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ABSTRACT

A methodology is developed for designing capacities of farge reservoirs with sufficiently high levels of
development by using the concept of maximum deficit rather than the range, and short-interval flow records,
particularly daily flows.

Daily river flows, composed of periodic and stochastic components, are inputs into reservoirs. The output
is assumed to be a deterministic process, either constant or periodic.

The study uses both the analytical and the data generation methods in computing the required storage
capacities for regulating the periodic-stochastic inputs to deterministic outputs. The approach used in
determining the mean required storage capacity, named in this study the total storage, is to divide the total
storage, defined as the expected maximum deficit of the net input to a reservoir, into the difference storage
and the stochastic storage, with: total storage = difference storage + stochastic storage.

Difference storage is due to periodic components of both input and output. The advantage of its use is
that it is approximately constant for large sample sizes. It can, therefore, be estimated for different sample
sizes by generating a relatively short series of daily flows.

Stochastic storage, defined as the expected maximum deficit of the stochastic net input, is estimated
analytically by using a coefficient, estimated by generating short series of daily flows.

It was found that the parameters of asymptotic distributions of statistics of partial sums can be obtained
by equating the higher-order autoregressive models to an equivalent first-order autoregressive model with its
P, equal to the sum of all the autoregressive coefficients of the higher-order model. This is valid for all

storage problems of practical interest.
The methodology developed for determining the total storage by its decomposition into the difference
storage and stochastic storage has been applied to a simulated problem of determining the storage capacity of a

reservoir with the economic life of 100 years to be constructed at a site for which there are 40 years of daily
flow data (the Oconto River, near Gillett, Wisconsin).
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FOREWORD

Planning, decision making on the size, and management of water storage capacities represent research topics
which have been studied in the past from two points of view, practical and theoretical. About a century of
modern planning and construction of water storage capacities in different forms in various countries has pro-
duced a practice, based on experiance, on how to plan, determine the size and operate these water storage
capacities. In the practical, engineering approach, basically the historic water input data are used in such a
way that the storage capacity is determined assuming the operation of the reservoir has started at the beginning
of data collection and lasted until the end of available series. The storage problems are studied with the
premise that a given water draft regime, satisfying a given water demand or solving complex water resources
problems by regulation, is accomplished by that capacity during the historic data period. On the other side,
theoretical approaches have been developed for studying various storage problems, and not only water storage
but also for storing goods, oil, gas, and other materials, for which either the input, or the output, or both
are governed by the law of chance. The theory of storage has become a part of mathematics, or especially a
part of probability theory, stochastic processes and mathematical statistics. The storage problems have re-
ceived several theoretical treatments in the past, especially in the last 30-40 years. In recent times, the
theoretical approach to water storage problems has produced many analytical solutions by several schools of
probabilists and statisticians.

[t may not be exaggerated to state that the above two approaches, one based on experience and practice
and the other on theoretical analysis, have not heen yet integrated. No real bridge has been made hetween the
results of these two approaches. The practice of water storage planning and operation has been related for
too long a time only to historic data series. Since the future samples may show the need for different storage
capacities than those obtained from the historic samples, there is some concern among specialists at present
about the correctness of decisions made on the size of large storage capacities in comparison with the mean
annual inflow when based only on this empirical approach. On the other hand, to tackle mathematically the
complex inputs, outputs, and the changes in boundary and initial conditions of water storage capacities, it 1is
necessary to make many simplifications that are mathematically imposed in order to produce analytical solutions.

The most difficult problems of the theoretical analysis of water storage capacities have resulted from
periodicities in parameters of hydrologic input and water demand time series. In the most general case, not
only the mean and standard deviation are periodic parameters, but also the other parameters may be proven to
be periodic, such parameters as coefficients of dependence models of stochastic components and higher-order
moments as the skewness and kurtosis coefficients. LEven in the simplest case for which only the mean and the
standard deviation of inputs and outputs are periodic, the theoretical approach becomes relatively difficult
to implement. When the realistic inputs and outputs of storage capacities are used, it is obvious that the
bridge between theory and practice can not be made easily. This does not result only from the periodic-
stochastic character of inputs and outputs but also because of usual trends in water demand and the non-
stationarity of available storage capacity due to sedimentation of reservoirs with time. Efforts undertaken
by many research groups around the world to make a bridge between theory and practice, and to use theory to
make better planning, decision making on the size, and operation of water storage capacities, did not yet pro-
duce the satisfactory and generally acceptable results.

Several studies in Hydrology and Water Resources Graduate and Research Program of Civil Engineering
Department at Colorado State University, especially studies in the form of Ph.D. dissertations, have been
undertaken with the basic objective in mind to make contributions of research results for a better bridge
between theory and practice. The Ph.D. dissertation by Kedar Mutreja, which is the subject of this hydrology
paper, should be looked at from the point of view of making a contribution toward that bridge.

The problem of periodicity in the mean and the standard deviation is approached in the paper in such a
way as to enable the division of the expected or total, finite storage capacity into a deterministic and a
stochastic part. This is similar to the decomposition of hydrologic time series into periodic parameters as
deterministic functions of time and a stationary stochastic component. The expected storage capacity or the
total storage is divided in this paper into the stochastic storage which is the result of the random variable
(crs] as the product of periodic standard deviation [cT) and the stationary stochastic component (e), and the

difference storage, as the difference between the total storage and the stochastic storage. Therefore, the
effects of periodicity in parameters are divided and studied basically as the effects of periodicity in the
means of inputs and outputs by using the difference storage, and the effects of periodicity in standard devi-
ation and the stochastic component by using the stochastic storage.



This paper presents the investigation of effects of various parameters on the difference storage. These
parameters are: periodicity in the input mean, general standard deviation of inputs, first serial correlation
coefficient of the stationary stochastic component, periodicity in the output mean, and finally the sample
size n. The difference storage converges to a constant with an increase of the sample size. The property of
difference storage is conceived as the deterministic part in the total storage capacity. The stochastic
storage is studied as a function of periodic standard deviation, linear dependence of stationary stochastic
component and sample size,

A distinction is made in the paper between the full and the partial utilization of regulated river flows,
The full utilization means the 100% use of the available water to bhe regulated. The partial development re-
presents the use only of a fraction in the regulated form of the total average flow, with the difference being
the unused, spillover water. It has been shown by many researchers in the past that the necessary storage
capacity decreases with a decrease of the degree of development in water utilization. The theoretical studies
of water storage have been mainly carried out for the full development, namely for the output mean being a
constant equal to the input mean, or for the outflows varying with time but having the mean equal to the input
mean. The theoretical studies of partial development, which temporarily sacrifices a percentage of the total
available water but is a realistic case in practice, have received a relatively limited coverage in the past.
Therefore, if the objective of flow regulation is a partial development of the water resources potential, the
total storage capacity must be a function of the level of development. By using the method of generating new
samples, the difference storage for large sample sizes in days oscillates around a constant, with fluctuations
only due to sampling variation, and to an eventual small effect of periodicity in inputs and outputs.

Stochastic storage, or for that matter the total storage, is investigated by using the concept of the
maximum deficit (or the maximum depletion). If it is assumed that the finite storage capacity of a reservoir
is full at some point in time, the water spills over as long as inflows are higher than outflows. The peak at
the cumulative curve of these differences is reached when the output is equal to the input and the output
starts to be greater than the input. Then the depletion of the reservoir storage begins. The maximum de-
pletion or deficit as the difference between this peak and the next lowest point at the cumulative curve of
differences between input and output, even with the new ascending branch of this cumulative curve exceeding the
previous maximum, represents the largest deficit or the largest depletion as the necessary storage capacity.
The maximum differences between the successive maxima and minima represent a random variable, important for
decision making on the size of water storage capacities. The finally selected capacity can be determined from
the probability distribution of that variable by an optimization analysis. The risk is always involved that
the selected storage capacity will not be able to supply the depletion water volume in all the samples of a
piven size. In general, the maximum deficit is a variable smaller or equal to the range. The range is defined
as the difference between the maximum and the minimum of the cumulative sum of input minus output for a given
sample size. The mean deficit is then always smaller or equal to the mean range.

Because the range and the deficit are defined on the cumulative sum of differences of inputs and outputs
for a given sample size n, it can be shown that the investigation of asymptotic deficit, range and the other
water storage parameters of stationary stochastic components which follow the linear dependence models, can
be reduced to investigations of the time independent stochastic component (TISC) inside this stationary process.
The dependence is taken into account by a parameter (8) which is the function of all the coefficients of the
linear dependence model. For purposes of generating new samples, an m-th order linear autoregressive model
can be reduced to the study of the first-order autoregressive model only. In this latter case, the serial cor-
relation coefficient p of this first-order model is equal to the sum of all the coefficients in the m-th order
autoregressive model. In general, it can be shown that in the study concerning the asymptotic results of the
deficit, the range or any other water storage parameter, or the study of distributions of deficit and range of
linear dependence models, can be carried out only by investigating the properties of these parameters for the
time independent stochastic component (TISC). For every linear dependence model a parameter (8) could be found
which helps to relate the necessary storage capacity (deficit or range) of the autoregressive, stationary
stochastic components to the storage capacity of their time independent stochastic components.

V. Yevjevich

Professor-in-Charge of
Hydrology and Water Resources Program
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Chapter 1
INTRODUCTION

1-1 General

Since nature does not meet the demand for water
in time and space, reservoirs have been most important
for regulation of surface runoff so as to balance
supply and demand. Although man has an experience
with reservoirs for the last three to four millennia,
and although he has developed economical methods of
dam construction for wide variety of sites to create
reservoirs, the methods of estimating the proper sizes
of dams and reservoirs for the target pattern of de-
mand have been mainly based on '"rules of thumb" and
"engineering judgement."

The empirical method of analysing the stochastic
problems has dominated the engineering practice ever
since Rippl applied this approach in 1883, (Rippl,
1883). Rippl's method, based on the mass diagram,
assumes that both inflow and outflow are known func-
tions of time. It gives the minimum storage capacity
required that no water shortage would occur during
the period under consideration. The reliability of
results so obtained is limited, because the analysis
is necessarily based on a single historical sequence
of hydrologic records. The probability is zero that
an identical flow sequence would occur again during
the active life of a reservoir. Moreover, the length
of the historical record is apt to be quite different
from the economic life of a reservoir, which in turn
is determined not only by social and economic consid-
erations but also by pure physical considerations.
Since the required storage capacity obtained by using
the Rippl mass-curve method increases with the in-
crease of the length of record, the estimated capacity
usually will be incompatible with a design based on
the economic project life. Because of only one stor-
age capacity value as the result of mass-curve method,
this method does not provide information to a designer
in finding out the risk to be taken with regard to
water shortages during periods of low streamflows.

The fact of the matter is that one cannot speak
of the needed storage capacity of a reservoir in a
deterministic sense, because of the stochastic nature
of both the streamflow and water demand. The needed
capacity for a given sample size is a random variable,
necessitating, therefore, the consideration of its
distribution, with the expected value and variance of
the distribution of this variable being important
parameters in the final selection of the storage capa-
city of a reservoir.

The theory of stochastic processes, applied to
design and operation of reservoirs, has recently be-
come one of the most important topics of statistical
hydrology. Unfortunately, the storage problems are
extremely complex. The complexity depends on the
type of required or proposed regulation. For example,
if the regulation, is of the over-the-year type, the
analysis is based on annual streamflows and a given
degree of river development or water draft. In deal-
ing with annual flows the assumption of their independ-
ence may be sufficiently accurate in many cases. In
general, the serial correlation is such that the Markov
or linear autoregressive models are needed to describe
this dependence (Yevjevich, 1964; Fiering, 1967). The
natural annual flows may be considered as stationary
stochastic processes. Hence, properties of the random
variable of storage capacity may be obtained either by
the exact or approximate solutions.

When within-the-year water fluctuation is to be
considered in the design of a reservoir capacity, then
one has to analyze the problem with either monthly,
weekly or daily runoff series along with the respec-
tive monthly, weekly or daily water demand series.

The analysis requires a consideration of nonstationary
stochastic processes, because both time series show
periodicity in the mean, standard deviation and often
in autocorrelation coefficients, besides the time
dependence structure of stationary stochastic com-
ponents, (Thomas and Fiering, 1962; Roesner and
Yevjevich, 1966; Yevjevich, 1971). Besides this the
trend variability in water demand and the competition
between water users add to the complexity of the whole
analysis.

The complexity of the problem is well demonstra-
ted by the fact that in search of a solution to this
problem, the engineers like Rippl, Hazen, Sudler and
Hurst have, respectively, introduced the concept of
mass curve, invented such a useful tool as the prob-
ability paper, pioneered methods of simulation, and
to raise questions which still remain unresolved.

1-2 Approaches to Investigation of Storage Problems

Approaches commonly used in the design of stor-
age capacities may be classified into three groups:
empirical, experimental, and analytical. The empiri-
cal approach consists in the application of Rippl's
mass curve as described in Section 1-1.

The experimental approach is simply the appli-
cation of the Monte-Carlo or data generation method.
The central idea of mathematical synthesis is to cre-
ate the periods of high and low runoff that mostly are
not present in short historical records. However,
these periods, from the view point of probability
theory, could be expected to occur in an actual record
of sufficient length. The Rippl's method, or a
modification of it, is then applied to each flow
sequence. The probability distribution of storage
capacities is approached by using the relative fre-
quency distribution as its estimate. The more samples
are generated, the better is this estimate.

In order to deal with the analytical method a
few definitions are needed. Let {Zi} be a sequence

of random variables such that E(Zi) = 0 and let

Si Edy By E e ¥R I &3 25 v B (1-1)
Mn = max (O, 51. SZ' ...... > Sn) (1-2)
m, = min (0, Sy, 52’ ...... - Sn) (1-3)
Rn = Mn =imi (1-4)

with the random variable Si = the cumulative or par-
tial sum, M = the maximum partial sum or surplus,
. the minimum partial sum or deficit, and Rn = the

range of the partial sums (Fig. 1-1).

Another type of these three statistics occurs
when each component of the partial sum is corrected
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Fig. 1-1. Definition of the Maximum Partial Sum (Mn),

the Minimum Partial Sum (mn), and the Range
(R.).
n

for the sample mean, E;. Therefore, the above random

variables will then become

ko i
S; =S, - (EJ S, (1-5)
* * * *
Mn = max (0, SI' 52. ...... 3 Sn} (1-6)
* * *
m o =min (0, S;, S5, ....-. » S.) (1-7)
- . -
R =M -m (1-8)
n n n
where S; = the adjusted partial sum, M; = the adjus-
*

*
ted surplus, m.o= the adjusted deficit, and Rn = the

adjusted range.
1-2.

These statistics are shown in Fig.
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Fig. 1-2. Definition of the Adjusted Partial Sum

(s?), the Adjusted Maximum Partial Sum

(M), the Adjusted Minimum Partial Sum (n)
*

and the Adjusted Range (Rn).

Some engineers interpret range as the required
storage capacity to avoid both overflows and emptiness
of the reservoir. However, this may be valid only in
the case of fulf regufation or full development. Full
regulation of river discharges is equivalent to assum-
ing the expectation of random variable Zi of Eq.

(1-1) equal to zero. But when this expectation is

[
. b

a3

positive then it is a case of partial hegufation or
partial development. Another statistic known as the
maximum deficit, with its definition based on the
cumulative departures from an arbitrary base value
less than or equal to the mean, is used to work out
the required storage capacity of the reservoir.

