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ABSTRACT 
 

 

 

HUMAN BEHAVIOR IN THE CONTEXT OF WATER SCARCITY 
 
 

This dissertation in comprised of three chapters which use microeconomic principles and empirics 

to examine human behavior in the face of water scarcity. Chapter one uses an experiment to 

investigate the effect of threshold uncertainty on common pool resource (CPR) consumption 

decisions. Chapter two uses latent class analysis to endogenously identify unique household 

classes with respect to their water use decisions under various price and weather scenarios. Chapter 

three directly compares the residential water consumption decisions of households motivated 

primarily by social and environmental outcomes with households primarily motivated by cost and 

convenience. The overall goal of my work is to elucidate the behavior and motivation that leads to 

particular consumption decisions in the presence of water scarcity.  

Chapter one explicitly models a CPR in which uncertainty around a tipping point—stock level 

below which the resource is destroyed—can engender two distinct Nash Equilibria (NE), both of 

which lead to a Tragedy of the Commons. We theoretically and empirically test how differing 

levels of uncertainty around the location of this tipping point affects individual and group 

consumption choices. Our results suggest that the presence of uncertainty increases the likelihood 

that individuals choose the NE consistent with resource destruction (even though it is an inferior 

NE) and to ignore potential impacts on resource stocks. However, conditional on choosing the 

superior NE, increased uncertainty does not affect consumption rates in the experiment. In 

addition, we introduce tax and fine policies and find that they reduce overall consumption rates 

and the probability that individuals choose to destroy the resource. 
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Chapter 2 and 3, do not explicitly model scarcity, but they examine household water consumption 

in the arid southwest where water scarcity is a pervasive concern. Both chapters two and three use 

data from Fort Collins Utilities to investigate household heterogeneity and water consumption 

decisions. Chapter 2 uses a finite mixture model to endogenously identify distinct water use 

patterns.  Estimated price elasticities are consistent with previous literature and range from -0.1 in 

the spring for the unresponsive class to -0.8 in the summer for the responsive class. We find 

significant evidence that households classes exist and can generally be broken into high responsive 

and low responsive classes. Our results also suggest that changes in precipitation will have little 

effect on demand, but a 2 degree temperature increase will increase residential water demand 

throughout the city by approximately 5%. Lastly, chapter two investigates the burden of price 

increases and weather shocks across household class and income level. We find that the vast 

majority of water reductions due to price increases come from middle and high income homes.  

Chapter three is similar to chapter two in motivation, but distinct in methodology. Chapter 3 poses 

and attempts to answer a simple question: do households primarily motivated by environmental 

and social (E&S) consideration consume water differently than households motivated primarily 

by cost and convenience (C&C)? Results strongly indicate that E&S consumers use less water than 

(C&C) consumers. Results also suggest that E&S motivated households consume significantly 

more water as temperatures rise. However, there is no statistical difference between E&S and C&C 

consumers in their responses to changing price and precipitation.   
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CHAPTER 1. COMMON POOL RESOURCE DESTRUCTION IN THE 

PRESENCE OF UNCERTAIN TIPPING POINTS 

 

 

Highlights: 

•  CPR social dilemmas are the result of two distinct underlying motivations 

•  Environmental uncertainty can induce individuals to destroy common pool resources 

•  Tax and fine policies significantly improve outcomes and social welfare 

 

Introduction 

Allocating scarce resources in the absence of clearly defined property rights can be a contentious 

and complicated process, particularly when those resources are depletable or destructible. 

Consequently, common pool resources (CPR’s) are a well-documented source of significant social 

and political turmoil (Adams, Brockington, Dyson, & Vira, 2003) as well as economic inefficiency 

(Gordon, 1954). Despite an increasing understanding of CPR’s and the science around them, 

humans continue to substantially overfish major parts of the ocean, deforestation continues at an 

annual rate of 5.2 million hectares per year (FAO, 2010), pumping continues to deplete aquifers 

throughout the world, and greenhouse gases are emitted at an alarming rate. Additional 

complications arise when the resource threshold—the stock level below which the resource is 

permanently damaged or destroyed—is uncertain. 

This paper extends the existing literature on CPR’s by examining the impact of such uncertain 

resource thresholds on resource consumption decisions.  Our contribution is both theoretical and 
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empirical.  We investigate the effect of uncertainty on both a discrete and continuous choice 

consistent with the choices available to most resource constituents. Through a better understanding 

of resource constituents’ incentive structure, it is possible to design more effective policies and 

solutions.  

CPR’s are non-excludable but rivalrous goods, where individuals acting in their own self-interest 

often overconsume the resource, leading to inefficiency, degradation, and, in extreme cases, 

destruction. Such resources often have a tipping point, beyond which their destruction is inevitable; 

however, the specific locations of these thresholds are rarely known with certainty. For example, 

fishermen and scientists may agree that sufficiently depleting fish stocks will lead to the collapse 

of a fishery, but the exact stock at which the population crashes is largely unknown (Botsford, 

Castilla, & Peterson, 1997). This paper develops a theoretical model and uses an economic 

experiment to determine how resource consumption decisions change with differing levels of 

environmental uncertainty, represented by an unknown threshold. Laboratory experiments have 

traditionally been used to investigate the effect of environmental uncertainty on consumption, 

because finding natural experiments with exogenously determined environmental uncertainty 

shocks and policies is difficult (Ostrom, 2006). Therefore, we choose to conduct a laboratory 

experiment to disentangle the behavioral responses of CPR users to varying levels of uncertainty. 

While many experimental studies have found a significant relationship between overconsumption 

and environmental uncertainty in experimental settings (Biel & Gärling, 1995; Gärling, Biel, & 

Gustafsson, 1998; Rapoport, Budescu, Suleiman, & Weg, 1992), many of these experiments do 

not focus on a key feature of real-world CPR settings—the existence of two Nash Equilibria (NE) 

that are both suboptimal solutions from the perspective of the social planner. We posit that resource 

extraction decisions can suffer from two types of Tragedy of the Commons (TOC): one in which 
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marginal over-consumption occurs and dissipates rents, which may or may not destroy the 

resource, and one in which individuals behave as if the resource will be destroyed with certainty 

because they anticipate others doing the same. For example, fishermen in a given fishery may 

harvest at levels that keep the fish stock healthy, even if the stock is below the level of maximum 

economic yield. This strategy reflects some amount of rent dissipation or risk of resource collapse 

since the stock is marginally overfished. However, as uncertainty—about both the ecosystem and 

the consumption rates of others—increases, fishermen may be more likely to catch as much as 

possible because they anticipate that fishery collapse is inevitable. For clarity, we will refer to the 

first NE as the partially defect NE—where defect refers to a deviation from the socially optimal 

solution and partially refers to the fact that the resource may survive. The second NE will be 

referred to as the fully defect NE, because individuals do not coordinate on either the partially 

defect NE nor on the socially optimal outcome (which is not an equilibrium) and thus end up with 

a lower expected payout because the resource is destroyed with certainty. Note that both NE are 

inferior to the socially optimal consumption rates, which will be referred to as the coordinate 

solution. The presence of both NE captures an important feature of many CPR systems in practice. 

Yet most investigations of environmental uncertainty using single-period experiments do not 

possess both NE (for example, Aflaki, 2013; Budescu, Rapoport, & Suleiman, 1990; Rapoport et 

al., 1992; Wit, van Dijk, Wilke, & Groenenboom, 2004). 1  

To better understand the underlying social dilemma associated with real-world renewable 

resources, it is necessary to differentiate between these two equilibria and elucidate the effect of 

uncertainty on which NE individuals choose, in addition to the quantity they withdraw from the 

                                                           
1 A notable exception is the public good experiments performed by Barrett and Dannenberg (2012) and 

Dannenberg et al. (2011) 
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CPR.  To accomplish this task we develop a CPR model featuring both NEs and implement the 

model using a laboratory experiment to answer the following questions: 

1) Does environmental uncertainty exacerbate overconsumption by increasing the 

probability that resource users choose to fully defect?  

2) When individuals do not fully defect, how does uncertainty affect resource 

consumption, and how does this consumption compare to the socially optimal solution? 

3) How effective are tax and fine policies at improving efficiency in a CPR setting with 

environmental and social uncertainty? 

Our experiment systematically manipulates the size of environmental uncertainty in the context of 

a CPR and tests how these changes affect individual and group consumption decisions. Individuals 

are randomly assigned heterogeneous payout and damage functions, placed in four-person groups, 

and tasked with requesting tokens from a group account. If the sum of the group’s consumption is 

greater than the number of tokens available, each player suffers a substantial loss. Their 

consumption decisions are observed under three treatments (Certainty, Low Uncertainty, and High 

Uncertainty) and three policy settings (no regulation, excise taxes, and a fine). 

Our findings are consistent with previous results showing that increased environmental uncertainty 

leads to increased consumption, but our contribution is to demonstrate that this phenomenon 

occurs because some individuals give up on saving the resource entirely (fully defect). We find 

that, ceteris paribus, environmental uncertainty has little effect on the request rates of individuals 

who choose the partially defect NE; it significantly increases the probability, however, that 

individuals fully defect and ignore impacts on the resource. This finding suggests that a key reason 

for over-extraction in the presence of uncertainty may not be the omission of external costs in the 
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individual’s extraction decision, but rather a discrete shift where each resource user defects from 

the better equilibrium to minimize the possible damage to himself caused by the myopic decisions 

of others.  

Our results further suggest that accurately identifying resource tipping points can significantly 

reduce the chances that individuals deliberately destroy the resource, and that when such scientific 

knowledge is unavailable, it may be valuable to introduce policies that discourage defecting. For 

this experiment we introduce a tax and a fine, and conclude that both significantly increase 

economic efficiency.  

This paper is composed of six sections. The next section provides context and highlights the 

research on which our experiment is based. Section 3 outlines our theoretical model, section 4 

details the experiment, section 5 reports our results, and section 6 concludes.  

 

Background 

To understand how uncertainty affects the consumption decisions of individuals in the context of 

a common pool resource, we first identify the characteristics of CPR’s and highlight the cause of 

the associated social dilemma. The social dilemma caused by CPR’s was introduced by Hardin  

(1968) and formally characterized by Dawes (1980) as having two major components: 1) the 

payout to each individual acting in her self-interest is higher than the payout for acting in the 

interest of the group, and 2) all individuals receive a lower payout when everyone acts in their own 

monetary self-interest. The model used in this experiment is consistent with Dawes’s definition, 

but it distinguishes two underlying causes of over-extraction: 1) the classic Prisoner’s Dilemma in 
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which marginal overextraction occurs because individuals do not account for the external costs 

imposed on others (partially defect), and 2) a deliberate exhaustion in which a coordination 

problem can lead to the suboptimal NE and resource collapse (fully defect). At both NEs 

individuals overconsume compared to the socially optimal solution. This basic overconsumption 

phenomenon has been observed in CPR’s all over the world and has been the focus of considerable 

experimental literature (Ostrom, 2006).  

Uncertainty has been introduced in the CPR setting in many contexts, including the standard rent 

dissipation problem (Walker, Gardner, & Ostrom, 1990), probabilistic degradation or destruction 

(Blanco, Lopez, & Walker, 2015; Walker & Gardner, 1992), nonpoint source pollution (Poe, 

Schulze, Segerson, Suter, & Vossler, 2004), varying degrees of externalities (Suter, Duke, Messer, 

& Michael, 2012), and unknown thresholds or tipping points (Budescu et al., 1990).  

Overconsumption was present in each of these experiments and was generally exacerbated by 

uncertainty.  In addition to the social dilemmas caused by common CPR settings, uncertainty 

induces people to over consume even when there is no practical reason to do so.  A number of 

explanations have been presented for this phenomenon, including an optimism or egoism bias (De 

Vries & Wilke, 1992; Gustafsson, Biel, & Gärling, 2000; Olsen, 1997).    In our experiment, one 

NE is always theoretically superior to the other, but it is possible that a behavioral response may 

cause individuals to choose the inferior NE as uncertainty increases—this phenomenon will be 

tested and confirmed.      

While our model is primarily consistent with CPR work, it is worth mentioning that this research 

has corollaries in public good experiments such as that in Barrett and Dannenberg (2012) or 

Dannenberg et al. (2011). In a similar context, they find that varying uncertainty levels can affect 

cooperation and NE choice.  Barrett and Dannenberg’s model is particularly relevant to our setup 
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because it creates a very similar incentive structure in which both an inferior NE and superior NE 

exist, but neither equilibrium is located at the socially optimal solution. They find that catastrophe 

can be avoided through public good contributions in the certainty case, but not when the threshold 

is uncertain.  They reject the hypothesis that individuals would contribute zero under uncertainty 

treatments—which corresponds to our fully defect choice to consume without consideration for 

impacts on the resource stock. However, we find significant evidence that subjects make this 

choice in the presence of uncertainty.  This choice results in assured resource destruction, and is 

thus an indication of a very different underlying motivation.  

Our model is an extension of work first proposed in the 1980’s (Messick, Allison, & Samuelson, 

1988). Messick et al. (1988) developed a simplified setup to investigate the fundamental CPR 

inefficiencies created by social and environmental uncertainty. Their setup is a single-stage, 

noncooperative game in which individuals extract from a common pool with an unknown 

threshold. Individuals receive the number of tokens they requested only if the total number 

requested by the group remains below the threshold. Players receive nothing if the sum of requests 

exceeds the threshold.  

This model was further developed in Budescu et al. (1990), Budescu, Rapoport, & Suleiman 

(1995), and Aflaki (2013). While their experiment provides insight into the nature of uncertainty 

in a CPR, their setup eliminates the motivation of individuals to request if they expect the threshold 

to be exceeded (fully defect), because the payout for requesting 0 and the payout for requesting as 

much as possible are equivalent. Their model essentially creates a coordination game (and 

corresponding NEs) in which once the optimal solution is reached, no single player would deviate 

from that NE.  Such a setup is incongruous with many real-world CPR settings. More recently, 

Botelho et al. (2014) used a similar setup in a dynamic setting and found that increased levels of 
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uncertainty may lead to quicker depletion of a resource stock, but players may also adopt strategy 

paths that guarantee the unknown threshold will not be exceeded. Our setup uses a single-period 

model but allows for choices similar to those of the dynamic game. Constituents make a single 

extraction decision corresponding to an easily identifiable NE akin to more complex dynamic 

models. Two symmetric NE are created, one in which individuals partially defect from the 

coordinate solution and one in which they fully defect and destroy the resource with certainty. The 

decision to partially defect from the coordinate solution is akin to the defect strategy in a Prisoner’s 

Dilemma game, whereas the choice between partially and fully defecting is one of coordination. 

An in-depth discussion of our model and its solutions are presented in the next section.  

 

CPR Model and Predictions 

We use a single-period, non-cooperative, n-person model similar to the one developed by Budescu, 

Rapoport, and Suleiman (1990 & 1995). We alter their model in three significant ways in order to 

capture key features of many CPR settings: we 1) introduce a lump-sum damage amount to reflect 

resource collapse, 2) incorporate decreasing returns to individual payout functions, and 3) utilize 

a two-step optimization framework to analyze individual behavior. These modifications create 

significant changes in the incentive structure of resource constituents and provide insight into the 

possible motivations underlying overconsumption decisions in a CPR setting.  
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Basic Setup 

Each individual � �� = 1,2, … , 	
 requests a specific number of tokens and receives a payout based 

on the amount they request as well as the actions of others. Individual � receives ��
��� dollars for 

requesting �� tokens. For the general theoretical model we assume that ��
��� is twice differentiable 

and concave. 

If the total group request exceeds the threshold of available tokens, an individual’s total payout is 

reduced by �� . The total number of tokens requested by the group is denoted � = ∑ ������ , while 

the total number of tokens requested by other individuals is ��� = � − ��. The threshold under 

which the group must stay in order to avoid incurring the lump sum cost is a random variable ���
, 

uniformly distributed between a lower (�) and upper (�) bound.  

Each individual’s total payout function is: 

��
��; ���� =  � ��
��� �  � ≤ �� ��
��� − ��  �  � > ��      (1) 

 

Individual’s Problem 

We assume that each of the 	 individuals maximizes his total expected payout given uncertainty 

about the threshold and assuming the actions of others are exogenous. Note, however, that because 

of the piecewise nature of the uniform distribution function, the expected payoff function is 

discontinuous across three segments, or 

#$��
��; ��� �% =
&'(
')��
���                               �  �� ≤ � − �−�                       

��
��� − *+
,-+./+�0�
1�0     �  � − �−� < �� < � − �−�

��
��� − ��                      �  �� ≥ � − �−�                     
   (2) 
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Similar to a model in Hanemann (1984) we take advantage of this discontinuity and model the 

individual’s choice of �� utilizing a two-stage maximization framework. In the first stage, we 

consider the optimal request of each individual, conditional on being constrained to one of three 

subsets of possible requests:   
45�� = 6�� ∈ ℝ.: �� ≤ � − ���:        45�; = 6�� ∈ ℝ.: � < �� + ��� ≤ �:45�= = 6�� ∈ ℝ.: �� > � − ���:             (3) 

For expositional purposes we refer to 45�� as the “safe range,” 45�; as the “uncertain range,” and 

45�= as the “destruction range.” 

