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Abstract

A Spectral Analysis of the Crab Nebula and Other Sources with HAWC

The High Altitude Water Cherenkov observatory (HAWC) is an extensive air shower

particle detection array designed to study cosmic gamma (γ) rays in the Very High Energy

(VHE) regime (100 GeV to 100 TeV). One of the most thoroughly studied sources in this

energy range is the Crab nebula, a pulsar wind nebula created by the aftermath of supernova

1054. The core of this analysis revolves around the determination of the differential flux

spectrum of the Crab nebula using a process known as forward folding. Forward folding

allows energy spectra to be fit without requiring a direct measurement of the primary energy

of individual extensive air showers. The energy resolution of HAWC is very poor (on the

order of 50% or more), and so this method is ideal for any spectral analysis carried out with

HAWC data. The differential spectra are modeled as a power law with a normalization (Φ0),

spectral index (γ), and a cutoff energy (Ec): dN/dE = Φ0(E/E0)
γe−E/Ec . The normalization

of the Crab nebula was found to be 1.03±0.091
0.083 stat ± 0.19 sys)× 10−12(TeV−1cm−2s−1) with

an index of −2.54 ± 0.095 stat ± 0.27 sys and a cutoff of 91.0 ±174
59 stat with E0 =4.0 TeV.

This method was also applied to 11 other sources, and the minimum detection significance

required to constrain a spectrum was found to be between 10 and 14 σ.
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CHAPTER 1

Light, The Universe, and Everything

The electromagnetic spectrum is vast. The part which we can see with the naked eye

accounts for only the tiniest fraction of a percent of the “labeled” portion of the spectrum,

which spans from the end of long waves with wavelengths on the order of a kilometer, to

the beginning of gamma rays, with wavelengths on the order of a fraction of a nanometer.

Yet, blind as we are, the universe yields a great many secrets to the visual spectrum, as

early astronomers quickly discovered. With the visual light alone, we proved the heliocentric

model of our solar system. We numbered our planetary neighbors and uncovered the secrets

of their creation. We found comets and asteroids and meteors. We discovered galaxies and

even our location within the Milky Way.

However, as potent a tool as the visual spectrum has proven to be, more can be learned

by examining the universe through the lenses of different spectral ranges. In fact, one of

the greatest discoveries in modern astronomy was made with the poorly named Microwave

spectrum 1. This discovery was of an isotropic, very nearly homogeneous field of microwave

radiation which we now know as the Cosmic Microwave Background (CMB). The CMB has

taught us about the origin of the universe itself, and how the cosmos, as we know it, was

formed. It is easily one of the greatest pieces of astrophysical evidence ever discovered and

it was found through the examination of non-visual light.

As is often the case in physics, the most interesting discoveries are found in the extreme

frontiers. What can we see when we look through the lens of the most energetic light in the

universe? What new pieces of astrophysical evidence might we find? We call photons with

energies beyond the end of the x-ray spectrum Gamma Rays (γ), and six orders of magnitude

1Microwaves do not have wavelengths on the order of micrometers.
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past this point is the region of interest for this thesis: The Very High Energy (VHE) γ-ray

Spectrum. This introductory chapter will serve to examine the “story” of VHE γ-rays, from

their creation to their eventual detection, and will provide the necessary background for the

rest of this document.

1.1. Cosmic Rays

When discussing VHE gamma rays, with energies between 100 GeV and 100 TeV, it is

important to also examine cosmic rays, which form the principle background for most VHE

gamma ray experiments. Cosmic rays are a type of cosmogenic radiation composed of bare

atomic nuclei, which strike the top of the atmosphere of the Earth. Many of the physical

systems responsible for the creation of cosmic rays often create gamma rays as well. The

distribution of the differential flux as a function of the energy of this radiation is known as

the cosmic ray spectrum. For the most part, the cosmic ray spectrum obeys a power law,

dN

dE
∝ E−γ ,(1)

with a spectral index, γ, of approximately 2.7 [1] (see fig 1.1).

The cosmic ray spectrum is divided into three distinct regions: solar, galactic, and extra-

galactic. Solar cosmic rays, contrary to the name, do not come from the sun but are instead

modulated by solar activity (with the exception perhaps of particles associated with solar

flares). The solar wind, an expanding magnetized plasma generated by the Sun, partially

excludes lower energy galactic cosmic rays from the interior of the solar system. As a re-

sult of this effect, the intensity of cosmic rays with energies below about 10 GeV strongly

anticorrelates with the 11 year solar cycle [1] .
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Figure 1.1. Combined cosmic ray spectrum from various experiments, from [2]

Galactic cosmic rays are just that: cosmic rays with an origin within the Milky Way.

The galactic cosmic ray spectrum begins at energies above 10 GeV and extends up to 1 PeV
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(1015 eV), where the spectrum begins to gradually transition into the extragalactic regime.

The beginning of this transition region is marked by a change in the spectral index known as

“the knee”, where γ softens to a value of 3.1. 2 This transition occurs because cosmic rays

with energies above 1 PeV have a Larmor radius which begins approaching the thickness

of the galactic plane. The Larmor radius (or cyclotron radius) is defined as the radius of

the circular trajectory followed by a charged particle in a uniform magnetic field. While the

galactic magnetic field is by no means uniform, as a general rule the Larmor radius rL for

galactic cosmic rays can be approximated by

rL ≃ 1 kpc
E[EeV]

ZB[µG]
,(2)

where E is the particle energy in EeV, Z is the charge in units of the electron charge, and B

is the magnetic flux density in µG [3]. The galactic magnetic field has an average flux density

of about 10 µG [4] so protons with an energy of 1 PeV have a Larmor radius of about 0.1

pc (a pc, or parsec is a unit of cosmic distance and is approximately three light years). The

stellar disk of the Milky Way has a thickness of about 600 pc, so protons with an energy ≤ 1

PeV have virtually no chance of escaping. As the energy increases, this radius increases, and

at about 1 EeV the Larmor radius of a proton is almost 20% of the thickness of the stellar

disk. Assuming galactic cosmic rays have been created since the birth of the Milky Way,

particles with energies below the knee are trapped by the galactic magnetic field and will

almost certainly remain so until they interact. Higher energy particles have a greater chance

of escaping, and when they do they can never be observed on Earth. It stands to reason

2“Soft” energies are lower than “hard” energies. Because the index increases, the slope of the spectrum
increases negatively, reducing the flux of higher energies, thus softening the spectrum
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that cosmic rays observed below this transition energy were most likely created within the

Milky Way while cosmic rays with observed energies increasingly larger than the knee are

more and more likely extragalactic in origin.

Extragalactic cosmic rays come from origins outside our galaxy and dominate the spec-

trum at and above 1EeV. Cosmic rays in this energy range begin to be subjected to an effect

known as the Greisen—Zatsepin—Kuzmin (GZK) cutoff. The GZK cutoff theory describes

a soft upper limit on the energy of extragalactic cosmic rays of a cosmologically distant

origin (greater than about 50 Mpc). This upper limit begins at 50 EeV for protons and the

CR spectrum should be suppressed above this energy (the index should steepen). Cosmic

rays (specifically protons) at or above this energy coming from beyond 50 Mpc will therefore

interact with the cosmic microwave background via resonance with ∆+, which immediately

decays into a nucleon and a π+ or π0 [5][6]. The π+ will decay into a muon and neutrino

while the πo will decay to photons. The free neutrons will ultimately decay to protons,

electrons, and antineutrinos. The end result is that the initial energy of the proton has been

drained away through these decay channels, leaving only the lower energy decay products

and thus reducing the flux at energies above the cutoff. The GZK cutoff has been observed

by both the Pierre Auger Observatory and HiRes [7][8]

The production of electromagnetic radiation hinges on the acceleration and interactions

of charged particles. In the end, all γ-ray producing astrophysical phenomena take the form

of naturally occurring particle accelerators. In order to achieve γ-ray energies between 1

GeV and 100 TeV, these accelerators must be exceedingly violent or exotic in nature. The

question to ask is a simple one. Where do these γ-rays get their energy?
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1.2. Genesis

The particle interactions that result in γ-rays fall into four broad categories: Bremsstrahlung,

scattering, annihilation, and decay. All other possible production methods eventually boil

down to these four channels. Bremsstrahlung radiation is, strictly speaking, photonic radia-

tion that results from the acceleration of charged particles, and directly translates from Ger-

man as “braking radiation”. Bremsstrahlung radiation includes cyclotron and synchrotron

radiation as more specific forms.

Scattering refers to particle interactions that result in the exchange of energy or possibly

the creation of new particles. In the context of γ-ray production the most important form

of scattering is that of inverse Compton scattering. Compton scattering is the mechanism

through which high energy photons scatter low energy electrons to higher energies, resulting

in a low energy photon. Inverse Compton scattering is simply the reverse: low energy

photons scatter high energy electrons to lower energies, resulting in a high energy photon.

The resulting final energy of the scattered photon is a function of scattering angle and the

energy of the electron.

Annihilation occurs when a particle interacts with its antimatter counterpart. There are

many different channels annihilation interactions can take, but it can commonly result in two

photons. This is a frequent occurrence because most quantum numbers (charge, flavor, color

etc.) are inverted between a particle and its antiparticle counterpart, forcing the byproducts

of the interaction to have those numbers be zero as well by conservation. These annihilation

channels are important because they produce discernible features in the gamma ray spectrum

of a source. These features can yield important information concerning the composition of

the matter that forms the source, and the energies of the physical processes at work therein.
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The final production channel describes how γ-rays are created as the byproducts of the

decay of a separate parent particle. One of the most common astrophysical decay channels

for gamma rays is π◦ decay, that results in two γ-rays, but there are many other channels

that can lead to photons.

Particle interactions represent the finer points when describing the creation of VHE γ-

rays. That is not to say that they aren’t important, but rather, some larger mechanism needs

to be at work in order to get particles up to the necessary energies required for interactions to

produce VHE γ-rays. These mechanisms are the natural particle accelerators of the universe,

all of which arise from the interactions of electromagnetic and gravitational fields.

Gravitational fields can create particle accelerators by directly converting gravitational

potential energy into kinetic energy. One system which commonly accelerates particles in

this fashion are accretor-donor systems. Accreator-donor systems consist of a donor, such

as a large nearby star or nebula, and an accretor, which is usually a compact object such

as a black hole or neutron star. Matter from the donor falls through the gravitational

field of the compact object where it accretes and gains kinetic energy. Conservation of

angular momentum forces the accreted matter into a quickly spinning disk, where it has

enough energy to interact and produce VHE γ-rays. There are many types of accretor-

donor systems based on what objects compose them, but the principle is always the same.

Gravitational acceleration of charged particles can also occur in the early stages of certain

types of supernovae involving extremely massive, iron-fusing stars. When such a star runs

out of fuel, the surrounding layers of matter fall inwards towards the core, gaining kinetic

energy. Eventually these layers can cannot fall any farther and quite literally bounce back

outwards forming a supernova. This process is known as core collapse and the gravitational
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potential energy of the collapsing matter provides a portion of the energy for the resulting

explosion.

Electromagnetic fields that accelerate charged particles up to to GeV and TeV range

are almost exclusively found in shock wave fronts. In the case of accretor-donor systems

matter that does not fall onto the accretor is launched perpendicular to the accretion disk,

forming jets of tightly confined plasma. The difference in velocity between the dense plasma

of the jets and the interstellar medium forms shock fronts. The magnetic fields produced

by these fronts are extremely ridged with respect to the interstellar medium (that is, they

very easily change the momentum of charged particles entering the field from outside the

shock) and randomized in direction. Low energy charged particles entering a jet shock front

are temporarily trapped by this magnetic field, but eventually gain enough energy from the

velocity of the shock to escape. The rapid, frequent, and randomized acceleration of charged

particles in the the shock front of accretion jets may be one of the most likely sources of high

energy cosmic rays, and therefore γ-rays. Shock fronts also occur as a result of particularly

violent explosions such as those created by supernovae. Supernovae create a “short”3 burst

of cosmic and γ-rays when they occur, but result in more steady sources as the resulting

shock wave expands into the interstellar medium and bounces particles up to higher energies.

The mechanism by which such shock fronts impart energy to charged particles is known as

Fermi-acceleration [9].

Fermi-acceleration is an attractive hypothesis for natural particle acceleration because

it results in the power law spectrum noted in equation (1), and this can be shown through

very simple arguments [10]. Suppose that with every cycle of acceleration in a shock front,

a charged particle gains energy some amount of energy that depends on the initial energy

3Short with respect to the lifetime of the star that created the super nova. SN1054 was visibly detectable
with the naked eye for approximately two years before fading from view.
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of the particle, Eo. Classically this makes sense; a ball bouncing elastically off of a moving

wall will have a reflected speed equal to the sum of the initial speed and the speed of the

wall, so the assumption that the reflected energy depends on the initial initial energy is not

too wild.

∆E = a Eo .(3)

After n cycles of acceleration, the final energy of the particle is given by

E = Eo(1 + a)n .(4)

After every cycle of acceleration, the probability that a particle escapes further cycles in-

creases slightly. Suppose the probability that a particle remains in the accelerator after a

single cycle is P . If there are No particles initially, then the number of particles remaining

after n cycles is

N = No P n(5)

ln
( N

No

)

= n ln(P ) .(6)

Solving for n in (4) and substituting into (6) yields

ln
( N

No

)

= − ln(Eo/E) ln(P )

ln(1 + a)
(7)

N = No

(Eo

E

)−ln(P )/ln(1+a)

(8)

= No

(Eo

E

)s

.(9)
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Taking a derivative with respect to E results in a form which agrees with (1).

dN

dE
= C E−(s+1)(10)

= C E−γ ,(11)

where C is a constant. This shows that the spectral index γ is dependent only on the

likelihood that a particle escapes the shock front and the amount of energy it gains each

shock cycle. These in turn are dependent on the magnetic field density of the source, the

velocity of the shock front relative to the interstellar medium, and geometry (see fig 1.2).

1.3. Types of Sources

A γ-ray source is the origin of some γ-ray flux. These sources can be diffuse, covering

large angular regions of the sky on the order of several degrees or point-like, spanning a real

angular region much less than the angular resolution of most detectors. Sources can also be

transient, meaning that they only exist for short periods of time on the order of seconds or

minutes, or steady, meaning that they are permanent fixtures on sky. This thesis focuses

only on steady point sources.

There are many types of sources, but they can be grouped into one of six broad categories:

oscillators, shells, active galaxies, star clusters, starburst galaxies, and Pulsar Wind Nebulae

(PWNs). These are the categories used to divide registered sources on the TeV catalog

(http://tevcat.uchicago.edu/) which serves as the central archive of confirmed VHE gamma

ray sources.

1.3.1. Oscillators.

Oscillators consist of X-ray binary systems, γ-ray binary systems, and pulsars. In short,
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Figure 1.2. A Hillas plot indicating the relationship between size and field
strength for various cosmic accelerators. The acceleration of protons to above
1 ZeV or Iron to above .1 ZeV require physical conditions above the solid lines
[11]
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they are objects with an intensity that oscillates in time 4. Binary systems are those with

two stars that orbit each other. The discovery of binary systems that emit in the VHE

regime is a very recent one. Indeed, at the time of this writing there are only five binary

sources registered, all of which were discovered after 2009. The exact mechanism that governs

VHE γ-ray production in these binary systems is still a mystery, however, all five systems

house a massive type O or B(e) star with masses between 10-20M⊙ and radii of about

10R⊙ [12]. This suggests an accretor-donor system where the resulting γ-rays are created

by the interaction between highly energetic particles which have fallen through the resulting

gravitational potential difference.

A pulsar is a rapidly rotating neutron star (a highly compact object composed almost

entirely of neutrons) which then precesses about a secondary rotational axis. The primary

rotational poles of a pulsar emit highly beamed electromagnetic radiation resulting from

the conversion of the rotational kinetic energy of the star into a strong, moving magnetic

field. This field then accelerates protons and electrons near the surface of the star, resulting

in a tight beam of electromagnetic radiation. This radiation can only be observed when

the secondary axis of rotation causes the beam to point at the Earth. These objects were

first observed in the radio spectrum, but recently, GeV pulses have been observed from the

Crab Pulsar, Geminga, and Vela. These are considered separate sources from respective

nebulae containing them because the light from pulsars is steadily pulsed, and can therefore

be isolated. As an example, the Crab pulsar emits only about 1% of the flux as the Crab

nebula and cuts off at an energy of about 150 GeV, while the nebula is steady up to about

700 GeV [13].

4MRK421 is an Active Galactic Nuclei. These categories are structurally defined instead of behaviorally
defined. MRK421 would be considered a steady point source with transient flaring
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1.3.2. Shells.

Shell sources consist of Super Nova Remnants (SNRs), superbubbles, and their nearby molec-

ular clouds. SNRs are the lasting remains of supernovae, and consist of an expanding shell

of hot, dense plasma. VHE γ-ray production occurs as a result of shock acceleration in

the shell as it expands into the interstellar medium. This expansion can last for hundreds

or thousands of years and SNRs can expand to be tens of parsecs in diameter before the

expansion rate begins to markedly decrease. Superbubbles are simply compound SNRs that

can expand to sizes on the order of a hundred parsecs or so. Molecular clouds are large

clouds of stable molecules, unlike the interstellar medium or SNRs, which are both plasmas.

They are also grouped into this category because when they are close enough to SNRs or

are deformed by SNR shocks, they can serve as secondary targets for cosmic rays created by

the nearby shell. Shell type sources are one of the most numerous sources of cosmic rays in

the Milky Way.

1.3.3. Active Galaxies.

Active galaxies are galaxies which host an Active Galactic Nucleus (AGN). An AGN is a

compact, highly luminous region at the center of some galaxies. It is believed that the

radiation observed from AGN is the result of matter accreating onto a supermassive black

hole (black holes with masses between 105-109 M⊙). This makes AGN’s accretor-donor

systems, only in this case the donors consists of entire star systems. AGN are primarily

characterized by the presence of massive, relativistic jets composed of matter that failed to

fall into the black hole. These jets can be on the order of kiloparsecs in length (defined by

the change in density at the shock front), and are thought to be the source of the highest

energy cosmic rays. A number of objects which were once thought to be unique are actually

just AGNs viewed from different perspectives. When the jets of an AGN are perpendicular
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to the line of sight from earth, it appears as a radio galaxy (the light it emits in the direction

of the earth is most intense in the radio spectrum). When the jets of an AGN are neither

perpendicular or coincident with the line of sight from earth, they are called quasars. When

the jets are coincident with the line of sight from earth, they are called blazars. The closer

the jets of an AGN align with line of sight, the more VHE γ-rays are detected from that

AGN. There are many sub-types of AGNs, but any source playing host to an active nucleus

falls into this category.

1.3.4. Star Clusters.

Star cluster sources are composed of more than one star / object, but are not galaxies.

Globular clusters and galactic star forming regions are volumes containing numerous stars

and source objects that, for one reason or another, are highly active. An example of this kind

of source is Terzan 5, which is a globular cluster near the bulge of the Milky Way. There are

as many as 200 radio pulsars, 50 weak X-ray sources, and at least 1 X-ray burster, all within

a radius of 2.7 light years [14][15][16]. To put that in perspective, the nearest neighbor to

Sol5 is Proxima Centauri, at 4.2 light years away. Terzan 5 exhibits a diffuse, non-thermal

VHE γ-ray emissions up to 24 TeV [15].

1.3.5. Starburst Galaxies.

Starburst galaxies are galaxies that exhibit an extremely high rate of star formation. The

associated stellar activity results in shock acceleration of cosmic rays, which can lead to VHE

photons. Starbursts usually occur as a phase in the evolution of a galaxy or as the result of a

collision or interaction between galaxies. The most recent source discovered in this category

is Messier 82, the cigar galaxy. It is approximately five times more luminous than all of the

Milky Way as a result of starburst formations due to interactions with Messier 81, Bode’s

5The sun
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galaxy [17]. At the time of this writing there have been only two starburst galaxies detected

in the VHE γ-ray regime: M82 and NGC 253.

1.3.6. Pulsar Wind Nebulae.

Pulsar Wind Nebulae (PWN) are the most numerous of the TeV γ-ray sources in our galaxy.

They consist of a central pulsar enveloped by a SNR. The electromagnetic and particle

“wind” from the pulsar powers VHE γ-ray production in the surrounding SNR. The most

luminous and steady PWN is the Crab nebula, which will be covered in detail in a separate

chapter.

1.3.7. Unidentified.

Unidentified sources are just that: Unidentified. These are distinct sources that either do

not exhibit any properties which would place them in one of the above categories, or have

conflicting identifications across several experiments. VHE γ-ray sources that do not have

any other obvious counterpart in other wavelengths are classified as dark sources, and are also

placed in this category. There is currently only one dark source registered: HESS J1503-582

[18].

1.4. Extensive Air Showers

The atmosphere is completely opaque to VHE cosmic radiation and so it behaves as a

collision target for both γ-rays and cosmic rays. When such radiation (known as primary

radiation) interacts with the atmosphere it produces a large number of secondary particles in

a series of successive collisions with atmospheric nuclei (usually nitrogen and oxygen). These

in turn produce more secondaries which then continue on, repeating the process, creating a

cascade of particles known as an Extensive Air Shower (EAS). EAS serve as the only channel
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through which some ground based particle astrophysics experiments can detect VHE cosmic

radiation.

Extensive air showers are extremely difficult to properly describe as a result of the sheer

number and types of interaction that can occur. Before specific physics can be discussed it is

necessary to set up a scaffolding of definitions and concepts, most importantly the coordinate

system and parameters used to describe EAS. The primary coordinate axis used to describe

an EAS is called the longitudinal axis. It is defined as a line from the point of first interaction

to the point on the surface of the earth where the primary particle would land without the

presence of the atmosphere. The development of an EAS along the longitudinal axis is

parameterized by atmospheric depth. Atmospheric depth is a measure of the quantity of

atmosphere through which the shower core has propagated. It is defined by the barometric

formula, which assumes that atmosphere is isothermal6

X(h) = Xoe
h
hs [g cm−2] .(12)

This equation describes the mass of atmosphere contained in a column of above height h,

with a cross sectional area of 1 cm2. Here, Xo is the depth of the atmosphere at sea level

(1,030 g cm−2) and hs is the characteristic height (8.4 km)7. Because the development of an

EAS is parameterized by its atmospheric depth, this quantity is also referred to as the “age”

of a shower, with “younger” showers having penetrated through less atmosphere than “older”

ones. The secondary coordinate axis used to describe an EAS is called the lateral plane, and

is simply defined as the plane normal to the longitudinal axis at a specific atmospheric depth.