Figure 1-3 gives the plot of cumulative sum of
departures for different base outflow values. The
summation curve is always studied in conjunction with
the inclined axis representing the base value. It is
obvious that as the inclination of axis OA changes,
different points on the summation curve may become
maxima or minima. For instance the vertical distance
between points e and f gives the range and between
f and g the maximum deficit with respect to the
base value OA respectively. It may be noted that
the deficits {di} in Fig. 1-3 are measured from the

How-

1
, are respectively the vertical distances of

subsequent peaks higher than the previous peak.
ever, the maximum deficit for the base values OA

and OA

a-c and b-c. Thus the range as the criterion for
storage capacity is obviously not correct at least
not for the partial regulation.

The analytical method consists of finding by
exact, asymptotic or approximate derivations of various
descriptors related to storage capacity design, such
as mean, variance and other descriptors of surplus,
deficit, and range. Exact general expressions for
some of these descriptors are derived only for the
case of independent, identically distributed random
variables and for the stationary first-order Markov
linear model. Similar properties are not available
when random variables are nonstationary.

Empirical data generation and analytical methods
in solving storage problems were used in the analysis
of reservoir storage design and operation in the past
(Yevjevich, 1965). However, the advent of computers
enabled the generation method to be very attractive.
Mathematical methods using the probability theory,
mathematical statistics and stochastic processes
were tried by many investigators by solving the water
storage differential equations under various condi-
tions in the last three decades.

1-3 Description of Model

The solutions of storage problems in case of
within-the-year water fluctuation are topics of this
study. The need to deal with nonstationary series
of inputs and outputs makes the general mathematical
treatment of storage problems extremely complex.
Hence in practice one falls back on the generation
procedure in order to tackle many problems. This
study is conceived to use both methods, mathematical
and data generation, in computing the necessary stor-
age capacities of complex periodic-stochastic input
and output processes.

The study is concerned with the design of stor-
age capacity of an independent reservoir. An indep-
endent reservoir is defined as a reservoir operated
independently of any other reservoir. The complex
stochastic problems in designing a system of dependent
reserveirs are not dealt with.

The basic storage equation in design of a reser-
voir
I-0=45, (1-9)
where I = the input, 0 = the output, and A4S = the
change in reservoir storage for a given time unit.
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Fig. 1-3. Definition of Maximum Deficit, with Respect to Base OA Maximum Deficit = Max {d;}, 1 <1 < k.

Neglecting the groundwater portion of the storage,
and the seepage from a surface storage reservoir,
but including the evaporation and the sedimentation
of the reservoir, Eq. (1-9) can be rewritten as

ds
X, =Y, -B =% (1-10)
where Xt = the input rate (such as daily discharge;

Yt = the output rate (such as daily water use); Et =

the evaporation rate from the reservoir, which depends
mainly on the climate and the reservoir surface, and
dS/dt = the rate of change in stored water.

Storage volume of a reservoir is a function of
reservoir elevation and time. It can be approximated

by
S = aH"

where a = f(t) and m = ¢(t) which are both func-
tions of time because of reservoir sedimentation. The
storage capacity, Sf, of a reservoir is always a

finite value.

(1-11)

It is a stochastic variable because
Sf = a(H:ax - Hzinj, with Hmax and Hmin the
maximum and minimum reservoir water elevations, and

a and m are stochastic variables. The evaporation
is usually neglected in practical applications, when
the average annual reservoir evaporation is small in
comparison with the average annual input and output,
and a and m are constants when the sediment inflow
is small in comparison with the finite storage capa-

city. Accordingly Eq. (1-10) is modified as
ds
Xt - Yt =% - (1-12)

It is assumed that short-interval flows, such
as the daily river flows containing both periodic and
stochastic components, are inputs into the reservoir.

It is further assumed that there is no "trend" in the
data, i.e., that man-made or natural changes in the
river basin which produce these flows do not create
significant trends in parameters. Thus the time
series X can schematically be presented as

(1-13)

where: = =1y 2y coewas , w, with w the annual cycle
(e.g., 12 months, 52 weeks, or 365 days), p=1, 2,
...... » T, with T = the number of years of record,
M and ¢ = the periodic mean and periodic standard

T
deviation, respectively, and ¢ = the stationary

P
stochastic component with zero expectation and unit

variance.

Periodic components can be described by harmonic
functions. The stochastic component is usually assumed
to follow the Markov linear models (first, second or
higher order). The periodic component is the cyclic
oscillation of means u (for each interval of the
year, the mean is obtained over all years) and the
cyclic component of standard deviation o; for
interval flows about the corresponding value of Mo

The output is assumed to be composed of a sto-
chastic component superimposed on periodic parameters.
Assuming the trend component of the demand to be zero,
though it does exist at least during the early period
of operation of a reservoir until the stationary
regime of storage operation is attained, it can be
schematically presented by

Yp“ = q1 + érF,F‘1 {1-14)
where 1 and p have the same meaning as for the
input process, while Yp . Tepresents the demand

series, q, and 5" the periodic (deterministic)



mean and standard deviation respectively, and £P i

the stochastic component.

Water releases from reservoirs are mostly
assumed as deterministic processes. A rigorous
mathematical description of outputs as stochastic
processes is less feasible, when the outputs are
regulated by reservoirs. Equation (1-14) is now modi-

fied to
ot T 4 (1-15)
Thus the net input to the reservoir is
v T Ypyr TG 0 (1-16)
Now the regulation is called full, when
w w
121 q' S TZI UT (1-17)
Otherwise it is partial when
W w

such that percentage of regulation or development p
is equal to qT/uT % 100.

The reservoir to be designed is assumed to be
sufficiently farge with a long economic life of more
than 50 years.

It is further assumed that the demand is such
that it corresponds to a sufficientfy high level of
development of the order of 90% or so. This assump-
tion does not limit the application of this study to
the practical problems because for large reservoirs
the development is generally between 90-100%, and thus
the assumption made is quite valid.

1-4 Objective of the Study

The objectives of this study are then the
following:

(1) To determine the expected maximum deficit
assumed to be the storage capacity needed for a reser-
voir under the following conditions: (a) a constant
or a periodic deterministic output or demand, (b)
large reservoir with long economic life, (c) partial
regulation of river flow such that the level of devel-
opment is higher than 90%, (d) short interval, e.g.,
daily flow, data for the input processes; and

(2) To determine the asymptotic distribution of
the maximum deficit in case of higher-order Markov
models for stochastic components.

1-5 Approach Used in this Study

Before going into the approach, a few descriptors
of the periodic parameter v_ are first defined as

e o (1-19)

and

(1-20)

where v, Trepresents both u_

when daily flow series are used.

and o, and w = 365

In determining the storage capacity of a reser-
voir for within-the-year regulation with a determinis-
tic demand, and for inputs of Markov models type with
periodic mean and periodic standard deviation, the
expected storage called herein as fofal sforage, for
the sake of brevity, is given by the expected maximum

defici 5 T =
eficit of net input series {u_+ %€p,1 qu'

Similarly the expected maximum deficit of {cT: r}

is called stochastic storage while the difference be-
tween the total and the stochastic storages is called
the difference storage.

if D: and D: are the random variables
denoting the maximum deficit of net input {ut =i ¥
crsp,T} and stochastic net input {czsp.r] respecti-
vely, then

Total Storage = S = E[D:]

Stochastic Storage = Ss = E[D:]

Thus the total storage is divided into difference
storage Sd and stochastic storage 5s written as

§,(n) = S,(n) + Sq(m), (1-21)

where n is the number of time units.

Difference Storage. This part of the total
storage is due to an extra term of (ut - qT) in the

net input series over and above the stochastic net

input {cTep T}. and thus results from the difference
»

between the periodic components of both input and out-
put It is, in fact due to fluctuations of periodic
components of input and output processes within the
year. The difference storage is thus a function of
periodic properties. It can be represented by

S¢gm) = flu, o, 0, q, n)

s (1-22)

where Sd(n) = the difference storage, p = the

dependence of the stochastic component of the input
process. To find the value of difference storage, the
approach: difference storage = total storage - sto-
chastic storage, will be used.

The point is that the difference storage, due
to deterministic parts of input and output processes
should become approximately constant by generating a
shont length of daily flow series. The difference
storage is, therefore, found for different values of
n (n being the sample size, or the number of time
units), by finding the values of total storage and sto-
chastic storage from the generated daily flow sequences.
The process is repeated for a number of values of n
until the value of difference storage becomes approxi-
mately constant within the sampling limits. This
approximately constant value is called the diffetrence
s{ohage capacity.

Stochastic Storage. This part of the total
storage is a result of the difference of stochastic
components of input and output processes. Since the
stochastic component of the output is assumed zero,
this storage is given by the expected maximum deficit
of the stochastic component of the input process. It




is, however, a function of o_, and the dependence
of the stochastic component. This can be schematically
represented by

Ss(n) = f[GT. e, n] ) (1-23)

where S_(n) = the stochastic storage, n = the sub-
sample of the number of time intervals, p = the
dependence of the stochastic component of the input.

= of Eq.

(1-13) is nonstationary, the stochastic storage is
worked out first by finding the expected maximum de-
ficit of a stationary process of ¢, and then con-

s T
verting the same to give the stochastic storage for
the nonstationary process of Utap . Thus, the total

storage can asymptotically be repr;sentad by

Since the net stochastic input UTEP
Ed

Se( = 54[u, 005 ap, p] + Sg[0, m, 0],

where St(n] = the total storage or the needed storage
capacity of a reservoir.

To determine the expected storage capacity or the
total storage of a reservoir with long economic

life the procedure is to find the value of difference
storage capacity by generating a short length of daily

flow series, The difference storage capacity, being
independent of n for large values of n, is then
taken as the same for the reservoir with the desired
economic life. A coefficient C is also found from
the above generated daily flow sequences which in turn
is used in computing the value of stochastic storage
for the given reservoir. The sum of the difference
storage capacity and the stochastic storage thus gives
the value of the total storage or the needed capacity
of the reservoir. The advantage of the procedure is
that it does not need generation of sequences equal

to the economic life of the reservoir.

Asymptotic Distribution of Maximum Deficit of
Markov Models. Gomide (1975) has proved analytically
that for large values of n, the exact distribution
of the standardized maximum deficit of partial sums of
Markovian inputs tends to the asymptotic distribution
of the standardized maximum deficit of the independent
process. In case the asymptotic expected value and the
variance of maximum deficit of higher-order Markov
models are known somehow, then their asymptotic distri-
bution can easily be worked out from the given distri-
bution of the independent process. The effort in this
study will be to find the asymptotic expected value
and the variance of higher-order Markov models, and
thereby to obtain the asymptotic distribution of
maximum deficit for these models. The procedure holds
good for any statistic of partial sums such as the
surplus, deficit, and range.
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Chapter 2
REVIEW OF LITERATURE

Reservoirs as a means of augmenting the low flows
have been used for several thousand years. However,
the first attempt to determine the size of a reservoir
by a mathematical technique can be traced back only
to the last century, when Rippl (1883) came up with
his mass diagram. In spite of its limitations of not
accounting for the stochastic nature of the input and
output processes, the method still remains popular
throughout the world. With the development of digital
computers in the past 15 years, the experimental simu-
lation or Monte-Carlo method combined with the Rippl's
mass curve has been adopted for design of projects by
studying alternate plans of operation.

Most of the literature review in this study can
be divided broadly into two categories:

(1) Studies concerning infinite storage capacity;
a great deal of research is on stationary processes
studied by means of different statistics like surplus,
deficit and range.

{2) Studies concerning finite reservoir size;
these have been carried out by a few investigators.
Most of these works relate to stationary processes,
while actual hydrologic input and output processes
of reservoirs are periodic-stochastic.

2-1 Analysis of Storage Problems by Range

W. Feller (1951) derived the asymptotic distri-
bution of the range of the cumulative sums of indepen-
dent normal random variables. In particular, he ob-
tained the asymptotic mean and asymptotic variance of
the range as

E(R)) = 1.5958 /i (2-1)

and
Var (R ) = 4n(fn 2 - %] * 0.2181 n (2-2)

He also found the expressions for the asymptotic mean
and the asymptotic variance of adjusted range as

E[R;] = /anf7 = 1.2533 /n (2-3)

and

var (R;] s ZZ - 1)n = 0.0741 n (2-4)

(STE ]

(P

These theoretical results are independent of the
underlying distribution of the original random vari-
able having finite mean and finite variance, because
for large values of n the partial sums Sn and
S; are asymptotically normally distributed.

A. A. Anis and E. H. Lloyd (1953) studied the
problem of storage capacity of reservoirs for which
the distribution of stored water is required over a
number of years or of n time units., When the annual
increments are independent variables with a common
normal distribution, the water storage after i
increments is the sum of i values. They gave the
exact expected value of the maximum of the partial
sums Sl. 52’ 53, Spr veveees 5n of independent

normal variables with mean zero and variance unity as

2

n
EM) == § i71/2
2n i=]

(2-5)

Because of symmetry the expected value of the range is

g & <3
E(R) = /; i

i=1

(2-6)

Subsequently A. A. Anis (1955) gave the expression for
the variance of the maximum of partial sums of a finite
number of independent normal variates, which for n >

2 s

n-2 i
71 1 ife -1/2
EOG) * ey * T L, j_)f] {3 (i-j+D) (2-7)
with the asymptotic second moment of
v}
EM) = n - 2‘;'5 n1/2 (2-8)

A. A. Anis (1956) gave a recurrence relationship for
obtaining the numerous evaluation of all the moments
of partial sums of a finite number of independent
normal variables.

A procedure for obtaining the exact distribution

of Mn, m and Rn was described by Yevjevich

(1965) for the values of n=2 and n = 3. For
higher values of n, Yevjevich used the data genera-
tion method to find the above distributions.

Using the data generation method, M. M.
Melentijevich (1965) found the approximate equations
for the expected value and variance of the range when
the output is linearly dependent on storage.

V. Yevjevich (1967) suggested that the expected
range of linearly dependent normal variables could be
expressed by Eq. (2-9), which was derived for indepen-
dent normal variables. He showed by data generation
that the values calculated by Eq. (2-9) closely
approximate the results obtained by data generation
for the cases of first and second order autoregressive
models and the simple moving average scheme.

n
E(R ) = /g § a7t pvar s1M?
§<i

where Var Si is the variance of partial sum Si.

(2-9)

For independent normal variable Var Si = iuz.

Notice that for o = 1 Eq. (2-9) reduces to Eq.
(2-6), as it should.

Francisco L. 5. Gomide (1975) approached the
problem of finding distributions of M, m and Rn

by using Markov chains and found their numerical
solution. He also found certain results for the
first-order Markov inputs of stationary processes.

P. Sutabutra (1967) investigated the reservoir
design problem for within-the-year flow regulation
by separating the total storage into a deterministic
storage part, which is a function of periodic means
of inflow and outflow only, and a stochastic storage
part, which is a function of stochasticities of



input and output processes. The problem was studied
under the following assumptions:

(1) Standard deviation of inflows at various
time positions within the year is assumed constant;

(2) Stochastic component of monthly streamflow
data follows the first-order Markov linear model;

(3) Stochastic component of the output is
assumed to be nonexistent; and

(4) Output may be periodic, but the mean output
is equal to the expected value of the input process.

Since no stochasticity in the output process is
assumed, the stochastic storage in the form of the
expected range for the first-order Markov model was
determined.

Jose D. Salas-La Cruz (1972) followed the same
approach as Sutabutra by relaxing only the first
assumption of the constant standard deviation for
inflows at various time positions within the year,
because that assumption was not realistic. He in
turn assumed a 12-month cycle in the standard devia-
tion, thus making the results of his study applicable
in designing reservoir capacities for monthly stream-
flow inputs. However, the applicability of his
results was limited because of the following assump-
tions:

(1) Constant output was used instead of any
deterministically changing output;

(2) 100% development and use of water resources
rather than any partial use or development;

(3) The use of the first-order Markov model for
the stochastic component of the input process (this
may be true for monthly data but not for daily flow
data in all cases, so that the method is not appli-
cable to daily flow data); and

(4) The expected value of the range was used
as the needed storage capacity of a reservoir rather
than the expected maximum deficit.