In the second stage we consider each individual’s “discrete choice” of which “zone” is optimal for 

them to select. This two-stage approach allows us to distinguish between the underlying 

motivations of resource constituents. Specifically, it allows us to separately identify the standard 

overconsumption problem from one created by individuals’ strategic behavior to exhaust the 

resource.  

Along these lines, the individual’s optimal request level, conditional on being restricted to subset 

45, is the solution to the following problem:  

max/+ #$��
��; ��� �% A. C. �� ∈ 45      (4) 

Let �̅�,5 denote the optimal request conditional on being restricted to subset 45. A solution exists 

for all 45 that are not empty. For E = 1, the solution is characterized by setting the marginal benefit 

of an additional unit equal to zero, ��F
�̅�,5��, ; ���� = 0 , if there exists an �� ∈ 4� that satisfies that 

condition, otherwise �̅�,5�� = � − ���. For E = 2, the solution is characterized by 
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��F
�̅�,5�;; ���� = *+1�0 if such an �̅�,5�; exists.2  For E = 3, the solution is characterized by 

��F
�̅�,5�=; ���� = 0.  

The second stage of the optimization problem for each individual involves deciding which zone to 

choose. Denote �I�,5
���� as the maximum level of profit the individual can achieve conditional 

on the requests of others and being restricted to subset 45, then the individual’s second-stage 

problem can be written as:  

maxJ+,K ∑ L�,5�I�,5
����5       (5) 

where L�,5 ∈ {0,1} and ∑ L�,5 = 15 . 3 L�,5 represents the discrete choice made by each individual.  

The solution to this problem is a set of L5 such that: 

L�,5� = O1 �  �I�,5� 
���� ≥ �I�,5
���� ∀ E ≠ E�0  RCℎT�U�AT      (6) 

A NE exists if every player cannot improve their payout unilaterally by changing �� or L�.  The 

model is parameterized for the experiment such that two such NE exist in each uncertainty (and 

certainty) treatment.   

 

 Social Planner’s Problem 

The social planner’s problem is similar to the individual’s problem in that she faces the same 

environmental uncertainty, represented by ��~W��, �
. In calculating her solution, she accounts 

                                                           
2  

*+1�0 represents the expected marginal cost associated with increasing ��. Note that this is constant because of the 

assumption of a uniform distribution. 

3 Note that ∑ L55  can be greater than one if two �I5 are equal. However, we ignore this special case given that it isn’t 
a possibility for the parameters/functions chosen for this experiment. 
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for the total damage incurred by the group, while the individual is only concerned with the damage 

he incurs. Thus the social planner’s problem can be represented as: 

#$�
��,;…��% =
&'(
') ∑ ��
���   ����                                �  � ≤ �       

∑ ��
��� ���� − X∑ *+Y+Z[ \�,�0

1�0      �  � < � < �

∑ ��
��� ���� − ∑ ������               �  � ≥ �        
  (7) 

The social planner’s continuous solution conditional on discrete choices are as follows.  For E =
1, the social planer’s solution is characterized by setting the marginal benefit of an additional unit 

equal to zero for all users, ��F
�̅]^�,5��� = 0 ∀ � , if there exists an ��,…,� ∈ 4� that satisfies that 

condition, otherwise ��F
�̅]^�,5��� = ���F 
�̅]^��,5��� ∀ � and � = �.  For E = 2, the solution is 

characterized by ��F
�̅]^�,5�;� = �_�F 
�̅]^��,5�;� = ∑`Z[Y *`1�0  ∀ �.  For E = 3, the solution is 

characterized by ��F
�̅]^�,5�=� = 0 ∀ �. Comparing the social planner’s solution to the NE, it is 

possible to show that the social planner’s total request, �]^,will never be larger than the sum of 

individual requests at the NE. While this result is generally true, the proceeding exposition focuses 

only on the cases relevant to our experiment.   

The second stage optimization problem and its solution are similar to above, such that the discrete 

choice social planner solution is characterized by: 

L5� = O1 �  �I]^5� ≥ �I]^5 ∀ E ≠ E�0  RCℎT�U�AT      (8) 

In the general formulation of this problem it is unclear how uncertainty affects the socially optimal 

solution and individual NE. A list of possible general-form solutions can be made available upon 

request, but for the sake of this experiment and our desire to formulate a model consistent with 

CPR settings, we limit the general problem to specific cases for which our experiment is 

parameterized. 
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Specific Model Solutions 

Many possible cases exist in the general formulation of this problem and it can easily be shown 

that the effect of uncertainty under the general formulation is ambiguous.4  We focus on specific 

cases that possess characteristics consistent with CPR settings.  These cases have two NE and are 

defined by the following features: 1) there exists one symmetric NE in the uncertain range (the 

partially defect NE,) 2) there exists one symmetric NE in the destruction range (the fully defect 

NE), 3) both NE have lower expected payouts than the social planner’s solution,5 4) the fully defect 

NE is inferior to the partially defect NE, and 5) conditional on others fully defecting, no individual 

who fully defects would unilaterally change to partial defect and vice versa. Within this subset of 

the general problem, we identify one case where the social planner’s discrete solution is 

characterized by L� = 1 such that the continuous choice solution is characterized by ��F
�̅�,5�;� =
�_�F 
�̅_�,5�;� ∀ � and �]^ = � (the low-uncertainty treatment), and one case where L; = 1  such 

that the optimal continuous-choice solution is characterized by ��F
��,5�;� = �_�F 
�_�,5�;� =
∑`Z[Y *`1�0  ∀ � and � < �]^ ≤ � (the high-uncertainty treatment). These results imply that the social 

planner will not accept any probability of destroying the resource in the low-uncertainty case, but 

will accept some risk in the high-uncertainty case.  We refer to the social planner outcome as the 

coordinate solution. 

 

                                                           
4 See Appendix (A.2) for a simple example. 

5 Note that under the certainty treatment, the coordinate solution is one of the possible Nash Equilibria. 
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These cases were chosen because they correspond to many CPR settings and allow for meaningful 

analysis. For example, it is reasonable that the social planner would ensure resource survival, or 

that she is willing to accept some probability of destruction.  However, if the socially optimal 

solution is to exhaust the resource (L= = 1), there would be no social dilemma.  We also 

acknowledge that under the general set-up, it is possible that no NE exist, but these cases would 

not allow for meaningful analysis.  The cases of interest also implicitly assume that individuals 

have the ability to destroy the resource (� is sufficiently small) and that resource survival creates 

more value than destruction—both assumptions are consistent with most CPR settings. Limiting 

our analysis to only these cases of interest, it is possible to investigate how uncertainty affects both 

the discrete and continuous choice, and how NEs compare to the socially optimal solution.  First, 

we examine the effect of uncertainty on token requests. 

Because this analysis is limited to cases where two NE exist, we cannot theoretically identify the 

effect of increasing uncertainty on individuals’ discrete choices. The partially defect NE is superior 

to the fully defect NE in every treatment, but the nature of the coordination game does not allow 

us to determine which NE will be reached ex ante.   Therefore, picking one discrete-choice NE 

over the other is a behavioral question and will be tested in the experimental section of this paper. 

However, this ambiguity does not exist for the continuous choice given a particular discrete choice.  

For example, conditional on (L; = 1
, individuals will request such that ��F
�̅�,5��ab � = *+1�0. Because 

damage is constant, increasing � − � decreases the RHS of the equation.6  Given the concavity of 

�����
, requests must increase to satisfy the equality.  Thus, conditional on the discrete choice to 

                                                           
6 A graphical representation of these cases is provided in the appendix (A.3). 
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partially defect, increasing uncertainty increases consumption.  These theoretical results are 

empirically tested across the low- and high-uncertainty treatments.  

It is also possible to compare individual NE solutions to that of the social planner and show that, 

for the cases of interest, individuals have an incentive to overconsume. To compare the social 

planner and individual decisions, note that if both solutions are in the uncertain zone �L; = 1
 the 

individual’s request solution is characterized by ��F
�̅�,5�;ab � = *+1�0 , whereas the social planner’s 

solution is characterized by ��F
�̅�,5�;]^ � = ∑ *++1�0 . This implies that, ��F
�̅�,5�;]^ � > ��F
�̅�,5�;ab �.  Given 

the concavity of the payout function, it follows that �̅�,5�;ab > �̅�,5�;]^  and a social dilemma exists if 

individuals pick the partially defect NE.  Moreover, this disparity in perceived marginal cost 

between the individual and social planner makes it possible that the social planner solution is to 

remain in the safe zone L� = 1 when the NE discrete solution is L; = 1.  This describes the classic 

Prisoner’s Dilemma, and occurs if  �I�,;����]^
 ≥ �I�,�����]^
 for any individual. 

Given these results, policies may enhance the value derived from the resource. We consider two 

potential policies, including both a constant tax per unit requested as well as a fee paid by all if � 

exceeds the threshold, ��. The optimal policy to address this CPR dilemma requires two things. It 

must induce individuals to pick the correct discrete choice, L5, and given that choice, it must also 

induce individuals to request the same amount as the social planner in discrete, �̅�,5ab = �̅�,5]^ ∀ �. If 

the social planner’s discrete solution is L� = 1, then the solution is characterized by �]^ = � and 

��F
�̅�,5��� = �_�F 
�̅_�,5��� ∀ �. To ensure a solution, a policy must dictate �I�,� >  �I�,; , �I�,= for all 

players in addition to ensuring that �̅�,5��ab = �̅�,5��cd ∀ �. If instead the social planner’s solution is 

L;=1, then the solution is characterized by � < �]^ < � and ��F
��� = ∑`Z[Y *+1�0  for all players. To 
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ensure this solution, a policy must dictate �I�,; >  �I�,� , �I�,= for all players. We ignore the case 

where the social planner’s solution is L=, since this solution would denote the absence of any social 

dilemma. Importantly, while a tax is charged per unit extracted, the fine is a lump-sum charge. 

The optimal tax in this setup depends on the specific equilibrium locations. In the simplest case, 

where the individual and the social planner problems both have solutions in the uncertain range 

(the high uncertainty treatment), taxes are set such that Cef = [∑ *_+Y+Z[1�0 ]. When the social planner 

solution is below the uncertain range (the low uncertainty treatment), the tax must be set differently 

since the social planner solution in this case is ��F
�̅�,5��]^ � < ∑*+1�0. If the tax were set at the previous 

level, [∑ *_+Y+Z[1�0 ], individuals would be over taxed. The optimal tax in this case is ��F
�̅�,5��]^ � − *+1�0 =
Cef.  In either case, an excise tax increases the marginal cost of extraction regardless of discrete 

choice, and it therefore effectively eliminates the fully defect NE and moves the partially defect 

NE to coincide with the coordinate solution under both uncertainty treatments. The fine also shifts 

the partially defect NE to coincide with the coordinate solution; however, it does not eliminate the 

fully defect NE since it only increases expected marginal value in the uncertain range. 

Theoretically, the fine is equivalent to increasing the size of ��  to ∑ ������ , and thus is set as  �	T =
  ∑ �_����� .  Because taxes increase marginal cost regardless of discrete choices, we expect their 

presence to increase ��F��̅�,5ab
 and thus reduce total consumption. Fines, by comparison, only affect 

marginal cost in the uncertain zone, and may not induce efficient discrete choices. 

To test these theoretical predictions, an experiment was used in which policies and resource 

threshold uncertainty could be exogenously introduced and varied.   
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Experimental Setup  

The experiment attracted 96 undergraduate students from Colorado State University, who received 

an average payment of $27. It was conducted in the spring and fall semesters of 2015 in a computer 

lab using z-Tree (Fischbacher 2007). The experiment was conducted over six sessions, one session 

of 20 students, four with 16, and one with 12.  

 

Experimental Design and Procedures 

In each session, individuals participated in 12 rounds made up of 8 static periods.7 The 9 rounds 

of interest in this analysis differed by policy and uncertainty treatment, while the 8 periods within 

a round remained identical to one other. By introducing three uncertainty treatment levels and 

three policies, we can compare the instances of defecting under each permutation of policy and 

uncertainty level. Uncertainty treatments included: 1) Certainty, 2) Low Uncertainty, and 3) High 

Uncertainty. The ordering of each treatment varied across sessions to control for possible ordering 

effects.  

At the start of each round, participants were informed of the uncertainty and policy treatment for 

that round. Then players independently requested specific numbers of tokens. After each player 

made a request, a payout screen was displayed with key information from the period.8 This screen 

informed participants of how much they requested (not the requests of others), if the group 

                                                           
7 While students participated in 12 rounds, only 9 are used in this paper.  The rounds with the Certainty-varying 
treatment were used to answer a different question and will be analyzed in a future paper.  

8 Note that to help ensure independent rounds, the total payout of participants was determined by a randomly 
selected period such that no wealth or cumulative effect would affect later rounds. 
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exceeded the threshold, the total money paid for potential damage and policy payments, and their 

payout for the period. While groups were always comprised of four players, the individual make-

up of each group was pseudo-randomly assigned each period.  

At the beginning of the experiment, individuals were provided with a table showing their actual 

payout per token as well as the damage amount they would incur if the sum of requests surpassed 

the threshold. Half of the players in each group were assigned a low-productivity payout schedule, 

in which the payout per token was less than that of high-productivity participants (parameterization 

described in the following section). Individuals did not know others’ true payouts, only that they 

were heterogeneous and that individuals who receive higher payouts per token also suffer larger 

damages when the threshold is exceeded.  

This experimental design allows us to systematically examine the relationship between 

environmental uncertainty and resource constituents’ equilibrium choices and consumption. 

Participants face the simple choice of requesting a specific token amount and should be able to 

easily identify the fully defect choice since it corresponds to the token amount at which marginal 

benefit equals zero on their payout table.  

We chose to avoid revealing the requests of other individuals in a group, and instead elected to 

only inform individuals if their group stayed below or exceeded the threshold. This decision was 

made to reflect reality, in which resource users are unlikely to observe the exact consumption of 

other individuals. It also helps us avoid a tit-for-tat strategy, which is necessary to assume the 

independence of periods.  
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Model Parameterization for the Experiment 

For the experiment, a group size of four is used to allow for symmetry and to create group 

dynamics that may not be present in a bi-lateral game. ��  and ��
��� are unchanged for each 

participant across each treatment to help with understanding. Thus, the only parameters that change 

across treatments are those associated with the uncertainty range (� and �), although #[��] remains 

constant throughout the experiment. � and � were chosen to reflect three uncertainty treatments: 

certainty, low uncertainty, and high uncertainty. The specific uncertainty parameterization of each 

treatment is presented in Table 1. In the certainty case, � = � = 18.  
Table 1.1. Uncertainty Range by Treatment 

 j k Uncertainty Range 

Certainty 18 18 0 

Low Uncertainty 12 24 12 

High Uncertainty 8 28 20 

 

The payoff functions for the experiment participants were parameterized to introduce 

heterogeneity in user type to represent more and less productive resource extractors. Table 2 

presents the payouts associated with different levels of requests made by each user type. Notice 

that the high productivity user has a higher payout associated with each level of request and faces 

a larger damage penalty if the group exceeds the resource threshold, reflecting larger losses to 

higher productivity users from resource collapse. 
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Table 1.2. Payout Schedule and Damage Amount for Each User 

Marginal Payout per Token 

Tokens Requested 0 1 2 3 4 5 6 7 8 9 10 

Low Productivity - $11.00 $7.50 $4.50 $2.80 $1.75 $0.90 $0.10 -$0.50 -$1.20 -$1.75 

High Productivity - $13.00 $9.50 $6.50 $4.80 $3.75 $2.90 $2.10 $1.40 $0.80 $0.25 

Damage Low productivity: $16  High productivity: $30   

  

The model was parameterized such that both the partially and fully defect NE exist in both 

uncertainty treatments. The individual partially defect NE is in the uncertainty zone under both 

low and high uncertainty, and the payout from that equilibrium is always higher than that of the 

fully defect NE. The numeric solutions under each treatment are summarized in Table 3.  

 

Table 1.3. Individual & Social Planner Solutions and Corresponding Total Expected Value 

 Partially Defect NE 
  Token Requests Expected Payout 
Productivity type Low High Low High Total 
Certainty many NE many NE many many many 
Low Uncertainty 5 6 14.2 15.5 59.3 
High Uncertainty 6 7 14.4 15.6 59.2 
 Fully Defect NE 

 Token Requests Expected Payout 
Productivity type Low High Low High Total 
Certainty 7 10 12.55 15.0 55.1 

Low Uncertainty 7 10 12.55 15.0 55.1 

High Uncertainty 7 10 12.55 15.0 55.1 

 Coordinate Solution 

  Token Requests Expected Payout 
Productivity type Low High Low High Total 
Certainty 3 6 23.0 40.5 127 
Low Uncertainty 2 4 18.5 33.8 105 
High Uncertainty 2 4 18.5 27.8 86.2 
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Policy Parameterization 

Each of the three uncertainty treatments will be investigated under two policies in addition to the 

base case—a per-unit tax on extraction, and a fine for exceeding the threshold. The optimal tax in 

the high uncertainty treatment is set such that Cef = [∑ *_+Y+Z[1�0 ], or $4.67 for low productivity users 

and $1.78  for high productivity users. In the low uncertainty treatment, the tax is set to  Cef =
��F
�̅�,5��]^ � − *+1�0, or $3.80 for low productivity users and $3.10 for high productivity users.  The 

fine is set as the total damage others would incur if the threshold is exceeded.  Numerically, this 

results in a $76 fine for low productivity users and $62 fine for high productivity users.  Under this 

parameterization, conditional on other group members fully defecting and pushing the group into 

the destruction range, no single individual can unilaterally improve expected payout by decreasing 

requests. In fact, if an individual chooses to partially defect when others in the group chose to fully 

defect, that individual would suffer substantial losses because he would incur both the damage and 

the fine without gaining the extra benefit from extracting �̅�,5�=ab .  Therefore, the fine policy does 

not eliminate the fully defect NE.  