6The barometric equation is derived under the assumption of an isothermal atmosphere. Complex at-
mospheric models that utilize the barometric equation do so in isothermal layers (usually 5 or 6). The
temperature in a given layer is affected in Xo.
7The atmospheric depth depends on the angle, as h is measured along the primary axis of the shower. Highly
inclined showers traverse more atmosphere than vertical showers
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At any given point in time, all particles within an EAS are defined with respect to the lateral

plane and longitudinal axis, and the foremost edge of an EAS is known as the shower front,

which contains the vast majority of particles in the cascade.

Extensive air showers are described by the development of the shower longitudinally

(along the momentum of the primary) and laterally (perpendicular to the momentum of the

primary). The longitudinal development of the shower is governed by the number of particles

produced by interactions as a function of depth within the atmosphere, which is known as

the longitudinal distribution. As more and more secondaries are produced throughout the

lifetime of the EAS, each secondary will carry a smaller and smaller fraction of the total

energy of the primary. Eventually this fraction will be so small that particles within the

shower will have insufficient energy to produce more secondaries. As a result, the number

of particles rapidly increases to some maximum value at some atmospheric depth, and then

gradually begins to fall off. The depth at which the maximum number of particles are present

in the shower is dependent on the zenith angle and energy of the primary particle.

A toy model of this process can be developed by considering a vertical cascade consisting

of identical particles that interact after some interaction length, λ to produce exactly two

secondary particles of the same type. Suppose this cascade is initiated by a primary particle

with an energy of Eo. After one interaction length the cascade consists of two particles,

each with half the energy of the primary, Eo/2. After two interaction lengths there are 22

particles, each with an energy of Eo/2
2 and so on. This suggests that the number of particles

at a depth X = Nλ is 2N where N is the number of interaction lengths through which the

cascade has propagated. Eventually the energy of individual particles will reach some critical

energy, Ec, where they cease interacting with the medium 8, and no new particles will be

8Remember, this is a toy model. In reality these particles may continue ionizing the atmosphere even past
the critical energy.
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produced. The maximum number of particles that could possibly be present in this cascade,

Pmax, is the ratio between the primary and critical energy of the cascade. If the number of

particles in the cascade goes as 2N then the maximum number of interaction lengths Nmax

is log2(Eo/Ec) and so the maximum depth of the shower is

Xmax = λlog2

(

Eo

Ec

)

.(13)

From this, the toy model reveals two very important pieces of information about the devel-

opment of showers. First is that the maximum depth of the longitudinal distribution varies

logarithmically with the primary energy, and second is that the number of particles in the

cascade at the maximum depth is proportional to the primary energy.

The lateral development of an EAS is dependent on the number of particles with mo-

menta transverse to the longitudinal axis. The 2D distribution of particles defined on the

lateral plane is known as the lateral distribution. The lateral distribution is dependent on

the type and number of possible interaction channels that are present in the shower. For

example, the interaction of leptons and gamma rays within an EAS is governed by elec-

tromagnetic processes, including bremsstrahlung, which can create photons that are highly

beamed. Hadronic process produce more particles with large momenta in the lateral plane

than the electromagnetic component. The result of this is that electromagnetic showers are

more laterally compact than hadron showers.

Indeed, the characteristics of an EAS are strongly dependent on the type of the primary

particle. Most EAS are initiated by hadron primaries and can be thought of as three separate

particle cascades occurring simultaneously, each described by the types of interactions which

govern the production of secondaries: the nuclear cascade, the mesonic cascade, and the

electromagnetic cascade. The nuclear cascade of an EAS occurs from interactions between
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protons and neutrons. Nuclear debris from the primary interaction shatters other atmo-

spheric nuclei, which in turn do the same. There are many byproducts that can occur from

such interactions other than atomic nuclei, but the most common are π±, π◦, K±, and K◦.

The charged mesons either strike other atomic nuclei, propagating the nuclear component, or

quickly decay into µ± and neutrinos, which then penetrate down to the surface of the earth.

The mesons which do not interact nuclearly are the mesonic component of an EAS, and the

secondary particles produced in this cascade (muons and neutrinos) will almost certainly

reach the surface of the earth before interacting. The neutral mesons initiate the electro-

magnetic cascade. These decay into photons, which then pair produce into leptons and in

turn create more photons either through annihilation or bremsstrahlung. These interactions

continue successively until the particles reach the surface of the earth. Often the nuclear

and meson portions of an EAS are described as the “hard component” of the shower because

they can penetrate deeply into the atmosphere and, indeed, the earth. The electromagnetic

cascade is usually referred to as the “soft component”.

Extensive air showers initiated by a photon primary are almost exclusively electromag-

netic particle cascades. Muons are still present in γ-ray primary showers, but there are

significantly fewer of them than in a hadronic shower. This is because there are really only

two ways to produce muons in an EM cascade. The first is through the single photon pair

production of muons. Technically speaking, so long as a photon has an energy of at least 2m

where m is the mass of any lepton, pair production through that lepton channel is possible.

That said, single photon pair production can only occur in the presence of heavy atomic

nuclei for kinematic reasons, which suggests that there is a mass dependence on the single

photon pair production cross section. Indeed, this cross section has been calculated [19] and

it is proportional to m−2, which means that e+e− pair production is over forty thousand
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times more likely than µ+µ− and more than twelve million times more likely than τ+τ−.

So muons can be created through single photon pair production in EM cascades, but only

very rarely. The other possible source of muons in EM cascades comes from photonuclear

interactions, which can create a short lived nuclear shower resulting in charged mesons and

therefore muons, but again, the likelihood of this is small.

1.5. Detection Methods

An EAS is characterized by the the thin but radially extended shower front, which

propagates at essentially the speed of light along the longitudinal axis. Detection of an

EAS involves either the direct detection of the particles in this front, or the detection of

effects produced by this front. These effects include Cherenkov light, air fluorescence, radio

emissions, atmospheric ion recombination, and even acoustic vibrations. The first three

effects, Cherenkov, fluorescence, and radio emissions, as well as particle detection arrays are

presently employed in live astroparticle physics experiments. The remaining effects have yet

to be actually employed (and EAS acoustic signals are still purely hypothetical).

1.5.1. Imaging Air Cherenkov Telescopes (IACTs).

Cherenkov radiation results from the passage of charged particles through some medium at

a speed greater than the speed of light in that medium. The result of the particle traveling

faster than electromagnetic waves in that medium results in a conic, constructive phase front

of photons not unlike a sonic boom. The cosine of the opening angle of this radiation is the

ratio between the speed of light in the medium and the speed of the particle (see fig. 1.3)

Cosmic rays moving at highly relativistic velocities (β ≈ 1) can create EAS which emit

Cherenkov radiation within the atmosphere. This radiation can be detected by specially

designed telescopes known as Imaging Air Cherenkov Telescopes (IACTs).
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Figure 1.3. A 2D schematic of the conic, constructive phase front formed
by a particle radiating cherenkov radiation.

IACTs consist of a large, segmented concave mirror that focuses down to an array of

highly sensitive PhotoMultiplier Tubes (PMTs) (see chapter 2). These PMTs are monitored

by extremely fast electronics which amplify, digitizes, and save the pattern of Cherenkov light

created by the activation of the PMT array. These data are in turn used to reconstruct the

geometry and energy of the shower. By creating an array of IACTs the detection sensitivity

and angular resolution can be increased by requiring a shower to trigger multiple IACTs at

once. A prime example of an IACT array can be seen in the MAGIC (Major Atmospheric

Gamma imaging Cherenkov Telescopes) experiment, which consists of two, 17m diameter
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IACTs located at the Roque de los Muchachos Observatory on La Palma, one of the Canary

Islands (see fig 1.4)

Figure 1.4. The two MAGIC IACTs. Photo retrieved June 9, 2016
from https://commons.wikimedia.org/wiki/File:MAGIC_Telescope_-_

La_Palma.JPG under the Creative Commons Attribution-Share Alike 3.0
Unported Liscense.

The advantage of using IACTs to detect EAS lies in the ability to detect an EAS as

it propagates through the atmosphere. Information about the number and distribution of

particles in an EAS is needed to properly reconstruct the energy of the primary particle.

Furthermore, the number of Cherenkov photons emitted by a relativistic particle in the at-

mosphere is very large. As a result, the detected Cherenkov light is not subject to large

Poissonian fluctuations. This means that any fluctuations detected by IACTs are caused
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by the fluctuation of the actual physical process that take place within the shower, or fluc-

tuations in the background. As a result, IACTs can not only be used to directly measure

cosmic ray sources, but they can also be used to directly measure the physics at work within

an EAS.

The primary disadvantage IACTs have in detecting EAS arises from the combination of

the requirement for the telescope to be pointed at a source, and the extremely small duty

cycle of IACTs. Because PMTs are so sensitive to light, IACTs can only be operated on

moonless nights, resulting in a yearly duty cycle of approximately 10%. IACT experiments

must monitor the atmosphere for aerosol content in order to properly reconstruct a detected

EAS from data. As a result, IACTs are only effective on clear nights. IACTs must also be

pointed at a specific location on the sky because Cherenkov radiation is so highly beamed. In

order to properly image a source, the number of detected EAS must exceed the background

estimate for that location on the sky or it will appear empty. This makes IACTs ill suited

for searching for new cosmic ray sources, and much more adept at precise measurement of

known sources.

1.5.2. Air Fluorescence Detectors (FDs).

Fluorescence is the process by which matter (atoms, molecules, etc...) absorbs photons of

one wavelength and then emits photons of a second wavelength (usually lower than the first).

The absorption of light excites electrons in certain matter into excited states, and after some

time these excited electrons relax back down, emitting a photon. When an EAS passes

through the atmosphere, photons in the shower excite diatomic nitrogen and nitrogen ions

which then fluoresce light with a wavelength between 300 - 400 nm. Unlike Cherenkov light,

florescent light is emitted isotropically. Air fluorescence Detectors (FDs) do exactly that:
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detect the florescent light created by EAS (as well as any Cherenkov light directed at the

FD).

fluorescence detectors resemble IACTs, and have a similar segmented concave mirror

focusing down to a PMT array. Unlike IACTs, FDs do not need to point, and so to increase

coverage on the sky they are made smaller and combined in groups to cover a large area of

the sky (it is much less expensive to have several, smaller mirrors then one large mirror).

An example of modern FD design can be seen in the Telescope Array experiment, which

is located in the high desert of Millard County, Utah, and consists of 3 FD clusters, each

containing between 12 and 14 FDs, and a particle detection array (see fig. 1.5).

The primary advantages of FDs is they do not need to have showers aligned along the

telescope axis to detect them. As a result of this, FDs can monitor huge volumes of the

atmosphere over a large area. This makes FDs ideal for detecting the highest energy cosmic

rays, which have the lowest flux on the surface of the earth. In addition, the ability to detect

a shower off the longitudinal axis means that FDs can directly measure an EASs longitudinal

distribution, which is a good estimator of the primary composition and energy.

The primary disadvantage of FDs is the duty cycle which, like IACTs, is small due to

the need for moonless clear nights. This is actually an overestimate for FDs because of the

weaker intensity of fluorescence light and the generally larger distances between the detector

and the shower as compared to IACTs. This requires FD experiments to monitor the aerosol

and dust content of the atmosphere much more strictly than IACT experiments.

1.5.3. Particle Arrays.

Particle arrays directly detect the shower front of an EAS as it reaches the ground. Such

arrays are composed of particle detectors which sample the shower front as it passes through
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Figure 1.5. The FD cluster located a the Black Rock Mesa site. Photo
by John Matthews. Retrieved June 9, 2016 from https://en.wikipedia.

org/wiki/File:BRM-FD-open.jpg under the Creative Commons Attribution-
ShareAlike 3.0 Liscense.

them. By using the geometry of the array, the number of detected particles, and the rela-

tive timing as individual detectors are triggered, the shower geometry and other important

parameters can be reconstructed.

Unlike FDs and IACTs, particle arrays have a very large duty cycle (≈ 100%) and are

able to, technically, survey the entire sky from horizon to zenith all day every day (in reality

quality cuts are often applied to remove highly inclined showers). The modular nature of

particle arrays also offer a significant advantage. Particle arrays use many more individual

detectors than FDs and IACT arrays, which means that the cost an individual particle

25



Figure 1.6. The Tibet Air Shower Array at the Yangbajing site in Ti-
bet. The white boxes contain individual particle detectors. Photo courtesy of
Jordan Goodman.

detector is usually low relative to the cost of the experiment. This gives two main advantages.

Firstly, particle arrays are easily extensible (that is, they can be expanded gradually, one

detector at a time, as funding permits). Secondly, particle arrays are relatively insensitive

to the failure of a single detector, which means maintenance and repairs to the array can be

performed while the rest of the detector array is functioning.

The primary disadvantage to using particle arrays comes from the fact that shower fronts

are only partially sampled at ground level. That is to say, particle arrays can only ever give

an incomplete snapshot of an EAS in time. This means that it is sometimes extremely

difficult (or even impossible) to reconstruct the primary composition and energy. Almost

all information of the longitudinal development, which is heavily dependent on primary
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composition and energy, is lost when detected with a particle array, save the few nanoseconds

it takes for the front to pass through the ground.
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CHAPTER 2

The High Altitude Water Cherenkov Gamma Ray

Observatory

The High Altitude Water Cherenkov (HAWC) Observatory is an EAS particle array

designed to study gamma rays in the very high energy regime. HAWC resides on the flanks

of the Sierra Negra volcano near Puebla, Mexico, at an altitude of approximately 4,100

meters above sea level. The detector is the successor to the Milagro experiment [20], which

was the first water Cherenkov detector to observe TeV gamma ray sources. HAWC has a

time integrated field of view of 8.4 sr between -26◦ and 64◦ in declination, and a nearly 100%

duty cycle, providing the means to create the deepest survey of the sky in the VHE regime

to date. The Observatory is composed of 300 densely packed Water Cherenkov Detectors

(WCDs), covering an area of 20,000 m2, approximately ten times that of Milagro (see fig

2.1).

Figure 2.1. The HAWC Observatory in the final days of construction.
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Each WCD consists of a water filled, bladder lined, cylindrical steel tank 7.3 m in diam-

eter and 5 m deep, containing four upward facing photon detectors: three, 8 inch diameter

Hamamatsu R5912 PhotoMultiplier Tubes (PMTs) and one central 10 inch high efficiency

Hamamatsu R7081 PMT. These PMTs rest at the bottom of each WCD, forming an equi-

lateral triangle with each corner 1.8 m from the central PMT. The dome of each PMT is

surrounded by a conic, polypropylene baffle with white interior and black exterior surfaces.

These baffles are designed to restrict the field of view of each PMT to only downward trav-

eling light without optically isolating the PMTs. The PMTs themselves are partially sealed

within a waterproof container 9, which houses the base electronics of the PMT and is fed by

a single RG-59 cable carrying both the PMT signal and its high voltage supply. The optical

isolation of the WCDs allows the detector to better sample the distribution of particles within

the front of Extensive Air Showers (EAS). This aspect of HAWC’s design greatly improves

the angular resolution of the detector when compared to Milagro, and will be discussed in

further detail in section 2.1.

The Milagro collaboration performed the deepest, wide field survey of the TeV gamma

ray sky to date [21]. HAWC, with its larger detection area and optically isolated WCDs,

boasts a 15-fold increase in sensitivity over its predecessor [22](see fig. 2.2). At the time of

this writing, HAWC is complete, though most data presented here were taken with the first

250 WCDs.

This chapter will describe HAWC through the perspective of an EAS, from the creation

of light in a WCD to the recording of data to a hard disk.

9The detection surface is directly exposed to water
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Figure 2.2. The sensitivity of HAWC compared to other TeV astronomy experiments.

2.1. Water Cherenkov Detectors (WCD)

The HAWC observatory is modular, being composed of hundreds of independent water

Chernenkov detectors (WCDs). As the name suggests, WCDs are designed to facilitate and

detect the Cherenkov radiation emitted as charged particles of an EAS front pass through

the water in the WCDs. The optically isolated nature of the WCDs is a relatively new

innovation for EAS particle detection arrays, and this aids in the discrimination between

γ-ray and hadron induced showers by constraining the location of muons produced by EAS.

The construction and design of the WCDs was an iterative process, which began at Los

Alamos National Lab and concluded with a working prototype / physics test at Colorado

State University (see fig. 2.3).

The outer surface of each WCD is composed of a cylindrical shell of galvanized corrugated

steel 7.3 m in diameter and 5 m tall with a ribbed dome roof of military-grade opaque canvas.
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Figure 2.3. A Diagram of a single HAWC WCD. Person for scale.

This shell protects a single polypropylene water bladder of similar dimensions. The bladder

is photon tight with a black, non reflective interior coating and holds some 200,000 liters of

water purified at the sub-micron level. At the top of the bladder is an access hatch and four

light tight instrumentation ports which feed the necessary cabling for the depth monitor,

temperature monitors, calibration fiber optics, and PMTs. The bottom of the bladder is

fitted with four plastic pucks, which secure the PMTs in place relative to the bladder.

The dimensions of the WCDs were chosen to both optimize the sensitivity of HAWC to

TeV EAS and to minimize the dependence of the number of detected photoelectrons on the
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Figure 2.4. The average number of PEs detected as the result of a simulated
100 MeV gamma ray, creating a cascade just above a very wide WCD as a
function of PMT placement.

location of the PMTs at the bottom of the WCDs. For shallow water depths, low energy

secondary particles penetrate all the way to the bottom of the WCD. This causes a large

number of PEs to be detected at the PMTs, so every detection by the PMT results in a

large signal (every detection looks like an EAS secondary). The depth was chosen to based

on the penetration depth of vertical muons produced by TeV showers (about 10.5 radiation

lengths). The width of the WCD was chosen based on the depth, and insures that the

PMT response is uniform as a function of radius out to the edge of the WCD (see fig. 2.4).

This maximizes the amount of Cherenkov light emitted by the most penetrating charged

particles that enter the WCD10. The water contained in a WCD is filtered and sterilized

10The more water a relativistic charged particle penetrates through, the more Cherenkov light it emits.
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such that Cherenkov light has an attenuation length between 7 m-17 m within the WCD.

This attenuation is repeatedly tested using a laser and a 100cm glass water-filled tube. It

requires approximately 60 million liters of filtered water to fully instrument the HAWC array.

When Cherenkov light from a charged particle reaches the bottom of a WCD it can

activate one or more of the four upward facing PhotoMultiplier Tubes, which is the first step

in data acquisition.

2.2. Photo Multiplier Tubes (PMT)

Photomultiplier tubes are a class of extremely sensitive, high gain vacuum phototubes

specifically designed to detect a range of the EM spectrum. These devices are sensitive

enough to detect single photons, and comprise the core detection instrumentation for many

modern particle astrophysics experiments. Every PMT consists of two primary components:

the photocathode (see fig. 2.5) and the electron multiplier dynode chain (see fig. 2.6).

The photocathode consists of a thin metallic film, coating the interior of the glass PMT

dome. This layer converts incident light into photoelectrons (PEs) by means of the photo-

electric effect. The maximum kinetic energy of PEs produced at the photocathode is given

by

Kmax = hf −W,(14)

where h is Plank’s constant, f is the frequency of the incident photon, and W is the work

function of the photocathode. The work function describes the minimum energy required

to remove a single electron from the surface of the photocathode. It depends both on the

electrostatic potential of the cathode, and the physical properties of the cathode material.
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Figure 2.5. The R5912 Hammatsu PMT used for HAWC. All units are in
mm unless otherwise noted (image from the Hammamatsu R5912 PMT data
sheet).

It is extremely difficult to detect the resulting single electron photocurrent, so this current

must be amplified before it can be used.

The electron multiplier is the second primary component of the PMT, and it is responsible

for increasing the photocurrent to the point where it can be read out by standard equipment.
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Figure 2.6. Basic schematic of a Hamamatsu flat faced
PMT which illustrates the dynodes and the motion of sec-
ondary emission electrons. Retrieved on June 3, 2016 from
http://www.hamamatsu.com/jp/en/technology/innovation/photocathode/index.html

It consists of a series of interleaved metallic plates called dynodes, each of which is held at

a successively higher positive potential with respect to the photocathode. Photoelectrons

produced at the cathode accelerate towards the first dynode, gaining kinetic energy. When

they impinge on the first dynode they produce additional electrons through a process known

as secondary emission (see fig. 2.6). These then accelerate towards the next dynode, gaining

energy and producing additional electrons upon collision, and so on until the cascade of

electrons reaches the base of the PMT. By this time, the current has increased several orders

of magnitude, and is now easily measurable. There is a direct relationship between the

number of the incident photons and the integrated charge of the final current. This means

that if a PMT is properly characterized, it can be used to count photoelectrons by making

measurements on the resulting current pulse.
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Each WCD in HAWC is instrumented with four PMTs. Three of these are 8 inch diameter

Hamamatsu R5912 SEL PMTs, which have been refurbished from Milagro for use in HAWC.

These form an equilateral triangle at the bottom of a given WCD, with corners 1.8 m from

the center. In the center of this triangle rests a single, upward facing, 10 inch Hamamatsu

R7081 high efficiency PMT. These PMTs have been purchased new specifically for HAWC,

and increase the sensitivity of HAWC to lower energies. PMTs are subject to many different

types of noise and by having multiple PMTs in a single tank these effects can be reduced by

comparing the signals between PMTs. The most prominent sources of noise in PMTs are

dark currents, prepulsing, and afterpulsing.

Dark current is noise that originates from currents traveling through the electron multi-

plier when the PMT is not being exposed to light. The nature of PMTs requires the use of

materials that have low work functions for both the photocathode and dynodes. As a result,

these materials are prone to the thermionic emission of electrons. The current density of

these emissions within a PMT is heavily dependent on the temperature and (to a somewhat

lesser extent) on the age of the PMT11. This is an important consideration in HAWC as the

majority of the PMTs deployed in the array are refurbished.