2-2 Analysis of Finite Size Reservoir

P. A. P, Moran (1954) developed a simple formu-
lation of the finite storage problem by making an
extensive use of Markov chains, as a theory of storage
with random inputs. Initially, a finite storage of a
total capacity is available with independent inflows
Xt(t =0,1, 2, ......) in discrete units of time

(t, t+l1). He presumed that a quantity Qt already

existed in storage before the arrival of the inflow

Xt. Then if xt + Qt > M, some overflow will occur

as the capacity of the reservoir is assumed to be M.
The overflow is then xt + Qt - M, assuming either it

is positive or zero. The storage contains a water
quantity either M or (Kt + Qt), whichever is

smaller. An amount Y may then be released accord-

ing to some definite predetermined rule. A wide
variety of such rules is possible. In one such rule
Moran considered that a quantity of Y wunit of water
is released when

xt * Qt > Y (2-10)

or a quantity {Xt + Qt) if this is less than Y,

Continuing his work, Moran (1955) proceeded in
several ways by considering different types of release
Tules.

C. H. Hardison (1965) dealt with the general
problem of reservoir storage for low flow augmentation,
but did not go deeply into any specific aspect of the
problem. His main objective was to show as to how
storage-draft relations can be related to probability
so that developers can equate cost and risk more
reliably. His approach to tackle the problem was to
analyze the over-the-year storage separately from the
analysis of within-the-year storage. He presented
a method of combining the results by giving the pro-
bability of a given amount of storage required for
selected draft rates. He claims that his method of
finding storage-draft relationship is useful primarily
in making preliminary estimates of potential develop-
ment, in comparing the development possibilities of
different streams, and comparing the alternate plans
for development. Detailed design with variable draft
rates would justify more sophisticated procedures
like the Monte-Carlo mass curve method in which
alternate plans of operation are simulated.

L. S. Gomide (1975) tackled the problem of partial
regulation with theoretical analysis of mass curve.
The storage problem concerning the partial regulation
is called maximum accumulated deficit or maximum
deficit analysis. This analysis was based on the
application of Rippl's mass curve to the observed
hydrologic sequences (Hurst, 1951), as shown in Fig.
1-3. This method is called by Fiering and some other
authors as the '"sequent-peak method" (Thomas and
Fiering, 1963; Fiering, 1965).

Gomide (1975) derived the expression for the
asymptotic expected maximum deficit for different
inputs with mean zero and standard deviation unity as

E(N,) = 1.2533 /n (2-11)

Since Gomide considered only the stationary
processes, his results can only be applied to annual
inflows., Hence to design the reservoir for within-
the-year regulation, the procedure is essentially
the same as the old procedure by the Monte-Carlo
method. In other words, sequences statistically
indistinguishable from the actual record are sim-
ulated and then the same procedure is applied to each
realization. Then probability distribution of
maximum deficit is estimated by the relative frequency
distribution. Usually the sample mean value is taken
as the required storage (Fiering, 1965).

Brent M. Troutman (1976) found the limiting
distribution of maximum deficit for the nonstationary
dependent net input process of g+ uTep % where

8, and o are the periodic mean and periodic

standard deviation and ¢ is the dependent or

P,
independent stochastic component of the net input
process. He gave the limiting distribution for the
case of full regulation when B = 0 as

D
Lim P[—— < d] = F (d/Y), -=»<d <o (2-12)
N c}/ﬁ D
where
-2 o
YoEled ] e u (2-13)

k=1
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where p, is the mean correlation coefficient at lag

X. k

In the case of full regulation the expectation of
net input is zero, but when this value is positive,
then he calls it "drift." The drift in fact corres-
ponds to the case of partial regulation. In one case
of drift he considers the expectation of net input as
c/¥n which goes to zero as n goes to infinity as ¢
is an arbitrary nonnegative constant, The maximum
deficit in this case is denoted by D_ and its distri-
bution is given by L2

D
(2-14)

< d € w

Lim p|—2 < d] = FD(d; ¥ :E‘)-

ns= o _v/n
X T

He also considered a case of continuous drift
when the expectation of net input does not converge
to zero under assumptions A given as:

(1) Net input X, is i.i.d variable

T
(2) There exists a constant p # 0 such that
_pxl
Ele 1=1 ,
and
_pxl
E[x]e ] =-9° -= (2-15)

and X, 1is nonlattice.

1

He found that the expected maximum deficit of
i,i.d variables satisfying the above assumptions is
a function of £n(n).

A large number of references is available which
contribute to the development of new approaches to
the problem of storage in finite reservoirs, such as
authored by N. U. Prabhu, A. Ghosal, G. F. Yeo,
E. H. Lloyd, H. E. Hurst, and many others. It is
unnecessary to cite all those who have contributed in
one way or another to the theory of water storage to
its present level. Only contributions directly re-
lated to this study have been discussed. However, for
a comprehensive view the interested reader is referred
to review papers by Lloyd (1967), Lloyd and Odoom
(1964), Thomas and Fiering (1962) and Yevjevich (1964).

There are two characteristic features of most of
these contributions which put them firmly in the
domain of pure rather than of applied mathematics.

The first of these features is the restriction to
independent inflows (in the context of continuous
time). The second feature which, while it contributed
to mathematical elegance and tractability, has weakened
the potentialities of the theory for engineering real-
ism, was the tendency to abolish the top of the
reservoir (Lloyd, 1974). Thus the practical problem
of finding reliably the storage capacity of a reser-
voir with partial or full regulation still remained
unresolved.



Chapter 3
DIFFERENCE STORAGE CAPACITY

3-1 Importance of Partial Water Flow Regulations

The basic consideration in designing storage
capacities for irrigation, power generation, water
supply and other uses, is to determine the reservoir
size. In its simplest form the problem may be con-
ceived as to determine the storage capacity required
to secure a constant output equal to or close to the
mean supply. Unfortunately, the problem is not
simple in practice, where the percentage of develop-
ment may not only be less than 100% but the output
may also be periodic.

The fact is that the storage needed to guarantee
a constant output, with the required output smaller
than the input mean, may be more important from the
particular point of view than when they are equal
(Fathy and Shukry, 1956). Actually, the notion of
constant output exactly equal to the input mean is
not even practical due to the following:

(1) Input mean is not known in advance;

(2) To produce always a constant output equal
to the input population mean would theoretically
require an infinite storage capacity;

(3) Design based on the constant output equal
to the input population mean would need significant
part of storage capacity to be filled up at the start
of operation to eliminate the empty reservoir states,
with the amount of this initial storage difficult to
determine beforehand. The flow regulation must
necessarily deviate from an ideal program visualized
for this constant output equal to input population
mean; and

(4) A small reduction in the constant output
below the input population mean leads to a relatively
large reduction in the storage capacity needed. This
allows for a reduction in the constant output, to be
less than the input sample mean, because it serves
as a factor of safety (because of the errors in esti-
mated input mean) and as a way of securing a great
economy in cost with a little sacrifice in benefit.

With these considerations in mind, the writer has
decided to tackle this problem as a general case,
namely of an output being smaller than the input popu-
lation mean.

3-2 Definition of Difference Storage

As already mentioned in Section 1-3, short inter-
val flows, such as daily flows, are the inputs to the
reservoir in this study, represented mathematically
by

pin ® ¥ * (3-1)
The daily output from the reservoir is represented
mathematically by

Gy y o

Yp,r oF (3-2)

The periodic components of input and output may be
fitted by harmonic functions as given by Yevjevich
(1972a). Their general form is

m

v, = v+ 521 [Ajcosljt + Bysink 1)

(3-3)

V = the mean of the periodic parameter; };

where v, = any periodic parameter, e.g., u., O, 4.

= 273j/365

for annual periodicity of daily values; m = the number
of harmonics describing a periodic parameter; and p
and t as defined in Chapter I.

The net input into a reservoir is defined as the

difference series {x -q.}. :
P»T T
The stochastic part of input is o_ Ep < while
the stochastic part of output is assumed zero. Hence,

the stochastic part of net input into a reservoir is

O Ey,y Eiven by {2, = ¥e)» Itwarde noted that

the series o Ep . can be defined as input having

a periodic standard deviation and zero mean. It
could also be defined as the net input into a reser-
voir with periodic output being equal to the periodic
input mean.

The total storage capacity needed for a sample
size is defined as the expected maximum deficit of
the net input. The distribution of this maximum
deficit is estimated by generating a number m of
net input series for a given sample of size n, and
finding the frequency distribution of the maximum
deficit. The total storage is then estimated by
the mean maximum deficit of this frequency distribu-
tion. The maximum deficit for each sample is obtained
by a sequent-peak algorithm.

The stochastic stonrage capacity is defined
analogously as the expected maximum deficit of the
stochastic net input. It is estimated by generating
a number m of sample size n of stochastic net
input and then finding the mean maximum deficit.

The difference storage is defined in this paper
as the value of storage obtained by subtracting the
expected maximum deficit of the stochastic net inmput
from the expected maximum deficit of the net input,
or

54(n) = S (n) - S (n), (3-4)

where

t
s,(m) = E[D] ,

s
s (m) = E[D]] ,

with Sd(n] = the difference storage, St{n] = the

total storage, and Ss{n] = the stochastic storage,

the total storage is estimated by the mean of maximum
t

deficit D~ of the net input fu, -a, + GTSP;T}

series, while the stochastic storage is estimated by

the mean of maximum deficit D: of the stochastic

net input {aTs } series only. The difference

PaT
between these two is the estimate of difference
storage. It is in fact the storage required due

to an additional term (ut - q.) in the net input

series. Since this term is deterministic, the
difference storage required may be approximately
constant for large values of n.



Since the total storage of Eq. (3-4) is a func-
tion of the periodicity of input and output, the
difference storage is a function of harmonics of means
of water supply and water demand, or of their fre-
quencies, amplitudes, and phases.

3-3 Aim of this Chapter

The aim in this chapter is to investigate the
hehaviour of difference storage for different values
of n with the help of computer simulation of a
periodic-stochastic input and of any deterministically
changing output. It will be shown from computer re-
sults that asymptotically the value of difference
storage is approximately constant within the sampling
variation, at least for a sufficiently high level of
regulation. This can be estimated by generating a
short length of daily flow series. This value of the
difference storage, approximately constant, called as
difference storage capacify, can in turn be used for
the design of a reservoir with a long economic life.

3-4 Model Used for Input Process

To study the behavior of difference storage for
various values of n, the periodic-stochastic input
or daily discharge series for selected series lengths
are generated by using the same tape of 250,000
standard normal random numbers rather than generating
new random numbers for different runs, resulting in
some common random numbers in some series. With the
assumed given output, the difference storage is then
estimated for various values of n after the values
of total and stochastic storages have been found.

The periodic-stochastic process is generated
(Yevjevich, 1966) by using

SR AL ALV B
with ¥y and sy = the mean and standard deviation
of fxp,r " ut}/aT. Ep,r = the dependent or indepen-

dent stationary stochastic component with mean zero
and standard deviation unity. Quimpo (1967) has
inferred that the stochastic component of daily flows
approximately follows the second-order Markov model.

Ep g is, therefore, represented as
pot T %1 T A2 TS (B°6)
where
2 az a

s = [1- ﬂi - ag - “TT—%'Eij']l/Z s (3-7)

o1 ® the independent standard random numbers,
assumed as normal in this investigation, where the
interest is only for asymptotic results as outlined
in Chapter IV. TIts distribution is not important
because for large values of n, the partial sums are
asymptotically normally distributed.

To generate the daily flows by Eq. (3-5) the
following values of vy, sy, and W, are assumed:

e 0.3193, and

n :
543.498 + §=1{Amjcos Ajt + ij51n ler (3-8)

y = 0.034, 5!‘r = 1,174, a = 0.5418, a

p

T

(=]
n

n
288,370 + L (A . : i
j=1( SJcos AJT + sts1n Ajr)
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The values of Ap, By, Ag, and B, are given for

various harmonics in Table 3-1.

Table 3-1. Fourier Coefficients of Periodic Mean and
Periodic Standard Deviation used for
Generating the Input Process

Fourier Coefficients

Fourier Coefficients of Periodic Stamdard

of Periodic Mean

Deviation
Harmonic Am Bm As Bs_
1 - 200.30 - 112.40 - 123.30 - 85.60
2 145.40 185.00 141.60 105.70
5 - 85.50 - 79,80 - 66.40 - 46.20
4 58.00 65.60 75.70 31.70
5 - 35.80 - 72.50 - 47.20 - 43.20

3-5 Characteristics of Total Storage Capacity

The properties of the total storage affecting the
computation of difference storage are first discussed.

Rate of Increase of Total Storage Capacity of
Periodic-Stochastic Process in Case of Different
Percentages of Development. The rate of increase of
total storage capacity with n depends on the desired
percentage of development. The study has been carried
out on generated samples of daily flows by Eq. (3-5).
The expected maximum deficits for 100% and 90% develop-
ments are tabulated in Table 3-2 and plotted in Figure
3-1, as an illustration of the effects of the level of
development. It is clear that the rate of change of
total storage increases rapidly as the level of develop-
ment approaches the input population mean. This is
also an intuitive conclusion, because for zero output
no reservoir is required, with the maximum deficit
zero for every n. It may be pointed out that, first
the two curves in Fig. 3-1 do not seem to have the
same asymptotes, and second, the confidence bands of
the two curves widen with an increase of n, because of
the reduction in the number of generated series from
the same 250,000 random standard normal numbers.

Table 3-2. Total Storage Capacity for Different Con-
stant Outputs for Periodic-Stochastic

Process
Type of Output
Sample n in 100% 90%
No. days Development Development
1 365 27637.901 20113.064
2 730 43237.297 29076.202
3 1095 52228.577 34332.548
4 1460 58408.543 37432.759
5 1600 63472.517 39742.526
6 1825 64837.067 40867.569
7 2190 68806.653 42919.674
8 2920 74232.883 45310.545
9 3200 80364.674 47280.794
10 3650 81963.895 47151.410

i



Sy

90,000

80,000

70,000+

60,000

50,000

40,000

30,000

20,000

C.L. = Confidence Limit

10,000+

. n, days

7000
| years

20

Total Storage Capacity Versus Development
Level for Periodic-Stochastic Processes:
(1) 100% Development, (2) 90% Development.

1 1 1 1 1
1000 5000

15

—

Fig. 3-1.

Effect of Phase Difference in Input and Output on

Rate of Increase of Total Storage Capacity of Periodic-
Stochastic Processes. Input is generated by Eq. (3-5)

and output is assumed as

qr = 515.6 + Alcos 111 + Azcos 121 + Blsxn lzt

+ stin 121 5 (3-9)

= 21§/365. Two cases are studied. The first
= -344.00, Bl = +147.80, Az = 79.00,
= -46.10, so that the phase difference of the

with lj
case is: Al

and B2

first harmonic in input and output is approximately
The output is shown in Fig. 3-2.

53°,

S T R S W OO O e T <25 o B
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Fig. 3-2. Values of Periodic Output Within the Year
with %" 515.6, and (¢1 - 61) = 53*
approx.
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The second case is: Al 5™ 79.00,
51 = 324.24, and Bz = -46.10, so that the phase

difference of first harmonics of input and output is
90°, while the amplitudes of harmonics are unchanged.