 

Experimental Results 

To better understand the impact of uncertainty on an un-regulated CPR, we begin by restricting 

our analysis to just those periods where no policies are in place. Tables 4a-c, below, contain 

summary statistics characterizing the token requests, frequency the threshold was crossed, and 

percent of times the fully defect strategy was adopted across each of the different uncertainty 

treatments for these rounds.  
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Without a policy, the threshold was exceeded 37.5% of the time under the known threshold, 58.9% 

in the low uncertainty treatment, and 52.1% of the time in the high uncertainty treatment. 

 

Table 1.4a. Summary Statistics: % of Periods 

the Threshold was Exceeded 

  No Policy Tax Fine 

Certain 37.5% 6.8% 8.3% 

Low Uncertainty 58.9% 14.6% 27.6% 

High Uncertainty 52.1% 29.2% 28.1% 

 

Individuals chose to fully defect 5.6% of the time under the certainty treatment, 16.0% of the time 

under the low uncertainty treatment, and 15.5% of the time under the high uncertainty treatment 

(Table 4b). 

 

Table 1.4b. Summary Statistics: % of Requests 

to Fully Defect by Treatment  

 No Policy Tax Fine 

Certain 5.60% 0.26% 0.78% 

Low Uncertainty 16.0% 0.39% 1.82% 

High Uncertainty 15.4% 0.65% 1.43% 

 

The fully defect choice is defined with a binary variable that takes the value of 1 if participants 

request the amount of tokens such that ��F = 0, and 0 otherwise. Average token requests by 

treatment and user type are also reported in Table 4c.  

 



23 

 

Table 1.4c. Summary Statistics: Request Means by Treatment and Use Type 
 Whole Sample Coordinate Only 

 No Policy Tax Fine No Policy Tax Fine 

Productivity Low High Low High Low High Low High Low High Low High 

Certainty 
4.49 4.75 3.44 4.34 4.11 4.12 4.38 4.34 3.43 4.31 4.07 4.12 

(0.99) (1.75) (0.93) (1.05) (0.93) (1.02) (0.87) (1.01) (0.92) (1.01) (0.85) (1.01) 

Low 
Uncertainty 

4.64 5.51 2.65 4.58 3.58 3.71 4.33 4.36 2.63 4.55 3.45 3.70 

(1.57) (2.67) (1.17) (1.65) (1.18) (1.24) (1.39) (1.58) (1.15) (1.61) (1.00) (1.24) 

High 
Uncertainty 

4.78 5.42 2.96 3.47 3.50 3.37 4.41 4.50 2.93 3.43 3.44 3.30 

(1.83) (2.74) (1.00) (1.54) (1.34) (1.73) (1.71) (1.99) (0.95) (1.47) (1.27) (1.60) 

Standard deviation is reported in parentheses 

 

While it is clear that some individuals choose the fully defect equilibrium in the presence of 

environmental uncertainty, it is less clear that they successfully identify the partially defect NE. If 

we count observations within 1 token of NE requests, we can calculate the proportion of individual 

requests that are consistent with NE results. For low productivity users, 41.0% of all observed 

requests in the low uncertainty case are within 1 token of the partially defect NE. High productivity 

users are less consistent; only 30.5% of observed requests fall in this range in the same information 

treatment, although this result is partially driven by the fact that high productivity users more 

frequently fully defect. Under high uncertainty these percentages decrease substantially to 24.7% 

for low productivity users and 14.2% for high productivity users. Risk preferences may explain 

some of these deviations, since the NE calculations assume risk neutrality in payouts.9  

                                                           
9 Participants were generally risk averse—identified with a Holt-Laury test (Holt & Laury, 2002). After the CPR 
experiment was conducted, participants were given a Holt-Laury test. Results are reported on a score of 1 to 10, 
where 1 represents extreme risk loving and 10 represents extreme risk aversion. The average risk score for 
participants was 6.3, suggesting that participants in the sample were, on average, mildly risk averse. Mild risk 
aversion would lower the tolerance individuals have for risk and either cause a lower request rate than the partially 
defect NE, or if risk aversion is significantly large, it may induce individuals to fully defect under uncertainty.   
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To answer the research questions posed at the beginning of this paper a number of empirical model 

specifications are estimated using data from the experiment. The dependent variable in each of 

these models is either the number of tokens requested or a binary variable meant to represent the 

choice to fully defect. We model the number of tokens or the discrete choice as a function of several 

independent variables. First, flmn] is a vector of dummy variables for each policy treatment 

observed for individual � in period C, round o, and session A of the experiment. Tax and fine dummy 

variables take a value of 1 if that policy is in place and 0 otherwise.  Ulmn] is a vector of dummy 

variables indicating the uncertainty treatment,  plmn] is a vector of policy-uncertainty interaction 

dummies and ql is a dummy variable for risk aversion where q = 1 if an individual is risk averse 

and q = 0 otherwise. If rlmn] is an idiosyncratic error term, our econometric models can be written 

as: 

slmn] =  � �t + flmn]F ��  + Ulmn]F �; + plmn]F �= + qlF1u + rlmn]
  (9) 

The coefficients of interest include �� and �; where the vector �� represents the impact of policies 

on either the quantity of tokens requested or on the discrete decision to fully defect. �; is the effect 

of uncertainty on each dependent variable. The above equation was estimated for the discrete 

decision under three model specifications, logit random effects (logit-RE), logit, and fixed-effects 

linear probability. The logit random-effects models is the preferred model for estimating the 

impacts of policy and uncertainty, while the other two were included for robustness. Results are 

qualitatively and quantitatively consistent across all specifications.  For models including the 

quantity of tokens requested, we estimate linear models both pooled and with individual fixed 

effects. We now present empirical model results and use them to elucidate the role of uncertainty 
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in CPR consumption decisions, including both continuous quantity decisions and the discrete 

decision to fully defect. 

 

Environmental uncertainty and the discrete choice  

First, we investigate if uncertainty affects request rates by increasing the probability that 

individuals choose the discrete choice to fully defect. In this case, y indicates if individuals fully 

defect (y = 1) or they do not (y = 0).  We examine the individuals’ discrete choice by estimating 

equation 9 using logit-RE, logit, and OLS-FE specifications (Table 5). Positive and significant 

coefficients on the uncertainty treatments indicate that the decision to fully defect is consistently 

influenced by the presence of environmental uncertainty; however, the probability is not 

significantly different across low- and high-uncertainty treatments. The logit-RE model indicates 

that the probability an individual fully defects increases by 4.7% when moving from a world of 

certainty to one in which uncertainty exists around the resource threshold.  The effect is 

qualitatively similar under the other model specifications, but larger in magnitude. 
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Table 1.5. Binary Decision to Fully Defect  

 (1) (2) (1) 
VARIABLES LOGIT-RE LOGIT OLS-FE 
    
Low Uncertainty 0.0471*** 0.124*** 0.103*** 
 (0.0080) (0.0197) (0.0091) 
High Uncertainty 0.0453*** 0.120*** 0.100*** 
 (0.0080) (0.0198) (0.0091) 
Fine -0.0713*** -0.214*** -0.0482*** 
 (0.0164) (0.0493) (0.0099) 
Tax -0.108*** -0.331*** -0.0534*** 
 (0.0265) (0.0800) (0.0010) 
Tax Interaction -0.0229*** -0.0481 -0.0990*** 
 (0.0271) (0.0859) (0.0122) 
Fine Interaction -0.020*** -0.041 -0.093*** 
 (0.0166) (0.0517) (0.0122) 
Risk Aversion  0.0223  
  (0.0145)  
Constant   0.056*** 
   (0.0070) 
    
Observations 6,912 6,912 6,912 
R-squared   0.090 
Number of subjects 96  96 

Standard errors in parentheses 
Logit models are reported as average marginal effects 

*** p<0.01, ** p<0.05, * p<0.1 
 

Uncertainty and Resource Consumption 

While uncertainty induces some individuals to fully defect and exhaust the resource, we are also 

interested in how uncertainty affects the request rates of individuals who choose to partially defect. 

Table 6 presents the results of equation 9 when slmn] is the request rate of individual �. In columns 

1 and 3, only observations for subjects that did not fully defect are included and it becomes clear 

that, conditional on not fully defecting, uncertainty has a very small or insignificant effect on the 

number of tokens requested. On the other hand, when including the whole sample, uncertainty 

significantly increases the number of tokens requested (columns 2 and 4). The result that the 
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presence of uncertainty exacerbates overconsumption is consistent with what others have found 

(Budescu et al., 1995; Rapoport et al., 1992; Walker & Gardner, 1992), but here this is largely the 

result of a change in the discrete resource use decision. 

  

Table 1.6. Token Requests without Policies 

 (1) 
OLS 

(2) 
OLS 

(3) 
FE 

(4) 
FE 

VARIABLES Omitting  
Fully Defect 

Whole 
Sample 

Omitting  
Fully Defect 

Whole 
Sample 

     
Low Uncertainty -0.017 0.456*** 0.056 0.456*** 
 (0.0786) (0.1040) (0.0607) (0.0786) 
High Uncertainty 0.098 0.480*** 0.129** 0.480*** 
 (0.0785) (0.1041) (0.0604) (0.0786) 
Risk Aversion -0.309*** -0.298***   
 (0.0716) (0.0947)   
Constant 4.581*** 4.833*** 4.327*** 4.618*** 
 (0.0742) (0.100) (0.0414) (0.0556) 
     
Observations 2,019 2,304 2,019 2,304 
R-squared 0.010 0.016 0.002 0.021 
Number of subjects   96 96 

Standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 

 

This distinction is important because it highlights an erroneous conclusion that can be made if one 

simply looks at the average effect of uncertainty. The increase in average request under uncertainty 

obfuscates the real mechanism behind the exacerbated CPR dilemma: Individuals are more likely 

to fully defect and ignore the role of the environmental threshold in the presence environmental 

uncertainty. Viewing the social dilemma as a discrete shift rather than a simple rent dissipation 

problem has significant implications for the cause and solution to the CPR problem.  
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Interestingly, risk aversion appears to have little effect on the decision to fully defect (Table 5), 

even though theory suggests that extreme risk aversion should induce individuals to do so.10 In 

general, extremely risk averse participants may choose to request fewer tokens to decrease the 

probability of incurring a loss, but they may also fully defect in order to prevent the severe personal 

loss that would occur if they coordinate but the resource is destroyed anyway. When the partially 

defect NE creates an outcome in which the resource has some probability of destruction, resource 

constituents with strong risk aversion may intentionally destroy the resource to eliminate 

uncertainty. We find no evidence that risk averse players fully defect more frequently. However, 

conditional on not fully defecting, risk aversion decreases the requests made by individuals (Table 

6), consistent with a desire to avoid exceeding the threshold. 

 

Policy Impacts with Threshold Uncertainty 

Our results strongly suggest that uncertainty leads to overconsumption relative to the social 

optimum both because individuals choose to fully defect and because they don’t account for the 

damage additional token requests imposes on others by increasing the probability of resource 

destruction. Thus, it is worth evaluating how effective different policies are at reducing 

consumption to more efficient levels.   

Theoretically, the fine, unlike the tax, does not eliminate the fully defect NE. To empirically test if 

tax and fine policies prevent the fully defect equilibrium, equation 9, we examine the coefficient 

estimates on the policy variables. We estimate the coefficients on the dummy variables for the tax 

and fine policy as well as interaction terms between these policies and the presence of uncertainty. 

                                                           
10 See appendix for this theoretical result. 
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First, we investigate policy impacts on the binary variable indicating the discrete choice to fully 

defect. Table 5 shows that both policies are effective at eliminating the choice to fully defect and 

coefficients do not differ significantly across the policies. This suggests that while theoretically 

different, both policies are qualitatively similar in practice.  

It is clear that CPR dilemmas in the presence of an unknown tipping point are at least partially 

caused by the decision to fully defect. However, the more common explanation is also observed, 

since individuals do not properly account for the increased probability of damage imposed on 

others. Accordingly, we test for the effect of policies on individuals’ request rates to see if policies 

can achieve efficient outcomes.  We find that both fine and tax policies successfully reduce 

consumption by as much as 1.7 tokens (Table 7), however this reduction is less than the amount 

necessary to attain the efficient outcome.  
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Table 1.7. Token Requests Including Policies (Whole Sample) 

  
VARIABLES OLS-FE 
  
Low Uncertainty 0.566*** 
 (0.0634) 
High Uncertainty 0.371*** 
 (0.0634) 
Tax -0.737*** 
 (0.0694) 
Fine -0.497*** 
 (0.0694) 
Tax-Uncertainty Interaction -0.936*** 
 (0.0851) 
Fine-Uncertainty Interaction -1.05*** 
 (0.0851) 
Constant 4.618*** 
 (0.0491) 
  
Observations 6,912 
R-squared 0.191 
Number of subjects 96 

Standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 

 

It is worth noting that while both policies are equally effective at reducing the instances of 

defecting and reducing overall consumption, the fine policy is empirically less efficient because it 

does not create the efficient differentiation in request rates between low and high productivity 

users. The fine causes low and high efficiency users to cut back equally, while the tax causes the 

low productivity users to cut back comparatively more.  While the cause of this result is unclear, 

it may come from the certainty differences across policies.  The tax is charged with certainty for 

each token requested whereas the fine only increases the expected cost to an individual.  

Nevertheless, both incentivize CPR users to extract less of the resource and increase efficiency. 
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Conclusion and Discussion 

The theoretical and empirical results presented here suggest that the destruction of CPRs may 

result from a discrete choice to exhaust the resource and not simply a failure to internalize the full 

costs of resource extraction. When uncertainty around a resource’s ecological or physical tipping 

point exists, individuals are more likely to ignore potential resource degradation even when the 

corresponding consumption decisions lead to inferior outcomes and assured resource destruction. 

We find that while uncertainty induces some individuals to knowingly damage the resource by 

ignoring potential impacts on the resource, it has little effect on those individuals who do not 

intentionally fully defect. In addition, taxes and fines for resource extraction decrease the 

probability that individuals choose to destroy the resource under the assumption that destruction 

is inevitable. 

Previous studies have found that environmental uncertainty leads to increased consumption. Our 

results do not contradict these findings, but they suggest that increased CPR consumption may be 

the result of a distinct change in resource constituents’ underlying choice to ignore impacts on 

resource stocks in anticipation that others will do the same. Our main contribution is to distinguish 

CPR over-use incentives in a context of threshold uncertainty—a distinction which is important 

from a behavioral and policy perspective. If little is known about a resource, users may take the 

mindset that it is likely to be destroyed regardless of their choices. In this context, the rational way 

to use the resource is to myopically maximize net value, ignoring any true impact on the resource. 

In this way, CPR dilemmas in the presence of tipping points create both a Prisoner’s Dilemma and 

a coordination problem.   
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This research has several policy-relevant implications. First, regulation of CPR’s with uncertain 

tipping points through taxes and fines has the potential to improve efficiency. This improvement 

comes through both marginal decreases in extraction as well as deterring individuals from 

choosing to deliberately destroy the resource.  When strict tax and fine policies are politically 

infeasible, there may still be significant gains from interventions that eliminate the ability (or 

desire) of resource constituents to fully defect.  

In settings where outside policies are unlikely to be adopted and local institutions do not exist or 

lack the capacity to design and implement conservation policies, better information about the 

resource may provide an opportunity to improve the sustainability of that resource over time and 

increase the value obtained from scarce natural resources, even if the first-best solution cannot be 

reached. Reducing or re-characterizing uncertainty to affect public perception (and actions) has 

been explored in the field of climate science, where “identifying and reducing scientific 

uncertainty about climate change is a dominant theme of many scientific assessment[s]” (Shackley 

& Wynne, 1996).  Climate scientists have chosen to largely focus public information campaigns 

on exact thresholds (350.org or 2o) because such precise goals can encourage coordination. As 

with greenhouse gas emissions, decreasing scientific uncertainty may change resource extraction 

behavior even without implementing additional policies. In this way, improving the physical 

understanding of vulnerable CPR systems can avoid resource exhaustion and enhance the 

livelihoods of people who depend on the resource. 

