vehicle powertrain control is implemented, the
globally Optimal EMS.

Deterministic DP is used to derive the globally Optimal EMS for a fixed drive cycle. This is an
important and relevant data point to put other FE improvement results in perspective. Although it
is not expected that AE prediction will provide nearly the same result as full drive cycle prediction,
it will be beneficial to understand the portion of the FE improvement that can be gained from AE
prediction. The control conceptual diagram for this globally Optimal EMS is shown in Fig. 5.7.

DP finds the optimal solution using backwards recursion, which avoids solutions that are not
optimal as defined by the Bellman principle of optimality [99,100]. For every feasible state variable
value, the optimal solution is stored. An appropriate DP scheme consists of a dynamic equation, a
cost function, and state and control variable feasibility constraints. Applying this to engine control

of a 2010 Toyota Prius results in the following equations

SOC (k + 1) = SOC (k) — C + Cy+/C5 — Cyv(k) + Csv(k)3 + Cei(k)v(k) — CrPece  (5.9)
N-1

Cost= Y fi (Pcg) + W (SOC; — SOC(N))* (5.10)
k=0
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30% < SOC(k) <80 %  (k=0,..N) (5.11)
0kW < Peg(k) < 73kW  (k=0,..N —1) (5.12)

Cs [f2 (Picg)] + Cov(k) < Cho (5.13)

where Equation 5.9 is the dynamic equation, Equation 5.10 is the cost function, and Equation 5.13
shows the state and control feasibility constrains. The state variable is the battery state of charge
(SOC), the control variable is the engine power (Ficg), the exogenous input variable is the velocity
(v) and its time derivative (acceleration v), the cost is the fuel mass consumed (M), C through
(' are constants, and W is an SOC target penalty weight set arbitrarily at 10,000. The remaining
variables describe time discretization where k is the timestep number and NV is the final timestep
number.

The solution to this problem is an optimal control matrix which provides the minimum fuel
consumption engine power for any feasible time and battery SOC during the AE. An example of
the optimal control matrix for the Fort Collins city drive cycle is shown in Fig. 5.8. For example,
at a time of 430 seconds,an engine power of 27 kW is required for almost every feasible value of

battery SOC, which results in the the minimum fuel consumption solution.
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Figure 5.8: The optimal control matrix derived using dynamic programming for a full drive cycle.
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Figure 5.9: A conceptual diagram of how optimal vehicle powertrain control is implemented in acceleration

events only.

Deterministic DP is also used to derive the Optimal EMS for each AE in each drive cycle. This

is also an important and relevant data point to put the new AE control FE improvement results in

perspective. The goal of designing alternate AE control strategies is to show that the new control

strategy achieves nearly the same result as perfect prediction of the actual AE in the drive cycle.

The control conceptual diagram for this Optimal EMS is shown in Fig. 5.9.
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Figure 5.10: The optimal control matrix derived using dynamic programming for a high velocity accelera-
tion event

Derivation of an Optimal EMS for AEs follows the same procedure outlined in section 5.2.3,
except the exogenous input is not the entire drive cycle, just the AE. The DP algorithm is run for
each AE in each drive cycle. An example result of the optimal control matrix is shown in Fig.
5.10. For example, this figure shows that if battery SOC is 40% and 3 seconds have elapsed since
beginning the AE, 30kW of engine power will provide the minimum fuel consumption solution.

Fig. 5.9 shows how perfect AE prediction is implemented in each drive cycle. During portions
of driving that are not AEs, the Baseline EMS is employed (rules-based control). As an example,
if a drive cycle consists of an AE followed by steady state followed by an AE, then the control
strategy is an Optimal EMS for the first AE, the control strategy then reverts to the Baseline EMS
for the steady state portion, and then switches to an Optimal EMS for the second AE.

This was realized in simulation by first running the vehicle model with the Baseline EMS,

removing portions of control that take place during an AE, and implementing the Optimal EMS for
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each AE that seeks a final SOC value, SOCY, to be coincident with the SOC/; from the Baseline
EMS.

5.2.5 Optimal Energy Management Strategy: Acceleration Event Category
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Figure 5.11: A conceptual diagram of how the proposed acceleration event optimal vehicle powertrain
control is implemented.

Previous research has shown that FE is improved despite mispredictions when using a DP
derived control matrix [72]. Part one of this research investigated an AE categorization scheme
to take advantage of this result. A dataset of 384 real world drive cycles was used to extract
7,708 AEs. Note that this dataset does not include any of the drive cycles analyzed for this study.
Significant and robust FE improvements were obtained for a categorization scheme consisting of
15 end velocity categories and 10 starting velocity categories for which one Optimal EMS was
derived for each category [107]. This overall control strategy can now be tested on a variety of
AEs in independent drive cycles.

Fig. 5.11 shows how AE prediction categorization is implemented for each drive cycle. During
portions of driving that are not AEs, the Baseline EMS is employed (rules-based control). Imple-
menting this control strategy in each drive cycle, results in sections of applying a precomputed
Optimal EMS and sections of applying the Baseline EMS. For example, if a drive cycle starts with
an AE, the Optimal EMS for an associated AE category is implemented. Once the AE ends, the

Baseline EMS is implemented. Then, if a second AE is identified, the Optimal EMS for an asso-
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ciated AE category can be applied once this second AE starts. After the second AE, the Baseline
EMS is implemented again. This process continues for the duration of the drive cycle. Because
the optimal solution is defined for all feasible states of the vehicle, different values of battery SOC
are automatically accounted for and adjusted. Battery SOC for this control strategy may vary
significantly from the Baseline EMS as the drive cycle progresses.

The major advantage of this control strategy is that Optimal EMS calculations are not computed
in real time. The Optimal EMS is essentially implemented as a look-up table thus making it

compatible with the current abilities of vehicle powertrain controllers.

5.3 Results

To compare and understand each of these control strategies, a comparison of the FE and the
drive cycle characteristics is required as well as a time trace of the drive cycle, FE, and battery
SOC. This time trace is presented for a representative case of city driving, highway driving, and

for the aggressive driving cycle. A time trace for all other drive cycles is shown in Appendix C.

5.3.1 Fuel Economy Improvement Comparison

Four control strategies are required to properly analyze the results of the proposed AE catego-
rization control strategy: (1) the Baseline EMS, (2) the globally Optimal EMS from perfect full
drive cycle prediction, (3) the Optimal EMS from perfect AE prediction, and (4) the proposed AE
categorization prediction. Note that second control strategy, the globally Optimal EMS from per-
fect full drive cycle prediction, is the maximum possible FE that can be achieved from an Optimal
EMS. The third control strategy, the Optimal EMS from perfect AE prediction, is the maximum
possible FE that can be achieved from only AE prediction with an Optimal EMS. These four con-
trol strategies are then reduced to three FE results by calculating the FE improvement over the

Baseline EMS as FEnew control —FEBaseline EMs / FEguseline Ems X 1 00%.
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Figure 5.12: All FE results shown as a percentage improvement over the Baseline EMS FE. Note that all
Optimal EMS are derived using DP.

