
DISSERTATION 

ON THE MAGNITUDE AND FREQUENCY OF SEDIMENT TRANSPORT 

IN RIVERS 

Submitted by 

Joel Stephen Sholtes 

Department of Civil and Environmental Engineering 

In partial fulfillment of the requirements 

For the Degree of Doctor of Philosophy 

Colorado State University 

Fort Collins, Colorado 

Fall 2015 

Doctoral Committee: 

Advisor:  Brian Bledsoe 

Ellen Wohl 

Peter Nelson 

Mazdak Arabi 



 

 

 

 

 

 

 

Copyright by Joel Stephen Sholtes 2015 

All Rights Reserved 

  

 

 



ABSTRACT 

 

ON THE MAGNITUDE AND FREQUENCY OF SEDIMENT TRANSPORT                  

IN RIVERS 

 

What flow or range of flows is most responsible for transporting sediment and 

maintaining sediment continuity in a river over human time scales? This question has 

inspired scores of studies analyzing the magnitude and frequency of sediment transport 

(MFA) in rivers and has been a part of the ongoing debate regarding process vs. form-

based approaches to stable channel design. MFA in rivers is of general scientific and 

management interest as it influences channel form, water quality, aquatic habitat, and 

channel restoration design considerations.  

The research presented in this dissertation asks the following overarching 

question: What influences how much and how often sediment is transported in a river? 

In this dissertation, I consider relationships between the drivers of sediment transport at 

a point in a river (flow regime, sediment size, and channel form) and metrics describing 

sediment yield, which integrate the relationship between flow regime and transport over 

time. To study this question, I use theoretical and empirical approaches in a spectrum of 

stream types from fine bed streams dominated by suspended load transport to gravel 

and cobble streams dominated by bed load transport. I find that, for example, the 
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frequency of the most effective discharge decreases and the range of flows most 

responsible for sediment yield increases with increasing flow regime variability. As river 

bed material becomes coarser, a more narrow range of less frequent flows becomes most 

effective in sediment transport.  

The river management and restoration community has given much effort to 

predicting the bankfull discharge, Qbf, and associated channel geometry at Qbf for the 

purposes of channel study, classification, and design. In a study comparing various Qbf 

predictors in coarse and fine bed rivers, I find that the discharge associated with 50% of 

cumulative sediment yield based on the flow record—Qs50, the half yield discharge—

predicts Qbf better than most other predictors, especially in fine-bed rivers. Other 

predictors include the most effective discharge, Qeff, and the 1.5-year flood. 

Using statistical methods to quantify the uncertainty in the sediment load-

discharge relationship as well as the empirical flow frequency distribution, I develop 

methods to propagate uncertainty in estimations of Qeff and Qs50. In an examination of 

the influence of flow regime non-stationarity on sediment yield metrics, I find that in 

urbanizing watersheds with increasing trends in flow variance, estimates of Qeff and 

Qs50 increase dramatically compared to those based on the entire flow period of record. 

Finally, I estimate Qeff and Qs50 using empirical, sediment load data-driven models and 

physically-based models driven by one-dimensional flow-depth relationships evaluated at 

a cross section. Physically-based models that match the slope of the sediment load-
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discharge relationship performed well. This is the case with total load models for fine 

bed sites, but generally not the case for bed load models used on coarse bed sites.  

All daily flow records and sediment load data as well as all Matlab ® and R 

scripts are contained in the supplementary data.
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INTRODUCTION 

Rivers transport sediment supplied from upstream sometimes continuously, and 

sometimes in fits and spurts depending on the river’s flow regime, the size and quantity 

of the sediment delivered from upstream, and the geomorphic and geographic setting of 

the river. For example, low gradient rivers with fine beds tend to continuously transport 

sediment along their beds and in suspension. When floods occur in these rivers the rate 

and quantity of transport increases nonlinearly with discharge, as is common in most 

rivers. In coarse bed rivers, the bed material may only mobilized during infrequent high 

flow events. The magnitude and frequency of sediment transport in rivers, therefore, is a 

function of the size of sediment in a river’s bed, the size and quantity of sediment 

supplied from upstream, and the frequency distribution or flow regime [Vogel et al., 

2003; Soar and Thorne, 2011; Hassan et al., 2014; Sholtes et al., 2014]. These processes 

interact with river channel boundary conditions such as vegetation, surficial lithology, 

and valley shape to produce an emergent channel form. 

In their foundational paper on the topic, “The Magnitude and Frequency of 

Geomorphic Work”, Wolman and Miller [1960] explain their theory that geomorphic 

events of intermediate frequency perform the most work over time using a metaphor 

derived, perhaps, from a Brother’s Grimm children’s tale and excerpted from their 

paper below [p. 73]. 
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Adapted from Grimm & Grimm [1884]. 

A dwarf, a man, and a huge giant are having a woodcutting contest. Because of metabolic peculiarities, 

individual chopping rates are roughly inverse to their size. The dwarf works steadily and is rarely seen to 

rest. However, his progress is slow, for even little trees take a long time, and there are many big ones 

which he cannot dent with his axe. The man is a strong fellow and a hard worker, but he takes a day off 

now and then. His vigorous and persistent labors are highly effective, but there are some trees that defy 

his best efforts. The giant is tremendously strong, but he spends most of his time sleeping. Whenever he is 

on the job, his actions are frequently capricious. Sometimes he throws away his axe and dashes wildly into 

the woods, where he breaks the trees or pulls them up by the roots. On the rare occasions when he 

encounters a tree too big for him, he ominously mentions his family of brothers-all bigger, and stronger, 

and sleepier. 

 

 

 In this metaphor, the man represents intermediate magnitude floods. However, as 

demonstrated in this dissertation, the man is not always the most effective at 

transporting sediment, and in some rivers the dwarf and giant win out over time. The 

research presented in this dissertation asks the following overarching question related to 

the dwarf, the man, and the giant: What influences how much and how often sediment 

is transported in a river? The “what” part of this question relates to physical drivers 

that influence sediment yield (integration of sediment transport over time) such as the 

flow regime and channel boundary conditions, as suggested above. How much and how 

often sediment is transported—or the magnitude and frequency of sediment transport in 

rivers—is of general scientific and 

management interest as it 

influences channel form, water 

quality, aquatic habitat, and 

channel restoration and design 

considerations. These factors are 
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sensitive to changes in flow regime and sediment supply, making sediment transport 

magnitude-frequency analysis (MFA) an important tool in river management [Tilleard, 

1999; Kondolf et al., 2006; Soar and Thorne, 2011; Wohl et al., 2015]. Here, I quantify 

the magnitude and frequency of sediment transport using sediment yield metrics, which 

integrate the relationship between flow regime and sediment transport (see Chapter 2, 

Sections 1 and 2).  

Though sediment yield MFA is a well-trodden area of study [c.f., Wolman and 

Miller, 1960; Benson and Thomas, 1966; Pickup and Warner, 1976; Wolman and 

Gerson, 1978; Andrews, 1980; Ashmore and Day, 1988; Biedenharn and Thorne, 1994; 

Nash, 1994; Emmett and Wolman, 2001; Vogel et al., 2003; Simon et al., 2004; Goodwin, 

2004; Barry et al., 2008; Soar and Thorne, 2011; Bunte et al., 2014; Hassan et al., 2014], 

there are some significant open questions in this field. All previous work focuses on MFA 

in one type of system; for example coarse bed, snowmelt-driven mountain streams 

[Emmett and Wolman, 2001; Bunte et al., 2014] or flashy, sand bed streams [Soar and 

Thorne, 2001], and has not yet integrated observations and relationships across river 

types. The ability of theoretical relations [Nash, 1994; Vogel et al., 2003; Goodwin, 2004] 

to accurately quantify sediment yield magnitude and frequency has not been adequately 

studied. Finally, though much work has been conducted to quantify the uncertainty of 

sediment yield estimates, none has explicitly quantified the uncertainty of the 

magnitude and frequency of sediment transport relationship. This dissertation fills these 

knowledge and research gaps. 
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In Chapter 1, I use theoretical representations of the flow regime and sediment 

transport relation to explore how flow variability, channel morphology, and bed 

sediment size all influence the magnitude and frequency of sediment transport in rivers. 

This work adds physical complexity to these theoretical approaches resulting in new 

mechanistic understandings of the controls of sediment transport magnitude and 

frequency in rivers. I also explore how well a theoretical, continuous probability density 

function (PDF) used to represent the flow regime (flow frequency distribution) of a river 

in MFA compares with discrete and finite flow records in estimating sediment yield 

metrics. 