While there are some shortcomings associated with condensing a time-dependent CPR scenario 

into a single-period experiment, our setup maintains much of the incentive structure present in 

dynamic games. The single-period game allows for many more independent observations, and can 

be a tool when time and money constraints are binding. Moreover, setting up this repeated static 
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game allows us to easily differentiate between discrete choices in the presence of environmental 

uncertainty. Given the strong effect of threshold uncertainty on fully defecting, our results suggest 

the need to consider this feature in CPR modeling whenever such uncertainty exists.  

Future work in this area will include evaluating the interaction of social and environmental 

uncertainty within this framework, the introduction of other types of policies such as 

communication, a more formal investigation of risk preferences, and most importantly, an attempt 

to identify why the same uncertainty has heterogeneous effects on individuals’ discrete resource 

consumption choices.  Overall, we demonstrate that resource threshold uncertainty can affect both 

marginal extraction decisions and the willingness of extractors to consider impacts on resource 

stocks. 
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CHAPTER 2. EVALUATING THE EFFECT OF CONSERVATION AND COST 

MOTIVATIONS ON WATER DEMAND 

 

 

Highlights 

•  Households primarily motivated by environmental and social considerations consume less 

water than households primarily motivated by cost and convenience.  

•  Price and weather shocks induce identical water consumption responses from consumers 

regardless of their underlying motivations for conservation.  

 

Introduction 

As natural resources such as water become increasingly scarce, managers often seek policies to 

reduce demand (Geick 2000). In urban water systems, individual household characteristics 

strongly influence the effectiveness of demand-side management strategies (DSM) as well as the 

additional demands induced by hot and dry weather events (Kenney et al. 2008; Nieswiadomy 

1992; Schleich and Hillenbrand 2009; Billings and Day 1989). Yet, little is known about the 

relationship between household conservation attitudes and realized consumption. Municipal water 

providers must anticipate changes in household consumption patterns driven by changes in price 

or drought conditions to effectively plan supply and distribution systems. Understanding how 

customer motivations translate to consumption responses will help inform this task. Recent studies 

have attempted to better understand household water consumption decisions either through the 

creation of household classes or by including household characteristics directly into the demand 

equations, but these studies have traditionally focused on the effect of observable household 
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characteristics such as house size. Few studies of US water consumers have used stated preference 

methods to evaluate the effect of underlying beliefs and attitudes on revealed residential water use 

and conservation.  

Utilities and water suppliers in the southwestern United States have introduced a number of 

education and conservation programs over the past two decades in an attempt to address increasing 

water scarcity. While programs differ from city to city, they are generally designed for the 

representative customer in a service region. However, Willis et al. (2011) opine that “[d]etermining 

motives for saving water are key when designing educational urban water saving strategies; hence 

at the outset, an understanding of consumption and attitudes towards water is vital.” Moreover, 

convenience, cost, social pressure, and environmental attitudes have all been shown to be 

motivating factors in conservation (Olmstead et al. 2007; Olmstead and Stavins 2009; Arbués et 

al. 2016; Trumbo and O’Keefe 2001). Thus, understanding the relative effects of each motivation 

on water consumption has implications for designing programs and policies. This paper 

investigates the relationship between underlying motivations of conservation and water 

consumption decisions by using household level utility data and telephone surveys. 

Economic theory and previous research suggest that individual consumers will decrease water use 

when the price of water increases (Espey et al.1997; Dalhuisen et al. 2003). It also suggests that if 

precipitation and temperature are intermediary goods in the creation of a good or service—a green 

lawn or garden for example—municipal water and precipitation are likely substitutes such that 

increased rain should decrease municipal water consumption. Indeed, these results have been 

found in numerous settings (Arbués et al. 2003; Worthington and Hoffman 2008).Standard 

economic theory, however, does little to help us understand how stated environmental and cost 

attitudes interact with weather and price shocks with respect to consumption behavior. Thus, we 



40 

 

propose and test a series of hypotheses to empirically elucidate how consumer stated preferences 

influence responses to prices and the weather.  

Hypothesis 1 

Households primarily motivated by environmental and social (E&S) outcomes consume 

less total water than consumers primarily motivated by cost and convenience (C&C). 

Hypothesis 2  

E&S consumers respond less to changes in price than C&C consumers. Ceteris paribus, 

we hypothesize customers concerned with cost will have more elastic demand with respect 

to price.  

Hypothesis 3 

E&S consumers and C&C consumers will respond identically to changes in monthly 

precipitation and temperature.  

 

These questions are of particular interest because they provide direction for water suppliers’ future 

education and conservation programs. Moreover, they must be answered empirically because 

theory does little to guide our hypotheses. Our results reveal that E&S consumers use less water 

on average but both consumer groups respond identically to variation in price and weather. This 

result has important implications for water and other resource managers because it suggests that 

heterogeneity in consumer type may not always lead to expected variation in responses to 

conservation policies.   
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The remainder of this paper is comprised of four sections: in the next section we briefly summarize 

the existing water demand and environmental psychology literature. Section three outlines our 

methodology and data, section four presents our results, and section five concludes.  

 

Background 

Considerable research has been dedicated to the relationship between household characteristics 

and water consumption behavior; we return to this area for two reasons. First, only a few studies 

focus on the effect of underlying attitudes and beliefs on water consumption, the majority of which 

are specific to Australia. Randolph and Troy (2008) find that attitudes and culture significantly 

affect water use, and for this reason estimates in one city may not be externally valid for another.  

Accordingly, previous qualitative results may or may not be replicable in new geographic areas 

(Willis et al. 2013). As such, our analysis is similar to investigation of water use in Eastern 

Australia, but applied to a representative city in the southwestern United States. The second goal 

of this study is to add another data point to the debate over environmental attitudes and actions, 

which has substantial implications for how to efficiently incentivize resource conservation. 

Research has linked environmental attitudes and beliefs to a host of environmental conscientious 

actions such as recycling, composting, efficient appliance installation, and conservation (Cialdini 

et al. 1990; Taylor and Todd 1997; Millock and Nauges 2010). In the specific context of water, a 

number of underlying motivations have been linked to lower consumption levels, including 

reducing costs (Olmstead and Stavins 2009; Arbués et al. 2003), normative social pressure 

(Trumbo and O’Keefe 2001; Víctor Corral-Verdugo and Frías-Armenta 2006), responding to 

possible punishment (Agras, Jacob, and Lebedeck 1980), and pro-environmental attitudes (Corral-
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Verdugo et al. 2003). While the majority of findings suggest that environmental attitudes are linked 

to pro-environmental actions, these results are far from unanimous.  A particular schism can be 

observed between the environmental psychology literature—which contains a number of studies 

with inconsistent results linking attitudes to actions—and the resource economics literature—

which generally finds that attitudes lead to actions.  

In the environmental psychology literature, research on environmental behavior is extensive, but 

results explicitly linking psychological factors and motivations to conservation behavior are mixed 

and considered inconclusive (Gregory and Leo 2003; Tuan 1968). In many of these studies, 

environmental attitudes have been shown to insufficiently explain pro-environmental behavior 

(Kollmuss and Agyeman 2002; Poortinga et al. 2004). Since social scientists often assume that 

people live according to their values and stated preferences, this phenomenon has received 

significant attention in the field of environmental psychology (Diekmann and Preisendörfer 1998; 

Diekmann and Preisendörfer 2003; Whitmarsh and O’Neill 2010). To address this discrepancy, a 

number of theories have been proposed, with the Minimum Cost Theory garnering the most 

attention and support. Diekmann and Preisendörfer (1998) suggest that environmetnal 

conciousness will translate into behavior only when the monetary and/or non-monetary cost is 

sufficiently low. Thus, understanding how customers’ motivations around cost and convenience 

lead to consumption and conservation decisions is a necessary step in creating effective 

conservation policies. This finding is particularly relevent for water suppliers who sponsor 

education and conservation programs, and suggests that convenience may be a strong driver in 

encouraging conservation. 

Results from the field of applied economics have been slightly more encouraging. Educational 

campaigns have been a common practice for most utilities, and evidence suggests that they are an 
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effective conservation tool (Michelsen et al. 1999; Nieswiadomy 1992). However, it is worth 

noting that water education programs have historically been introduced simultaneously with other 

DSM strategies, making it difficult to identify the sole effect of education. Moreover, it is difficult 

to determine if education programs simply provide knowledge—a prerequisite in changing 

behavior (Hungerford and Volk 1990)—which allows people to make more efficient decisions, or 

if education campaigns engender a sense of environmental stewardship which in turn increases the 

personal “value” of conservation.11 It remains unknown if education programs work because they 

reduce cost and increase convenience, or if they work because people feel good about conserving. 

Here, we begin to investigate this difference by measuring if the consumption decisions of 

households who claim to be motivated by cost and convenience differ from those motivated by 

social and environmental concerns.  

Individuals motivated by environmental and social outcomes are of particular interest because 

there is evidence that education campaigns focused on simply fostering environmental education 

can lead to long-term pro-environmental attitudes (Ballantyne and Packer 2005; Farmer et al. 

2007). If E&S motivated consumers use less (or respond differently) than their C&C motivated 

counterparts, then education programs designed to shift attitudes may be an effective way to reduce 

water consumption. Indeed, there is some evidence that environmental education campaigns 

reduce consumption for this reason (Zsóka et al. 2013). 

Lastly, research suggests that stated primary motives, “such as altruistic and social values, are 

often covered up by the more immediate, selective motives, which evolve around one’s own needs 

                                                           
11 Blake (1999) highlighted a framework in which to view environmental attitudes and actions and noticed 
a Value-Action Gap. Simply put, people have environmental values and perform environmental actions, 
but in many cases actions do not line up to attitudes, such that the “Gap” exists either because the values 
were not sufficiently large or the costs of the action were not sufficiently small. 
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(e.g. being comfortable, saving money and time)” (Kollmuss and Agyeman 2002). Thus, even if 

households are environmentally and socially motivated, these attitudes may not translate into 

actions if significant barriers to conservation exist. Combining what we already know about cost, 

convenience, and environmental attitudes with the results from this paper, it is clear that well-

designed conservation programs must be tailored to the underlying motivations and characteristics 

of consumers.  

 

Methods 

To properly test the hypotheses of interest and to ensure robustness, we estimate two regression 

models as well as statistical hypothesis testing. To answer hypothesis one, we first use a t-test 

across consumer preference types to test if unconditional water use is significantly different across 

E&S and C&C customers. Next, we use Model 1 (described below) where a dummy variable for 

E&S customer type is included and the associated coefficient is tested for significance. While 

Model 1 provides a conditional mean that may isolate the effects of motivations from other 

household characteristics, it may also suffer from endogeneity. Thus, to test hypotheses 2 and 3 

we use Model 2, which controls for unobserved, time-invariant household characteristics 

(described below).  

Hypothesis 2 and 3 refer to household consumption responses to external shocks, such that fixed 

effect (FE) models allow us to examine the coefficients of interest and average out any household 

specific characteristics that may cause biasness in the estimation. Using the regression 

specification from Model 2, we test the interaction coefficients for significance to determine if the 

marginal responses to weather and price differ across customer types.   
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Model Selection 

Attempting to identify causal relationships between household characteristics and water demand 

has been historically difficult. For example, Arbues et al. (2016) attempt to identify household 

factors that influence water saving behaviors. While such questions have numerous relevant 

applications for city planning and resource management, these analyses often lack a clear strategy 

for identifying causal impacts. Identification and endogeneity concerns arise from a number of 

sources that have been identified in the literature, where the chief issues are omitted variable bias 

and simultaneity (i.e., reverse causation).  

The simultaneity concern arises because—by definition—price is a function of water use under 

increasing block rate price structures. Under such pricing, reverse causality is assured. Fortunately, 

this concern is solved indirectly by addressing another issue typically associated with estimating 

residential water demand, the lack of an immediate price signal. Consumers do not generally have 

real-time price information when making water consumption decision. Thus, researchers have 

largely agreed that the price signal to which households respond is that of last month’s bill (Espey 

et al. 1997). Using last month’s bill solves the simultaneity problem, but it is still possible that the 

price on last month’s bill is correlated to the error term of this month’s demand (for example, a 

broken pipe last month may affect water use decisions this month). Accordingly, we perform a 

Hausman test and find no evidence of endogeneity in the price variable (Wu-Hausman 

Statistic=0.346).  

The more serious concern is the possibility of unobserved variable bias or spurious correlations 

with variables omitted from the model. The crux of the issue is the possible correlation between 

explanatory variables and error due to unobserved or confounding variables, although the richness 

of our data and overall fit of our model is encouraging. For instance, three variables that are often 
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unobserved and possibly correlated to explanatory variables in previous studies are conservation 

attitudes, environmental attitudes, and the area of irrigated turf. We have information on all three 

typically unobserved variables. Including these factors reduces, but does not eliminate concerns 

related to biased estimates produced from an ordinary least squares (OLS) model. Accordingly, 

one must be very specific in model selection and the inference that can be made from each 

statistical test.  

While many of the issues associated with estimating household water demand can be alleviated 

with a fixed effects model, doing so necessitates the omission of time invariant factors, which may 

be useful in predicting and understanding demand. Accordingly, we use two model specifications, 

consistent with previous work (Kenney 2008; Espey et al. 2003; Schleich and Hillenbrand 2009): 

a pooled OLS where E&S households are indicated with a dummy variable and a fixed effects 

model with interaction dummies for E&S households.  

While the standard OLS model (Model 1) may suffer from endogeneity issues, our coefficient 

estimates are qualitatively consistent across models (although price elasticities are lower in the FE 

specification) and the inclusion of attitude and turf variables leads to a significantly better fit than 

many previous attempts in the literature. Both of these points increase confidence in our results. 

The fixed effects interaction model (Model 2) is used to reduce the possibility of unobserved 

heterogeneity and the risk of biased estimates. It does not, however, allow for the examination of 

time invariant information, and thus, does not provide insight into the relationship between many 

household characteristics and water use that may be of interest. We include the OLS model to 

provide insight into the relationship between time invariant household characteristics and water 

demand, but a Hausman test suggests fixed effects are required (v = 42.1). Accordingly, the 
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specific models used in our estimation are consistent with previous literature and described below 

(Kenney et al. 2008; Espey, et al. 1997; Arbués et al. 2016; Willis et al. 2013; Willis et al. 2011). 

 

Model 1: Pooled OLS with E&S dummy 

slm = flmβ + ℎlL + ylp + rlm    (1) 

 
 

where slm is the amount of water consumed by household i in time period t. flm is a vector 

of time-varying explanatory variables including price, average daily temperature, and 

precipitation. ℎl is a vector of time invariant household characteristics. yl is a dummy 

variable that takes a value of 1 if consumer i is identified as E&S motivated and 0 if a 

consumer is C&C motivated. �, L and p are coefficients to be estimated and rlm is an error 

term with a mean of zero.  The Appendix (A1) contains a list of all variables used in the 

estimation of both models. 

 
Model 2: OLS fixed effects with interactions 

 szlm = fzlmβ + ylfzlmL + �l + rlm   (2) 

 
where szlm is the demeaned amount of water consumed by household i in time period t. fzlm 

is a demeaned vector of explanatory variables, and �l is a household specific intercept 

term.  

 

We test for heteroscedasticity in the OLS model with a standard Breusch-Pagan (B-P) test. 

For the FE model we use the modified test suggested by Greene (2000) and operationalized 

by Baum (2001). Heteroscedasticity is present in both models (v = 42.1 and  v = 4330.3). 
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We also test for autocorrelation in both models with a Breusch-Godfrey and the modified 

Breusch-Godfrey suggested by Woolridge (2002) and find no evidence that such a pattern 

exists.  Due the presence of heteroscedasticity, we adjust our standard error estimates in 

Model 1 with White’s correction and use robust standard error estimates clustered at the 

household level in Model 2.  

 

Data and Household Characteristics 

The attitudinal data used in our analysis comes from a survey conducted in a representative city in 

Colorado, where the primary utility company has employed a mixture of DSM strategies over the 

last 15 years. A severe drought in 2002 and 2003 alerted the Colorado Water Conservation Board 

(CWCB) to the importance of promoting water conservation and efficiency throughout the state. 

Among other tactics, the CWCB promoted policies that require all major municipal water suppliers 

to design and implement efficiency plans to manage water and plan for future water scarcity. 

Primary utility providers have since adopted a suite of price and non-price DSM strategies, 

including education programs, sprinkler audits, rebates, and increasing block rate (IBR) pricing 

structures. IBR’s are designed to discourage use by increasing the marginal price of water as 

individual household demand enters higher tiers and is often the most cost effective tool with 

which to manage demand (Olmstead and Stavins 2009; Arbués et al. 2003). However, the 

effectiveness of price as a conservation tool largely depends on the ability and desire of customers 

to cut back on their water use. Naturally, we anticipate that customers concerned primarily with 

cost may respond differently to price increases than those concerned with environmental or social 

issues.  
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In 2014 the city used a consulting service to author a customer segmentation study. While these 

questions were not designed to specifically answer our research questions, there are a number of 

questions embedded in the survey that elicit customer attitudes and beliefs. We therefore match 

survey responses to specific household billing data (for the years 2009-2014) in order to evaluate 

the relationship between stated attitudes and observed consumption behavior. In the parlance of 

Environmental Psychology literature, we compare survey responses to billing data in order to 

investigate the “Value-Action Gap” and identify how heterogeneous motivations affect water 

consumption and responses to price and weather. 