Fig. 5.12 shows the FE results for all control strategies for all drive cycles. As expected, perfect
full drive cycle prediction results in a significant FE improvement ranging from 3.9% for the US06
cycle up to 15.1% for the Denver City Cycle. Perfectly predicting every AE in each drive cycle

results in a sizable FE improvement ranging from 0.5% for the US06 drive cycle up to 5.1% for the
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Table 5.3: All drive cycles analyzed.

Drive Cycle Number | AE Portion of | Average v

of AEs | Drive Cycle for AEs
Denver City 28 18% 15.3 m/sec
NYCC 13 18% 14.9 m/sec
UDDS 22 22% 17.4 m/sec
Fort Collins City 19 23% 20.5 M/sec
Denver Highway 18 20% 23.4 m/sec
Fort Collins Highway 11 13% 18.2 m/sec
HWEFET 4 10% 23.4 m/sec
US06 12 26% 25.7 m/sec

NYCC drive cycle. Predicting only the AE category and applying a precomputed Optimal EMS
can result in significant FE improvements but the results span a 1.2% FE loss for the US06 drive
cycle up to a 3.9% FE improvement for the NYCC drive cycle.

Table 5.3 compares some characteristics of each drive cycle. The Fort Collins Highway Cycle
and the HWFET cycle have the fewest AEs and thus AEs only compose 13% and 10% of the drive
cycle respectively. The Denver City Cycle, the NYCC drive cycle, and the UDDS drive cycle have
the smallest AE average velocity. The US06 drive cycle has a small number of AEs and the highest
AE average velocity.

By comparing Fig. 5.12 and Table 5.3, trends can be discovered regarding large FE improve-
ment cases. Fig. 5.12 shows that the Denver City Cycle, the NYCC, the UDDS, the Fort Collins
City Cycle, and the Denver Highway Cycle all have a large FE improvement from AE category
prediction with a precomputed Optimal EMS. And Table 5.3 shows that these drive cycles have a
large number of AEs and the AE average velocity is low. Therefore, for drive cycles with lots of
low velocity AEs, category prediction with a precomputed Optimal EMS provides a significant FE
improvement.

Other trends can also be discovered by comparing Fig. 5.12 and Table 5.3 relating to small FE
improvement cases. Fig. 5.12 shows that the Fort Collins Highway and the HWFET drive cycles
result in the lowest FE improvement for AE category prediction with a precomputed Optimal EMS.

Table 5.3 shows that these drive cycles do not have many AEs and the HWFET has high velocity
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AEs. Therefore, using an AE category prediction with a precomputed Optimal EMS does not
provide a significant FE improvement for drive cycles without many AEs.

Lastly the FE loss scenario can be understood by comparing Fig. 5.12 and Table 5.3. Fig. 5.12
shows a 1.2% FE loss for the US06 drive cycle when AE category prediction with a precomputed
Optimal EMS is used. Table 5.3 shows that this drive cycle has a significant amount of AEs, but
the AEs are at a significantly higher velocity. This is important because high velocity AEs typically
result in a FE loss due to the original dataset used to precompute the Optimal EMS not including
many high velocity AEs [107].

In general, AE category prediction with a precomputed Optimal EMS results in half to 90%
of the FE improvement from perfect AE prediction. This strategy does not require real-time com-
putations and requires very limited predictions. The FE improvement results from perfect AE
prediction compared to full drive cycle prediction are dependent on how many AEs are in the drive
cycle. But, for drive cycles with a large number of AEs, the FE improvement can be significant for
a relatively low prediction requirement. For example, 18% of the NYCC drive cycle is composed

of AEs, but half of the maximum FE improvement can be realized by only predicting AEs.
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5.3.2 Drive Cycle Results
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Figure 5.13: The Denver Highway Cycle which shows a close correlation between AE category prediction
and perfect AE prediction.

The FE results shown in Fig. 5.12 can be further explored by investigating the second-by-
second engine operation and battery SOC for each AE in each drive cycle. There are three unique
FE results: (1) nearly the same FE improvement from AE category prediction and perfect AE
prediction, (2) an overall FE improvement but a reduction when compared to perfect AE prediction,
and (3) a FE loss when compared to the Baseline EMS. A representative drive cycle from each of
these results will be presented and discussed. All additional drive cycles are shown in Appendix

??. Details as to how FE is improved are presented and discussed in the previous study [107].
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Figure 5.14: The NYCC drive cycle which shows a similar correlation between AE category prediction and

perfect AE prediction.
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The drive cycle that results in nearly the same FE improvement from AE category prediction
and perfect AE prediction is the Denver Highway drive cycle. As shown in Fig. 5.12, perfect AE
prediction results in a 2.4% FE improvement while AE category prediction results in a 2.0% FE
improvement. The velocity trace for this drive cycle with AEs identified is shown in Fig. 5.13a.
Figs. 5.13b and 5.13c show a second-by-second FE improvement and battery SOC results along
the drive cycle. For full drive cycle prediction, there is a significant SOC excursion compared to
the Baseline EMS but also a significant FE improvement. Perfect AE prediction and AE category
prediction provide nearly the same overall FE improvement, but there are significant differences
in individual AE operation. For example, the AE that starts at 847 seconds results in more fuel
consumption for AE category prediction and a banking of battery SOC. These differences even out
over the drive cycle.

One drive cycle that results in an overall FE improvement but a reduction when compared
to perfect AE prediction is the NYCC drive cycle. As shown in Fig. 5.12, perfect AE prediction
results in a 5.1% FE improvement while AE category prediction results in a 3.9% FE improvement.
The velocity trace, AE identification, second-by-second FE results for each control strategy, and
battery SOC are shown in Fig. 5.14. For each control strategy there is a significant FE improvement
with limited SOC excursion. Additionally when comparing perfect AE prediction and AE category
prediction, the overall FE improvements are similar but results for each AE can vary. For example,
the AE that starts at 145 seconds results in more fuel consumption but SOC banking which is
evened out once the next AE starts,

The drive cycle that results in a FE loss when compared to the Baseline EMS is the US06 drive
cycle. As shown in Fig. 5.12, perfect AE prediction results in a 0.5% FE improvement while AE
category prediction results in a 1.2% FE loss. The velocity trace, AE identification, second-by-
second FE results for each control strategy, and battery SOC are shown in Fig. 5.15. Minimal
FE improvements are achieved for each perfectly predicted AE, but for category AE prediction,
FE losses are frequent. For example, AEs at 50 seconds, 90 seconds, 140 seconds, etc. results

in FE losses. This indicates that the Optimal EMS derived for this category does not adequately
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capture aggressive driving. In other words, the AE dataset used to derive the Optimal EMS must

be inclusive of current driving habits or FE losses are possible.