Prepulsing is noise that appears as a smaller secondary pulse which precedes the larger,

primary pulse. This is the result of a particle penetrating the PMT housing at the photocath-

ode, and stopping at some depth within the electron multiplier. When this particle passes

through the photocathode, it deposits enough energy to create the initial photoelectrons of

the primary pulse. The initial charged particle then stops at some depth in the electron

multiplier ahead of the primary cascade, and creates a secondary cascade. The secondary

11Most likely as a result of the degradation of the vacuum within the PMT
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cascade reaches the base first, but has not been fully amplified because it did not travel the

entire length of the electron multiplier. This is then followed by the primary pulse.

Afterpulsing is noise that appears as a smaller secondary pulse which follows the larger,

primary pulse. This is the result of electrons ionizing trace gaseous elements within the

PMT. When a photoelectron is emitted by the cathode, there is a small probability it will

interact with, and ionize, trace atmospheric gases within the PMT. This heavy cation then

accelerates in the opposite direction of the electron, back towards the photocathode. When

it collides with the photocathode or part of the dynode chain, additional photoelectrons are

produced, which then proceed down the electron multiplier in the usual fashion.

Signals produced by the PMTs in a HAWC WCD travel via a cable system out the top

of the bladder, over the edge of the corrugated steel tank and down into the ground where

they are routed to the counting house, which is at the center of the array and contains all

of HAWCs processing electronics.

2.3. Electronics

Each 8 inch PMT in HAWC generates pulses at a rate of approximately 20 kHz from

a combination of dark noise, real EAS particles, and other effects . Suppose that this rate

holds for all the central PMTs as well (it is much lower than the true rate of the central

PMTs). If we were being conservative with our memory and wanted to digitize these pulses

with an ADC into 10 time bins with a resolution of 4 bytes each (a long integer), then the

full HAWC observatory would generate approximately 320 Mbps of raw data. This is a little

over 10 petabytes per year, or 2.7 Libraries of Congress per day 12. The LHC clocks in at

about 25 petabytes per year, and motivated the creation of the worldwide LHC computing

12see Peter Lyman, Hal R. Varian (2000-10-18). “How Much Information?”. Retrieved 2011-11-29 from
http://groups.ischool.berkeley.edu/archive/how-much-info/
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grid, an intranet consisting of over 170 computing centers in 36 different countries. Suffice

it to say, direct digitization of PMT pulses is out of the question for HAWC. Many of the

electronic systems employed by the observatory were recycled from Milagro, and so they

have been engineered to help solve this data volume problem. As a result, each WCD in

HAWC yields less than 50 kB/s of raw data (about one Library of Congress per week).

The first stop a PMT signal has before making it to disk is the analog Front End Board

(FEB), also recycled from Milagro. The analog board provides high voltage to PMTs within

a set of 4 WCDs (16 channels) and also separates the high frequency PMT signals from

the high voltage provided by the board. Once the analog signals are picked off of the high

voltage, they are processed into digital square waves before continuing on to the next step in

processing. Analog pulses from the PMTs are split, and passed through a low gain (1x) and a

high gain (7x) amplifier. The low gain signal is then passed through a “high” discriminator,

while the high gain signal is passed through the “low” discriminator. Every time one of these

pulses passes the threshold defined by each discriminator, a digital edge is generated. The

resulting square pulses from each threshold have a duration equal to the time the analog

pulse spent over the threshold specified by the given discriminator.

These digital signals from the analog boards are passed via a custom back end to the

digital FEBs. The digital FEBs combine the digital signals from the analog FEB to create

a stream of digital pulses, colloquially known as “hits”, which characterize the shape of the

analog PMT pulse. This technique is known as Time Over Threshold (TOT) digitization

and, for this experiment, is the chosen alternative to full pulse digitization with FADCs. The

digital board multiplexes the pulses from each threshold via an exclusive OR, resulting in

two-edge and four-edge hits. Two edge hit (one square pulse) are formed when a PMT pulse

crosses the first threshold but not the second. A four edge hit (two square pulses separated
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by a gap in the signal) occurs when the PMT pulse crosses both thresholds. This section of

the FEB also provides triggering and monitoring information (the trigger is a remnant of the

multiplicity trigger in Milagro). From here, the TOT hits are passed to the Time to Digital

Converters (TDCs), which convert the time of each edge into binary, which is then written

to disk. The TDCs have a minimum time resolution of 0.1 ns, and so some reshaping is done

when the digital time pulses are multiplexed together, in order to insure that the difference

in time between two edges in a hit are not less than the resolution of the TDCs.

At this point, the Extensive Air Shower has been successfully digitized to hard disk,

and from here online and offline reconstruction begins. HAWC does not employ any form of

electronic multiplicity trigger. All hits are written to disk, and these hits are either combined

into events or discarded as noise through software techniques.

2.4. Online Processing: Edge Finding

An example stream of post TDC edges can be seen in figure 2.7. The individual edges

in a four-edge hit are labled consecutively as t0, t1, t2, and t3. Time differences are labeled

with two numbers,

t01 = t1− t0(15)

t12 = t2− t1(16)

t23 = t3− t2(17)

t03 = t3− t0.(18)
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Figure 2.7. An example of the post TDC data stream and the resulting edge times.

The time t01 is representative of the time it takes the PMT pulse to rise to some maximum

value (small t01 indicates a short rise time). The time t23 is representative of the time it takes

the PMT pulse to return to zero (small t23 indicates a short fall time). The times t03 and

t12 represent the time the pulse spends over the low threshold (LoTOT) and high threshold

(HiTOT) respectively. Because of this, they are related to the number of photoelectrons

produced by the PMT which generated the pulse.

Consider four square pulses (8 edges) streaming out of a TDC. Which edges belong to a

two edge event (a PMT pulse that only crossed the low threshold) and which edges belong

to a four edge event? The method used for answering this question is known as edge finding.

The edge finding process discriminates between two-edge and four-edge events by applying
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a set of statistical cuts to the data stream as it is produced. These cuts are determined

by pulling a sample of raw edge data from the stream, which is simply a series of time

values. First, a period of at least 10 µs of silence is found within the stream, which marks

the beginning of the edge finding analysis. After this period, consecutive sets of edges are

arbitrarily grouped into two-edge and four-edge hits, and the resulting HiTOT and LoTOT

values are examined as a 2D histogram (see fig. 2.8).

Figure 2.8. The result of arbitrarily pairing edges from the TDC data
stream. Courtesy of Joshua Wood.

The random pairings of edges will result in two superimposed distributions. The first is

a relatively uniform distribution resulting from pairs of real two-edge sets being considered

as four-edge hits. Because these sets are physically two-edge hits, they can land anywhere in

HiTOT-LoTOT space that is permissible by the electronics, creating a flat haze of random
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hits. The second distribution is the result of real four-edge sets being correctly grouped as

a four-edge hit. In this case, HiTOT and LoTOT are physically related because they come

from the same analog PMT pulse. These real four-edge hits must therefore land within

the region of HiTOT-LoTOT space permissible by the physics governing PMTs, creating a

uniquely shaped region with much higher statistics. The bounds of this region are then used

to define a set of linear cuts in TOT space. Once these cuts are defined, then any set of hits

falling within the cut region are considered to be a four-edge hit, otherwise it is a pair of

two-edge hits (see fig. 2.9).

Figure 2.9. Example cuts for defining four-edge events. Courtesy of Joshua Wood.

The statistical nature of this process means that some four-edge hits are misclassified

two-edge pairs. This process is known as PE promotion because PMTs with promoted hits

are reconstructed as having produced more PEs. This effect has been deeply studied by the
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HAWC collaboration and it has been determined that PE promotion only occurs about 0.4%

of the time (that is, about 0.4% of four-edge hits are actually pairs of two-edge hits in disguise

[23]). The presence of PE promoted hits in the data is almost entirely removed via a process

known as edge refining. Similar to edge finding, a stream of edges is arbitrarily grouped into

four-edge sets, and the resulting TOT values are used to determine the location of real hits

within some TOT space and define a cut for future use. In edge refining the relationship

between t01 (the time between the first and second edges) and HiTOT is examined (see fig.

2.10). Physical hits will exhibit slewing, meaning that smaller hits (smaller HiTOT) have a

longer rise time than larger hits (larger HiTOT). Again, the slewing region is identified and

any previously classified four-edge hit that falls outside of this slewing region is reclassified

as a set of two-edge hits.
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Figure 2.10. The presence of charge slewing in t01-HiTOT space. The
sharp edges are present because this is post edge refinement. These data are
considered to be real four-edge hits.
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CHAPTER 3

Offline Reconstruction

At this point, the raw data are complete. Individual PMT hits have been grouped into

events containing the individual HiTOT, LoTOT, hit times, and PMT IDs for every hit in

the event. These data still need to be cleaned (remove faulty channels, ignore PEs that fall

below or above some calibration threshold, etc...), but that is done on a per-reconstruction

basis. The goal now is to use geometric, timing, and intensity information to determine the

trajectory of the primary particle and locate its origin on the sky.

3.1. Calibration

The goal of any calibration system is to translate raw recorded data into meaningful

information. For HAWC, this means converting TOT values into some number of PEs, and

converting the time stamp on each hit into the time at which each PMT was hit. These

two translations are known as the charge and slewing calibration respectively, and both rely

on examining the detector response to a controlled amount of light released into the WCD

array. The system begins with a 532 nm wavelength laser that pulses at a given repetition

rate through an optical fiber. The light is split along two paths; one to a radiometer to

measure the energy of each pulse, and the other to a series of filter wheels. The filter wheels

attenuate the light to some chosen level, before it is split again to be measured by a second

radiometer. The remaining light travels along the fiber optics through a series of switches

and splitters until it finally makes it to one of the calibration diffusers that are contained in

every tank. From here the light is split one last time. Part of the light is sent back to the

calibration house in order to record the time of flight while the remainder travels downward

through the WCD until it impinges on the photocathode of any of the four upward facing
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PMTs in each WCD. This system allows for the injection of a known quantity of light, which

in turn allows for the measurement of the detector response to a controlled signal. The

goal of the calibration procedure is to relate the measured PMT response to the number

of photoelectrons produced at the photocathode of a PMT. This is done by relating the

probability of a PMT producing photoelectrons to the intensity of the light released into a

WCD.

The probability of a photocathode producing n PEs from a single light pulse is governed

by the Poisson distribution about a mean PE value of λ

P (n, λ) =
λn

n!
e−λ.(19)

Because the laser light is pulsed at a known rate, the hits which result from light pulses can

be isolated using a time cut. In the ideal case this sample only contains hits that resulted

from the laser light entering the WCD. All of these hits represent the presence of some

number of PEs greater than zero. When the number of PEs produced is small (the low

intensity regime) the ratio of the number of measured hits to the number of injected laser

pulses is the probability of the photocathode producing n > 0 PEs when said light pulse is

expected to produce λ.

η =
signal

trigger
= P (n > 0, λ = 〈nPE〉).(20)
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Here, η is known as the occupancy. The probability of seeing some number of PEs and not

seeing any PEs must sum to 1. Therefore,

η = 1− P (n = 0, λ =< nPE >)(21)

= 1− e−〈nPE〉.(22)

If all of the hits in the selected laser time window were signal, this would allow for the

direct calculation of < nPE > by simply measuring ηo. Unfortunately the cut window is

contaminated by random radiation events (stray muons, dark currents, etc...). By measuring

the hit rates outside of the sampling window, the number of noise hits within the sampling

window can be estimated. With an estimation of the number of noise events within the

sampling window, the occupancy can be directly calculated as the ratio between the number

of laser shots detected, to the number of shots fired. This implies that

η =
Nhit −Nnoise

Nlaser −Nnoise

,(23)

where Nhit is the number of hits within the sampling window, Nlaser is the number of laser

shots fired, and Nnoise is the number of unrelated radiation hits within the sampling window.

There is some probability that a noise hit will land with the laser shot. That is to say, the

PMT will register a hit that is in time with a laser shot, but is actually the result of noise.

The Nnoise term in the numerator and the denominator accounts for this.

With these two corrections to the occupancy, the expected number of PEs can be calcu-

lated to be

〈nPE〉 = −ln(1− η).(24)
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It is important to note that this equation was derived by assuming that the number of PEs

present is small and so can be modeled by a Poisson distribution (it is assumed that the

occupancy can be directly measured by looking at the ratio of signal to trigger). At low light

intensities this is fine as the probability of a light pulse not creating at least 1 PE is non

zero. At high light intensities this is no longer true, and every single light pulse will produce

multiple PEs at the photocathodes of the WCD PMTs.

In this high intensity regime it is better to assume that the number of photoelectrons

at the cathode of a PMT is proportional to the light intensity in the WCD. This implies

that there is a linear relationship between < nPE > and the transmittance set at the filter

wheels of the calibration system

〈nPE〉 = −ln(1− η) = AT +B ,(25)

where T is the transmittance. The transmittance of a medium (in this case the filter wheels)

is defined as the ratio of radiant flux after the medium to the radiant flux before the medium.

This is calculated to be the ratio of the energy readings from the radiometers before and

after the filter wheels: Iref and I respectively.

〈nPE〉 = A(I/Iref ) + B .(26)

Assuming the calibration laser is stable, Iref is the maximum laser output, or 5.3×10−8 J.

A measurement of zero < nPE > should correspond to a transmittance of zero (I is zero),

and so the parameter B is expected to be zero. If parameter B is zero, the parameter A

represents the maximum number of PEs that can be produced at the photocathode (when

transmittance is 1). By combining equations (26) and (22) together, a new expression for
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the occupancy can be obtained.

η = C[1− e−A(I/Iref )+B](27)

This provides a functional fit to between the measured intensity of the laser after the filter

wheels and the measured occupancy. For a given occupancy (that is, for a given laser

intensity), this fit can then be used to simulate the distribution of the actual number of PEs,

assuming they follow a Poisson distribution with a mean of ∠nPE〉. The PMT response

distribution can be simulated and then percentile-matched with the measured distribution

in increments of 10% in order to create the calibration curves required to translate hit TOT

values into a measure of PEs.

3.2. Core Fitting

The next step in the offline reconstruction is to determine the location of the shower

core (detailed in chapter 1). In order to accomplish this, the core position must first be

estimated somehow. This is done by simply calculating the Center Of Mass (COM) of the

hits located on the array. It should be noted that this estimate restricts the core location to

only positions on the HAWC array.

~rcom =

∑

~riqi
∑

qi
(28)

Where ri is the position of the ith PMT in detector coordinates and qi is the number of

photoelectrons detected by the ith PMT. Because this is a center of mass calculation, this

initial estimation of the core position can only ever be on the array. In order to get a better

estimate of the position of the shower core, the lateral distribution must be fit (detailed in

chapter 2). This fit is done via simple χ2 minimization using the COM location as the initial
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seed (details concerning χ2 minimization can be found in chapter 4). For HAWC the lateral

distribution is observed as the distribution of particle density as a function of distance from

the core. This distribution is described by the Nishimura-Kamata-Greisen (NKG) function,

ρ(r, s,N) =
N

2πR2
mol

Γ(4.5− s)

Γ(s)Γ(4.5− 2s)

(

r

Rmol

)s−2(

1 +
r

Rmol

)s−4.5

,(29)

where r is the radius with respect to the core location, N is an arbitrary amplitude parameter,

and s parameterizes the shower age such that when s = 1 the number of particles in the

shower is maximized. Rmol is the Moliere radius [24], which is the radius of a cylinder coaxial

to the core containing 90% of the particles generated by the shower. HAWC uses a value

for Rmol as 124.21 m, which is a calculated value based on the radiation length of electrons

in air, the density at the observed altitude, and the ratio between the electron scattering

energy and critical energy. This function was obtained theoretically and requires several

rough approximations of electromagnetic cascade theory, but it is still used by HAWC and

other projects to describe the LDF of EAS [25] (see fig 3.1).

Once the core is reconstructed, a parameter known as the Core Fiducial Scale (CFS) can

be defined. This parameter defines the percentage of the radial distance to the center of

the array from where the core lands. A CFS value of 100 indicates that the core has been

reconstructed directly on the edge of the array, while a CFS of 0 means that the core was

reconstructed at the defined coordinate origin (roughly the center of HAWC). A quality cut

of CFS < 90 can be used to insure that all showers are well contained within HAWC. As the

energy of the shower increases, the probability of the shower core landing within some area

per unit time decreases while it’s lateral distribution at the ground increases in area. This

means that high energy showers are biased towards being off-array events, and so this CFS

cut effectively places an upper limit on the sensitivity of HAWC. This has yet to be studied
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by the collaboration as the CFS cut is, at the time of this writing, a recent addition and so

was not used in this analysis.

Figure 3.1. A histogram of the reconstructed core positions with HAWC
over 125 seconds of live time (no cuts). The bright spots represent more events
being reconstructed with cores at that location. Near the center of the array
the NKG fit tends to place the cores directly on the WCDs. Near the edges of
the array, the probability of the core being off of the array increases, and so
the reconstructed cores get pulled off of the array.
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3.3. Plane and Angular Fitting

The next step in the reconstruction is fitting the shower front plane. This fit provides

information on the trajectory of the primary particle and therefore the location at which it

originated on the sky. Fitting the particle trajectory involves minimizing the difference in

time between when a PMT was hit and when a PMT was expected to be hit for a shower

with some trajectory p̂. Consider the two dimensional case shown in figure 3.2.

Figure 3.2. Schematic of a shower front plane in two dimensions. The gray
boxes represent WCDs and the dotted blue line is the shower front plane

The shower front plane moves in the −p̂ direction at a velocity of c. Detector 0 is triggered

at time t0 and position ~r0, detector 1 at time t1 and position ~r1 and so on. The difference in

time between t0 and tn is known as the residual of detector n. The time that it would take the

shower front plane to trigger detector n after triggering detector 0 is ‖~rn‖/Vx where Vx is the
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velocity of the plane in the x direction and ~rn is (xn, yn, zn). To fit the plane the difference

between these two times must be minimized [26]. This is done via χ2 minimization.

χ2 =
∑

n

wn

(

(tn − t0) +
xncos(θ)

c

)2

.(30)

Here, wn is the weight given to the nth detector, and the positive sign comes from the fact

that the velocity of the plane is opposite the direction of p̂. The weight of each detector is

based on the number of PEs detected by that specific PMT. In the general, three dimensional

case where p̂ = (i, j, k) such that i2 + j2 + k2 = 1 the argument of χ2 becomes

χ2 =
∑

n

wn

(

(tn − t0) +
~rn · p̂
c

)2

,(31)

=
∑

n

wn (tn − t0 + xni+ ynj + znk)
2 ,(32)

where the value of c = 1 is implied. In order for χ2 to be an extrema,

∂χ2

∂t0
= 0(33)

∂χ2

∂i
= 0(34)

∂χ2

∂j
= 0(35)

must be true. The time derivative can be solved explicitly.

∂χ2

∂t0
= 0(36)

=
∑

n

wn(tn − t0 + xni+ ynj + znk)(37)

∴ t0
∑

n

Wn =
∑

n

wn(tn + xni+ ynj + znk) .(38)
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The form of the t0 equation suggests the following variables.

W =
∑

n

wn(39)

Ax =
∑

n

wnxn(40)

Axx =
∑

n

wnxnxn(41)

Axy =
∑

n

wnxnyn(42)

...

t0 =
At

W
+

iAx

W
+

jAy

W
+

kAz

W
.(43)

The partials in i and j are also straight forward. In both cases the substitution k =

√

1− i2 − j2 must be used because the system only has three degrees of freedom.

∂χ2

∂i
= 0(44)

=
∑

n

wn(tn − t0 + xni+ ynj + znk)

(

xn + zn
∂
√

1− i2 − j2

∂i

)

(45)

=
∑

n

wn(tn − t0 + xni+ ynj + znk)(xn + zn
i

k
)(46)

∴ Axt − t0

(

i

k
Az − Ax

)

+ i(Axx − Azz) + jAxy

+

(

k − i2

k

)

Axz −
ij

k
Ayz +

i

k
Azt = 0 .(47)

54



And similarly,

Ayt − t0

(

j

k
Az − Ay

)

+ j(Ayy − Azz) + iAxy(48)

+

(

k − j2

k

)

Ayz −
ij

k
Axz +

j

k
Azt = 0 .

Substituting to from equation 43 into equations 47 and 49 produces two equations of three

unknowns

i

(

Bxx − Bzz −
i

k
Bxz −

Bzt

k

)

+ j

(

Bxy −
i

k
Byz

)

+ (Bxt + kBxz) = 0(49)

j

(

Byy − Bzz −
j

k
Byz −

Bzt

k

)

+ i

(

Bxy −
j

k
Bxz

)

+ (Byt + kByz) = 0(50)

where

Bmn = Amn −
AmAn

W
.(51)

By first assuming θ is small (so k ≈ 1), these equations become linear and an exact

solution for k can be found. This can then be plugged into the original set of equations to

find solutions for i and j. By repeating these steps the components of the best fit shower

front plane approach that which minimizes χ2. This assumes that the Wn values chosen for

each detector in the array is correct. In reality, some of the hits detected by a PMT may

not be from the shower front. The arrival time residuals of hits which belong to the shower

front plane should be Gaussian. By fitting the time residual distribution to a Gaussian, hits

from outside the shower front plane can be removed. This effectively changes the Wn for

each PMT. This iterative fitting method is extremely fast and after only a few cycles, the
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zenith angle θ changes by less than 0.0001◦. This shower front plane can now be used at the

seed to a likelihood fit.

