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II. INPUT/OUTPUT RELATIONSHIPS FOR A MULTILAYER

PERCEPTRON NEURAL NETWORK

Consider an M-Iayer perceptron neural network [1]-[4] as shown
in Fig. I. This network has No inputs, N, hidden layer nodes in
layer r E [I, M - I), and NM output nodes. At training sample t,

we denote the inputs to the first layer by Xi(t)'S, i E [0, No - I),
the inputs to other layers, say layer r, by y~r)(t), S E [0, N, - I),
and the outputs of this layer by z;rl(t). Then the total input to node
s in layer r can be expressed as

at cells can approximate any arbitrary nonlinear function and gen
erate any complex decision region needed for classification and
recognition tasks.

The choice of the training algorithm, on the other hand, deter
mines the rate of convergence to a solution, time required to reach
the solution, and the optimality of the solution. The training pro
cess of the multilayer perceptron network is based upon the gra
dient descent method which minimizes the global sum of the
squared errors between the actual and desired output values. If
enough training samples and internal parameters are used, the in
put-output transformation may be defined to within an arbitrary
accuracy. In this case, the performance of the network can ap
proach to that of Bayes estimator which is optimal. Although the
gradient descent algorithm in conjunction with the BP strategy is
capable of providing reasonable estimates of the weights even for
sigmoidal nonlinearities at nodes, the speed of the convergence of
the process is relatively slow. Additionally, in multilayer networks
this method may lead to local minima and thus nonoptimal solu
tions.

The development of a training algorithm using the RLS method
for neural networks was first introduced in [5] and then later ex
tended in [6]. The simulation results in these references indicated
significant reduction in the total number of iterations owing mainly
to the fast convergence characteristic of the RLS method which is
independent of the signal statistics or the eigenvalue spread of the
signal covariance matrix. Recently, several other new algorithms
have been developed [7]-[9] for supervised training of multilayer
perceptron networks. In this correspondence, a new fast recursive
algorithm for the learning process of these networks is developed
using an RLS-type algorithm. The weights are updated after each
presentation of the training data. To apply the algorithm to the hid
den layers, an analog of the BP scheme is developed and used to
generate the desired values for the outputs of the nodes in these
layers. Simulation results on the 4-b parity checker and the multi
plexer networks are presented which indicate very fast convergence
behavior of the proposed algorithm.
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1. INTRODUCTION

In a supervised neural network such as the multilayer perceptron
network [1]-[3), the choice of training algorithm, network archi
tecture, and input signal representation plays a dominant role in the
generalization and trainability characteristics. The choice of input
signal representation determines the size of the network, the di
mensionality of the weight space, and the transient behavior of the
learning, A method must typically be employed to extract the prin
cipal components of the signal in order to reduce the volume of the
data and also to orthogonalize (or decorrelate) the training data.
The network architecture is another important consideration for op
timal trainability and generalization. It is shown [4] that a three
layer perceptron neural network with sigmoidal-type nonlinearity
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Abstract-In this correspondence a new approach for the learning
process of multilayer perceptron neural networks using the recursive
least squares (RLS) type algorithm is proposed. This method mini
mizes the global sum of the squared errors between the actual and the
desired output values iteratively. The weights in the network are up
dated upon the arrival-of a new training sample and by solving a sys
tem of normal equations recursively. To determine the desired target
in the hidden layers an analog of back-propagation (BP) strategy used
in the conventional learning algorithms is developed. This permits the
application of the learning procedure to alI the layers. Simulation re
sults on the 4-b parity checker and multiplexer networks are obtained
which indicate significant reduction in the total number of iterations
when compared with those of the conventional and accelerated back
propagation (ABP) algorithms.

leigh fading channels using soft-decision decoding. The overall ad
vantage of this system is that it allows the implementation of rate
selectable transmission systems that plays an important role in
packet switching of speech where bit rate reduction is necessary
due to heavy traffic. Since channel rate is constant, transmission
becomes less complicated and regular modems can be used.

where w~), is the weight connecting node p E [0, N, _ I - I] in layer
r - I to node S E [0, N, - I] in layer r, rE[I, M]. The output of
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where pen, t) is the variable weighting sequence which satisfies

III. LEARNING PROCEDURE USING A WEIGHTED RLS TYPE
ALGORITHM

Consider a performance index 1 at iteration n which incorporates

a limited memory, i.c.,

NM-I

len) = ~ 2: pen, t) 2: E~M)'ct)
t » 1 I~O
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Fig. I. A three-layer perceptron neural network.

pen, t) = II A(j).
j=r+ 1

(5)

In this correspondence we shall use a constant exponential weight
ing, i.e..

where A is a positive number less than but close to one which is
called "forgetting factor."