We focused on a subset of questions in the survey that directly elicit participant environmental, 

social, and personal motivations for conservation. Survey respondents were asked to rate their 

effort in reducing water consumption for everyday activities on a scale from 0 (never try) to 9 

(always try). Participants also indicated if their interest in reducing consumption was attributable 

to any of the following considerations: impact to the environment, impact on the community, cost 

to the household, and comfort and convenience. These questions were also answered on a scale 

from 0 (completely disagree) to 9 (completely agree). The specific questions used in our analysis 

are the following: 

1) Please rate your level of effort to reduce or minimize the amount of water and electricity 

that you use. 

2) When considering whether to use water or electricity, I consider the environmental impact 

that my household’s water and electricity use will have on the community. 

3) When considering whether to use water or electricity, I consider the economic impact that 

my household’s water and electric use will have on the community. 
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4) When considering whether to use water or electricity, I consider how much it will cost my 

household to use those services. 

5) When considering whether to use water or electricity, I consider the comfort and 

convenience of those in my household. 

 

Households were classified as E&S motivated if the sum of questions two and three was greater 

than the sum of questions four and five. If the opposite was true, households were labeled as C&C 

motivated. Households where the sums were equal across question groups are excluded from the 

analysis since their primary stated motivation cannot be identified. Note that this classification 

does not mean that E&S households do not consider cost or convenience; it means simply that they 

are motivated to a greater extent by environmental and social concerns. The inverse is true for 

C&C consumers. To ensure robustness, consumers were grouped using a range of criteria. Results, 

presented in the Appendix (A3), are qualitatively similar across each classification method. 

 

Other data sources  

Billing data were matched to survey data and the county assessor’s database to obtain specific 

physical information about each household. Consistent with previous literature, we include age of 

home and size of home as explanatory variables. In addition to the assessor’s data, we matched 

households to a parcel-specific LiDAR (Light Detection and Ranging) analysis, which provides a 

grass area estimate for each household in the sample. Demographic information was collected 

during the utility-sponsored survey. Lastly, weather observations recorded by CoAgMet stations 

were matched to specific billing cycles to provide average daily temperature and precipitation 

estimates corresponding to each bill. 
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Due to the wide range of data sources, a substantial portion of the households originally surveyed 

was dropped to ensure each observation had complete data.  Additionally, obvious outliers were 

omitted from the analysis (a complete explanation of the data cleaning process is provided in the 

Appendix (A2)). After matching household survey responses across the different datasets, 6,760 

observations for 119 distinct surveyed households remain. Although the sample is small, there is 

no identifiable reason to suggest that missing households are systematically related and would lead 

to biased sampling. Summary statistics describing households in the sample are reported in Table 

1. Use and weather summary statistics are reported in Table 2.  

 
Table 2.1. Summary Statistics: Household Characteristics  

(n=119) Mean Std. Dev. Min Max 
Single family homes 0.97 0.18 0 1 
# persons/ household 2.56 1.30 1 8 
Grass area (acres) 0.011 0.006 0 0.032 
House size (sf) 1566.04 476.00 780 2745 
Conserve (Q1) 6.90 1.79 0 9 
Environmental (Q2) 5.95 2.56 0 9 
Social (Q2) 5.01 2.76 0 9 
Cost (Q3) 6.53 2.42 0 9 
Convenience (Q4) 7.05 1.83 0 9 

 
 

Table 2.2. Summary Statistics: Monthly Variables  

(n=6,759) Mean Std. Dev. Min Max 
Water Use (gal) 7835.12 6884.08 600 62400 
Price/1,000 (gal) 2.53 0.41 0.41 6.18 
Precipitation (mm) 28.93 31.65 0.00 173.23 
Temperature (oC) 9.72 8.85 -5.77 24.61 
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Results 

Tables 1 and 2 provide summary statistics for the entire sample, but it is worth comparing 

consumer types across a range of household characteristics. Accordingly, Table 3 provides 

summary statistics of explanatory variables grouped by motivation type. E&S and C&C 

households are significantly different across a number of characteristics, including household size, 

number of persons per household, and their effort to reduce water consumption as elicited by the 

survey. Low-income households are more likely to be E&S motivated, although there is no 

statistical difference for middle and high income groups. There is also no significant difference in 

grass area between household types, which is surprising given the environmental cost of turf lawns.  

 
Table 2.3. Household Characteristics by Consumer type 

 C&C E&S  
Water Use (gal)  8358.6 6899.9 *** 
 (109.0) (126.3)  
Grass Area (acres) 0.011 0.011  
 (0.00068) (0.0011)  
House size (sf) 1611 1481 * 

 (57.23) (65.25)  
# Persons 2.733 2.256 ** 

 (0.161) (0.163)  
Conserve (0-9) 6.55 7.512 *** 
 (0.198) (0.267)  
Low Income (count) 5 9 ** 
    
High Income (count) 29 19  
    
Obs. 76 43  

* denotes significant difference across groups 
*** p<0.01, ** p<0.05, * p<0.1 

 
 
Although our dataset is richer than those used in some previous studies, the following regression 

results must still be interpreted carefully. Specifically, we can identify the effect of environmental 
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attitudes and household characteristics separately, thus reducing the spurious correlation that 

would likely exist without attitudinal variables. However, we cannot confidently preclude the 

existence of other underlying unobservable variables driving both explanatory factors and water 

consumption. Nevertheless, the inclusion of variables traditionally omitted from water demand 

estimation make some headway on the possible unobserved variable bias and endogeneity 

concerns of previous studies. Coefficient estimates for Model 1 and Model 2 are presented in Table 

4 and are largely consistent with previous findings. As expected, water consumption increases with 

the number of occupants, income, grass area, and the size of a home. These relationships between 

household physical characteristics and water use have been well established in the literature. The 

hypotheses posed at the beginning of this article are intended to investigate similar relationships 

for household motivations; we return to them now.  

 

Hypothesis 1 states that consumers who are environmentally and socially motivated (E&S 

consumers) use less water than consumers who are motivated by personal cost and convenience 

(C&C consumers). We performed three tests to evaluate this proposition, the simplest of which is 

a t-test12, which yielded a t-statistic of 10.26. Thus, the unconditional mean of water consumption 

is significantly different across E&S and C&C consumers. While the unconditional mean is useful, 

it does not allow us to separate the effect of motivation from underlying characteristics that may 

be correlated with motivation. To investigate the conditional mean, we examine the results in Table 

4 (column 1), where E&S motivated consumers are represented with a dummy variable. The E&S 

dummy variable in Table 4 (column 1) is statistically significant and negative, suggesting that E&S 

                                                           
12 Given the skewness of the distribution of monthly water consumption, data were log transformed to more closely 
fit a normal distribution. 
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motivated consumers use significantly less water than those motivated by C&C conditional on 

weather and household characteristics. These results allow us to conclude that the E&S consumers 

use less water than their C&C counterparts.  
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Table 2.4. Model 1 and 2 Regression Results  

VARIABLES OLS Pooled FE Interactions 
Ln(Price) -0.409*** -0.203*** 
 (0.0510) (0.0892) 
Bill days 0.0397*** 0.0429*** 
 (0.00340) (0.0024) 
Precipitation -0.00152*** -0.00155*** 
 (0.000254) (0.00017) 
Temperature 0.0459*** 0.0442*** 
 (0.00132) (0.00275) 
Summer dummy 0.150*** 0.135*** 
 (0.0262) (0.0249) 
Middle income 0.0872***  
 (0.0201)  
High income 0.206***  
 (0.0202)  
Single family home 0.879***  
 (0.0398)  
# of persons/household 0.119***  
 (0.00521)  yb&c (E&S dummy) -0.133***  
 (0.0166)  
Grass area 1.606  
 (1.244)  
House size  0.000115***  
 (1.58e-05)  
Conservationist -0.124***  
 (0.0189)  
Price*yb&c   -0.0834 
  (0.134) 
Precipitation*yb&c  -0.00034 
  (0.00046) 
Temperature*yb&c  0.0045 
  (0.0045) 
Bill days*yb&c  -0.00765*** 
  (0.00371) 
Summer dummy*yb&c  0.0341 
  (0.0470) 
Constant 3.229*** 5.594*** 
 (0.320) (0.224) 
Observations 6,583 6,640 
R-squared 0.488 0.549 
Number of households  119 

Standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 
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The second hypothesis states that E&S consumers respond less to changes in price than C&C 

consumers, presumably because cost savings motivate C&C customers to reduce more relative to 

E&S customers. The most straightforward way to evaluate this hypothesis is evaluating the 

interaction terms in the FE-interaction model (Table 4, column 2). The price-E&S interaction term 

is insignificant, suggesting there is no observable difference across motivation types. Although it 

is statistically insignificant it is worth noting that the coefficient on the price interaction term is 

negative, which suggests that customers who claim to be motivated by cost (C&C) may be less 

responsive to price increases than E&S consumers.  While this result is unexpected, it is possible 

that households that state a strong cost motivation for conservation are implicitly acknowledging 

their inelastic demand such that cost is a concern precisely because they do not have the ability to 

respond to price increases with reductions in quantity consumed.  

Hypothesis 3 states that E&S and C&C consumers will respond equally to changes in precipitation 

and temperature. This claim is also tested with the FE-interaction model. As expected, both 

consumer types decrease consumption with precipitation and increase consumption with 

temperature. Results in Table 4 (column 2) support hypothesis 3 and suggest that there is no 

statistical difference in how C&C and E&S consumers respond to precipitation and temperature. 

 

Discussion 

Our overall results suggest that the underlying motivations of residential water consumers affect 

consumption but do not affect how consumers respond to exogenous weather and price shocks.  

Thus, this work simultaneously supports and rejects the existence of the “Value-Action Gap” 

(Kollmuss and Agyeman 2002).  Consumers motivated by environmental preference use less, 
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which suggests that they conserve consistent with their attitudes. However, their response to 

external shocks like weather and price are not statistically different from other consumers, which 

suggests a discontinuity between attitudes and actions.   

While our results suggest that environmentally and socially motivated households use less water 

than those homes concerned with cost and convenience, more work is necessary to further 

elucidate this relationship. If environmental motivation is the true cause of conservation, 

significant implications exist for municipal-sponsored education and conservation programs. 

Moreover, because there is no difference in how consumers respond to price and weather shocks, 

water providers should not tailor education campaigns to the stated motivations of their customers.  

For example, if customers claim to be primarily motivated by cost, one might assume that 

campaigns focusing on increasing price structures would be an effective way to induce 

conservation.  However, there is no differential response to price across customer types such that 

tailoring a campaign in this way is unlikely to increase conservation relative to the case where this 

policy is more widely promoted. 

Conservation education is a common tool used by water suppliers, but its effectiveness is poorly 

understood. A key question in determining the effectiveness of conservation programs is the 

specific mechanism by which they work. For example, some programs may provide specific 

knowledge that allows individuals to conserve through new behaviors of which they may have 

been previously unaware. Other programs may foster pro-environmental attitudes that increase the 

utility consumers get from conserving. Our initial results indicate that environmental attitudes—

at least stated ones—are associated with lower water consumption, which may suggest that 

education and conservation programs that foster social and pro-environmental attitudes may be a 

practical strategy to induce conservation.       
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Future work on this topic should help identify the specific means by which E&S consumers use 

less water than their C&C counterparts.  Moreover, better understanding around the immediate 

and long-term behavioral effects of educational and conservation campaigns to engender social 

and environmental attitudes has significant implications for water suppliers.   
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CHAPTER 3. HETEROGENEOUS WATER DEMANDS: LETTING THE DATA 

SPEAK FOR THEMSELVES 

 

 

Highlights 

•  In each season (except spring) at least two classes of households exist, one responsive class 

and one inelastic class.  

•  Price increases and temperature are key drivers in water use, while precipitation has little 

effect.  

•  A 10% price increase will lead to a 5.2% reduction in residential use, with over 50% of the 

reduction coming from high income households; only 3% of the reduction will come from 

low income homes.  

 

Introduction 

Increasing populations and a changing climate have spurred many water utilities to introduce 

pricing and policy strategies in an attempt to ameliorate scarcity concerns. While conservation is 

often the stated goal of these programs, the public nature of utilities creates a normative objective 

in which the affordability and distributional effects of such policies are a chief concern among 

decision makers (Barberán and Arbués 2009). Both the effectiveness of these policies and the 

population on which the burden falls depends on the customers to whom municipal water is 

provided, how they differ from one another, and how their consumption is likely to change in the 

future. As previous literature has suggested (Renwick and Archibald 1998; Kenney et al. 2008; 
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Willis et al. 2011), we believe that customers are inherently different (in both observable and 

unobservable ways) in how they make water consumption decisions, and that such differences 

must be understood in order to design efficient and equitable water policies. Previous literature 

has generally assumed a single underlying data generating process for residential water use, which 

necessitates a model that is flexible enough to accommodate heterogeneity across customer 

observations. Such an assumption requires the researcher to ex ante know how individuals make 

consumption decision in order to properly specify the model. We explore an alternative approach, 

using a finite mixture model (FMM) which endogenously determines household class membership 

without imposing the assumptions of more common methodologies. This paper uses billing and 

weather data from a representative city in the southwestern United States to identify heterogeneous 

classes of households with respect to water consumption decisions. We estimate seasonal demand 

responses for two types of customers and use them to forecast water quantity and distributional 

effects associated with changes in price and weather.  

There is substantial evidence that demand side management (DSM) and weather shocks 

significantly impact water customers’ consumption decisions (Espey, Espey, and Shaw 1997; 

Arbués, Garcıa-Valiñas, and Martınez-Espiñeira 2003), but rigorous investigations into how these 

impacts vary across heterogeneous households are rare. Accordingly, this paper contextualizes 

residential water use in the Southwest and highlights the importance of accounting for 

heterogeneity in estimating the effectiveness of conservation strategies and future water demand. 

A number of explanatory factors have been shown to influence water use, and thus are likely to 

create heterogeneity in a household’s response to price and weather shocks. Some of these factors 

are known and can be observed—house size for example; some of these factors are known but 

cannot be observed—presence of efficient appliances; and some are unobserved because they are 
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the unknown unknowns.  Standard regression analysis incorporates these observed explanatory 

factors directly into structural demand equations which creates two significant sources of error: 1) 

endogeneity issues connected to omitted or unobservable variables, 2) average effects across 

explanatory variables may minimize error, but in the presence of heterogeneous responses, they 

also obfuscate the true story.  

Using a finite mixture model does not eliminate the concerns associated with omitted explanatory 

variables, but it does allow such omissions to be partly subsumed by the “class” component of the 

model.  [CITE]. The second concern has traditionally been addressed by splitting samples based 

on a priori beliefs about what factors influence types of classes. While separating households into 

groups based on average use or demographic characteristics may provide insight, marketing 

literature has long acknowledged that “a priori segmentation based on demographic and 

psychographic variables may be infeasible or insufficient to explain differences in consumption 

decisions” (Jedidi, Jagpal, and DeSarbo 1997; Moore 1980). For example, a household may appear 

similar in location and size, but vary greatly across unobservable characteristics such as 

understanding of the billing structure or the prevalence of efficient appliances.  

We use a FMM to estimate price elasticity and weather response coefficeints, allowing for different 

marginal effects across sub-sections of the population (classes). The FMM approach allows price 

elasticity and weather responses to be estimated for each latent class and simultaneously estimates 

the probability of class membership based on concomitant, observable factors. We find significant 

evidence that differences in price elasticity and weather responses exist across classes, and that 

such heterogeneity is obfuscated when a single equation is used to estimate demand. We identify 

two distinct classes within each season (spring, summer, fall, winter) and use household 

demographic and geographic characteristics to determine the probability of class membership for 
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each household. This approach allows us to estimate heterogeneous welfare effects associated with 

changes in price and weather.  It also may result in more accurate demand forecasting but needs 

to be externally validated.  

Water demand and responses to price and weather were estimated independently for each season 

for two reasons: 1) utilities across the Southwest are concerned with intra-annual water supplies 

due to the nature of snowpack and reservoir systems; 2) it provides more flexibility such that 

households may be responsive in some seasons and not in others. For example, houses with large 

lawns and efficient appliances may respond significantly to precipitation in summer months when 

outdoor use is high, but be relatively inelastic in winter months because indoor use is already 

efficient13.  

We then use these demand estimates from each season to predict future water use under possible 

future climate and price scenarios. Demand functions are estimated at the household level and 

aggregated to Census Block Groups, such that quantity and welfare effects can be calculated for 

different regions of the city.  

This paper is broken into six sections. The next section summarizes the long history of residential 

water research and the benefits of using the FMM approach. Section three outlines our 

methodology and identifies our data sources. Section four presents econometric results and the 

corresponding demand predictions. Section five concludes.  