= -187.21, A

Total storage found for different n values for
these two cases of differences in phases, are plotted
in Fig. 3-3. Though the curves (1) and (2) are almost
parallel, the rate of increase of total storage
capacity as function of n does not depend on phase
differences of input and output harmonics, so long
as the mean output is the same.
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80,000} 0
n, days
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4500 5000 5500 6000
Fig. 3-3. Total Storage Capacity Versus Phase

pDifference for Periodic-Stochastic Pro-
cesses: (1) Phase Difference ¢1 - 61 =

53°; and (2) Phase Difference ¢, - &, =
90° 1 1

Effect of Phase Difference on the Total Storage
Capacity. Figure 3-3 shows that for the same mean
output the expected maximum deficit or the total
storage capacity increases as the phase difference
increases from 53° to 90°.

3-6 Characteristics of Stochastic Storage Capacity

Effect of Output on Stochastic Storage Capacity.
As discussed in Section 3-2, the stochastic net input
to a reservoir is defined by (x = uT}. It remains

the same as long as the output is deterministic.

Hence, the stochastic storage determined as the expect-
ed maximum deficit of this series remains the same for
all deterministic outputs.

3-7 Characteristics of Difference Storage Capacity

Asymptotic Value of Difference Storage as a
Constant. It is reasonable to conjecture that since
the difference storage is due to an extra determinis-
tic term (u_ - q.) in the net input series over and

above the stochastic net input series, and as such is
not a result of any stochasticity, its value should
at least be asymptotically constant. It may not be a
constant for small values of n because the differ-
ence storage is defined by Eq. (3-4), wherein both
the total and the stochastic storages are functions
of n. Hence the difference storage would become
constant only when the rate of increase of the total
storage and the stochastic storage with n is the
same, Since the rate of increase of the total storage
depends on the level of development, as shown in




Section 3-5, while the rate of increase of the sto-
chastic storage is independent of any deterministic
output, as shown in Section 3-6, the asymptotic be-
havior of difference storage is studied separately
for the two cases of the level of development.

Case I. Full Development. In this case both the
total and the stochastic storages correspond to the
same 100% development with the difference that the
former has some phase difference and amplitude ratio,
while the latter has a zero phase difference with an
amplitude ratio of one. Assuming an amplitude ratio
of one, both for the total and the stochastic storages,
the difference storage, defined as the difference be-
tween total and stochastic storage, would just be the
storage required due to an effect of phase difference
in the net input series.

The effect of changing the phase difference on the

value of total storage was studied for the general

case of partial development. The results so obtained
from computer runs are already plotted in Fig. 3-3.

It is found that, for the same percentage of develop-
ment or for the same annual mean output, the rate of
increase of the total storage with n is independent
of the phase difference between the periodic means of
input and output.

This is quite intuitive because the change in
phase difference is responsible only for the fluctua-
tions of the net input process within the year. Hence
it must result in the change of value of the total
storage. So far as the stochasticity of the net input
is concerned, it is not affected in any way. There-
fore the rate of increase of the total storage with
n should not be altered by the change in the phase
difference for the same level of development.

Thus, taking the two special cases of 100%
development or the full regulation of Fig. 3-3,
curve (1), may correspond to an amplitude ratio of
one and a phase difference of zero, i.e., Q. is

equal to b at all times within the year, while

curve (2) may correspond to the full regulation with
an amplitude ratio of one and a phase difference of
more than zero. According to the definitions, curve
(2) will give the total storage for this particular
case, while curve (1) will give the stochastic storage.
It is then clear from Fig. 3-3 that the difference
between curves (2) and (1), being the value of the
difference storage, is a constant within the sampling
variations for this range of n values.

This computer result can be supported by con-
sidering the special cases of the general result
given by Troutman (1976). He considered a net input
process as

HP'T =8 ? U1ap’1 (3-10)

W

periodic mean and periodic standard deviation of the
net input process. Comparing this with the net input
process of this study, it is found that

where . = net input and 8, and o are the

»

g. =¥, ~q .

T T T

(3-11)

He gave the limiting distribution of maximum deficit
for the case of full regulation when g.* 0 as

Li = -
mm ey st ca) =B L, Ge12)

12

where Y is defined by his Eq. (4-47). From Eq.
(3-12) the expectation of maximum deficit can be
written as

t = 1
ER) = ¢y 5,02 4 om?) (3-13)

where € is constant and the second term o(nl/2

)»
if constant, also satisfies Eq. (3-12) supporting the
evidence of constant value obtained from Fig. 3-3.

Let us now consider two special cases of the
general result of Eq. (3-12). The first case is for
an amplitude of one and a phase difference of more
than zero. In this case Eq. (3-13) can be modified
as per definition of total storage as

(3-14)

where d1 is a constant. The second case is for an

amplitude of one and a phase difference of zero. In
this case Eq. (3-13) can be modified as per definition
of stochastic storage as

(3-15)

where d2 is also a constant., Since both total and

stochastic storages have asymptotically similar func-
tions of ¥n in Eq. (3-14) and (3-15), their difference,
defined as difference storage, can be asymptotically
constant.

To test the validity of this asymptotically con-
stant value of difference storage, the daily flows are
simulated by Eq. (3-5), and an output corresponding
to 100% development is considered in order to compute
the total storage and the stochastic storage of a
periodic-stochastic process., The difference storage
is then obtained as the difference of these two
storage capacities. The results so obtained are
given in Table 3-3 and plotted in Fig. 3-4.

From Fig. 3-4 it is seen that the difference
storage first increases with an increase of n and
then stabilizes to an approximately constant value of
16270, which is obtained by drawing an average line
on Fig. 3-4 after the difference storage starts
oscillating about this line. The increase with n
occurs because the rate of increase of total storage
for 100% development is higher than the rate of in-
crease of stochastic storage until the two rates of
increase with n become the same, to give a constant
value of difference storage within sampling error
limits, thereby supporting the conclusion arrived
above regarding the asymptotically constant value
of difference storage.

If the hypothesis of expressing S¢ and Ss by

Eqs. (3-14) and (3-15) is true, then the variances of
maximum deficit of net input and that of stochastic
net input must be the same for each n in the region
where the difference storage gets stabilized to a

nearly constant value. Hence, the variances of D:
and D: are calculated from the computer results
and given in Table 3-4.

It will be seen from Table 3-4 that the variances

of maximum deficits of net input and stochastic net
input are nearly the same. Moreover, since the vari-



Table 3-3. Difference Storage for Various Values of n for Constant Outputs
Corresponding to 100% and 90% Developments
100% Regulation 9n% Regulation
n Total Stochastic Difference Total Stochastic Difference
in days  Storage Storage Storage Storage Storage Storage
365 27637.901 20894, 261 6745.640 20113.064 - 781.197
730 43237.297 31775.757 11461.540 29076.202 = 2699.555
1085 52228.577 38432.445 13796.132 34332.548 - 4099 .848
1400 58402.543 43293, 396 15115.147 37432.759 - 5He0.637
1600 63472.517 46404 .470 17068.047 39742.526 - 6661.945
1825 64837.067 48601.479 16235.588 40867.569 Same as for - 7733.4910
2190 68806.653 54253.030 14553.623 42919.674 100% - 11333.558
2920 74232.883 57103, 457 17129.426 45510.545 Development - 11792.912
3200 80364.674 64692.777 15671.897 47280.794 - 17411.983
3650 81963.895 65005.850 16958.045 47151.410 - 17854.440
4000 50356.722 68832.532 - 18475.810
4200 50692.421 68796.583 - 18104.162
4500 50834.850 73403, 330 - 22568.480
4700 48742.257 72133.919 - 23391.683
5000 50947.593 13627.779 - 22680.180
5500 51960.668 80884.754 - 28924.080
6000 53914.483 77517.978 - 23603.490
6500 54492, 398 82766.646 - 28274.240
7000 55011.934 79719.656 - 24707.720
se Case II. Partial Development. It has already
gml _______ ~TLesw been concluded that in case of full regulation the
e e changes in phases etc., of periodic means of net
/\\J/A\ N - input result in the same rate of increase of total
///’ N and stochastic storages, as these changes do not alter
A0y R Ve the stochasticity of the net input process. Since
| e, vy in the case of partial development with q_ less
12,000 than ;}, the stochasticity of the net input remains
Is.270 the same, the expectation is that asymtotically the
Stabilizing # /600 total and stochastic storages may still grow with
%200 e Tl ® Tolarance Limit the same function of vn . If this is true, then the
asymptotic value of the difference storage would be a
o, days constant reflecting the properties of the periodic
$0005 %0 1000 T R R Ty T component of the net input process.
yeors
o - % L * s s ¥ 8 9 & Troutman (1976) studied the problem of partial
Fig. 3-4. Difference Storage Versus n for Constant regulation for the case of i.i.d net input random
Output Corresponding to 100% Development. variables, Xi’ under the assumption that there
exists a constant p # 0 such that
Table 3-4, Variance of Maximum Deficits of Net F[e-Pxil i
Input and Stochastic Net Input for =
Different Values of n for Constant S5
Output Corresponding to 100% Development
3 -pX,
n in days Var[DE] Var[D;] E[Xie P12 -q» -=
108 10® i
& & where X, is non-lattice. For example, this assump-
1825 4.05 4,56 tion is satisfied if Xi is normally distributed with
2920 6.51 6.32 the mean u and the variance %, In this case
3650 7.91 7.94 p = 2u/a° and q = y.

ance of DE grows as a function of n, being almost

twice for n = 3650 than that of n = 1825 in Table
3-4, it further supports the hypothesis of expressing
St and SS by Eqs. (3-14) and (3-15), which in turn

supports the conclusion of asymptotically constant
value of difference storage.
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These assumptions were made to bring the problem
into the framework of random walk theory. Using the
random walk approach he found that the expected maxi-
mum deficit for the net input process of i.i.d
variables, Xi, grows asymptotically as a function

of £nn rather than the ¥n corresponding to the
case of full regulation., Since periodicity did not
change the asymptotic behavior for full regulation it
may not change the asymptotic behavior here. Hence,



it is not clear whether or not the expected maximum
deficit of nonstationary independent process should

grow as a function of £n n.

To answer this question the daily flow series is
simulated by Eq. (3-5) with the stationary stochastic
component S5t as an independent standard normal

,
random variable, and a constant output corresponding
to 90% development is considered to compute the total
storage and the stochastic storage of a periodic-
stochastic process. The difference storage is then
obtained as the difference of these two storage capa-
cities,

$.S,
24,000}
22,000}

20,000

18,000

16,000+

* Computed from
Simulated Samples

14 000F

12,000}
10,000+
8,000} /\N_—”_‘_-

6,000

4000}

n,doys

# 2000 4000 5060

5 0 15

8000 015
20

Total Storage and Stochastic Storage for
Periodic-Stochastic Independent Process
with Constant Output Corresponding to 90%
Development: (1) Total Storage; and (2)
Stochastic Storage.

Fig. 3-5.

From Fig, 3-5 it is found that curves (1) and (2)

corresponding to the total storage for partial develop-

ment and the stochastic storage (defined as a case of
full development with q, = #./), are almost similar

in shape, indicating thereby that total storage for
partial development may also grow with the same
function of n
values of n (the values of n used in Fig. 3-5 are
of the order of 15-23 years). Since stochastic stor-
age grows as a function of /n so the total storage
may also grow as a function of vn, so that the
asymptotic rate of increase of total storage is
independent of the level of development, which may be
due to no alteration in the stochasticity of the net
input process by changing the level of development.

To further investigate the growth function of
total storage for partial development, two regression
lines are fitted to curve (1) of the total storage:

The results so obtained are given in Fig. 3-5.

as that of stochastic storage for large
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both as a function of vn; and as a function of £n n.
The two regression lines are

5, = 55.3%

. /n + 18047.25

(3-16)
and

St = 1981.72 &n n + 5142,14 (3-17)

The two lines explain almost the same percentage of
variance, the former explaining 91% while the latter
93%. The two regression lines.are plotted in Fig.
3-6 as curves (2) and (3). It is found that the two
curves are almost the same in the region of study.
The regression line fitted for the stochastic storage
is

S, = 36.55 /n + 5025.53 (3-18)

It explains 80% of the variance and is shown as
curve (1) in Fig. 3-6.

24,000 5t %

22,000
20,000
18,0004

16,0004
* Computed from

14 00O Simulated Somples

12,000
10,000
8,000 . s
6,000

4000

n,days
2 i L 1 i ' 1 1 i

2000 4000 8000 10,000
L 1 A A L '“rl

5 o] 25

Regression Lines of Total Storage and
Stochastic Storage for Periodic-Stochastic
Independent Process with Constant Output
Corresponding to 90% Development: (1)
Regression Line of Stochastic Storage;

(2) Regression Line with £n n; and (3)
Regression Line with ¥n Function of Total
Storage.

Fig. 3-6.

The difference storage, obtained as the difference
between total and stochastic storage from Fig. 3-6, is
plotted in Fig., 3-7.
difference storage capacity is approximately constant
and is equal to 14,400 within the errors of sampling
variations.

The above result may be because of the repeated
use of the same random numbers for different values of
n. Two values of difference storage corresponding to
n = 2555 and n = 8760 were obtained by generating
different random numbers directly by the computer,

It is found from Fig. 3-7 that the
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Even then the values of difference storage are of

the order of 14,400 within sampling variations. How-
ever, this stabilization of difference storage, shown
by curve (2) in Fig. 3-7, to an approximately constant
value could result from the fact that curves (2) and
(3) in Fig. 3~6 are almost the same in the region of
study.

T.L. » Tolerance Limit

204000r 5, T.L.,95%
s [
®
100008 ljwo
~

-i000}
=-25,000
e TR TR
-20000+
v/\vz
-30,000
e e e T L 95 %

n,days

m]llllllliw;-,m

Fig. 3-7. Difference Storage Versus n for Constant
Output Corresponding to 90% Development:
(1) Difference Storage for Dependent Pro-
cess; and (2) Difference Storage for
Independent Process.

It is expected that unless the total storage grows
with the same function of vn as the stochastic stor-

age, the variances of D: and D; would not be the

same function of n in the region where the differ-
ence storage is found to be approximately constant in

Fig. 3-7. The variances of Di and Di are, there-

fore, computed from the computer results and given
in Table 3-5. The computed variances do not seem to
grow as the theory dictates, which may be because of
their not being very precise estimates.

Table 3-5, Variances of Maximum Deficits of Net
Input and Stochastic Net Input for
Different Values of n for Periodic-
Stochastic Independent Input and Constant
Output Corresponding to 90% Development

n in days Var[D:] Var[Di]
x10° x10°
4500 3.78 3.41
5500 3.55 3.73
6500 3.18 2.91
7665 2.90 3.02
8760 3.93 3.33

It is found from Table 3-5 that the variances
of maximum deficits of net input and stochastic net
input are nearly the same for large values of n, for
which the difference storage is approximately constant,
thereby supporting the contention that asymplofically
the total storage may grow as a function of vn in
the case of partial development too. This may be so,
because the assumptions made by Troutman (1976) to
bring the problem in the frame work of random walk
approach are true for his case of stationary indepen-
dent net input process. But the assumptions are
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certainly not true for the nonstationary independent
process being studied herein, because in this case
the reservoir level does not follow a random walk but
in turn either goes on increasing during the flood
period or goes on falling during the recession of the
flood. However, since the computer results cannot
prove or disprove a theory, it is felt that further
theoretical work must be undertaken to determine
whether the total storage or expected maximum deficit
for the periodic-stochastic input and the determinis-
tic output grows as a function of /n or £n n, or some
other function for the case of partial development.

The computer results of this analysis, however,
lead to the conclusion that the difference storage
becomes approximately constant within the region of
study, corresponding to large values of n at least
in case of a high level of development, namely of the
order of 90% or so.