Likelihood fitting is an effective procedure for determining the parameters that best fit

some model to a given data set. Suppose there is a data set x consisting of x1, x2, x3, ...xn

independent observation of some physical phenomena (say, the EAS time residuals of n PMTs

in a particle detector array like HAWC). These observations can effectively be thought of

being pulled from an unknown distribution with some probability density function f(X)

where X is some vector of parameters needed to define f . For example, if f were a Gaussian

distribution, X would represent a specific mean and standard deviation of f . For a chosen

set of parameters X, the probability of drawing x1 from the distribution f(X) is written as

f(x1|X). The joint probability of drawing x2 given x1 would be f(x1, x2|X) = f(x1|X) ×

f(x2|X). It follows then that the joint probability of drawing the set x is then

L(x|X) =
n
∏

i=1

f(xi|X),(52)

where L is known as the likelihood. The unique set of parameters Xo that maximizes L

are therefore those parameters that would most likely produce the observed data set x. The

analytical fit to the shower plane is used to set the initial estimates on the parameters used

to calculate the likelihood, which significantly reduces the parameter space which must be

searched to maximize L.
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CHAPTER 4

Simulation

The most basic form of the scientific method is to create some hypothesis, test it against

observation, and then modify the hypothesis to match the observations. In particle astro-

physics this hypothesis takes the form of intricate simulations of both the physical interac-

tions taking place and the detector itself. If the disagreement between the behavior of the

simulated detector and the real detector can be minimized, then the presence of a disagree-

ment between the observed data and the simulation is indicative of unsimulated, or possibly

new physics.

4.1. CORSIKA

The simulations used for this analysis begin with CORSIKA (Cosmic ray simulations for

Kascade) [27]. CORSIKA is a program that produces detailed Monte Carlo simulations of

extensive air showers initiated by a wide variety of cosmic ray primaries, including photons

and protons, respectively the principle signal and background for HAWC. Originally written

in 1989, CORSIKA is a conglomeration of FORTRAN code designed to handle everything

from individual particle interactions to atmospheric modeling. Much of the code was written

specifically for CORSIKA, but some of it (particle interaction models) was written to be

utilized by any simulation suite.

CORSIKA showers are created by simulating in discrete time steps referred to here as

cycles. Each cycle can be thought of as being divided into two distinct phases: interaction

and propagation13. Each of these phases occurs for every particle in the EAS, including

13This description is dramatically oversimplified, but a full discussion of CORSIKA is beyond the scope of
this thesis
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Cherenkov and flourescent photons. At the end of a cycle, the simulated EAS has effectively

been propagated through time by some small amount dt.

The interaction phase of a CORSIKA cycle invokes some form of interaction model based

on user input and the particle currently being targeted by the simulation. CORSIKA rec-

ognizes 52 unique particles including photons, leptons, selected baryons and antibaryons,

resonant states, and nuclei up to A=56. There are eight interaction models available to

CORSIKA: these are VENUS [28], QGSJET [29], DPMJET [30], SIBYLL [31], GHEISHA

[32], FLUKA [33], UrQMD [34], and EGS4 [35]. Each of these models is used for different

energy regimes and particle types. VENUS, QGSJET, DPMJET, and SIBYLL are opti-

mized for high energy inelastic hadron interactions, while GHEISHA, FLUKA, and UrQMD

are optimized for low energy hadrons. EGS4 is used only for photon and lepton interactions

(including any form of bremsstrahlung or Coulomb scattering). For the purposes of this

analysis these models can be thought of as functions that accept initial particle IDs, and

momenta, and then uses these parameters to draw randomized results (a set of post inter-

action parameters) from numerical distributions based on experimental data. All of these

interaction take place within the atmosphere, and so this must also be characterized with

some mathematical model by CORSIKIA.

As briefly mentioned in chapter 1, the atmosphere is a highly complex, dynamic, and

literally fluid system. With a depth of approximately 17 km at sea level, it would take a

vertical cosmic ray about 56 µs to traverse. Because of this timescale, the atmospheric model

used in CORSIKA is completely static, as any time dependent variations in density or depth

would occur at characteristic times on the scale of hours. The atmosphere of the Earth is

modeled by CORSIKA in five layers, with a uniform simplified composition of N2 at 78.1%,

O2 at 21.0%, and Ar at 0.9%. Each layer is characterized by the quantity of mass present
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above a specific altitude, known as the mass overburden T (h), and is characterized by the

equations

T (h) = ai + bie
−h/ci i = 1, 2, 3, 4(53)

T (h) = a5 −
b5h

c5
.(54)

Here, T (h) is in units of g/cm2, while a, b, and c are chosen constants based on measurements

made of the real atmosphere at specific locations on the earth. HAWC uses CORSIKA

atmospheric model 22, which is characterized by measurements made at Malargue, Argentina

[27]. The constants can be found in table 4.1. CORSIKA, by default, simulates a flat

atmosphere. This is a fine approximation as the curvature of the earth is only about 7.84

cm/km. A shower primary with a zenith angle of 75◦ traverses approximately 10 m more

atmosphere under the flat approximation that it would if a realistic curvature were taken

into account (remember, zenith angle limit for this analysis is 65◦). CORSIKA can simulate

a curved atmosphere using tables of atmospheric depth as a function of angle, but this may

significantly increase simulation time, and so a flat atmosphere was used as the difference

between the two for this analysis is small.

Table 4.1. The parameters for atmospheric model 22. The parameters
listed are the exact values used by CORSIKA (hence the significant figures).

Layer # Altitude h (km) ai(g/cm
2) bi(g/cm

2) ci(cm)

1 0 to 10.2 -125.11468467 1169.9511302 947742.88769

2 10.2 to 15.1 -14.591235621 1277.6768488 685089.57509

3 15.1 to 35.9 0.93641128677 1493.5303781 609640.01932

4 35.9 to 100.0 3.2475590985×10−4 617.9660747 747555.95526

5 > 100 0.01128292 1. 109
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The next step in a single CORSIKA cycle is the propagation phase, where no particles

are created or destroyed in the simulation. In this phase the post interaction secondary

particles are only moved through the atmosphere. When charged particles translate through

a medium, energy deposition occurs whereby some of the energy of secondary particles is

given up to the surrounding medium. At high energies (where β ≈ 1) the trajectories of

charged secondary particles are largely unaffected. The electromagnetic fields generated by

the motion of these particles literally rips electrons away from local atoms in the medium in

a process known as ionization, which reduces the energy of the secondary. It is reasonable

to assume that the amount of energy lost as a secondary propagates through some tiny path

length, is dependent on the charge and relative velocity of the secondary, the local electron

density, and the energy required to remove an electron from orbit (for the elements that

compose the medium). Indeed, this process was first articulated by Hans Bethe in 1930 and

is well described at high energies by,

dE =
4πnz2λ

mec2β2

(

e2

4πǫ0

)2 [

ln

(

2mec
2(γ2 − 1)

Uatmo

)

− β2

]

,(55)

β =
v2

c2
,(56)

γ = (1− β2)−1/2 ,(57)

where λ is the thickness of the medium traversed, z is the charge of the particle, v is the

velocity of the particle, n is the number density of electrons in the medium, me is the electron

mass, e is the electron charge, Uatmo is the mean excitation potential, ǫ0 is the permittivity

of free space, and c is the speed of light. Most of these factors are constant for a medium of
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uniform composition. Condensing those constants yields,

dE =
λz2

β2
κ1(ln(γ

2 − 1)− β2 + κ2) ,(58)

where κ1=0.153287 MeV g−1 cm2 and κ2=9.386417 (unitless) are derived for dry air using

[36]. For a given path length, λ, this expression can be used to compute the ionization energy

loss for a single secondary particle. For muons with exceptionally large Lorentz factors

(γ > 2 × 104), additional energy losses occur due to bremsstrahlung and e+e− production.

If at the end of a simulation cycle the Lorentz factor drops below threshold, the muon is

dropped from these additional calculations.

The propagation phase of each computation cycle also includes calculations concerning

the deflection of secondary particles through scattering and through interaction with the

magnetic field of the Earth. In both of these cases, the energy of the secondary particle

is held constant; only the trajectory is modified. The scattering of charged particles in

CORSIKA is considered for both muons and electrons. This process is simplified into the

modification of the trajectory of a secondary particle only once per propagation phase. In

a real EAS, these particles may scatter multiple times as some path length is traversed,

each time resulting in a tiny change in trajectory. In CORSIKA, once a given particle has

reached the middle of the propagation path length for a given cycle, the trajectory of that

particle is modified by randomly pulling deviation angles from a predefined distribution.

This Coulomb multiple scattering distribution is well approximated by a Gaussian, but can

also be explicitly calculated by employing Moliere’s theory [24].

The final step of the propagation phase involves a process known as statistical thinning.

For most showers, it is computationally unreasonable to simulate each and every particle

produced in an EAS. This is because computing times for EAS simulations roughly scale
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with the primary energy (the number of particles in a shower generally increases with energy).

Thinning is the process by which this scaling effect is mitigated for high energy showers. All

particles in the simulation except neutrinos that fall below some adjustable fraction of the

primary energy (ǫthin = E/E0) are subject to this process. At the end of a cycle, if any

single particle has an energy less than ǫthE0, thinning takes place. Each particle for which

this is true is assigned a survival probability of

pi =
Ei

ǫthE0

,(59)

where Ei is the energy of the ith particle. Survivors are selected at random based on their

probability, and are assigned a weight of 1/pi. The remaining particles are discarded. In

this way, the surviving particles represent more than one secondary in the shower, but only

require one particle’s worth of computational time.

After thinning occurs, the simulation cycle repeats until the shower front reaches some

predefined altitude and the next phase in the simulation can begin.

4.2. GEANT4 and HAWCsim

At this point the simulation exists as a set of files for each simulated primary type: γ

rays, protons, helium, oxygen, silicon, carbon, magnesium, neon, and iron. Each file contains

the values of the particle weights, locations, and velocities at the end of the CORSIKA

simulation for each shower in the file, 10m above the tops of the HAWC WCDs. These serve

as the input to GEANT4, which will propagate the showers through a simulated HAWC

array. Like CORSIKA, GEANT4 simulates the motion and interactions of particles but

unlike CORSIKA, GEANT4 is specifically designed to handle interaction through multiple

media and interfaces. GEANT4 can handle things like the reflection of photons from the
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interior of the WCDs and the production of PEs at the photocathode of the PMTs in HAWC.

HAWCsim is the specific implementation of the GEANT4 libraries for HAWC. HAWCsim

defines all the geometries and variables needed to propagate particles through the WCDs of

the HAWC array.

For a single shower post CORSIKA, every particle in that shower is defined by a particle

type ID, position, and momentum. From this HAWCsim translates the particles through

HAWC in a very similar manner as CORSIKA translates them through the atmosphere,

cycling between interaction and propagation. The major change here is that HAWCsim ex-

plicitly checks for interaction at the interface between media (between the plastic bladder and

water, for example) and changes the propagation behavior after the interface accordingly14.

The output of HAWCsim contains, among other things, the creation time and energies of

every PE created by the interaction between the simulated Cherenkov light within the WCDs

and the simulated photocathodes of the HAWC PMTs. Given that information, the elec-

tronics output can be determined and from there, the simulation can be reconstructed in the

exact same fashion as the data (with the same software).

4.3. SWEETS

At this point, the simulation is reconstructed. For the primaries thrown (simulated) by

CORSIKA, there are now files containing the final reconstruction of the associated EAS as

if they been detected by the real HAWC detector (assuming the simulation is perfect). The

challenge is now to use these reconstructed simulations to produce physically meaningful

results. EAS are thrown onto the simulated HAWC array in a deliberately non-physical way

in order to maximize the effectiveness of the simulation (for example, there is no point in

14Again, this is dramatically oversimplified. HAWCsim / GEANT4 includes a much wider range of interac-
tion and decay models than CORSIKA does. It is a much more detailed simulation.
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wasting CPU time simulating a shower that will not even partially land on the array). In

doing so, two biases are introduced to the simulation.

The first bias is in the primary energy. The distribution of primary energies thrown in

the simulation takes the form of a power law, E−2, while in reality the cosmic ray spectrum

is most closely approximated by E−2.7. This means that higher energy events are more

frequently simulated than what would be detected in reality15. This is done because the

behavior of the HAWC observatory must be properly studied at all energies, and a steeper

simulated spectrum would increase the rarity of high energy events.

The second bias is in where the showers are thrown on the array as defined by the distance

r from the shower core to the center of HAWC. Physically more events should land at larger

r than smaller r, simply because there is more area at larger r. In the simulation, events are

thrown such that this distribution goes as r−1, which throws more events near the center

of HAWC than what would be there in reality. Again, this is done on purpose to more

effectively study the behavior of HAWC.

In order to get a simulation of a physical source transiting over the array, these biases

must first be removed, and then weights must be introduced to change the distributions

reflect physicality. This is where the Software for Weighting Events and Event-like Things

and Stuff, SWEETS16, comes in. Given a source spectrum and a declination, SWEETS

reweights the events in a reconstructed simulation to mimic the distributions that would be

seen were that source to transit over HAWC. These weights can be calculated analytically

as follows.

15The reason why energy is not thrown uniformly is because of the increase in computation times at high
energy.
16I feel a great disturbance in the Force, as if millions of lives face palmed and were suddenly silenced.
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The throwing biases suggest that the differential distribution, T , with which events are

thrown in CORSIKA has the form of

T = T (E, r) =
dN

dE dA dΩ
∝ E−2

r
.(60)

This describes the number of events with an energy between E and E+dE that will fall on

some tiny patch of area dA a distance r from the center of the detector which came from

some tiny patch of sky dΩ. It is the time independent differential flux artificially created

by throwing events with CORSIKA. Integrating this across the phase space must yield the

total number of events thrown, such that

Nthrown = C

∫

E

∫

A

∫

θ

∫

φ

E−2

r
cos(θ)sin(θ)dE dA dθ dφ ,(61)

where C represents the proportionality constant of the differential distribution. The form

of this integral demands comment. The first comment is that sin(θ)dθ dφ is the differential

solid angle dΩ. The second comment concerns the presence of cos(θ) in the integrand which

is present because the incident flux on dA decreases with increasing zenith angle as a result
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of geometry17. Affecting the integral results in

Nthrown = C

∫ Ef

Ei

∫

A

∫ θf

θi

∫ 2π

0

E−2

r
cos(θ)sin(θ)dE dA dθ dφ

= Cπ(cos2(θi)− cos2(θf ))

∫ Ef

Ei

∫

A

E−2

r
dE dA

= Cπ(cos2(θi)− cos2(θf ))(E
−1
i − E−1

f )

∫

A

r−1 dA

= Cπ(cos2(θi)− cos2(θf ))(E
−1
i − E−1

f )

∫ Rf

Ri

∫ 2π

0

r dr dφ′

Nthrown = C2π2(cos2(θi)− cos2(θf ))(E
−1
i − E−1

f )(Rf −Ri)

∴ C =
Nthrown

2π2(cos2(θi)− cos2(θf ))(E
−1
i − E−1

f )(Rf −Ri)
.(62)

The ranges for R, θ, and E are 0 to 1km, 0 to 75◦, and 5 GeV to 2 PeV respectively. The

distribution with which events are thrown on the simulated array is now fully defined.

T (E, r) =

(

Nthrown

2π2(cos2(θi)− cos2(θf ))(E
−1
i − E−1

f )(Rf −Ri)

)

(

E−2

r

)

.(63)

Note the units on T (E, r). The units of differential flux include inverse time, but T does

not. This is because the simulation has no time. The arrival time of simulated showers

relative to each other is not simulated. The tricky question is this: how do you reweight the

simulation and use it to calculate dN/dt, the number of events detected per second, for a

uniform differential flux described by Φ(E) = Φ0(E/E0)
−γ where Φ has units of inverse area

17Remember, the differential describes in part the number of events that will fall on some tiny area of the
detector. If those events come from a large zenith angle, then this tiny area will appear edge on and no
events will be able to fall on it. Basically, with a bit of vector maths it can be shown that for a vector field
~F , the integral flux through some area defined by normal vector ~A is

∫

~F · d ~A =
∫

F cos(θ) dA.
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time energy? Let w be some yet to be defined weight function. What is the form of w such

that

dN

dt
=

∫

w T (E, r) cos(θ) dA dΩdE(64)

=

∫

Φ(E) cos(θ) dA dΩdE ?(65)

Assuming both integrals have the same limits, then the form of the weight function must be

w = Φ(E)/T (E, r) by association, and so

w = w(E, r) =
r E2 Φ(E)

Nthrown

2π2(cos2(θi)− cos2(θf ))(E
−1
i − E−1

f )(Rf −Ri) .(66)

It is important to note the units of Φ(E) and w(E, r). Again, because the relative time

between events is not simulated the energy, area, and solid angle units of the differential flux

cancel with the units of T (E, r) leaving the weight in units of Hz, as intended.

This is all well and good on paper, but the simulation is discrete. Given a file, finding

the number of events in the file (and therefore the number of showers thrown) is as simple

as looping over the file and counting the number of entries. This is similar to carrying out

the integration with the weight function w = 1. The weight function derived above can be

used to assign an individual event a new weight other than unity, and finding dN/dt from

the simulation should be approximately equal to summing the weights.

Nthrown
∑

i=0

w(Ei, ri) ≈
dN

dt
.(67)

With the tricky question out of the way, a new question is raised. How do you reweight

the simulation and use it to calculate dN/dt, the number of events detected per second,
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for a differential flux described by Φ(E) = Φ0(E/E0)
−γ coming from a specific declination?

Calculating w in this case will be slightly different than in the isotropic case because the

location on the sky from which flux originates changes as the source transits. Basically, the

zenith and azimuth angles become time dependent, and this dependence must somehow be

accounted for with the weight in order for the simulation to be meaningful.

Because the simulation has no time, a good first place to start would be to parameterize

the time dependence of a single transit by some other variables, ideally θ and φ. First,

consider the physical case, where the total number of events detected during a single transit

can be described by

Ntransit = 2

∫ tmax

0

∫

E

∫

A

Φ(E) cos(θ(t))dt dE dA ,(68)

where tmax is the time required for the source to rise to its maximum altitude (assuming it

rises at t=0). Notice that the solid angle dependence of the integral is no longer present.

This is because the source is a point, and subtends no solid angle on the sky. The factor of 2

comes from symmetry. If the detector is symmetric in azimuth, a fair assumption for HAWC,

then the same number of events will be detected as the sources rises as would be detected as

it sets. The transit of the source from horizon to its maximum altitude (or reverse) is single

valued in sin(θ(t)) and cos(θ(t)). In order to determine the weight by association as done

for the isotopic case, reparameterization should be done in terms of sin(θ)dθ.

Ntransit = 2

∫

θ

∫

E

∫

A

Φ(E)
dt

sin(θ)dθ
cos(θ) sin(θ) dθ dE dA ,(69)
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At this point, the integral does not depend on time, and so it can be compared to the

simulation

Ntransit = 2

∫

θ

∫

E

∫

A

Φ(E)
dt

sin(θ)dθ
cos(θ) sin(θ) dθ dE dA(70)

= 2π

∫

θ

∫

E

∫

A

w T (E, r), cos(θ)sin(θ) dθ dE dA ,(71)

Where the φ integral has been carried out. Again, by association, the weight must be

w(E, r, θ) =
1

π

Φ(E)

T (E, r)

dt

sin(θ)dθ
.(72)

The transit of the source over the detector is completely described by the derivative dt/dθ. In

order to examine this derivative, we need a conversion between the time independent equa-

torial coordinate system and the time dependent horizontal (also known as local) coordinate

system. This conversion is known as the transit function and can be explicitly derived.

The local coordinate system has already been discussed. It describes the location of an

object on the sky with respect to zenith (θ)18 and azimuth (φ). The equatorial system is

slightly less intuitive because it describes the location of an object on the sky with respect to

the celestial sphere, as opposed to some location on the surface of the Earth. The celestial

sphere appears to turn coaxially with the rotational north pole of the Earth and the plane

that lies normal to this axis is the equatorial plane because it directly intersects the equator

of the Earth. A second plane can be defined by the path in which the earth orbits the sun.

This path is known as the ecliptic, and it intersects the equatorial plane at exactly two points

on the celestial sphere: the vernal and autumnal equinoxes.

18Altitude can also be used, which is π/2 - θ. Altitude is the angular altitude of an object as measured from
the horizon.
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Figure 4.1. Schematic showing the definition of the vernal and autumnal
equinoxes on the celestial sphere as seen when viewed from above the northern
hemisphere of the ecliptic. The dashed red lines represent the intersection
between the ecliptic and equatorial planes, while the black arrows represent
ecliptic projection of the north rotational pole.

It can be difficult to visualize (see fig. 4.1) but a good way to understand this is to

imagine standing anywhere on the equator during the vernal equinox. At that time and

place, the vernal equinox is the location on the sky that first rises in the east as the sun

sets behind you. The equatorial system defines a fixed point on the celestial sphere by

the right ascension (the angular displacement from the vernal equinox) and the declination

(the angular displacement from the equatorial plane). Conveniently, because of how the

equatorial system is defined, the right ascension of a celestial body is the time required for

that object to rise from the horizon after the vernal equinox (known as the local hour angle).

With the coordinate systems defined, the transit function can be derived.
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Imagine standing at any point on the northern hemisphere as a star transits across the

sky. Let Ĉ be the unit vector from that point to the star, let Ẑ be the unit vector to the local

zenith (straight above you), and let P̂ be a unit vector directed towards the north, parallel

to the rotational axis of the Earth (see fig. 4.2). The latitude, l at this point on the Earth is

the angular displacement from the equator along the meridian to that point. Therefore, the

angle between Ẑ and P̂ is the difference between the latitude and 90◦. The declination, δ, of

the star is the angular displacement from the equatorial plane to the star, and so the angle

between the P̂ and Ĉ is the difference between the declination and 90◦. The zenith angle of

the star is the angular displacement from the zenith to the star, which is the angle between

Ẑ and Ĉ. These three angular displacements form the highlighted spherical triangle in fig.

