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ABSTRACT 

A methodology is developed for designing capacities of ~~ reservoirs with sufficiently high levels of 
development by using the concept of maximum deficit rather than the range, and short-interval flow records, 
particularly daily flows. 

Daily river flows, composed of periodic and stochastic component s , are inputs into reservoirs . The output 
is assumed to be a deterministic process, either constant or periodic . 

The study uses both the analytical and the data generation methods in computing the required storage 
capaci ties for regulating the periodic-stochastic inputs to deterministic outputs. The approach used in 
determining the mean required storage capacity, named in this study the total storage, is to divide the total 
storage, defined as the expected maximum deficit of the net input to a reservoir, into t he difference storage 
and the stochastic storage, with: total storage • difference storage + stochastic storage. 

Difference storage is due to periodic components of both input and output. The advantage of its use is 
that it is approximately constant for large sample sizes. It can, therefore, be estimated for different sample 
sizes by generating a relatively short series of daily flows. 

Stochastic storage, defined as the expected maximum deficit of the stochastic net input, is estimated 
analyt ically by using a coefficient, est imated by generating short series of daily flows. 

It was found that the parameters of asymptotic distributions of statistics of partial sums can be obt ained 
by equating the higher-order autoregressive models to an equivalent first-order autoregressive model with its 
pl equal to the sum of all the autoregyessive coefficients of the higher-order model. Thi s is va lid for all 

storage problems of practical interest. 

The methodology developed for determining the total storage by its decomposition into the difference 
storage and stochastic storage has been appl ied to a simulated problem of determining the storage capacity of a 
reservoir with the economic life of 100 years to be constructed at a site for which there are 40 years of daily 
flow data (the Oconto River, near Gillett, Wisconsin). 
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FOREWORD 

Planning, deci sion making on the size, and management of water storage capac1t1es represent research topics 
which have been studied in the past from two points of view, practical and theoretical. About a century of 
modern planning and construction of water storage capacities in different forms in various countries has pro­
duced a practice, based on experiance, on how to plan, determine the size and operate these water storage 
capacities. In the practical, engineering approach , basically the historic water input data are used in such a 
way that the storage capacity is determined assuming the operation of the reservoir has started at the beginning 
of data collection and lasted until the end of available series. The storage problems are studied with the 
premise that a given water draft regime, satisfying a given water demand or solving complex water r esources 
problems by regulation, is accomplished by that capacity during the historic data period. On the other s ide , 
theoretical approaches have been developed for s tudying various storage problems , and not only water storage 
but also for storing goods, oi l, gas, and other materials, for which either the input, or the output, or both 
are governed by the law of chance . The theory of storage has become n part of mathematics , or especial! y a 
part of probability theory, s tochastic processes and mathematical stati stics. The storage problems have r e­
ceived several theoretical treatments in the past, especially in the last 30-40 years. In recent times, the 
theoretical approach to water storage problems has produced m~ny analytical solutions by several schools of 
probabilists and statisticians. 

It may not be exaggerated to state that the above two ~pproaches, one based on experience and practice 
and the other on theoretical analysis, have not been yet integrated. No real bridge has been made between the 
results of these two approaches. The practice of water storage planning and operation has been related for 
too l ong a t ime only to historic data series. Since the future samples may show the need for different storage 
capacities than those obtained from the historic samples , there is some concern among specialist s at present 
about the correctness of decisions made on the si:e of large storage capacities in comparison •;lth the mean 
annual inflow when based only on this empir1cal approach. On the other hand, to tackle mathematically the 
compl ex inputs, outputs, and the changes in boundary and initial conditions of water storage capac ities , it is 
necessary to make many simplifications that arc mathematica lly imposed i n order to produce analytical so ~utions. 

Tho most difficult problems of the theoretical analysis of water storage capacities have resulted from 
periodicities in parameters of hydrologic input and water demand time series. In the most genera l case , not 
only the mean and standard deviation are periodic parameters, but also the other parameters may be proven to 
be periodic, such parameters as coefficients of dependence models of stochastic components and higher-order 
moments as t he skewness and kurtosis coeffiClent s. Even in the simplest case for ••hi.ch only the m('an :1nd the 
standard deviation of inputs and outputs are periodic, the t heoretical approach becomes relatively diffjcu lt 
to implement. When the realistic inputs and outputs of storage capacities arc used, it is obvious that the 
bridge between theory and practice can not be made easily. This docs not result only from the periodic­
stochastic character of inputs and outputs but also because of usual trends in water demand and the non­
stationarity of available storage C:lpacity due to sedimentation of reservoirs with time. Efforts undertaken 
by many research groups around the world to make a bridge between theory and practice, and to usc theory to 
make better planning, decision making on the si ze , and operation of water ~tor~gc c~pacit ic~ , did not yet pro­
duce the satisfactory and generally accept:lble results. 

Several studies in Hydrology and Water Resources Graduate and Research Program of Civil Engineer ing 
Department at Colorado State University, especially studies in the fo~m of Ph.U. dissertations, have been 
undertaken with the bas1c objective in mind to make contributions of ~es~arch results for a better bridge 
between theory and practice . The Ph . D. dissertation by Kedar ~1utreja, which is the subject of this hydrology 
paper, should be looked at from the point of view of making a contribution to•~ard that bridge. 

The pr oblem of periodicity in the mean and the standard deviation is approached in the paper in such a 
way as to enable the division of the expected or total , finite storage capacity into a deterministic and a 
stochastic part. This is similar to the decomposition of hydrologic time series into periodic parameters as 
deterministic functions of time and a stationary stochastic component. The expected s t orage capacity or the 
total storage is divi ded in this paper into the stochastic storage which i s the result of the random variable 
(o E) as the product of periodic standard deviation (o ) and the stationary stochastic component (c), and the 

T T 
difference storage, as the difference between the t otal st orage and the stochastic storage. Therefore, the 
effects of periodicity i n parameters are divided and studied basical ly :1s the effects of periodicity in the 
means of inputs and outputs by using the difference storage, and the effects of periodicity in standard devi­
ation and the stochastic component by using the stochastic storage. 
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This paper presents the investigation of effects of various parameters on the difference storage. These 
parameters are: periodicity in the input mean, general standard deviation of inputs, first serial correlation 
coefficient of the stationary stochastic component, periodicity in the output mean, and final l y the sample 
size n. The difference storage conver ges to a constant with an increase of the sampl e size. The property of 
diff~rence storage is conc~iv~d as the deterministic part in the total storage capacity. The s tochastic 
stora~e i~ studied as a function of periodic standard deviation, linear dependence of stationary stochastic 
component and sampl e ~ize. 

A distinct i on is made in the paper between the full and the partial utilization of regulated river flows. 
The full utilization means the 100% use of the available water to be regulated. The partial development re­
presents the use only of a fractio~ ·in the regulated form of the total average flow, with the difference being 
the unused, spillover water. It has been shown by many researchers i n the past that the necessary storage 
capacity decreases with a decrease of the degree of development in water utilization. The theoretical studies 
of water storage have been mainly carried out for the full development, namely for the output mean being a 
constant equal to the input mean, or for the outflows varying with time but having the mean equal to the input 
mean. The theoretical studies of partial development, which temporarily sacrifices a percentage of the total 
available water but i? a realistic case in practice, have received a relatively limited coverage in the past. 
Therefore, if the objective of flow regulation is a partial development of the water resources potential, the 
total storage capacity must be a function of the level of development. By using the method of generating new 
samples, the difference storage for large sample si:es in days osci llates around a constant, with f l uctuations 
only due to sampl ing variation, and to an eventual small effect of periodicity in inputs and outputs. 

Stochastic storage, or for that matter the total storage, is investigated by using the concept of the 
maximum deficit (or the maximum depletion}. If it is assumed that the finite storage capacity of a reservoir 
is full at some point in time, the water spills over as lon![ as inflows are higher than outflows. The peak at 
the cumulative curve of these differences is reached when the output is equal to the input and the output 
starts to be greater than the input. Then the depletion of the reservoir storage begins. The maximum de­
pletion or deficit as the difference between this peak and the next lowes~ point at the cumulative curve of 
differences between input and output, even with the new ascending branch of this cumulative curve exceeding the 
previous maximum, represents the largest deficit or the largest depletion as the necessary storage capacity. 
The maximum differences between the successive maxima and minima represent a random variable , important for 
decision making on the si:e of water storage capacities. The finally selected capacity can be determined from 
the prohability distribution of that variable hy an optimi zation analysis. The risk is always involved that 
the selected storage capacity will not be able to supply the depletion water volume in all t he samples of a 
given size . In general, the maximum deficit is a variable smaller or equal to the range. The range is defined 
as the di fference between the maximum and the m1n1mum of t he cumulative sum of input minus output for a given 
sample size. The mean deficit is then a lways smaller or equal to the mean range. 

Because the range and the deficit are defined on the cumulative sum of differences of inputs and outputs 
for a given sample size n, it can he shown that the investigation of asymptotic deficit, range and the other 
water storage parameters of stationary stochastic components which follow the linear dependence models, can 
be reduced to investigations of the time independent stochastic component (TISC) inside this stationary process . 
The dependence is taken into account by a parameter (B) which is the function of all the coefficients of the 
linear dependence model. For purposes of generating new samples , an m- th order linear autoregressive model 
~an be reduced to the study of the firs t- order autoregressive model only. In this la~ter case, the serial cor­
relatlon coefficient p of this first-order model is equal to the sum of all the coefficients in the m-th order 
~utorcgressive model. In general, it can be shown that in the study concerning the asymptotic results of the 
deficit, the range or any other water storage parameter, or the study of distributions of deficit and range of 
linear dependence models, can be carried out only by investigating the properties of these parameters for the 
time independent stochastic component (TISC) . For every linear dependence model a parameter (6) could be found 
which helps to relate tho necessary storage capacity (deficit or range) of the autoregressive, stationary 
stochastic components to the storage capacity of their time independent stochastic components . 

vi 
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Chapter 1 
INTRODUCTION 

1-1 General 

Since nature does not meet the demand for water 
in time and space, reservoirs have been most important 
for regul ation of surface runoff so as to balance 
supply and demand. Although man has an experience 
with reservoirs for the last three to four millennia, 
and al though he has developed economical methods of 
dam construction for wide variety of sites to create 
reservoirs, the methods of estimating the proper sizes 
of dams and reservoirs for the target pattern of de­
mand have been mainly based on "rules of thumb" and 
"engineering judgement . " 

The empirical method of analysing the stochastic 
problems has dominated the engineering practice ever 
since Rippl applied this approach in 1883, (Rippl , 
1883) . Rippl' s method, based on the mass diagram, 
assumes that both inflow and outflow are known func­
tions of time . I t gives the minimum storage capacity 
required that no water shortage would occur during 
the per iod under consideration. The reliability of 
results so obtained is limited, because the analysis 
is necessarily based on a single historical sequence 
of hydrologic records. The probability is zero that 
an identical flow sequence would occur again during 
the active life of a reservoir. Moreover, the length 
of the historical record is apt to be quite different 
from the economic life of a reservoir, which in turn 
is determined not only by social and economic consid­
erations but also by pure physical considerations. 
Since the required storage capacity obtained by using 
the Rippl mass-curve method increases with the in­
crease of the length of record, the estimated capacity 
usually will be incompatible with a design based on 
the economic project life. Because of only one stor ­
age capacity value as the result of mass-curve method, 
this ~ethod does not provide i nformation to a designer 
in finding out the risk t~ be taken with regard to 
water shortages during periods of low streamflows. 

The fact of the matter is that one cannot speak 
of the needed storage capacity of a reservoir in a 
deterministic sense, because of the stochastic nature 
of both the streamflow and water demand. The needed 
capacity for a given sample size is a random variable, 
necessitating, therefore, the consideration of its 
distribution, with the expected value and variance of 
the distribution of this variable being important 
parameters in the final selection of the storage capa­
city of a reservoir. 

The theory of stochastic processes, applied to 
design and operation of reservoirs, has recently be­
come one 1of the most important topics of statistical 
hydrology. Unfortunately, the storage problems are 
extremely complex. The complexity depends on the 
type of requi red or proposed regulation . For example, 
if the regulation .is of the over-the-year type, the 
analysis is based on annual streamflows and a given 
degree of river devel opment or water draft. In deal­
ing w~th 1 annual flows the assumption of their independ­
ence ~Y be sufficiently accurate in many cases. In 
gener al , the serial correlation is such that the Markov 
or linear autoregressive models are needed to describe 
this dependence (Yevjevich, 1964; Fiering, 1967). The 
natural annual flows may be considered as stationary 
stochastic processes. Honco, properties of the random 
variabl e of storage capacity may be obtained either by 
the exact or approximate solutions. 

1 

When within-the-year water fluctuation is to be 
considered in the design of a reservoir capacity, then 
one has to analyze the problem with either monthly, 
weekly or daily runoff series along with the respec­
tive monthly , weekly or daily water demand series. 
The analysis requires a consideration of nonstationary 
stochastic processes, because both time series show 
periodicity in the mean, standard deviation and often 
in autocorrelation coefficients, besides the time 
dependence structure of stationary stochastic com­
ponents , (Thomas and Fiering, 1962; Roesner and 
Yevjevich, 1966; Yevjevich, 1971). Besides this the 
trend variability in water demand and the competition 
between water users add to the complexity of the whole 
analysis. 

The complexity of the problem is well demonstra­
ted by the fact that in search of a solution to this 
problem, the engineers like Rippl , Hazen, Sudler and 
Hurst have , respectively, introduced the concept of 
mass curve, invented such a useful tool as the prob­
ability paper, pioneered methods of simulation, and 
to raise questions which still remain unresolved. 

1-2 Approaches to Investigation of Stor age Problems 

Approaches commonly used in the design of stor­
age capacities may be classified into three groups: 
empirical, experimental, and analytical . The empiri­
cal approach consists in the application of Rippl's 
mass curve as described in Section 1- 1 . 

The experimental approach is simply the appli­
cation of the Monte-Carlo or data generation method. 
The central idea of mathematical synthesis is to cre­
ate the periods of high and low runoff that mostly are 
not present in short historical records. However, 
these periods, from the view point of probability 
theory, could be expected to occur in an actual Tccord 
of sufficient length. The Rippl's method, or a 
modification of it, is then applied to each flow 
sequence . The probability distribution of storage 
capacities is approached by using the rel ative fre­
quency distribution as its estimate. The more s amples 
are generated, the better is this estimate. 

In order to deal with the analytical method a 
few definitions are needed. Let {Zi) be a sequence 

of random variables such that E{Zi) = 0 and let 

s. zl + z2 + + zi; 1, 2, ... , n ( 1-l) 
1 

M n " max (0, 51, 52, ...... , Sn) (1-2) 

mn • min (0, 51' 52, ...... , Sn) (1-3) 

R ,. M - mn {1-4) n n 

with the random variable Si • the cumulative or par­

tial sum, Mn = the maximum partial sum or surplus, 

mn the minimum partial sum or deficit, and Rn • the 

range of the partial sums (Fig . 1-1). 

Apother type of these three statistics occurs 
when each component of the partial sum is corrected 



Sn 

2 4 

I 

I 
~- n 

Fig. 1-1. Definition of the Maximum Partial Sum (Mn)' 

the Minimum Partial Sum (m ), and the Range 
(R ) n n . 

for the sample mean, zn Therefore, the above random 

variables will then become 

• s. 
1 

s. -
l 

c.!.l n sn ( 1-5) 

* .. • • M n max (0, 51, 52' Sn) (1 - 6) 

• * • m n min (0, 51' 52, Sn) (1-7) 

* • 
R 
n 

M 
n 

- m n 
(1 -8) 

* * where Si = the adjusted partial sum, Mn = the adjus-
* • 

ted surplus, mn = the adjusted deficit, and Rn = the 

adjusted range. These statistics are sho~~ i n Fig. 
1-2. 

0 

• i Sn S·:S·+-
1 I n 

l_ --------- ~ 
Fig. 1-2. Definition of the Adjusted Partial Sum 

(S~), the Adjusted Maximum Partial Sum 

(~h, the Adjusted Minimum Partial Sum 
n • and the Adjusted Range (Rn). 

Sn 

* (rnn) 

Some engineers interpret range as the required 
storage capacity to avoid both overflows and emptiness 
of the reservoir. However, this may be valid only in 
the case of 6utt ~eg~n or full development. Full 
regulation of river discharges is equivalent to assum­
ing the expectation of random variable Zi of Eq. 

(1-1) equal to zero. But when this expectation is 

2 

positive then it is a case of p~ ~eg~on or 
partial development. Another statistic kno~~ as the 
maximum deficit, with its definition based on the 
cumulative departures from an arbitrary base value 
less than or equal to the mean, is used to work out 
the required storage capacity of the reservoir. 

Figure l-3 gives the plot of cumulative sum of 
departures for different base outflow values. The 
summation curve is always studied in conjunction with 
the inclined axis representing the base value . I t is 
obvious that as. the inclination of axis OA changes, 
different points on the summation curve may become 
maxima or minima. For instance the vertical distance 
between points e and f gives the range and between 
f and g the maximum deficit with respect to the 
base value OA respectively. It may be noted that 
the deficits {di} in Fig . 1-3 are measured from the 

subsequent peaks higher than the previous peak. How­
ever, the maximum deficit for the base values OA1 
and OA2 are respectively the vertical distances of 

a- c and b-e. Thus the range as the criterion for 
storage capacity is obviousl y not correct at least 
.not for the partial regulation. 

The analytical method consists of finding by 
exact, asymptotic or approximate derivations of various 
descriptors related to storage capacity design, such 
as mean, variance and other descriptors of surplus, 
deficit, and range. Exact general expressions for 
some of these descriptors are derived only for the 
case of independent, identically distributed random 
variables and for the stationary first-order Markov 
linear model. Similar properties are not available 
when random variables are nonstationary. 

Empirical data generation and analytical methods 
in solving storage problems were used in the analysis 
of reservoir st.orage design and operation in the past 
(Yevjevich, 1965). However, the advent o~computers 
enabled the generation method to be very attractive . 
Mathematical methods using the probability theory, 
mathematical st.atistics and stochastic processes 
were tried by many investigators by solving the water 
storage differe·ntial equations under various condi­
tions in the last three decades. 