For the weight vectors, W~M)(n)'s, IE [0, NM - I], in the final
(output) layer since the desired outputs are specified, the perfor
mance index can be minimized for W~Ml(n) by taking the partial
derivative of len) W.r.t. WfMl(n) and setting it equal to zero. This

gives

Fig. 2. A model for neurons (nodes) in the network.

pen, t) = A,,-t (6)

this node, z;r)(t), has a real value that is normally a nonlinear func
tion of the total input, y;r)(t). If the standard threshold logic-type
nonlinearity shown in Fig. 2 is used, this output is given by

(7)

where" A" represents the estimate of the relevant quantity. Note
that it is assumed that the current estimate W~M)(n) is used for '<I t
E [I, n]. Using (2) and (7) we obtain the following normal equa
tion:z;r)(t) = [: ZH" (I)W:"«)

a,

I

(2)

2: An
-

t (l/aM)Z(M-ll(t)E~Ml(t) = °
t= 1

(8a)

where 1/ a, determines the slope of the ramp region. Note that sim
ilar results can be obtained when first-order approximated sig
moidal-type nonlinearity is used.

The aim of the learning procedure is to find an appropriate set
of values for the weight vectors w;r)(t)'s so that the global sum of

the squared errors between the actual output, i.e., Z~Ml(t) and the
desired output, d~M)(t), is minimized over the entire training set and
all the output nodes, IE [0, NM - I]. This index is given by

The conventional learning algorithms [1]-[4] minimizes this index
over the entire training set using the gradient descent method. Using
this method the partial derivatives of 1 w. r. t. the weights in each
layer are evaluated and used as corrections required to adjust the
weights during the training process. This is accomplished once the
entire set of the training samples is available. In this correspon
dence, due to the recursive nature of the process, the updating is
accomplished at every training sample. The learning process using
an RLS-type algorithm is derived in the following section.

(9)

(8b)

2: An-t(l/aM)Z(M-I)(t)[d~M)(t)
t= 1

where w~n\n) is the estimate of the weight vector associated with
node k E [0, Nm - I] in the hidden layer m. If the current estimate,
w~n)(n), is used in place of W~m)(t)'s, '<It E [I, n], using the chain

rule we obtain

which can be solved efficiently using the weighted RLS algorithm
[II], [12]. Note that when the total input to node I is off the ramp
region of the threshold logic nonlinearity function, the derivative
in (7) is always zero. This implies that the normal equation in (8)
will only be solved when the input to the relevant node lies within
the ramp region; otherwise no updating is required. This is the case
for all the other layers as will be shown later.

Similar normal equations for the other layers can be obtained by
taking the partial derivative of len) w. r. t. the weight vectors in
these layers and then setting the results equal to zero. For the weight
vector in layer m we have

or

(3a)

(3b)IE [0, NM - I].

1 = ~ 2: 2: E}Ml'ct)
t I

where
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and 'v'k E [0, Nm - 1]. (18)

lation matrices for the layer m E [1, M]:

(17)

'v'mE[I,M]

~?n)(n): = L; An -'(1/am)zlm - 1)(t)d?n)(I).
,~ 1

R1m)(n): = L; An -'(l / am)2Z
lm -1I(t)Z lm -1I T(t)

t » 1

Then (l6b) can be written as
(11)

(10)
ay~M)(t)
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aw1m)(n) = - aW1m)(n)

ay~M)(t) dZ~M)(t)

- aw1m)(n) . dyiM1(t) =

Using (l a) we can write

ay~M)(t)

aw1m)(n) =

which gives

Define

(12)

(13)

This normal equation can be solved without performing any matrix
inversion operation using the weighted RLS method. The equations
for updating the weight vectors W~n)(n)'s, k E [0, NTTT - 1], can be
derived using the matrix inversion lemma [11], [12] as

KITTT)(n): = plm)(n _ l)Zlm-ll(n)/[A + Zlm-IIT(n)

which is the error propagated backward from the output to the nodes
of hidden layer M - I through the updated weights of layer M,
i.e., w~~I(n). This error is used to generate the desired outputs for
the hidden layer M - I. Now, (12) becomes

. plml(n - I)Zlm-ll(n)]

pITTT)(n) = A- 1[1 - Klm)(n)ZITTT-III(n)]pITTTI(n - I),

vm E [1, M]

(l9a)

(19b)

(14)

The procedure in (10)-(13) can be repeated for the term
az~M-l)(I) / aw?n)(n). Continuing this procedure up to layer m and
back-propagating the errors to the lower layers yields

vk E [0, Nm - I]

(l9c)

where plm)(n): = RITTT I '(n), and KITTT1(n) is the gain matrix for layer

m.

where

where

(l6b)

Summary of the Algorithm:

The updating procedure at every iteration, i.e., at each training
sample involves the following steps.

Step 1: Propagate the input signal through the network in the
forward direction to obtain the actual outputs for each training sig
nal using (I) and (2). At each layer, form the vector Zim - 1l(t), m
E[I,M].