Effect of Dependence in Stochastic Variable of
Input Process. The daily flows are simulated by
Eq. (3-5), and an output corresponding to 90% develop-
ment is considered to compute the total storage and
stochastic storage of periodic-stochastic process.
The results so obtained are given in Table 3-3 and
plotted in Fig. 3-7. It can be inferred from Table
3-3 and Fig. 3-5 that the dependence in stochastic
variable increases both the total and the stochastic
storage, but the increase in the stochastic storage
is greater than in the total storage. Hence, the
effect of introducing the dependence in the stochastic
variable of the input process is to reduce the
asymptotic value of the difference storage. In this
particular case this value or the difference storage
capacity gets reduced from 14,400 to (-) 25000.

Possibility of Negative Value of Difference
Storage Capacity. It can be noted from Table 3-3
that for 90% development the difference storage is
negative. It is justified because of the fact that
the total storage needed for the reservoir depends
on the output, while the stochastic storage is
independent of output as per Section 3-6. Hence, as
the output is reduced the total storage is reduced,
while the stochastic storage remains the same. Thus
a limit can be conceived when the output is too low
such that the total storage required is less than the
stochastic storage. The difference storage, being the
difference between these two, would then be negative.

Intuitively it can also be conceived. As already
explained in Section 3-2, the difference storage is
the storage required because of the additional term
EpT - qT) in the net input series over and above the

stochastic net input series. If q_ is assumed to
be equal to or smaller than the least value of Mo

during the year, then there will be no requirement of
storage due to (uT - qT). Rather an extra supply of

. would reduce the storage requirement of the sto-

chastic component of the input process, thereby
explaining the possibility of negative difference
storage. This explains the feasibility of conceiving
the negative difference storage capacity.

Percentage of Development. It is obvious that a
lower percentage of development would require a lower
capacity of the reservoir. But since the stochastic
storage is independent of the percentage of develop-
ment, the reduction in the required storage capacity
should be affected by the corresponding reduction in
the value of the difference storage. Referring to




Figs. 3-4 and 3-7, it may be noticed that there is a
drastic reduction in the value of the approximately
constant difference storage from 16,270 to (-) 25000,
as the percentage of development is reduced from 100%
to 90%, a fact recognized by Hurst (1951), who observed
that a small reduction in the guaranteed output from
the maximum value (the mean) makes a great proportion-
al reduction in the storage required to maintain it.

Effect of Phase Difference of Input and Output.,
The phase lags between the input and output harmonics
have a bearing on the total storage and consequently
on the value of the difference storage, as the sto-
chastic storage is independent of the phases of
periodic components of input and output. To save
computer time only two harmonics in the periodic mean
of input are taken in Eq. (3-8) instead of five. The
phase lag of the first harmonic of input and output
was varied, and the values of difference storage cal-
culated are given in Table 3-6 and plotted in Fig.
3-8. It is clear from Fig. 3-8 that the difference
storage is a function of the phase difference between
input and output.

Effect of Amplitude of Output. The study has
been conducted similar to above except that the
amplitude of output is varied keeping the same phase
difference between the first harmonic in periodic
means of input and output. The results are given in
Table 3-6. It shows that even for the same phase
difference between input and output the difference
storage increases directly with the increase of the
amplitude ratio.

By studying various factors affecting the
difference storage, it is concluded that asymploti-
calfy its function is

Sg = flus 905 Py ¥ys pa Tyl (3-19)

where Sd = the asymptotic value of difference stor-
= the

phase difference of the i-th harmonic of input and out-
put processes, and T, = the ratio of amplitudes of

age, [ = the percentage of development, Vi

output and input harmonics.

3-8 Stabilization Region for Difference Storage
Capacity

So far it has been found from computer results
that for large values of n the difference storage
is approximately constant. However, the question
arises, after what values of n the difference
storage would stabilize to an approximately constant
value so that the same may be adopted in the design
of reservoir with a long economic life beyond this
value of n. Figs. 3-4 and 3-7 show that the
asymptotic value of difference storage can be found
by simulation. But there is always a transition re-
gion wherein the difference storage either increases
or decreases continuously till it attains an approxi-
mately constant value. This transition region is
called here as the stabilization region. In Fig. 3-4
this region is for n < 1600 while in Fig. 3-7 it is
for n < 5000. The length of stabilization region
thus determines the minimum length of a series to be
simulated in using this method of determining the
asymptotic value of difference storage. Hence, the
longer the stabilization region, the more is the
effort needed in finding this value.

Jose D. Salas-La Cruz (1972) analyzed the above
problem with a different definition of difference
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storage. His analogous term is deterministic storage,
which he defined as the difference of the expected
range of net input series and the expected range of
stochastic net input series. Though his definition
of deterministic storage is different from the
definition used in this study, there is an analogy
between his results with those obtained in this study.
He found through generation that in case of monthly
periodicity of mean and standard deviation, there is a
transition region where the influence of phases of

v and g, was significant, namely the region for

n < 50. Beyond this value the deterministic storage
becomes approximately constant.

It is the conviction of this writer that the
transition region, or the stabilization region as
called in this study, is not only due to the influence
of phases of He and o_, but it also depends on the

level of development. In fact, it mainly depends on
the rate of increase of total storage vis-a-vis the
rate of increase of the stochastic storage with n.
As explained in Section 3-7, the difference storage
would become constant only when the total and the
stochastic storages have the same rate of increase
with n. Since the rate of increase of total storage
changes with the percentage of development, being
higher with higher development and lower with lower
development, the stabilization region would be longer
for partial regulation than for full regulation.
This is shown heuristically below.

Derivation of Stabilization Region. The heuristic
condition for the stabilization of difference storage
to an approximately constant value can be written as

ds dSS

e —
dn dn

(3-20)

Consider two different percentages of development to
find out the difference in the lengths of stabiliza-
tion region.

Case I 100% development

Let st{p) and Sd[pj denote the total and

the difference storages for p % development and S5
is the stochastic storage such that

S, (100) = a n© o+ §4(100) (3-21)

(3-22)

where a and b are proportionality constants and
¢ and d are the powers with which the total and
the stochastic storages vary with n as approximations

to the true laws of variations of St and Ss with
n. Then for the region of =& where 54 is approxi-
mately constant
ds_ (1

i = a¢ptd

dn C (3-23)

ds

= = pandl, (3-24)

Now the difference storage would attain approximately
constant value only when the rate of increase of total
storage and stochastic storage with n is the same.
Let this point correspond to n = n(100). Therefore,
Eqs.h(3-23) and (3-24) should be equal at n = n(100),
so that



Table 3-6. Difference Storage for Various Phase Differences

Ratio of
Amplitudes 1.0- 2.66 0.0
Phase
Difference Total Stochastic Difference Total Stochastic Difference Total Stochastic Difference
(6-8) Storage Storage Storage Storage Storage Storage Storage Storage Storage
0* 34949.502 34949.502 0.000 42460.495 34949 .502 7510.994 44356.935  34949.502 9407.433
45° 44594.600 " 9645.099 - , a " " "
90° 55962.799 " 21013.297  69196.871  34949.502  34247.369 " " "
180° 67028.761 L 32079.259 82872.141 L 47922.639 " L. L
270° 57903.536 L 22954.034 71724.346 " 36774.844 L L] L
315° 44584.040 L 9634.547 54391.172 " 19441.670 " " "
360 34949.502 " 0.000 42460,485 L 7510.994 " " "
Note: (1) These values have been found for n = 1460 days;
(2) Periodic mean of input u, = 543.498 - 200,30 cos llt - 112.40 sin llf + 145.40 cos lzt + 185.00 sin 121;
(3) Periodic output, q, = 543,498 - Al cos Alr - 31 sin Al-r ; and
(4) Al and Bl are varied to get different phase differences for the given amplitude ratio.
Case 11 p%__development
S S
Now S¢(P) = h n® + 5,00 (3-27)
$3000r while 5S is still given by Eq. (3-22), because it
r:2.66 does not depend on the output. Therefore,
40,0001 ’
s 12 3-28
dn «h¢n®? (528
35.000*
Assuming Eqs. (3-24) and (3-28) to be equal at n =
n(p), then
30,000
c-1 d-1
hecn)]” " =bd [n(p] (3-29)
25,000 o
(c-d) £n [n(p)] =&n b+ £&nd -fnh - nc, (3-30)
20,0001
then on dividing Eq. (3-26) by Eq. (3-30)
4 £n_[n(100 _ tnb+tnd-fna-£fnc ;4
(B 000 Zﬁ|n(pii - Inb+Ind-Inh-Inec ( )
Now for the stabilization region of partial regulation
10,000 to be longer than the full regulation, n(p) should
_\ be greater than n(100) i.e., the denominator in Eq.
(3-31) should be more than its numerator. Therefore,
5000¢ imb+Mmd-&nh-hc>nb+fnd-4fna-4dnc
or
c 'l 1 1 1 | B 1 L
0 90° 180° 270° 360° -fnh > - fna
Phase Diffe:r.-,-nce.#.vl
or
Fig. 3-8. Difference Storage Versus Phase Difrerence TE
Yy Corresponding to n = 1460 for (3-32)
Different Amplitude Ratios, . This means the rate of increase of total storage with
n is more for 100% development than for p% develop-
ment, when p is less than 100% for partial regula-
tion. This holds always true under the above assump-
c-1 d-1 tions as per Fig. 3-1. Hence the initial assumption
a c [n(100)]7" = b d [n(100)] (=23) of n(100) < n(p) 1is also true.
or It is thus concluded that the length of stabili-

zation region is inversely proportional to the level

(c-d) £n[n(100))=tn b + fnd - fna - fac . (3-26) & yoveqopment.
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Effect of Dependence of Stochastic Component of
Input on Stabilization Region. So far only the effect
of changing the rate of increase of total storage with
n for different percentages of regulation has been
considered on the length of stabilization region,
However, since the difference storage depends on the
stochastic storage too, so the rate of increase of
stochastic storage with n should also be considered
for various conditions.

The rate of increase of stochastic storage can be
varied by changing the dependence structure of sto-
chastic variable = of the input process. The

Ll
difference storage, obtained for the two cases of

dependent and independent structure of ¢ . is
given in Fig. 3-7, It is found from Table 3-3
and Fig. 3-5 that by removing the dependence from the

stationary stochastic component Ep 5 of the input
Ll

process, the rate of increase of the stochastic sto-
rage becomes reduced much more than the reduction
affected in total storage. MHence for 90% regulation,
where the rate of increase of stochastic storage is
greater than the rate of increase of total storage for
a dependent process, the length of stabilization re-
gion should reduce by removing the dependence of the
stochastic component of the input process. This is
clear in Fig. 3-7, where the difference storage has
stabilized at n = 3650 against n = 5000 for the
dependent process.

3-9 Estimation of Difference Storage Capacity

Since difference storage depends on many factors,
no general curves can be plotted. However, the good
point is that it becomes stable after a small value of
n, thereby reducing the length n of daily flow data
in order to estimate the total and stochastic storage
to compute the difference storage. For instance,
for a reservoir with economic life of 100 years,
the difference storage capacity could be estimated
from a daily flow subseries length of 4 years for
100% development, and 15 years for the 90% development.
The following are the two ways by which the value of
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difference storage capacity can be estimated in
practice.

(1) By using the actual daily flow series; and
(2) By simulating the daily flow series.

The method of using the actual data would be
applicable only at those sites where the record
available is long, so as to give reasonably accurate
estimates of the total and stochastic storages.

The method of using the simulated daily flows
is applicable for all sites with short record of data.
The main advantage is that the procedure does not
require the simulation of daily flow series length
equal to the economic life of the reservoir. The
following are the steps to be followed in estimating
the difference storage capacity by this method:

(a) Find the significant harmonics of the
periodic mean and periodic standard deviation;

(b) _Remove periodicity from the series by
s

) (¢) Standardize the residual series;

(d) Fit a Markov model to the series obtained,
by estimating the autoregressive coefficients from
the correlation coefficients of the standardized
series;

(e) Simulate the daily flows by Eq. (3-5);

(f) Estimate the total storage by finding the
mean maximum deficit of the net input series for a
given output;

(g) Estimate the stochastic storage by finding
the mean maximum deficit of stochastic net input
series;

(h) Difference storage represents the difference
of the total and stochastic storages; and

(i) Repeat the above procedure for different.
values of n, till the value of difference storage
becomes approximately constant. This constant value
is the difference storage capacity, to be adopted in
the design of reservoir with long economic life.



Chapter 4
STOCHASTIC STORAGE

4-1 Definition of Stochastic Storage

Let xp be the daily discharge at day 1t of

the year with the earlier given definition of p and
t. It can be represented mathematically by

x =\

P,T T (4=1)

+ 0. €
TP,T

In Eq. (4-1), e is considered as the deterministic

input and utep ¥

output, its deterministic portion has already been
dealt with in Chapter III; however, its stochastic
component if any must be considered. Since output
was assumed to be deterministic in this study,

as the stochastic input. As regards

Y
PsT
the stochastic output will be assumed zero, which is
equal to the expected value of the stochastic input
otep'r. Hence the stochastic storage could be defined
either on the concept of range or on maximum deficit.
However, it may be recalled from Chapter III that the
total storage has been defined on the concept of maxi-
mum deficit and hence the stochastic storage, if de-
fined on any other concept like the range or the ad-
justed range, would not stabilize the asymptotic value
of the difference storage to a constant. To exploit
this property of the difference storage in the design
of reservoirs, the stochastic storage must be defined
on the concept of maximum deficit, which turns out to
be more economical than design based on the concept of
range even for the case of full regulation. Hurst
(1951) states that if the output from a reservoir over
a period is kept steady at the mean, the range of the
progressive sums of departures from the mean is equiva-
lent to the storage required to keep this constant
output. However, it may be claimed that even in the
case of a full regulation (alternate expressions are
the regulation on the mean or the complete regulation
or 100% development) the storage required should be
defined on the concept of maximum deficit rather than
on the range.

Let consider a realization of the stochastic
process as per Fig. 4-1. If the range is accepted as
the criterion for design of storage capacities, then
the storage required is o i.e., the reservoir empty

at b and full at c. This means the operation should
start with an initial quantity of water in reservoir
equal to V and the future operation would start with
the quantity (V+Sn). Since dl < dn. there is no

point in assuming the reservoir full at ¢, when one
could easily meet the demand through this realization
by assuming the reservoir full at a and < and

spill the water between the time period of points ¢
and ¢.

1
The spill is equal to S such that S = Sn,

and hence the reservoir would start again with the

quantity V for the future operation. This assump-
tion of reservoir full at a and ¢ and empty at

b is the basis of maximum deficit analysis or the
sequent-peak method, which gives the required storage
capacity as dn instead of - In this particular

realization dn < Kos while considering any other

realization of this process as per Fig. 4-2, it can be
seen that dn = ln‘ Thus, it can be said that

P[Dn < Rn] =1 (4-2)

Fig. 4-1. Example Showing the Value of Maximum Deficit

Being Less than the Range.
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Fig. 4-2. Example Showing the Value of Maximum Deficit

Being Equal to the Range.

This proves that the design based on the maximum
deficit analysis would require the capacity of a res-
ervoir less or equal to that based on the analysis of
the range, and consequently is more economical to apply
in practice. Hence in spite of the stochastic output
being equal to the expected value of stochastic input,
thereby having a case of full regulation, the stochas-
tic storage is defined in this study as the expected
maximum deficit of the stochastic net input series.