1-3 Description of Model 

The solutions of storage probl ems in case of 
within-the-year water fluctuation are topics of this 
study. The need to deal with nonstationary series 
of inputs and outputs makes the general mathematical 
treatment of storage problems extremely complex. 
Hence in practice one falls back on the generation 
procedure in order to tackl e many problems . This 
study is conceived to use both methods, mathematical 
and data generation, in computing the necessary stor­
age capacities of complex periodic-stochastic input 
and output processes. 

The study is concerned with the design of stor­
age capacity of an independent reservoir . An indep­
endent reservoir is defined as a reservoir operated 
independently of any other reservoir. The complex 
stochastic problems in designing a system of dependent 
reservoirs are not dealt with. 

The basic storage equation in design of a rescr-
voir 

- 0 = llS , (1-9) 

where I = the input, 0 = the output, and llS = the 
change in reservoir storage for a given time unit. 
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Fig. l-3. Definition of Maximum Deficit, with Respect t o Base OA ~~ximum Deficit c Max {di}, 1 ~ i < k. 

Neglec ting the groundwater portion of the storage , 
and the seepage from a surface storage reservoir, 
but including the evaporation and the sedimentation 
of the reservoir, Eq . (1-9) can be rewritten as 

X - y - E " dS 
t t t dt (1-10) 

where Xt = the input rate (such as daily discharge; 

Yt • the output rate (such as daily water use); Et : 

the evaporation rate from the reservoir. which depends 
mainly on the climate and the reservoir surface, and 
dS/dt " the rate of change in stored water . 

Storage volume of a reservoir is a function of 
reservoir elevation and time. It can be approximated 
by 

s aJfl (1- 11) 

where a : f(t) and m • ~(t) which are both func­
tions of time because of reservoir sedimentation. The 
storage capacity, Sf, of a reservoir is always a 

finite value. It is a stochastic variable because 

Sf • a(~ax- ~in)' with Hmax and Hmin the 
maxi mum and minimum reservoir water elevations , and 
a and m are stochastic variables. The evaporation 
is usually neglected in practical applications, when 
the average annual reservoir evaporation is small in 
comparison with the average annual input and output, 
and a and m are constants when the sediment inflow 
is small in comparison with the finite storage capa­
city. Accordingly Eq. (1- 10) is modified as 

dS xt - Yt = dt (1-12) 

It is a46umed that short-i~terval flows, such 
as the daily river flows contain1ng both periodic and 
stochastic components , are inputs into the r eservoir. 

3 

It is further assumed that there is no "trend" i n the 
data, i.e., that man-made or natural changes in the 
river basin which produce these flows do not create 
significant trends in parameters. Thus the time 
series x can schematically be presented as p, t 

X p, I ( 1-13) 

where T = 1, 2 , ...... , w, with w the annual cycle 
(e .g. , 12 months, 52 weeks, or 365 days), p = 1 , 2, 
...... , T, with T • the number of years of record, 
~T and a = the periodic mean and periodic standard 

T 
deviation, respect ively, and £ = the stationary p, T 
stochastic component with zero expectation and unit 
variance. 

Periodic components can be descr ibed by harmonic 
functions. The stochastic component is usually assumed 
to follow the Markov l inear models (first, second or 
higher order). The periodic component is the cyclic 
oscillation of means ~ (for each int er val of t he 
year, the mean is obtai~ed over all years) and the 
~yclic component of standard deviation or for 
1nterval flows about the cor respondi ng value of ~T -

The output is assumed to be composed of a sto­
chastic component superimposed on periodic parameter s . 
Assuming the trend component of the demand to be zero 
though it does exist at least during the early period' 
of operation of a reservoir until the st ationary 
regime ~f storage operation is attained, it can be 
schematically presented by 

y ~ q + b '· p , 1 1 r p,' (1-14) 

where T and p have the same meaning as for the 
input process, while Y represents the demand p , t 
series , qt and 6 T = the per iodic (deterministic) 



mean and standard deviation respectively, and 

the stochastic component. 

E; .. 
p, T 

Water releases from reservoirs are mostly 
assumed as deterministic processes . A r igorous 
mathematical description of outputs as stochastic 
processes is less feasible , when the outputs are 
r egulated by reservoirs. Equation {1-14) is now modi­
fied to 

y 
p , l 

Thus the net input to the reservoir is 

X - y 
p,1 p, T I.J T q + 0 £ 

1 l p, T 

Now the regulation is called full, when 

Otherwise it is partial when 

w 

r 
T=l 

q < 
T 

(1-15) 

(1-16) 

(1- 17) 

(1-18) 

such that percentage of regulation or development p 
is equal to q ;; x 100. 

T T 

The reservoi r to be designed is assumed to be 
sufficiently l44ge wi th a long economic life of more 
than 50 years. 

It is further assumed that the demand is such 
that i t corresponds to a ~u66~~y high level of 
development of the order of 90% or so . This assump­
tion does not l imit the application of this study to 
the practical problems because for large reservoirs 
t he development is general l y between 90-100%, and thus 
the assumption made is quite valid. 

1-4 Objective of the Study 

The object ives of this study are then the 
following: 

(1) To determine the expected maximum deficit 
assumed to be the st orage capaci ty needed for a reser­
voir under the following conditions: (a) a constant 
or a periodic deterministic output or demand, (b) 
large reservoir with long economic life, (c) partial 
regulation of river flow such t hat the level of devel­
opment is higher than 90\ , (d) short interval , e.g., 
daily flow, data for the input processes; and 

(2) To determine t he asymptotic distribution of 
the maximum deficit in case of higher -order Markov 
models for stochastic components. 

1-5 Approach Used in this Study 

Before going into the approach, a few descriptors 
of the periodic parameter "-r are fir st defined as 

w 

! v 
T• l 

l 

v " ---
T w 

and 

(1-19) 

w 
- 2 r ( v ., - v1) 

s ( v t) . 1"} ·-··------w 
( 1- 20) 
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where " -r represents bot h uT and aT 

when daily flow ser ies are used. 
and w • 365 

In determining the storage capacity of a reser­
voir for within-the-year regulation with a determinis­
tic demand, and for inputs of Markov models type with 
periodic mean and periodic standard deviation, the 
expected storage called heroin as total bto~e, for 
the sake of brevity, is given by the expected maximum 
deficit of net input series {u + a E - q }. T T p, T T 
Similarly tho expected maximum doficit of {o £ } 

T p, T 

is called ~tocha4tic ~to~ge while the difference be­
tween the total and the stochastic storages is called 
the cU66eJLence ~to~e. 

If 0~ and 0~ are the random variables 

denoting the maximum deficit of net input {uT - qT + 

oTtp,-r} and stochastic not i nput {o-rtp,-r} respecti­
vely, then 

Total Storage = St ~ E(O~] 

Stochastic Storage = S • E(Os] s n 

Thus the total storage is divided into difference 
storage Sd and stochastic storage Ss written as 

(1-21) 

where n is the number of time units. 

Difference Storage. This part of the total 
storage is duo to an extra term of (uT - qT) in tho 

net input series over and above the stochastic net 
input {o £ }, and thus results from the difference 

T p, T 
between the periodic components of both input and out­
put It is, i n fact due to fluctuations of periodic 
components of i nput and output processes within the 
year. The difference storage is thus a function of 
periodic properties. It can be represented by 

(1- 22) 

where Sd(n) ~ the difference storage , p = the 

dependence of the stochastic component of the input 
process . To find the value of difference s torage, the 
approach: difference storage = total storage - s to­
chastic storage, will be used. 

The poi nt is that the difference storage, due 
to deteTministic parts of input and output processes 
should become approximately constant by generating a 
~ho4t length of daily flow series. The difference 
storage is , thorefore, found for different values of 
n (n being the sample size, or the number of t i me 
units), by finding the values of total storage and sto­
chastic st orage from the generated daily flow sequences. 
The process is repeated for a number of values of n 
until the value of difference storage becomes approxi­
mately constant within the sampling limits. This 
approximately constant value is called the cU66~ence 
cto~e ca.pacU:y. 

Stochasti c Storage. This part of the total 
s t orage is a r esult of the difference of stochastic 
components of i nput and output processes. Since the 
stochastic component of the output is assumed zero, 
this storage is given by the expected maximum deficit 
of the s tochast ic component of the i nput process. It 



is, however, a function of a , and the dependence 
of the stochastic component. 'This can be schematically 
represented by 

(1-23) 

where 5 (n) • the stochastic storage, n = the sub­
sample o¥ the number of time intervals, p = the 
dependence of the stochastic component of the input. 

Since the net stochastic input a & of Eq. 
' p,< 

(1-13) is nonstationary, the stochastic storage is 
worked out first by finding the expected maximum de-
ficit of a stationary process of & and then con-p,,• 
verting the same to give the stochastic storago for 
the nonstationary process of a & Thus, the total 

T p,T 
storage can asymptotically be represented by 

St(n) = Sd(~,. a,, q,, p) + Ss(o,, n , p] 

where St(n) = the total storage or the needed storage 

capacity of a reservoir. 

To determine the expected storage capacity or the 
total storage of a reservoir with long economic 
life t he procedure is to find the value of difference 
storage capacity by generating a 6ho~ length of daily 

5 

f low series. The difference storage capacity, being 
independent of n for large values of n, is then 
taken as the same for the reservoir with the desired 
economic life. A coefficient C is also found from 
the above generated daily flow sequences which in turn 
is used in computing the value of stochastic storage 
for the given reservoir. The sum of the difference 
storage capacity and the stochastic storage thus gives 
the value of the total storage or the needed capacity 
of the reservoir. The advantage of the procedure is 
that it does not need generation of sequences equal 
to the economic life of the reservoir. 

Asymptotic Distribution of Maximum Deficit of 
Markov Models. Gomide {1975) has proved analytically 
that for large values of n, the exact distribution 
of the 6.ta.11dalt.d..<.zed maximum deficit of partial sums of 
Markovian inputs tends to the asymptotic distribution 
of the 6t4n~ed maximum deficit of the independent 
process. In case the asymptotic expected value and the 
variance of maximum deficit of higher-order Markov 
models are known somehow, then their asymptotic distri ­
bution can easily be worked out from the given distri­
bution of the independent process. The effort in this 
$tudy will be to find the asymptotic expected value 
and the variance of higher-order Markov models, and 
thereby to obtain the asymptotic distribution of 
maximum deficit for these models . The procedure holds 
good for any statistic of partial sums such as the 
surplus, deficit, and range. 

·I , 

,I 



Chapter 2 
REVIEW OF LITERATURE 

Reservoirs as a means of augmenting the low flows 
have been used for several thousand years. However, 
the first attempt to determine the size of a reservoir 
by a mathematical technique can be traced back only 
to the last centur y, when Rippl (1883) came up with 
his mass diagram. In spite of its limitations of not 
accounting for the stochastic nature of the input and 
output processes, the method still remains popular 
throughout the world. With the development of digital 
computers in the past 15 years, the experimental simu­
lation or Monte-Carlo method combined with the Rippl's 
mass curve has been adopted for design of projects by 
studying alternate plans of operation. 

~'ost of the literature review in this study can 
be divided broadly into two categories: 

(1) Studies concerning infinite storage capacity; 
a great deal of research is on stationary processes 
studied by means of different statistics like surplus, 
deficit and range. 

(2) Studies concerning finite reservoir size; 
these have been carried out by a few investigators. 
Most of these works relate to stationary processes, 
whil e actual hydrologic input and output processes 
of reservoirs are periodic-stochastic. 

2-1 Analysis of Storage Problems by Range 

W. Feller (1951) derived the asymptotic distri­
bution of the range of the cumulative sums of indepen­
dent normal random variables. In particular, he ob­
tained the asymptotic mean and asymptotic variance of 
the range as 

(2-1) 

and 

Var (R ) = 4n(tn 2 - ~) = 0 2181 n n 1f • 
(2-2) 

lie also found the expressions for the asymptotic mean 
and the asymptotic variance of adjusted range as 

* E (R ) = ;n:;r2 = 1. 2533 fri n (2-3) 

and 

(2-4) 

These theoretical results are independent of tho 
underlying distribution of the original random vari­
able having finite mean and finite variance, because 
for large values of n the partial sums Sn and 

S~ are asymptotically normally distributed . 

A. A. Anis and E. H. Lloyd (1953) studied the 
problem of storage capacity of reservoirs for which 
the distribution of stored water is required over a 
number of years or of n time units. When the annual 
increments are independent variables with a common 
normal distribution, the water storage after i 
increments is the sum of i values. They gave the 
exact expected value of the maximum of the partial 
sums sl' 52' 53, 54' .... .. , sn of independent 
normal variables with mean zero and variance unity as 
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n 
F.(Mn ) = L i-l/2 

& i=l 
(2-5) 

Because of symmetry the expected value of the range is 

F.(R ) = (3. ~ i-1/2 
n 11 i= l 

(2-6) 

Subsequently A. A. Anis (1955) gave the expression for 
the variance of the maximum of partial sums of a finite 
number of independent normal variates, which for n > 

2 is 

{j (i-j+l) }-1/2 (2-7) 

with the asymptotic second moment of 

(2-8) 

A. A. Anis (1956) gave a recurrence relationship for 
obtaining the numerous evaluation of all the moments 
of partial sums of a finite number of independent 
normal variables. 

A procedure for obtaining the exact distribution 
of Mn' mn and Rn was described by Yevjevich 

(1965) for the values of n • 2 and n ; 3. For 
higher values of n, Yevjevich used the data genera­
tion method to find the above distributions. 

Using the data generation method, M. M. 
Melentijevich (1965) found the approximate equations 
for the expected value and variance of the range when 
the output is linearl y dependent on storage. 

V. Yevjevich {1967) suggested that the expected 
range of l inearly dependent normal variables could be 
expressed by Eq. (2-9) , which was derived for indepen­
derat normal variables . He showed by data generation 
that the values calculated by Eq. (2-9) closely 
approximate the results obtained by data generation 
for the cases of first and second order autoregressive 
models and the simple moving average scheme. 

EfRn) ~ a ~ i -l [Var S.) 112 
11 i= I 1 

(2-9) 

where Var Si is the variance of partial sum S1 . 

For independent normal variable Var S. = ia2 
l 

Notice that for a = 1 Eq. (2-9) reduces to Eq. 
(2-6), as it should. 

Francisco L. S. Gomide (1975) approached the 
problem of finding distributions of Mn' mn and 

by using Markov chains and found their numerical 
solution. He also found certain results for the 
first-order Markov inputs of stationary processes. 

R 
n 

P. Sutabutra (1967) investigated the reservoir 
design problem for within-tho-year flow regulation 
by separating the total storage into a deterministic 
storage part, which is a function of per iodic means 
of inflow and outflow only, and a stochastic storage 
part, which is a function of stochasticities of 



input and output processes. The problem was studied 
under the following assumptions: 

(1) Standard deviation of i nflows at various 
time positions within the year is assumed constant; 

(2) Stochastic component of monthly streamflow 
data follows the first-order Markov linear model; 

(3) Stochastic component of the output is 
assumed to be nonexistent; and 

(4) Output may be periodic, but the mean output 
is equal to the expected value of the input process. 

Since no stochasticity in the output pr ocess i s 
assumed , the stochastic s t orage in the form of the 
expected range for the first -order Markov model was 
determined. 

Jose D. Salas-La Cruz (1972) fol l owed the same 
approach as Sutabutra by relaxing only the first 
assumption of the constant standard deviation for 
inflows at various t i me positions within the year, 
because that assumption was not realistic . He in 
turn assumed a 12-month cycle in the standard devia­
tion, thus making the results of his study applicable 
in designing reservoir capacities for monthly s tream­
f low inputs. However, the applicability of pis 
results was limited because of the following assump­
tions : 

(1) Constant output was used instead of any 
deterministically changing output; 

(2) 100\ development and use of water r esources 
rather than any partial use or development; 

(3) The use of the first-order ~larkov model for 
the stochastic component of the input process (this 
may be true for monthly data but not for daily flow 
data in all cases, so that the method is not appli­
cable t o daily flow data); and 

(4) The expected value of the range was used 
as the needed storage capacity of a reservoi r rather 
than the expected maximum deficit. 

2-2 Analysis of Finite Size Reservoir 

P. A. P. Moran (1954) developed a simple formu­
lation of the finite storage problem by making an 
extensive use of Markov chains, as a theory of s t orage 
with random inputs. Initially, a finite storage of a 
total capacity i s available with independent inflows 
Xt (t = 0, 1, 2, ...... ) in discrete units of time 

(t, t+l ) . He presumed that a quantity ~ already 

existed in storage before the arrival of the inflow 
Xt. Then i f Xt + Qt > M, some overflow will occur 

as the capacity of the reservoir is assumed to be M. 
The overflow is then Xt + Qt - M, assuming either it 

is positive or zero. The stor age cont~ins a w~ter 
quantity either M or (Xt + Qt), wh1chever 1s 

smaller. An amount Y may then be released accord­

ing to some definite predetermined rule. A wide 
variety of such rules is possible . In one such rule 
Moran considered that a quantity of Y unit of water 
is released when 

(2-1 0) 
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or a quantity (Xt + Qt ) if t his is less than 

Continui ng his work, Moran {1955) pr oceeded i n 
several ways by considering different types of 
rules. 

Y. 

release 

C. H. Hardison (1965) dealt with the general 
problem of reservoir storage for low flow augmentation, 
but did not go deeply into any specific aspect of the 
problem. His main objective was to show as to how 
storage-draf t relations can be related to pr obability 
so that developer~ can equate cost and risk more 
r eliably. Hi s approach to t ackle the problem was t o 
a.nalyze the over-the-year storage separ at ely from the 
analysis of within-tho-year storage. He presented 
a method of combining the r esults by giving the pro­
bability of a given amount of storage required for 
selected draft rates. He claims that his method of 
finding storage-draft relationship is useful primarily 
in making preliminary estimates of potential develop­
ment, in compar i ng the development possibilities of 
different str eams, and compar ing the alternate plans 
for development. Detailed design with variable draft 
rates would justify more sophisticated procedur es 
like the ~lonte-Carlo mass curve method in which 
a~ternate plans of operation are simulated. 