                                                           
13 Including seasonal interaction terms and a series of dummy variables is an alternative, 
commonly utilized approach; however, this restricts the underlying data generating process to be 
the same across seasons, which is unlikely given that uses of water differ substantially across 
seasons. Estimating seasons independently also has the added advantage of shorter computation 
times. 
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Background and Motivation 

 

Residential Water Demand  

Water use is influenced by a host of explanatory factors, including: temperature, precipitation, 

drought, pricing structure, the presence of high efficiency devices, age of the home, income, 

education, number of persons per household, environmental attitudes and other demographic 

characteristics (Kenney et al. 2008; Arbués, Garcıa-Valiñas, and Martınez-Espiñeira 2003; Willis 

et al. 2013; Willis et al. 2011). Generally speaking, previous attempts to quantify water demand 

involve econometric models of the form }~ =  �4, �
 where the quantity of water, }~, is a 

function of price, 4, and a vector of other factors like household characteristics and weather.  

Many papers of varying quality have been published investigating the effects of household 

characteristics on water consumption. These papers generally acknowledge the limitations of 

causal inference due to possible endogeneity and unobserved variable issues. We avoid this 

complication by including only exogenous factors outside the control of the household, price and 

weather (and using fixed effects to ensure unbiased results), in our demand function estimates. 

Factors that may suffer from endogeneity or other complications are included only in determining 

the probability that a household is a member of a certain class—which does not require a causal 

interpretation to be meaningful. Additionally, it can be shown that in the case of questionable 

identification strategies, latent class analysis prevents errors associated with spurious correlations 

(Hagenaars and McCutcheon 2002). To our knowledge, only one study has used a finite mixture 

model to estimate heterogeneous household water demands (Stone et al. 2016), and while their 

work strongly suggests the presence of underlying class types, the study was limited by a lack of 
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spatially identifiable billing data (e.g. lawn size, house size, etc). We extend their work by 

including a more complete set of concomitant variables which determine class membership.  

We focus on price as the main DSM strategy for three reasons. First, water price is “the main 

instrument to control demand” (Arbues 2003). Second, other conservation strategies like education 

campaigns and advanced metering may be financially infeasible for small service providers, but 

pricing options are available to all utilities and are often the most cost effective strategy (Olmstead 

and Stavins 2009). However, using price as a tool for conservation can have implications for  

geographic and socio-economic equity (Rogers, De Silva, and Bhatia 2002) as well as human 

rights considerations (Bluemel 2004; Hardberger 2005). Accordingly, our paper includes a brief 

description of distributional effects across income levels. The last reason to focus on price is a 

practical one. Replacing aging infrastructure is likely to increase utility prices across the United 

States. As such, it is imperative to develop a methodology to determine who will bear the burden 

of price increases, and how effective they will be at generating revenue and encouraging 

conservation.  

While price increases could theoretically lower revenue for utilities, price elasticity estimates from 

the literature have been surprisingly consistent across methodologies and data sources, usually 

ranging between -0.4 and -1.0 (Espey, Espey, and Shaw 1997; Arbués, Garcıa-Valiñas, and 

Martınez-Espiñeira 2003; Scheierling, Loomis, and Young 2006). However, these elasticity 

estimates are usually reported as an average for entire service areas and may not be useful if a city 

is dynamic in its development or demographics.  
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Finite Mixture Model 

Given the importance of heterogeneity in determining the distributional effects and efficiency of 

residential water policies, particularly in the context of a changing climate, surprisingly little work 

has rigorously tested for distinct classes beyond a priori dividing samples (Kenney et al. 2008; 

Worthington and Hoffman 2008). The benefit of using the FMM is that no assumptions are made 

on the grouping characteristics, rather groups are endogenously determined based on observed 

responses.  

While clustering models are often employed for this kind of analysis, they are somewhat 

unsatisfactory. Most clustering techniques simply minimize Euclidean across variables believed 

to be important by the researcher, whereas a FMM is a statistical model postulated for the 

population from which the sample is taken (Hagenaars and McCutcheon 2002). Thus, the key 

assumption necessary to use an FMM approach is the existence of sub-populations, each of which 

possess a unique distribution. Such an assumption is reasonable in the context of water customers 

given differences in household and socio-economic characteristics. Therefore, the FMM approach 

is less subject to the biases and assumptions embedded in more common cluster analysis.  

Figure 1 provides an illustrative example of how monthly consumption distributions differ across 

residential zoning types (low density compared to medium and high density). The figure confirms 

our expectation that low density residential users not only use more water, but also possess greater 

variability from household to household and month to month. This figure suggests the presence of 

distinct sub-population distributions that differ across characteristics associated with each zoning 

type—since zoning class is unlikely to directly change water use. Thus, underlying characteristics 

of households are included as concomitant variables used to determine class membership.  
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Figure 3.1. Consumption Distributions by Zoning Type and Season 

The last practical advantage of FMMs over k-mean and other clustering techniques is the 

needlessness of scaling, which can be arbitrary in many clustering methods. By this we mean that 

normally distributed variables of unknown variance are often normalized such that observations 

can be clustered with “appropriate” weight on each factor, but ex ante, it is difficult to determine 

what constitutes appropriate weighting. The usefulness of FMM’s is succinctly stated by Boxell 

who notes that, “The finite mixture model may have considerable relevance to decision-makers in 

that it permits some understanding of preference heterogeneity through incorporation of individual 

characteristics... and accounts for preference heterogeneity to a degree by simultaneously 

estimating segment specific membership and choice parameters” (Boxall 2002). The specific 

methodology and model is presented in the next section. 
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Methods 

While demand estimation is common practice in applied economics, the introduction of the finite 

mixture model and the uniqueness of residential water complicate the analysis. The most basic 

component of the model is the demand function, which can be represented as:  

Unlm =  n� 4lm, flm , slm, �l, rlm
     (1) 

where c indexes class, i indexes household, and t indexes time. y is a vector of weather variables, 

x is a vector of household specific characteristics, 4 represents the relative average price of water14, 

and � is a term that encapsulates individual specific characteristics that may or may not be 

observed. Here “class” refers to a subset of the population for which the underlying data generating 

process is the same.  

The first complication in estimating a demand function for residential water is the obscurity of 

price from the perspective of the consumer. Unlike a department store, customers do not see real 

time price information based on their consumption. The price signal to which consumers respond 

under (increasing and decreasing) block rate structures has been a topic of considerable 

investigation (Charney and Woodard 1984; Opaluch 1984; Hewitt and Hanemann 1995; Klaiber 

et al. 2014; Nieswiadomy 1992) and with some exceptions, researchers generally agree that the 

perceived price to which consumers respond is the price experienced on last month’s bill.  

While there is general consensus that customers respond to a lagged price, it is less clear if 

customers respond to variable price, average variable price, or average total price (Ito 2012; 

Wichman 2014; Baerenklau, Schwabe, and Dinar 2014). Standard economic theory would suggest 

                                                           
14 For theoretical consistency, we standardize income and the price of water relative to an aggregate price of all other 
goods (See Hanneman (1998) for a discussion on the necessity of this method for theoretical consistency), as 
defined by the Bureau of Labor Statistics “CPI-less shelter” estimates.  
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that variable price is the relevant price in consumption decisions, but uncertainty exists around 

both tier locations and overall billing structure such that researchers have recently argued that 

average price is the most acute price signal. We use average variable price (which will simply be 

referred to as price) in this analysis because it seems most consistent with marginal decision 

making processes.  

Using last month’s bill addresses another complication created by block rate structures, a 

simultaneity problem of price and quantity. Under increasing block rates (IBRs), current use 

dictates current marginal price. Using lagged price breaks the simultaneity concern, but it does not 

necessarily preclude the possibility of endogeneity. Price—even last month’s price—may be 

endogenous. We instrument for last month’s price in an attempt to minimize any correlation 4lm�� 

may have with rlm through unobserved variables or spurious correlations. Thus, for the sake of this 

paper, we use the instrumented average variable price of last month’s bill, 4�l�m��
n, as a proxy for 

the perceived price faced by utility customers in the current month15.  

Once the relevant price signal is determined, we follow standard conventions in the field and 

specify Equation 1 as a log function (Worthington and Hoffman 2008), such that the demand 

equation of interest can be written as: 

ln�Unlm
 = �n + �n ln
4�l�m��
n� + Lnslm + �nfl + �l + rlm    (2) 

where �, and L are parameters to be estimated. Because � may include individual specific 

unobservable variables, estimating the above equation will likely result in biased estimates. 

Traditionally, this issue has been addressed through fixed effects model in which individual 

                                                           
15 Average price was estimated as a fixed effects regression where tilde denotes deviations from the mean and �zlm =��lm� + ��lm� + rlm where X is a vector of all variables included in the FMM, Z is a vector of price block data such 
that � = ����oT ��RoE 1 , ���oT ��RoE 2, ���� yesAm��
, and � and � are parameters to be estimated.  
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specific time invariant terms are averaged out of the model. Thus, the new function to estimate can 

be written as: 

�Ulmn − U�ln
 = �n + �n�4�l�m��
n − 4I�ln
 + Ln�slm − sIln
 + �n�fl − f̅l
 + �rlmn − rl̅mn
  (3) 

Where time invariant x variables drop out of the model and variables now represent deviations 

from their household mean and are denoted with tildes such that the new equation is:  

U�lmn = �n4�l�m��
n + Lnszlm + rl̃mn      (4) 

Consumer responses to price and temperature can be estimated as deviations from their average 

using the above equation, which looks identical to many econometric models of the last decade, 

except that it contains the subscript c such that our estimation depends on the underlying class of 

each observation. Because we are not a priori dividing the sample into classes, we need a method 

by which class membership is determined—enter the finite mixture model.  

We hypothesize that households fundamentally differ in their water consumption decisions, thus, 

estimating averages across a sample may lead to consistent estimates but obfuscate important 

relationships and nuanced conclusions. A FMM estimates unique coefficients for each class where 

the response coefficients and the concomitant coefficients are estimated simultaneously to 

determine the response parameters of interest within a certain class as well as the probability of 

class membership for each observation. Moreover, household characteristics are averaged out of 

the traditional fixed effects model whereas they remain in the fixed effects finite model as 

concomitant  variables that determine class membership.   

Concerns with respect to unobservable characteristics are small using this approach, but to ensure 

unbiased results we again use a fixed effects finite mixture model such that response variables of 

each observation are demeaned consistent with Deb and Trivedi's (2013) proposed methodology. 
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We further assume that the heterogeneity of water consumption responses may change seasonally, 

thus the following is estimated separately for each season: 

 �U�|f, sz, �n , �n , �n
 = ∑ �n�f, �
�n�� ��U�lmn|sz, �n , �n
  (5) 

where a vector of observable household characteristics, f, can be used to predict the probability, 

�n, that an observation belongs to class c such that the ∑ �n�n�� = 1. �nlm is estimated as a 

multinomial logit function consistent with most applications of the FMM (Kamakura, Kim, and 

Lee 1996; Kamakura and Wedel 2004). Deviations from the mean of exogenous variables to which 

consumers respond are contained in the sz vector. � is a vector of coefficients determining class 

membership probabilities, � and is a vector of demand response coefficients, and � is a dispersion 

term.  

Once demand and class membership estimates are obtained, we forecast potential changes in price 

and weather. Quantity and distributional effects are then calculated for the increased price scenario. 

 

Forecasting and Demand Predictions 

Once model parameters are estimated, we use them to predict the likely demand responses to 

changes in price and weather. Where total water, U�lm = �n��U��lmn�� + �n�;U��lmn�; + U�l] for each 

season. We estimate future water use as a percent of past use by averaging the monthly 

temperature, precipitation, and variable price for the five years used in the sample. These averages 

are then modified to create three scenarios: 1) a 2 degree increase consistent with some climate 

projections (EPA), 2) a 10% reduction in precipitation, and 3) a 10% increase in price. Under the 

price increase scenario, we also estimate welfare effects at the household level by integrating over 

the estimated demand function. Total welfare changes are estimated by averaging welfare 
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estimates across households in the sample within each block group and then multiplying the 

average welfare estimate by to the total number of household units in the block group. 

 

Data Sources 

The data used for this analysis are particularly rich and covers a five year period from 2010 through 

2014. This period was chosen in part because of the large variation in weather. 2012 was 

exceedingly hot and dry, 2013 was particularly wet and the remaining years fall somewhere close 

to average. This time period was also chosen because the American Community Survey (ACS) 

has a complete record for the area of interest for these years. Our sample consists of 420,766 total 

observations from 9,369 unique households16. 

 

Demand Factors 

Water Consumption and Policies:  

Monthly billing data were collected from the largest utility provider in the area for the years 

2010 through 2014. The billing data contain monthly consumption and all necessary cost 

information. During the years of interest, customers experienced little variation in policies 

beyond changes in price. The billing data provided have the advantage of being spatially 

                                                           
16 Note that these were was cleaned due to some obvious inconsistencies and outliers as well as a 
need to match observations to a variety of data sources. An explanation of which observations 
were omitted from the analysis can be provided upon request.  
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identified, which allows us to map households to specific Census Block Groups and other 

variables of interest.  

 

Weather 

Temperature and precipitation data were gathered from CoAgmet using weather Station 

FTC01 and FTC03. CoAgmet is a service provided by the Colorado Climate Center at 

Colorado State University which provides daily values of weather variables for stations 

across the state. These daily values were matched to billing data such that each billing 

period contains weather events for the days present on the bill. From these stations we 

create a variable for average temperature (calculated ~�l�� �l��.~�l�� ���; ) and a variable for 

cumulative precipitation over the bill period.  

A dummy variable for 2012 was also included because it was an exceedingly dry year with 

significant wild fires that dried out the air and deposited ash across the city. Because 

restrictions were not in place during this period we expect to see a noticeable increase in 

water consumption during this period which may not be captured by just precipitation and 

temperature.  

 

Class Membership Probability Factors 

Demographic:  

The five year summary files from the ACS were used as demographic information at the 

Block Group level. This aggregation may lead to some measurement error since variables 
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at the block group level were matched to the household level and most likely bias results 

downward through reduced variation. Key variables obtained from the ACS include: 

median income and average household size.  

 

Household Characteristics 

Household sizes (reported in ft;) were obtained from the Larimer County Assessor’s 

office, and grass area per parcel was obtained directly from the local utility provider who 

commissioned a LiDAR (Light Detection and Ranging) analysis for the city in 2012.  

Summary statistics for the households included in the sample are reported in Table 1. Weather and 

use statistics are reported for each season in Table 2.  

 

Table 3.1. Households Summary Statistics 

(n=10,602)     
VARIABLES mean  min max 
     
House size (sf) 1,764 (544.5) 348 8,741 
Grass area (acres) 0.0114 (0.007) 0 0.212 
Income ($1,000) 59.71 (20.53) 11.96 105.31 
# Persons/house 2.49 (0.420) 1.48 5.56 
New home 0.079 (0.269) 0 1 
     

standard errors in parentheses 
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Table 3.2. Seasonal Summary Statistics 

(n=138,297) Summer    
VARIABLES mean  min max 
     
Water use (gal) 15,035 (9,542) 600 80,000 
Bill days 30.86 (1.881) 26 36 
Precipitation (mm) 39.02 (32.58) 0 159.8 
Average temp (C) 21.02 (1.855) 15.65 24.61 
Price ($/1,000) 2.55 (0.372) 0 75.4 
     
(n=120,526) Fall    
VARIABLES mean  min max 
     
Water use (gal) 6,116 (4,937) 600 74,650 
Bill days 30.57 (2.101) 26 36 
Precipitation (mm) 21.32 (26.93) 0 173.5 
Average temp (C) 6.398 (5.964) -4.801 17.80 
Price ($/1,000) 02.52 (0.433) 0.153 35.9 
     
(n=99,290) Winter    
VARIABLES mean  min max 
     
Water use (gal) 4,475 (2,610) 600 69,400 
Bill days 30.53 (1.947) 26 36 
Precipitation (mm) 9.362 (9.707) 0 41.92 
Average temp (C) -0.739 (2.569) -6.697 9.255 
Price ($/1,000) 02.54 (0.471) 0.396 6.73 
     
(n=122,916) Spring    
VARIABLES mean  min max 
     
Water use (gal) 8,087 (6,609) 600 78,900 
Bill days 30.13 (2.257) 26 36 
Precipitation (mm) 42.76 (34.39) 0 151.4 
Average temp (C) 10.88 (4.583) 2.216 22.55 
Price ($/1,000) 2.51 (0.387) 0.161 6.18 
     

standard errors in parentheses 

 

Demand equations for each class type in each season are estimated with the above information, 

and subsequently used to predict future water use under a variety of scenarios. 
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Results  

Our results indicate that a distinct set of classes exist in each season, and that members of each 

class respond differently to changes in price and weather. Moreover, our results indicate that 

observable information can help predict class membership of particular households. We also find 

that with one exception, classes can generally be divided into “responsive” and “unresponsive” 

customers, such that if a group has larger responses to one shock, they generally have larger 

responses to the other shocks as well. This pattern is present in every season except spring, where 

for each class, the relative responsiveness to one explanatory does not translate to more 

responsiveness to another.  