Chapter 2 extends and validates the theoretical study by exploring similar 

relationships between sediment yield metrics and both driving and boundary condition 

variables using concurrent flow records and sediment load data sets from fine bed, 

suspended load-dominated and coarse bed, bed-load dominated rivers across the U.S. 

Using the same data set, I characterize the ability of dominant discharge 

estimates based on hydrology (the 1.5 and 2 year recurrence interval flood peaks) and 

sediment yield (the most effective discharge, Qeff, and the discharge associated with 50% 

of cumulative sediment yield, or the half-yield discharge,Qs50) to predict bankfull 

discharge in Chapter 3. The dominant discharge is a theoretical single flow rate that 

over time would create the existing channel form [Soar and Thorne, 2011]. The bankfull 

discharge is that which just fills the channel before spilling onto the floodplain in rivers 

with developed floodplains [Wolman and Leopold, 1957; Williams, 1978], and has 
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important channel design implications. I compare predictive abilities of these various 

bankfull discharge predictors between coarse and fine bed sites. 

Finally, in Chapter 4 I develop methods for quantifying prediction and confidence 

intervals for sediment yield metrics Qeff and Qs50. I also explore the influence of other 

forms of uncertainty on these metrics such as a changing flow regime due to 

urbanization and modeling sediment transport at a site where bed material load data do 

not exist. 

The four chapters of this dissertation build from one another to provide a holistic 

and comprehensive treatment of sediment yield magnitude and frequency analysis. They 

provide new insight on the relationships between physical drivers of sediment transport 

in rivers and sediment yield; they uncover physical mechanisms behind these 

relationships heretofore not published; and they provide new tools to conduct MFA, 

predict bankfull discharge, and quantify the uncertainty in sediment yield-based 

dominant discharge estimators. 
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CHAPTER 1 

Theoretical Approaches to Sediment Transport Magnitude-

Frequency Analysis1 

Summary 

Theoretical approaches to magnitude-frequency analysis (MFA) of sediment 

transport in channels couple continuous flow probability density functions (PDFs) with 

power law flow-sediment transport relations (rating curves) to produce closed-form 

equations relating MFA metrics such as the effective discharge, Qeff , and fraction of 

sediment transported by discharges greater than Qeff, f+, to statistical moments of the 

flow PDF and rating curve parameters. These approaches have proven useful in 

understanding the theoretical drivers behind the magnitude and frequency of sediment 

transport. However, some of their basic assumptions and findings may not apply to 

natural rivers and streams with more complex flow-sediment transport relationships or 

Sholtes, J., K. Werbylo, and B. Bledsoe (2014), Physical context for theoretical approaches to sediment 

transport magnitude-frequency analysis in alluvial channels, Water Resources Research, 50, 

doi:10.1002/2014WR015639. 

Joel S Sholtes conceived the study as it is presented in the paper. Developed models for broken power law 

and entrainment threshold analysis. Analyzed all output data, created figures, and wrote the manuscript. 

Kevin Werbylo proposed initial concept of utilizing theoretical approaches to MFA to consider the 

influence of different flow regimes. Assisted with study design, developed code for record-length analysis, 

discussed the results and implications, contributed to writing methods, and edited the manuscript. Brian 

P. Bledsoe assisted in study design, discussed results, contributed to discussion and implications, and 

edited the manuscript. 
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management and design scenarios, which have finite time horizons. I use simple 

numerical experiments to test the validity of theoretical MFA approaches in predicting 

the magnitude and frequency of sediment transport. Median values of Qeff and f+ 

generated from repeated, synthetic, finite flow series diverge from those produced with 

theoretical approaches using the same underlying flow PDF. The closed-form relation for 

f+ is a monotonically-increasing function of flow variance. However, using finite flow 

series, I find that f+ increases with flow variance to a threshold that increases with flow 

record length. By introducing a sediment entrainment threshold, I present a physical 

mechanism for the observed diverging relationship between Qeff and flow variance in fine 

and coarse bed channels.  My work shows that through complex and threshold-driven 

relationships sediment transport mode, channel morphology, flow variance, and flow 

record length all interact to influence estimates of what flow frequencies are most 

responsible for transporting sediment in alluvial channels. 

1  Introduction 

To what discharge or range of discharges does a river adjust its dimensions to 

balance the inputs of flow and sediment while maintaining a dynamically stable form? 

This question underlies research conducted by generations of geomorphologists and 

engineers on the relationship between alluvial channel form, sediment transport, and 

flow regime [Mackin, 1948b; Wolman and Miller, 1960; Pickup and Warner, 1976; Hey 
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and Thorne, 1986; Doyle et al., 2007]. Alluvial channels are those with boundaries that 

adjust in response to erosion and deposition of sediment. Wolman and Miller [1960] 

introduced the hypothesis that the theoretical channel-forming discharge is some 

intermediate, near-bankfull discharge that, over time, performs the most work (i.e., 

transports the most sediment). They define this discharge as the most “effective” 

discharge, Qeff. Since then, scores of studies searching for a relationship between channel 

form and Qeff have been published. Some workers have found a strong (e.g., 1:1) 

relationship between the bankfull discharge, Qbf, and Qeff [Andrews, 1980; Andrews and 

Nankervis, 1995; Hey, 1996; Torizzo and Pitlick, 2004] while others have found a wide 

range of variability in the Qbf –Qeff relationship [Pickup and Warner, 1976; Nolan et al., 

1987; Soar and Thorne, 2001]. Nevertheless, the concept of effective discharge —and the 

analytical framework of magnitude and frequency analysis of sediment transport—has 

provided a valuable tool for examining relationships between channel form and process. 

Much work has been conducted to operationalize and standardize empirical 

magnitude-frequency analysis (MFA) for use on rivers and streams with flow records 

and measured or modeled sediment transport  [e.g., Benson and Thomas, 1966; 

Biedenharn et al., 2000]. Empirical MFA involves representing a daily or sub-daily flow 

record as an empirical probability distribution through either binning the flows in a 

histogram [Beidenharn et al. 2000; Soar and Thorne 2001] or numerically differentiating 

the empirical cumulative distribution function of the flows [Orndoff and Whiting, 1999]. 

This empirical probability distribution is then multiplied by a sediment transport-
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discharge relation, which may either be a statistical regression, or a site-calibrated 

sediment transport equation [e.g., Hey, 1996] to create an empirical effectiveness 

histogram or curve. 

While Wolman and Miller [1960] originally suggested that a continuous, 

theoretical probability density function (PDF) could be used to represent the flow 

regime, it was not until three decades later that  this theoretical approach to MFA was 

formalized [Nash, 1994; Vogel et al., 2003; Goodwin, 2004; Quader and Guo, 2009; 

Klonsky and Vogel, 2011]. The theoretical approach to MFA involves multiplying an 

assumed continuous PDF or one that is fit to the flow distribution (e.g., the log-normal 

or gamma distribution) with a sediment-transport relation, which may be as simple as a 

power law function that relates sediment transport to flow, or a more complex and 

threshold driven relation. Metrics based on the resulting effectiveness curve equation 

may then be derived by analytical integration. The appeal of the theoretical approach to 

MFA lies in the ability to generate easily applied, closed-form solutions to MFA metrics 

such as Qeff  [Vogel et al., 2003; Goodwin, 2004] and the amount of sediment transported 

by discharges greater than Qeff, f+ [Vogel et al., 2003; Goodwin, 2004]. With these, one 

can expediently determine the relationship between MFA metrics, and attributes of the 

flow regime (e.g., coefficient of variation, skewness, etc.) and/or sediment transport 

mode (e.g., empirical sediment rating curve exponent, and critical shear stress for bed 

mobilization). Furthermore, one could use these relations to predict how a channel 
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might respond to a change in flow variability or sediment supply due to environmental 

change assuming a correlation between Qeff, or another MFA metric, and Qbf.  

Using the theoretical approach, Vogel et al. [2003] found that Qeff often takes on 

a relatively low value (and f+ a large value) and is responsible for relatively little load 

transport over time while larger, less frequent discharges are often responsible for the 

majority of load transport in rivers. They argue that Qeff may not be a useful metric 

when considering what flows are responsible for transporting the bulk of suspended 

sediment in a channel. It should be noted that Vogel et al. [2003] were more interested 

in total river load in general (solutes, suspended sediment, etc.), and not specifically in 

geomorphically significant flows. From a geomorphic perspective, many empirical MFA 

studies have found correspondence between Qeff and Qbf, suggesting that some 

relationships exist between the discharge range that maximizes the effectiveness of 

sediment transport and channel form in certain channel types [Wolman and Miller, 

1960; Carling, 1988; Andrews and Nankervis, 1995; Hey, 1996; Emmett and Wolman, 

2001]. Here, I explore why theoretical and empirical approaches can produce 

contradictory results. 