L. S. Gomide (1975) tackled the probl em of partial 
regulation with theoretical anal ysis of mass curve. 
The storage probl em concerning the partia l regulation 
is called maximum accumulated deficit or maximum 
deficit analysis . This analysis was based on the 
application of Rippl's mass curve to the observed 
hydrologic sequences (Hurst , 1951), as shown in Fig . 
1-3. This method is called by Fiering and some other 
authors as the "s equent-peak method" (Thomas and 
Fiering, 1963; Fiering, 1965). 

Gomide (1975) derived the e.xpression for the 
asymptotic expected maximum deficit f or different 
inputs with mean zero and standard deviation unity as 

(2-11) 

Since Gomide considered only the s tationar y 
processes his results can only be applied to annual 
inflows. 

1

Hence to design the reservoir for within­
the-year regulation, the procedure is essentially 
the same as the old procedure by the ~lonte-Carlo 
method . In other words, sequences statistically 
indistinguishable from the actual record are sim­
ul ated and then the same procedure is applied to each 
realization. Then probability distribution of 
maximum defi cit is estimated by the relative f r equency 
distribution . Usually the sample mean value is taken 
as the required storage (Fiering, 1965). 

Brent M. Troutman (1976) found the limiting 
distribution of maximum deficit for the nonstationary 
dependent net input process of gT + oTEp,T where 

g and o are the periodic mean and periodic 
T 1: 

standard deviation and E is the dependent or p,T 
independent stochastic component of the net input 
pr ocess . He gave the limiting ~istribution for the 
case of full regulation when g, = 0 as 

where 

IJn 
Lim P[-- < d) = F

0
(d/y) , -oo < d < oo 

n...... o Iii -· 
T 

v2 
• 1 • 2 r Pk 

k= l 

(2-12) 

(2-13) 

,, 

. 
,;1 
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where Pk is the mean correlation coefficient at lag 
k. 

In the case of full regulation the expectation of 
net input is zero, but when this value is positive, 
then he calls it "drift." The drift in fact corres­
ponds to the case of partial regulation. In one case 
of drift he considers the expectation of net input as 
c/ln which goes to zero as n goes to infinity as c 
is an arbitrary nonnegative constant. The maximum 
deficit in this case is denoted by 5 and its distri-
bution is given by n 

D 
Lim P [- n- < d] = F

0
(d; y, ~), -... < d < "' (2-14) 

n._ o Iii - o 
T T 

He also considered a case of continuous drift 
when the expectation of net input does not converge 
to zero under assumptions A given as: 

and 

(1) Net input x1 is i. i. d variable 

(2) There exists a constant p ~ 0 such that 

- pXl 
E [ e ] = l 

-q > -"' (2-15) 

and x1 is nonlattice. 
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He found that the expected maximum deficit of 
i.i.d variables satisfying the above assumptions is 
a function of !n(n). 

A large number of references is available which 
contribute to the development of new approaches to 
the problem of s torage in finite reservoirs, such as 
authored by N. U. Prabhu, A. Ghosal , G. F. Yeo, 
E. H. Lloyd, H. E. Hurst, and many others. It is 
unnecessary to cite all those who have contributed in 
one way or another to the theory of water storage to 
its present level. Only contributions directly re­
lated to this study have been discussed. However, for 
a comprehensive view the interested reader is referred 
to review papers by Lloyd (1967), Lloyd and Odoom 
{1964), Thomas and Fiering (1962) and Yevjevich (1964). 

There are two characteristic features of most of 
these contributions which put them firmly in the 
domain of pure rather than of applied mathematics. 
The first of these features is the restriction ·to 
independent inflows (in the context of continuous 
t ime). The second feature which, while it contributed 
to mathematical elegance and tractability, has weakened 
the potentialities of the theory for engineering real­
ism, was the tendency to abolish the top of the 
reservoir (Lloyd, 1974). Thus the practical problem 
of finding reliably the storage capacity of a reser­
voir with partial or full regulation still remained 
unresolved. 



Chapter 3 
DIFFERENCE STORAGE CAPACITY 

3-1 Importance of Partial Water Flow Regulations 

The basic consideration in designing storage 
capacities for irrigation, power generation, water 
supply and other uses, is to determine the reservoir 
size. In its simplest form the problem may be con­
ceived as to determine the storage capacity required 
to secure a constant output equal to or cl ose to the 
mean supply. Unfortunately, the problem is not 
simple i n practice, where the percentage of develop­
ment may not only be less than 100\ but the output 
may also be periodic. 

The fact is that the storage needed to guarantee 
a constant output, with the required output smaller 
than the input mean, may be more important from the 
particular point of view than when they are equal 
(Fathy and Shukry, 1956). Actually, the notion of 
constant output exactly equal to the input mean is 
not even practical due to the following: 

(1) Input mean is not known in advance; 

(2) To produce always a constant output equal 
to the input population mean would theoretically 
require an infinite storage capacity; 

(3) Design based on the constant output equal 
to the input population mean would need significant 
part of storage capacity to be filled up at the start 
of operation to el iminate the empty reservoir states, 
with the amount of this initial storage diffi cult to 
determine beforehand. The flow regulation must 
necessarily deviate from an ideal program visualized 
for this constant output equal to input population 
mean; and 

(4) A small reduction in the constant output 
below the input population mean leads to a relatively 
large reduction in the storage capacity needed . This 
allows for a reduction in the constant output, to be 
less than the input sample mean, because it serves 
as a factor of safety (because of the errors in esti­
mated input mean) and as a way of securing a great 
economy in cost with a little sacrifice in benefit. 

With these considerations in mind, the writer has 
decided to tackle this problem as a general case, 
namely of an output being smaller than the input popu­
lation mean. 

3-2 Definition of Difference Storage 

As already mentioned in Section 1-3, short inter­
val flows, such as daily flows, are the inputs to the 
reservoir in this study, represented mathematically 
by 

Xp, T = ~T + OT Cp , T (3-1) 

The daily output from the reservoir is represented 
mathematically by 

Yp,r = qT (3-2) 

The periodic components of input and output may be 
fitted by harmonic functions as given by Yevjevich 
(1972a). Their general form is 

v = v + 
T 

m 
L (A.cOSA.T + B. sinA.T) 

jzl ) J J J 
(3-3) 

where v
1 

=any periodic parameter, e.g., ~,. o
1

, q
1

; 

v =the mean of t he periodic parameter; A. = 2~j/~6S 
J 

for annual periodicity of daily values; m = the number 
of harmonics describing a periodic parameter; and p 
and T as defined in Chapter I. 

The net input into a reservoir is defined as ·the 
difference series {x - q }. p , T T 

The stochastic part of input is o, cp,t' while 

tho stochastic part of output is assumed zero. Hence, 
the stochastic part of net input into a reservoir is 
a c given by {x - ~ j , It may be noted that 

T p,t p,t T 
the series o c can be defined as input having 

T p, T 
a periodic standard deviation and zero mean. It 
could also be defined as the net input into a reser­
voir with periodic output being equal to the periodic 
input mean. 
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' 
The .to:tal.. .6-toJt.a.ge. ca.po.c.Lty needed for a sample 

size is defined as the e.xpe.cte.d maximum deficit of 
the net input. 1~e distribution of this maximum 
deficit is estimated by generating a number m of 
net input series for a given sample of size n, and 
finding the frequency distribution of the maximum 
deficit . The total storage is then estimated by 
the mean maximum deficit of this frequency distribu­
tion. The maximum deficit for each sample is obtained 
by a sequent-peak algorithm. 

The J.:toc.htU..:ti.c. J..tOJt.a.ge. ca.po.c.Lty is defined 
analogously as the e.xpe.cte.d maximum deficit of the 
stochastic net input. It is estimated by generating 
a number m of sample size n of stochastic net 
input and then finding the mean maximum defi cit. 

The dioo~e.nc.e. J.:to~e. is defined in this paper 
as the value of storage obtained by subtracting the 
expected maximum deficit of the stochastic net input 
from the expected maximum deficit of the net input, 
or 

(3- 4) 

where 

with Sd(n) = the difference storage, St(n) = the 

total storage, and Ss(n) • the stochastic storage , 

the total s torage is estimated by the mean of maximum 

deficit Dt of the net input c~ - q + 0 E } n , T T T p,t 
series , while the stochastic storage is estimated by 

tho mean of maximum deficit Ds of the stochastic n 
net input {a c } series only . The difference 

T p,t 
between these two is the estimate of difference 
storage. It is in fact the storage required due 
to an additional term c~, - q,) in the net input 

series . Since this term is deterministic, the 
difference storage required may be approximately 
constant for large values of n. 

.· 

" 

,, 



Since the total storage of Eq. (3-4) is a func­
ti~~ of the periodicity of input and output, the 
dlftorence storage is a function of harmonics of means 
o f water supply and water demand, or of their fre­
quencies, amplitudes, and phases. 

3·3 Aim of this Chapter 

The aim in this chapter is to investigate the 
behaviour of difference storage for different values 
0 f n with the help of computer simulation of a 
porio~ic-stochastic input and of any deterministically 
~hang1ng output. It will be shown from computer re­
~ults that asymptotically the value of difference 
storag~ is approximately constant within the sampling 
varut1on, at least for a sufficiently high level of 
regulation. This can be estimated by generating a 
short length of daily flow series. This value of the 
d~fference storage, appr~ximately constant, called as 
~oo~ence hto~ge cap~~y, can in turn be used for 
the design of a reservoir with a long economic life. 

3-4 Model Used for Input Process 

. To study the behavior of difference storage for 
var1ous values of n, the periodic-stochastic input 
or daily discharge series for selected series lengths 
are generated by using the hame tape of 250,000 
s tandard normal random numbers rather than generating 
new random numbers for different runs, resulting in 
some common random numbers in some series. ll'ith the 
assumed given output, the difference storage is then 
estimated for various values of n after the values 
of total and stochastic storages have been found. 

The periodic-stochastic process is generated 
(Yevjevich, 1966) by using 

X p,t ~ + 0 (y + s ~ ) 
T T y p,t (3-5) 

with Y and. sY.= the mean and standard deviation 
of (x - 1.1 ) /a . c h p,r 

1 1 
p, T t e dependent or indepen-

dent stationary stochastic component with mean zero 
and standard deviation unity. Quimpo (1967) has 
inferred that the stochastic component of daily flows 
approximately follows the second-order Markov model . 
E is, therefore, represented as p, T 

c p,T (3-6) 

where 

(3-7) 

~p,T m t he independent standard random numbers, 

assumed as normal in this investigation, where the 
i nterest is only for asymptotic results as outlined 
in Chapter IV. Its distribution is not i mportant 
because for large values of n, the partial sums are 
asymptotically normally distributed. 

To generate the daily flows by Eq. (~-5) the 
fol lowing values of y, s , and ~ are assumed· y t • 

y 0.034, sy = 1 . 174, a
1 

= 0.5418, a2 = 0.3193 , and 

Or = 543.498 + rm (A . cos .l. s · , ) (3-8) .T + .s1n "J.t 
j = 1 mJ J m) 

0 
T 

288.370 + rm (A .cos .l. t + B .sin .l. ) 
j=l SJ j SJ jt 
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The values of Am, Bm· As, and Bs are given for 

various harmonics in Table 3-1. 

Table 3-1. Fourier Coefficients of Periodic Mean and 
Periodic Standard Deviation used for 
Generating the Input Process 

Fourier Coefficients Fourier Coefficients 

of Periodic Mean of Periodic Standard 
Deviat i on 

Harmonic A B A B 
m m s 5 

1 - 200 . 30 - 112.40 - 123.30 85.60 

2 145.40 185.00 141 .60 105. 70 

3 85.50 79.90 66.40 46 . 20 

4 58.00 65.60 75.70 31.70 

5 39 . 80 72.50 47.20 43.20 

3- 5 Characteristics of Total Storage Capacity 

The properties of the total storage affecting the 
computation of difference storage are first discuss.ed. 

Rate of Increase of Total Storage Capacity of 
Periodic-Stochastic Process in Case of Different 
Percentages of Development. The rate of increase of 
total storage capacity with n depends on the desired 
percentage of development. The study has been carried 
out on generated samples of daily flows by Eq. (3-5). 
The expected maximum deficits for 100% and 90% develop­
ments are tabulated in Table 3-2 and plotted in Figure 
3-1, as an illustration of the effects of the level of 
development. It is clear that the rate of change of 
total storage increases rapidly as the level of develop­
ment approaches t he input population mean. This is 
also an intuitive conclusion, because for zero output 
no reservoir is required, with t he maximum deficit 
zero for every n. I t may be pointed out that, first 
the two curves in Fig. 3-1 do not seem to have the 
same asymptotes, and second, the confidence bands of 
the two curves widen with an increase of n, because of 
the reduction in the number of generated series from 
the same 250,000 random standard normal numbers. 

Table 3-2. 

Sample 
No. 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Total Storage Capacity for Different Con­
stant Outputs f or Periodic-Stochastic 
Process 

n in 
days 

365 

730 

1095 

1460 

1600 

1825 

2190 

2920 

3200 

3650 

Type of Output 

100% 
Development 

27637.901 

43237.297 

52228.577 

58408.543 

63472 . 517 

64837.067 

68806 . 653 

74232.883 

80364.674 

81963 . 895 

90\ 
Development 

20113.064 

29076 . 202 

34332.548 

37432.759 

39742.526 

40867.569 

42919.674 

45310.545 

47280.794 

47151.410 
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Fig. 3-1. Total Storage Capacity Versus Development 
Level for Periodic-Stochastic Processes: 
(1) 100\ Development, (2) 90\ Development. 

Effect of Phase Difference in Input and Output on 
Rate of Increase of Total Storage Capacity of Per iodic· 
Stochastic Processes. Input is generated by Eq. (3 - 5) 
and out put is assumed as 

qT 515.6 + A
1
cos AlT + A2cos A2t + s1sin A2T 

+ s
2
sin A

2
t (3-9) 

with Aj = 2wj/ 365 . Two cases are studied. The first 

case is: A
1 

• -344.00, s1 a +147.80, A2 = 79.00, 

and s
2 

= -46.10, so that the phase difference of the 

f irst harmonic i n input and output is appr oximately 
53°. The output is shown in Fig. 3-2 . 

Fig. 3-2. Values_of Periodic Output Within the Year 
with q • 515.6, and (~1 - o1) = 53° 
approx.t 
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The second case is: A1 = -187 . 21, A2 = 79.00, 

B1 • 324.24, and s2 • -46.10, so that the phase 

difference of fir st harmonics of input and output is 
90°, while the amplitudes of harmonics are unchanged. 

Total storage found for different n values for 
these two cases of differences in phases, are plotted 
in Fig . 3-3 . Though the curves (1) and (2) are almost 
parallel, the rat e of increase of total storage 
capacity as funct ion of n does not depend on phase 
differences of input and output harmonics , so long 
as the mean output is the same. 

St ------®,,"' 
/ ------./ 90,000 

. 
80,000 

n, days 
70,000L--.I.----L---_.l------'-

5500 6000 4500 5000 

Fig. 3-3. Total Storage Capacity Versus Phase 
Difference for Periodic-Stochastic Pro­
cesses: (1) Phase Difference ~1 - o1 = 
53°; and (2) Phase Difference ~l - o1 = 
90° . 

Effect of Phase Difference on the Total Storage 
Capacity. Figure 3-3 shows that for the same mean 
output the expected maximum deficit or the total 
storage capacity increases as the phase difference 
increases from 53° to 90° . 

3- 6 Characteristics of Stochastic St orage Capacity 

Effect of Output on Stochastic Storage 
As discussed in Section 3-2, the stochastic 
to a reservoir is defined by (x - u } . p , T T 

Capacity. 
net input 
It remains 

the same as long as the output is deterministi c. 
Hence, the stochastic storage determined as the expect­
ed maximum deficit of this series remains the same for 
all deterministic outputs . 

3-7 Characteristics of Difference Storage Capacity 

Asymptotic Value of Difference Storage as a 
Constant. It is reasonable to conjecture that since 
the difference storage is due to an extra determinis­
tic term (uT - qT) in the net input series over and 

above the stochastic net input series, and as such is 
not a result of any stochasticity, its value should 
at least be asymptotically constant. It may not be a 
constant for small values of n because the differ ­
ence storage is defined by Eq. (3-4), wherein both 
the total and the stochastic storages are functions 
of n . Hence the difference storage would become 
constant only when the rate of increase of the total 
storage and the stochastic storage with n is the 
same. Since the rate of incr ease of the t ot al storage 
depends on the level of development, as shown in 



Section 3-5, while the rate of increase of the sto­
chastic storage is independent of any deterministic 
output, as shown in Section 3-6, the asymptotic be­
havior of difference storage is studied separately 
for the two cases of the level of development. 

Case I. Full Development. In this case both the 
total and the stochastic storages correspond to the 
same 100% development with the differenc,e that the 
former has some phase difference and amplitude ratio, 
while the latter has a zero phase difference with an 
amplitude ratio of one. Assuming an amplitude ratio 
of one, both for the total and the stochastic storages, 
the difference storage, defined as the difference be­
tween total and stochastic storage, would just be the 
storage required due to an effect of phase difference 
in the net input series. 

The effect of changing the phase difference on the 
value of total storage was studied for the general 
case of partial development. The results so obtained 
from computer runs are already plotted in Fig. 3-3. 
It is found that, for the ~ame percentage of develop­
ment or for the 4ame annual mean output, the rate of 
increase of the total storage with n is independent 
of the phase difference between the periodic means of 
input and output. 

This is quite intuitive because the change in 
phase difference is responsible only for the fluctua­
tions of the net input process within the year. Hence 
it must result in the change of value of the total 
storage. So far as the stochast icity of the net input 
is concerned, i t is not affected in any way . There­
fore the rate of increase of the total storage with 
n should not be altered by the change in the phase 
difference for the ~ame level of development. 

Thus, taking the two special cases of 100% 
development or the full regulation of Fig . 3-3, 
curve (1), may correspond to an amplitude ratio of 
one and a phase difference of zero, i.e., qT is 

equal to ~, at all times within the year, while 

curve (2) may correspond to the full regulation with 
an amplitude ratio of one and a phase difference of 
more than zero. According to the definitions, curve 
(2) will give the total storage for this particular 
case, while curve (1) will give the stochastic st orage. 
It is then clear from Fig. 3-3 that the difference 
between curves (2) and (1), being the value of the 
difference storage, is a constant within the sampling 
variations for t his range of n values. 