Since the stochastic net input, arcp i is non-
E

stationary due to the presence in it of a periodic
parameter, o, the general approach to find the stochas-

tic storage would be to find the expected maximum

deficit of a stationary process 5,1’ if ep 5 is

L »
stationary of the second or third order, and then con-
vert the same to produce the stochastic storage for the
nonstationary process, cT:p e

4-2 Dependence Model of Stationary Stochastic Component
of Input

It has been shown by many investigators that the
variable ep . obtained by removing the periodicity

»
in the mean and the standard deviation is only approxi-
mately a second-order stationary dependent or indepen-
dent time series. General m-th order autoregressive
linear dependence models have been used by many



investigators (Yevjevich, 1964: Roesner and Yevjevich,
1966; and Quimpo, 1967) for determining the dependence
structure of annual, monthly, and daily precipitation
and runoff series. Since the daily flow is the input
to the reservoir in this study, the stationary sto-
chastic component of daily flow series is assumed to
follow a second-order Markov model, as an average case
between the use of the first-order model (currently
often used in practice), and the likely need for the
third and higher order models, namely

E

+ +.2MN i

25p,1-2 P, (4-3)

PsT = l:'l'zp,'r-.‘l.

and a as

where s 1is given by Eq. (3-7), with a, 2

the estimates of a, and a,.
The basic question in the model of Eq. (4-3) is

whether or not a8y and a, are periodic. Yevjevich

(1972) stated that the autoregressive coefficients oy

and a, are usually nonperiodic parameters for the

precipitation series and the series of river flows

which are mainly produced by rainfall. However, the

river flow series of mixed rainfall and snowmelt con-

tribution to runoff may usually have pericdic auto-

correlation coefficients, L and consequently per-
»

iodic autoregressive coefficients °j Therefore a

?
sensitivity analysis should first be carried out for
the expected maximum deficit of Eq. (4-3), by using
variation in autocorrelation coefficients as per Fig.
4-3, and then taking their average values to ascertain
the effects on the deficit. The autoregressive coef-
ficients are related to autocorrelation coefficients by

b, .4, -»p p ]
" o 1 1,7-2 P2,1-2 (4-4)
1,11 a - 2 )
P1,7-2
and
lo -0 o ]
4 & 2,1-2 1,71 "1,1-2 (4-5)
2,1-2 a - D2 )
1,7-2

with the p-values estimated by the r-values, and by
using the r-values in Eqs. (4-4) and (4-5), al 2y

and a are computed as the estimates of L |

2,1-2
and “2,1-2’ respectively.

Two different second-order autoregressive series
of model of Eq. (4-3) were generated, one with the
periodic autoregressive coefficients given by Eqs.
(4-4) and (4-5), and the other with the constant auto-
regressive coefficients. The expected values of the
maximum deficit obtained for the two cases are plotted
in Fig. 4-4.

From Fig. 4-4 it can be concluded that the mean of
maximum deficit is not affected substantially by the
fluctuation of autocorrelation coefficients, whether
taken periodic or constant. The study has not been
conducted with various shapes of variation of periodic
autocorrelation coefficients, because the same has been
carried out for the case of expected range hy Salas
(1972), and he too arrived at the same conclusion.

It is, however, interesting to see as to how the
assumption of constant autoregressive coefficients in
model of Eq. (4-3) compares with values obtained from
the actual data. The study is conducted on the Oconto

o8} f,r P e
0.6}
4 P

T 7T NNe
/ i \;3
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Fig. 4-3. Variation of Correlation Coefficients During

the Year: (1) Curves of Periodic Autocor-

relation Coefficients, D3 o ™ 0.40, s(pl T}
¥

= 0.23, p, . = 0.25, s(py’T) = 0.144;
Lot »

and (2) Curves of Constant Autocorrelation
Coefficients, Pl o = 0.40, and P 0.25.
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Fig. 4-4 Expected Maximum Deficit for Different
Values of n Corresponding to Periodic and
Constant Autocorrelation Coefficients.

River. The periodicity of its 40 year daily flow data
was removed in the mean and in the standard deviation
and the second-order Markov model was fitted to its
stochastic component. The details of the analysis are
given in Chapter V, in Tables 5-1 through 5-3.

The second-order stationary series for n = 730
with two estimated autoregressive coefficients are
simulated and the mean and standard deviation of maxi-
mum deficit found as E(Dn] = 108.41, and #Varinni =

56.58. With the help of the standardized distribution
of the maximum deficit given in Fig. 4-8, the value of
maximum deficit at 90% confidence level is Dn(SOl) =

E()+ 1.6[Var(p )1*/? = 108.41 + 1.6 x 56.58 = 198.94.

For the 40-year daily flows of the Oconto River
broken into 20 series, each with a 2-year length, the

periodicity of each subseries is removed by (xp &

GT]IGT with Er and &1 estimated from the whole
data. The maximum deficits of the twenty series so
obtained are given in Table 4-1, If the actual data
comes from the population of Eq. (4-3), with the

20



constant autoregressive coefficients, then the 90% of
the subseries of actual data should have the maximum
deficit less than the value of 198.94, obtained above.
From Table 4-1 it is found that only three values are
greater than 198.94 with the third value of 200.34
close to it. Hence it can be assumed that at 90%
confidence level the actual data comes of the popula-
tion of Eq. (4-3). It is then concluded that the
further study could be carried out only with the con-
stant autocorrelation coefficients, and consequently
autoregressive coefficients.

Table 4-1, Maximum Deficit of Different Series of
Length 730 Days of Stochastic Component of
Actual Data of Oconto River

Series No. Maximum Deficit
1 150.99
2 131.52
3 140.92
4 166.72
5 238.82
6 196.74
7 160.49
8 137.71
9 174.39

10 145.93
11 113.48
12 196.87
13 177.55
14 153.97
15 143.68
16 190.22
17 101.82
18 200.34
19 178.54
20 224.52

4-3 Determination of Stochastic Storage

Salas (1972) has found that the stochastic storage,
defined as the expected range of the stochastic net in-
put, is a function of mean and standard deviation of
L the dependence p of the stochastic component of

input and n. Therefore the stochastic storage can in
principal be expressed by

E(D,) * f[FT. s(@.), el (4-6)

where E} and s(o ) denote the mean and the standard
deviation of the periodic standard deviation, while p
denotes the dependence of the stationary stochastic

component cp = The dependence expressed by p may

be of any Markovian type model. A function fl[l,O,D),

similar to that of Eq. (4-6), may be defined with_the
expected maximum deficit of this process having e

1, s(u_{) =0 and p = 0, i.e., the expected maximum

deficit of an independent process with the standard
deviation of 1.

To obtain the stochastic storage of a nonstation-
ary process given by Eq. (4-6), the basic hypothesis

is to separate the effect of dependence in €p, 1 from
»
the effect of nonstationarity due to the periodic o_.

With this objective in mind, the expected maximum de-
ficit may be investigated for the following four types
of functions,

£, = £,(1,0,0) ,

21

£, = £5,(1,0,p) ,

£= £,05,, 50, 0] ,
and

£, = E4{E;, s(e.), o] (4-7)
where fl' fz, fs; and fd can be interpreted in rela-

tion to Eq. (4-6) similarly as the interpretation of
51{1,0,0) given above. Then the stochastic storage in

the form of the function f4 can be expressed mathema-

tically in accordance with the above hypothesis by
Edtg'l." 5(5.‘)1 D] = ‘JTIEZ(]',OIp} = 51(1,0,0)] *

+ fs[a;, s(a.), 0] (4-8)

It may be noted that the expression {fz{l,o,p) -
f1(1,0,0)] of Eq. (4-8) represents the increase in the
expected maximum deficit due to dependence in the

stationary stochastic component Ep,r’ with a standard
deviation equal to one, while fs[E}, s{aT), 0] repre-

sents the effect of nonstationarity by way of the ex-
pected maximum deficit of a nonstationary independent
process.

From Eq. (4-8) it is clear that if the values for
fz{l.O.o} and 53[6}'5(013’ 0] are known, then the

stochastic storage in the form of f4[5}, s(ar}, p] can

be estimated. The first step is to find the value of
fz{l,o,p}, which is the expected maximum deficit of a

stationary dependent process with mean zero and stan-
dard deviation unity for the case of full regulation.

Expected Maximum Deficit of Markov Models. Fran-
cisco L.S. Gomide (1975) dealt with the theoretical
analysis of maximum deficit for the independent pro-
cess, and gave the asymptotic expected maximum deficit
as

E(D) = 1.2533 no, (4-9)
and

Var(p ) = 0.2611 n (4-10)

He stated that the next step, after solving the case of
the independent process, was to extend the theory of
Markov chains to the case of seasonal and correlated
inputs. The extension to the case of seasonality in
input was merely mentioned, and the extension to the
correlated inputs was made only for the very simple
cases because of the limitation found by Lloyd, namely,
of a drastic increase in the size of matrices involved.
Thus for a dependent process, the expression for the
expected maximum deficit is not available in closed
form, even for the simple first-order model, and less
so for the higher-order Markov models, which the
stationary stochastic component of the daily flow
series may follow.

Thus, the only alternative left was to go through
the generation procedure. Before attempting any
generation, the first question to consider was whether
both cases are of interest, the finite n and the
asymptotic case. Whenever the design of a reservoir
capacity is made for within-the-year fluctuations, the
problems with either monthly, weekly or daily periodici-
ty in inputs and outputs must be considered. Even in



monthly periodicity in input, the value of n is 1200
for a 100-year reservoir economic 1life, for which the
asymptotic results should be well applicable. Since
this study is concerned with the design of a large
reservoir with daily flow data, the asymptotic results
are assumed well applicable.

Representing the m-th order Markov model by
(4-11)

the samples of Markov models of various orders are
generated by using Eq. (4-11), with the autoregressive
coefficients so chosen that they satisfy the conditions
of stationary processes, namely for second-order Markov
models

(al + 32} <1

(al - az) > -1
-1 < a, < 1 (4-12)

Assuming the 50-year economic life of reservoirs, the
value of n for daily flow series would be approxima-
tely 18,000. Hence the thirteen series are generated
for three different orders of Markov linear models, all
three having the same sum of the autoregressive coef-
ficients. The distribution of n, is assumed normal

t
(0,1). The distribution of n_ is in fact not impor-

t

tant as per Feller's result of asymptotic distribution
of the range being independent of the distribution of
the underlying process, because the partial sums of
independent random variables with finite variance are
asymptotically normally distributed. The results ob-
tained from generated samples are given in Tables 4-2
and 4-3.

It can be inferred from Tables 4-2 and 4-3, that
the sum rather than the individual values of autore-
gressive coefficients determine the distribution of the
maximum deficit and the range. The results for the
third-order model are given in Table 4-4. This latter
table also supports the conclusion.

The other interesting result is that the values of
the range and the maximum deficit, etc., for each series
generated with the same random numbers but with the two
different autoregressive schemes of the same sums of
autoregressive coefficients, are almost the same (refer
to Table 4-5).

Example of Application on the Tioga River. The
daily flow data of the Tioga River are taken to further
study the hypothesis that the | aj is a determining

factor and not its individual values. Harmonic analy-
sis is performed on the mean and standard deviation
of 365 daily values of the year, following the proce-
dure given by Yevjevich (1972a). The results are
presented in Tables 4-6 and 4-7. After removing the
periodicity in the daily flows, its stochastic compo-
nent is fitted by the second-order Markov model. The

Table 4-2. Percentile of Distribution of Maximum Deficit for Different Sums of the Autoregressive Coefficients.
Markov Model Used is 2, = az. , +a,z, , + n, and n = 18,000
[ )
0.5 ' 0.7 : 0.9
i | :
Percentile Percentile Percentile
! o Di °§b i
5.No. a a Distribution a a Distribution a a, stribution
3 4 of Maximum A . of Maximum i of Maximum
Deficit Deficit Deficit
1 0.4 0.1 448.29 0.35 0.35 741.88 0.5 0.4 2163.08
2 0.3 0.2 448.02 0.80 - 0.10 746.50 0.6 0.3 2169.64
3 0.5 0.0 448.53 - - = = o =
Table 4-3. Percentile of Distribution of Surplus, Deficit and Range of Different Markov Models with the Same
Sum of Autoregressive Coefficients. Markov Model Used is Z, =42, g +az, ot
Autoregressive Order of Percentile of Percentile of Percentile of
Coefficients Markov Distribution Distribution Distribution
Model of Surplus of Deficit of Range
a a
1 2
0.4 0.1 2 nd 319.992 -413.3778 510.8439
0.5 0.0 1 st 320.384 -412.9498 511.1853
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Table 4-4. Percentile of Distribution of Maximum Table 4-6. Results of Harmonic Analysis for Daily
Deficit of Third-Order and Second-Order Flow of the Tioga River
Markov Model with Same Sum Equal to 0.7,
of Autoregressive Coefficients. Markov Values of Coefficients of
Model Used was 1z, = a, z + 8,z + Harmonics
n, and n = 18,000 o Tl 72 "t-2
Harmonic
Percentile of "
S. No. a a, a, Distribution of 4 ~4474.70 =1280.50
Maximum Deficit B 245.30 485.00
1 0.35 0.35 _ 741.88 1 Explained Variance 0.5933 0.3574
2 0.80 (-) 0.10 - 746.50 61330 6520
3 0.30 0.20  0.20 742.09 6858 Ll
2 Explained Variance 0.1579 0.0760
results are given in Table 4-8. Two schemes are used, A - 501.40 - 386.30
the second-order model with a, and a, of Table 4-8, B - 42.10 168.10
and the other with the first-order model, with r, = 3 Explained Variance 0.0891 0.0336
a, +a,. The obtained distributions of range and max- 238.80 168.50
imum deficit for the two schemes are shown in Figs. 4-5 - 194.40 _ 267.00
and 4-6 respectively. The mean range and the mean max- ' :
imum deficit for the two cases are given in Tables 4-9 4 Explained Variance 0.0334 0.0188
and 4-10 respectively. _ 219.60 - 243.60
It can be concluded from Tables 4-9 and 4-10 that 129.90 320.30
the parameters of distributions, even for the distribu- : SEvR
tions of the range and the maximum deficit, can be 5 Explained Variance 0.0229 0.0306
obtained by equating the higher-order Markov model to A 89.80 117.50
its equivalent first-order model with Pp =@y + oy z e
™ 5 . - 136.00 - 207.20
« +a., sothat [p | < 1. This constraint on Py _ -
should be considered in detail before applying this 4 Explained Yariance Guias % 9E0
approach. Considering a simple case of a second-order Vasiance BEsdiatned b
model, the conditions for the stationarity of the g o Y 0.9060 0.5271

Six Harmonics

Table 4-5. Comparison of Surplus, Deficit, Range, and Maximum Deficit of Different Series of n = 18,000 with
Same Independent Standard Normal Random Numbers, But with Different Order of Markov Models with the
Same Sum of Autoregressive Coefficients.
Surplus Deficit Range Maximum Deficit
Series
No. 2Znd Ist 2nd Ist 2nd Ist Z2nd 1st
Order Order Order Order Order Order Order Order
1 226.90 226.83 -175.22 -175.61 402.13 402.44 257.70 258.23
2 49.54 49.70 -235.44 -235.76 284.98 285.45 251.06 251.57
3 41.48 41.99 -413.34 -412.89 454 .82 454 .87 454.82 454 .87
1 124.78 124.89 -178.83 -178.90 303.62 303.79 292.84 293.23
L 318.38 318.76 - 12.86 - 12.76 331.25 331.53 268.67 268.92
6 90.63 90.26 -321.02 -321.73 411.65 412.00 361.98 362.98
7 56.11 55.71 -182.14 -183.10 238.25 238.81 238.25 238.81
8 256.96 257.26 - 58.61 - 58.92 315.56 316.17 247.90 248.26
9 153.37 153.21 -259.54 -259.92 412.91 413.13 412.91 413.13
10 239.66 241.04 - 22.06 - 21.92 261.72 262.95 213.03 212.83
11 374.74 375.56 -189.90 -189.81 564.64 565.37 231.29 231.30
12 143,15 143.64 -366.11 -365.96 509.26 509.59 366.11 365.90
13 23.84 24,02 -414.66 -414.98 438.50 439,00 438.50 439.00
Note : (1) In second-order Markov model a, = 0.40, and a, = 0.10 ; and

(2)

1
In first-order Markov model a = 0.50, and a, = 0.00 .
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Table 4-7. Number of Harmonics Used

to Represent B

and o of Tioga River

bt %
Number of Percent of Total Explained Number of Percent of Total Explained
Harmonics Explained Variance due to Harmonics Explained Variance due to
Variance Six Harmonics Variance Six Harmonics
3 0.8403 0.9060 6 0.5271 0.5271
Table 4-8.