4.2

To summarize,

Ẑ · Ĉ = cos(θ)(73)

Ẑ · P̂ = cos(π/2− l) = sin(l)(74)

P̂ · Ĉ = cos(π/2− δ) = sin(δ) .(75)

If the goal is to determine the time dependence of θ then the opposite angle, the relative

local hour angle H must be defined (spherical angle ∠ZPC in fig. 4.2). Again, this is the

angle between the meridian plane and the plane containing both P̂ and Ĉ. To define H, we

need to define two unit vectors which are both perpendicular to P̂ , one pointing along arc

PZ and one along arc PC. These vectors are,

V̂δ =
Ĉ − P̂ (P̂ · Ĉ)

‖Ĉ − P̂ (P̂ · Ĉ‖
=

Ĉ − P̂ (sin(δ))

cos(δ)
,(76)
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Figure 4.2. Schematic showing the relevant geometry of the transit of an
object on the celestial sphere in local coordinates. P is the rotational axis of
the earth, Z is the local zenith, and C is the transiting object. The associated
great circles are the equator (blue), the meridian (red) and the transit path
(green). In equatorial coordinates the declination of the object is the angular
displacement from the equator to the transit path.

and

V̂l =
Ẑ − P̂ (P̂ · Ẑ)
‖Ẑ − P̂ (P̂ · Ẑ‖

=
Ẑ − P̂ (sin(l))

cos(l)
,(77)

respectively. The cosine of the hour angle is therefore

V̂δ · V̂l = cos(H) =
cos(θ)− sin(l)sin(δ)

cos(δ)cos(l)
.(78)

Rearranging this yields the transit function.

cos(θ) = sin(l)sin(δ) + cos(δ)cos(l)cos(H) .(79)
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The time dependence of the transit function is expressed in H, the relative local hour angle.

Any point on the celestial sphere will, by definition, return to that location on the sky after

one sidereal day. The relative local hour angle is the angular displacement between the initial

location of said point and the current location at time t, and so H = 2πt/tsid where tsid is the

duration of a sidereal day. Because the transit function is defined in terms of cos(θ) changing

the variables used to calculate the weight appropriately will clean up the derivatives, and so

w(E, r, θ) =
1

π

Φ(E)

T (E, r)

dt

sin(θ)dθ
(80)

=
−1

π

Φ(E)

T (E, r)

(

d cos(θ)

dt

)−1

(81)

∴ w(E, r, θ) =
Φ(E) tsid

2π2 T (E, r) cos(l) cos(δ) sin(2πt/tsid)
.(82)

Normally these kinds of differential manipulations would require more rigor, but these are

known physical quantities and so the derivative dθ/dt is simply the ratio between a tiny

difference in angle and a tiny difference in time. Note that even though t is present in the

weight, it can be directly calculated by inverting the transit function and using the zenith

angle of a given simulated event. Any event with a zenith angle less than the minimum

transit zenith of the source is assigned a transit weight of 0.

With the entirety of the universe that matters well defined, the spectrum of the Crab

nebula can be discussed.
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CHAPTER 5

The Crab Nebula

The Crab nebula, the remnant of supernova SN 1054 located 6.5 kly from Earth at

an equatorial right ascension of 83.64◦ and declination of 22.01◦, is a source of Very High

Energy (VHE) gamma rays. The physical structure of the Crab Nebula consists of an

optically luminous shell of gases approximately 11 ly in diameter enveloping a central 33 ms

pulsar. The production of gamma rays in the Crab is powered by interactions between the

relativistic electron wind produced by the central pulsar and the surrounding nebula. This

energetic flow of electrons scatters lower energy synchrotron photons up into the TeV range

where they can be observed by HAWC [37]. The Crab nebula is an important VHE gamma

ray source because of its stability. While it does occasionally flare [38], it is still widely

regarded as stable when observed over the course of months. This makes it an important

comparative tool because it can act as a standard candle and reference.

Historically, the Crab Nebula first appeared as a supernova in the skies of 1054 C.E., when

it was recorded by Chinese, Middle Eastern, and Native American astronomers. Historical

documents from the period describe the event as a “guest star” which was visible, even during

the day, for two years before fading from view. Modern observations of the Crab nebula have

been made by many different TeV gamma ray experiments including Milagro[39], HESS[40],

and Whipple[41], which was the first to observe TeV emissions from the Crab in 1989.

The physical properties of the Crab, including its size, expansion rate, and spectrum have

been very thoroughly measured since its discovery. The spectral properties of the Crab

are often used to characterize experiments, study TeV gamma rays and evaluate related

systematic uncertainties. The size of the Crab nebula is significantly smaller than the point
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spread function of most ground based TeV observatories, which means it can also be used

to calibrate the angular resolution of a detector. This analysis is primarily a study of the

spectrum of the Crab nebula with the HAWC observatory, but other sources of interest are

also examined.

5.1. The Data

The data used in this analysis were recorded between August 2, 2013 and January 11,

2016 and are comprised of four parts. The first two parts consists of 181 days of live time

ending on March 3, 2014, spanning the construction of the final 16 WCDs leading to the

completion of the first 111 WCDs of HAWC (consequently, these data are also referred to as

HAWC-111). These parts are known as epoch 1 and epoch 2 (the early and late period of the

construction of these 16 WCDs). These two epochs are usually examined together because

the only change in the detector between the two is the number of PMTs active in the array.

The epoch 1 and epoch 2 data sets exist as one large group of runs which must either be

manually separated, or the combined set must be analyzed with appropriate weighting. The

third part of the data is known as epochs 1+2 which is simply the combined epoch 1 and

2 data set. Examining the combined set will illustrate how to appropriately weight data

that has a fluctuating number of active PMTs19, without needing to separate the data sets.

The fourth and final part of the data used in this analysis consists of 340 days of live time,

ending in January 2016, after the completion of the array and is known as HAWC-SP20.

This portion of the data was used to determine the spectral properties of the Crab and other

sources.

19Even with a completed detector, the number of PMTs fluctuates slightly with time as a result of mainte-
nance and malfunction.
20SP is an acronym for the most recent reconstruction, known as Saucy Platypus.
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5.2. Bins and Cutting Variables

The data used for this analysis were divided into 10 bins defined by the fraction of PMTs

triggered in the HAWC array (fHit). Data within each fHit bin were further excluded from

this analysis based on quality, probability of being background, and reconstructed location on

the sky (see table 5.1). Unless otherwise stated, bins 0 and 1 were excluded from the analysis.

At the moment, the purity of events (the relative fraction of real gamma rays to real cosmic

rays) in these bins is being studied by the HAWC collaboration. It is suspected that these

bins contain mostly cosmic rays, but bin composition was not examined for this analysis.

Furthermore, fit spectra do not result in reasonable χ2 values on any of the examined sources

when bins 0 and 1 are included. Strictly speaking, it is possible that this is evidence that the

tested models do not fit the data, but given that HAWC is still young and the Crab is so well

characterized as a standard candle, it is more likely that the quality of the data in bins 0 and

1 is poor. In the future, when the detector is better understood and the signal-background

selection methods are improved, this will probably change. For now this simply means that

the results of this analysis only apply at energies well above 800 GeV.

This section will describe these cutting variables while the following sections will describe

how these variables are used in the creation of skymaps for this analysis, and the systematic

uncertainties associated with these variables.

5.2.1. fHit and Energy.

HAWC is, at its most fundamental level, a calorimeter. When an extensive air shower front

passes through the array, it deposits energy into the WCDs and this is, essentially, what

gets recorded as data. EAS array experiments such as Milagro and HAWC, which make no

measurement of the shower before it reaches the ground, are only able to directly measure
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Table 5.1. Cuts used for this analysis of the Crab Nebula with HAWC.

Bin # fHit > fHit ≤ Angular Bin (degrees) Compactness > PINC <

0 0.045 0.067 1.06 21.0 1.50

1 0.067 0.105 0.84 7.0 2.20

2 0.105 0.162 0.65 9.0 3.0

3 0.162 0.247 0.52 11.0 2.30

4 0.247 0.357 0.41 15.0 1.90

5 0.357 0.485 0.35 18.0 1.90

6 0.485 0.618 0.33 17.0 1.70

7 0.618 0.740 0.25 15.0 1.80

8 0.740 0.840 0.23 15.0 1.80

9 0.840 1.00 0.20 3.0 1.60

the energy that arrives at the ground. Unfortunately, an EAS primary of a given energy that

interacts at a shallow atmospheric depth will deliver significantly more energy at the ground

than one with the same energy that interacted deeper. This implies that the correlation

between the energy at the ground and the energy at the first interaction is very weak (if

it exists at all). Most ground based EAS experiments define some calculated variable that

strongly correlates with primary energy that can be used as a proxy. Analysis bins are then

defined with respect to this energy proxy variable.

Regardless of these facts, it is not necessary to determine the primary energy of individual

showers in order to measure the spectrum of TeV gamma rays emitted by a source (as

discussed in section 5.6). The fraction of PMTs in HAWC that are triggered by an EAS,

known as fHit, is used as the energy proxy for this analysis. As expected, fHit correlates

weakly with energy, as can be see in fig. 5.1.
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Because fHit serves as the energy proxy in this analysis, the fHit bins were specifi-

cally chosen such that the mean simulated energy of the bins were evenly separated across

log10(energy) space.

Figure 5.1. The distribution of simulated energy in units of log10(E/GeV)
for HAWC-111.

5.2.2. Angular Bin.

The angular bin defines the radius about a given location on the sky within which events

are accepted into the analysis. The optimal angular bin size is that which maximizes the

statistical significance of a given source and it is a function of the angular resolution of

HAWC.

A good estimation of statistical significance for any counting measurement governed by

the Poisson distribution is

Significance =
Excess√

Background
,(83)
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where the background is the number of counts assuming the null hypothesis, and the excess is

the number of counts above or below the background. In this case, the statistical significance

is explicitly the number of standard deviations a given measurement is away from a Poisson

background.

Consider a circular angular bin of radius R degrees. If the background is isotropic, then

the number of background events that come from that circular bin is proportional to the

area of that bin,

Background ∝ πR2 .(84)

If there is a source in a certain bin, then the number of excess events is dependent on intensity

of the source and the angular uncertainty of reconstructed events in the associated fHit bin,

which is expressed as the point spread function (PSF). This function defines the likelihood

of reconstructing an event on the sky at a location other than where it originated. To first

order, the PSF of HAWC is a radially symmetric Gaussian distribution, which is coaxial

with the circular bin used to calculate the background. The total excess in a given bin is

then the integral of the PSF over the circular bin.

Excess =

∫ 2π

0

∫ R

0

Ae
−r2

2σ2 r dr dθ = 2πσ2A(1− e
−R

2

2σ2 ) ,(85)

where A is a constant that accounts for the intensity of the source and σ is the angular

uncertainty of reconstructed events in this fHit bin. The significance is then,

Significance =
Aσ2

R
(1− e

−R
2

2σ2 ) ,(86)
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where the constants have been absorbed into A. If R is written in units of σ this becomes

Significance =
σ

R
(1− e

−R
2

2 ) ,(87)

which peaks at 1.58σ (see figure 5.2). This implies that the angular bin which optimizes the

significance is 1.58 times the reconstructed angular uncertainty in that bin. Ideally this would

mean that finding the optimal bin is simply a matter of measuring the angular uncertainty of

the HAWC detector. To second order, the PSF of HAWC is not a single radially symmetric

Figure 5.2. Significance as a function of bin radius in units of angular
uncertainty. The vertical line is the maximum at 1.58σ.

Gaussian. It is in fact most closely approximated by the sum of two Gaussians.

PSF (A, r, σ1, σ2) = Ae−r2/2σ2

1 + (1− A)e−r2/2σ2

2 .(88)

The 1.58 σ approximation serves fine as a first step, but the true PSF of HAWC must be

accounted for. Determining the optimal bin size can be carried out in the same fashion
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as for a single Gaussian: derive an expression for the significance of a source on isotropic

background, and maximize for the bin radius.

The total signal from a source in a radial bin R is now

Excess =

∫ 2π

0

∫ R

0

[

Ae−r2/2σ2

1 + (1− A)e−r2/2σ2

2

]

rdrdθ ,(89)

and the background still goes as R2. The significance of the source is then

Significance = C

[

Aσ2
1

R

(

1− e−R2/2σ2

1

)

+
(1− A)σ2

2

R

(

1− e−R2/2σ2

2

)

]

,(90)

where the integration constants have been absorbed into C. This can be simplified somewhat

by changing the units such that R → Rσ1 and σ2 = ησ1. Taking a derivative with respect

to R and setting the result equal to zero results in

0 = A

(

1 +
1

R2

)

e−R2/2 − A

R2
+ (1− A)η2

(

1

η2
+

1

R2

)

e−R2/2η2 − (1− A)η2

R2
,(91)

which is transcendental. An approximate solution can be found by expanding the exponential

terms to second order.

e−R2/2η2 = 1− R2

2η2
+

R4

8η2
− . . .(92)

∴ 0 =

(

A(η4 − 1) + 1

8η4

)

R4 −
(

3A(η2 − 1) + 3

8η2

)

R2 +
1

2
.(93)

The above expression is quadratic in R2 and can be explicitly solved with the quadratic

equation, resulting in complex roots on the domain of A = [0, 1] and η = [1,+∞). The real
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part of these roots are identical, and is explicitly

RE(R) =
3

2
η2
(

A(η2 − 1) + 1

A(η4 − 1) + 1

)

.(94)

Note that the real parts of the roots do not solve the quadratic in R2, however, they do

provide reasonable optimal bins with a measurable systematic. The optimal bins can there-

fore be found by fitting the distribution of angular uncertainty in MC to a double Gaussian,

determining η, and then simply calculating the optimal bin. The optimal bin can also be

found numerically by finding the maximum value of the integral of the angular uncertainty

distribution in units of 1/R (see table 5.2). The analytical bins were chosen for this analysis

for two reasons. First, the analytical angular bins are not limited by the arbitrarily chosen

bin width used to discretize the angular uncertainty distribution into a histogram (in this

case, 0.025 degrees). Second, the analytical bins are less influenced the presence of statistical

fluctuation in the simulation sample.

Table 5.2. Comparing the analytical optimal bin to the numerical solution.
The values A, σ2

1, σ
2
2, and η are found by fitting the angular uncertainty in MC

to a double Gaussian.

Bin # A σ2
1 σ2

2 η2 Analytical Bin (deg) Numerical Bin (deg)

0 0.929 0.492 1.669 3.387 1.06 1.275

1 0.983 0.319 3.366 10.519 0.84 0.775

2 0.993 0.189 2.883 15.239 0.65 0.575

3 0.995 0.121 2.236 18.452 0.52 0.425

4 0.997 0.0783 1.899 24.249 0.41 0.325

5 0.998 0.0553 1.519 27.448 0.35 0.275

6 0.996 0.0506 0.990 19.557 0.33 0.275

7 0.995 0.0278 0.467 16.821 0.25 0.175

8 0.990 0.0237 0.280 11.814 0.23 0.125

9 0.980 0.0181 0.161 8.900 0.20 0.125
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5.2.3. Compactness.

The events used in this analysis are those which have passed a set of cuts to distinguish

gamma rays from cosmic rays. That is to say, the background is made only of events that

appear gamma-like (the background exists because this cutting method is far from perfect,

and cosmic rays vastly outnumber gamma rays). One of the parameters used to do this

is known as the compactness, which is a measure of how compact a given shower is about

its longitudinal axis. Compactness is calculated by examining muon-like signals occurring

far from the core of an extensive air shower. Gamma ray showers primarily produce muons

through photonuclear reactions that lead to pions, or through pair production high in the

atmosphere [42], and so the muon content in gamma showers is small in comparison to cosmic

ray showers simply because there are significantly fewer production channels in a gamma ray

shower. The muons produced in a gamma ray shower will fall much closer to the shower core

in comparison to a cosmic ray shower. This is because the electromagnetic cascade products

(pair produced electrons and bremsstrahlung photons) do not, on average, gain the large

transverse momenta often seen from hadrons emerging from typical production reactions.

As a result, gamma ray and cosmic ray EAS have significantly different spatial structures.

Gamma ray showers are simply more compact that cosmic ray showers (see fig. 5.3).

The signiture used to calculate compactness appear in the data as PMTs with very large

signals, as would be produced by muons. Cosmic ray showers are therefore discriminated

by examining the ratio of the total number of PMTs triggered in an event to the number of

PEs measured in the PMT with the largest signal outside 40m from the reconstructed core.

Compactness =
nHit

CxPE40
(95)
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Figure 5.3. Example CORSIKA shower simulations for (from left to right)
a 1 TeV photon, proton, and iron nucleus. Compiled by Fabian Schmidt,
University of Leeds, UK.

Here, nHit is the total number of PMTs in the recorded event and CxPE40 is the number

of photoelectrons recorded from the hottest PMT outside a 40m radius around the shower

core. A large compactness value is more gamma-like. The cut values on compactness used

for this analysis were determined by maximizing the significance on a simulated Crab nebula

as a function of the cut value.

5.2.4. PINCness.

The Parameter for Identifying Nuclear Cosmic rays (PINC) is the the second parameter used

to separate gamma-like showers from hadron-like showers. As discussed in previous chapters,

the lateral distribution of PEs in a single HAWC event is fit to the NKG distribution in order

to reconstruct the shower core location. The lateral distributions of hadron induced EAS
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have characteristically larger χ2 when fit to the NKG distribution, and a good first thought

might be to cut on this χ2 to separate gammas from hadrons (after all, the NKG distribution

is technically only defined for electromagnetic cascades). Unfortunately, if a shower lands

partially off of the HAWC array or even if there are significant fluctuations in the shower

front, χ2 may increase. There are many variables which could lead to a gamma ray shower

having a hadron like χ2 from the core fit. PINCness takes this idea to the next level and

compensates for these issues.

PINCness assumes that gamma ray EAS are axially symmetric and radially smooth.

This is a fair assumption as the other gamma hadron separator, compactness, specifically

targets LDF asymmetries in hadron showers. If a shower displays axial symmetry and radial

smoothness then the charge measured at a given PMT some distance R meters from the

shower core should be close to the mean charge of all PMTs at that radius. Here the

definition of closeness is the χ2 deviation of that PMT from the mean of all PMTs at R

meters. Naturally, a first attempt definition of PINCness is

P =
1

N

N
∑

i=0

(qi − q̄i)
2

σ2
i

,(96)

where N is the number of PMTs in the event, qi is the measured number of PEs in PMT i, q̄i is

the mean number of PEs measured by all PMTs within an annular region of R = Ri±5 m21,

and σi uncertainty in the effective charge as defined by the calibration. This is a great first

definition and works fine on paper and in practice, but slight modifications to this calculation

have recently lead to a new version of PINC (aptly named PINCness version 2). Because

the distribution of possible PE counts in an event is very wide (1 to 1000 or more), PINC

21The location of PMTs in the array is a discrete variable, and so an annular region is needed to choose
PMTs “at the same radius”.
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is actually calculated using the log of the number of measured PEs. The uncertainty, σ1, is

calculated using a functional form that was derived based on past observations of gamma

ray like events with HAWC. The uncertainty reported by the calibration only describes the

uncertainty in the measurement, and does not account for the statistical uncertainty arising

from fluctuations inherent in all EAS. If the symmetry and smoothness assumptions used for

gamma ray showers are consistent with observations, and if the uncertainties are properly

defined, then PINC should be 1 for gamma ray showers, and hadron showers will be ”more

PINC” than gamma ray showers. As a result of this, typical cut values for PINC version 2

range from 1 to 2.

Like compactness, PINCness was optimized by choosing cut values that maximize the

significance of a simulated Crab nebula.

Now that the data and all of the analysis variables have been discussed, the first step in

the analysis can be examined, which is the creation of skymaps.

5.3. Skymaps and the Background

Reconstructed event data include the location on the sky from which a given event

originated. These locations form a two dimensional histogram known as a skymap. Skymaps

are created with uniform bins of 0.1◦ characteristic dimension using the HEALPix library,

and cover HAWCs field of view (approximately 8.4 sr, or 2 sr instantaneous). All events

are recorded in the J2000 coordinate epoch, and for each analysis bin (these bins are of

the energy proxy variable, fHit, discussed in 5.2.1) two maps are created: a signal map and

a background map. The signal map contains the measured number of events on the sky

while the background map contains the expected number of background events. Because the

relative excess between signal (TeV gamma rays) and background (cosmic rays) is very small,
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the background must be estimated both precisely and accurately or real signal excesses will

be indistinguishable from statistical fluctuations.

The background is estimated through a method known as Milagro Direct Integration

(MDI)[39]. The goal of MDI is to create a background skymap, B(α, δ), in bins of right

ascension α and declination δ, which can then be subtracted from the raw signal skymap,

S(α, δ) to produce a single map of event excesses. Hadronic cosmic rays form the principle

background for all measurements made with HAWC. At the TeV energy scale, it is assumed

that they arrive at the earth in an isotropic distribution because they are created by distant

sources, and so must propagate through the magnetic field of the galaxy. Cosmic rays in the

TeV energy range are completely scrambled by this field and cannot be used to point back

to their source. As a result of this diffuse propagation the hadronic background is steady

in time, and carries enough energy to not be effected by solar activity. Thus, the observed

background is only sensitive to variations in the detector and atmosphere [39].

The background rate in local coordinates is denoted by F (t, h, δ) where t is the sidereal

time, h is the hour angle, and δ is the declination. Because of the isotropic, diffuse nature

of the hadronic background, F is separable.

F (t, h, δ) = R(t)ǫ(h, δ)(97)

Here, R(t) is the all-sky event rate and ǫ(h, δ) is the local angular distribution of events.

This implies that even large changes in R(t) do not affect the local angular distribution of

events. Furthermore, it implies that the local angular distribution is a constant with respect

to time. As a result, each of these terms can be directly measured using the same data.

Once R and ǫ are measured, the background map, B(α, δ), can be calculated.
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To calculate B(α, δ) an integration duration, ∆t, is chosen (typically 24 hours). Next,

events are recorded for this duration and R(t) is calculated using events from the entire

sky while ǫ(h, δ) is calculated using events from the entire duration. A pixel located at a

right ascension of α is at a local sidereal time t = α + h. The time bins of R(t) where this

relationship is true are multiplied by the corresponding bins in ǫ(h, δ), and summed together,

finally resulting in a single bin of B(α, δ).