This computer result can be supported by con­
sidering the special cases of the general result 
given by Troutman (1976). He considered a net input 
process as 

(3- 10) 

where \~ = net input and gT and o, are the 
p,T 

periodic mean and periodic standard deviation of the 
net input process. Comparing this with the net input 
process of this study, it is found that 

(3-11) 

He gave the limiting distribution of maximum deficit 
for the case of full regulation when g = 0 as 

T 

Lim P(Ot /o- nl/2 n~ n T < d) • FD(d/y) (3-12) 
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where y is def ined by hi4 Eq. (4-47) . From Eq. 
(3-12) the expectation of maximum deficit can be 
written as 

(3-13) 

where c1 is constant and t he second term o(n1/ 2), 

if constant , also satisfies Eq. (3-12) supporting the 
evidence of constant value obtained from Fig . 3-3. 

Let us now consider two special cases of the 
general result of Eq. (3-12). The first case is for 
an amplitude of one and a phase difference of more 
than zero . In this case Eq. (3-13) can be modified 
as per definition of total storage as 

S " c o n l / 2 
t 1 T 

+ (3-14) 

where d1 is a constant. The second case is for an 

amplitude of one and a phase difference of zero. In 
this case Eq . (3-13) can be modified as per definition 
of stochastic storage as 

+ (3-15) 

where d2 is also a constant . Since both total and 

stochastic storages have asymptotically similar func­
tions of In in Eq. (3-14) and (3-15), their difference, 
defined as difference s t orage , can be asymptotically 
constant. 

To test the validity of this asymptotically con­
stant value of difference storage, the daily flows are 
simulated by Eq . (3-5), and an output corresponding 
to 100\ development is considered in order to compute 
the total storage and the stochastic storage of a 
periodic-stochastic process. The difference storage 
is then obtained as the difference of these two 
storage capacities . The results so obtained are 
given in Table 3-3 and plotted in Fig. 3-4. 

From Fig. 3-4 it is seen that the difference 
storage first increases with an increase of n and 
then stabilizes to an approximately constant value of 
16270, which is obtained by drawing an average line 
on Fig. 3-4 after the difference storage starts 
oscillating about this line. The increase with n 
occur s because t he rate of increase of total storage 
for 100\ development is higher than the rate of in­
crease of stochastic storage until the two rates of 
increase with n become the same, to give a constant 
value of difference storage within sampling error 
limits, thereby supporting the conclusion arrived 
above regarding the asymptotically constant value 
of difference storage. 

If the hypothesis of expressing St and S
5 

by 

Eqs . (3-14) and (3-15) is truo, then the varianc~s of 
maximum deficit of net input and that of stochastic 
net input must be the same for each n in the region 
where the difference storage gets stabilized to a 

nearly constant value . Hence, the variances of Ot 
n 

and Os are calculated from the computer results 
n 

and given in Table 3-4. 

It will be seen from Table 3-4 that the variances 
of maximum deficits of net input and stochastic net 
input are nearly the same . Moreover, since the vari-



Table 3-3. Differ ence Storage for Various Values of n for Constant Outputs 
Corr esponding t o 100% and 90% nevelopments 

n 
in days 

365 
730 

1095 
1-100 
1600 
1825 
2 190 
2920 
3200 
3650 
4000 
4200 
4500 
4700 
5000 
5500 
6000 
6500 
7000 

s, 

0 

0 

Fig. 3-4 . 

Total 
Storage 

2763 7. 901 
-13237.297 
52228.577 
58-102 .543 
!>3-172.517 
6-<837 .067 
68806.653 
7-1232.883 
80364 .674 
81963.895 

1000 1:500 

2 4 

100'. Re.'tu 1 at ion 

St ochasti c 
Storage 

20894. 261 
31775.757 
38432.445 
43293.396 
46404.4 70 
48601 .4 79 
54253 .030 
57103. -157 
64692 . 777 
65005.850 

o{fference 
St orage 

t-743.640 
11461. 540 
13796 . 132 
151 15 .147 
17068. 047 
16235 . 588 
14553 .623 
I ~129. U6 
156 71.897 
16958.045 

-----.. ----------... - ... r~.!~":. __ 

16,210 

T,l,. • To~ro"u L.hnlt 

n, dcys 

2:500 :1000 )$00 
Jtars 

8 9 10 

Difference Storage Versus n for Constant 
Output Corresponding to 100% Development . 

Table 3- 4. Variance of Maximum Deficits of Net 
Input and Stochastic Net Input for 
Di fferent Values of n for Constant 
Output Corr esponding to 100% Devel opment 

n in days 
t 

Var[Dn] 
5 Var [Dn] 

xl.o8 x108 

1825 4.05 4 .56 

2920 6.51 6.32 

3650 7 .91 7.94 

ance of Dt grows as a function of n , bei ng almost 
n 

twice for n = 3650 than that of n = .1825 in Table 
3-4, it further supports t he hypothesis of expressing 
St and Ss by Eqs. (3-14) and (3-15) , which in turn 

supports the conclusion of asymptotically constant 
value of difference storage. 
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90\ Regulat1on 

Total St ochastic Difference 
St orage Storage Storage 

2011:3.064 781. 197 
29076.202 2699 . 555 
34332 . 548 4099. 8Y8 
37432.759 5!!60 .!>37 
39742 .526 61>6 1.':1-IS 
40867. 569 Same as for 77 33.9 JL) 

42919.674 1 oo·. - I J33:>.:>so 
45310 . 545 Devt>lopment - 11i92.':1 12 
4 7280. 794 17411.983 
47151.410 - 17854.440 
5035!>. 722 68832 . 532 - 18475 . 8l tJ 
50692.421 68796 . 583 - 18104.162 
50834.850 73403.330 - 22568.480 
48742.237 72133.919 - 23391.68.3 
5094 7 . 593 73627.779 - 22680 . 180 
51960.668 80884. 754 - 28924.080 
53914.483 77517.978 - 23603 . 490 
54492.398 82766.646 - 28274.240 
55011. 934 79719.656 - 24707 . 720 

Case II. Partial Development. It has already 
been concluded that in case of full regulation the 
changes in phases etc., of periodic means of net 
input result in the same rate of increase of t otal 
and stochasti c storages, as these changes do not alter 
the stochasticity of the net input process. Since 
in the case of partial development with q less 

1 

than ~t ' the stochasticity of the net input remains 

t he same, the expectation is that a&ymto~catey the 
t ot al and stochastic storages may stil l grow with 
the same function of In . If this is true, then the 
asymptotic value of the difference s t orage would be a 
constant reflect ing the properties of the periodic 
component of the net input process . 

Troutman (1976) studied the problem of partial 
regulat ion for the case of i.i . d net input random 
variables, Xi' under the assumption that there 

exists a constant p F 0 such that 

and 

E[X -pX. J . · i e 1 = - q ·' 

wher e X. is non- lattice. 
l 

For example, this assump­

tion is sati sfi ed if Xi is normal l y distributed 

the mean ~ and the variance cr2. In this case 

p = 2~/cr2 and q = ~-

with 

These assumptions were made t o br ing the problem 
into the f r amework of random walk theory. Using the 
random walk approach he found that the expected maxi­
mum deficit f o-r the net input process of i. i. d 
variables, X., gro1~s asympt otically as a function 

1 

of tn n rather than the In corresponding t o the 
case of ful l regulation . Since periodicity did not 
change the asymptotic behavior for full ·regulation it 
may not change the asymptotic behavior here. Hence, 



it is not clear whether or not the expected maximum 
deficit of nonstationary independent process should 
grow as a function of tn n. 

To answer this question the daily flow series is 
simulated by Eq . (3·5) with the stationary stochastic 
component E as an independent standard normal 

p , T 
random variable, and a constant output corresponding 
to 90% development is considered to compute the total 
storage and the stochastic storage of a periodic­
stochastic process. The difference storage is then 
obtained as the difference of these two storage capa­
cities . The results so obtained are given in Fig. 3-5. 
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24,000 

22.0 

20,000 

18,000 
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10 15 
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8000)taro 
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Fig . 3-5. Total Storage and Stochastic Storage for 
Periodic-Stochastic Independent Process 
with Constant Output Corresponding to 90% 
Development: (1) Total Storage; and (2) 
Stochastic Storage. 

From Fig. 3-5 it is found that curves (1) and (2) 
corresponding to the total storage for partial develop­
ment and the stochastic storage (defined as a case of 
full development with qT = uT), nre almost si"milar 

in shape , indicating thereby that total storage for 
partial development may also grow with the same 
function of n as that of stochastic storage for large 
values of n (the values of n used in fig . 3-5 are 
of the order of 15-23 years). Since stochastic stor­
age grows as a function of In so the total storage 
may also grow as a function of In, so that the 
asymptotic rate of increase of total storage is 
independent of the level of development, which may be 
due to no alteration in the stochasticity of the net 
input process by changing the level of development. 

To further investigate the growth function of 
total storage for partial development, two regression 
lines are fitted to curve (1) of the total storage : 
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both as a function of In; and as a function of ln n. 
The two regression lines are 

st = 55.35 .~ • 18047.25 (3-16) 

and 

st • 1981.i::! ln n + 5142.14 (3-17) 

The two lines explain almost the same percentage of 
variance , the former explaining 91% while the latter 
93% . The two regression lines. are plotted in Fig . 
3-6 as curves (2) and (3). It is found that the two 
curves are almost the same in the region of study. 
The regression line fitted for the stochastic storage 
is 

S = 36.S5 10 + S025.53 s (3-18) 

It explains 80% of the variance and is sho~~ as 
curve (1) in Fig. 3-6 . 

24,000 s, .s, 

• Compultd from 
Simulated SornpiH 

CD 

n,days 

2~L---~--~--~--~--~--~--J---~ 
2000 4000 6000 eooo 10,000 

Fig. 3-6. 

years 

10 15 20 25 

Regression Lines of Total Storage and 
Stochastic Storage for Periodic-Stochastic 
Independent Process with Constant Output 
Corres.ponding to 90% Development : (1) 
Regression Line of Stochastic Storage; 
(2) Regression Line with ln n; and (3) 
Regression Line with 10 Function of Total 
Storage. 

The difference storage, obtained as the difference 
between total and stochastic storage from Fig . 3-6, is 
plotted in Fig. 3-7 . It is found from Fig. 3-7 that the 
difference storage capacity is appr oximately constant 
and i s equal to 14,400 within the errors of sampling 
variations. 

The above result may be because of the repeated 
use of the same random numbers for different values of 
n. Two values of difference storage corresponding to 
n = 2555 and n = 8760 were obtained by generating 
~66~~nt random numbers directly by the computer. 



Even then the values of di fference storage are of 
the order of 14,400 within sampl ing variations . How­
ever , this stabilization of difference storage, shown 
by curve (2) in Fig. 3-7, to an approximately constant 
value could result from the fact that curves (2) and 
(3) in Fig. 3-6 are almost the same in the region of 
st udy. 

20.000 s. 
------~~:~~~~------------------

10.000 

·--·~---------~--T.L.,9$.,. 

Fig . 3-7. Difference Storage Versus n for Constant 
Output Corresponding to 90% Development: 
(1) Difference Storage for Dependent Pro­
cess; and (2) Difference Storage for 
Independent Process. 

It i s expected that unless the total storage grows 
with t he same funct ion of In as the stochastic stor-

age, the variances of Dt and Ds would not be the n n 
same function of n in the region "''her e the differ­
ence storage is found to be approximately constant in 

Fig. 3-7 . The variances of D~ and D~ are, there­

fore , computed from the computer results and given 
in Table 3-5. The computed variances do not seem to 
grow as the t heor y dictates, which may be because of 
their not being very precise estimates . 

Table 3-5. Variances of Maximum Deficits of Net 
Input and Stochastic Net Input for 
Different Values of n for Periodic ­
Stochastic Independent Input and Constant 
Output Corresponding to 90% Development 

n in days Var[D~] Var[D~] 

xl06 x106 

4500 3. 78 3.41 

5500 3.55 3. 73 

6500 3.18 2.91 

7665 2.90 3.02 

8760 3. 93 3.33 

It is found from Table 3-5 that the variances 
of maximum deficits of net input and stochastic net 
i nput are nearly the same for l arge values of n, for 
which the difference storage is approximately constant, 
thereby supporting the contention t hat a4ymptotica!ty 
the total storage may grow as a function of In in 
the case of partial development too. This may be so, 
because the assumptions made by Troutman (1976) to 
bring t he problem in the frame work of random walk 
approach are true for hi s case of stationary indepen­
dent net input process . But the assumptions are 

certainly not true for the nonstationary independent 
process being studied herein, because in this case 
the reservoir level does not follow a random walk but 
in turn either goes on increasing during the flood 
period or goes on falling during the r ecession of the 
flood . However, since the computer results cannot 
prove or disprove a t heory, it is fe lt that further 
theoreti cal work must be undertaken .to determine 
whether the total storage or expected maximum deficit 
f or the periodic-stochastic input and t he determinis­
tic output grows as a function of In or !n n, or some 
other function for the case of partial development. 

The computer results of this analysis, however , 
lead to the conclusion that the difference storage 
becomes approximately constant within the region of 
study, corresponding to l arge val ues of n at least 
i n case of a hLgh level of development, namely of the 
order of 90% or so . 

Effect of Dependence in Stochastic Variabl e of 
Input Process. The dai ly fl ows are simulated by 
Eq. (3-5), and an output corresponding to 90% develop­
ment is considered to compute the total storage and 
stochast ic storage of periodic-stochastic process. 

' The results so obtained are given in Table 3-3 and 
plotted in Fig. 3-7 . It can be inferred from Table 
3- 3 and Fig. 3-5 t hat the dependence in stochastic 
variable increases both the total and the stochastic 
st orage, but the increase in the stochastic storage 
is greater than in the t otal storage. Hence, the 
effect of introducing the dependence in the stochastic 
var iable of the input process is to reduce the 
asymptotic value of the difference storage . In this 
particular case this value or the difference storage 
capacity gets reduced from 14,400 to (-) 25000 . 

Possibility of Negative Value of Difference 
Storage Capacity. It can be noted from Table 3-3 
that for 90% development the difference storage is 
negat ive . It is justified because of the fact that 
the tot al storage needed for the reservoir depends 
on the output, while the stochastic storage is 
i ndependent of output as per Section 3-6. Hence, as 
the output is reduced the total storage is r educed, 
while the stochastic storage remains the same. Thus 
a limit can be conceived when the output is too l ow 
such that the total storage required is less t han the 
stochastic storage. The difference storage, being the 
difference between these two, would t hen be negative. 

Intuitively it can also be conceived. As already 
explained in Section 3-2 , the diff erence storage is 
the storage required because of the additional term 
(~T - qt) in the net i nput serieS OVer and above the 

stochastic net i nput series. If qt is assumed to 

be equal to or smaller than the l east value of lJt 

during the year, then there will be no requirement of 
storage due to c~T - qt ). Rather an extra supply of 

lJt would r educe the storage requirement of the sto­

chastic component of the i nput process, thereby 
explaining the possibi lity of negative difference 
storage. This explains t he feasibility of conceiving 
the negative difference storage capacity . 

Percentage of Development. It is obvious that a 
lower percentage of development would require a lower 
capacity of the reservoir . But since the stochastic 
storage is independent of the percentage of develop­
ment, the reduction in the required storage capacity 
should be aff ected by the correspondi ng reduction in 
the value of the difference storage. Referring to 
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Figs. 3-4 and 3-7, it may be noticed that there is a 
drastic reduction in the value of the approximately 
constant difference storage from 16, 270 to (-) 25000 , 
as the percentage of development i s reduced from 100% 
to 90%, a fact recognized by Hurst (1951). who observed 
that a small reduction in the guaranteed output from 
the maximum value (the mean) makes a great proportion­
al reduction in the storage required to maintain it. 

Effect of Phase Difference of Input and Output. 
The phase lags between the input and output harmonics 
have a bearing on the total storage and consequently 
on the value of t he difference storage, as the sto­
chastic stor age is independent of the phases of 
per iodic components of input and output . To save 
com~uter t ime only two harmonics in the periodic mean 
of 1nput are taken in Eq. (3-8) instead of five. The 
phase lag of the first harmonic of input and output 
was varied, and the values of difference storage cal­
culated are given in Table 3-6 and plotted in Fig. 
3-8 . lt is clear from Fig . 3-8 that the difference 
s torage is a function of the phase difference between 
input and output. 

Effect of Amplitude of Output. The study has 
been conducted similar to above except that the 
amplitude of output is varied keeping the same phase 
difference between the firs t harmonic in periodic 
means of input and output. The results are given in 
Tabl e 3-6. It shows that even for the same phase 
difference between input and output the difference 
storage increases dir ectly with the increase of the 
amplitude ratio. 

By studying various factors affecting the 
di fference storage, it is concluded that a6ymptoti­
cally i t s function is 

(3- 19) 

where Sd s the asymptotic value of difference stor­

age, p • the percentage of development, ~i = the 

phase difference of the i-th harmonic of input and out­
put processes , and ri = the ratio of ampli tudes of 

output and input harmonics. 

3-8 Stabilization Region for Difference Storage 
Capacity 

So far it has been found from computer results 
that for large values of n t he difference storage 
is approximately constant. However, the question 
arises , after what values of n the difference 
storage would stabil ize to an approximately constant 
value so that the same may be adopted in the design 
of reservoir with a long economic life beyond this 
value of n. Figs. 3-4 and 3-7 show that the 
asymptotic value of differ ence storage can be found 
by simulation . But there is always a transition re­
gion wherein the difference storage either increases 
or decreases continuously till it attains an approxi­
mately constant value. This transition r egion is 
called here as the stabilization region. In Fig . 3-4 
this region is for n < 1600 while in Fig. 3- 7 it is 
for n < 5000 . The length of stabilization region 
thus determines the minimum length of a series to be 
simulated i n using this method of determining the 
asymptotic value of difference storage. Hence, the 
longer the stabilization region, the more is the 
effort needed in finding t his value. 