5.4 Conclusion

In this study, four EPA drive cycles and four real world drive cycles were used which represent
city driving, highway driving, and aggressive driving. Four control strategies to be tested on each
drive cycle were also developed. The vehicle model used is a 2010 Toyota Prius and was designed
to be responsive to alternate control inputs. The first control strategy is designed to be representa-
tive of the current vehicle operation, where the engine operation was determined in the Autonomie
modeling software and then implemented in an equation-based power-split model and validated
against real world vehicle operation. The second control strategy is the globally Optimal EMS
derived using full drive cycle prediction with DP. The third control strategy is perfect prediction of
all AEs within each drive cycle with the Optimal EMS derived using DP. The final control strat-
egy is built from part one of this research and is a look-up table of an Optimal EMS for a similar
AE predicted from each drive cycle. Results show a FE improvement of between half to 90% of
perfect AE prediction which in turn represents one fourth to half of the FE improvement results of
full drive cycle prediction. But FE losses are possible if the AEs used to derive the Optimal EMS
are not representative of current driving habits.

FE improvements for all types of driving are possible using an Optimal EMS derived using DP
for a similar AE within a drive cycle, with the largest FE improvements possible for city driving.
This indicates that real-time calculation of an Optimal EMS may not be necessary and perhaps
sacrificing optimality for fast computation may be the wrong approach to improving vehicle FE
with a predictive Optimal EMS. Overall, the demonstrated FE improvement from prediction of
only AEs and applying a precomputed Optimal EMS further progresses the implementability of an

Optimal EMS in modern vehicles.
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5.5 Chapter Conclusions

This section of the research effort has allowed us to partially address Research Question 2,
which is restated here:

Research Question 2: What level of prediction fidelity and scope is required to realize a fuel
economy improvement through predictive energy management and potentially eliminate the need
for real-time computation?

Research Question 2 is associated with Hypothesis 2:

Hypothesis 2: Implementing a general prediction solution for the acceleration portions of a
drive cycle will result in FE improvements without the need for perfect prediction.

This research effort has provided additional support for this hypothesis. Through implemen-
tation of a limited AE prediction control strategy and with comparison to other optimal control
strategies it was determined that significant and robust FE improvements can be realized. This
demonstrates that predictive energy management can be implemented over short segments of driv-
ing and that an optimal control derived for a similar driving segment can be used to improve FE
thus eliminating the need for real time computations. This significantly improves the feasibility of

predictive energy management implementation.
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Chapter 6
Enabling Prediction for Optimal Fuel Economy

Vehicle Control

This study investigates the potential of using only current vehicle technology to make predic-
tions for use in predictive energy management. It involves gathering real outputs from current
vehicle technology, using these output to train an artificial neural network to make vehicle speed
predictions, using the prediction with a dynamic programming algorithm, a high fidelity model
of a 2010 Toyota Prius, and comparing this control strategy to perfect prediction optimal control
strategies. This research is the result of a collaboration with Jordan A. Tunnell in the electrical
and computer engineering department who assisted with the operation and recording of the vehicle
technology. His research has focused on the technology detection algorithms where my research
has focused on how the information can be used to improve FE. His research paper [172] and my

research paper [173], reproduced here, have been accepted and will be published in April 2018.

6.1 Introduction

There is a global need to increase automotive vehicle fuel economy (FE). An increase in FE
would result in global decreases in energy consumption [6], petroleum importation costs [8, 10],
greenhouse gas emissions [11], and air pollution [87]. A reduction of greenhouse gas emissions
reduces the effects of climate change [111], while a reduction in air pollution reduces human
deaths associated with air pollution [174]. Because of these issues, governments around the world
have imposed various FE requirements that automotive manufacturers are required to meet [17].
A key technology to ensure FE compliance is vehicle electrification [18]. Hybrid electric vehicles
(HEV) and plug-in hybrid electric vehicles (PHEV) are able to realize FE improvements due to the
powertrain efficiency improvements enabled through intelligent use of mechanical power from the

engine and electric power from the battery [175].
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However, there is also a global need to improve vehicle safety. In the United States, 90%
of vehicle crashes are due to driver error [176]. This has fostered significant development in
commercially implemented driver assistance technology, known as Advanced Driver Assistance
Systems (ADAS), over the past 30 years [21] that focus on safety [177]. ADAS sensing is achieved
through a variety of sensors including cameras, radar, and ultrasonic detection [1]. A conceptual
diagram of the potential sensing abilities of ADAS is shown in Figure 1. Note that connected
and autonomous vehicle (CAV) technology further improves safety issues but has not currently

experienced widespread commercial adoption [5].

Figure 6.1: A conceptual image of the sensing capabilities and scope of modern ADAS using a variety of
sensors [?,1].

In addition to the advancement of ADAS technologies, travel time technology has also im-
proved significantly in recent years. Travel time calculations are currently used in routing software
and programmable street signs shown in Figure 2. The travel time monitoring system records
vehicles through a variety of sensors including Bluetooth, magnetic detectors, and cell phone sig-
nal monitoring and stores results in a database used by local state departments of transportation

(DOT) [2]. Travel time information has widespread commercial adoption and is publically avail-

able.
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Figure 6.2: A conceptual image of the travel time calculation technology in deployment (a) and the basics
of the sensing systems (b) [2].

The global need for increased FE and the trend of increasing sensing capabilities in the automo-
tive industry have led to the development of improved vehicle control strategies. These strategies
have the largest FE improvement in HEVs and PHEVs due to the optimization of engine power
usage and battery power usage. For a fixed route, this can be accomplished through driver feedback
to promote efficient driving habits (Eco-driving) [30, 178] as well as through optimal powertrain
control to improve the powertrain efficiency [20]. Recent research suggests that the highest FE
improvements are possible when Eco-driving is combined with optimal powertrain control [130].
The research in this paper is focused on improving FE through optimal powertrain control, which
is typically discussed as an Optimal Energy Management Strategy (Optimal EMS). For a globally
optimal solution, an Optimal EMS must have perfectly accurate vehicle speed information along
the entire route, then a computationally costly calculation must be made through either dynamic
programming (DP) [32, 179] or Pontryagin’s minimization principle [46, 180, 181]. To reduce the

prediction requirement researchers have developed an alternative non-globally Optimal EMS that
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is stochastically robust using stochastic dynamic programming [47, 133, 182] and adaptive equiv-
alent consumption minimization strategy [48, 134, 183]. To reduce the high computational cost,
a non-globally Optimal EMS that is real time computable is realizable through optimized rules-
based control [49, 76], model predictive control [51, 135, 184, 185], and equivalent consumption
minimization strategy [50, 186—188]. But, despite the development of numerous alternate Optimal
EMS, DP remains the overwhelming favorite due to its ease of use and that it provides the globally
optimal control [45].