Data of Tioga River

Fitting the Second-order Autoregressive Model to Standardized Stochastic Component of Daily Flow

Variance of Residual Series

% "
Theoretical Computed
0.6093 - 0.02967 0.6493 0.6486
Table 4-9. Comparison of Mean Range of Second-order and Equivalent First-order Markov Model of the Tioga River
Daily Flows for n = 1440
Model
Second-order First-order
a a, Mean Range Standard r Mean Range Standard
Deviation 1 Deviation
of Range of Range
0.6093 - 0.02967 198.09 58.30 0.5796 197.95 58.29
Table 4-10. Comparison of Mean Maximum Deficit of Second-order and Equivalent First-order Markov Model of the
Tioga River Daily Flows for n = 1440 -
Model
Second-order First-order
ay a, Mean Standard r, Mean Standard
Maximum Deviation Max imum Deviation
Deficit of Maximum Deficit of Maximum
Deficit Deficit
). 6093 - 0.02967 106.58 - 0.5796 106.44 -
provess are that the values of ay and a, should lie In storage problems the input is always a runoff

in the triangle ABC, Fig. 4-7., Let us assume a second-

order model corresponding to the point B, where a, =

Its hypothetical equivalent first-

order Markov model should have r, = -2 - | = -3, Since
:rli cannot be more than 1, hencé this model has no

Al
2 and a, = -1.

meaning. It is thus concluded that this equivalent con-
vertion is applicable to the second-order models, whose
wmitoregressive coefficients lie in the region ADEC.
tortunately, this restriction of applicability to the
region ADEC does not limit the application of this ap-

proach to practical problems due to the following
reason.,

24

series, which may be monthly, weekly or daily f19w5.
Since hydrologic processes are persistent, the f1r§t
serial correlation should at least be always positive,

and hence a, for By * 31/{1—32) should also be always

positive., This indicates that in practical application,
the values of a, and a, will not lie in an area ABE

of Fig. 4-7. Thus, the conclusion of converting the
higher-order Markov model to its equivalent first-order
model is applicable to all storage problems of practical
interest.

Having derived this conclusion of converting the
higher-order Markov models to its equivalent first-
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iy iy =ikl SiBedapudtia My =%y * Al ™ Oglg 2
let i %
5. _= E 2., and §. = n.
i,z j=1 i i,n . j
Then summing up ni's and their right sides, then

i-2
Si g™ 2y * (1-apzy g+ (1-a,-a,) jzl Z5 + (1-a)z, .
(4-15)

For i very large, the end effects in Eq. (4-15) being
too small can be neglected and it can be written as

Sy = BAERR)G,
or
Si n
g N i
S¢,2 (I-a,-a,) (4-16)

If initially the m-th order Markov model is assumed in

Eq. (4-13), namely
m
Zt = z ant_j + nt " {4'17}
j=1
then Eq. (4-16) becomes
5,
i,n
A = m
i,z {5 z aj) (4-18)
j=1
Since Si or Si , Tepresent a new stochastic

3
variable, the cumulative sum of deviations of n or z,
respectively, it is a function of i and can be repre-
sented as Si = f(i) of a discrete series of the con-

tinuous variable. It is this stochastic variable which
determines the properties of the surplus, deficit,
range, and maximum deficit.

It is evident from Eq. (4-18) that all properties
of S;» like the range and maximum deficit of the m-th

order Markov model, are inversely proportional to
m
(-3
j=1
obvious from Eq., (4-16) that the greater the sum of
(al + az), the greater would be the value of the range

is intuitive also. It
above result that the
the maximum deficit for
sum {al + a2) rather

aj). Considering the second-order model, it is

and the maximum deficit, which
may be concluded also from the
distributions of the range and
large i are functions of the

than the individual values of a, and a,, thereby

supporting the earlier conclusion obtained through the
sample generation approach.

If the initial model in Eq. (4-13) is taken to be
the first-order Markov model

z =

i TR

- (4-19)

t r
then the asymptotic expected maximum deficit of this
model is given by Eq. (4-18) as the expected maximum
deficit of the independent process with the mean zero
and standard deviation unity, divided by (1 - pl}.
Hence,

26

1.2533 vn
LS By

E(D ) =
n -Dl

(4-20)

' The variance z of Eq. (4-19) is 1/(1 - pi}. Hence,

the expected maximum deficit of model represented by
Eq. (4-19) with unit variance is obtained by dividing

Eq. (4-20) by [1/(1 - 0112, Then
1.2533 /n [1. - oi]u2
B = — 5
1.2533 /n(1 + py) (4-21)
E(D,) =
1/2

It may be noticed that the factor [(1 + 01)/(1 - 01]]

is the same as for the case of range and adjusted range.
This should be so, as all these statistics relate to
the same stochastic variable, the cumulative partial

sums .,

It may also be noted from Eq. (4-18) that if

Si F is the same, i.e., the same generated random num-

bers of same length are used for two different autore-

gressive processes of Eq. (4-17), but in a way that the
sum of the autoregressive coefficients is the same for

both series, then the values of the range and the maxi-
mum deficit should be the same for both series, thereby
supporting the results obtained in Table 4-5,

If Eq. (4-13) is modified to be
I, =4 zt_1 +a, zt_z + s N (4-22)
then Eq. (4-18) becomes
s S.
= 11‘1

Si'z o ) (4-23)

(1- 7 a)

j=1 7

indicating that the asymptotic expected value and the
variance of any statistic of partial sums for the
Markov dependent models are functions of the respective
asymptotic values of an independent process. Thus for
the m-th order Markov model the asymptotic expected
range is

E(R) = 1.5958 8 Mmoo, (4-24)
2 2
Var(Rn) = 8" 4n(én 2 - ;J , (4-25)
where s
o m ’ (4-26)
(- 1 a;)

i=1
Thus the parameters of the distribution of any statistic
of partial sums for the Markov dependent models can be

obtained directly from their respective asymptotic
values of the independent process.

The above analysis leads to the following important
conclusions:

(1) The distribution of all the statistics of
partial sums for the dependent and independent process

are determined from the stochastic variables Si 5
,



and Si respectively. It is, therefore, clear that
L

the asymptotic distributions of these statistics for
the dependent Markov models should be functions of the
asymptotic distribution of the respective statistics of
the independent process. This explains why Gomide
(1975) found that the standardized distribution of the
range and the standardized distribution of the maximum
deficit of Markovian inputs tends to the standardized
asymptotic distribution of the independent process.
This conclusion emphasizes the importance of previous
studies in the range analysis devoted to the approxi-
mate expressions of the first two moments of R for

the correlated inputs (Yevjevich, 1967);

(2) The analysis presented herein lays the
emphasis on the study of only the first-order Markov
models because all the higher-order Markov models can
be reduced to their equivalent first-order model for
the analysis of storage problems of practical interest,
where one is mainly concerned with the asymptotic
distributions of different statistics of partial sums;
and

(3)
expected maximum deficit is applicable to all rivers
following the Markovian models.

Having derived the theoretical expression for the
calculation of fz[l,ﬂ,o), the expected maximum deficit

of a stationary dependent process, either by conventing
the higher-order Markov model to its equivalent first-
order Markov model or by getting it direeily through
the expression of asymptotic expected maximum deficit
for the i.i.d. process by means of a coefficient 8
given by Eq. (4-26), Eq. (4-8) can now be modified. If
the stochastic component of the daily flows follows the
m-th order Markov model,

- ]

ja

x n .

- (4-27)

P 1 '.icP»"j

then its first-order equivalent model is

Procedure developed for the calculation of the

et " 1 pye-1* Mpye
with
]
Py = a.
1 j=1 j
and
g = the standard deviation of the m-th order
€M Markov model.
Then
£,01,0,00(1 T
£,(1,0,p) = 2 (4-28)
2 = 8" %
1 E,Mm
Equation (4-8) becomes
_ £,0,0,00 + 0 0
£,[0_, s(a), p]l 20| 2= -£,(1,0,0)]
4% T T PR U
P E,Mm
vf4(0., s(0), 0) (4-29)

Now to find the value of fd[E;’ s(a.), p], the
only unknown left in Eq. (4-29) is fz[E;, (o), 01,

which is the expected maximum deficit of a non-
stationary but independent process. Before getting its
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value, let the expression be first developed for the
expected range of a nonstationary i.i.d process.

Expected Range of Nonstationary Independent
Process. Yevjevich (1972) has given by conjecture that
the expected range of the independent normal process of
Eq. (2-6) may be rewritten in the form

2 ¢ T2 -
E(R) = /(E igl [(var s)) / /i (4-30)
where Var Si is the variance of partial sums. Let

consider a nonstationary independent net input process
with periodic standard deviation o, such that T

1,2,...,w and i = pw, with the usual meaning of p
and w. Then
Si N ol ®oaench S0y MRS US| ¥ owd cu"Zu
+ uln{P-l]Ml *oewe * anm .
Therefore,
Var §. = 52 Var n, + az vVar n, + + az Var n
i 1 1 2 2 e w w

2 2
+ ul Var nu ¥ iiu ¥ um Var “pu .

etc, are all i.i.d. with the same

+1

Since and

ny Ny
mean zero and variance unity, hence

3.2 2 -
Var S, = pfo] + 05 ¢ ... ¢ o ] var n (4-31)
P LT -
Then Eq. (4-31) can be rewritten as
Var S; = puw oi Var n = i ui ' (4-33)

as Var n = 1, and pw = i.
Eq. (4-33) in Eq. (4-30)

s1/2
n 1 a
e, + /7 =
i=

n
E(R) = J/g g F FH2

i=1

Substituting Var Si from

(4-34)

This gives that the expected range of a nonstationary

independent process can be obtained by multiplying the
expected range of stationary independent process by an
equivalent standard deviation % given by Eq. (4-32).

Analogously applying it to the case of maximum deficit
it may be written

= = -35
ES[cT. s(e), 0] =0, fl(l,0.0J (4-35)

Unlike the case of the range, the effect of in-
creasing the variance of the net input process with the
same expectation is not necessarily to increase the‘ex-
pected maximum deficit, hence the conjecture of modify-
ing Eq. (2-6) to Eq. (4-30) is not exactly true in this



case. But since o in the net input process of a.n

does not change the expectation from zero, it is still
a case of full regulation, for which the expected max-
imum deficit is known to increase with vn. Hence

fl[l,0,0J is taken as Cvn, where C 1is a constant,

and Eq. (4-29) is modified as
z /n 5,1 + pl)lfz b % - P
f4logs (o), 8] FiCrad (a - pl}lf2 . T n
(4-36)

It is, therefore, proposed to estimate the value
of C by an actual sample generation for a few n
values in the range of 5000-7000 for daily flows, and
use the average value of C for the determination of
stochastic storage for any n corresponding to the ec-
onomic life of a reservoir, so as to obtain the least
error in the calculated stochastic storage. The deter-
mination of the average value of C does not need any
extra generation effort as the same is required to find
out the difference storage capacity as shown in Chapter
ITI.

The method developed to find the first two moments
of the distribution of any statistic of partial sums
for the higher-order Markov models, can now be used to
find the asymptotic distribution of the maximum deficit.

4-4 Asymptotic Distribution of the Maximum Deficit for
Higher-Order Markov Model

As described in Chapter I, the exact distributions
for large n of standardized maximum deficit of partial
sums of Markovian net inputs tend to the asymptotic
distribution of the standandized maximum deficit of the
independent process. The standardized asymptotic dis-
tribution of the independent process, as given by Gomide
(1975), is shown in Fig. 4-8. Thus Fig. 4-8 when cor-
rected for the first two moments, can give the asympto-
tic distribution of maximum deficit for the Markovian
type inputs.

Class  nterval

Fig. 4-8. Asymptotic Distribution of [Dn - E(Dn)]
War D for i.i.d. Process, [after Gomide

(1975, Figure 6.6)].
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Let apply it to the case of the Tioga River. The
dependence of the stationary stochastic component of
daily flows has been approximated by the second-order
Markov model. The values of autoregressive coefficients
as given in Table 4-8 are a, = 0.6093 and a, =
(-) 0.02967, with the model

zt = 00,6093 zt_ - 0.02967 z ot N,

i (4-37)

1

Let By 50 denote the standard deviation of m-th order
Markov model, then
by Var n
az,m = o i 5 (4-38)
2 E I | “j Oll’j|]
i=1 j=1

with the a's estimated by a's
ted by r values. Thus,

and p values estima-

Uz,z = [1/0.6492?]1/2 = 1.24 (4-39)

The distribution of the maximum deficit of the net in-
put process of Eq. (4-37) can be obtained by the equiva-
lent first-order Markov model, with T = 0.6093 -
0.02967 = 0.5796, or

z, = 0.5796 zt_ +n,

, (4-40)

/
with o | = [1/(1-0.5796%)1%2 = 2.0469.

The asymptotic expected value and the standard
deviation of the maximum deficit of series given by
Eq. (4-37) is

1/2
E(Dn) = 1.2533 vn B2 o [(1 + pl]/(I - pl]] = 266,0641

with

f?ar(Dn) = //b.2611 n{oZ 1}2 (1 + 91]/E1 - le = 108.8024

Thus the above computed asymptotic expected value and
the standard deviation of the maximum deficit for the
first-order Markov model of Eq. (4-40) are also the
respective values for the second-order model of Eq.
(4-37). Then the distribution of the maximum deficit
of the series of Eq. (4-37) can be obtained as Fig. 4-9

3T48T 48367 5’2’.1? ?OI‘.Z?

Closa lntervol

T4846 15726 26606

4-9, Distribution of Maximum Deficit of Second-
Order Markov Model for the Tioga River Daily
Flows, with a, = 0.6093 and a, =

(-) 0.02967. 2

Fig.



by converting the base of Fig. 4-8. This procedure is
applicable to any statistic of the cumulative partial
sums, such as the range, surplus, the deficit, etc.

4.5 Procedure for Determining the Stochastic Storage

The following are the steps in estimating the
stochastic storage for a reservoir to be designed with
a long economic life:

(a) Remove the periodicity in daily flow data by
means of harmonic analysis, (Yevjevich, 1972a);

(b) Obtain the standardized stochastic stationary
series and determine the mean, y, and standard devia-
tion, sy;

(c) Fit the suitable Markov linear model to the
series obtained under step (b);

(d) The river flows can be generated by using
Eq. (3-5), and stochastic storage calculated for a few
values of n in the range of 5000-7000 for daily flows;

(e) The theoretical value of stochastic storage
for a particular n is obtained by multiplying the
value of Eq. (4-36) by Sy;

(f) The theoretical value of stochastic storage
obtained under step (e) may be equated to the value
obtained under step (d) and the values of C are
calculated for all n values. All values of C so
obtained will be nearly constant, so that their average
value may be adopted for further calculations; and

(g) The stochastic storage for a reservoir can
now be calculated by Eq. (4-36) with the help of an
average value of C calculated under step (f).
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Chapter 5
APPLICATION OF THE DEVELOPED METHOD

The method developed for designing reservoirs
with daily flow data is applied to a river, to show
how it would work. The 40 years of daily data of the
Oconto River near Gillett, Wisconsin are used as an
example of application.