Jose D. Salas-La Cruz (1972) analyzed the above 
problem wi th a different definition of differ ence 
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storage . His analogous term is deterministic storage, 
which he defined as the difference of the expected 
range of net input series and the expected range of 
stochastic net input series . Though his definition 
of deterministic storage is different fr om the 
definition used in this study, there is an analogy 
between his results with those obtained in this study. 
He found through generation that in case o'f monthly 
periodicity of mean and standard deviation, there is a 
transition region where the influence of phases of 
~, and o, was significant, namely the region for 

n < SO. Beyond this value the deterministic storage 
becomes approxima tely constant. 

It is the conviction of this writer that the 
transi tion region, or t he stabilization region as 
called i n this study, is not only due to the influence 
of phases of ~t and a

1
, but it also depends on the 

level of development. In fact, it mainl y depends on 
the rate of increase of total storage vis-a-vis the 
rate of increase of the stochastic storage with n. 
As explained i n Section 3-7, t he difference storage 
would become constant only when the total and the 
stochastic storages have the same rate of increase 
with n. Since the rate of increase of total storage 
changes with the percentage of development , being 
higher with higher development and lower with lower 
development, the stabi l izati on region would be l onger 
for partial regulat ion than for full regulation . 
This is shown heuristically below. 

Derivation of Stabilization Region . The heuristic 
condition for the stabilization of difference storage 
to an approximately constant value can be written as 

dSt dS 
~ = dn s (3-20) 

Consider two different percentages of development to 
find out the difference in the lengths of stabiliza­
tion region . 

Case I 100% development 

Let St (p) and Sd (p) denote the total and 

the difference s t orages for p \ development and 
is the stochastic storage such that 

s s 

(3 - 21) 

(3-22) 

wher e a and b are proportionality constants and 
c and d are t he powers with which the total and 
the s tochast ic storages vary with n as ap~o~onb 
to the true laws of variations of St and Ss with 

n. Then for the region of r. where Sd is approxi­
mately constant 

dS s 
~ 

c-1 a c n 
(3-23) 

(3-24) 

~ow the difference storage would attain approximately 
constant value only when the rate of increase of total 
storage and stochastic st orage with n is the same. 
Let this point correspond to n • n(lOO) . Therefore, 
Eqs. (3-23) and (3-24) should be equal at n = n(lOO), 
so that 



Table 3-6. Difference Storage for Various Phase Differences 

Rn io of 
Amplitudes 

Phase 
Difference 
($-6) 

o• 
45. 

90" 

180" 

270. 

315° 

360 

Total 
Storage 

34949.502 

44594.600 

55962.799 

67028.761 

57903.536 

44584.040 

34949.502 

1.0. 

Stochastic 
Storage 

34949.502 

Difference Total 
Storage Storage 

0.000 42460.495 

9645.099 

2101.3. 297 69196.871 

32079.259 82872.141 

22954.034 71724.346 

9634.547 54391.172 

o.ooo 42460.495 

2.66 0.0 

Stochastic Difference Total Stochastic Difference 
Storage Storage Storage Storage Storage 

34949.502 7510.994 44356.935 34949.502 9407.433 

34949.502 34247. 369 

47922.639 

36774.844 

19441.670 

7510.:994 

Note: (1) These values have been found for n s 1460 days; 

(2) Periodic mean of input ~t • 543. 498 - 200.30 cos l 1t - 112.40 sin l 1t • 145.40 cos l 2t + 185 .00 sin A2t; 

(3) Periodic output, qT • 543.498- A1 cos l 1t - 81 sin A1t ; and 
(4) A

1 
and 8

1 
are varied to got different phase differences for the given amplitude ratio. 

sd 

45,000 

40,000 

35,000 

30,0 

25,000 

20,000 

15, 00 

r=O 

90° 180° 270° 
Phose Difference , 1/1

1 

Fig. 3-8. Difference Storage Versus Phase Difrerence 
~l Corresponding to n • 1460 for 

or 

Different Amplitude Ratios, r. 

c-1 
a c [n(lOO)] b d [n (l OO) ]d-l 

(c-d) ln[n(lOO))=Ln b + Ln d- Ln a- Ln c • 

(3-25) 

(3-26) 
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Case II p\ development 

Now (3-27) 

while Ss is still given by Eq. {3-22), because it 

does not depend on the output. Therefore, 

dSt(p) 
~ s h c nc-l (3-28) 

Assuming Eqs. (3-24) and {3-28) to be equal at n = 
n(p), then 

h c (n(p)jc-1 b d (n(p)]d-l 

or 

(c-d) ln [n (p) ] : Ln b + ln d -in h - Ln c • 

then on dividing Eq. (3-26) by Eq. (3-30) 

tn ln(loop 
l1l [n(p) 

Ln b + ln d -in a - Ln c 
l1l b + l1l d -lll h - li1 c 

(3-29) 

{3-30) 

(3-31) 

Now for the stabilization region of partial regulation 
to be longer than the full regulation, n(p) should 
be greater than n(lOO) i.e., the denominator in Eq. 
(3-31) should be more than its numerator. Therefore, 

ln b • Ln d - Ln h - Ln c > .t.n b + .t.n d - Ln a - Ln c 

or 

-.tn h > - .tn a 

or 

a > h (3- 32) 

This means the rate of increase of total storage ~ith 
n is more for 100\ development than for p\ develop­
ment, when p i s less than 100\ for partial regula­
tion. This holds always true under the above assump­
tions as per Fig . 3-1. Hence the initial assumption 
of n(lOO) < n(p) is also true. 

It is thus concluded that the length of stabili­
zation region is inversely proportional to the level 
of development. 



Effect of Dependence of Stochastic Component of 
Input on Stabilization Region. So far only the effect 
of changing the rate of increase of total storage with 
n for different percentages of regulation has been 
considered on the length of stabilization region. 
However, since the difference storage depends on the 
stochastic storage too, so the rate of increase of 
stochastic storage with n should also be considered 
for various conditions . 

The rate of increase of stochastic storage can be 
varied by changing the dependence structure of sto-
chastic variable c of the input process . The p,T 
difference storage, obtained for the two cases of 
dependent and independent structure of cp,t ' is 

given in Fig . 3-7 . It is found from Table 3-3 
and Fig. 3-5 that by removing the dependence from the 
stationary stochastic component E of the input p,T 
process, the rate of increase of the stochastic sto­
rage becomes reduced much more than the reduction 
affected in total storage. Hence for 90% regulation, 
where the rate of increase of stochastic storage is 
greater than the rate of increase of total storage for 
a depend.ent process, the length of stabilization re­
gion sho·uld reduce by removing the dependence of the 
stochastic component of the input process. This is 
clear in Fig. 3-7, where the difference storage has 
stabil iz.ed at n " 3650 against n = 5000> for the 
dependent process . 

3-9 Estimation of Difference Storage Capacity 

Since difference storage depends on many factors, 
no general curves can be plotted. However, the good 
point is that it becomes stable after a small value of 
n, thereby reducing the length n of daily flow data 
in order to estimate the total and stochastic storage 
to compute the difference storage. For instance, 
for a reservoir with economic life of 100 years, 
the difference storage capacity could be estimated 
from a daily flow subseries length of 4 years for 
100% development, and 15 years for the 90% development . 
The following are the t wo ways by which the value of 
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difference storage capacity can be estimated in 
practice. 

(1) By using the actual daily flow series; and 
(2) By simulating the daily flow series. 

The method of using the actual data would be 
applicable only at those sites where t he record 
available is long, so as to give reasonably accurate 
est imates of the total and stochastic storages. 

The method of using the simulated daily flows 
is applicable for all sites with short record of data. 
The main advantage is that the procedure does not 
require the simulation of daily flow series length 
equal to the economic life of the reservoir. The 
following are the steps to be followed in estimating 
the difference storage capacity by this method: 

(a) Find the significant harmonics of the 
periodic mean and periodic standard deviation; 

(b) Remove periodicity from the series by 
(xp,T - 0T)/GT; 

· (c) Standardize the residual series ; 
(d) Fit a Markov model to the series obtained, 

by estimating the autoregressive coefficients from 
the correlation coefficients of the standardized 
series; 

(e) Simulate the daily flows by Eq. (3-5); 
(f) Estimate the total storage by finding the 

mean maximum deficit of the net input series for a 
given output; 

(g) Estimate the stochastic storage by finding 
the mean maximUIIl deficit of stochastic net input 
series; 

(h) Difference storage represents the difference 
of the total and stochastic storages; and 

(i) Repeat the above procedure for different. 
values of n, till the value of difference storage 
becomes approximately constant . This constant value 
is the difference storage capacity, to be adopted in 
the design of reservoir with long economic life. 



Chapter 4 
STOCHASTIC STORAGE 

4-1 Definition of Stochastic Storage 

Let x be the daily discharge at day ' of p,< 
the year with the earlier given definition of p and 
T. It can be represented mathematically by 

X p,< IJ + 0 E: 
1 T p,< (4-1) 

In Eq. (4-1). u, is considered as the deterministic 

input and o c as the stochastic input. As regards 
T p,t 

output, its deterministic portion has already been 
dealt with in Chapter III; however, its stochastic 
component if any must be considered. Since output 
Y was assumed to be deterministic in this study, p,T 
the stochastic output will be assumed zero, which is 
equal to the expected value of the stochastic input 
o c Hence the stochastic storage could be defined T p,T 
either on the concept of range or on maximum deficit. 
However, it may be recalled from Chapter III that the 
total storage has been defined on the concept of maxi­
mum deficit and hence the stochastic storage, if de­
fined on any other concept like the range or tho ad­
justed range, would not stabilize the asymptotic value 
of the difference storage to a constant. To exploit 
this property of the difference storage i n the design 
of reservoirs, the stochastic storage must be defined 
on the concept of maximum deficit, which turns out to 
be more economical than design based on the concept of 
range even for the case of full regulation. Hurst 
(1951) states that if the output from a reservoir over 
a period is kept steady at tho mean, the range of the 
progressive sums of departures from the mean is equiva­
lent to the storage required to keep this constant 
output. However, it may be claimed that even in the 
case of a full regulation (alternate expressions are 
the regulation on the mean or the complete regulation 
or 100\ development) the storage required should be 
defined on the concept of maximum deficit rather than 
on the range. 

Let consider a realization of the st ochastic 
process as per Fig. 4-1. If the range is accepted as 
the criterion for design of storage capacities, then 
the storage required is ~n' i.e., the reservoir empty 

at b and full at c. This means the operation should 
start ~ith an initial quantity of water in reservoir 
equal to V and the future operation would start with 
the quantity (V+Sn) . Since d1 < dn, t 'here is no 

point in assuming the reservoir full at ~. when one 
could easily meet the demand through this reali zation 
by assuming the reservoir full at a and c1 and 

spill the water between the time period of points c1 
and c. The spill is equal to S such that S • Sn, 

and hence the reservoir would start again with the 
quantity V for the futuro operation. This assump­
tion of reservoir full at a and c1 and empty at 

b is the basis of maximum deficit analysis or the 
sequent-peak method, which gives the r equired storage 
capacity as dn instead of ~n· In this particular 

realization d < ~ , while considering any other 
n n 

realization of this process as per Fig. 4-2, it can be 
seen that dn • ~n· Thus, it can be said that 

(4-2) 

19 

c 

b 
n 

Fig. 4-l. Example Showing the Value of ~~ximum Deficit 
Being Less than the Range . 

b 

~------------------ n 

Fig. 4-2. Example Showing the Value of Maximum Def icit 
Being Equal to the Range. 

This proves that the design based on the maximum 
defici t analysis would require the capacity of a res­
ervoir l ess or equal to that based on the analysis of 
the range, and consequently is more economical to apply 
in practice . Hence in spite of the stochastic output 
being equal to the expected value of stochastic input, 
thereby having a case of full regulation, the stochas­
tic storage is defined in this study as the expect ed 
maximum deficit of the stochastic net input series . 

Since the stochastic net i nput, o c , is non-
T p,t 

stationary due to the presence in it of a periodic 
parameter, o, , the general approach to find the st ochas-

tic storage would be to find the expected maximum 
deficit of a stationary process t , if t is p,T p,T 
stationary of the second or third order, and then con­
vert the same to pr oduce the stochastic storage for the 
nonstationary process, o £ • 

T p,T 

4-2 Dependence Model of Stationary Stochastic Component 
of Input 

It has been shown by many investigator s that the 
variable £ obtained by removing the periodicity 

p,T 
in the mean and the standard deviation is only approxi ­
matel y a second-order stationary dependent or indepen­
dent time series . General m-th order autoregressive 
linear dependence models have been used by many 



investigators (Yevjevich, 1964: Roesner and Yevjevich, 
1966; and Quimpo, 1967) for determining the dependence 
structure of annual, monthly, and daily precipitation 
and runoff series. Since the daily flow is the input 
to the reservoir in this study, the stationary sto­
chastic component of daily flow series is assumed to 
follow a second-order Markov model, as an average case 
between the use of the first-order model (currently 
often used in practice), and the likely need for the 
third and higher order models, namely 

where s is given by Eq . (3-7), with a
1 the estimates of a1 and a

2
. 

and 

(4 -3) 

as 

The basic question in the model of Eq. (4-3) is 
whether or not a 1 and a

2 
are periodic. Yevjevich 

(1972) s tated that the autoregressive coefficients a
1 

and a 2 are usually nonperiodic parameters for the 

precipitation series and the series of river flows 
which are mainly produced by rainfall. However, the 
river flow series of mixed rainfall and snowmelt con­
tribution to runoff may usual ly have periodic auto­
correlation coefficients, pk , and consequently per-

,t 
iodic autoregressive coefficients a. Therefore a 

J,t 
sensitivity analysis should first be carried out for 
the expected maximum deficit of Eq. (4 - 3), by using 
variation in autocorrelation coefficients as per Fig. 
4-3, and then taking their average val ues to ascertain 
the effects on the deficit . The autoregressive coef­
ficients are related to autocorrelation coeff icients by 

(4 -4) 

and 

(4-5) 

with the p-values estimated by the r-values, and by 
using the r -values in Eqs . (4 -4) and (4-5) , al,t-l 

and a2,t_2 are comput ed as the estimates of a l ,t- l 

and a2,t_2, respectively. 

Two different second-order autoregressive series 
of model of Eq. (4-3) were generated, one with the 
periodic autoregressive coefficients given by Eqs . 
(4-4) and (4-5) , and the other with the constant auto­
regressive coefficients. The expected values of the 
maximum deficit obtained for the two cases are plot ted 
in Fig. 4-4. 

From Fig. 4-4 it can be concluded that the mean of 
maximum deficit is not affected substantially by the 
fluctuation of autocorrelat ion coefficients, whether 
taken periodic or constant. The study has not been 
conducted with various shapes of variation of periodic 
autocorrelation coefficients, because the same has been 
carried out for the case of expected range by Salas 
(1972), and he too arrived at the same conclusion . 

It is, however, interesting t o see as to how the 
assumption of constant autoregressive coefficients in 
model of Eq . (4-3) compares with values obtained from 
the actual data. Th·e s tudy is conducted on the Oconto 

p 
0 .8 k1 T 

0.6 

0.2 

100 150 200 250 300 

Fig . 4-3. Variation of Correlation Coefficients During 
the Year: (1) Curves of Periodic AutocQr­
relation Coefficients, pl t = 0.40, S(P1 t) 
= 0.23, p2 = 0.25, s(p2• ) = 0. 144 ; ' 

20 

E ( Dn) 

80 

IT 'T 
and (2) Curves of Constant Autocorrelation 
Coefficients , p

1 
= 0.40 , and p2 = 0 . 25 . 

,T , T 

For ~eriodic p
1 

, T 

60 and p2 , T 

• For Constant p
1 

, T 

and p , T 
2 

n,days 
407LO-O~L--9~0-0--~--I~I0-0--~--~3~0-0--~-,~5~00~ 

Fig. 4-4 Expected Maximum Deficit for Different 
Values of n Corresponding to Periodic and 
Constant Autocorrelation Coefficients. 

River. The periodicity of its 40 year daily flow data 
was removed in the mean and in the standard deviation 
and the second-order Markov model was fitted to its 
stochastic component. The details of the analysis are 
given in Chapter V, in Tables 5-l through 5-3. 

The second-order stationary series for n = 730 
with two estimated autoregressive coefficients are 
simulated and the mean and standard deviation of maxi­
mum deficit found as E(Dn) s 108.41, and IVar(Dn) s 

56 . 58. With the help of the standardized distribution 
of the maximum deficit given in Fig. 4-8, the value of 
1naximum deficit at 90\ confidence level is On (90\) '" 

E(D ) + 1.6(Var(D )] 112 = 108.41 + 1.6 x 56.58 = 198.94. n n 

For the 40-year daily flows of the Oconto River 
broken into 20 series, each with a 2-year length, the 
periodicity of each subseries is removed by (xp,t -

~T)/oT with ~t and at estimated from the whole 

data. The maximum deficits of the twenty series so 
obtained are given in Table 4-1. If the actual data 
comes from the population of Eq. (4-3), with the 



constant autoregressive coefficient s, then the 90% of 
the subseries of actual data should have the maximum 
deficit less than the value of 198.94, obtained above. 
From Table 4-1 it is found that only three values are 
greater than 198.94 with the third value of 200.34 
close to it . Hence it can be assumed that at 90% 
confidence level the actual data comes of the popula­
tion of Eq. (4-3). It is then concluded that the 
further study could be carried out only with the con­
stant autocorrelation coefficients, and consequently 
autoregressive coefficients. 