The present study takes a dualistic approach to investigate claims on the 

magnitude and frequency of sediment transport in channels based on theoretical, closed-

form solutions to MFA metrics. I utilize the analytical framework of the theoretical 

approaches to study how adding complexity to them changes the predicted relationships 

between flow regime, sediment transport mode, and MFA metrics. For this first 
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objective, I begin by considering the influence of flow and sediment transport mode on 

MFA metrics using the original theoretical approaches (Sections 3.1 & 4.1). As discussed 

above, I acknowledge the limitations of these approaches; however, I find it illustrative 

to begin this study by exploring the relationships they produce. To add complexity to 

these approaches, I introduce a compound channel form (Sections 3.3, & 4.3) and a 

threshold for sediment entrainment (Sections 3.4 & 4.4) and consider the influence of 

flow variability and sediment transport mode on MFA metrics calculated from these 

updated theoretical approaches. For the second objective, I test the assumptions of the 

theoretical approaches themselves by considering how MFA metrics calculated from 

theoretical approaches, which use continuous PDFs to represent the flow record, 

compare with those calculated with a synthetic empirical approach using discrete, finite, 

flow records sampled from those same PDFs (Sections 3.2 & 4.2). 

I begin with a more thorough introduction to theoretical MFA approaches and 

outline my methods for accomplishing the objectives stated above. I end with a 

discussion of how and why results from theoretical and empirical approaches diverge. I 

also explore how theoretical approaches can be extended to incorporate a higher degree 

of physical realism, which in turn allows them to be used to evaluate more complex 

relationships between channel form and the magnitude and frequency of sediment 

transport. 
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2 Theoretical Framework 

This investigation follows and expands upon the analytical framework of previous 

theoretical MFA work [Nash, 1994; Vogel et al., 2003; Goodwin, 2004]. Consistent with 

this previous work, I initially represent the sediment transport-discharge relationship as 

a power law: Qs = αQβ, where Qs has units of mass/time, specifically (tonnes/day). In 

this sediment rating curve α is a scaling coefficient that is positively related to the 

magnitude of sediment flux and drainage area [Syvitski et al., 2000; Barry et al., 2004]. 

Implicit in this rating curve is a discharge–bed shear stress relationship. It has been 

shown that the value of α does not affect the value of Qeff or other normalized MFA 

metrics [Nash, 1994; Goodwin, 2004], so it will not be specifically considered in this 

study. The rating curve exponent, β, is positively correlated to the size of the largest bed 

particles (D84) [Emmett and Wolman, 2001], bed armoring [Dietrich et al., 1989; Barry 

et al., 2004], and dependent upon sediment transport measurement technique [Bunte et 

al., 2004], as well as channel morphology (i.e., stage-discharge relationship) [Hey, 1996] 

among other factors. 

The mechanisms by which sediment moves through a channel (e.g., in suspension 

or along the bed) should inform the type of transport relation used. Where sediment 

transport measurements exist, a statistical regression may be used, often taking the form 

of a power law function (sediment rating curve). Where empirical sediment rating curves 

are not available, semi-empirical, sediment transport relations, calibrated to the 
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hydraulics and sediment of the channel of interest, are relied upon. Barry et al. [2008] 

found that the calculated value of Qeff is insensitive to the type of transport equation 

used in bed load channels. 

Many continuous probability distribution functions have been used to represent 

daily stream flow, which are generally highly positively skewed, including the two-

parameter lognormal, gamma, Generalized Pareto, exponential, as well as broken power 

law functions [e.g., Vogel et al., 2003; Goodwin, 2004; Archfield et al., 2007; Quader and 

Guo 2009; Segura and Pitlick, 2010]. In general, continuous PDFs fit natural flow 

records with mixed results, especially in the right tail of the distribution and in multi-

modal cases [Nash, 1994; Segura and Pitlick, 2010]. Nash [1994] found that on large 

rivers the lognormal distribution fit daily flows well in some circumstances and poorly in 

others due to the multimodal nature of some flow records, as well as skewness and 

kurtosis combinations that exceeded what is possible with the lognormal distribution. 

Quader and Guo [2009] tested the fit of the exponential distribution on daily flows, 

finding that it performs the best in smaller streams but found poor fits between flow 

records and continuous PDFs in general, especially among streams with intermittent 

flow. Segura and Pitlick [2010] found that a broken power law function better fit the 

frequency distribution of daily flows in snowmelt-dominated streams, as compared to the 

exponential and lognormal distributions. While it does not fit daily flow distributions 

well in some cases, I chose to work with the two-parameter lognormal distribution 

function due to its demonstrated ability to represent skewed daily stream flow 

13 



distributions in many cases [Limbrunner et al., 2000], its relative parsimony, and its 

historical use in generating theoretical MFA relationships [Chow, 1964]. 

[ ] 
 −−= 2

22
)ln(

2

1
exp

2

1
)( y

yy

Q
Q

Qf µσpσ (1.1) 

Here, Q represents the average daily flow value (m3/s), and μy and σy are the 

mean and standard deviation of the logarithm of the average daily flows, respectively. 

Using other skewed, continuous PDFs such as the gamma distribution produced 

qualitatively similar theoretical relationships as the lognormal distribution. It is possible 

for the exponential distribution to have a relatively thick right tail for large values of Cv 

when fit using the method of moments. This can lead to a negative relationship between 

f+ and Cv (opposite of the relationship produced using lognormal or gamma PDFs); 

however, such thick right tails may not be realistic for natural flow regimes. It should be 

noted that a sub-daily time resolution may be more appropriate for analyzing sediment 

yield in rivers whose discharge may vary widely within a day such as those with small 

drainage areas and flashy hydrology [Biedenharn et al., 2000]; however, for the purposes 

of this study, I only consider flow regimes with daily time resolution. 

Flow records are samples of the underlying population distribution of the flow 

regime and are discrete and finite in nature. This is particularly evident in the right tail 

of the distribution where continuous PDFs may over-represent the discrete, sporadic 

occurrence of infrequent flood events. Even if a flow record perfectly represents a sample 

from a certain probability density function, an infinite sample size would be required 
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before the empirical PDF would match the shape of theoretical PDF. As the period of 

record length increases past 50 to 100 years and beyond, assumptions of channel 

equilibrium and flow regime stationarity inherent in MFA may be violated. As such, 

continuous PDFs will always approximate finite flow records due to their discrete 

nature. Nevertheless, results from MFA using continuous PDFs can yield important 

insights about the relationships between flow regime and the magnitude and frequency 

of sediment transport [Quader and Guo, 2009; Klonsky and Vogel, 2011]. 

Vogel et al. [2003] and Goodwin [2004] demonstrate that  a closed-form solution 

for the effective discharge can be derived by multiplying a continuous PDF with a 

sediment-rating curve to create the effectiveness curve. The flow that coincides with the 

peak of the effectiveness curve, found by taking its derivative, is known as the effective 

discharge. The resulting expression is a parsimonious, closed-form function of the rating 

curve exponent, β, and the mean and variance of the logarithms of daily flow when the 

lognormal PDF is used: 

[ ])1(exp 2 −+= βσµ yyeffQ (1.2) 

Many methods exist to calculate the value of Qeff  directly–or empirically—from 

a flow record and either a measured sediment-rating curve or calibrated sediment 

transport relation [e.g., Hey, 1996; Biedenharn et al., 2000; Soar and Thorne, 2001]. 

Generally, Qeff is equal to the median value of the discharges contained in the maximum 

effectiveness histogram bin, which is the product of a daily flow histogram and the 

sediment transport relation. It can also be determined with an empirical kernel density 
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function [Klonsky and Vogel, 2011] or as the maximum finite difference derivative of the 

empirical cumulative distribution form of the effectiveness curve [Orndorff and Whiting, 

1999]. 