Step 2: Generate the error signal at the output of each layer and
for each node. At the output layer this error is simply formed by
comparing the actual outputs with the desired signal using (3b).
For the other layers the error signals at the output layer are prop
agated backward, using (l5b), through those layers with updated
weights until the errors at the outputs of the lower layer (say layer
m) with weights to be updated are generated.

Step 3: Compute matrices pITTT)(n) and Klm)(n) for layer musing
(l9a,b).

Step 4: Determine the state of the node k ; 'v'k E [0, N TTT - I], in
this layer. If the input to this node is within the ramp region pro
ceed; otherwise there is no need for weight updating; thus incre
ment k and examine the next node.

Step 5: Update the weight vector W?nJ(n) using the recursive
equation (l9c). Increment k and repeat steps 4 and 5 for the next
node until all the weight vectors in this layer are updated.

These steps are performed for all the layers several times for a
given training set until the error converges to within an acceptable
range.

(l6a)

(l5b)

Nm + I-I

L; wn+ 1)(n)E~m+II(t),
I~O

vm E [I, M - I].

L; An -'(I / am)Zim-1)(I)E1m)(t) = 0
t= I

L; A" -'(1/am)Zlm-1)(t)[d?n)(I) - (1/ aTTT)ZITTT - 1I'(t) w?n)(n)] = 0
t= I

n azlml(t)
L; A"-'-_-'--' E\ml(t) = 0 (l5a)

t » 1 aw?nl(n) '

or

Here E~m + 1)(1) represents the error sequence at the output of layer
(m + I) which is back-propagated through the updated weights of
this layer, i.e., w~~'/ I)(n), to generate E~nl(t), the error sequence at
layer m. Note that (l5a) is similar, in form, to (7). Again using (2)
in (I5a) the following normal equation can be obtained for this
layer:

(l6c)
IV. IMPLEMENT ATION AND RESULTS

As a result, the weight updating in each layer leads to a normal
equation that can be solved using the weighted RLS method [I I],
[12]. Let us now define the following correlation and cross-corre-

The performance of the proposed algorithm was tested for train
ing of the 4-b parity checker and multiplexer networks. The results
are given in the following.



IEEE TRANSACTIONS ON SIGNAL PROCESSING. VOL. 40. NO.2. FEBRUARY t992 449

0.4

u: Mean of number of iterations.
a: Standard deviation of number of iterations.

25

2000

100
18

1033
377.4

Standard Case 2

0.2 \

0.0 +-~-.-....-......-.-....-......~.,....,.......~.,....,..............-I
a 100 200 300 400 500 600 700 800 9001000

! 0.8

I 0.6

~
;;;
g 0.4

~

en
~ 0.2

f
<

II 0.8

5
~ 0.6
8
~
;;;

0.4

~
en
~ 0.2

f-c
100 200 300 400 500 600 700 800 9001000

lcerationNumber

TABLE I
PERFORMANCE COMPARISON OF THE BP AND RLS ALGORITHMS

Fig. 5. Learning curve, back-propagation case 2, 4-b parity checker. Mean
absolute value of error over all training samples versus the number of it
erations, standard case 2.
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Iteration Number

Fig. 4. Learning curve. back-propagation case I. 4-b parity checker. Mean
absolute value of error over all training samples versus the number of it
erations, standard case I.

Iteration Number

Fig. 3. Learning curve for RLS, 4-b parity checker. Mean absolute value
of error over all training samples versus the number of iterations. RLS
method.

RLS Standard Case I

No. of runs 100 100
% Convergence 30 u
Iterations (p.) 85.2 474.2
Iterations (a) 31.6 195.8
Max. allowable
No. of iterations 200 2000
CPU time/run

(sec.) 12.5 25

A. Example 1: 4-b Parity Checker

This network, which determines the parity of 4-b sequences [2),
has 4 input nodes, 4 hidden nodes, and a single output node. There
is one additional hidden layer node and one input node whose input
values are always equal to 1. The weights emanating from these
nodes thus act as threshold values for their respective superior lay
ers. There were 16 possible training samples for which the network
would have to determine the proper parity which would be the value
at the output. The values of al and a2 were chosen to be I. For
each run, the first three weights in the lower and upper layers were
initialized randomly in the range of -0.5 to -0.1 and 0.1 to 0.5.
The fourth weight was set equal to the negative of the sum of the
prior three weights. The threshold weights were initialized to 0.75.
The initial condition for matrices p(2) and pili are pI21(0) = pi 11(0)

= 0.5 L
Table I summarizes the results for this network and compares it

with those of the standard BP learning algorithm [2). The perfor
mance is highly dependent on how the weights are initialized. If
the weights were too small to start with, it would take an excessive
number of iterations for the weights to get large enough. A constant
exponential weighting with A = 0.985 was used. If A was too small,
Zkl l and Z\21 would tend to move rapidly off the ramp. This was
especially prevalent in the hidden layer. If A was too large, updat
ing was too slow and the system tended to get "stuck" in the local
minima with output values all close to 0.5.