B(α, δ) =
2π
∑

t=0

R(t)ǫ(h, δ)O(t, h, α) ,(98)

O(t, h, α) =



















1, if h = t− α

0, otherwise

(99)

This effectively creates a background map of relatively uniform intensity. These maps have a

striated structure as a result of the continual sum along sidereal time, but the effects of these

fluctuations are small (see fig. 5.4). It is important to note that the sum used to calculate

B(α, δ) does not distinguish between signal and background. As a result, B(α, δ) slightly

over estimates the background at a given location on the sky. It is possible to compensate

for this by masking regions of interest when the background is calculated, but these methods

were not employed for this analysis because the effect is small (on the order of one part in ten

thousand22). In 24 hours of recording time, approximately 40 million events are detected in

the vicinity of the Crab nebula and the difference between this and the estimated background

is on the order of 20 thousand.

22The ratio between excess and background in bin zero for the Crab is about .00013
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For this analysis, the maximum significance on the Crab Nebula was detected at (83.62◦, 22.02◦).

The exact pixel location on the map is known to 0.0001 degrees, but the angular resolution

of the detector is on the order of 0.01 degrees at the absolute best.

Figure 5.4. The background as expected using Milagro Direct Integration
(MDI), B(α, δ) (left), and the measured signal, S(α, δ) (right) at zenith dec-
lination in number of events. The striations are a result of the integration
over sidereal time. Note that the difference in scale was preserved in order to
illustrate the structural difference between the MDI background and observed
signal.

5.4. Probability

The significance of deviation of signal above the expected background is calculated using

Li & Ma equation 17 from [43]. This significance test assumes Poisson fluctuations and that

the excess signal is small in comparison to background, which is ideal for HAWC.

Ns =
√
2

{

Nonln

[

1 + αLiMa

αLiMa

(

Non

Non +Noff

)]

+Noff ln

[

(1 + αLiMa)

(

Noff

Noff +Non

)]}
1

2

(100)
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This expression was originally derived with a pointable telescope in mind, where Non and

Noff were the counts while pointing on and off source respectively,αLiMa is the relative time

exposure between the two, and Ns is the number of standard deviations by which Non exceeds

Noff . HAWC however does not point, because it is an air shower array. Instead excess counts

are found by taking the difference between skymaps. In this case, the on counts come from

the signal map S(α, δ) while the off counts come from the background map B(α, δ). The

background map is over exposed in comparison to the signal map and the relative exposure

corrects this.

Non(α, δ) = S(α, δ)(101)

Noff (α, δ) =
B(α, δ)

αLiMa

(102)

Absolute significance values greater than 5σ are usually considered to be a discovery by

other experiments. For HAWC this is not necessarily the case. Due to the sheer amount

of sky surveyed with the observatory and the point spread function of the detector, a 5σ

fluctuation may occur quite frequently. For example, suppose you were to randomly sample

some value which follows a normal distribution. The odds of selecting a value at random

beyond ±5 standard deviations from the mean is 1 in 1,744,278. If you were to sample this

distribution 17 million times, you would expect to get about 10 values outside of ±5σ just

by sheer chance. For a large data set with no sources, Ns is normally distributed about

0 with a standard deviation of 1. The presence of sources and deficits appear as tails in

this distribution (see fig. 5.6). If each pixel represented an independent sampling of this

distribution and there are about 8 million observable pixels in the map used for this analysis,

then a little less than 5 pixels with excess or deficits outside ±5σ would be expected to have
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come from statistical fluctuations. However, each pixel does not represent an independent

sampling of the significance distribution. This is because of the PSF of the detector. The

excess in a single pixel is dependent on the excess in neighboring pixels, and so significantly

more 5σ fluctuations are present in the map than would be expected from purely independent

sampling. As of this writing the trials factor, the factor by which the significance of a source

is reduced due to the sample size, is still being discussed, and so the effect of trials on this

analysis is not accounted for.

For this analysis, the Crab was detected at a significance of 83σ above background (see

fig. 5.5) and the trials factor is a non-issue.

5.5. χ2 and Models

The goal of this analysis is to determine the spectral model and parameters which best

describe the observed distribution of detected excess as a function of energy. A reasonable

starting point is the spectral model discussed in chapter 1, equation 11. This is known as

the two parameter model.

dN

dE
(Φo, γ) = Φo

(

E

Eo

)γ

.(103)

In this equation, Φo and γ are the fit parameters of flux and spectral index, respectively.

The value Eo is known as the pivot of the spectrum and is a constant during fitting. It is

chosen to maximize the linear independence of Φo and γ. This model is perfectly fine in that

it arises from simple assumptions and first principle equations used to describe the escape

of high energy particles from plasma shock waves, but it isn’t completely physical. The

greatest non-physical attribute of the two parameter model is that it is not energy limited.

It is unreasonable to assume that this model will hold at arbitrarily low or high energies.
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Figure 5.5. The spatial significance of the Crab nebula from HAWC-SP.

Low energy effects (characteristics that appear below 100 GeV) are not a major concern

for this analysis, because events with sufficiently small energy will not trigger HAWC, and

so don’t need to be accounted for in this model. High energy effects will trigger the array,

and do need to be accounted for. It is reasonable to assume that at some energy the type

of processes at work will change, or the generated radiation will interact in some way. At

that point, new gamma rays may not be observable or possibly even generated, and so the

observed flux from the source will rapidly fall off. This suggests a third parameter which
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Figure 5.6. The distribution of significance for the skymap created with the
HAWC-SP data. The tail on the far right indicates that there are intense
sources present in the map.

encapsulates this idea.

dN

dE
(Φo, γ, Ec) = Φo

(

E

Eo

)γ

e−E/Ec .(104)

Here, Ec is the cutoff energy. As the measured energy approaches Ec the modeled flux will

rapidly fall to zero. This is known as the three parameter model.

With the models well described mathematically, the question becomes this: Given a set

of measurements of flux as a function of energy, which model and model parameters best

93



describes those measurements? This is an extremely common question in most scientific

fields, including physics.

Suppose you were to take a set of measurements, yi, which depend on some other variable,

xi (where the subscripts here represent the ith measurement). Suppose also that you have

a hypothesis: that yi depends on xi as described by some mathematical model yi = f(xi, ~µ)

where ~µ is a vector of your model parameters (for example, if the model is linear, ~µ would

be a specific slope and intercept). If you were to take a great many measurements of yi at a

specific xi then the distribution of measured yi values would approach a normal distribution

of width σyi centered on a mean that can be considered to be the “true” value y′i. The

probability P of measuring a single yi in this distribution is

P (yi) ∝ e−(yi−y′i)
2/2σ2

yi .(105)

If your hypothesis well describes this true value, y′i = f(xi, ~µ), then the probability P explicitly

depends on ~µ.

P~µ(yi) ∝ e−(yi−f(xi,~µ))
2/2σ2

yi .(106)

The joint probability of the hypothesis giving the true value of every single point is

P~µ(y1, y2, ...yi) = P~µ(y1)× P~µ(y2)× . . . P~µ(yi) ∝ e−χ2/2 ,(107)

where

χ2(~µ) =
∑

i

(yi − f(xi, ~µ))
2

σ2
yi

.(108)
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This is known as the χ2 statistic. The specific model parameters, ~µ which minimize χ2

will maximize the probability that the measured values yi were sampled from some true

distribution described by f(x, ~µ). The procedure for determining ~µ seems simple, just search

for those model parameters which minimizes χ2.

So what value of χ2 is good? Any hypothesis can be chosen and a minimum χ2 can

be found for that hypothesis, so what characteristic values of χ2 would indicate that the

chosen model best fits the data? Too large and the model obviously does not describe the

measurements well. Too small and the model describes the data too well23. In order to use

χ2 to claim agreement with a model (or exclusion of said model) a quantitative measure of

“agreement” must be defined.

A good place to start is to determine the expected χ2 measurement for a model that

fits the data well. Such a model would ideally be within most of the error bars σyi for the

measurements yi, and so each term in the χ2 sum would be on the order of 1 or less and the

total χ2 would be on the order of the number of data points used to calculate the fit. In

reality, the minimum χ2 for a model that best fits the data is always less than the number

of points. This is because the model parameters ~µ constrain the possible values that the

other measurements could take. For example, consider trying to fit a line to a single point.

An infinite number ~µ (slope intercept pairs) exist which define lines that pass through this

single point. Once a second point is added, a single ~µ can be selected that exactly fits these

two points, resulting in a χ2 of precisely zero. Adding a third point would result in a χ2

of order 1 or less because at least one point is free (the fit is not required to pass exactly

through this point in order to distinguish a single ~µ), and so on. As a result, the expected

χ2 for a good fit is approximately equal to the number of degrees of freedom between the

23Think connect the dots. This is known as overfitting or overtuning the model. A model with hundreds of
parameters can fit any measurement you please.
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model and the data. This number is defined as n − m where n is the number of data points

and m is the number of parameters used to specify the model [44].

Given this, a new parameter can be defined, the reduced χ2, as the ratio of χ2 to the

number of degrees of freedom,

χ̃2 =
χ2

n−m
,(109)

and the goal is to find f(x, ~µ) and ~µ such that χ̃2 is close to 1. Quantifying the agreement

between some model and some measurement is to set a limit on the maximum value of χ̃2,

above which said model can be rejected. This is effectively setting a limit on the probability of

finding a χ̃2 at least as extreme (large) than the originally observed χ̃2 when the experiment

is repeated. If that probability is large, then the originally observed χ̃2 is likely to occur given

the hypothesis f(x, ~µ), and so there is no reason to doubt that f describes the measurements

well. On the other hand, if the probability of finding a more extreme χ̃2 is small, then the

originally observed value is unlikely to occur given the hypothesis f(x, ~µ), and so f is rejected

as a hypothesis. The plan of attack is therefore to first choose a rejection probability, and

then determine the critical limit of χ̃2 given that probability. If a tested model yields a

minimum χ̃2 that exceeds this critical limit, then that model can be rejected with the chosen

probability.

In order to set this limit, the probability density of possible χ2 values must be known

for a given number of degrees of freedom. Probability can be a confusing topic24 and so it’s

best to first cover the basics. Consider the function

f(y) =
1

σy

√
2π

e−y2/2σ2
y .(110)

24Anyone who says otherwise is lying.

96



In the language of statistics, f(y) is the probability density function of a random variable

Y and is known as the normal or Gaussian distribution. It can be thought of having units

of probability per unit of y. The best way to think about this is to imagine a machine

that prints out a single number whenever you tell it to, and that the number it chooses is

governed by f(y). The single number you get from the machine is Y : a single draw from

the distribution f(y). If you get many numbers from the machine and create a histogram of

the numbers the machine gives you, that histogram will be f(y) up to a scale factor as the

number of draws approaches infinity. The probability of getting a number Y that is greater

than y as governed by f is noted as Pf (Y > y) and is the integral of f(y) from y to positive

infinity. The function f(y) is defined such that the total area under the curve is 1, and so the

probability of getting Y > y is the area under the curve beyond that point, or the fraction

of that area to the total area.

A single term in χ2 is given by (y−ytrue)
2/σ2

y where y is normally distributed about ytrue

with a variance of σ2
y . This should be equivalent to χ2 with precisely one degree of freedom.

Without losing generality, this can be shifted to be about zero, and so the probability density

of y (and therefore σyχ
2) is exactly that given in equation 110.

Now, consider a new random variable, Z = Y 2 (this is a good question to ask because

χ2 is governed by Y 2). Imagine a new machine that prints out numbers equal to the square

of those given to you by the first machine. What is the function g(z) which governs this

machine? It is immediately obvious that Pg(Z < 0) = 0 because the square of a number is

always positive. The probability of drawing Z < z from g(z) must be equal to the probability

of drawing Y 2 < z. The probability of drawing Y 2 < z from g(z) must be equivalent to

drawing Y between ±√
y from f(y) for y = z, and as stated before this must be equal to

the area under f(y) between ±√
y. This integral is therefore equal to Pg(Z < z) for z > 0
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and so the derivative of this with respect to z must be g(z). To put it concisely,

P (Z < z) =

∫ z

0

g(z) dz =

∫

√
z

−√
z

f(y) dy(111)

∴ g(z) =
d

dz

∫

√
z

−√
z

f(y) dy .(112)

The limits of integration can be cleaned up a bit with some simple arguments,

Pf (−
√
y < Y <

√
y) = Pf (Y <

√
y)− Pf (Y < −√

y) ,(113)

= Pf (Y <
√
y)− (1− Pf (Y <

√
y)) ,(114)

= 2Pf (Y <
√
y)− 1 ,(115)

and so

g(z) = 2
d

dz

∫

√
z

−∞
f(y) dy ,(116)

= 2
d

dz

∫

√
z

−∞

1

σy

√
2π

e−y2/2σ2
y dy ,(117)

∴ g(z) =
1

σy

√
2π

e−z/2σy

√
z

.(118)

This function, g(z), is the probability density function which governs χ2, and can be used

to calculate the critical χ2 for some probability at one degree of freedom.

The general χ2 distribution (see [45]) is known to be

gk(z) =
zk/2−1

2k/2Γ(k/2)
e−z/2 ,(119)
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where Γ is the gamma-function,

Γ(t) =

∫ ∞

0

xt−1e−x dx ,(120)

and k is the number of degrees of freedom. For this analysis, k = 6 for the two parameter

model and k = 5 for the three parameter model (8 bins - 2 or 3 parameters). By setting

k to the appropriate value, integrating from χ2 to positive infinity and setting the result

equal to 0.05, and then solving for χ2, the critical limit for χ2 can be found for a rejection

probability of 95% (which is the percent of 1 - 0.05). As it turns out, for k ≤ 7 the 95%

critical χ2 is approximately 2k, and so for this analysis if at any time the chosen optimal fit

has a minimum χ̃2 ≥ 2.0 the chosen model is rejected with a probability of at least 95%.

There is one last important thing to note about χ2. If there is no reason to doubt the

tested model, then χ2 can be used to determine the uncertainties on the fit parameters

themselves. Consider the vector space spanned by all possible ~µ for a given model. This

space would have a number of dimensions, p, equal to the number of parameters used in

the model. The optimal ~µ for a given set of measurements is a single point in this space.

Repeating the experiment and testing the new measurements will result in a new point in

this space which may not be the same as the old point. Repeating the experiment many

times will result in a p dimensional distribution of possible ~µ, each with a different χ2. The

question is then, what is the region in p space that contains 68% (1 σ) of these points? How

is that region defined?

This concept was first described and expressed by the astrophysicist Yoram Avni in 1976

[46]. He found that these confidence regions in p space were defined by some increment,

δ, on the minimum χ2. This increment only depends on the dimension of ~µ and not the

number of degrees of freedom of χ2. For p=2 (the two parameter model) this increment is
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2.30 and for p=3 (the three parameter model) this increment is 3.50. This means that for

the two parameter model, the region of ~µ space where solutions will fall 68% of the time is

the defined by the contour of constant χ2 which has a value of χ2
min + 2.30. The size of this

contour defines the statistical uncertainties on the parameters of the solution space.

5.6. Forward Folding

Because the energy resolution of HAWC is poor (about 50%) it is impossible to directly

fit the measured flux as a function of energy (see section 5.2.1). Instead, fits are done with

respect to fHit. In order to do this, distributions of the expected excess as a function of

fHit must be simulated, and compared to data. The χ2 statistic is used to determine the

goodness of fit of these simulations with respect to the data. The spectrum that produces the

simulated expectation distribution that minimizes χ2 is then reported as the fitted spectrum

for the data. This method of simulating a detector response and fitting the result to the

observed result is known as Forward Folding and was most recently employed to great effect

by Fermi-LAT [47]. At first glance this may seem like a computationally intensive task, but

in reality it can be done very quickly.

Forward folding is most easily expressed in the language of linear algebra. Consider the

measured excess Ei where the index i runs over the HAWC analysis bins. The measured

excess can be expressed as the linear transformation of some real flux, fj through some

matrix Cij, plus the measured background bi, where the index j runs over real energy bins.

In short,

Ei = Cijfj + bi .(121)
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where the summation over j is implied. The matrix Cij can be thought of the detector

response matrix. Mathematically, it transforms fj from the energy basis, j, to the analysis

bin basis, i. In physical terms it maps a real flux through the detectors response, effectively

simulating the detector output. If Cij can be determined then the simulation of the expected

excess of a given spectrum becomes computationally trivial.

In practical terms Cij is created by first simulating some spectrum, in this case the Crab

nebula as measured by HESS, at the declination of a source that is to be fit (that is, Cij

must be created for every unique declination to be analyzed). Distributions of the simulated

energy for events passing signal selection cuts are created for each of the ten fHit bins.

These energy distributions are then reweighed, energy bin by energy bin, by the inverse of

the expected flux from the Crab nebula at the median energy of that bin. The result is a

cache of distributions, where the distribution in the ith analysis bin is weighted at a simulated

energy, EMC , by

Wi(EMC) =
Xi(EMC)

F (EMC)
,(122)

where Xi(EMC) is the simulated excess in analysis bin i at energy EMC and F (EMC) is the

calculated expected flux of the Crab nebula at energy EMC . The simulated excess of a new

spectrum in a given fHit bin is just the integral of the appropriate distribution after it has

been reweighed by the calculated flux of the new spectrum.

5.7. Minimization Algorithms

With the ability to quickly calculate the value of χ2(~µ) for a given model and model

parameters, the next goal is to determine the most efficient way to find the global minimum

of χ2. The vector ~µ described in section 5.5 is a member of the vector space spanned by
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all possible solutions for a single model. In the case of a linear model, this would be a

2-space spanned by all possible combinations of slope and intercept. Finding the minimum

value of χ2(~µ) for such a linear model would involve traversing the space, ideally in some

intelligent fashion, and evaluating χ2(~µ) at each traversal step until some minimum is found.

Note that because such a space is continuous, it is impossible to find an exact solution that

best fits a set of physical measurements because that would require an arbitrary precision.

In reality, the precision of the solution is limited either by the physical uncertainty of the

measurements (either statistical or systematic) or the resolution of the searching method,

whichever is worse.

The first, most direct algorithm used in this analysis for finding the minimum χ2(~µ) is

a process known as grid searching. A grid search of the vector space ~µ involves dividing

the space into a grid, evaluating χ2(~µ) at each grid intersection, and then simply selecting

the smallest value. There are some serious issues with this algorithm, but there are also

a couple benefits. First, a coarse evaluation of χ2(~µ) across the whole space is needed

to properly characterize the uncertainties associated with the fit parameters. Second, if

the grid resolution can be arbitrarily large (so the grid spaces are arbitrarily small) a grid

search will always return the global minimum of the scanned space. That is to say, the

grid search algorithm cannot be trapped by local minima or by regions where the change in

χ2(~µ) is very small. On the other hand there are a number major drawbacks. First is the

prohibitive cost (in number of function evaluations) of searching the entire space. This cost

rises exponentially with the resolution and the number of dimensions in the vector space (so

with 10 evaluations per dimension, it would take 100 evaluations to search two dimensions,

1000 for three, etc...). Second, the precision of the solution is directly dependent on the

resolution of the search. At best, a solution reported via direct grid search has an absolute

102



minimum uncertainty of about one grid width. Finally, using the grid search method requires

some knowledge about where to begin searching and knowledge about the possible range of

reasonable solutions. For these reasons, grid searching was used for minimization for only

those sources which could not be constrained to the three parameter model, and for all

sources in order to evaluate the uncertainty on the fit parameters.

The second algorithm used for χ2(~µ) minimization in this analysis is the Nelder-Mead

simplex descent algorithm. The simplex descent algorithm is a heuristic search algorithm

that can be applied to any n dimensional space, and does not require any knowledge or

evaluation of the derivatives of the objective function to be minimized (χ2(~µ) in this case).

The algorithm functions by first defining a simplex of n+1 points within the search space

(so a triangle in two dimensions, a tetrahedron in 3 dimensions, etc...). This simplex is

deformed and moved through the space based on the evaluation of the objective function

at the vertices. The goal of simplex descent it to encapsulate the global minimum within

the simplex, and then contract the simplex around the minimum until the difference in the

relative positions of the vertices is small, at which point the algorithm ends. Once a simplex

of n+1 points ~µ1, ~µ2, . . . ~µn+1 has been chosen a single cycle of the descent algorithm is defined

as follows.

First, all points in the simplex are sorted in ascending order based on the evaluation of

χ2 and the centroid, ~C, of all but the worst point (the one with the largest χ2 value, ~µn+1)

is calculated,

χ2(~µ1) ≤ χ2(~µ2) ≤ · · · ≤ χ2(~µn+1) ,(123)

~C =
1

n

n
∑

i=1

~µi(124)
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Next the worst point in the simplex, ~µn+1, is reflected across the centroid, creating a new

point ~µr,

~µr = ~C + ( ~C − ~µn+1) .(125)

If ~µr is better than ~µn but worse than ~µ1 (that is, χ2(~µ1) < χ2(~µr) < χ2(~µn)) then the

reflected point would improve the simplex. The worst point is replaced by ~µr and the cycle

returns to the beginning.

If it turns out that ~µr is better even than the best point ~µ1 (that is, if the reflected point

leads “downhill”), then the expanded point, ~µe is created and tested,

~µe = ~C + 2(~µr − ~C) .(126)

If this expanded point is better than the reflected point, χ2(~µe) < χ2(~µr), then the worst

point is replaced by the expanded point and the cycle returns. Otherwise the worst point is

replaced by the reflected point and the cycle returns.

If the cycle hasn’t returned by this point, it is certain that ~µr is between point n and

n+ 1. If this occurs, then the contracted point, ~µc is created and tested,

~µr = ~C +
1

2
(~µn+1 − ~C) .(127)

If the contracted point is better than the worst point, χ2(~µc) < χ2(~µn+1), then the worst

point is replaced and the cycle returns.

104



If this fails, then the simplex is reduced with respect to the best point, ~µ1. All points

except the best point move towards the best point,

~µi = ~µ1 +
1

2
(~µi − ~µ1) ,(128)

and the cycle returns.

This descent method is relatively insensitive to local minima and starting conditions, and

is much faster than a simple grid search. A precise three parameter grid search with 100

bins per dimension takes upwards of 1 hour for this analysis. Simplex descent accomplishes

the same task in a matter of seconds. Because the algorithm is heuristic, there is no way

of knowing if the solution returned by this method is indeed the optimal one, but this issue

is mitigated by throwing multiple simplex starting conditions, and taking the best returned

result.