Table 4-1. Maximum Deficit of Different Series of 
Length 730 Days of Stochastic Component of 
Actual Data of Oconto River 

Series No. Maximum Deficit 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
1.3 
14 
15 
16 
17 
18 
19 
20 

150.99 
131 . 52 
140. 92 
166.72 
238.82 
196. 74 
160.49 
137.71 
174.39 
145.93 
113.48 
196.87 
177.55 
153 . 97 
143.68 
190. 22 
101.82 
200.34 
178.54 
224.52 

4- 3 Determination of Stochastic Storage 

Salas (1972) has found that the stochastic storage, 
defined as the expected range of the stochastic net in­
put, is a function of mean and standard deviation of 
a , the dependence p of the stochastic component of 

T 

i nput and n. Therefore the stochastic storage can in 
principal be expressed by 

(4-6) 

where aT and s(aT) denote the mean and the standard 

deviation of the periodic standard deviation, while P 
denotes the dependence of the stationary stochastic 
component c The dependence expressed by p may p,T 
be of any Markovian type model. A function f 1(l,O,O), 

similar to that of Eq. (4-6) , may be defined with_the 
expected maximum deficit of this process having aT • 

1, s(a,) = 0 and p = 0, i.e., the expected maximum 

deficit of an independent process with the standard 
deviation of 1. 

To obtain the stochastic storage of a nonstation­
ary process given by Eq . (4-6), the basic hypothesis 
is to separ ate the effect of dependence in cp,T from 

the effect of nonstationarity due to the periodic aT. 

With t his objective in mind, the expected maximum de­
ficit may be investigated fo·r the following four types 
of functions, 
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f2 = f2(1,0,p) 

£3= £3[oT, s(oT), OJ 

and 

(4-7) 

where f
1

, f
2

, f
3

, and f4 can be interpreted in rela­

tion to Eq. (4-6) similarl y as the interpretation Qf 
£1(1 ,0,0) given above. Then the stochastic storage in 

the form of the function f4 can be expressed mathema­

tically in accordance with the above hypothesis by 

f4 (oT, s(oT), p) : crT(f2(1,0,p) - fl (1,0,0)) + 

+ f 3(o, s(o ), o] 
T T 

(4-8) 

It may be noted that the expression [f2 (1,0 , p) -

f 1(1,0,0)] of Eq. (4-8) represents the increase in the 

expected maximum deficit due to dependence in the 
stationary stochastic component e , with a standard p,T 
deviation equal to one, while f 3 [ifT, s (o,L 0) re·pre-

sents the effect of nonstationarity by way of the ex­
pected maximum deficit of a nonstationary independent 
process. 

From Eq. (4-8) it is clear that if the values for 
f 2(1,0 ,p) and f 3 [oT, s(oT), 0] are known, then the 

stochastic storage in the form of f 4 [oT, s(oT), p) can 

be estimated. The first step is to find the value of 
f 2(1,0,p), which is the expected maximum deficit of a 

stationary dependent process with mean zero and stan­
dard deviation unity for the case of full regulation. 

Ex ected Maximum Deficit of Markov Models. Fran­
cisco L.S. Gom de 1975) dealt with the theoretical 
analysis of maximum deficit for the independent pro­
cess, and gave the asymptotic expected maximum deficit 
as 

E(D ) = 1.2533 lfl , n 
(4-9) 

and 
Var(Dn) = 0 . 2611 n (4·10) 

He stated that the next step, after solving the case of 
the independent process, was to extend the theory of 
Markov chains to the case of seasonal and correlated 
inputs. The extension to the case of seasonality in 
input was merely mentioned, and the extension to the 
correlated inputs was made only for the very simple 
cases because of the limitation found by Lloyd, namely, 
of a drastic increase in the size of matrices involved. 
Thus for a dependent process , the expression for the 
expected maximum deficit is not available in closed 
form, even for the simple first-order model, and l ess 
so for the higher-order Markov models, which the 
stationary stochastic coiDpQnent of the daily flow 
series may follow. 

Thus, the only alternative left was to go through 
the generation procedure. Before attempting any 
generation, the first question to consider was whether 
both cases are of interest, the finit e n and the 
asymptotic case . Whenever the design of a reservoir 
capacity is made for within-the-year fluctuations, the 
problems with either monthly, weekly or daily periodici­
ty i n inputs and outputs must be considered. Even in 



monthly periodicity in input, the value of n is 1200 
for a 100-year reservoir economic life, for which the 
asymptotic results should be well applicable. Since 
this study is concerned with the design of a large 
reservoir with daily flow data , the aSym?tOtic results 
are assumed well applicable. 

Representing the m-th order Markov model by 

m 

zt • L a. z. . + ., 
j=l ) t -J t (4-11) 

the samples of ~~rkov models of various orders are 
generated by using Eq. (4-11), with the autoregressive 
coefficients so chosen that they satisfy t he conditions 
of stationary processes, namely for second-order ~1arkov 
models 

(4-12) 

Assuming the 50-year economic life of reservoirs, the 
value of n for daily flow series would be approxima­
tely 18,000. Hence the thirteen series are generated 
for three different orders of Markov linear models, all 
three having the same sum of the autoregressive coef­
ficients. The distribution of 11t is assumed normal 

(0,1). The distribution of 11t is in fact not impor-

tant as per Feller's result of asymptotic distribution 
of the range being independent of the distribution of 
the underlying process, because the partial sums of 
independent random variables with finite variance are 
asymptotically normally distributed . The rcsul ts ob­
tained from generated samples are given in Tables 4 -2 
and 4-3 . 

It can be inferred from Tables 4-2 and 4-3 , that 
the sum rather than the individual values of autore­
gressive coeffici ents determine the distribution of the 
maximum deficit and the range. The results for the 
third-order model are given in Table 4-4. This latter 
table also supports the conclusion. 

The other interesting result is that the values of 
the range and the maximum deficit, etc . , for each series 
generated with the same random numbers but with the two 
different autoregressive schemes of the same sums of 
autoregressive coefficients, are almost the same (refer 
to Table 4-5). 

Example of Application on the Tioga River. The 
daily flow data of the Tioga River are taken to further 
study the hypothesis that the L a. is a determining 

) 
factor and not its individual values. Harmonic analy­
sis is performed on the mean and standard deviation 
of 365 daily values of the year, following the proce­
dure given by Yevjevich (1972a). The results are 
presented in Tables 4-6 and 4-7. After removing the 
periodici t y in the daily flows, its stochastic compo­
nent is fitted by the second-order Markov model. The 

Table 4-2. Percentile of Distribution 
Markov Model Used is z .. 

t 

of Maxi mum Deficit for Different Sums of the Autoregressive Coefficients. 
a1 zt - l + a2tt_2 + nt and n ~ 18,000 

0. 5 0.7 0.9 

Percentile 
of 

Percentile Percentile 
of of 

S.No. al a2 Distribution 
of MaxiiiiUIII 

al a2 Distribution a1 a2 Distribution 
of Maximum of Maxialll 

Deficit Deficit Deficit 

0.4 0.1 448.29 0.35 0.35 741.88 0.5 0.4 2163.08 

2 0. 3 0 . 2 448.02 0.80 - 0.10 746.50 0.6 0.3 2169.64 

3 0.5 0.0 448.53 

Table 4-3. Percentile of Distribution of Surplus , Deficit and Range of Different Markov Models with the Same 
Sum of Autoregressive Coefficients. ~rkov Model Used is tt = a1tt-l + a2zt_2 + 11t. 

Autoregressive 
Coefficients 

0.4 0.1 

0.5 0.0 

Order of 
Markov 

Model 

2 nd 

1 st 

Percentile of 
Distribution 
of Surplus 

319.992 

320.384 

22 

Per centile of 
Distribution 
of Deficit 

-413.3778 

-412.9498 

Percentile of 
Distribut ion 
of Range 

510.8439 

511.1853 



Table 4-4. Percentile of Distribution of ~1aximum 
Deficit of Third-Order and Second-Order 
~~rkov Model with Same Sum Equal to 0 . 7, 
of Aut oregressive Coefficients. ~1arkov 

Model Used was zt • a1 zt-l + a2 zt_2 + 
nt and n = 18,000 

Table 4-6 . Results of Harmonic Analysis for Daily 
Flow of the Tioga River 

Values of Coefficients of 
Harmonics 

S. No. 

1 

2 

3 

0. 35 

0.80 

0.30 

0. 35 

(-) 0.10 

0. 20 0 . 20 

Percentile of 
Distribution of 
Maximum Deficit 

741.88 

746 . 50 

742 . 09 

result s are given in Table 4-8. Two schemes are used, 
the second-order model with a1 and a2 of Table 4-8 , 

and the other wi th the first -order model, with r
1 

= 
a1 + a2• The obtained distr i butions of range and max­

i mum deficit for the two schemes are shown in Figs. 4-5 
and 4-6 respectively. The mean range and the mean max­
imum deficit for the two cases are given in Tables 4-9 
and 4-10 respectively . 

It can be concluded from Tables 4- 9 and 4-10 that 
the par3meters of distributions, even for the distribu­
tions of the range and the maximum deficit , can be 
obtained by equating the higher-order ~1arkov model to 
its equivalent fi rst -order model with p

1 
= o

1 
+ o

2 
+ 

... +am, so that IP1 1 ~ 1. This constraint on pl 

should be considered in detail before applying thi s 
approach. Considering a simple case of a second-order 
model, the conditions for t he stationarity of the 

Harmonic 

A - 1274 . 70 

B 245 .30 

Explained Variance 0. 5933 

A 613.50 

B 268 . 60 

2 Explained Variance 

A 

B 

3 Explained Variance 

A 

B 

4 Explained Variance 

A 

B 

5 Explained Var iance 

A 

B 

6 Expl ained Variance 

Variance Explained by 
Six Harmonics 

0.1579 

- 501.40 

42.10 

0. 0891 

238 . 80 

- 194.40 

0.0334 

- 219.60 

129.90 

0. 0229 

89.80 

- 136. 00 

0.0094 

0 .9060 

-1286. 60 

485. 00 

0.3574 

565 . 10 

287.50 

0 . 0760 

- 386 . 30 

168.10 

0 . 0336 

168.50 

- 267 . 00 

0.0188 

- 243.60 

320.30 

0.0306 

117. so 
- 207 . 20 

0.0107 

0. 5271 

Table 4-5 . Comparison of Surplus, Deficit, Range, and Maximum Deficit of Different Series of n = 18,000 with 
Same Independent Standard Normal Random Numbers, But with Different Order of Markov ~1odels with the 
Same Sum of Autoregressive Coefficients. 

Surplus Deficit Range Maximum Deficit 
Series 

No. 2nd 1s t 2nd 1s t 2nd 1st 2nd 1st 
Order Order Order Order Order Order Order Order 

l 226.90 226 .83 -175.22 -1 75.61 402. 13 402.44 257.70 258.23 
2 49 .54 49 .70 -235 .44 -235.76 284.98 285. 45 251.06 251.57 
3 41.48 41. 99 -413.34 ·412.89 454.82 454.87 454. 82 454.87 
4 124. 78 124.89 - 178 .83 -178 .90 303.62 303. 79 292.84 293.23 
5 318.38 318.76 - 12.86 - 12.76 331.25 331. 53 268 .67 268.92 
6 90 . 63 90.26 -321.02 - 321.73 411 .65 41 2. 00 361.98 362.98 
7 56 . 11 55.71 -182 . 14 - 183.10 238 .25 238.81 238. 25 238.81 
8 256.96 257 .26 - 58 .61 - 58 . 92 315 . 56 316. 17 24 7. 90 248. 26 
9 153.37 153.21 -259.54 -259.92 412 .91 413.13 412.91 413 . 13 

10 239.66 241.04 - 22.06 - 21.92 261.72 262 .95 213.03 212 .83 
11 374 . 74 375.56 - 189 .90 -189. 81 564 . 64 565. 37 231.29 231. 30 
12 143.15 143.64 - 366.11 - 365 .96 509.26 509.59 366.11 365.90 
13 23.84 24 . 02 -414.66 -414.98 438.50 439.00 438.50 439 .00 

Note ( 1) In second-order Markov model a1 • 0 .40, and a2 = 0.10 ; and 

(2) In firs t-order Markov model a1 = 0.50 , and a2 = 0.00 

23 



Table 4-7. Number of Harmonics Used to Represent 
jlT and 0 

T 
of Tioga River 

llt 0 
T 

Number of Percent of Total Explained Number of Percent of Total Explained 
Harmonics Explained Variance due to Harmonics Explained Var i ance due to 

Var iance Six Harmonics Variance Six Harmonics 

3 0. 8403 0.9060 6 0.5271 0. SZ71 

Table 4-8. Fitting the Second-order Autoregressive ~lodel to Standardized Stochastic Component of Daily Flow 
Data of Tioga River 

Variance of Residual Series 

Theoretical Computed 

0 . 6093 - 0.02967 0.6493 0.6486 

Table 4 - 9. Comparison of ~lean Range of Second-order and Equivalent First-order 1-larkov Model of the Tioga River 
Daily Flows for n • 1440 

Mode l 

Second-order First -or der 

Mean Range Standard 
Deviation 
of Range 

Mean Range Standard 
Devi ation 
of Range 

0.6093 - 0.02967 198.09 58.30 0.5796 197.95 58.29 

Table 4-10. Comparison of ~lean ~laximum Deficit of Second-order and Equivalent First-order ~larkov Model of the 
Tioga River Daily Flows for n = 1440 · 

Model 

Second- order First-order 

31 a2 Mean Standard rl Mean Standard 
Maximum Deviation Maxi mum Deviation 
Deficit of Maximum Deficit of Maximum 

Deficit 

11.6093 - 0.02967 106.58 

l'''"''t's~ are that the values of a1 and a2 should lie 

111 the triangle ABC, Fig . 4-7 . Let us assume a second­
.. r.kr model corresponding to the point B, where a

1 
• 

l .utd a 2 = -1 . Its hypothetical equivalent first­

,, ~l~r Markov model should have r 1 • -2 - 1 = -3 . Since 
r

1 
I ~annot be more than 1 , hence this model has no 

r:w.aninJt. It is thus concluded that this equivalent con­
.t't"'olun Is applicable t o the second-order models, whose 
,.,, nrc~ressive coefficients 1 ie in the region AOEC. 
l•>rtunately, this restriction of applicability to the 
rrwlun AOEC does not l imit the application of this ap­
l'l'tta(h t o practical problems due to the following 
rt.·~' ~.on. 
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Deficit 

0 .5796 106.44 

In storage problems the input is always a runoff 
series , which may be monthly, weekly or daily flows. 
Since hydrologic processes are persistent, t he first 
serial correlation should at least be always positive, 
and hence a

1 
for r

1 
= a

1
/(l-a2) should also be a lways 

positive. This indicates that in pract ical application , 
the values of a

1 
and a2 wil l not lie in an area ABE 

of Fig. 4-7 . Thus, the conclusion of converting the 
higher-order ~urkov model to its equivalent first-order 
model is applicable to all storage problems of practical 
interest. 

Having derived this conclusion of converting the 
higher-order Markov models to its equivalent first· 
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Fig . 4-7 . Region for a1 and a2 for the Second­

Order Stationary Markov Model. 

order models for the determination of distributions of 
different statistics of part ial sums through the sample 
generation approach, the next step was to prove this 
result by a theoretical analysis. 

Theoretical Analysis . Representing the second­
order Markov model by 

( 4-13) 

or 

For 



and 

114 • z4 - alz3- a2z2, ... , 11i = zi- 3 lzi-l - a2zi-2 

let i 

l: 
j =l 

S . 
l , Z 

Then summing up 

i 
z., and S. = 
J l '11 

l: n. 
J 

n. 1 s 
l 

j=l 

and their right 
i-2 

+ (1-a -a ) L 
1 2 j =l 

sides, then 

(4 -15) 

For i very large, the end effects in Eq. (4-15) being 
too small can be neglected and it can be written as 

s. = {l-a
1
-a2)S. 

1 In 1, z 

or 
S . 

s. 
l,Z 

1 11 
(4-16) 

If initially the m- th order Markov model is assumed in 
Eq . (4-13) , namely 

m 
/. aJ. zt_J. + 11t 

j=l 

then Eq . (4-16) becomes 

s. 
l n 

S. m 
l,Z (1 - l: aj) 

j =l 

(4-17) 

(4-18) 

Si nce S. or S. represent a new stochastic 
1, n 1, z 

variable, the cumulative sum of deviations of n or z , 
respectively, it is a function of i and can be repre­
sented as Si • f(i) of a discrete series of the con-

tinuous variable. It is this stochastic variable which 
determines the properties of the surplus, deficit, 
range, and maximum deficit. 

It is evident from Eq. (4-18) that all properties 
of s1• like the range and maximum deficit of the m-th 

order Markov model, are i nversely proportional to 
m 

(1 - L a.). Considering the second-order model, it is 
j =l J 

obvious from Eq . (4-16) that the great er the sum of 
(a1 + a 2), the greater would be the value of the range 

and the maximum deficit, which is intuit ive also. It 
may be concluded also from the above result that the 
distributions of the range and the maximum deficit for 
large i are functions of the sum (a1 + a2) rather 

than the individual values of a1 and a 2, thereby 

supporting the earlier conclusion obtained through the 
sample generation approach. 

If the i nitial model in Eq. (4-13) is taken to be 
t he first-order Mar kov model 

(4-19) 

then the asymptotic expected maximum deficit of t his 
model is given by Eq. (4-18) as the expected maximum 
deficit of the independent process with the mean zero 
and standard deviation unity, divided by (1 - p 1). 
Hence, 
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The variance z 2 
of Eq. (4-19) is 1/ (1 - o1J . 

(4-20) 

Hence, 

the expected maximum deficit of model represented by 
Eq . (4-19) with unit variance is obtained by dividing 

Eq. (4-20) by [1/(1 - pi)] 112 . Then 

1.2533 rn [1· - o;J
112 

(1 - pl) 

1.2533 ln(l + o1J 

l(l - pl) 

(4-21) 

It may be noticed that the factor [(1 + o1)/(1 - o1)] 112 

is the same as for the case of range and adjusted range. 
This should be so , as all these statistics relate to 
the same stochast ic variable , the cumul ative partial 
,sums . 

It may also be noted from Eq. (4 -18) that if 
S. is the same, i .e., the same generated random num-l,n 
bers of same length are used for two different autore­
gressive processes of Eq. (4-17), but in a way that the 
sum of the autoregressive coefficients is the same for 
both series , then the values of the range and the maxi­
mum deficit should be the same for both series, thereby 
supporting the results obtained in Table 4-5. 