Based on the lognormal distribution for daily flows, the return interval in years of 

Qeff is: 
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where the expression Φ[ ] represents the standard normal cumulative distribution 

function (CDF) [Vogel et al., 2003]. Here, RI represents the return interval in years 

calculated from the daily flow series PDF. I do not use a nonparametric or empirical 

alternative to equation (1.3) in this study because I are sampling from the lognormal 

distribution. Additionally, Vogel et al. [2003] derived a closed-form solution for the 

fraction of average total sediment load transported by discharges greater than Qeff, f+: 

 +−Φ−=+ )1ln(1 2
vCf (1.4) 

where Cv is the coefficient of variation of the untransformed daily flows (σx/μx). This 

function monotonically increases with Cv with an asymptote at unity. The empirical 

analog to the theoretical approach simply involves dividing the total amount of 

sediment transported on each day summed over a flow record by the amount of 

sediment transported by flows greater than Qeff. 
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A final metric I explore characterizes the spread in the range of flows responsible 

for transporting the middle 50% of sediment centered on Qeff. I refer to this as the 

sediment yield interquartile range, and calculate it numerically without a closed-form 

solution. A smaller value for this metrics means that a smaller range of flows transports 

this central 50% of sediment yield, in which case a single discharge metrics may be 

suitable for channel design where sediment continuity is a concern. A larger number 

indicates that a wider range of flows is responsible for sediment continuity and a more 

sophisticated approach to channel design may be necessary. 

3 Data and Methods 

3.1  Flow Regime Analysis 

I begin by considering the range of variance in natural flow regimes. Poff [1996] 

conducted an analysis of the statistical properties of daily flows in unregulated streams 

and rivers in the conterminous United States. He created flow regime categories by 

grouping rivers by various statistical properties. I select several of his flow regime 

categories representing the range of variance he reports from groundwater and 

snowmelt-driven hydrology to flashy and intermittent hydrology (1 < Cv < 5). To 

understand how flow regime variance—represented by the coefficient of variation of the 

average daily flow—affects the magnitude and frequency of sediment transport, I solve 
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equations 1.2, 1.3, and 1.4 for this range of values of Cv . I also use this range of Cv 

values to inform the subsequent analyses. 

3.2  Flow Record Length 

My first test of the theoretical approach to magnitude frequency analysis (MFA) 

compares values and return intervals of Qeff and values of f+ generated from equations 

1.2, 1.3, and 1.4 with those generated from synthetic daily flow records of varying length 

(10 years, 100 years, 1,000 years, and 100,000 years) sampled from the lognormal 

distribution. I create these extremely long flow records (large sample sizes) to examine 

how empirical MFA metrics compare to theoretical values as the flow record sample 

approaches the continuous, underlying population distribution (the lognormal PDF) 

used in the theoretical approach. Using 1,000 to 100,000 year records will increase the 

probability of sampling a large and rare event, but these large events will receive less 

weight in the empirical density function for large sample sizes, and hence less influence 

on MFA. In fact, a large flood sampled in a short flow record, will have an 

overwhelming influence on MFA because it will receive more weight in the histogram 

(higher density) due to the smaller sample size. To generate synthetic daily flow records 

for each combination of Cv value (0.5 to 5) and flow record length (RL) considered, I 

used a uniform distribution to randomly sample the two-parameter lognormal CDF 

specified by a constant mean (μx) of 2 m3/s (arbitrary value) and Cv values ranging from 

0.5 to 5. For each flow record length, I created 100 trials of RL*365 random samples 
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from the lognormal CDF for every value of Cv . The mean and variance of the 

lognormal distribution are calculated by the method of moments where the values in 

parentheses are untransformed [Yevjevich, 2010]: 
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Next, I created an empirical flow PDF or histogram of the synthetic flow record. 

Much consideration has been given to the number of histogram bins and method for 

calculating the bin intervals in effective discharge analysis with suggestions ranging from 

25 to 100 equally-spaced (arithmetic) discharge classes and discouraging the use of 

logarithmic classes [Biedenharn et al., 2000; Soar and Thorne, 2001]. More rigorous 

statistical approaches have been suggested by Orndoff and Whiting [1999] who use a 

numerical differentiation of the empirical flow CDF, and Klonksy and Vogel [2011] who 

recommend using a kernel density function. For simplicity, I use the general approach 

outlined by Biedenharn et al. [2000]. I modify their method slightly to best represent 

flow record lengths ranging from 10 year to 100,000 year by using a constant 50 equally-

space arithmetic bins to create histograms of daily flow. Additionally, I do not modify 

the width of discharge bin classes such that no bins contain zero flows as per 

Biedenharn et al. [2000]. Sensitivity analysis indicates that relative relationships among 

the MFA metrics and Cv, β, and RL variables are not affected by the number of bins 

(bin width) used for 25 ≤ # of bins ≤ 100. The midpoints of each histogram bin are then 
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multiplied by sediment-rating curves of the form Qs = αQβ to generate the synthetic 

“empirical” effectiveness histograms. The median value of all the daily discharges 

contained in the maximum effectiveness histogram bin represents the effective discharge. 

The coefficient of the rating curve, α was arbitrarily set to 0.02. The value of α 

does not affect the value of Qeff [Nash, 1994; Goodwin, 2004] or normalized MFA metrics 

such as f+; therefore, keeping this value constant and arbitrary was deemed reasonable. 

I consider values of the exponent β from 0.5 to 5. This range represents the spectrum of 

observed sediment-rating curve exponent values where smaller values as low as 1 are 

generally associated with suspended sediment transport [Nash, 1994; Syvitski et al., 

2000]. Values less than 1 are uncommon. Larger values of β up to and greater than 5 are 

generally associated with bed load transport [Emmett and Wolman, 2001; King et al., 

2004]. These ranges are not exhaustive; indeed, values of β up to and greater than 10 

have been reported for bed load transport in mountain streams with relatively low 

transport stages [Bunte et al., 2004]. However, the range of β selected for this study 

serves to illustrate the relationship between sediment transport mode, as represented by 

the rating curve exponent, β, over the range of flow regimes. 

I summarize the empirical MFA metric results as a function of Cv, β, and RL by 

reporting median values from the 100 trials. Increasing the number of trials from 100 to 

1,000 and 10,000 does not significantly alter the median value of the MFA metrics, nor 

does it influence the trends and relationships reported here. 
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3.3 Compound Channel Form 

Next, I compare theoretical approaches to MFA derived from the single power 

law (SPL) sediment-rating curve function—equations 1.2 to 1.4—to those generated 

using a piecewise or broken power law (BPL) function that represents a compound 

channel form consistent with many natural channel cross sections. Compound channels 

exhibit a break in lateral slope between the channel and the floodplain and hence a 

break in transport effectiveness [Hey, 1996] (Figure 1.1). I consider how flow variance 

interacts with compound channel form to drive sediment transport effectiveness. 

I use an at-a-station hydraulic geometry relation of the form h = aQb to relate 

flow depth, h, to discharge for both in channel and overbank flows. Values of a and b 

were chosen to generally reflect reported values for in-channel hydraulic geometry 

relations [Knighton, 1998, p.173]. I set the value of the in-channel coefficient, ach, to 0.2 

and the value of the exponent, bch, was set to 0.4. To maintain continuity from in-

channel to overbank flows, the value of the coefficient for overbank flows, afp, is a 

function of the coefficient for in-channel flows, as well as the exponents for both 

overbank and in-channel flows: ( )fpch bb
bfchfp Qaa −= , where Qbf is the bankfull discharge. For 

this analysis, Qbf was arbitrarily chosen to be 10 m3/s, consistent with an 

intermediately-sized channel. I vary the value of the overbank flow exponent, bfp, from 

0.1 to 0.3 to test the sensitivity of the analysis to the difference in lateral slope between 

the channel banks and the floodplain. These at-a-station hydraulic geometry parameter 

values for overbank flows correspond to those reported for stage-discharge relationships 
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in compound channels elsewhere [Ackers, 1993; Shiono et al., 1999]. I use downstream 

hydraulic geometry relations to calculate channel width and slope as a function of Qbf 

developed from coarse-bedded streams in the Rocky Mountains, Colorado by Torrizo 

and Pitlick [2004]. 

The statistical properties of the flow regime must be related to Qbf in a non-

arbitrary manner. That is, the flow regime must “fit” the channel geometry represented 

by the value of Qbf. To do this, I used a single log-linear regression between mean 

annual discharge and Qbf (n = 10, R2 = 0.92) from the streams studied by Torrizo and 

Pitlick [2004]: 

873.0151.0 bfx Q=µ (1.7) 

The relationship between mean daily discharge and Qbf used in this analysis is unique to 

the Colorado Rocky Mountains where it was developed. As before, I maintain μx 

constant and vary Cv from 0.5 to 5. I acknowledge that flow regime variability can 

influence channel form. Varying flow variability while maintaining a constant channel 

form is a simplification used in this study. 

The single power law sediment-rating curve assumes a single stage discharge 

relationship. To incorporate a compound channel form I use a simplified, non-sediment 

entrainment threshold version of the Einstein-Brown (EB) equation as reported in 

Brown [1950] because it has a form similar to a power law sediment-rating curve: 
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In equation 1.8, k1 is a constant coefficient, which converts dimensionless unit width, 

volumetric sediment flux to total sediment discharge (tonnes/day) , G is the specific 

gravity of the sediment (set to 2.65), and Ds is the characteristic sediment diameter. 