An existing research gap for commercial implementation of an Optimal EMS is the develop-
ment of any type of prediction for use in an Optimal EMS [3]. From the limited research that
does exist, initial results show that incorporation of traffic information improves prediction qual-
ity [57,61] and that an artificial neural network may provide the most robust predictions [60].
Additionally, recent research suggests that using 15-30 second prediction windows may yield the
best FE results when sensors and signals are limited [62]. None of these studies use ADAS tech-
nologies to enable prediction.

In this study, we seek to enable prediction for use in an Optimal EMS using a database of
similar drive cycles [58, 60, 62, 63] but with the addition of commercially available ADAS and
travel time technology. This novel incorporation of ADAS and travel time technology is then used
to generate predictions for use in an Optimal EMS. A comparison of the FE improvements for each

type of sensor-enabled prediction is the end result.

6.2 Methods

To analyze the effectiveness of various prediction scenarios, a baseline energy management
strategy (Baseline EMS) and an Optimal EMS must be compared on city and highway focused
drive cycles. The Baseline EMS should be reflective of the current standard and be validated
against real world data. The Optimal EMS is composed of multiple subsystems, which include

drive cycle prediction, Optimal EMS derivation, and Optimal EMS vehicle implementation.
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6.2.1 Drive Cycle Development

Existing research in the prediction component of an Optimal EMS has been successful when
a rigorous database of predictable drive cycles is used. Applications for this strategy include de-
livery or pick-up drive cycles or low traffic drive cycles. In order to make predictions difficult
and demonstrate the potential of the prediction scheme, we seek to use high traffic and long drive
cycles developed in a big city. We also seek to analyze and understand the application differences
for city-focused driving and highway-focused driving.

The first drive cycle used is a city-focused drive cycle. Two of the busiest roads in Denver,
CO USA were selected for the drive cycle, one of which passes directly through downtown. This
downtown Denver drive cycle (shown in Figure 3) is ten miles long and was driven four times.

The second drive cycle used is a highway focused drive cycle. To complicate this drive cycle,
it was modified to take place over two separate interstates and include a city driving portion at the
end. The final drive cycle (shown in Figure 4) is also ten miles long and was driven four times.

There are varying levels of traffic on each interstate for each drive cycle.

6.2.2 Baseline Energy Management Strategy Simulation

A 2010 Toyota Prius is selected as the vehicle model due to its commercial prevalence and that
it has the highest FE in its class. The model used to represent the Baseline EMS is consistent with
previous research in that it is a modification of the publically available 2004 Toyota Prius in the
Autonomie modeling software to represent a 2010 Toyota Prius [72]. The Autonomie modeling
software has demonstrated strong correlation with real world testing and is generally accepted as
the standard among industry and research professionals.

The vehicle model must be validated against real world data. Table 1 shows the simulated
FE over the industry standard U.S. Environmental Protection Agency (EPA) drive cycles of the
Urban Dynamometer Driving Schedule (UDDS) drive cycle, the Highway Fuel Economy Test
(HWFET) drive cycle, and the US06 drive cycle. A change in battery state of charge values must

be taken in to account according to the SAE J1711 industry standard [104] and the adjust FE can
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Figure 6.3: The city-focused drive cycle that passes through downtown in Denver, CO USA source: Google
Maps (a), the velocity with respect to time of each of the four times the drive cycle was driven (b), and

images of various driving encounters during the drive cycle (c).

126



el
o

Kadu 2, Lakeside BERKELEY SUNNYSIDE

= Wheat Ridge

ELYRIA SWANSEA

Interstate 2

/ER NORTH
T DISTRICT

HIGHLAND,

W 29th Ave
. W Zan PARK HILL
, Edgewater 000 FIVERO ‘b;nver 700®
7 jew Bivd M
2 ! Denver
\ve WEST COLFAX 2 Denver Botanic
Gardens .
e MONTCL
@ Ave : E 6th Ave Pkwy
- E CHERRY CREEX
b h b 11 Wings Over the
AKE :
£ Alameda Ave Air & Space A

Velocity (mph)

[/W 1 L 1 1 L 1 1

0 1 2 3 <& 5 6 7 8 9 10
Distance (mi)

(b)
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Google Maps (a), the velocity with respect to time of each of the four times the drive cycle was driven (b),

and images of various driving encounters during the drive cycle (c).
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Figure 6.5: The high-fidelity Autonomie modeling software (a) was used to model the real world perfor-
mance of a 2010 Toyota Prius (b).

be reported. These numbers can then be compared to real world measured values from Argonne
National Labs [98]. When the numbers are compared, the simulation FE is within 3% of all of the

physically measured FE numbers and the Baseline EMS is considered validated.

Table 6.1: Simulated and measured FE for the 2010 Toyota Prius HEV model developed using Autonomie.

EPA Simulated Measured Percent

Drive Cycle | Fuel Economy | Fuel Economy [98] | Difference

UDDS 75.4 mpg 75.6 mpg 0.3%
US06 45.9 mpg 45.3 mpg -1.4%
HWEFET 70.4 mpg 69.9 mpg -0.7%

6.2.3 Optimal Energy Management Strategy Simulations

Implementation of an Optimal EMS has been recently reviewed [4] and it was determined
that a systems-level viewpoint consistent with autonomous vehicle control best captures Optimal
EMS implementation. This system includes subsystems for drive cycle prediction (perception),

derivation of the Optimal EMS (planning), and implementation of the Optimal EMS in the vehicle.
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This systems-level viewpoint is shown in Figure 6. The perception, planning, and vehicle plant
subsystems can be developed and investigated independently, but the FE results are dependent on
full system implementation and analysis.

Figure 6. The systems-level viewpoint of the optimally controlled vehicle model with subsys-

tems for perception, planning, and a vehicle plant [4].