While FMMs can theoretically handle a large number of classes; estimating coefficients for multi-

class models is computationally intensive.  We use two classes per season in our analysis for two 

simple reasons.  First, the criteria by which component number choice is judged, AIC and BIC, 

show negligible improvement moving from two components to three components.  For example, 

using a random sample from our data, we ran the model with up to 5 components (this could not 

be done on the entire sample due to computation constraints), and we find that in the summer 

season the two component model has scores of ��� = 5204.19 and ��� = 5447.33. In the three 

component model there is a small improvement to ��� = 5137.84 and ��� = 5357.31 (an 

improvement of ~1%), and between three and four components, there is virtually no improvement.  

Given the relatively small improvement from using the three component model, the two 

component model was used to reduce computation time17.  

                                                           
17 A similar result can be seen in winter and fall; although there may be significant gains from 
increasing the number of classes in the spring season.  Note this result is interesting given that 
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Class Responses and Probabilities 

The ultimate goal of this paper is to identify heterogeneous populations that can lead to better 

understanding of household water consumption. As hypothesized, households are clearly 

heterogeneous in their responses to a change in price or weather. The class response coefficients 

are reported for each season in Table 3 while the probability of class membership conditional on 

observable household characteristics is reported in Table 4. A number of key conclusions can be 

drawn from these results.  

Our results are consistent with previous price elasticity findings; as expected, we find that some 

customers are considerably more responsive to external shocks than others and that households are 

generally more responsive to price in the fall and summer months. This result is intuitive. In winter 

and spring water is generally used exclusively for indoor purposes; whereas in summer and fall, 

households with irrigation needs have considerable opportunity to conserve their outdoor water 

use by changing their irrigation decisions. For the same reasons, a similar pattern exists for 

households’ responsiveness to precipitation and average temperature (except in winter months 

where precipitation has no significant effect on water use). This result is expected since warm 

spring months may lead to earlier lawn and landscape irrigation, while warm falls may prolong it. 

It is worth noting that precipitation variables are very significant, but with relatively small 

magnitudes. This point is highlighted when we examine the forecasted climate and price scenarios, 

and suggests that very few households possess rain sensors or otherwise adjust much to 

precipitation events. 

                                                           

our regression results find a significantly more responsive class across all explanatory variables 
in every season except spring.   
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With two small exceptions, our results indicate that households who are more responsive with 

regard to one shock are more responsive to others as well. For example, in the fall class 2 is more 

responsive to price, precipitation, and temperature. This result suggests that: 1) some households 

have attitudes and awareness that leads to this responsiveness, or 2) they have house and property 

characteristics that allow for such responses, or 3) both one and two are true. While distinguishing 

between these underlying causes is difficult, Table 4 provides some insight into which 

characteristics affect class membership, and thus, water use responsiveness.  
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Table 3.3. Response Coefficients 

 Fall Fall Winter Winter Spring Spring Summer Summer 
VARIABLES Class 1 Class 2 Class 1 Class 2 Class 1 Class 2 Class 1 Class 2 
         
ln(Price) -0.329*** -0.727*** -0.482*** -0.254*** -0.104*** -0.134*** -0.873*** -0.490*** 
 (0.0156) (0.0187) (0.0406) (0.0113) (0.0182) (0.0243) (0.0411) (0.0112) 
Precipitation -0.00702*** -0.0331*** -0.00740 0.00265 -0.00115 -0.00423*** -0.0173*** -0.0170*** 
 (0.00101) (8.09e-04) (0.00542) (0.00144) (8.36e-04) (0.00112) (0.00106) (2.90e-04) 
Average temp 0.0146*** 0.0561*** 0.0108*** -0.00168*** 0.0705*** 0.0294*** 0.0834*** 0.0485*** 
 (0.000924) (0.00105) (0.00175) (0.000440) (0.00107) (0.00179) (0.00249) (0.000734) 
Bill days 0.0279*** 0.0262*** 0.0341*** 0.0343*** 0.0199*** 0.0288*** 0.0345*** 0.0272*** 
 (0.000672) (0.000885) (0.00172) (0.000443) (0.00103) (0.00156) (0.00182) (0.000474) 
Drought year -0.00748** -0.0539*** 0.00587 0.00279 0.265*** 0.205*** 0.125*** 0.108*** 
 (0.00366) (0.00436) (0.00786) (0.00188) (0.00642) (0.0100) (0.00847) (0.00215) 
Month dummy1 -0.0274*** -0.354*** 0.0324*** -0.00530** -0.299*** -0.115*** -0.0560*** -0.00183 
 (0.00736) (0.0117) (0.00822) (0.00208) (0.0106) (0.0155) (0.00914) (0.00232) 
Month dummy2 0.0107 -0.247*** 0.0169 -0.00427* -0.0951*** -0.0380*** -0.174*** -0.0911*** 
 (0.0113) (0.0172) (0.0107) (0.00255) (0.00799) (0.0110) (0.00932) (0.00243) 
         
Constant -0.0632*** 0.244*** -0.00293 -0.00565*** 0.0816*** -0.00753 0.0130* 0.0268*** 
 (0.00632) (0.0105) (0.00682) (0.00175) (0.00593) (0.00890) (0.00682) (0.00170) 
         
Observations 120,526 120,526 99,290 99,290 122,916 122,916 138,297 138,297 

Robust standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 
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Table 3.4. Class Membership Probabilities (Multinomial Logit) 

 Fall Winter Spring Summer 
VARIABLES     
House size (sf) -0.000969*** 1.31e-05 0.000999*** -0.000672*** 
 (3.13e-05) (2.93e-05) (6.33e-05) (3.83e-05) 
# persons/house 0.149*** -0.147*** 0.178** -0.0906** 
 (0.0415) (0.0429) (0.0781) (0.0401) 
New home -0.0223 -0.459*** 0.113 -0.693*** 
 (0.0594) (0.0572) (0.107) (0.0643) 
Grass area 
(acres) 

-73.66*** -1.213 219.5*** 9.922*** 

 (2.791) (2.085) (8.193) (1.754) 
Income -0.0130*** -0.00769*** 0.00463*** -0.0104*** 
 (0.000849) (0.000868) (0.00155) (0.000855) 
Constant 2.618*** -0.181* -3.873*** 0.789*** 
 (0.108) (0.102) (0.242) (0.101) 
     
Observations 120,526 99,290 122,916 138,297 

Class 2 is the reference class 
Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
 

Grass area increases the probability of being in the responsive class in spring, summer, and fall, 

but is insignificant in determining class probability in the winter season. This result is consistent 

with our belief that households with outdoor water use are more responsive than those households 

and seasons where water consumption is entirely comprised of indoor use.  

Increasing the number of people per household decreases the likelihood that a household will be 

in the responsive class for summer and fall. Newer homes decrease the probability that you will 

be in the more responsive class in the summer and winter season and are insignificant in spring 

and fall. Both of these results are consistent with expectations. Newer houses with more efficient 

fixtures do not have the excess “slack” that can be tightened in response to prices or weather. For 

example, decreasing the instances of toilet flushing per day, will have a much smaller total impact 

on homes with low flow toilets. It is equally true that having more people in a house will likely 



86 

 

prevent increased conservation, either because water use as a function of people per house is 

generally logarithmic in shape (DeOreo et al. 2016), or because coordinating conservations 

strategies with children and others can be difficult.  

The size of the house increases the probability that a household will be in the responsive class in 

every season except summer, where it significantly decreases that chance. The specific mechanism 

or behavior that results in larger responses requires further investigation.  

Higher incomes increase the probability that households are responsive in the fall, but decreases 

the probability that they are responsive in the winter and summer. We posit that wealthy customers 

may not respond in the summer because the value of a green lawn or children playing in a sprinkler 

is greater than the additional cost of water. Customers with more limited incomes may choose to 

cut back on water use in order to substitute into other goods. In winter months however, the same 

wealthy customers who were more responsive in the summer are likely to be less in the less 

responsive class during winter months where this inelastic indoor demand may result from the 

presence of high efficiency appliances. For example, a person who responds to a high cost of last 

month’s bill may decide to take a shorter shower or run the washing machine less. Even with the 

same behavioral response, customers with inefficient appliances or shower heads are likely to 

appear much more responsive.  

 

Forecasting Use under Weather and Price Changes  

Using the above information, we predict annual consumption for each Block Group and various 

income levels in the utility’s service area. The results of these predictions are reported in Figure 2, 

where it can be seen that changes in precipitation will have relatively little effect on consumption 
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decisions, while shifts in price and temperature change consumption by as much as 6%. Note that 

due to the heterogeneity of customers in each Block Group, there are notable spatial differences in 

response to each scenario which may allow for more efficient city planning.  

 

 
Figure 3.2. Spatial Distribution of Consumption under Price and Weather Scenarios 

 

Specifically, it is clear that the north central and southwest regions of the city respond considerably 

more to price. The northern area is the oldest part of the city, while the southwest is relatively new 

buildings. A key similarity in these regions is their relatively high median income.  

Figure 1 also visually describes not only the different magnitude of effects for temperature and 

precipitation, but also the seemingly inverse responsiveness in response to them. The demand 

response to precipitation is extremely small compared to that of temperature. Moreover, block 
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groups that response more to precipitation seem to respond less to temperature, and vice versa. 

The catalyst for this result is unclear and will be investigated in future work. Given the author’s 

familiarity with the region, one anecdotal explanation is the presence of gardens versus lawns. 

Many of the homes on the west side of town have large gardens. Although we cannot test this 

hypothesis, it may be that homes with gardens respond more to precipitation while homes with 

turf, respond to temperature.  

 

Income and Distributional Effects 

This methodology also allows us to identify which households are cutting back. To gain insight 

into the distributional effects of changes to price and weather, we predict how the 5 year period of 

the analysis would have looked with a 10% increase in price, a 2 degree rise in temperature, or a 

decrease in precipitation. Table 5 displays the corresponding mean changes in summer water 

consumption by income level. 

 

Table 3.5. Consumption Changes under 3 Scenarios 

 Change in Summer Monthly Use 

 10% Price 
Increase 

2°C Increase 10% decrease in  
precipitation 

Low income (<$30k) -643.89 

(423.19) 

1449.06 

(952.07) 

78.95 

(53.97) 

Middle income ($30-$60k) -708.56 

(418.19) 

1592.33 

(939.70) 

88.14 

(54.22) 

High income (>$60k) -830.75 

(424.10) 

1862.38 

(950.83) 

103.84 

(54.21) 

standard errors in parentheses 
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Consistent with our previous results and expectations, high income households are the most 

responsive in absolute terms to all three shocks. These households have more slack in their water 

consumption choices, or said another way, more and larger margins on which to adjust. At a city-

wide level a 10% increase in price results in a 5.2% decrease in summer use, but the conservation 

is not spread evenly across income groups. Low income users make up just 0.3% of the reduction 

in summer use; while middle income and high income users make up 2.3% and 2.7% respectively. 

Our results also suggest that the percent change in the total variable cost faced by customers is 

fairly consistent across income types at just over 3%. In absolute terms, higher income households 

will face slightly higher total variable costs, because this portion of their bill is larger to begin 

with. These results are reported in Table 6. 

Table 3.6. Consumption Changes by Income under a 10% Increase in Price 
 Summer Monthly Use   

 % of City 
Decrease 

Avg. 
Variable Bill 

(before)  

Avg. 
Variable Bill 

(after) 

Avg. % 
Change  

Consumer 
Surplus 
Change 

Low income (<$30k) 4.94 $26.59 

(20.16) 

$27.42 
(20.30) 

3.13 

 

-2.71 
(1.82) 

Middle income ($30-
$60k) 

43.97 $30.87 

(20.88) 

$31.89 
(21.04) 

3.32 

 

-3.19 
(1.92) 

High income (>$60k) 52.09 $39.50 

(22.87) 

$40.95 
(23.11) 

3.66 

 

-4.16 
(2.13) 

standard errors in parentheses 

 

 

Discussion 

Our research suggests that the effect of different pricing strategies and potential changes in weather 

will depend largely on the households to which they are introduced. This work suggests that 
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average price elasticity estimates across geographic regions may help with large scale planning, 

but does not allow for targeted conservation efforts. Moreover, city planning around household 

type and demographic characteristics may lead to more water efficient growth, or at least planning 

for growth. Separating heterogeneous households allows us to identify the effectiveness and 

distributional effects of a given policy at various spatial scales—a tool that will be crucial as the 

low hanging conservation fruit begins to run out.  

Our work also quantifies the effects of potential changes in precipitation and temperature on 

heterogeneous households. It should be obvious that households with large turf areas will respond 

differently to rain than those individuals with no lawns. This analysis discriminates between 

households’ responses to weather such that more accurate estimates of demand are possible with 

reduced concerns over endogeneity in model estimation.  

This analysis has numerous implications for future land use and conservation strategies. With 

concern over water scarcity at a fever pitch, it becomes necessary not only to focus on conservation 

efforts within the municipalities we have, but also focus on future municipalities we will have. If 

lawns create higher demand for water and that areas of high population density generally have 

lower household demands, it is clear that the development strategies of cities will affect future 

water needs. As populations increase, cities have the choice of growing “up” (high-rise buildings) 

or “out” (suburban sprawl). However, there is an implicit tradeoff with these development types. 

While households in high density areas may use less water overall, they also are less responsive to 

policies meant to encourage conservations. Accordingly, cities with these types of unresponsive 

homes may not have the “slack” necessary to conserve in times of extreme drought.  
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While economists generally agree that higher municipal water prices will reduce demand and thus 

conserve water, such a mechanism has significant implications for equity and human rights (Berk 

et al. 1980; Gleick 1998). We see that in relative terms, price increases affect different income 

levels about equally. In absolute terms, higher income homes are paying considerably more each 

bill. 

Future work will take the methodology described in this paper and apply it on the national scale. 

Recent work has suggested that the effect of explanatory variables on consumption may be less 

sensitive to spatial scale (Ouyang et al. 2014), such that census tract information may be enough 

to accurately identify household demand factors. Our next step is to more thoroughly validate our 

results to out of sample cities and use nationally available datasets to predict water demand 

responses at both the household and block group level for each ecoregion across the country the 

United States.  
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APPENDIX. CHAPTER 1 

 

 

A.1 Example of the Effect of Uncertainty on Consumption 

There exists a number of cases where increasing or decreasing � − � may cause a change in 
discrete choice, L, that may increase or decrease total consumption.  In the simplest case, 
imagine ��  is sufficiently large such that all individuals stay in the safe zone (L� = 1).  For this 

to be true, ��F
�̅�,5��; ���� < *+1�0  ∀ � .  Increasing � − � in this case will initially decrease 

requests because �̅�,5�� = � − ���.  Thus, a mean preserving increase in � − �, leads to a 

decrease in � − ���.  However, as � − � increases, 
*+1�0 decreases.  When � − � becomes 

sufficiently large, ��F
�̅�,5��; ���� > *+1�0, and individuals will switch from L� = 1 to L; = 1 

which corresponds to an increase in consumption.   This phenomenon exists for both the 
individual and the social planner. Thus, without further parameterization, the effect of 
uncertainty on consumption is ambiguous.  
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A.2 Graphical Representation of Treatments 

The cases of interest and their NE solutions are presented graphically in Figure A3 for each of 
the treatments (discretized payoffs are represented with continuous marginal benefit functions to 

facilitate interpretation). In each case an individual 
maximizes a net payoff conditional on what others do. 
In the certainty case (Figure A3a), the partially defect 
NE occurs where the marginal benefit curve intersects 
the known threshold ��#�
. Beyond the threshold, the 
damage incurred exceeds the increase in value for both 
high- and low-productivity users. In the case where 
individuals believe the group will exceed the threshold, 
the best response is to set the marginal benefit of 
extracting to zero, resulting in the fully defect NE ��#;
. 

In the low-uncertainty case (Figure A3b), it is optimal 
for the user to enter the uncertain range and equate the 
marginal benefit of extraction to the expected marginal 
cost of increasing ��  ��#�
. Note that a second NE ��#;
 exists where the user exceeds the threshold with 
a probability of 1 and sets the marginal benefit of 
extraction to zero. 

Finally, the third Figure (A3c) shows the high-
uncertainty case. Comparing this to the low-
uncertainty case, it becomes clear that the partially 

defect NE is higher when uncertainty increases, but the 
fully defect NE remains the same in all three cases. 

The model was parameterized such that both the 
partially and fully defect NE exist in both uncertainty 
treatments. The individual partially defect NE is in the 
uncertainty zone under both low and high uncertainty, 
and the payout from that equilibrium is always higher 
than that of the fully defect NE.  

 

 

 

  

Figure A2. Uncertainty Treatments 

 

 

 

Figure 1 graphically illustrates the 
uncertainty cases used in our experiment. 
The possible NE are denoted by superscript 
1 (partially defect) and 2 (fully defect). 