The independent variable in this equation, τ*, is the dimensionless Shields parameter, 

which is a linear function of depth, h for wide rectangular channels, and friction slope, 

S. Hence, with depth defined as a power law function of discharge, and Qs defined as a 

power law function of τ*, Qs in (8) can now be defined as a power law function of 

discharge. This is a continuous relationship in the SPL case and a broken or piecewise 

relationship in the BPL case. Results using (8) can be directly compared to the power 

law sediment-rating curve of the form Qs = αQβ used in theoretical MFA approaches: 
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where a and b are equal to ach and bch for Q ≤ Qbf and equal to afp and bfp for Q > Qbf. I 

arbitrarily chose a grain size of 10 mm (medium gravel) for this analysis. Sensitivity 

analysis demonstrates that magnitude-frequency analysis metrics are not sensitive to the 

grain size using this simplified EB relation. I chose this form of sediment transport 

relation because it represents the sediment transport-discharge relationship in a non- 

arbitrary manner and can be directly compared to SPL-based theoretical MFA metrics 

as shown in equation 1.9 (Figure 1.1). 
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The majority of previous work has found the value of Qeff to be less than or equal 

to Qbf in alluvial channels [Pickup and Warner, 1976; Andrews and Nankervis, 1995; 

Soar and Thorne, 2001] with the exception of Bunte et al. [2014]. In the present 

analysis, Qeff was always less than Qbf , therefore the only MFA metric that was affected 

by the BPL sediment flux-discharge relationship was the fraction of sediment 

transported above Qeff, f+. I generate effectiveness curves using finite approximations of 

the continuous lognormal PDF. To compare values of f+ for the SPL and BPL scenarios 

directly, I use the area under the SPL effectiveness curve as the denominator of f+. 

Figure 1.1 Log-linear sediment-rating curves for single power law (SPL, broken line) and broken power 

law (BPL, solid lines) at-a-station hydraulic geometry relationships for in-channel (left of vertical line) 

and overbank flows (right of vertical line) with varying degrees of floodplain lateral slope. 
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3.4 Sediment Entrainment Threshold 

In Section 3.3 I considered the influence of compound channel form on MFA 

metrics without considering a threshold for sediment entrainment. Here I explore how 

the presence or absence of a threshold affects the values of MFA metrics compared to 

those derived by equations 1.2, 1.3, and 1.4. Using the same numerical analysis 

framework in Section 3.3, I introduce a final sediment transport relation that includes a 

threshold for sediment entrainment: the Meyer-Peter and Müller (MPM) relation for 

uniformly-sized sediment in transport as bed load [Meyer-Peter and Müller, 1948]. 

( ) 5.1
**2 cs kQ ττ −= (1.10) 

The constant, k2, is similar in concept and units to k1. Additionally, τc* represents the 

critical value of dimensionless shear stress for sediment entrainment (set to 0.047). It is 

a threshold value of dimensionless shear stress below which no sediment transport 

occurs. I chose MPM because it of its parsimony, which serves this illustration of the 

influence of a threshold of sediment transport on MFA metrics. Similar trends between 

MFA metrics and Cv result when a more complex bedload equation is used [e.g., Parker, 

1979]. 

I vary the size of sediment considered from 1 mm (coarse sand) to 64 mm (very 

coarse gravel), which, for a given channel geometry, increases the flow depth and 

discharge necessary for sediment entrainment. Using MPM, (10), and finite 

approximations of lognormal PDFs representing daily flows with Cv values ranging from 

0.5 to 5, I generate finite approximations of theoretical effectiveness curves as before. I 
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calculate values of the MFA metrics using MPM rather than a sediment-rating curve 

with no threshold for sediment transport (e.g., Sections 3.1 to 3.3) and compare these 

with values from their theoretically derived counterparts. 

4 Results and Discussion 

4.1 Flow Regime Analysis 

I begin by considering the range of variance in natural flow regimes. Poff [1996] 

conducted an analysis of the statistical properties of daily flows in unregulated streams 

and rivers in the conterminous United States. He created flow regime categories by 

grouping rivers by various statistical properties. I select several of his flow regime 

categories representing the range of variance he reports (Table 1.1). The values reflected 

in Table 1.1 represent averages from all stream gages grouped in each category. 

To understand how flow regime variance— represented by the coefficient of 

variation of the average daily flow—affects the magnitude and frequency of sediment 

transport, I solve equations 1.2, 1.3, and 1.4 for the range of values of Cv and μx 

Table 1.1 Statistical properties of daily flow regime categories from Poff [1996]. 

Groundwater Snowmelt Perennial Runoff Intermittent Runoff 
Harsh 

Intermittent 

(GW) (SN) (PR) (IR) (HI) 

n 55 22 209 20 7 

Cv 1.1 1.3 1.7 3.5 4.8 

μx 17.5 23.7 13.0 5.2 0.4 
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represented in Table 1.1 fit to lognormal PDFs (Figure 1.2a). I also use this range of Cv 

values to inform the subsequent analyses. 

As described by equation 1.4, f+ increases in an asymptotic manner with Cv and 

is not a function of β (Figure 1.2b). As Cv increases, the flow PDF and effectiveness 

curve become more positively skewed and the tails thicker. That is, smaller discharges 

become more frequent and large discharges become slightly more frequent. This 

translates to a value of Qeff that decreases with increasing Cv, in a relative sense. That 

is, Qeff occupies an increasingly smaller position of cumulative sediment transport and 

the area of the effectiveness curve to the left of Qeff decreases (see Figure 1.9, left panel) 

while the value of f+ increases. In their analysis of sand bed streams, Soar and Thorne 

[2001] found an increasing relationship between f+ and a metric for flow variance; 

Figure 1.2  a) Lognormal flow duration curves fitted to the Poff et al. [1996] flow regime categories. b) 

theoretical relation for f+ and f+ values plotted for flow regime categories. 
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however, work by Bunte et al. [2014] in 

coarse bedded streams suggests 

otherwise. I explore this divergence in 

sediment transport and MFA metric 

behavior between fine and coarse bed 

streams in Section 4.4, below. 

The relationship between RI as a 

function of β and Cv indicates that as β 

increases, RI increases for constant Cv, 

but more so for Cv > 2 (Figure 1.3). As 

Cv increases with constant β, RI increases for β > 2 (representative of the bed load-

dominated domain), and is relatively constant for β < 2. The theoretical relation plotted 

in Figure 1.2 precludes the possibility of RI approximating the 1.5 year flow event for β 

≥ 2.5. The 1.5 year event is often cited as the median or average return interval for Qeff 

or Qbf though with questionable merit as discussed by Doyle et al. [2007]. While these 

general trends may translate to physical systems in some cases, the absolute values of 

RI shown in Figure 1.3 diverge from those reported for North American streams, 

calculated using empirical methods, which generally fall in the range of 0.5 to 2 year 

[Pickup and Warner, 1976; Andrews, 1980; Nash, 1994; Emmett and Wolman, 2001]. 

However, recent work by Bunte et al. [2014] using different bed load measurement 

techniques suggests that in coarse bedded streams with very large sediment-rating curve 

Figure 1.3 Return Interval (year) of Qeff for        

μx = 2 m3/s as a function of β and Cv. 

28 

 



exponents (β > 5), the largest flows are likely the most effective over time. While this 

theoretical relation may provide information about the general relationships between 

sediment transport mode, flow variance, and the magnitude of Qeff, it is limited in its 

applicability to the physical world, especially for large β and Cv values. 

4.2 Flow Record Length Analysis 

In the previous section, I considered the influence of Cv on MFA metrics using 

theoretical approaches alone, which use continuous PDFs to represent daily flows. Here 

I compare values of MFA metrics generated from theoretical approaches with those 

generated from synthetic, finite flow records sampled from the same underlying daily 

flow PDF (empirical approach). I begin this discussion by considering samples of 

effectiveness histograms representing a range of β and Cv values and flow record lengths 

(Figure 1.4). The effectiveness histograms plotted in the top 3 rows of Figure 1.4 

represent a single 100 year flow record chosen randomly from the 100 trials conducted 

for each plotted value of Cv. As both β and Cv increase, larger, less frequent flows 

transport relatively more sediment over time. The effective discharge, or the median 

value of the flows in the bin with the maximum effectiveness value, tends to fall in the 

first flow bin for Cv > 1 and β < 2. The effective discharge tends to fall in the last flow 

bin for β ≥ 3 over all values of Cv. At some threshold value of β, Qeff jumps from a very 

frequent flow value to a very infrequent value in the right tail of the effectiveness 
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histogram, sometimes falling in the last flow bin. This jump, or threshold, can be seen in 

the contour plots of f+ and RI, plotted as functions of β and Cv (Figure 1.5). 