Perception Subsystem Model

The perception subsystem utilizes outputs of the sensors and signals to generate a prediction
of future vehicle operation. The commercially available sensors and signals chosen for the study

were

GPS Coordinates

Current Vehicle Velocity

ADAS Detection Ground Truth

Travel Time Data

Each of these inputs is recorded independently and do not have a direct relationship to one
another. Conceptually, GPS data locates the vehicle in the current drive cycle, which allows pre-
diction of the upcoming drive speed based on previous drive cycles. ADAS detection serves to
identify points of interest along a drive cycle that may affect unique driver behavior such as red
traffic lights, slowing vehicles, or pedestrians in the road. Travel time data provides information
about average vehicle velocities in 1-2 mile increments.

All of these inputs are recorded using 1 second timesteps and synchronized by atomic time.
The GPS coordinates and current vehicle speed were recorded from the Controller Area Network
(CAN) bus directly from the vehicle during the drive cycle. The ADAS detection ground truth
(ground truth defined as a set of measurements that are provided by direct observation) was iden-

tified from recorded footage from the drive cycle using a camera, shown in Figure 7. The average
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Figure 6.6: The camera used to record the drive cycle (a) and an example of the camera output (b).

travel time data along the drive cycle was recorded from the Colorado Department of Transporta-
tion (DOT).

The ADAS ground truth detection did not include the typical detection objectives that are re-
quired for safety focused ADAS implementation. Based on previous research identifying aspects
of real-world driving that are most important for prediction [72], it was determined that the ADAS
detection objective should only include identification of the state of the traffic light, identifying
vehicle speed changes from the vehicle directly in front, identification of stop sign location, and
identification of turn lanes. An analysis of automated ADAS detection algorithms and a compari-
son to ADAS ground truth is available in a separate article [172]. ADAS usage has the advantage
of providing detailed drive cycle prediction information for the upcoming 1-100 seconds.

Travel time data in the Denver area does not provide drive cycle prediction details. Instead, it
provides approximate drive cycle speeds for the entire drive cycle before the trip has begun. These
traffic levels for the entire drive cycle have demonstrated accuracy, as shown in Figure 8, but traffic

information may not be as important for an Optimal EMS [72].
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Figure 6.7: Drive cycle predictions possible using travel time data for the highway-focused Denver drive
cycle.

There are numerous methods to combine outputs from sensors and signals to generate a vehi-
cle velocity prediction but initial research suggests that an artificial neural network may provide
the best results [60]. For time series predictions used in control of dynamic systems, Nonlin-
ear Autoregressive Neural Networks are typically used [189] since they have been demonstrated
to be effective [190]. To predict future velocity using the sensor and signal outputs, a nonlinear
autoregressive neural network with external input (NARX) is required. This neural network pre-
dicts future values of the vehicle velocity, v(t), from past values of the vehicle velocity, v(t — 1),
and from past values of each of the sensors and signals, z(¢ — 1). This network can be written

mathematically as

o(t) = flo(t — 1), ..., 0(t — d),2(t — 1), ..., (t — d)] 6.1)

where d is a time delay. Due to the success of neural networks, there are numerous toolboxes
that can be used to design custom neural networks. Since other aspects of the Optimal EMS
system must interface with the Autonomie Simulink model, the neural network was designed and
implemented in Matlab. NARX networks were trained to predict both the Denver downtown drive
cycle and the Denver highway drive cycle using three of the alternate versions of the drive cycle to
be analyzed. After comprehensively studying the effect of all NARX parameters on the average FE

results, it was found that 3 feedback delays, 1 hidden layer, 1 input delay, scaled conjugate gradient
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training, 90% data training, 2% data validation, and 8% data testing provided the best results. An
overall conceptual diagram of the perception subsystem model is shown in Figure 9. The output of
the perception subsystem is a prediction of vehicle velocity from which an Optimal EMS can be

determined in the planning subsystem model.

GPS Location

Perception Subsystem
Compute Worldview:
ADAS Detection Nonlinear Autoregressive
(Ground Truth) Neural Network Trained on
3 Similar Drive Cycles

Current Velooity

Vehicle Velocity
Prediction

Travel Time Data

Figure 6.8: Details of the perception subsystem shown in Figure 6 that shows ADAS, GPS and Average
Traffic Data as an input to a NNARX perception model to generate a vehicle velocity prediction.

Planning Subsystem Model

The planning subsystem model receives a prediction of the future vehicle operation as an input,
determines the globally optimal control using dynamic programming (DP) and issues a control
request to the vehicle model. The DP formulation for an HEV Optimal EMS derivation uses the
battery state of charge (SOC)) as the state variable, the engine power (P;¢ ) as the control variable,
the vehicle velocity (v) as the external input, and the total mass of fuel required (m,.;) as the cost
function. This HEV Optimal EMS derivation can then be tailored to a 2010 Toyota Prius by using a
power-split vehicle architecture relationship between these variables. A detailed description of this
process can be found in previous research [72]. The final form used to derive the optimal control

is

N-1

Cost = Y fi (Pcg) + W (SOC; — SOC(N))? (6.3)

k=0
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40 % < SOC(k) <80 %  (k=0,..N) (6.4)
0kW < Peg(k) < 73kW  (k=0,..N —1) (6.5)

Cs [f2 (Pice)] + Cov(k) < Cyg (6.6)

where (' _( are constants, £ is an arbitrary timestep, /N is the final timestep, and W is a penalty
weighting factor set at 10,000.50C is the desired final state of charge of the battery. This value is
typically set at 50% to encourage typical charge sustaining behavior of an HEV. Electric drivetrain
component efficiencies were added to improve the fidelity of the Optimal EMS derivation from the
previous publication [72].

The solution of the DP algorithm is a cost-to-go matrix, which is used to derive the optimal
control decision matrix. This algorithm can be used to derive the globally Optimal EMS which
assumed 100% accurate prediction data (shown in Figure 10) for the entire drive cycle as well as

an Optimal EMS derived using time limited prediction data.
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Figure 6.9: The Optimal EMS solution for 100% accurate prediction of the downtown Denver drive cycle.

Results from existing research demonstrate that a 15 or 30 second prediction window is an
ideal tradeoff between prediction accuracy and FE improvement potential [62]. Because ADAS

technology provides near term prediction data such as identification of a red light or a slowing
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vehicle, a 15 second prediction window was used. An example of the Optimal EMS from 100%
accurate prediction of a 15 second window that is then updated and actuated on a second by second
basis is shown in Figure 11.

The technique used for sensing and prediction is a 15 second prediction that is recomputed ev-
ery second. This implies that an Optimal EMS is calculated for every 15 second window but only
the first second of operation is used. Thus, the key metric is not overall drive cycle prediction accu-
racy but a 15 second prediction accuracy for every second of the drive cycle. Therefore, presenting
intermediate drive cycle results concerning velocity prediction accuracy does not provide mean-

ingful insight. For a discussion on velocity prediction error analysis refer to other work [62,171].