5.8. Uncertainties

It is impossible to perfectly match a mathematical model to real data. This is a direct re-

sult of the presence of both statistical and systematic uncertainties. Statistical uncertainties

(those that result from the natural fluctuations in any physical measurement) will always

be present, and can really only be mitigated by taking more observations. There are three

statistical uncertainties that need to be accounted for when fitting spectra with HAWC, and

these are the uncertainties associated with the measured number of events, the estimated

background, and the simulation. The statistical uncertainty for the measured number of

events and the estimated background (done via MDI) are both assumed to be derived from

Poisson statistics. The distribution in the difference in time of sequential events detected

with HAWC is inversely exponential. The more time that passes after an event is detected,
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the more likely it is that another will follow. This leads to a distribution of the number of

detected events per unit time that is Poissonian,

P (n) =
λne−λ

n!
,(129)

where P (n) is the probability of detecting n events within some interval, and λ is the average

number of events in the interval. This distribution has the interesting property that the

variance of the distribution is the mean, λ. The number of events detected in an fHit bin is

taken to be the mean, λ, of this distribution and so the uncertainty in that number is the

standard deviation, or
√
λ.

The statistical uncertainty inherent in the simulation is somewhat trickier, because as

discussed in the previous chapter, the simulation has no “time”. Instead this must be derived

through the propagation of the uncertainty in the weights. The number of simulated events

from forward folding in a single fHit bin, MC, is

MC =
∑

i

WiNi ,(130)

where Wi is the forward folding weight for the ith energy bin of this fHit bin, and Ni is the

sum of transit weights in that bin (effectively the number of simulated events at energy bin

i). The uncertainty in MC, σMC comes from error propagation of Wi [44].

σ2
MC =

∑

i

(

∂MC

∂Ni

σNi

)2

.(131)

The partial derivative picks out a single Wi, and so

σ2
MC =

∑

i

W 2
i σ

2
Ni

.(132)
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The variance in Ni is entirely dependent on the transit weighted sum of actual thrown

simulations in energy bin i.

Ni =
∑

j

TwgtjMj ,(133)

where Twgtj is the transit weight for the simulated source as calculated with equation 82 and

Mj is the number of thrown events with weight Twgtj. As before, calculating σ2
Ni

involves

propagating uncertainty.

σ2
Ni

=
∑

j

(

∂Ni

∂Mj

σMj

)2

,(134)

=
∑

j

Twgt2jσ
2
Mj

.(135)

The uncertainty, σMj
, is the uncertainty of throwing Mj events in the simulation that have a

weight Twgtj. This number is non zero because the simulation is governed by Monte Carlo

processes. Ideally, we can assume that the random number generator used in the Monte

Carlo is perfect, and so σMj
would be the same as if real events were observed with the raw

simulated spectrum. Therefore, σMj
must be

√

Mj and so

σ2
Ni

=
∑

j

Twgt2jMj =
∑

k

Twgtk ,(136)

∴ σ2
MC =

∑

i

∑

k

W 2
i Twgt

2
k ,(137)

Where, again, i is over energy bins and k is over the actual thrown events in bin i. Recall

that Twgt contains a factor of 1/Nthrown. More than six million events are simulated for
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gamma rays alone, and so this uncertainty is vanishingly small (much less than one event)

and can be ignored. It is included in this analysis for completeness.

Systematic uncertainties (those which result from the imperfections present in the detec-

tor or the analysis method) can be reduced by either modifying the detector or the detector

simulation. Systematic uncertainties are therefore disagreements between the simulated be-

havior of a detector and the observed behavior (assuming no unknown physics is at work).

These disagreements must be minimized or at least characterized in order to detect the

presence of new physics. For every variable used to cut data for this analysis, there is an

associated systematic.

5.8.1. fHit.

The systematic uncertainty in fHit represents a disagreement between the number of PMTs

in the simulation compared to the real detector. In order to quantify the effects of a dis-

agreement in fHit on the fit spectra, data from the mid stages of the construction of HAWC,

known as HAWC-111, were fit and examined. These data are described in section 5.1. In

order to do this properly a separate set of cuts needed to be defined and optimized assuming

365 PMTs for epochs 1 and 429 PMTs for epoch 2(see table 5.3).

As these data were recorded before the creation of PINCness, the core fit χ2 is used in

its place.

The methods and the two parameter model from section 5.6 were used to fit the spectrum

of the Crab nebula using epoch 1 and epoch 2 data. Only the two parameter model was used

because there is insufficient data in epoch 1 and 2 to constrain the three parameter model.

The χ2 space spanned by Φo and γ was scanned to directly find the global minimum. First,

the Crab nebula was fit using the epoch 1 and 2 data sets independently using only bins 2

through 9.
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Table 5.3. Cuts used in the analysis of epoch 1 and epoch 2 data for HAWC.

Bin # fHit > fHit ≤ Angular Bin (degrees) Compactness > Core Fit χ2 < Angle Fit χ2 <

0 0.045 0.067 2.26 2.0 13.0 13.0

1 0.067 0.105 1.94 3.0 18.0 12.0

2 0.105 0.164 1.48 4.5 21.0 11.0

3 0.164 0.252 1.10 6.0 20.0 10.0

4 0.252 0.371 0.95 8.0 14.0 8.0

5 0.371 0.511 0.80 11.0 15.0 7.0

6 0.511 0.655 0.80 12.0 11.0 8.0

7 0.655 0.781 0.75 15.0 12.0 6.0

8 0.781 0.878 0.45 20.0 12.0 14.0

9 0.878 1.00 0.35 13.0 22.0 14.0

The epoch 1 spectrum was

dN

dE
(Φo, γ) = (3.63±1.2

0.91)× 10−11

(

E

1TeV

)−2.59± 0.23

,(138)

with a χ2 of 1.85 and the epoch 2 spectrum was

dN

dE
(Φo, γ) = (3.71±1.3

0.96)× 10−11

(

E

1TeV

)−2.65

,(139)

with a χ2 of 6.86 with 6 degrees of freedom. The pivot of E0 = 1TeV was chosen to make the

fit results easily comparable to HESS. The tilt of the ellipsoidal contours of the χ2 space for

both fits indicate that the fit parameters are not linearly independent of each other (see fig.

5.7 and 5.8). This will be examined and corrected for, but for now it does not matter as only

the change in the minimum is used for this systematic study (the statistical uncertainties in

these fits were ignored when calculating the systematic).

The epoch 2 fit has a slightly steeper index than the epoch 1 fit. This is an effect

resulting from the geometry of HAWC and the choice of binning variable. A 10 TeV shower

will saturate HAWC: every single PMT will probably trigger if such a shower lands on the
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Figure 5.7. The χ2 space for the epoch 1 fit (left) and the epoch 2 fit
(right). The dark region represents 1σ uncertainty and the light region is 2σ.
Both are within 1σ of the HESS spectrum

Figure 5.8. The epoch 1 fit (left) and epoch 2 fit (right). The dark and
light grey bands represent the 1σ and 2σ excess uncertainties predicted the
simulation of the HESS Crab.

array. The proxy energy variable used in this analysis is fHit: the fraction of the array

triggered by a shower. Because of this epoch 1 has a lower saturation energy than epoch 2.

Any events above this saturation energy will fall into the last few bins (depending on where

it lands on HAWC). For equal exposures to the same source, the excess counts in the higher

energy bins of epoch 1 are expected to be slightly larger than those in epoch 2, thus resulting

in a slightly harder spectrum for epoch 1.
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Using these fit results, the systematic uncertainty in the fit parameters can be estimated

by examining the fit values as a function of the number of PMTs in the array. Remember,

the primary thing that changed between epoch 1 and epoch 2 was the number of PMTs

present in the HAWC array. Knowing this, the increase of 64 PMTs from epoch 1 to epoch

2 steepened the index and and increased the normalization of the fit spectrum by 2.3%

(from -2.59 to -2.65 in index and from -10.44 to -10.43 in log(Norm)). This means that,

assuming the relationship is linear, every inactive PMT in the full HAWC array will shift

the index down and the normalization up by 0.035% per PMT when fit with a pivot of 1

TeV. Assuming a liberal estimate of 10% of the array being offline at any given time (120

PMTs), this effect would contribute 4.2% to the total systematic uncertainty.

If there is a sufficiently large number of inactive PMTs, then handling the resulting data

will resemble the combined epoch 1+2 data set. In order to analyze the combined epoch 1

and 2 data set (and therefore compensate for any systematic that results from a change in

the number of active PMTs), the fraction of the total data comprising each epoch must be

determined. This can be found either by directly fitting for the fraction of epoch 1 in the

joint data set, or by calculating a theoretical value based on live time and area.

Assuming that the measured excess is represented by some linear combination of the

epoch 1 and 2 measurements, then

E12 = aE1 + (1− a)E2 .(140)

Fitting this value to the measured excess in the combined data set results in a = 0.51±0.20.

Ignoring any effects that do not directly involve the detector, the total raw number of

gamma ray events in an epoch is proportional to the duration in which data was recorded, and

the effective area of the detector. The effective area of the detector is directly proportional
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to the number of PMTs in HAWC. This suggests that

E12 =
bE1 + cE2

b+ c
,(141)

where

b = (duration of epoch 1)(365 PMTs) ,(142)

and

c = (duration of epoch 2)(429 PMTs) .(143)

The duration of epoch 1 was 2,507 hours and the duration of epoch 2 was 1,843 hours.

Relating these values to a shows that

a =
b

b+ c
= 0.53 ,(144)

which agrees with the fit result for a.

The Crab spectrum for the data set containing both epoch 1 and 2 was fit by creating

a cache file for each of the epoch 1 and epoch 2 configurations. The expectation used for

forward folding was then calculated using

Etotal = aCij1fj + (1− a)Cij2fj + b1+2 ,(145)

112



with a value of a = 0.53, which is consistent with the fit result of a = 0.51 ± 0.20. This

resulted in the spectrum

dN

dE
(Φo, γ) = (3.46±0.79

0.65)× 10−11

(

E

1TeV

)−2.62±0.17

,(146)

with a χ2 of 4.55 and 6 degrees of freedom (8 bins - 2 parameters). This also agrees with the

results from HESS, but is significantly closer in both index and norm than the epoch 1 and

epoch 2 fits alone (because of the difference in exposure, see figs 5.9 and 5.10). This suggests

that the reweighting method used is a reasonable way to compensate for the change in the

number of PMTs from epoch 1 to epoch 2.

Figure 5.9. The epoch 1+2 χ2 space. The dark region represents 1σ un-
certainty and the light region is 2σ.
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Figure 5.10. Resulting fit for the epoch 1+2 analysis. The dark and light
gray bands represent the 1σ and 2σ excess uncertainties predicted by the
simulation of the HESS Crab.

5.8.2. Angular Bin.

The systematic uncertainty in the angular bin is a result of the disagreement between the

simulated and measured PSF for HAWC. Quantifying this difference is a difficult task because

determining the angular uncertainty of HAWC without simulation requires knowing the true

origin location on the sky for a given event. It is impossible to know with certainty the

origin of a single event, and so it is impossible to calculate the angular difference between

the reconstructed and true origin on an event by event basis. That said, it is possible to

examine a well known point source and determine the angular uncertainty (and therefore

the PSF) from that. If the angular extent of a source is very small within the field of
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view of a detector, then the measured distribution of events around that source is the PSF.

Conveniently, the Crab fits this criteria well.

Determining the optimal angular bin from data can be done in two ways, just as it can be

done in simulation: either fit a double Gaussian to the distribution of events vs angular dis-

tance from the Crab and calculate the analytical optimal bin, or select the angular bins that

numerically maximize the significance of the source (see figs 5.11 and 5.12). These methods

will yield slightly different angular bins, and so both should be examined to determine a

systematic uncertainty in the PSF. The angular bins resulting from applying these methods

to the data are in table 5.4.

Figure 5.11. The distribution of the excess events in a given pixel as a
function of the radial distance from the Crab to said pixel. The integral of
this distribution from 0 to r will be the measured excess in an angular bin of
radius r degrees. The red line is a double Gaussian fit.
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Figure 5.12. The distribution of significance as a function of angular bin
size R (the integral of figure 5.11). The maximum significance is found at
R = 0.3◦.

Using the values from calculating the optimal angular bin based on fitting the PSF to

data results in the spectrum

dN

dE
(Φo, γ, Ec) = (3.34±0.32

0.29)× 10−11

(

E

1TeV

)−2.55±0.09

e−E/150±987

130
TeV ,(147)

With a χ2 of 8.48 with 5 degrees of freedom (8 bins - 3 parameters). Again, the statistical

uncertainties are not used to determine the systematic uncertainty. Using the values from

choosing the angular bins which optimize the significance on the Crab in data results in the

spectrum

dN

dE
(Φo, γ, Ec) = (3.60±0.26

0.24)× 10−11

(

E

1TeV

)−2.60±0.07

e−E/319±1788

270
TeV ,(148)
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Table 5.4. Comparing the analytical optimal bin to the numerical solution.
The analytical bins were chosen for this analysis because the numerical bins
are limited by the bin width used to discritize the PSF distribution into a
histogram.

Bin # Chosen analytic bins (sim) Crab analytic bins (data) Crab numerical bins (data)

0 1.069 0.00214 3.70

1 0.849 0.979 1.34

2 0.652 0.553 0.70

3 0.522 0.520 0.58

4 0.419 0.395 0.38

5 0.353 0.276 0.30

6 0.337 0.227 0.26

7 0.250 0.233 0.18

8 0.231 0.182 0.18

9 0.202 0.115 0.14

With a χ2 of 8.41 with 5 degrees of freedom (8 bins - 3 parameters). These are perfectly

reasonable fits (χ̃2 < 2.0 in both cases) which can yield some insight. First, it is probably

impossible to constrain the cutoff of the spectrum with HAWC in a meaningful way, as

slight changes to the angular bin dramatically changed the cutoff. This suggests that the

systematic uncertainty on the cuttoff is demonstrably large and dependent on the angular bin

size. Second, without knowing the true Crab spectrum, the minimum systematic uncertainty

on the index and normalization from an inaccurate characterization of the angular resolution

can be estimated by comparing these two fit results. From this, the estimated minimum

normalization systematic is 7% and the index systematic is 2%

5.8.3. CxPE and PINC.

The compactness and PINCness are both gamma hadron separators, and so disagreements

between data and simulation on these parameters should also lead to an estimate of system-

atic error in the spectral fit. The first step in characterizing this systematic uncertainty is
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Figure 5.13. The normalized distributions of CxPE40 (left) and PINC
(right) for both data (blue) and simulation (red) for bins 2-9.

to measure the difference between the simulation and data for both CxPE and PINC (see

fig 5.13).

As it turns out these differences are small and the distributions are qualitatively similar

when examining bins 2-9. Instead of tuning these variables in each individual bin, each

individual value for PINC and CxPE in the simulation was shifted by a multiplicative factor

equal to the fractional difference between data and simulation in the means of the distribu-

tions from fig 5.13. CxPE and PINC values in the simulation were shifted down by 1.05%

and 5.31% respectively. The Crab nebula was then fit using the “corrected” simulations,

resulting in a spectrum of

dN

dE
(Φo, γ) = (3.54)× 10−11

(

E

1TeV

)−2.66

e−E/294TeV ,(149)

with a χ2 of 4.01 and 5 degrees of freedom (8 bins - 3 parameters). This change to the

simulation shifted the normalization by 1.1% and the index by 4.5% for the fit with a pivot

of 1 TeV. The shift in the cutoff was again more than 100%, suggesting the true systematic

uncertainty in the cutoff is huge.
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Figure 5.14. The change in resulting fit two parameter spectra as a function
of shift in CxPE or PINC.

Scanning through a range of shift values and fitting the resulting simulations to data

illustrates sensitivity of the fit parameters to both CxPE and PINC (see fig 5.14). The fit

index is most sensitive to changes in PINC, requiring a disagreement between simulation and

data of only 10-20% in order to change the index by 10% while CxPE would have to disagree

by more than 60% to affect the same change. The fit normalization is most sensitive to

changes in CxPE, requiring a disagreement between simulation and data of 20-30% in order

to change the log(Norm) by 1%, while PINC would have to disagree by more than 60% to

affect the same change. It is for this reason that both of these gamma-hadron separators are

included in this analysis.
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5.8.4. Total Systematic.

Each of the systematics addressed above shifts the index and normalization of the spectral fit

in a specific direction. However, this systematic study only quantifies the difference between

the data and Monte Carlo simulations, and not what causes the disagreement. Because

of this, the systematics used for this analysis cannot be corrected for. Indeed, it isn’t even

possible to say with certainty that determining the cause of the disagreements and correcting

them would shift the spectrum in the appropriate direction, because it could result in new

systematics which have not been addressed here. As a result, this study can only say that the

fit results are within some estimated systematic range. A liberal estimate for the minimum

systematic uncertainty would be the sum of the discussed systematics, or 12.3% uncertainty

in normalization and 10.7% uncertainty in index at a pivot of 1 TeV (see table 5.5). The

uncertainty in the cutoff as estimated by these methods is almost certainly on the order of

100%, and so only the statistical uncertainty will be reported.

Table 5.5. The systematics used for this analysis.

Source % of Norm (1 TeV) % of Index (1 TeV) % of Norm (4 TeV) % of Index (4 TeV)

fHit (10% array failure) 4.2% 4.2% 4.2% 4.2%

Optimal Bin 7% 2% 0.62% 2.3%

CxPE and PINC 1.1% 4.5% 14% 4.5%

Total 12.3% 10.7% 18.8% 11%
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5.9. The Crab Spectrum

The methods and spectral models from the previous sections were used to fit the spectrum

of the Crab nebula using HAWC-SP. Bins 0 and 1 were excluded, and the resulting fit for

the two parameter model was

dN

dE
(Φo, γ) = (3.75±0.21

0.20 stat ± 0.46 sys)× 10−11

(

E

1TeV

)−2.66±0.027 stat+0.28 sys

,

with a χ2 of 13.47 with 6 degrees of freedom (8 bins - 2 parameters. see fig 5.15 and 5.16).

Here, the reduced χ2 is greater than two, and so the two parameter model is rejected above

95% confidence as a valid spectral fit for the Crab Nebula as observed with HAWC.

Figure 5.15. The χ2 space of the Crab nebula as compared to HESS. The
dark blue region represents 1σ fit uncertainty, and the light blue is 2σ.

The linear correlation between index and normalization can seen in the slope of the 1 and

2 σ regions of χ2 space. This can be adjusted by changing the pivot of the spectrum from 1

TeV to 4 TeV. Recalculating the systematic uncertainties at 4 TeV yields systematics of ±

121



Figure 5.16. The resulting fit excess and data excess from HAWC in two
parameters (top) and the residual, data-fit/fit (bottom). The error bars on
the fit represent the fit results for solutions on the boundary of the 1σ contour
in χ2 space.

18.82% in normalization and ± 11% in index. The resulting spectrum at this new pivot is

dN

dE
(Φo, γ) = (9.375±0.28

0.28 stat ± 1.8 sys)× 10−13

(

E

4TeV

)−2.66±0.030 stat±0.29 sys

,

with a χ2 of 13.42 with 6 degrees of freedom (8 bins - 2 parameters. see fig 5.17). Again,

the two parameter model of the Crab Nebula is rejected above 95% confidence.

Examining the three parameter model at 4 TeV results in a spectrum of

dN

dE
= (1.03±0.091

0.083 stat ± 0.19 sys)× 10−12

(

E

4TeV

)−2.54±0.095 stat±0.27 sys

e−E/(91.0±174

59
statTeV) ,
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Figure 5.17. The χ2 space of the Crab nebula as compared to HESS. The
dark blue region represents 1σ fit uncertainty, and the light blue is 2σ.

with a χ2 of 5.87 and 5 degrees of freedom (8 bins - 3 parameters, see fig 5.19 and 5.18). This is

a reduced χ2 of 1.18 and the probability of getting a χ̃2 larger than this is approximately 32%,

so there is no reason to doubt that the three parameter model is valid. That said, the cutoff

energy is almost certainly untrustworthy, given the large and perhaps unreliable systematics

it is subject to. Crossectional slices of the χ2 space which intersect with the solution fail

to properly characterize the parameter uncertainties. This is because the solution space is

now extended into three dimensions, and the once two dimensional contours are now three

dimensional surfaces (see figures 5.20, 5.21, and 5.22).
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Figure 5.18. The resulting fit excess and data excess from HAWC in three
parameters (top) and the residual, data-fit/fit (bottom). The error bars on
the fit represent the fit results for solutions on the boundary of the 1σ contour
in χ2 space.
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Figure 5.19. The χ2 space for the three parameter Crab fit. The minimum
solution is within the blue surface, which represents 68% uncertainty (1 σ)

Figure 5.20. The χ2 space of index versus log(cutoff) for the three param-
eter model as viewed looking along the normalization axis (left) and as viewed
with an intersecting plane at the solution (right). The surface is at 1 σ, while
the intersecting plane shows both 1 σ in dark blue and 2 σ in light blue.
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Figure 5.21. The χ2 space of index versus log(normalization) for the three
parameter model as viewed looking along the normalization axis (left) and as
viewed with an intersecting plane at the solution (right). The surface is at 1
σ, while the intersecting plane shows both 1 σ in dark blue and 2 σ in light
blue.

Figure 5.22. The χ2 space of log(normalization) versus log(cutoff) for the
three parameter model as viewed looking along the normalization axis (left)
and as viewed with an intersecting plane at the solution (right). The surface
is at 1 σ, while the intersecting plane shows both 1 σ in dark blue and 2 σ in
light blue.
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CHAPTER 6

Other Sources

With the Crab nebula fit and systematics calculated, this fitting method can be applied

to other sources within the field of view of HAWC, again using the HAWC-SP data set.

That said, there are two core assumptions to the method described for this analysis which

must hold in order for the results to make physical sense. First, the source must be spatially

small in extent (point like). If a source is extended (that is, if it subtends a region of the sky

more a few tenths of a degree) then the optimal bin calculations and measurements break

down, and the simulation will greatly disagree with the data. Second, the source must be

steady in time. If a source is transient (that is, the flux of gamma rays from the source

wildly changes in time), then scaling the simulations in time (which are per transit) will not

accurately represent the flux from the source, even if the source is significant on the sky.