LU = (Low Uncertainty) 

HU = (High Uncertainty)   

 

 

a 

c 

b 
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A.3 Effect of Risk Preferences 

If we assume individuals have a constant relative risk aversion in token payouts, we can model 
their utility at the partially defect NE with the following function: 
 

W
�̅�,5�;∗ � = � X�
��,¥�;���J\
1 − L +  �1 − �

��
��,¥�;� − ��
��J�1 − L   

 
where:  �     is the probability that the resource survives at the partially defect NE L   is a factor of risk preference 
 
By comparison, there is no uncertainty at the fully defect NE such that an individual’s utility is 
simply: 

W
�̅�,5�=∗ � = ��
��,¥�=� − ��
��J
1 − L  

 
Under the parameterizations used in this experiment, it is possible to solve for the risk preference 
factor that results in an individual’s indifference between the higher expected payoff of partially 

defecting and the certainty payoff of fully defecting.   These values are presented in table A1. 
 

Table A3. Gamma Values at which ¦
§I¨,©�ª∗ � = ¦
§I¨,©�«∗ � 

 Low Productivity High Productivity 

Low Uncertainty .075 .016 

High Uncertainty .068 .019 
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A.4 Experiment Instructions 

You are about to participate in an experiment on decision-making that is being funded by the 

Colorado State University Department of Agricultural and Resource Economics. This experiment 

should last about an hour. You have the opportunity to earn cash, which will be paid to you at the 

end of the session. Your payout depends on your decisions, the decisions of your group and chance. 

Please read the following instructions carefully.  

Throughout the experiment your earnings will be reported in lab dollars. At the conclusion of the 

experiment your lab dollars will be converted to U.S. dollars as follows: 

  16 Lab dollars = 1 US Dollar 

During the entire experiment communication of any kind and the use of cell phones are strictly 

prohibited. Communication between participants will lead to your exclusion from the experiment 

and the forfeit of all earnings. Please raise your hand if you have any questions and a member of 

the research team will come to you and answer your questions privately. Also, please turn off your 

cell phones to minimize disruption during the experiment.  

Note you must complete the entire experiment to be eligible to be paid. 
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1. Experiment Overview and Timeline 

Your basic task in this experiment will be to request tokens from a group account.  The experiment 

is made up of 12 independent rounds, each of which contains 8 periods. Each period you will be 

randomly placed into a group with 3 other players and given the opportunity to request tokens 

from your group’s account.   You will be placed in a different group each period, but each group will 

always have 4 total players. 

 

In every period each group member, including yourself, will be asked how many tokens you want to 

withdraw from your group’s account. You may request from 0 to 10 tokens. Each group member 

will receive exactly the amount of tokens he or she requested. However, if the sum of tokens 

requested by your group is greater than a certain threshold level (described below), then each 

member of the group will also incur a loss of a specified number of lab dollars.  Note: when making 

the request you will not know how many tokens each of the other members of your group is 

requesting.   

 

Figure 1 shows a portion of the screen on which you will request tokens.  

Figure 1 

 

 

2. How tokens are converted to lab dollars 

At the end of each period your tokens will be converted into lab dollars. At the beginning of the 

experiment, and at other times during the experiment, you will be provided with a payoff table that 

will tell you exactly how many lab dollars you will earn for each token requested. The rate at which 
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your tokens are converted into lab dollars will remain constant throughout the session, but may 

differ from other individuals in your group.  As illustration, a sample payoff  table is presented 

below in Table 1 (note that this sample payoff table will differ from the payoff table in the actual 

experiment).  

 

Table 1: Example Payoff Table 

 

Example: What if I requested 4 tokens?  

You would receive 12 lab dollars for the first token, 7 for the second token, 5.40 for the 

third token, and 4.25 for the fourth token, for a total of 28.65 lab dollars. Had you 

requested 5 tokens instead of 4, you would have received 3.30 lab dollars more; had you 

requested only 3 tokens instead of 4, you would have received 4.25 lab dollars less.  

 

*Note your total payoff will not only depend on your token choice but also on whether or 

not the sum of your group’s request exceeded the threshold and on other factors 

described below.   

 

Your actual payout table will be displayed when the experiment starts and may be different for 

each player.  For example, one player may receive 14 lab dollars for his first token while another 

player may only receive 11.  In addition to the payoff difference, players may also suffer a different 

loss if the total group requests exceed the threshold.   

3. The Group Threshold and the Threshold Loss 
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In each period your group will randomly be assigned a token threshold. If the total number of 

tokens requested by the group in that period exceeds the threshold number of tokens, each 

member of the group will incur a loss of a specified amount of lab dollars.  You will be told the 

amount of the loss in lab dollars at the beginning of the experiment and it will remain constant 

throughout today’s session.  Losses may vary across players--those players with higher payoffs per 

token requested will also face larger losses if the threshold is exceeded. 

In some rounds the true value of the threshold in each period will be known and in others it will 

not.  Prior to each round you will be told whether or not the threshold will be revealed to you in the 

upcoming periods for that round. In rounds where you are told the value of the threshold prior to 

beginning each period it will be displayed at the top of the screen.  In rounds where the exact 

threshold is unknown, you will only know that the true threshold was chosen at random between 

an upper and lower bound.  The true threshold will have an equal probability of being any number 

in that range.  Each round may have different lower and upper bounds within which the true 

threshold will be randomly selected.  

4. Policies Across Trials  

In each round, you will be presented with one of three policy types: 1) Basic, 2) Per-Unit Charge, 3) 

Fine for Exceeding the Threshold. Prior to each round you will be told which policy will be in place. A 

particular policy will be in place for every period during that round. Figure 2 provides examples of 

what you will see prior to each round. Note that at this time you will also be provided information 

regarding the nature of the threshold.  

Figure 2 
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A description of each policy follows: 

Basic 

The basic setting will work just like it is explained above.  For example, using the payoff schedule in 

Table 1 above, and assuming your group’s total request did not exceed the threshold, if you 

requested 3 tokens your total payout for the period would be $24.40. However, if your group’s total 

request exceeded the threshold, the threshold loss would be deducted from the $24.40. 

Per-Unit Charge 

The per-unit charge will add a cost for each token you request, whether or not your group’s request 

exceeds the threshold.  For example, if the per unit charge is $2, and you request 3 tokens, the total 

charge to you would be $6. Using the payoff table in Table 1, and assuming that your group’s total 

request did not exceed the threshold, your total payout for the period would be $24.40 - $6 = 

$18.40. If your group’s total request exceeded the threshold, the threshold loss would be deducted 

from $18.40.   

Each period, the charge per token will be displayed at the top of the screen (Figure 3), and may or 

may not change depending on the round you are in.   

 

Fine for Exceeding the Threshold 

Under this policy you will incur a fine if your group’s total request exceeds the threshold. For 

example, assume the fine is $30 dollars and you request 3 tokens. Using the payoff table in Table 1, 

and assuming that your group’s total request did not exceed the threshold, your total payout for 

the period would be $24.40.  However, if the threshold was exceeded, you would receive $24.40 

minus both the fine of $30 and the threshold loss.  If, for example, the threshold loss was 20, you 

would earn negative $25.60 in that period.  
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Each period, the amount of the fine will be displayed at the top of the screen (Figure 

3). 

Figure 3 

. 

Note: The size of the per unit charge and fine will change across rounds 

Table 2 Summarizes these Policies 

 

 

 

Table  2: Summary of Policies and Costs   

 
Which Rounds What you Pay When you Pay it 

Threshold 

Loss 
All Rounds Lump sum loss of 

lab dollars 
Only if the group requests 

exceed the threshold 

Fine Only if policy is: 

Fine for exceeding the 

Threshold  

Lump sum loss of 

lab dollars 
Only if the group requests 

exceed the threshold 

Per Unit 

Charge 
Only if policy is: Per-

Unit Charge 
Cost per token 

requested 
Whenever you request a token 

regardless of the threshold 

 

5. Calculating your Total Payoff 

In all 12 rounds, regardless of policy type, you will be asked how many tokens you wish to request 

from the group account. The request screen will look like it does in Figure 1.   

At the end of each period, a screen will be displayed that shows how many tokens you requested, if 

your group went over the threshold that period, and your payoff information for the period (Figure 

4). 
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Figure 4 

Example 1: Basic 

 

 

This example is a basic policy setting 

so the only possible cost is the 

threshold loss.  Since the group stayed 

under the threshold, the loss is 0. 

 

  

Example  2: Per Unit Policy          

 

 

 

In this example, the group requested 

too many tokens, and the threshold 

was exceeded 

 

In this example the per token charge 

was $4, so by requesting 10 tokens, 

the total charge is 4 * 10 = $40 

 

Example  3: Fine for Exceeding the Threshold Policy 

 

 

In this example the threshold was not 

exceeded so neither the fine for the 

threshold loss occurred. 
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Your take-home payout in US$ will depend on how you performed in the experiment.  Every player 

starts with 100 lab dollars and can increase their lab dollars through requesting tokens. One period 

will be randomly selected and you will be paid in lab dollars the sum of whatever you made in that 

period across all 12 rounds.  Note that it is possible to receive negative lab dollars in any given 

round.  If the sum of your payouts across all 12 rounds is negative, then this sum will be subtracted 

from the 100 lab dollars with which you started.  The conversion of Lab dollars to US dollars is 

displayed at the beginning of these instructions.   Note: Payouts will be rounded to the nearest 

quarter.  

 

Below are some sample screenshots from the experiment. 

Sample Screenshots 

Screen 1 (scene at the beginning of each round) 
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Screen 2 (scene at the beginning of each period) 
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Screen 3 (scene at the end of each period) 
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Practice Questions (Please use Table 1 to answer the following practice questions) 

For questions 1-3 assume you are in the Basic policy setting and that the threshold loss is $30. 

1. If the threshold is 12 and everyone in your group (including yourself) requests 3 tokens, what is 

your lab dollar payout for the period? 

          _____________ 

2. If the threshold is 12 and everyone in your group requests 3 tokens but you request 10, what is 

your lab dollar payout for the period? 

          _____________ 

3. If the threshold is 14 and everyone in your group requests 10 tokens but you request 3, what is 

your lab dollar payout for the period? 

          _____________ 

 

For questions 4-6 assume you are in the Per Unit Charge policy setting, the threshold loss is $30 and 

that the per unit charge is $2.00.  

4. If the threshold is 12 and everyone in your group (including yourself) requests 3 tokens, what is 

your lab dollar payout for the period? 

          _____________ 

5. If the threshold is 20 and everyone in your group requests 3 tokens but you request 10, what is 

your lab dollar payout for the period? 

          _____________ 

6. If the threshold is 14 and everyone in your group requests 10 tokens but you request 3, what is 

your lab dollar payout for the period? 

          _____________ 

 

For questions 7-9 assume you are in the Fine for Exceeding the Threshold policy setting, the 

threshold loss is $30, and the fine for exceeding the threshold is $60. 

7. If the threshold is 14 and everyone in your group requests 3 tokens, what is your lab dollar 

payout for the period? 

          _____________ 

8. If the threshold is 14 and everyone in your group requests 3 tokens but you request 10, what is 

your lab dollar payout for the period? 

          _____________ 

9. If the threshold is 12 and everyone in your group requests 10 tokens but you request 3, what is 

your lab dollar payout for the period?     _____________
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APPENDIX. CHAPTER 2 

 

 

A1. Variables Used in the Analysis 

Table A1 describes the specific variables used in the regression analysis.  
 
Table A1. Description of Variables  

Consumption (gal) Number of gallons used in billing period 
  
Price Average Variable Price of last month’s bill 
  
Bill days Number of days for which consumer was billed  
  
Precipitation cumulative precipitation of billing period (mm) 
  
Temperature Daily average temperature of billing period, calculated as: 

∑ ¬ye��s ℎ�­ℎ + ye��s �RU2 ®¯l�� ~��]� ���� yesA  

  
Summer dummy A dummy variables that takes a value of 1 for June, July and August, and 

0 otherwise.  
  
Middle income A dummy variable that takes the value of 1 if survey respondents claimed 

an income between $35,000 and $74,999 and 0 otherwise 
  
High income A dummy variable that takes the value of 1 if survey respondents claimed 

an income above $74,999 and 0 otherwise 
  
Single family home A dummy variable that takes the value of 1 if survey respondents lives 

in a single family home and 0 otherwise  
  
# of persons Number of persons in the household as recorded by the survey 
  
E&S (dummy) A dummy variable that takes the value of 1 if survey respondents 

answers were such that Q2+Q3 > Q4+Q5 and 0 otherwise 
  
Grass area Acres of turf, estimated by 2012 LiDar 
  
House size (sf) Square footage of home, defined by the Larimer Assessor’s office 
  
conservationist A dummy variable that takes the value of 1 if survey respondents 

answers were such that Q1 > 5 and 0 otherwise 
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A2. Data Cleaning  

Given the necessity to merge datasets from various sources, mistakes present in the billing data, and oddities 
that may not represent normal water use, the data used in our regression analyses has been cleaned according 
to a number of rules.  Specifically, observations were dropped if: 

•  Consumption > 60,000 gallons per month 
•  Consumption < 300 per month 
•  Bill ($) < 0 
•  Surveys were not complete 
•  | [Parcel area (LiDar) – Parcel Area (Assessor)] | >200sqft 
•  Bill days < 26 or Bill days > 36  
•  Customer account number existed for > 2 properties 
•  Observation could not be merged across all datasets 
•  Average Variable Price < 0 
•  Customer code changes for a given tap (suggests a change in occupancy) 

 
 
 
A3. Additional Analysis and Grouping Criteria 

While the motivation to group socially and environmentally motivated individuals was a function of the 
altruistic nature of both motivations—as opposed to cost or convenience motivations, it is worth noting 
that the correlation between these two responses is extremely high (0.72). By comparison, being 
concerned with convenience is negatively correlated with both social and environmental concerns.  
 
Table A3-1.  

Correlation Matrix of Survey Responses (n=119) 
 conserve enviro social cost convenience 

conserve 1.000     
enviro 0.398 1.000    
social 0.300 0.720 1.000   
cost 0.220 0.184 0.223 1.000  
convenience 0.118 -0.108 -0.48 0.041 1.000 

 
 

To test for robustness in our results, a number of additional model specifications are included in Table 
A3. When survey questions are included in the OLS model as continuous variables, the results are 
qualitatively similar to those reported in the body of the paper. Note that increases in the scores of 
environmental motivation are associated with the largest decrease in water use, which is consistent with 
our finding that E&S consumers use less than C&C consumers. It is worth noting that increases in the 
scores of both the social and convenience motivations are associated with increased water use, suggesting 
that the motivation for lower water use seen in E&S consumers is largely environmental.  
 
Table A4 presents the regression results of customer motivation types similar to that presented in the main 
paper, except groups were created only with the environmental and cost questions.  Note that the same 
qualitative results persist, suggesting that environmentally motivated households consume less and that 
there is no significant difference in how each household type responds to changes in price and weather.  
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Table A3-2.  Pooled OLS Regression with Continuous Survey Variables 

  
VARIABLES OLS Pooled  
Ln(Price) -0.407*** 
 (0.0503) 
Bill days 0.0399*** 
 (0.00337) 
Precipitation  -0.00150*** 
 (0.000250) 
Temperature 0.0459*** 
 (0.00132) 
Summer dummy 0.149*** 
 (0.0260) 
New home -0.389*** 
 (0.0314) 
Middle income 0.0756*** 
 (0.0204) 
High income 0.242*** 
 (0.0207) 
Single Family home 0.920*** 
 (0.0404) 
# of persons/household 0.120*** 
 (0.00510) 
Grass Area -0.875 
 (1.213) 
House size (sf) 0.000136*** 
 (1.62e-05) 
Environmental (0-9) -0.0381*** 
 (0.00397) 
Social (0-9) 0.0263*** 
 (0.00356) 
Cost (0-9) -0.00495* 
 (0.00287) 
Convenience (0-9) 0.0215*** 
 (0.00446) 
Constant 3.026*** 
 (0.316) 
  
Observations 6,582 
R-squared 0.495 

Robust standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 
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Table A3-3. Regression Output only Considering Environmental and Cost Motives 

 (1) (2) 
VARIABLES OLS Pooled with Dummy FE Interactions 
Ln(Price) -0.362*** -0.170*** 
 (0.0537) (0.0519) 
Bill days 0.0398*** 0.0424*** 
 (0.00364) (0.00353) 
Precipitation  -0.00153*** -0.00151*** 
 (0.000273) (0.000210) 
Temperature 0.0450*** 0.0444*** 
 (0.00143) (0.00133) 
Summer dummy 0.141*** 0.123*** 
 (0.0282) (0.0254) 
New home -0.289***  
 (0.0356)  
Middle income -0.0113  
 (0.0224)  
High income 0.0933***  
 (0.0221)  
Single Family home 1.056***  
 (0.0411)  
# of persons/household 0.130***  
 (0.00545)  
Grass Area 3.123**  
 (1.290)  
House size (sf) 0.000152***  
 (1.81e-05)  yb  (dummy) -0.105***  
 (0.0157)  
Price*yb  -0.108 
  (0.0765) 
Precipitation*yb  -0.000581 
  (0.000537) 
Temperature*yb  0.00169 
  (0.00194) 
Bill days*yb  -0.00564 
  (0.00542) 
Summer dummy*yb  0.0552 
  (0.0443) 
Constant 3.207*** 5.687*** 
 (0.336) (0.242) 
   
Observations 5,687 5,687 
R-squared 0.480 0.537 
Number of households  102 

Robust standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 

 