60
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Figure 6.10: The Optimal EMS solution of a 15 second window within the first downtown Denver drive
cycle for 100% accurate prediction (a) and sensor and signal output prediction (b).

An overall conceptual diagram of the planning subsystem model is shown in Figure 12. The
output of the planning subsystem is the Optimal EMS decision matrix, which provides the optimal
engine power for any feasible timestep and battery state of charge, also known as a 2-D lookup

table. This output is then used in the vehicle to actuate the Optimal EMS.
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Figure 6.11: Details of the planning subsystem shown in Figure 6 that shows generation of a globally
optimal solution for the provided vehicle velocity prediction.

Vehicle Subsystem Model

The input to the vehicle model is the Optimal EMS control request and disturbances attributed
to misprediction. The vehicle model used is a modified version of the baseline 2010 Toyota Prius
Autonomie model that allows the desired engine power to be overwritten. This model includes
a running controller, which enforces individual component operation limitations. The recorded
output of this model can be any variable inherent in the Autonomie software. Of particular interest
is the fuel consumption, achieved engine power, and battery state of charge. These results can then
be compared to the same outputs from Baseline EMS simulation. An overall conceptual diagram
of the vehicle subsystem model is shown in Figure 12. The main output of the vehicle subsystem is
achieved charge adjusted FE which can be calculated according to the current SAE standard [104].

Figure 13. Details of the vehicle plant subsystem shown in Figure 6 that received the modified

control request and implements it with the vehicle running control for FE measurements.

6.3 Results

There are several important data points required to gain insight into the prediction capabilities
that are possible using the commercially available sensors and signals discussed. The first relevant
data point is the globally Optimal EMS solution, which provides the FE improvement that is pos-
sible with 100% accurate prediction of the entire drive cycle. This data point is important because
it identifies the absolute FE improvement ceiling. Next, since the chosen sensors and signals are

being used to provide 15 second predictions, the 100% accurate 15 second prediction data point
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is required (prediction window optimal). This data point identifies the ceiling of the detection
capabilities of the chosen sensors and signals in the 15 second window.

Next, to understand the relative importance of the chosen signals, three comparisons can be
made Prediction using GPS and current velocity Prediction using GPS, current velocity, and ADAS
Prediction using GPS, current velocity, ADAS, and travel time (traffic) information For each of
these prediction types, a unique NARX must be trained and implemented. The achieved FE im-
provement can then be compared to the ceiling value for 15 second prediction as well as the global

ceiling. FE improvements are calculated as

1::EOptimall —F EBaseline

Percent Improvement =
1::EBaselinfz

(6.7)

To obtain information about general behavior of this technique, a unique NARX was trained
using three drive cycle datasets and was then tested on the fourth drive cycle. This leads to four
results from the four city drive cycles (for example: train using city drive cycles 1, 2, 3 then test on
city drive cycle 4; train using city drive cycles 2, 3, 4 then test on city drive cycle 1; etc.) and four
results from the four highway drive cycles. This implies that results cannot be “cherry-picked” and

that the final results will be representative of overall behavior of this technique.

6.3.1 City-Focused Drive Cycle

For the city-focused drive cycle, the FE results are shown in Figure 14, the engine operation is

shown in Figure 15, and the battery state of charge results are shown in Figure 16.
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Figure 6.12: Average FE improvement results for the four Denver downtown drive cycles.

The Baseline EMS for the city-focused Denver drive cycle was able to achieve 58.7 mpg on
average, which was improved significantly by the globally Optimal EMS to 70.2 mpg; a total per-
cent improvement of 19.6% as shown in Figure 14. Figure 14 also shows an 11.9% improvement
for 15 second perfect prediction and a 5.3% FE increase for prediction using only GPS and current
velocity. There is a 6.2% FE increase when using GPS, current velocity, and ADAS, which is the
largest non-perfect prediction result. Lastly, there is a 4.8% FE increase when using GPS, current
velocity, ADAS, and travel time information which is less than when travel time information is not

included.
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Figure 6.13: Engine power comparison for a Denver downtown drive cycle.

These results suggest that for city-focused driving, travel time information does not provide
enough resolution to aid in prediction. In fact, excess or inaccurate information may hinder the
prediction quality and thus the FE gain. Figure 15 shows two instances for which the addition of
travel time data caused significant mispredictions of the engine power that was required. Mean-
while, the other prediction scenarios follow the prediction window optimal solution very closely.

Figure 15 also shows the benefit of full drive cycle prediction since the global Optimal EMS is able
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to leverage operation over the entire drive cycle. A drawback of the globally Optimal EMS is that
the battery state of charge varies significantly over the drive cycle as shown in Figure 16. This may
be due to the low cost of increasing battery charge in general since most optimal solutions follow
a similar trajectory [72]. The Baseline EMS (shown in black) executes charge banking for the first
half of the drive cycle while the globally Optimal EMS charge depletes over the first half of the
drive cycle to realize a FE improvement but still is able to end the drive cycle at the same value
of final state of charge. All other cases use 15 second prediction windows and are constrained to
end the 15 second prediction window at 50% state of charge. The result over the full drive cycle is
a rigid charge sustaining operation that may improve battery longevity. The final FE numbers are

computed using charge corrections [104].
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Figure 6.14: Battery state of charge comparison for a Denver downtown drive cycle.

6.3.2 Highway-Focused Drive Cycle
For the highway-focused drive cycle, the FE results are shown in Figure 17, the engine opera-

tion is shown in Figure 18, and the battery state of charge results are shown in Figure 19.
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Figure 6.15: Average FE improvement results for the Denver highway drive cycles.

The Baseline EMS for the highway-focused Denver drive cycle was able to achieve 64.0 mpg,
which was improved by the globally Optimal EMS to 71.1 mpg; a total percent improvement of
11.0% as shown in Figure 17. Figure 17 also shows a 8.4% improvement for 15 second perfect
prediction and reduced FE improvements for all sensor configurations. There is a 1.6% FE increase
for prediction using only GPS and current velocity. There is a 1.9% FE increase when using GPS,
current velocity, and ADAS. Lastly, there is a 2.3% FE increase when using GPS, current velocity,
ADAS, and travel time information, which is the largest non-perfect prediction result. These results
suggest that for highway-focused driving, travel time information provides a significant prediction
advantage and FE improvement. For highway driving, there is limited environmental information
to aid in prediction therefore the current resolution of travel time data (shown in Figure 8) is useful.
Due to the unpredictability of traffic induced slowdown regions on the highway, prediction using
GPS and current vehicle velocity provide the lowest FE improvements. The evidence for the results
in Figure 17 can be seen in Figure 18, which shows that prediction using GPS, current velocity,
ADAS, and travel time (traffic) information provides the most similar engine response to the 15
second perfect prediction (prediction window optimal) engine response. Additionally, prediction

using GPS and current velocity produces its own engine response.
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Figure 6.16: Engine power comparison for a Denver highway drive cycle.