The number of years in a flow record also plays a role in the relationships 

between β and Cv and the MFA metrics f+ and RI. Consider effectiveness histograms 

generated from flow records with Cv = 1 and lengths varying from 10 years to 100,000 

years (bottom 3 rows, Figure 1.4). As the flow record length increases, the synthetic 

daily flow histogram more closely replicates the continuous function that is the product 

of the sediment-rating curve and the lognormal flow PDF underlying theoretical MFA 

approaches. This gives more weight to more frequent flows near the flow distribution 

peak. Less frequent flows in the tails of the distribution carry more weight in shorter 

flow records, which have fewer flows in each bin. This effect becomes more pronounced 

in the effectiveness histograms as the value of β increases for shorter flow records 

(Figure 1.4). The effective discharge calculated from shorter flow records is more 

sensitive to the occurrence of a rare flow event overwhelming sediment yield. 

I continue this record length analysis by considering the relationship between 

MFA metrics f+ (Figure 1.5 top row) and RI (Figure 1.5 bottom row) as a function of β 

and Cv. Moving from bottom to top in each subplot in the upper row of Figure 1.5, f+ 

increases with β to a maximum value at β ≈ 1.8 for the 10 year flow record up to β ≈ 3.8 

for the 100,000 year flow record.
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Figure 1.4 A random sample of effectiveness histograms for a range of β and Cv values for a 100 year flow record (top three rows) and a range of 

record lengths for Cv = 1 (bottom three rows) along with theoretical effectiveness curve (solid black curve). Flow samples are identical moving 

across columns. Flow samples change moving down rows as Cv and record length increase. Note that for β ≥ 3, the largest discharge bin generally

becomes the most effective. This is more apparent for larger values of Cv and for shorter flow record lengths. 
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Figure 1.5 Contour plots of values of the fraction of sediment transported above Qeff (f+, top row) as 

well as the return interval of Qeff (RI, bottom row) in years as a function of β, Cv, and length of flow 
record. Contour values represent the median value of f+ (top row) and RI (bottom row) of 100 trials of 

each flow record length. 

After this β threshold is reached, f+ drops precipitously to nearly zero when Qeff falls 

into the largest discharge bin in the effectiveness histogram (see Figure 1.4). As β 

continues to increase, more weight is given to infrequent flows in the right hand tails of 

the flow probability distribution resulting in more sediment being transported at larger 

discharges (some greater than Qeff ) and a slow increase in f+ occurs after this 

threshold. The threshold described here begins at β ≈ 2.4 for the 10 year records up to β 

> 5 for the 100,000 year records at Cv = 0.5 and decays to a constant β ≈ 1.8 to 3.8 at 

Cv values that range from approximately 2.1 to 1.8 for the 10 year and 100,000 year 

record lengths, respectively. 
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The value of f+ is less sensitive to Cv than to β. In the case of relatively shorter 

flow records (e.g., 10 year to 100 year), a more sparse distribution of flows allows a few 

large, infrequent flows to overwhelm the total sediment transport at smaller values of β.  

In the realm of existing flow record lengths (10 year to 100 year) the behaviors of f+ 

and RI as functions of β and Cv transition smoothly from the values shown in Figure 1.5 

for the 10 year to the 100 year plots.  

The theoretical relation for f+ described by equation 1.4 is only a function of Cv 

and does not resemble the behavior plotted in Figure 1.5, top row. A horizontal line at 

intermediate values of β (below the threshold) tracks the approximate trend described 

by equation 1.4 of f+ increasing asymptotically to unity with increasing Cv. The 

difference between the two descriptions of f+ lies in the difference between discrete flow 

series and flow series represented by continuous PDFs, as well as the definition of Qeff. 

Even though the discrete, synthetic flow series generated for this study are derived from 

the same underlying PDF as equations 1.2) to 1.4, they behave differently than 

continuous PDFs in MFA in large part due to the lack of a continuous right tail in the 

flow distribution (histogram) of finite records (Figure 1.4). This lack of continuity in the 

tail of empirical records of course depends on sample size. Assuming, for example, that a 

river’s flow regime perfectly fits the lognormal distribution, given a long enough period, 

the discrete flow record will match the continuous distribution. However, over 

engineering time frames (often 50 – 100 years), this is likely not the case. The return 

interval of Qeff (RI, calculated with equation 1.3 for median values of Qeff from 100 
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trials) behaves in a similar manner as f+ in terms of the threshold effect in the β 

direction (Figure 1.5, bottom row). Here, RI remains fairly constant with β until the 

threshold is reached. After which RI rapidly jumps to a much larger value as Qeff occurs 

in the uppermost discharge bins of the effectiveness histograms. 

The record length results show that use of a continuous flow PDF inherent in 

theoretical MFA weights sediment transport to the tails of the flow PDF and 

overestimates their influence.  Theoretical approaches do not capture the variability and 

sensitivity of MFA to finite flow records, especially for larger Cv and β values. I find 

that the need for a longer flow record becomes more important as the variability of the 

flows increases as well as for values of β greater than approximately 2. This 

demonstrates that caution should be used when calculating effective discharge in 

systems with shorter flow records and highly variable flow conditions. For example, one 

relatively large flow event in the right tail of 10-year flow record is the most effective for 

β = 3 and Cv = 1. While a very infrequent flow may be the calculated effective 

discharge, consideration should also be given to the effectiveness peak of the more 

frequent flows, or a range of flows, when designing a channel for sediment continuity. 

4.3 Compound Channel Analysis 

Next, I consider the influence of compound channel form on MFA by using a 

sediment-discharge rating curve for two cases: 1) a single power law (SPL) function for 

all discharge values, and 2) a piecewise or broken power law (BPL) function, which 
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incorporates a break in the stage-discharge relationship at Qbf to simulate overbank 

flows. 

Using the SPL under case 1, a continuously increasing relationship between f+ 

and Cv is predicted, which coincides with the theoretical solution for f+ described by 

equation 1.4. However, if I assume that shear stress on the channel bed increases at a 

slower rate with discharge for overbank flows than for in-channel flows, as with the BPL 

sediment transport relation in case 2, then a decreasing relationship is predicted between 

Cv and f+ after a peak in f+ at Cv ≈ 1.5 to 2.0 (Figure 1.6a). The location of this peak 

depends on the degree of difference between channel bank slope and floodplain lateral 

slope. As the value of bfp decreases the lateral floodplain slope becomes milder relative to 

the channel bank slope, and the amount of sediment transported at a given overbank 

discharge decreases. This reduces the relative influence of larger, infrequent flows. 

In case 1, Qeff reduces in absolute magnitude with increasing Cv resulting in more 

sediment being transported at flows greater than Qeff and an increase in f+ (e.g., Figure 

1.9, left panel). In case 2, Qeff behaves the same way with Cv since it is less than Qbf 

where the break in at-a-station overbank hydraulic geometry occurs. For a given value 

of Cv, f+ is smaller in case 2 than in case 1 because less sediment is transported overall 

by overbank flows. The fraction of sediment transported above Qeff continues to decline 

with increasing Cv in case 2 as overbank floods become more frequent, but less effective 

when compared to case 1. This relationship may change if a threshold for sediment 

transport is introduced, which is explored by itself in the next section. 
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Figure 1.6 a) The fraction of sediment transported by discharges greater than Qeff, f+, for the single 

power law (SPL) and broken power law (BPL) at-a-station hydraulic geometry relationships. b) Values of 

f+ for a range of grain sizes in a non-compound channel using an entrainment threshold for sediment 

transport.   

 

 

Figure 1.7 Interquartile sediment yield range centered on Qeff (Qeff.spread) as a function of Cv and a) 

compound channel form as well as b) grain size. 
 

36 

 



It is often the case that breaks in stage-discharge relationships are not explicitly 

incorporated in MFA [e.g., Andrews, 1980; Nash, 1994]. However, as Hey [1996], and 

others studying the hydraulics of compound channels [Knight and Demetriou, 1983] 

note, single stage-discharge or stage-shear stress relationships may not accurately 

capture the hydraulics of natural rivers with floodplains. Of course, the question of 

capacity-limited sediment transport at large flows is more complex than treated herein. 