If Eq. (4-13) is modified to be 

then Eq. (4-18) becomes 

s. 
l , Z: 

s s. 
l,T\ 
m 

( 1 - L a
1
. ) 

j=l 

( 4-22) 

( 4-23) 

indicating that the asymptotic expected value and the 
variance of any s t ati stic of partial sums for the 
Markov dependent models are functions of the respective 
asymptotic values of an independent process. Thus for 
the m-th order Markov model the asymptot ic expected 
range is 

where 

E(R) z 1.5958 6 /0 
n 

2 2 
Var(Rn) = 6 4n (ln 2 - ;l 

a"' __ _;s::...._ __ 

m 
(1 - L aj) 

j=l 

(4-24) 

(4-25) 

(4 - 26) 

Thus the parameters of the distribution of any statistic 
of part ial sums for the Markov dependent models can be 
obtained direct ly from their respective asymptotic 
val ues of the independent process. 

The above analysis l eads to the fol l owing important 
conclusions: 

(1) The distribution of all the statist i cs of 
partial sums for the dependent and independent process 
are determined from the stochast ic variables S. 

l , Z 

... "'i 



and si , o respectively. It is, therefore, clear that 

the asymptotic distribut ions of these statistics for 
the dependent Markov models should be functions of the 
asymptotic distribut ion of the respective statistics of 
the independent process . This explains why Gomide 
(1975) found that the standardized distribution of the 
range and the s tandardized distribution of the maximum 
deficit of Markovian inputs tends to the s tandardized 
asymptotic distribution of the independent process. 
This conclusion emphasi:es the importance of previous 
studies in the range analysis devoted to the approxi­
mate expressions of the first two moments of R for n 
the correl ated inputs (Yevjevich , 1967); 

(2) The anal ysis presented herein lays the 
emphasis on the st udy of only the first-order Markov 
models because all the higher-order ~1arkov models can 
be reduced to their equival ent first -order model for 
the analysis of storage problems of practical interest, 
1;here one is mainly concerned with the asymptotic 
distributions of different statistics of partial sums; 
and 

(3) Procedure developed for the calculation of the 
expected maximum deficit is appl icable to all rivers 
following the ~·tarkovian models. 

Having derived the theoretical express ion for the 
calculation of f 2(1, 0,p), the expected maximum defic i t 

of a stationary dependent process, eit her by conveAting 
the higher-order ~mrkov model to its equivalent first­
order Harkov model or by getting it dhtec:tl.Jj through 
the expression of asymptotic expected maximum deficit 
for the i.i.d. process by means of a coefficient B 
given by Eq . (4-26) , Eq. (4-8) can now be modified. If 
the stochastic component of the daily flows follows the 
m-th order ~1arkov model, 

m 
c • L cs .c . + o 
p,t j=l J p, T-J p,1 

(4-27) 

then its first-order equivalent model is 

c •p c +o 
p,T 1 p,t - 1 p,t 

with 

Q. 
J 

and 
a • t he seandard deviation of the m- th order 

c ,m Markov model. 
Then 

(4-28) 

Equation (4-8) becomes 

1/2 _ £
1

(1,0,0)(1 + p
1

) a 1 : a [-=------::--.:=-"----=c~, =- -f 1 ( 1 , 0, 0)] 
t (l _ P )1/2 0 1 c,m 

(4-29) 

Now to find the value of f 4[a , s(a ) , pJ , the T T 
only unknown left in Eq. (4-29) is £3[a, s(c ) , OJ, 

1: T 

which is the expected maximum deficit of a non­
stationary but independent process. Before getting its 

value, let the expression be first developed for the 
expected range of a nonstationary i.i.d process. 

Ex ected Ran e of Nonstationary Inde endent 
Process. Yevjevich 1972) has given by conjecture that 
the exp~cted range of the independent normal p"ocess of 
Eq. (2-6) may be rewritten in the form 

(4 -30) 

where Var Si is the variance of partial sums. Let 

consider a nonstationary independent net input process 
with periodic standard deviation a such that t 

T 

1,2, .. . ,w and i • pw, with the usual meaning of p 
and w. Then 

+ ••. • a n w pw 

Therefore, 

Var s. 
I 

2 
• al Var ol 

2 
+ 02 Var o2 

a2 Var + ... + ow w 

2 Var + a2 Var n + a l 0w+l + ... 
w pw 

Since ol and 02 etc. are all i.i.d. with the same 

mean zero and variance unity, hence 

2 2 2 (4-31) Var s. • p[al + 02 + ... + ow] Var o 
1 

Let 
2 2 2 

2 01 + 02 + ... + a 
a [ w] (4-32) 
n w 

Then Eq. (4-31) can be rewritten as 

2 v . 2 
var Si s pw on ar n = 1 a0 

(4-33) 

as Vo.r o • 1 • and pw • i. Substituting Var si from 

Eq. (4-33) in Eq . ( 4 -30) 

A" 
il/2 a 

E(R
0

) • ~ 
n 

11 
i"l i 

n 
E(Rn) • ;1a ! i-1/2 (4-34) 

11 n icl 

This gives that the expected range of a nonstationary 
independent process can be obtained by multiplying the 
expected range of stationary independent process by an 
~quivalent s tandard deviation an given by Eq. (4-32). 

Analogously applying it to the case of maximum deficit 
it may be written 

f3[o • s(a ). 0) 
T T 

(4-35) 

Unlike the case of the range, the effect of in­
creasing the variance of the net input process with the 
same expectation is not necessarily to increase the ex­
pected maximum deficit, hence the conjecture of modify­
ing Eq. (2-6) to Eq. (4-30) is not exactly true i n this 
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case. But since a, in t he net i nput process of a,n, 
does not change the expectation from zero , it is still 
a case of full regulat ion, for which the expected max­
imum deficit is known to increase with ln. Hence 

f
1 

(1,0,0) is taken as c/0, where C is a constant, 

and Eq. (4-29) is modified as 

a(l+ p l )1/2o 1 
.fn( T e: . 

C n 1/2 
(1 - p1) a c,m 

( 4-36) 

It is, therefore , proposed to estimate the value 
of C by an actual sampl e generation for a few n 
values in the range of 5000-7000 for daily flows, and 
use the aver age value of C for the determination of 
s tochastic storage for any n corresponding to the ec ­
onomic life of a reservoir, so as to obtain the least 
error in the calculated stochastic storage . The det er­
mination of the average value of C does not need any 
extra generation effort as the same is required to find 
out the difference st orage capacity as shown in Chapter 
III. 

The method developed t o find the first two moments 
of the distribution of any statistic of partial sums 
for the higher-order Markov models, can now be used to 
f ind the asymptotic distribution of the maximum deficit . 

4-4 Asymptotic Distribution of the ~1aximum Deficit for 
Higher-Order Markov Model 

As described in Chapter I, the exact distributions 
f or l arge n of 6tandandized maximum deficit of partial 
sums of Markovian net inputs t end to t he asymptotic 
distribution of the 6tand~~zed maximum deficit of the 
independent process. The standardized asymptot ic dis­
tribution of the independent process , as given by Gomide 
(1975), is shown in Fig . 4-8. Thus Fig. 4-8 when cor­
r ected for the fir st two moments , can give t he asympt o­
tic distribution of maxi mum deficit for t he Markovian 
type inputs . 

OA 

0.3 

o.z 

4.0 

rig. 4- 8 . Asymptotic Distribution of (Dn - E(Dn) ] 

~for i . i.d . Process, (after Gomide 
n 

(1975, Figure 6.6)]. 
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Let apply it t o the case of t he Tioga River. The 
dependence of th,e stat ionary stochastic component of 
daily flows has been approximated by t he second-order 
Mar kov model. The val ues of autoregr essive coefficients 
as given in Table 4-8 are a1 = 0 . 6093 and a2 = 
(- ) 0. 02967 , with the model 

(4-37) 

Let a denote the standard deviation of m-th order z,m 
~1arkov model, t hen 

a z,m 
Var n 

(4 -38) 

with the ~ · s estimated by a ' s and p values estima­
t ed by r values. Thus, 

az , 2 = [1/0. 64927] 112 
1. 24 (4-39) 

The distribution of the maximum deficit of the net i n­
put process of Eq. (4-37) can be obtained by the equiva­
l ent first -order Markov model, with r

1 
~ 0.6093 -

0 .02967 = 0.5796, or 

( 4 -40) 

with az, l = [1/(1 -0 :5796
2
)]

112 = 2. 0469 . 

The asymptot ic expected value and t he st andard 
deviation of the maxi mum deficit of series given by 
Eq . (4 -37) is 

E(Dn) = 1.2533 In oz, l ((1 + p1)/(l - p1)) 112 = 266. 0641 

with 

lvar (0 ) 
n 

Thus the above computed asymptotic expected value and 
the standard deviation of the maximum deficit for the 
first -order Markov model of Eq . (4-40) are al so t he 
respective values for the second- order model of Eq. 
(4-37) . Then the distribution of the maximum deficit 
of the series of Eq. (4-37) can be obt ained as Fig. 4-9 

'• 
0.4 

0 .3 

o.z 

701.27 

Fig. 4-9 . Distribution of Maximum Deficit of Second­
Order Markov Model for the Tioga River Daily 
Flows, with a1 = 0.6093 and a2 = 
(-) 0 . 02967. 



by converting the base of Fig. 4-8. This procedure is 
applicable to any statistic of the cumulative partial 
sums, such as the range, surplus, the deficit, etc. 

4.5 Procedure for Determining the Stochastic Storage 

The following are the steps in estimating the 
stochastic storage for a reservoir to be designed with 
a l ong economic life: 

(a) Remove the periodicity in daily flow data by 
means of harmonic analysis, (Yevjevich, 1972a); 

(b) Obtain the standardi zed stochastic stationary 
series and determine the mean, y, and standard devia­
tion, sy; 

(c) Fit the suitable Markov linear model to the 
ser ies obtained under step (b); 

(d) The river flows can be generated by using 
Eq. (3-5), and stochastic storage calculated for a few 
values of n in the range of 5000-7000 for daily flows; 

(e) The theoretical value of stochastic storage 
for a particular n is obtained by multiplying the 
value of Eq. (4-36) by sy; 

(f) The theoretical value of stochastic storage 
obtained under step (e) may be equated to the value 
obtained under step (d) and the values of C are 
calculated for all n values. All values of C so 
obtained will be nearly constant, so that their average 
value may be adopted for further calculations; and 

(g) The stochastic storage for a reservoir can 
now be calculated by Eq. (4-36) with the help of an 
average value of C calculated under step (f). 
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Chapte r 5 
APPLICATION OF THE DEVELOPED METHOD 

The method developed for designing reservoirs 
wit h daily f l ow data is applied to a river, to show 
how it would work. The 40 years of daily data of the 
Oconto River near Gillett, Wisconsin are used as an 
example of application . 

5-1 Source of Data and Evaluation of Their Reliability 

The U.S. Geological Survey is r esponsible to 
gather and publish stream flow data of dai l y flows for 
most of the rivers i n the United St ates. Dur i ng t he 
early observations, the mean daily flows were obtained 
from daily mean gauge readings on staff gauges . The 
early r ecords were , t herefore , affected by the fre­
quency of observations during a day. The advent of 
continuous water stage recorders resulted in the re­
placement of st aff gauges . The f lows were then calcu­
lated by converting the daily mean gauge heights by 
means of stage-discharge rating curves . 

In case the stage-discharge rating curve is 
subject t o change due to frequent or continuous alter­
at ions in the phys ical features of the control , the 
mean dai l y discharge is determined by the shifting 
control met hod , which invol ves the applicat ion of cor­
rect ion factors , based on i ndividual measurements. 
This method is also used to correct for temporary 
changes in t he control section due to debris or aqua­
tic gr owth. 

Dur ing early stages the crudeness of i nstrumenta­
tion was fur t her aggravated by t he lack of sufficient 
personnel to make frequent observations. This thus 
requi red , in some instances , t he est i mat ion of unmeas­
ured f l ows by corr el ation procedure before publishing 
the actual data. The perennial problem of icc redu­
cing the area of the control section dur ing winters 
was another source of error. 

The r ecor ds published by U.S. Geologi cal Survey 
a rc classifi ed as excellent , good, fair or poor, de ­
pending on whether the errors in them are less than 5, 
10 , or 15% o·r great er t han 15% respectively. 

5- 2 Crit eria in Selection of Case Station for the 
Test Study 

The basic criteria in selecting a gauge station 
i s to obtain homogeneous records . Gauge stations in­
fl uenced hy significant alterations in the form of 
dtvcrsions or flow regulations upstream t hrough irri ­
!:ations , diversions or construction of reservoi rs, are 
.uttomat ically excluded . Minor diversions up to the 
maximum of 1% of the average annual flow is tolerated. 
St a t ion has in fact t o be selected on t he basis of its 
virginity of flow. The absence of short term trends 
1 s also postul ated, in spite of the fact that exten­
·.ivc agricultural use of land , among other things, can 
r ausc perceptible trends in runoff . 

'. - S The Selected St ati on 

Wi t h the above restrictions in mind, the daily 
flow record available on tape for 19 r iver s of t he 
ttnitcd States was examined . The station number 4.0710 
with the dr ainage area 678 sq mi l es , of the Oconto 
River near Gil let t, Wisconsin was found to have t he 
accuracy of record classified as good . 

The graph of mean daily f l ows in cubic feet per 
~··c (cfs), obtained by taking the average flow for 
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each day of the year over the 40 years of record for 
the station , is given in Fig . 5- l. Similar l y t he 
standard deviations about the mean daily values are 
a l so plotted i n Fig . 5-l . 

Fig. 5- l. Mean Daily Flows in cfs of Annual Hydro­
graph (1) , and Dail y Standard Deviation (2) , 
of Oconto River. 

5-4 The Output 

To show the appl ication of the procedure for 
determining t he reservoir capacity for any determinis ­
tic output, t he periodic output is used i n such a way 
that its first harmonic lags behind the first harmonic 
of the periodic input mean by n/2, so as to obtain 
substantial value of t he diff er ence storage capacity . 
The output is assumed to have two harmonics. Its plot 
i s given in Fig . S- 2 . However, output with any number 
of harmonics and with any phase diff erence can a l so be 
dealt with in a simi lar fashion . 

Fig . S-2 . Variat i on of Output Wi t hin the Year wi t h 
Mean = 540, Fourier Coefficients A1 ~ 

-187 . 21 , s1 = 324 . 24 , A2 = 79 . 00, and 

82 = -46 .10. 

5-5 Case Study 

The simulated problem is to determine the storage 
capacity of a reservoir with the economic life of 100 
years . t o be constructed at t he gauging s i te of t he 
Oconto River at station number 4.0710 wi t h t he mean 
annual daily flow of 543.498 cfs. 



5-6 Computation of the Difference Storage Capacity 

The first problem is to finally estimate the 
periodic means, ~ , and the periodic standard devia­

t 

tion , o , from the actual river flow data. Either a 
T 

non-parameteric or a parameteric approach can be used. 
In this study a parameteric approach is used for the 
following reasons: 

(1) In case of daily series, the number of para­
meters to be estimated for the mean and standard devi­
ation is 730. The total number of statistics in the 
non-parameteric approach is so large that i t becomes 
unfc3sible to estimate accuratel y so many parameters 
from a limited sampl e size, with the estimat es subj ect 
to large sampling errors. 

(2) The non-parameteric method also removes all 
sampling variations associated with the mean and stand­
ard deviation from the stochastic component, which may 
represent often a large portion of the variance of the 
stochastic component. 

In the harmonic analysis a maximum of six harmon ­
ics were fitted . However, only five harmonics were 
considered as representing the periodic mean and stand­
ard deviation, because the sixth harmonic gave little 
contribut ion to the explained variance of fluctuation 
of either the mean or the standard deviation, with the 
results given in Tables 5-l and 5-2 . 

Table 5- l. Results of the Harmonic Analysis of the 
Mean Daily Values of the Oconto River 

Harmonic A B Explained Variance 

- 200.3 - 112 . 4 0.3784 

2 145.4 185.0 0 0 3971 

3 85 .5 79 .9 0.0982 

4 58.0 65 . 6 0.0550 

5 39.8 72.5 0.0491 

6 7.4 27 .8 0.0059 

Variance Explained by Six Harmonics 0.9837 

Table S-2. Results.of the Harmonic Analysis of Daily 
Standard Deviations of the Oconto River 

Harmonic A B Explained Variance 

- 123.3 85.6 0.2706 

2 141.6 105.7 0 . 3750 

3 66.4 46.2 0 .0786 

4 75 .7 31.7 0.0809 

5 47.2 43.2 0.0492 

6 8. 6 4 . 3 0 . 0011 

Variance Explained by Six Harmonics 0.8554 

The periodicity of daily flows is removed to give 
the Yt-sories, as y • (x - ~ )/a . This series 

t p,t T T 
is then standardized by using its mean y = 0 . 034 and 
its standard deviations = 1.174. 

y 

The resulting e -series is then fitted" by an 
p,t 

autoregressive scheme, with the estimated coefficients 

31 

given i n Table 5-3. To satisfy the Wold ' s (1943) cri­

teria, the x2 
+ 0.5418 x + 0.3193 • 0, with x • 

(0.2709 + 0.4959 i). The roots of x lie in a unit 
circle of the complex plane, thereby satisfying the 
necessary condition for the fitting of an autor egres­
sive model. 