As with the city-focused drive cycle, the globally Optimal EMS for the highway-focused drive
cycle produces a battery state of charge that varies significantly over the drive cycle as shown in
Figure 19. Also, similar to the city-focused drive cycle, all other cases that use a 15 second pre-
diction windows achieve rigid charge sustaining behavior since each 15 second prediction window
is constrained to end at 50% state of charge. This rigid charge sustaining operation may improve

battery longevity. The final FE numbers are computed using charge corrections [104].
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Figure 6.17: Battery state of charge comparison for a Denver highway drive cycle.

6.4 Conclusions

In this study, a unique set of sensors and signals was composed to investigate optimal vehicle
control over ten mile long, busy drive cycles in a major capital city. City-focused and highway-
focused drive cycles were driven during which GPS, current vehicle velocity, ADAS detection,
and travel time data was recorded. These sensor and signal outputs were then input into a neural

network perception model to determine future vehicle operation. The future vehicle operation was
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then used to derive the Optimal EMS using DP for 15 second prediction windows. The Optimal
EMS was then implemented in a validated model of a 2010 Toyota Prius in the Autonomie soft-
ware. The results show that for the city-focused drive cycle, large portion of the globally optimal
Improvement can be achieved using GPS, current velocity and ADAS detection data in a predic-
tion model coupled with optimal control. The results also show that for the highway-focused drive
cycle, a large portion of the globally Optimal FE improvement can be achieved using GPS, current
velocity, ADAS detection, and travel time data in a prediction model coupled with optimal control.

Adding future vehicle operation prediction to the existing safety objectives of ADAS is a viable
method to enable and improve prediction for an Optimal EMS. In addition, travel time information
significantly improves prediction for an Optimal EMS when driving on the highway. Exact and full
prediction of the entire drive cycle is not required to obtain a significant FE improvement through
implementation of an Optimal EMS which agrees with previous research [72]. Additionally, these
sensors and signals are already in widespread commercial use, which suggests that it may be
possible to implement an Optimal EMS in current vehicles. This could be achieved by either
implementing the proposed methods in vehicles as they are manufactured, or via a retrofit kit for
vehicles currently on the road. The retrofit kit would likely involve a software/firmware update
and an external processor. The main costs associated with this FE improvement method are from
development and testing. Once thoroughly developed, FE savings would quickly payback the

retrofit cost. Exact payback would depend on vehicle use and architecture.

6.5 Chapter Conclusions

This section of the research effort has allowed us to partially address Research Question 3,
which is restated here:

Research Question 3: What prediction and computational effort is required to realize a fuel
economy improvement when using current technology integrated with predictive energy manage-
ment?

Research Question 3 is associated with Hypothesis 3:
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Hypothesis 3: FE improvements can be realized using only current vehicle technology.

This research effort has provided additional support for this hypothesis. By recording real
data outputs from current vehicle technology and integrating the results using an artificial neural
network, FE improvements from a predictive energy management strategy were realized. This
demonstrates that predictive energy management implementation does not require future technolo-
gies to realize a prediction fidelity level necessary to achieve FE improvements. This shows that
the predictions required for predictive energy management can be achieved in modern vehicles and

further demonstrates the potential of predictive energy management implementation today.
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Chapter 7

Conclusions

7.1 Conclusions

This dissertation has defined and completed a series of tasks to address the primary research
challenges associated with implementing predictive energy management. Research to date has
shown that with full drive cycle prediction, FE improvements of up to 30% are possible. This
research has advanced this concept by exploring the tradeoffs between information sensing, com-
putation power requirements for prediction, and prediction effort. It was found that there are
numerous types of mispredictions for which FE improvements from predictive energy manage-
ment are maintained. It was found that predicting short sections of drive cycles can result in a FE
improvement with predictive energy management. In fact, those short sections of the drive cycle
do not have to be predicted exactly to result in a significant and robust FE improvement. This also
potentially eliminates the need for real-time computations. Lastly, it was found that using only
currently available technology, prediction fidelity for FE improvements through predictive energy
management are possible. It is anticipated that these research findings can inform new research

that can further allow predictive energy management to be implemented in vehicles.

7.2 Research Contributions of this Dissertation

The primary contributions of this dissertation are presented below:

1. A more holistic and systems-level understanding of the subsystems and integrations needed

to implement an Optimal EMS in vehicles

2. A definition of the research gaps existing between the current state-of-the-art and the end

state of predictive Optimal EMS usage in vehicles
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3. A proposal for a set of research directives that will enable progress towards predictive Opti-

mal EMS implementation in vehicles
4. Dynamic programming is used to evaluate mispredictions
5. Driving-derived mispredictions are analyzed
6. Vehicle parameter mispredictions are analyzed

7. The dynamic programming solution matrix time state variable is converted to a distance state

variable for improved misprediction robustness
8. Comprehensive analysis of thousands of AEs using an Optimal EMS
9. Feasibility investigation of applying precomputed AE Optimal EMS
10. Performance categorization of an Optimal EMS applied to AEs

11. Use of optimal control solutions that are a function of velocity which only works for mono-

tonic drive segments

12. ADAS and travel time technology is then used to generate predictions for use in an Optimal

EMS.