For example, fine sediment-limited systems can develop armor layers [Dietrich et al., 

1989], which can lead to discontinuous flow-sediment transport relationships before and 

after armor layer breakup [Jackson and Beschta, 1982]. Nevertheless, this simple 

computational experiment has demonstrated that explicitly incorporating floodplain 

morphology and overbank flows can substantially influence calculations of the 

magnitude and frequency of sediment transport in natural rivers. I have shown that flow 

variability interacts with floodplains to reduce the influence of large infrequent flows on 

long-term sediment transport in channels. 

Compound channel form plays a negligible role on influencing Qeff for Qeff ≤ Qbf . 

If Qeff > Qbf, then it will play a larger role in that as more flow has access to the 

floodplain (shallower sloped floodplain, short banks) then Qeff.spread will increase but 

only for very large values of Cv (very flashy systems). 
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4.4 Sediment Entrainment Threshold Analysis 

 The final element of physical context I introduce to the theoretical MFA 

approach is a threshold for sediment entrainment. Sediment transport operating with a 

threshold interacts with flow distributions in ways that depart from the simplistic 

sediment-rating curve. For distributions with low Cv, large flows are relatively rare. 

Transport of coarse sediment classes—and the most effective discharge for these 

sediment size classes—occur primarily in the right tail of the flow distribution resulting 

in a very large RI (Figure 1.8b). With increasing Cv, flows less than the threshold for 

sediment entrainment become more frequent pushing the bulk of sediment transport 

further out into the right tail of the flow distribution and increasing the absolute value 

of Qeff  (Figure 1.8a). However, as Cv increases in coarse-bedded rivers, RI drops 

precipitously with increasing Cv as the larger flows necessary to move coarser sediment 

become more common (Figure 1.8b). In contrast, in fine grain streams with very low or 

negligible entrainment thresholds the peak of the effectiveness curve follows that of the 

flow distribution as Cv increases. This means that the absolute value of Qeff decreases 

with increasing Cv (Figure 1.8a & b; Figure 1.9, left panel). This reverse in the 

relationship between Cv and Qeff between coarse and fine sediment can be seen by 

examining the peak of effectiveness curves for a range of sediment sizes and Cv values 

(Figure 1.9).  

I find a reduction in f+ as a function of Cv for values generated with the 

threshold-type sediment transport relation compared to what equation 1.4 predicts  
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Figure 1.8  a) The value of Qeff as a function of Cv and sediment grain size, D50. b) The return interval of 

Qeff in years as a function of the same. Note that the Qeff–Cv relationship decreases for relatively small 

sediment (sand to fine gravel) but increases for large sediment sizes (medium gravel to small cobble). 

Figure 1.9 Effectiveness curves for a range of grain sizes and Cv values. Note that the discharge 

associated with the peaks of these curves, Qeff, decreases with increasing Cv for small grain sizes and 

increases with increasing Cv for large grain sizes.  
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(Figure 1.6b). This difference increases with grain size. The threshold for fine-grained 

sediment (1 mm to 8 mm in this example) is relatively small and the sediment transport 

relation for this size class approximates the single power law, sediment-rating curve used 

in equation 1.4. Therefore, the f+ – Cv relationship for sand size material (1 mm) 

approximates the theoretical relation equation 1.4. However, as sediment size increases 

(> 1 mm in this example), the f+ – Cv relationship increasingly falls below the 

theoretical relation, though parallels its shape. This is due to the Qeff–Cv relationship 

previously discussed: as Cv increases more flows occur below the threshold of 

entrainment for coarser sediment resulting in less sediment transport overall. This 

combination of effects results in increasingly smaller values of f+ as grain size and Cv 

increase. 

 Sediment yield interquartile range increases with Cv but decreases with increasing 

grain size. This means that fine sediment (i.e., sand) dominates the bed, a larger range 

of flows is responsible for sediment transport and continuity, whereas this range tightens 

for gravel to cobble bed streams. 

The divergence in trends in absolute value of Qeff and Cv between streams with 

fine versus coarse sediment has been documented in these stream types separately in the 

literature. Work by Bunte et al. [2014] in bed load-dominated gravel and cobble streams 

suggests that as flow variance increases so does Qeff such that for certain large values of 

flow variance, Qeff may be the largest discharge on record (assuming that sediment is 

never supply limited in these streams). In sand bed streams dominated by suspended 
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load, Soar et al. [2005] found a decreasing relationship between the ratio Qeff /Qbf and 

flow variance using a different metric of flow variance: Q2/Qmean, where Q2 is the two 

year flood based on the maximum annual flood series and Qmean is the mean annual 

discharge. Here I present a physical mechanism for this diverging relationship across 

sediment size classes due to the relationship between flow variability and the magnitude 

and frequency of flows greater than the threshold for sediment entrainment. 

5 Conclusion 

Magnitude-frequency analysis (MFA) conducted with theoretical, closed-form 

equations 1.2, 1.3, and 1.4 provides valuable insight about the general relationships 

between sediment transport mode, flow variance, and the magnitude of the effective 

discharge, Qeff, to generate hypotheses about the physical world. However, these 

theoretical approaches fall short of capturing important physical processes and 

complexities inherent in rivers and streams, and may not apply to actual river 

management scenarios, which have finite time horizons. In this study, I have used 

simple numerical experiments to test the validity of theoretical MFA approaches in 

predicting the magnitude and frequency of sediment transport. I have also used the 

analytical framework implicit in these approaches to study the influence of compound 

channel form and a threshold for sediment entrainment on the magnitude and frequency 

of sediment transport. 
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Theoretical MFA relations predict a monotonic increase in the absolute value, as 

well as the return interval (RI), of the effective discharge, Qeff, with increasing flow 

coefficient of variation, Cv, and sediment-rating curve exponent, β using equations 1.2 

and 1.3 (Figure 1.3). The fraction of sediment transported by discharges greater than 

Qeff, f+, as predicted by equation 1.4, monotonically increases with Cv and approaches 

unity asymptotically for large values of Cv (Figure 1.6, solid line). In this study, I 

demonstrate that even modest modifications to the assumptions contained in these 

theoretical approaches result in divergent relationships among flow variance, sediment 

transport mode, and values of MFA metrics. I find the following: 

1. Median values of MFA metrics RI and f+ from finite flow records sampled from the 

same continuous flow probability density function used in the theoretical MFA 

relations demonstrate complex, non-monotonic, and threshold-driven relationships as 

a function of Cv, β, and the length of the flow record (Figure 1.5) not reflected in the 

theoretical relations for these metrics. 

2. Introducing compound channel morphology by creating a break in the stage-

discharge relationship at the bankfull discharge causes the f+ – Cv relationship to fall 

well below that predicted by equation 1.4. The value of f+ increases up to an 

intermediate value of Cv and then decreases for larger values of Cv (Figure 1.6a). 

This outcome is due to the reduction in effectiveness of overbank flows with the 

existence of a floodplain. It is sensitive to the difference between channel bank slope 

and floodplain lateral slope.  
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3. Inclusion of a threshold for sediment entrainment results in a divergent relationship

between Qeff and Cv between fine and coarse-grain channels. In channels with fine-

grained sediment, the absolute value of Qeff decreases with increasing Cv while the

value of f+ follows equation 1.4 closely. In channels with coarse-grained sediment 

and larger entrainment thresholds, the absolute value of Qeff increases with Cv and 

the value of f+ falls below that predicted by equation 1.4 (Figures 1.6b, 1.8, and 

1.9). 

This divergence in the Qeff–Cv relationship for fine vs. coarse sediment has been 

observed separately in coarse bed [Bunte et al., 2014] and fine bed streams [Soar et al., 

2005]. As the flow distribution becomes more positively skewed with increasing Cv 

smaller flows become more frequent resulting in Qeff reducing with Cv in fine-grained 

streams with low sediment entrainment thresholds. In coarse-grained streams, these 

more frequent small flows associated with larger Cv fall below the entrainment 

threshold. Flows in the tails of the distribution then dominate sediment transport and, 

because the flow PDF tail thickens with increasing Cv, Qeff also increases. 

Magnitude-frequency analysis of sediment transport in rivers provides a process-

based, analytical tool for river scientists and managers to characterize what flow or 

range of flows is most responsible for transporting sediment and maintaining sediment 

continuity in a channel. These approaches may be applied practically (e.g., channel 

design and environmental flow studies) and academically (e.g., dynamic equilibrium 

theory). My study indicates that the empirical approach to MFA, which is based on a 
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finite flow record, should be relied on for practical questions with engineering time 

horizons (50 to 100 years). However, in applying the empirical approach to systems with 

shorter flow records (> 10 years) that have larger Cv values and/or β values (> 2) a few 

large flows can overwhelm MFA resulting in very large estimates of Qeff. Depending on 

the question of interest, this result may or may not be appropriate to consider in the 

long-term sediment yield of a river. 