Table 5-3. Fitting the Second-Order Autoregressive 
Model to Standardized Stochastic Component 
of Daily Flow Data of Oconto River 

Variance of Residual Series 

Theoretical Computed 

0 0 5418 0.3193 0.32908 0.32908 

The t -series is whitened, with the correlogram p, '! 
of the resulting np,T independent component plotted 

in Fig. 5-3 . Though all the correlation coefficients 
are close to zero, its independence cannot be checked 

.bY using the test given by Anderson (1941), because of 
·very narrow tolerance band due to large sample size, 
(14,600 values). Quimpo (1967) felt the same diffi­
culty. He stated that in the application of Anderson ' s 
test for P'"O, however, despite a value of r

1 
• 0.05, 

the size of the statistical sample was such that even 
this was, according to the test, still significantly 
different from zero. The same difficulty was encoun­
tered in applying the test given by Quenouille (1949) 
to the first and second-order autoregressive schemes . 
Therefore , the variance of the i ndependent component 
is computed and compared with the theoret ical variance. 
When these two variances are the same, then the assumed 
autoregressive model is considered to fit well the 
t , stochastic component of the daily flow data. The p,t 
theoretical variance is 

Var n 

0 .2 

0 . 1 

2 Var e ( 1 - a1 (5- l) 

k 
0~~~~~=s~==aF=~~o~~~2~~~4~~ 

-0. 1 
Lag 

-0.2 

Fig. 5-3. Correlogram of Independent Component for 
Daily Flow Data of Oconto River. 

where Var e = 1 for the standardized e -series. p,-r 
The daily flow data of this river is generated by Eq . 
(3-5) as 

X : ~T + 0 (0.034 + 1.174 £ ) p ,T T p , t (5-2) 

with 



E p,'l: 0.5418 E l + 0.3193 E 2 + 0.5736 n . p,1:- p,1: - p,T 

(S-3) 

The mean maximum deficit for the output of Fig . 
S-2 is found out from the generated net input series 
to give the value of estimated tot al storage . The 
stochastic storage is esti.mated by the mean maximum 
deficit of the generated stochastic net input series . 
The difference between .the two storages gives the es­
timate of the difference storage tabulated in Table 
5-4, and pl otted in Fig. 5-4 . It results from this 
figure that the diff erence storage oscillates around 
an approximate constant value of about 37,000 . The 
difference storage capacity is then 37,000. 

Table 5-4. Difference St orage for Periodic Output 

n 

2500 

3000 

3650 

4000 

4500 

5000 

5500 

6500 

7000 

Stochastic Difference 
Total Storage Storage Storage 

93624.672 56608.684 37015.988 

95006.483 56225 .668 38780 .815 

103444.409 65005 . 850 38438.559 

105752.440 68832 . 532 36919 .908 

111133.409 73403 . 330 37730 . 079 

109970. 113 73627.779 36342. 334 

117266.204 80884.754 36381 .450 

118464.232 82766.646 35697.586 

117821.429 79719 . 656 38101.773 

Difference Stor age Capacity for Periodic 
Output o~ Fig . 5-2. 

5-7 Determination of Stochastic Storage 

The stochastic component of daily f l ow ser ies has 
been fitted by second-order Markov model, namely 

(5-4) 

with o 2 = 1 . 7432. The model of Eq. (5 -4) is equiva-. z, 
lent to a first-order Markov model with r 1 = 0.5418 + 

0.3193 = 0.8611. Therefore, oz,l = 1.9668 . The sto­

astic storage was then worked out theoreticall y from 
Eq. (4-36), or from 

- 0 
T 

. 
where o

1 
= 288. 37 and on = 344.56 . Substituting 

these values in Eq . (5-5) , then 
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(5- 6) 

The stochastic storage is obtained experimental ly 
as the mean maximum deficit of the generated stochastic 
net inpu~ series . The stochastic net input series is 
(x - ~ ), which is given by p, T T 

(x - ~) = 0.034 ; + 1.174 ~ E p, t T T T p, T 
(5- 7) 

The maximum deficit of (0.034 & ) should he small as 1: 
y = 0.034 is small, while the expected maximum deficit 
of 1 . 174 a E is given by S f

4
[o, S(O), p) or 

T p , T y T T 

1 .1 74 f
4
[o, , s(o

1
), p). Thus the stochastic st orage, 

5
5

, is represented mathematically hy 

ss : 1247.2158 c sy rn . 
with 

1464 . 23/il 
(5-8) 

The C-values were calcul ated from the stochastic 
storage , obtained through generation of samples, needed 
in obtaining the difference storage capacity for dif­
ferent values of n by using Eq. (S-8) . The values 
so obtained are plotted in Fig. 5-5 . 

3500 4500 5500 7500 
n , days 

Fi!(. 5- 5. Coefficient C Ver sus n. 

It is found from Fig. 5- 5 that inltially and for 
smal ler n, t he val ue of C is high. The reason being 
that of a difference between the asymptotic and the ex­
act value of the expected maximum deficit, because in 
Eq. (S-8) the asymptotic expression of expect ed maximum 
deficit was used. Hence, giving the more weight t o 
values of C obt:Jined for higher values of n, the 
average value of C is found to be 0 . 7037 . 

The value of the stochastic storage for a reser­
voir of 100 year economic life is then calculated for 
n = 36,500 by Eq. (5-8) as 

1464. 23 C /0 = 1464. 23 X 0 . 7037 X (36500) 112 , 

" 196853 

S-8 Determination of the Total Storage 

Since the total storage i s the sum of difference 
storage capacity and the stochastic storage, its value 
is St = Sd + Ss ~ 37000 + 196853. 00 = 223853 . Thus 

t he reservoir with 100 year economic life should be 
provided with a storage capacity of 223853 cfs-day. 
The reservoir capacity is thus 0.468 million acre ft . 

5-9 Sensitivity Analysis for the Coefficient C 

Since fixing the value of C by using Fig. 5- S is 
subjective, it is considered worthwhile to study the 



effect of C on the error introduced i n calculating 
the total storage . Let assume t hat the value of C 
for a particular n is 0. 66 instead of 0. 7037 . This 
is almost the lowest value of C obtained in Fig . 5-5. 

Then S
5 

1464. 23 X 0 . 66 x (36500) 1/
2 

= 184629.0580, 

St = 37000 + 184629.0580 = 221629, or an error in 

design of 5. 5%: This error is not too large, especial­
l y because it is. the extreme case in Fig . 5- 5. For all 
int ermediate cases the errors would be smaller than 
5 . 5% . 

5-10 Sensiti vity Analysis for the Difference Storage 

Since fixing the value of difference storage 
capacity in Fig . S-4 i s also a subjective decision, it 
was considered worthwhile to study the effect of the 
error in the differ ence storage on the error intr oduc­
ed in calculating t he total storage . Assume that for 
a particular n, t he difference storage capacity is 
35,000 instead of 37 , 000 as determined. Then S s 
195853, Sd = 35,000, and St = 231853 . The error is 

onl y 0. 87% . A smal l error in difference storage capa­
city is not s i gnificant in the overall design of 
storage capacity of a reservoir. 
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Chapter 6 
CONCLUSIONS 

A methodology ha s been developed for designing 
the capacity of a ~ge reservoir with a ~gh level of 
development by using t he concept of maximum deficit, 
and short-interval streamflow r ecords, part icularly 
daily flow data. 

For this study, the input or the inflows were 
assumed to simulate daily river flows, which are com­
posed of periodic and s t ochastic component s . The 
stochastic components approximate Markov l inear models, 
mainly second-order for daily flows . Output or the 
outflows were considered deterministic either as con­
stants or as periodic functions. 

From the analyses made for this study, the 
fol lowing conclusions were reached : 

(1) The total storage capacity or the expected 
s t orage needed for the given output, when within-the­
year fluctuation of the input is taken into considera­
tion, can be divided into two parts: (a) a difference 
storage which is a function of periodic mean uT and 

the periodic standard deviation crT of the input, 

besides other parameters like ampli t ude , angular fre­
quencies of various harmonics of input and output , and 
difference in phase between their harmonics ; <md (b) 
a stochastic storage , which is a function of the mean 
and scandard deviation of crT, of the autocorrelation 

coefficients of the ~larkov model considered, and of n ; 

(2) The difference storage s t abilizes to a 
practically constant value beyond the scabilization 
region, which is inversely proportional to the level 
of development; 

(3) The contribution of difference storage to 
the total storage or the needed capacity is signifi­
cantly small i n comparison to the stochastic storage , 
and hence a small error in its computation r esults 
hardly in a 1% error in the computed total storage for 
l arge reservoirs . Therefore, to save on computer time, 
it is fe l t that the difference storage capacity need 
not be computed. very accurately; 

(4) The asymptotic distribution of different 
statistics of partial sums for the dependent Markov 
models are functions of t he asymptotic distribution of 
the respective s t atistics of the i ndependent case ; and 

(5) The computation of the required storage 
capacity does not need the generat ion of f l ow sequences 
equal to the economic life of reservoir. 

6-1 Recommendations for Further Research 

There is some theoretical support for the stabil­
i zation of t he differ ence s t orage for the case of fu l l 
regulation . But, for partial regulat ion, Troutman 
(1976) showed mathemati cally that the tot'"l storage 
grows as t n n for i.i.d. net inputs. The computer 
results of this study show that the difference s torage 
hecomes approximately constant for 90% de.vel opment in 
case of a nonstationary inde£endent input process , 
which could be because of In and tn n curves being 
almost the same in the region of study. Hence, it is 
r ecommended t hat a further research should be under­
t aken for the case of partial regulation to ascertain 
mathemat ically how t he total storage would grow with 
n for the case of a nonstationary net input process. 

REFERENCES 

Anderson, R. L., "Distribution of t he Serial Correlation 
Coefficient, " Ann. Ma.th. S.ta.W.t., Vol. 13, pp. 1-
13 , 1941. 

Anis, A.A., "The Variance of the Maximum Partial Sum of 
a Finite Number of Independent Normal Variates, " 
~om~ka, Vol. 42, pp . 96-101,1955. 

An is , A. A. , "On the Moments of t he ~1aximum Partial Sums 
of a Finite Number of Independent Normal Variates, " 
I:Uomwuka, Vol. 43, pp. 79- 84, 1956. 

Anis, A.A., and Lloyd, E. H., "On the Range of Partial 
Sums of a Finite Number of Independent Normal 
Variat es ," Bi.omu!Uka, Vol. 40, pp. 35-42, 1953. 

Fathy, A., and Shukry, A.S., "The Problem of Reservoir 
Capacity for Long Term Storage ," J . Hydtto.e.., P!toc. . 
Am. Soc. C~v. Englt6 ., Vol. 82, No . HY5, Paper 1082, 
pp. 1-27' 1956. 

Feller, \~ ., "The Asymptotic Distributio·n of the Range 
of Sums of Independent Random Variables," Ann . 
Ma..th. S.ta.W.t., Vol. 22, pp. 427-432, 1951. 

Hering , ~1. B., "The Nature of the Storage Yield Rela­
tionship," P11.oc. . Sympo-6-i.wn on Stlt.e.am6tow Regula.­
~on 6olt Q~y Contltol, Public Health Service 
Publicat ion No . 999-WP-30 , pp . 24~-253 , U.S. 
Department of Health, Education and Welfare , 
Washington, D. C., 1965 . 

34 

Fiering , M.S., "Stream Flow Synthesis, " HaJt.vaJt.d Un.i.ve.lt.­
-6-Uy PILU-6 , Cambridge , ~lassachusetts, 1967. 

Gomide, F. L. S., "Range and Deficit Analysis Using 
Markov Chains ," Hydttotogy Pa.peJt. No. 79, Colorado 
State Universit y, Fort Collins, Colorado , 1975. 

Hardison, C. H. , "Storage to Augment Low Flows," PMc. 
ReAVtvoltt Y~dd SympM-<.wn , Sept . 21-23 , 1965, 
Part I, Paper 8, Discussion Part II, Water Re­
search Association . 

Hazen, A., "Storage to be Provided in Impounding 
Reservoirs for ~!unicipal Water Supply," Tlta.n6 . Am. 
Soc.. C-<.v. EngM., Vol. 77, pp . 1539-1640, 1914 . 

Hurst, H. E., "Long-Term Storage Capacity of Reservoirs ," 
T!ta.n6. Am. Soc. C-<.v . EngM ., Vol . 116, pp . 770-
779, 1951. 

Lloyd, E. H., "Stochastic Reservoir Theory, " Adv. 
HydiLo-6~. , Vol. 4, pp. 281 -339, 1967 . 

Lloyd, E. H., "Wet and Dry Water," '&LU.u:.i.n In6.t.UuA:e 
o6 Ma..thema.UC6 a.nd !.U App.Uca..t.<.ol't./l , Vol. 10, 
No. 9/10 , pp . 348-353 , 1974 . 

Ll oyd, E. H., and Odoom, S., "Probability Theory of 
Reservoirs with Seasonal Input," J. Hydttol.., Vol. 
2, pp . 1- 10 , 1964 . 



~lelentijevich, M.J . , "The Analysis of Range with Output 
Linearly Dependent Upon Storage," I-I!Jdltol.ogy Pa.peM , 
Vol . l, No. 11, Colorado State University, Fort 
Collins, Colorado, 1965. 

Moran, P.A.P. , ''A Probability Theory of Dams and 
St orage Systems ," AW;t. J. Appt, Sc.L , Vol . 5 , 
pp. 116-124, 1954. 

Moran, P. A. P., "A Probability Theory of Dams and 
Storage Systems: ~!edification of Release Rules," 
AU6t. J. Appl. Sci., Vol. 6, pp . 117-130, 1955. 

Quenouil l e, M.H., "A Large Sample Test for the Goodness 
of Fit in Autoregressive Schemes," J. Roya.t 
S~tica.l Soc.., Vol. 110, pp . 123-129, 1949. 

Quimpo, R.G . , "Stochastic Model of Daily River Flow 
Sequences," Hydtr.otog!J Pa.peJLI>, Vol. 1, No. 18, 
Colorado State University, Fort Collins, Colorado, 
1967. 

Ripp1, \\1 . , "The Capacity of Storage Reservoirs for 
WaterSupply,"PJtOc.. In.6.tn. C.<.v . Englth. , Vol. 71, 
pp. 270- 278, 1883. 

Roesner , L.A., and Yevjevich, V.M., "Mathematical 
~~dels for Time Series of ~nthly Precipitation 
and ~1onthly Runoff," Hydltolog!J Pa.peJLI>, Vol. 1, 
No . 15, Colorado State University, Fort Collins, 
Col orado, 1966. 

Salas-La Cruz , J . D., "Range Analysis for Storage 
Problems of Periodic-Stochastic Processes," 
Hy~logy Pa.peM , Vol. 3, No. 57 , Colorado State 
Uni versity, Fort Collins, Colorado, 1972. 

Sudler, C. E. , "Storage Required for the Regul ation of 
Streamflow," Ttutn.6. Am. Soc. Civ . EngM ., Vol. 91, 
pp. 622-660, 1927. 

Sutabutra, P., "Reservoir St orage Capacity Required 
When Water Inflow Has a Periodic and a Stochastic 
Component," Ph.V. Thu.i4, Colorado State Universi­
ty, Fort Collins , Colorado, 1967. 

Thomas, li.A., and Fiering, M.B., "Mathematical 
Synthesis of Stream Flow Sequences for the Analy­
sis of River Basins by Simulation," VeA.i.gn on 

35 

Wa.t~ RuoUAc..eh Syht.em6, Harvard University Press , 
Cambridge, Massachusetts, 1962. 

Thomas, H.A., and Fiering, M.B., "The Nature of the 
Storage Yield Function," OpeJta..ti.on6 Ruea~te.lt .<.n 
Wa.t~ Quality Management , Harvard University 
Water Program , Chapter II, 1963. 

Troutman, 8.~1., "Limiting Distributions. in Storage 
Theory," Ph.V. Thu.i4, Colorado State University, 
Fort Col l ins, Colorado 1976. 

Wold, H., "A Study in the Analysis of Stationary Time 
Series," Uppoa.l.a Almqu.ih.t a.nd Wilu.ei.l. , 1954 . 

Yevjevich, V.M., "Fluctuations of Wet and Dry Years, 
Part II: Analysis by Serial Correlation," 1-/ydJ!.o­
logy Pa.peM , Vol . 1, No. 4, Colorado State Univ­
ersit y, Fort Collins , Colorado, 1964. 

Yevjevich , V.M., "The Application of Surplus, Deficit 
and Range i n Hydrology," Hydtr.ology Pa.peM , Vol. 1, 
No . 10, Colorado State University , Fort Collins, 
Colorado, 1965. 

Yevjevich , V.M., "Stochastic Problems in Design of 
Reservoir," Wa..tvt. Re&ouJLce& Con6~ence. 7.tlt, 
Colorado State University, 1965, Published in 
Wa.t~ ReAe.~ch, pp. 375-411, 1966. 

Yevjevich, V.M., "Mean Range of Linearly Dependent 
Normal Variables with Applications to Storage 
Problems," Wa.teJL RuouJL. Ru ., Vol. 3, No . 3, 
pp. 663-671, 1967. 

Yevjevich, V.M., "The Structure of Inputs and Outputs 
of Hydrologic Systems": Un.<.te.d Statu -Ja.pa.n 
Bila.t~ Se.m~ in I-I!Jdtr.olog!J, Honolulu. 

Yevjcvich, V.M., "Stochastic Processes in Hydrology," 
Wa.t~ Re&ouJI.ce& Pu.bUca.tion6 , Fort Collins , 
Col or ado, 1972. 

Yevj evich, V.M . , "Structural Analysis of Hydrologic 
Time Series, " I-I!Jdtr.Otogy Pa.peM, Vol. 3, No . 56, 
Colorado State University, Fort Collins, Colorado, 
pp . 1-59, 1972a. 

·. 



KEY WORDS: Water Storage, Flow Regulation, Deficit of 
Reservoir Capacity: 

ABSTRACT: A methodology is presented for designing capac­
ities of ~e reservoirs with sufficiently high levels of 
development by using the concept of maximum deficit rather 
than the range, and short-interval flow records of daily 
flows, composed of periodic and stochastic components. The 
output is assumed to be a deterministic process, either 
constant or periodic. 

Analytical and data generation methods are used in 
computing the required storage capacities for regulating 
the periodic-stochastic inputs to deterministic outputs. 
The total storage as the mean required storage capacity is 
divided into the difference storage and the stochastic 
storage. Difference storage is due to periodic means of 

input and output. It is approximately constant for large 
sample sizes. It can be estimated for different sample 
sizes by generating a relatively short series of daily 
flows. 
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Stochastic storage, as the expected maximum deficit 
of stochastic net input, is determined analytically by 
using a coefficient, estimated by generating short series 
of daily flows. Parameters of asymptotic distributions of 
statistics of partial sums can be obtained by equating the 
higher-order autoregressive models to an equivalent first­
order autoregressive model with pl equal to the sum of 
all their autoregressive coefficients. 

The methodology is applied to a simulated problem of 
determining the storage capacity of a reservoir with the 
economic life of 100 years to be constructed at a site for 
which there are 40 years of daily flow data (the Oconto 
River near Gillett , Wisconsin) . 
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