In standard BP case I, initialization was done in a procedure
analogous to that described above. In case 2, the weights were ini
tialized to small values in region [-0.05, 0.05) as suggested in
[2). The step size used was 0.5 and the momentum factor was 0.9
in both cases. As can be noted in the table, the mean number of
iterations for convergence and the percent of runs that did converge
for 100 runs using different weights for initialization is significantly
better for the RLS case. Fig. 3 shows the convergence of the error
to zero for a typical run for RLS case and Figs. 4 and 5 show those
of two standard cases. From the graphs one can clearly observe the
very fast convergence behavior of the proposed method.

In the above experiments the behavior of the network was stud
ied for a fixed number of hidden layer nodes and the initial value
of plllJ)(O). An experiment was also conducted where different val

ues for these parameters were chosen. The results for one hundred
runs are reflected in Table II. In this study the initial weights were
in the range of [-0.5, 0.5) and the allowed error was 0.03. As can
be seen, the best convergent behavior was achieved when the pa
rameters were equal to those numbers in the last column of this
table.

It was observed that the choice of pln/I(O) does not have a great
impact on the results. However, smaller values, say 0.5, appear to
provide slightly better results. In some situations, it was noted that
after certain iterations of the training process, the elements of
pln/I(n) matrices may either increase or decrease rapidly. The prob
lem can be remedied by periodic resetting of matrix pln/l(n) every
certain iterations. Unlike the signal processing and control appli
cations [12) where resetting of matrix pln/I(n) is normally done when
abrupt variations in the signal or the system are detected, in this
case it is practically impossible to determine when the resetting
process is required. However, our experiments indicate that reset
ting matrix pln/I(n) when the outputs are approaching rather rapidly
to the desired values can improve the speed of convergence and
also prevent the occurrence of large misadjustments.

B. Example 2: Multiplexer Network

The architecture for the multiplexer [10) is a two-layer network
with 6 inputs, 6 hidden layer nodes, and a single output node. The
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son with the standard BP and the ABP learning algorithms is made
which indicates substantial reduction in the number of iterations
and also the computational time when the proposed training scheme
is used.
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Fig. 6. Learning curve for RLS, multiplexer. Average mean squared error
(AMSE) over all training samples versus the number of iterations, RLS
method.

TABLE II
EFFECTS OFPARAMETER VARIATIONS ON THE ALGORITHM PERFORMANCE

No. of hidden 4 4 4 6
layer nodes

p'm,(o) 0.5 0.5 0.2 0.2 0.2
% Convergence 45 31 40 91 100
Iteration (Jl) 152.3 110.6 113.4 75.1 49.63
Iteration (a) 76.48 43.28 40.62 28.67 17.73
Max. iterations 400 200 200 200 200

input to the network is four data lines and two address lines. The
address lines activate one of the data lines using a binary code. The
desired output is the input to the activated data line. The index of
performance used to determine the trainability of the network is the
average mean squared error (AMSE) at the output row averaged
over all the output units. Table III shows the results of the RLS
algorithm and compares them with those of the standard BP and
the ABP in [10] for twenty-five trials. The fast convergence be
havior of the RLS algorithm is demonstrated in Fig. 6 for one typ
ical trial. It is interesting to note that the network trained using the
proposed RLS converged to a smaller AMSE after only 34 itera
tions which took less than 50 s of CPU time on a MicroVAX Sta
tion 3600 computer environment.

Fast Calculation of the Choi-Williams
Time-Frequency Distribution

Daniel T. Barry

Abstract-The Choi-Williams distribution (CWD) uses an exponen
tial kernel in the generalized class of bilinear time-frequency distri
butions to achieve a reduction in the cross-term components of the dis
tribution. Matrix manipulations provide an intuitive approach and,
when combined with parallel processing, improve the processing speed
to allow real-time calculations of the CWD.

V. CONCLUSION

In this correspondence a new scheme for fast learning of multi
layer neural networks is proposed using the RLS method. A recur
sive procedure for updating the weights in these networks is de
rived when a threshold logic nonlinear activation function is
employed at the nodes. The weights are updated upon the arrival
of a new training sample. An analog of the BP scheme is developed
which permits the application of the algorithm to the hidden layers.
The effectiveness of the proposed algorithm is demonstrated on the
4-b parity checker and also the multiplexer networks. A compari-

I. INTRODUCTION

Time-frequency distributions (TFD) are used to represent non
stationary signals. A common example from the generalized
Cohen's class of distributions is the spectrogram, However, in the
spectrogram, the window length determines the frequency space
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