7.3 Future Work

This dissertation involves improving an understanding of implementability of predictive en-
ergy management. As such, the models and methods developed for this research effort are widely
applicable to future studies. The research gaps presented in Chapter 1 are addressed by subse-
quent chapters but there is still much more work to be done. Future work in each of the presented
studies is required which could include an examination of robust optimal control vs globally op-
timal control with real-world mispredictions, exploration of predicting different sections of drive
cycles including deceleration and steady state sections used with an Optimal EMS, and a rigorous

comparison of current and near future vehicle technologies to derive predictions are just a few of
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the planned future research efforts. Additionally, research gap 3 in Chapter 1 also needs to be
addressed which involves implementation in a real vehicle. All of these studies could also inves-
tigate additional vehicle architectures and incorporation of other vehicle control strategies such as

driver-less control.
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Appendix A
Prediction Error Applied to Hybrid Electric Vehicle

Optimal Fuel Economy: Supplementary Material

A.1 Study 1: Expected Drive Cycle
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Figure A.1: Velocity and acceleration pedal request for the expected drive cycle.
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Figure A.2: Engine operation comparison of baseline energy management and optimal energy management
for the expected drive cycle.
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Figure A.3: Vehicle signal comparisons of baseline energy management and optimal energy management

for the expected drive cycle.
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A.2 Study 1: Stop Misprediction
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Figure A.4: Velocity and acceleration pedal request for the “1 Stop” misprediction drive cycle (Note that
the actual drive cycle acceleration pedal request signal is calculated and not measured, thus it differs from

the expected drive cycle).
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Figure A.5: Engine operation comparison of baseline energy management and optimal energy management
for the “1 Stop” misprediction drive cycle.
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Figure A.6: Vehicle signal comparisons of baseline energy management and optimal energy management
for the “1 Stop” misprediction drive cycle.
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A.3 Study 1: Route Change Misprediction
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Figure A.7: Velocity and acceleration pedal request for the “Route Change 17 drive cycle (Note that the
actual drive cycle acceleration pedal request signal is calculated and not measured, thus it differs from the

expected drive cycle).
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Figure A.8: Engine operation comparison of baseline energy management and optimal energy management
for the “Route Change 1” drive cycle.
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Figure A.9: Vehicle signal comparisons of baseline energy management and optimal energy management
for the “Route Change 1 drive cycle.
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A.4 Study 1: Traffic Misprediction
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Figure A.10: Velocity and acceleration pedal request for the “Low Traffic” drive cycle (Note that the actual
drive cycle acceleration pedal request signal is calculated and not measured, thus it differs from the expected

drive cycle).
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Figure A.11: Engine operation comparison of baseline energy management and optimal energy manage-
ment for the “Low Traffic” drive cycle.
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Figure A.12: Vehicle signal comparisons of baseline energy management and optimal energy management
for the “Low Traffic” drive cycle.
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A.5 Study 1: Compounded Misprediction
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Figure A.13: Velocity and acceleration pedal request for the “Compounded 4” drive cycle (Note that the
actual drive cycle acceleration pedal request signal is calculated and not measured, thus it differs from the

expected drive cycle).
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Figure A.14: Engine operation comparison of baseline energy management and optimal energy manage-
ment for the “Compounded 4” drive cycle.
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Figure A.15: Vehicle signal comparisons of baseline energy management and optimal energy management
for the “Compounded 4” drive cycle.
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A.6 Study 2: Higher Power than Expected Misprediction

o Baseline
0 Optimal
x Mispredicted Optimal
150 | |
N 3{3 |'/
e |
S w00l (et —F ),
= e Pry
o e ,250
% 410"
% 300
= 50 | £ 5
gb o —— Operation Boundary
o : Ideal Operating Line
£a X 500 EBSFC ()
O | |
0 2000 4,000 6,000

Engine Speed (rpm)
(c)

Figure A.16: Engine operation comparison of baseline energy management and optimal energy manage-
ment for the “Higher Mass Misprediction”.
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Figure A.17: Vehicle signal comparisons of baseline energy management and optimal energy management
for the “Higher Mass Misprediction”.

186



A.7 Study 2: Lower Power than Expected Misprediction

o Baseline
0 Optimal
x Mispredicted Optimal
150 ‘ ‘
E
&
~ 100| .
=
o
S
H
'GE) V) 0 Bound 1
o0 400 peration Boundary
S Ideal Operating Line
= ‘g B (o)
¢
O | |
0 2,000 4,000 6,000

Engine Speed (rpm)
(c)

Figure A.18: Engine operation comparison of baseline energy management and optimal energy manage-
ment for the “Lower Mass Misprediction”.
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Figure A.19: Vehicle signal comparisons of baseline energy management and optimal energy management

for the “Lower Mass Misprediction”.
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Appendix B
Additional Model Validation

Details of the Baseline EMS and a FE validation are shown in section 4.2.3. Additional val-
idation can be accomplished by comparing the simulated and physically measured battery state
of charge (SOC) and engine speeds. The physically measured data was taken from the Argonne
National Laboratory Digital Dynamometer Database [191].

Simulated and measured battery SOC is shown in Figs. B.1, B.2, B.3. Each of these figures
show that the simulated SOC trace for each cycle closely follows the experimental trace for the
duration of the cycle. Simulated and measured engine speed are shown in figures B.4, B.5, B.6.
Each of these figures show that the simulated engine speed for each cycle closely follows the
experimental trace for the duration of the cycle. Overall when comparing traces of battery SOC
and engine speed, the results are very similar. The model is considered to be sufficiently validated

for implementation.
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Figure B.1: Battery state of charge validation that compares the simulated model used in this study with a
physical 2010 Toyota Prius over the HWFET cycle.
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Figure B.2: Battery state of charge validation that compares the simulated model used in this study with a
physical 2010 Toyota Prius over the US06 cycle.
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Figure B.3: Battery state of charge validation that compares the simulated model used in this study with a
physical 2010 Toyota Prius over the UDDS cycle.

190



Measured
Engine Speed
(rpm)

g
2,
~

~—

Simulated
Engine Speed

4,000

2,000

4,000 |-

2,000
0

MMWMWMMW

100 200 300 400 500 600 700 800
| | | | | |
0 100 200 300 400 500 600 700 800
Time (sec)

Figure B.4: Engine speed validation that compares the simulated model used in this study with a physical
2010 Toyota Prius over the HWFET cycle.
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Figure B.5: Engine speed validation that compares the simulated model used in this study with a physical
2010 Toyota Prius over the US06 cycle.
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Figure B.6: Engine speed validation that compares the simulated model used in this study with a physical
2010 Toyota Prius over the UDDS cycle.
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Appendix C
Additional Drive Cycle Analysis

Representative cases of (1) nearly the same FE improvement from AE category prediction and
perfect AE prediction, (2) an overall FE improvement but a reduction when compared to perfect
AE prediction, and (3) a FE loss when compared to the Baseline EMS are shown in section 5.3.2.
This appendix presents the second-by-second velocity, FE improvement, and battery SOC of the
remaining drive cycles which include the Denver City Cycle (Fig. C.5), the UDDS cycle (Fig.
C.1), the Fort Collins City Cycle (Fig. C.2), the Fort Collins Highway Cycle Fig. (C.3), and the
HWFET cycle (Fig. C.4). Details as to how FE is improved are presented and discussed in part

one of this research.
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Figure C.1: The UDDS drive cycle which worse results between AE category prediction and perfect AE

prediction.
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Figure C.3: The Fort Collins Highway drive cycle which worse results between AE category prediction and
perfect AE prediction.
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