Hotspots that are isolated enough can be explicitly named based on the nearest single

source. If a source cannot be named either because it is too close to several known sources or

because it is not near any known sources, it is designated by the prefix HAWC followed by

the location of the hotspot in right ascension and declination to the nearest 0.01 degree (for

example, HAWC12345-6789 is a hot spot located at (123.45,-67.89) in J2000 equatorial. This

designation scheme is not the designation scheme used by the collaboration for confirmed

sources. This is because the analysis makes no claim as to whether or not a hotspot is

actually a source.

The top ten most significant hotspots observed with HAWC were fit using forward folding.

The hotspot in the region of Geminga was also fit, as this is currently a source of interest to

the collaboration.
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6.1. Markarian 421

Markarian galaxies are a class of galaxies first described and studied by Benjamin Markarian

in 1963. All Markarian galaxies are characterized by the presence of intense ultraviolet

radiation far exceeding that of other galaxies. Markarian 421 (or Mrk421) is a blazar located

in the constellation of Ursa Major, between 122 Mpc and 133 Mpc from earth (making it one

of the closest known blazars). Markarian 421 stands out as a source candidate because the

spectrum of Mrk421 extends well into the TeV range. That said, Mrk421 is prone to intense

intermittent flaring, and even outside of these flares, the flux of Mrk421 is still highly variable.

For this analysis, Mrk421 was detected with a significance of 32σ at (166.16◦, 38.21◦) J2000

equatorial (see figures 6.1 6.2 and 6.4). Bins 2 though 9 were used and the resulting 2

parameter spectrum was

dN

dE
(Φo, γ) = (4.79±0.61

0.54 stat ± 0.90 sys)× 10−13

(

E

4TeV

)−3.26±0.045 stat±0.36 sys

,

with a χ2 of 16.77 and 6 degrees of freedom (8 bins - 2 parameters), which rejects the 2

parameter model. Note that the χ2 region is very small. This means that the region around

the minimum value is very “deep”, not that the fit is particularly good. In three parameters

the spectrum is

dN

dE
= (1.23±3.6

0.91 stat ± 0.23 sys)× 10−12

(

E

4TeV

)−2.61±0.39 stat±0.28 sys

e−E/(6.4±12

4.3
statTeV) ,

with a χ2 of 4.74 with 5 degrees of freedom (8 bins - 3 parameters, see figures 6.5, 6.6, 6.7,

and 6.8).
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Figure 6.1. The blazar Markarian 421 as seen with the HAWC observatory.
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Figure 6.2. The measured excess form Markarian 421 and the fit spectrum in
two parameters. The error bars on the fit represent the fit results for solutions
on the boundary of the 1σ contour in χ2 space.
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Figure 6.3. The measured excess form Markarian 421 and the fit spectrum
in three parameters (top) and the residual, data-fit/fit (bottom). If an error
bar is not present it means that the uncertainty extends to 0. The error bars
on the fit represent the fit results for solutions on the boundary of the 1σ
contour in χ2 space.
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Figure 6.4. The χ2 space for the fit of Markarian 421. Dark blue is 1 σ
uncertainty, and light blue is 2 σ.
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Figure 6.5. The χ2 space for the three parameter fit of Markarian 421. The
minimum solution is within the blue surface, which represents 68% uncertainty
(1 σ)

Figure 6.6. The χ2 space of index versus log(cutoff) for Markarian 421 fit
with the three parameter model as viewed looking along the normalization axis
(left) and as viewed with an intersecting plane at the solution (right). The
surface is at 1 σ, while the intersecting plane shows both 1 σ in dark blue and
2 σ in light blue.
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Figure 6.7. The χ2 space of index versus log(normalization) for Markarian
421 fit with the three parameter model as viewed looking along the normaliza-
tion axis (left) and as viewed with an intersecting plane at the solution (right).
The surface is at 1 σ, while the intersecting plane shows both 1 σ in dark blue
and 2 σ in light blue.

Figure 6.8. The χ2 space of log(normalization) versus log(cutoff) for
Markarian 421 fit with the three parameter model as viewed looking along
the normalization axis (left) and as viewed with an intersecting plane at the
solution (right). The surface is at 1 σ, while the intersecting plane shows both
1 σ in dark blue and 2 σ in light blue.
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6.2. Markarian 501

Markarian 501 is another Markarian class galaxy. It, like Markarian 421, is a blazar that is

highly variable in the TeV range and is prone to flaring. Markarian 501 is located in the

constellation of Hercules, and for this analysis it was detected with a significance of 21.7σ

at (253.48◦, 39.79◦) J2000 equatorial (see figs.6.9 6.10 and 6.12). Bins 2 though 9 were used

and the resulting fit spectrum was

dN

dE
(Φo, γ) = (3.16±0.53

0.45 stat ± 0.69 sys)× 10−13

(

E

4TeV

)−3.06±0.065 stat±0.33 sys

,

with a χ2 of 16.16 and 6 degrees of freedom (8 bins - 2 parameters), which rejects the 2

parameter model at a confidence of 95% or more. In three parameters, the spectrum is

dN

dE
= (7.25±4.7

2.8 stat ± 1.4 sys)× 10−13

(

E

4TeV

)−2.19±0.31 stat±0.24 sys

e−E/(7.94±16

5.3
statTeV) ,

with a minimum χ2 of 2.66 with 5 degrees of freedom (8 bins - three parameters, see figures

6.13, 6.14, 6.15, and 6.16).
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Figure 6.9. The blazar Markarian 501 as seen with the HAWC observatory.

136



Figure 6.10. The measured excess form Markarian 501 and the fit spectrum
in two parameters. The error bars on the fit represent the fit results for
solutions on the boundary of the 1σ contour in χ2 space.
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Figure 6.11. The measured excess form Markarian 501 and the fit spectrum
in three parameters (top) and the residual, data-fit/fit (bottom). If an error
bar is not present it means that the uncertainty extends to 0. The error bars
on the fit represent the fit results for solutions on the boundary of the 1σ
contour in χ2 space.
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Figure 6.12. The χ2 space for the fit of Markarian 501. Dark blue is 1 σ
uncertainty, and light blue is 2 σ.
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Figure 6.13. The χ2 space for the three parameter fit for Markarian 501.
The minimum solution is within the blue surface, which represents 68% un-
certainty (1 σ)

Figure 6.14. The χ2 space of index versus log(cutoff) for Markarian 501
fit with the three parameter model as viewed looking along the normalization
axis (left) and as viewed with an intersecting plane at the solution (right).
The surface is at 1 σ, while the intersecting plane shows both 1 σ in dark blue
and 2 σ in light blue.
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Figure 6.15. The χ2 space of index versus log(normalization) for Markarian
501 fit with the three parameter model as viewed looking along the normaliza-
tion axis (left) and as viewed with an intersecting plane at the solution (right).
The surface is at 1 σ, while the intersecting plane shows both 1 σ in dark blue
and 2 σ in light blue.

Figure 6.16. The χ2 space of log(normalization) versus log(cutoff) for
Markarian 501 fit with the three parameter model as viewed looking along
the normalization axis (left) and as viewed with an intersecting plane at the
solution (right). The surface is at 1 σ, while the intersecting plane shows both
1 σ in dark blue and 2 σ in light blue.
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6.3. HAWC27646-1340

Hotspot HAWC27646-1340 is closest in proximity to PWN HESSJ1825-137. It was de-

tected at 19.32σ and fit using bins 2-9 (see figs. 6.17, 6.18, and 6.19), resulting in a spectrum

of

dN

dE
(Φo, γ) = (6.61±2.3

1.6 stat ± 1.2 sys)× 10−13

(

E

4TeV

)−2.86±0.12 stat±0.31 sys

,

with a χ2 of 5.2 and 6 degrees of freedom (8 bins - 2 parameters).

Figure 6.17. The hotspot HAWC27646-1340 as seen with the HAWC observatory.
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Figure 6.18. The measured excess form HAWC27646-1340 and the fit spec-
trum (top) and the residual, data-fit/fit (bottom).
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Figure 6.19. The χ2 space for the fit of HAWC27646-1340. Dark blue is 1
σ uncertainty, and light blue is 2 σ.

144



6.4. HAWC27936-0665

Hotspot HAWC27936-0665 is closest in proximity to PWN HESS J1837-069. It was

detected at 17.72σ and fit using bins 2-9 (see figs. 6.20, 6.21, and 6.22), resulting in a

spectrum of

dN

dE
(Φo, γ) = (2.63±0.66

0.53 stat ± 0.49 sys)× 10−13

(

E

4TeV

)−3.09±0.10 stat±0.34 sys

,

with a χ2 of 10.02 and 6 degrees of freedom (8 bins - 2 parameters).

Figure 6.20. The hotspot HAWC27936-0665 as seen with the HAWC observatory.
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Figure 6.21. The measured excess form HAWC27936-0665 and the fit spec-
trum (top) and the residual, data-fit/fit (bottom).
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Figure 6.22. The χ2 space for the fit of HAWC27936-0665. Dark blue is 1
σ uncertainty, and light blue is 2 σ.
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6.5. HAWC27980-0583

Hotspot HAWC27980-0583 is closest in proximity to the unidentified source HESS J1841-

055. It was detected at 16.77σ and fit using bins 2-9 (see figs. 6.23, 6.24, and 6.25), resulting

in a spectrum of

dN

dE
(Φo, γ) = (2.51±0.69

0.54 stat ± 0.47 sys)× 10−13

(

E

4TeV

)−3.09±0.14 stat±0.34 sys

,

with a χ2 of 6.21 and 6 degrees of freedom (8 bins - 2 parameters).

Figure 6.23. The hotspot HAWC27980-0583 as seen with the HAWC observatory.
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Figure 6.24. The measured excess form HAWC27980-0583 and the fit spec-
trum (top) and the residual, data-fit/fit (bottom).
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Figure 6.25. The χ2 space for the fit of HAWC27980-0583. Dark blue is 1
σ uncertainty, and light blue is 2 σ.
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6.6. HAWC28107-0332

Hotspot HAWC28107-0332 is closest in proximity to both the unidentified HESS J1843-

033 and J1844-030. It was detected at 14.33σ and fit using bins 2-9 (see figs. 6.26, 6.27, and

6.28) resulting in a spectrum of

dN

dE
(Φo, γ) = (2.09±0.91

0.63 stat ± 0.39 sys)× 10−13

(

E

4TeV

)−2.82±0.13 stat±0.31 sys

,

with a χ2 of 0.59 and 6 degrees of freedom (8 bins - 2 parameters).

Figure 6.26. The hotspot HAWC28107-0332 as seen with the HAWC observatory.
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Figure 6.27. The measured excess form HAWC28107-0332 and the fit spec-
trum (top) and the residual, data-fit/fit (bottom).
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Figure 6.28. The χ2 space for the fit of HAWC28107-0332. Dark blue is 1
σ uncertainty, and light blue is 2 σ.
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6.7. HAWC28433+0280

Hotspot HAWC28433+0280 is closest in proximity to HESS J1857+026. It was detected

at 14.26σ and fit using bins 2-9 (see figs. 6.29, 6.30, and 6.31), resulting in a spectrum of

dN

dE
(Φo, γ) = (1.45±0.46

0.35 stat ± 0.27 sys)× 10−13

(

E

4TeV

)−3.05±0.12 stat±0.34 sys

,

with a χ2 of 3.81 and 6 degrees of freedom (8 bins - 2 parameters).

Figure 6.29. The hotspot HAWC28433+0280 as seen with the HAWC observatory.
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Figure 6.30. The measured excess form HAWC28433+0280 and the fit spec-
trum (top) and the residual, data-fit/fit (bottom).
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Figure 6.31. The χ2 space for the fit of HAWC28433+0280. Dark blue is 1
σ uncertainty, and light blue is 2 σ.
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6.8. HAWC28710+0643

Hotspot HAWC28710+0643 is closest in proximity to MGRO J1908+06. It was detected

at 14.26σ and fit using bins 2-9 (see figs. 6.32, 6.33, and 6.34), resulting in a spectrum of

dN

dE
(Φo, γ) = (1.48±0.54

0.40 stat ± 0.28 sys)× 10−13

(

E

4TeV

)−2.65±0.11 stat±0.29 sys

,

with a χ2 of 1.39 and 6 degrees of freedom (8 bins - 2 parameters).

Figure 6.32. The hotspot HAWC28710+0643 as seen with the HAWC observatory.
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Figure 6.33. The measured excess form HAWC28710+0643 and the fit spec-
trum (top) and the residual, data-fit/fit (bottom).
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Figure 6.34. The χ2 space for the fit of HAWC28710+0643. Dark blue is 1
σ uncertainty, and light blue is 2 σ.
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6.9. HAWC30476+3680

Hotspot HAWC30476+3680 is closest in proximity to VER J2019+368. It was detected

at 15.43σ and fit using bins 2-9 (see figs. 6.35, 6.36, and 6.37), resulting in a spectrum of

dN

dE
(Φo, γ) = (1.14±0.59

0.39 stat ± 0.21 sys)× 10−13

(

E

4TeV

)−2.46±0.11 stat±0.27 sys

,

with a χ2 of 3.77 and 6 degrees of freedom (8 bins - 2 parameters).

Figure 6.35. The hotspot HAWC30476+3680 as seen with the HAWC observatory.
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Figure 6.36. The measured excess form HAWC30476+3680 and the fit spec-
trum (top) and the residual, data-fit/fit (bottom).
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Figure 6.37. The χ2 space for the fit of HAWC30476+3680. Dark blue is 1
σ uncertainty, and light blue is 2 σ.
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6.10. HAWC30784+4151

Hotspot HAWC30784+4151 is closest in proximity to MGRO J2031+41. It was detected

at 10.32σ and fit using bins 2-9 (see figs. 6.38, 6.39, and 6.40), resulting in a spectrum of

dN

dE
(Φo, γ) = (9.12±10.0

4.7 stat ± 1.7 sys)× 10−14

(

E

4TeV

)−2.52±0.22 stat±0.28 sys

,

with a χ2 of 4.79 and 6 degrees of freedom (8 bins - 2 parameters). Because the uncer-

tainty in the normalization is approximately the value itself, the fit cannot be constrained

in normalization space.
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Figure 6.38. The hotspot HAWC30784+4151 as seen with the HAWC observatory.
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Figure 6.39. The measured excess form HAWC30784+4151 and the fit spec-
trum (top) and the residual, data-fit/fit (bottom).
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Figure 6.40. The χ2 space for the fit of HAWC30784+4151. Dark blue is 1
σ uncertainty, and light blue is 2 σ.
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6.11. Geminga

Geminga is a PWN located only 250 parsecs from Earth in the constellation of Gemini.

Unlike the Crab, Geminga is highly extended, with a characteristic diameter of about 3◦.

TeV emissions were first reported by Milagro 2007 but were not definitively detected until

2009. For this analysis, a hot spot of 5.6 σ was detected within the vicinity of Geminga at

(97.91◦, 16.92◦) J2000 equatorial (see figs.6.41 6.42 and 6.43). Bins 4 through 9 were used

and the resulting fit spectrum was

dN

dE
(Φo, γ) = (5.75±10.4

3.7 stat ± 1.08 sys)× 10−14

(

E

4TeV

)−2.73±0.37 stat±0.30 sys

,

with a χ2 of 0.99 and 3 degrees of freedom (5 bins - 2 parameters). Because the statistical

uncertainty in normalization is greater than the value, the fit cannot be constrained in

normalization space.
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Figure 6.41. The PWN Geminga as seen with the HAWC observatory.
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Figure 6.42. The measured excess form Geminga and the fit spectrum (top)
and the residual, data-fit/fit (bottom).
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Figure 6.43. The χ2 space for the fit of Geminga. Dark blue is 1 σ uncer-
tainty, and light blue is 2 σ.
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CHAPTER 7

Conclusions, Discussion, Future Work

and All That Jazz

The tabulated results from fitting sources can be seen in table 7.2. There are a few

important conclusions to draw from them.

First, the minimum significance and normalization a source must have before a fit can be

properly constrained is between 10 and 14 σ with a normalization of at least 10−13TeV−1cm−2s−1 .

Anything less than this results in an uncertainty on the normalization on the order of the

normalization value. This means that the HAWC observatory can constrain the Crab with

less than a week of observation time. Anything less than this and the fit uncertainties

increase rapidly (see fig 7.1).

Second, the systematic uncertainties are reasonable but possibly unreliable. Quantita-

tively speaking, 19% on the normalization and 11% on the index is within the expected range

for a particle array experiment. Milagro reported a systematic in normalization of 30% and

a systematic in the index of 0.1 (about 5%)25 [39]. Qualitatively, the reason why the system-

atics of this work should be considered unreliable comes from the effect of systematics that

would not be detected by comparing simulations to data. For example, suppose the simu-

lated PMTs trigger at a slightly different threshold than what is observed in HAWC. The

trigger “rate” for all PMTs in the simulation would change, which would change the number

of events per transit in every bin without changing the individual variable distributions. This

25HESS reports a systematic of 20% in normalization and .1 in index (on the order of 5%), and as an IACT
with a comparable sensitivity to that of HAWC, I would expect HAWC to have an uncertainty close to or
greater than this.
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systematic would be entirely undetectable with the methods used for this analysis. Because

of this, the reported systematic uncertainty should be considered lower limits.

Third, HAWC currently cannot constrain the cutoff energy, and this can be seen in the

statistical uncertainties in the cutoff, which are on the order of the value. This is probably

a result of the energy proxy chosen for this analysis, fHit. Because the energy resolution of

HAWC is poor when using fHit, the cutoff energy should have an uncertainty of ±50% at

best. That said, the results from the Crab force the rejection of the two parameter model at a

confidence above 95%. Even though the cutoff cannot currently be constrained with HAWC,

this result strongly suggests that the two parameter model is an insufficient description of

the physics at work within the Crab.

Finally, source identification is key to being able to get useful fit result. Consider

HAWC27936-0665, HAWC27980-0583, and HAWC28107-0332. These are three hot spots

that could very easily be three distinct sources, or a single source and two statistical fluc-

tuations. There is no way to tell without having some measure of the statistical certainty

that a given hot spot on the sky is a unique TeV source. As a result, there is no way to

attribute the fit spectra to a specific source or physical process. A “clump” of sources on

the sky might look like one very large source, and visa versa. This is especially apparent for

Geminga, which is highly extended. The best way to mitigate this problem is to only apply

this method to extra galactic sources, far from the galactic plane.

The most profitable direction for future work would be in the definition of a new energy

proxy variable. A direct extension of fHit would be to examine the fraction of hits in PE

bins, and derive an energy heuristic from that. For example, consider defining two PE bins:

a low bin for hits with less than 10 PEs, and a high bin for hits more than 10 PEs. It is

reasonable to assume that an event that triggers with an equal fraction of PMTs in the low
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bin as the high bin would have less energy than an event that triggers with a significantly

larger fraction of PMTs in the high bin than the low bin.

In general, this work demonstrates the ability to measure energy spectra without the

need to directly measure primary energy. The methods presented here could be applied to

any ground array experiment, which are possibly some of least costly and most effective

cosmic ray detectors at very high energies. This work also adds to our knowledge of the

Crab nebula, the standard candle for any cosmic ray experiment. Further constraints on

the spectrum of the Crab will improve the mathematical models we use to to describe the

processes at work. These models may directly lead to new particle acceleration technologies

and applications.

Figure 7.1. The χ2 space for all sources that had a two parameter fit with
a reasonable χ2 overlaid on the same range. The change at 10−13 is dramatic.
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Table 7.1. Table of final 4.0 TeV, two parameter fit results determined by this analysis.

Designation σ Norm (TeV−1cm−2s−1) Index χ2/DOF

HAWC27646-1340 19.3 (6.61±2.3
1.6 stat ± 1.2 sys)× 10−13 −2.86± 0.12 stat ± 0.31 sys 5.2 / 6

HAWC27936-0665 17.7 (2.63±0.66
0.53 stat ± 0.49 sys)× 10−13 −3.09± 0.10 stat ± 0.34 sys 10.02 / 6

HAWC27980-0583 16.7 (2.51±0.69
0.54 stat ± 0.47 sys)× 10−13 −3.09± 0.14 stat ± 0.34 sys 6.21 / 6

HAWC30476+3680 15.4 (2.09±0.91
0.63 stat ± 0.39 sys)× 10−13 −2.82± 0.13 stat ± 0.31 sys 0.59 / 6

HAWC27980-0583 14.3 (1.45±0.46
0.35 stat ± 0.27 sys)× 10−13 −3.05± 0.12 stat ± 0.34 sys 3.81 / 6

HAWC28433+0280 14.2 (1.48±0.54
0.40 stat ± 0.28 sys)× 10−13 −2.65± 0.11 stat ± 0.29 sys 1.39 / 6

HAWC28710+0643 14.2 (1.14±0.59
0.39 stat ± 0.21 sys)× 10−13 −2.46± 0.11 stat ± 0.27 sys 3.77 / 6

HAWC30784+4151 10.3 (9.12±10.0
4.7 stat ± 1.7 sys)× 10−14 −2.52± 0.22 stat ± 0.28 sys 4.79 / 6

Geminga 5.6 (5.75±10.4
3.7 stat ± 1.08 sys)× 10−14 −2.73± 0.37 stat ± 0.30 sys 0.99 / 3

Table 7.2. Table of final 4.0 TeV, three parameter fit results determined by this analysis.

Designation σ Norm (TeV−1cm−2s−1) Index Cutoff (TeV) χ2/DOF

Crab 83 (1.03±0.091
0.083 stat ± 0.19 sys)× 10−12 −2.54± 0.095 stat ± 0.27 sys 91.0±174

59 stat 5.87 / 5

Markarian 421 32 (1.23±3.6
0.91 stat ± 0.23 sys)× 10−12 −2.61± 0.39 stat ± 0.28 sys 6.4±12

4.3 stat 4.74 / 5

Markarian 501 21 (7.25±4.7
2.8 stat ± 1.4 sys)× 10−13 −2.19± 0.31 stat ± 0.24 sys 7.94±16

5.3 stat 2.66 / 5

174
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