5-1 Source of Data and Evaluation of Their Reliability

The U.S. Geological Survey is responsible to
gather and publish stream flow data of daily flows for
most of the rivers in the United States. During the
early observations, the mean daily flows were obtained
from daily mean gauge readings on staff gauges. The
early records were, therefore, affected by the fre-
quency of observations during a day. The advent of
continuous water stage recorders resulted in the re-
placement of staff gauges. The flows were then calcu-
lated by converting the daily mean gauge heights by
means of stage-discharge rating curves.

In case the stage-discharge rating curve is
subject to change due to frequent or continuous alter-
ations in the physical features of the control, the
mean daily discharge is determined by the shifting
control method, which involves the application of cor-
Tection factors, based on individual measurements.
This method is also used to correct for temporary
changes in the control section due to debris or aqua-
tic growth.

During early stages the crudeness of instrumenta-
tion was further aggravated by the lack of sufficient
personnel to make frequent observations. This thus
required, in some instances, the estimation of unmeas-
ured flows by correlation procedure before publishing
the actual data. The perennial problem of ice redu-
cing the area of the control section during winters
was another source of error.

The records published by U.S. Geological Survey
are classified as excellent, good, fair or poor, de-
pending on whether the errors in them are less than 5,
10, or 15% or greater than 15% respectively.

5-2 Criteria in Selection of Case Station for the
Test Study

The basic criteria in selecting a gauge station
is to obtain homogeneous records. Gauge stations in-
fluenced by significant alterations in the form of
diversions or flow regulations upstream through irri-
pations, diversions or construction of reservoirs, are
dutomatically excluded. Minor diversions up to the
maximum of 1% of the average annual flow is tolerated.
Station has in fact to be selected on the basis of its
virginity of flow. The absence of short term trends
is also postulated, in spite of the fact that exten-
wive agricultural use of land, among other things, can
viause perceptible trends in runoff.
¥

5-3 The Selected Station

With the above restrictions in mind, the daily
flow record available on tape for 19 rivers of the
linited States was examined. The station number 4.0710
with the drainage area 678 sq miles, of the Oconto
River near Gillett, Wisconsin was found to have the
accuracy of record classified as good.

The graph of mean daily flows in cubic feet per
see (efs), obtained by taking the average flow for
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each day of the year over the 40 years of record for
the station, is given in Fig. 5-1. Similarly the
standard deviations about the mean daily values are
also plotted in Fig. 5-1.

g

150 250 300

Fig. 5-1. Mean Daily Flows in cfs of Annual Hydro-
graph (1), and Daily Standard Deviation (2),
of Oconto River.

5-4 The Output

To show the application of the procedure for
determining the reservoir capacity for any determinis-
tic output, the periodic output is used in such a way
that its first harmonic lags behind the first harmonic
of the periodic input mean by n/2, so as to obtain
substantial value of the difference storage capacity.
The output is assumed to have two harmonics. Its plot
is given in Fig. 5-2. However, output with any number
of harmonics and with any phase difference can also be
dealt with in a similar fashion.

T,day
00 S o e e g TR
¥ O 30 &0 90 20 I50 80 20 240 270 300 330 360
Fig. 5-2. Variation of Output Within the Year with

Mean = 540, Fourier Coefficients Al =
-187.21, B1 = 324 .24, AZ = 79.00, and
52 = -46.10.

5-5 Case Study

The simulated problem is to determine the storage
capacity of a reservoir with the economic life of 100
years, to be constructed at the gauging site of the
Oconto River at station number 4.0710 with the mean
annual daily flow of 543.498 cfs.



5-6 Computation of the Difference Storage Capacity

The first problem is to finally estimate the
periodic means, [ and the periodic standard devia-

tion, 61, from the actual river flow data. Either a

non-parameteric or a parameteric approach can be used.
In this study a parameteric approach is used for the
following reasons:

(1) In case of daily series, the number of para-
meters to be estimated for the mean and standard devi-
ation is 730. The total number of statistics in the
non-parameteric approach is so large that it becomes
unfeasible to estimate accurately so many parameters
from a limited sample size, with the estimates subject
to large sampling errors.

(2) The non-parameteric method also removes all
sampling variations associated with the mean and stand-
ard deviation from the stochastic component, which may
represent often a large portion of the variance of the
stochastic component.

In the harmonic analysis a maximum of six harmon-
ics were fitted. However, only five harmonics were
considered as representing the periodic mean and stand-
ard deviation, because the sixth harmonic gave little
contribution to the explained variance of fluctuation
of either the mean or the standard deviation, with the
results given in Tables 5-1 and 5-2.

Table 5-1. Results of the Harmonic Analysis of the
Mean Daily Values of the Oconto River

Harmonic A B Explained Variance

1 - 200.3 - 112.4 0.3784

2 145.4 185.0 0.3971

3 - B85.5 - 79.9 0.0982

4 58.0 65.6 0.0550

5 - 39.8 - 72.5 0.0491

6 7.4 27.8 0.0059
Variance Explained by Six Harmonics 0.9837

Table 5-2. Results of the Harmonic Analysis of Daily
Standard Deviations of the Oconto River
Harmonic A B Explained Variance
1 - 123.3 - 85.6 0.2706
2 141.6 105.7 0.3750
3 - 66.4 - 46.2 0.0786
4 To.d 31.7 0.0809
5 - 47.2 - 43.2 0.0492
6 8.6 4.3 0.0011
Variance Explained by Six Harmonics 0.8554

The periodicity of daily flows is removed to give

the y -series, as y = (xp ™ uT]/ET. This series

is then standardized by using its mean y = 0.034 and
its standard deviation sy = 1.174,

The resulting e T-series is then fitted by an

»
autoregressive scheme, with the estimated coefficients
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given in Table 5-3. To satisfy the Wold's (1943) cri-
2

teria, the x" + 0.5418 x + 0.3193 = 0, with x =
(0.2709 + 0.4959 i). The roots of x lie in a unit
circle of the complex plane, thereby satisfying the
necessary condition for the fitting of an autoregres-
sive model.

Table 5-3. Fitting the Second-Order Autoregressive
Model to Standardized Stochastic Component
of Daily Flow Data of Oconto River

Variance of Residual Series
| 2
Theoretical Computed
0.5418 0.3193 0.32908 0.32908
The ep .-series is whitened, with the correlogram

of the resulting n independent component plotted

in Fig. 5-3. Though all the correlation coefficients
are close to zero, its independence cannot be checked
by using the test given by Anderson (1941), because of
very narrow tolerance band due to large sample size,
(14,600 values). Quimpo (1967) felt the same diffi-
culty. He stated that in the application of Anderson's
test for p=0, however, despite a value of Ty = 0.05,

the size of the statistical sample was such that even
this was, according to the test, still significantly
different from zero. The same difficulty was encoun-
tered in applying the test given by Quenouille (1949)
to the first and second-order autoregressive schemes.
Therefore, the variance of the independent component

is computed and compared with the theoretical variance.
When these two variances are the same, then the assumed
autoregressive model is considered to fit well the
EP-T' stochastic component of the daily flow data. The

theoretical variance is

2
2 2 a a,

= 2
Var n = Var €[1 - ay - a, - -fT:;;Tq g

(5-1)

0.2p

Lag
-0.1F
-0.2+
Fig. 5-3. Correlogram of Independent Component for
Daily Flow Data of Oconto River.
where

Var € = 1 for the standardized ep T-series.
The daily flow data of this river is generated by Eq.
(3-5) as

X = U + 51(0.034 + 1,174 Ep 1) >

- : (5-2)

with



£ = 00,5418 ¢ + 0.3193 ¢

- S pyre2 T 0:5736 0,

(5-3)

The mean maximum deficit for the ocutput of Fig.
5-2 is found out from the generated net input series
to give the value of estimated total storage. The
stochastic storage is estimated by the mean maximum
deficit of the generated stochastic net input series.
The difference between the two storages gives the es-
timate of the difference storage tabulated in Tabhle
5-4, and plotted in Fig. 5-4. It results from this
figure that the difference storage oscillates around
an approximate constant value of about 37,000. The
difference storage capacity is then 37,000,

Table 5-4. Difference Storage for Periodic Output
Stochastic Difference
n Total Storage Storage Storage
2500 93624.672 56608.684 37015.988
3000 95006.483 56225.668 38780.815
3650 103444.409 65005.850 38438.559
4000 105752.440 68832.532 36919.908
4500 111133.409 73403.330 37730.079
5000 109970.113 73627.779 36342.334
5500 117266.204 80884.754 36381.450
6500 118464 .232 82766.646 35697.586
7000 117821.429 79719.656 38101.773
40009
woodk | o
s | 37000
250004
B S T SR .
1000 2000 3000 4000 5000 6000 7000
Figure 5-4. Difference Storage Capacity for Periodic
Output of Fig. 5-2.
5-7 Determination of Stochastic Storage

The stochastic component of daily flow series has

been fitted by second-order Markov model, namely

z, = 0.5418 L + 00,3193 z + 7

1 t=2 t (543

with O, 4= 1.7432. The model of Eq. (5-4) is equiva-
‘ ]

lent to a first-order Markov model with B = 0.5418 +

0.3193 = 0.8611. = 1.9668. The sto-

Therefore, o
o

astic storage was then worked out theoretically from

Eq. (4-36), or from
- 1/2
o (1 +p,) a
—_ 2yl . =
£,[0., s(o), p] = C/n [— i -5, * %)
bt T 1/2 T
(1 -ry) 9,m
} (5-53
where E} = 288.37 and an = 344.56. Substituting

these values in Eq. (5-5), then
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f4[Er, s(o.), p] ¥ 1247.2158 C /n (5-6)

The stochastic storage is obtained experimentally
as the mean maximum deficit of the generated stochastic

net input series. The stochastic net input series is

[xp 2 GT), which is given by

(x, .= B.) = (5-7)

0.034 a_ + 1.174 6_ ¢
PsT T T "Bt

The maximum deficit of (0.034 &T) should he small as

¥ = 0.034 is small, while the expected maximum deficit
of 1.174 a_ ey is given by Sy f4[aT, s(o ), p] or

1.174 f4[3;, s(0.), p]. Thus the stochastic storage,
Ss’ is represented mathematically by

S 3 1247.2158 Cs. vn ,
s ¥
with 5.
o . (5-8)
1464 .23/n

The C-values were calculated from the stochastic
storage, obtained through generation of samples, needed
in obtaining the difference storage capacity for dif-
ferent values of n by using Eq. (5-8). The values

so obtained are plotted in Fig. 5-5.

c
0.8
- W
07037
1 L L 1 P 1 1 1
3500 4500 5500 6500 7500
n , days

Fig. 5-5. Coefficient C Versus n.

It i5 found from Fig. 5-5 that initially and for
smaller n, the value of C 1is high. The reason being
that of a difference hetween the asymptotic and the ex-
act value of the expected maximum deficit, because in
Eq. (5-8) the asymptotic expression of expected maximum
deficit was used. Hence, giving the more weight to
values of C obtained for higher values of n, the
average value of C 1is found to be 0.7037.

The value of the stochastic storage for a reser-
voir of 100 year economic life is then calculated for
n = 36,500 by Eq. (5-8) as

S, = 1464. 25 C /n = 1464, 23 x 0.7037 x (365000172

= 196853

5-8 Determination of the Total Storage

Since the total storage is the sum of difference
storage capacity and the stochastic storage, its value

18 St = Sd + S5 = 37000 + 196853.00 = 223853. Thus

the reservoir with 100 year economic life should be
provided with a storage capacity of 223853 cfs-day.
The reservoir capacity is thus 0.468 million acre ft.

5-9 GSensitivity Analysis for the Coefficient C

Since fixing the value of C by using Fig. 5-5 is
subjective, it is considered worthwhile to study the



effect of C on the error introduced in calculating
the total storage. Let assume that the value of C
for a particular n 1is 0.66 instead of 0.7037. This
is almost the lowest value of C obtained in Fig. 5-5.

Then Ss = 1464. 23 x 0.66 x [36500}1f2 = 184629.0580,
5t = 37000 + 184629.0580 = 221629, or an error in

design of 5.5%. This error is not too large, especial-
ly because it is the extreme case in Fig, 5-5. For all
intermediate cases the errors would be smaller than
5.5%.
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5-10 Sensitivity Analysis for the Difference Storage

Since fixing the value of difference storage
capacity in Fig. 5-4 is also a subjective decision, it
was considered worthwhile to study the effect of the
error in the difference storage on the error introduc-
ed in calculating the total storage. Assume that for
a particular n, the difference storage capacity is
35,000 instead of 37,000 as determined. Then S5 =

195853, S, = 35,000, and S, = 251853. The error is

only 0.87%. A small error in difference storage capa-
city is not significant in the overall design of
storage capacity of a reservoir.



Chapter 6
CONCLUSIONS

A methodology has been developed for designing
the capacity of a faxrge reservoir with a high level of
development by using the concept of maximum deficit,
and short-interval streamflow records, particularly
daily flow data.

For this study, the input or the inflows were
assumed to simulate daily river flows, which are com-
posed of periodic and stochastic components. The
stochastic components approximate Markov linear models,
mainly second-order for daily flows. Output or the
outflows were considered deterministic either as con-
stants or as periodic functions.

From the analyses made for this study, the
following conclusions were reached:

(1) The total storage capacity or the expected
storage needed for the given output, when within-the-
year fluctuation of the input is taken into considera-
tion, can be divided into two parts: (a) a difference
storage which 1s a function of periodic mean B, and

the periodic standard deviation g, of the input,

besides other parameters like amplitude, angular fre-

quencies of various harmonics of input and output, and
difference in phase between their harmonics; and (b)

a stochastic storage, which is a function of the mean

and standard deviation of I of the autocorrelation

coefficients of the Markov model considered, and of n;

(2) The difference storage stabilizes to a
practically constant value beyond the stabilization
region, which is inversely proportional to the level
of development;

(3) The contribution of difference storage to
the total storage or the needed capacity is signifi-
cantly small in comparison to the stochastic storage,
and hence a small error in its computation results
hardly in a 1% error in the computed total storage for
large reservoirs. Therefore, to save on computer time,
it is felt that the difference storage capacity need
not be computed very accurately;

(4) The asymptotic distribution of different
statistics of partial sums for the dependent Markov
models are functions of the asymptotic distribution of
the respective statistics of the independent case; and

(5) The computation of the required storage
capacity does not need the generation of flow sequences
equal to the economic life of reservoir.

6-1 Recommendations for Further Research

There is some theoretical support for the stabil-
ization of the difference storage for the case of full
regulation. But, for partial regulation, Troutman
(1976) showed mathematically that the totul storage
grows as f#nn for i.i.d. net inputs. The computer
results of this study show that the difference storage
becomes approximately constant for 90% development in
case of a nonstationary indigpndent input process,
which could be because of vn and &n n curves being
almost the same in the region of study. Hence, it is
recommended that a further research should be under-
taken for the case of partial regulation to ascertain
mathematically how the total storage would grow with
n for the case of a nonstationary net input process.
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Analytical and data generation methods are used in
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the periodic-stochastic inputs to deterministic outputs.
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Stochastic storage, as the expected maximum deficit
of stochastic net input, is determined analytically by
using a coefficient, estimated by generating short series
of daily flows. Parameters of asymptotic distributions of
statistics of partial sums can be obtained by equating the
higher-order autoregressive models to an equivalent first-
order autoregressive model with p. equal to the sum of
all their autoregressive coefficients.

The methodology is applied to a simulated problem of
determining the storage capacity of a reservoir with the
economic life of 100 years to be constructed at a site for
which there are 40 years of daily flow data (the Oconto
River near Gillett, Wisconmsin).
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