Theoretical MFA approaches are useful for predicting general relationships 

between aspects of the flow regime, sediment transport mode, and sediment yield in 

research settings. I found that their assumptions limit their use primarily to cases where 

sediment entrainment thresholds are non-existent or are very small (e.g., wash or 

dissolved load) when a sediment rating curve is utilized, where compound channel form 

is lacking, or where only in-channel flows are considered. The values and behaviors of 

metrics based on integrals of continuous and infinite PDFs such as f+ diverge from 

those generated from discrete and finite records in large part due to the lack of a 

continuous right tail in the flow distribution of finite records (Figure 1.4). This lack of 

continuity in the right tail of empirical records is of course a phenomenon of sample size. 

This study indicates that use of a continuous theoretical flow PDFs over weights 

sediment transport in the tails and overestimates their influence under engineering time-

frames (often 50 – 100 years) when compared to empirical distributions of finite flow 

records. 
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  Future work will more closely consider the interaction between channel form, 

flow regime, and sediment transport mode. The behavior of MFA metrics using different 

probability distributions other than the two-parameter log normal distribution as well as 

the use of bed load vs. total load sediment transport equations will be considered. These 

and other metrics generated from MFA have the potential to inform general geomorphic 

theory as well as process-based channel design. 
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CHAPTER 2 

The Magnitude and Frequency of Sediment Transport in 

Alluvial Rivers2 

Summary 

What flow or range of flows is most responsible for transporting sediment and 

maintaining sediment continuity in a river over human time scales? This question has 

inspired scores of studies considering the magnitude and frequency of sediment transport 

(MFA) in rivers and has been a part of the ongoing debate regarding process vs. form-

based approaches to stable channel design. I consider this question using bed material 

load data collected near stream gages across a spectrum of stream types (n  = 153 

sites): from flashy sand bed streams dominated by suspended load to snow-melt gravel 

and cobble streams dominated by bed load. Using the sediment yield density curve, 

which is the product of the flow frequency distribution and a sediment transport 

relationship, I calculate sediment yield metrics describing the magnitude, frequency, and 

range of flows most responsible for sediment transport over the hydrologic period of 

Chapter not yet published. Joel Sholtes collected the data from publications and online sources, conducted 

all of the research, analysis, and writing on this chapter with input and feedback from his advisor. Brian 

Bledsoe, Peter Nelson, and Daniel Baker co-authored the research proposal that funded a portion of this 

work. The basic framework for exploring the influence of sediment yield drivers on sediment yield metrics 

was proposed by them. 
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record. I then characterize relationships among sediment yield metrics, driving, and 

boundary variables such as flow variability and bed material properties.  

I find that sediment yield in fine bed, suspended load-dominated streams is more 

sensitive to metrics describing flow variability, whereas in coarse bed, bed load-

dominated streams sediment yield is more sensitive to physical aspects of the channel 

and bed sediment size. Though some differences were observed between fine and coarse 

bed sites, sediment yield metrics respond in a continuum from flashy hydrology and fine 

bed streams to stable hydrology and coarse bed streams. This work expands on previous 

MFA studies by applying a uniform method of bed material magnitude and frequency 

yield analysis across a wide range—and a large number—of river types to characterize 

the relationships among properties of the flow regime, bed material, and the range, 

magnitude, and frequency of the most effective flows. The empirical relations 

characterized in this chapter compare favorably with theoretical relationships derived in 

Chapter 1. By considering the magnitude and frequency of sediment transport using the 

same methodology for fine and coarse bed rivers, this study bridges and extends our 

understanding of relationships between physical drivers and sediment yield in fine and 

coarse bed rivers. 
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1 Introduction 

How much and how often sediment moves in a river has preoccupied river 

engineers and geomorphologists for generations. While the scope of this question is vast, 

many workers focus on linking channel form, that is, bankfull geometry, to one or more 

dominant discharges. This vein of inquiry originated with the pioneers of fluvial 

geomorphology as well as river and canal engineering. Gilbert [1914] and Mackin 

[1948a], among others, introduced the theory of graded rivers postulating that rivers in 

dynamic equilibrium adjust their slope and dimensions over time in response to flow and 

sediment inputs. Rivers in “grade”, it is thought, maintain a stable slope and continuity 

between inputs and outputs of sediment over time given a stationary flow regime. While 

it has its detractors [e.g., Kesseli, 1941] and limitations [Graf, 1983; Pizzuto, 1994] this 

theory has proven to be a useful conceptual model for understanding and predicting 

channel response to the drivers of flow and sediment as well as channel design. 

In the mid-20th century, the U.S. Geological Survey’s network of stream gages 

was over a half-century-old and a large-scale suspended sediment flux data collection 

effort was underway. Graded river concepts linking channel form with process could 

directly be tested in-situ using these data. With Wolman and Miller’s [1960] influential 

paper on the magnitude and frequency of geomorphic work, a new direction of inquiry 

opened where daily or sub-daily flow records were combined with newly available long-

term daily sediment flux records to calculate the effective discharge, Qeff, or the 
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discharge that transports the most sediment over time. More recent magnitude-

frequency analysis methods use various empirical representations of the flow frequency 

distribution or a fitted probability distribution function to represent the flow regime 

[Nash, 1994; Vogel et al., 2003; Goodwin, 2004] along with flow resistance and sediment 

transport relations, which translate flow rate or depth to sediment transport capacity 

[Hey, 1996; Barry et al., 2008; Hassan et al., 2014]. The product of these two results in 

the sediment yield density curve (yield curve), which describes average magnitude and 

frequency of sediment transport conditions over the flow record (Figure 2.1).   

Magnitude-frequency analysis (MFA) of sediment transport in rivers and its 

relationship with flow regime and channel boundary conditions comprises the framework 

for the present study. Previous MFA work has only focused on fine bed, suspended  

 

       

Figure 2.1 Conceptual diagram of lognormal stress (flow) distribution (a), power law sediment rating 

curve (b), and sediment yield curve (c), which is the product of (a) and (b). 
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load-dominated [Wolman and Miller, 1960; Nash, 1994; Vogel et al., 2003; Simon et al., 

2004; Crowder and Knapp, 2005] or coarse bed, bed load-dominated streams [Carling, 

1988; Emmett and Wolman, 2001; Barry et al., 2008; Hassan et al., 2014], limiting their 

conclusions about the magnitude and frequency of sediment transport in all rivers and 

streams. In an often-cited study, Andrews [1980] combined measured suspended load 

and modeled bed load to estimate total load for his MFA in the Yampa River Basin, 

Colorado including the wash load component of the suspended load (< 0.0625 mm). 

Andrews found that Qeff approximates Qbf across all drainage scales. Some have argued 

that because sediment in transport smaller than the sand-silt threshold (0.0625 mm) is 

almost always in suspension and not found in appreciable quantities in the channel bed, 

this wash load material does not greatly influence channel form [Brownlie, 1981; Hey, 

1996; Soar and Thorne, 2011]. Therefore, it should not be considered in MFA or total 

sediment load computations in fine bed rivers if the research question is concerned with 

the relationship between sediment yield and channel form. If landscape denudation rates 

or water quality are of concern, then including wash load in this analysis is called for 

[Wolman and Miller, 1960; Simon et al., 2004]. 

Empirical MFA lacks a comprehensive and standardized consideration of the 

relationship of flow regime and sediment transport mode with sediment yield across the 

spectrum of single-thread, alluvial river types. To standardize MFA in this study, I only 

consider bed material load (sand size and greater). After comparing several methods for 

representing the flow frequency distribution, I choose one approach to represent the flow 

50 

 



 

frequency distribution at a site across all sites. Using sediment load and flow data for 

coarse and fine bed streams, I characterize relationships of flow regime and physical 

sediment and channel properties with metrics describing the magnitude and frequency of 

sediment transport, introduced in Section 2. Where applicable, I compare results from 

this empirical analysis with the theoretical relationships I found in Chapter 1. 

This work extends our current understanding of how much sediment is 

transported by what flow frequencies, and bridges this understanding across a spectrum 

of river types using previously published and new sediment yield metrics. It 

characterizes what flows or range of flows are most important in shaping channels and 

maintaining mass balance in a channel through sediment transport. It also compares 

these empirical relationships with the theoretical ones derived in Chapter 1.  

2 Magnitude-Frequency Analysis Background 

The sediment yield metrics I use to characterize the magnitude and frequency of 

sediment transport in rivers include previously-published metrics such as the effective 

discharge [Andrews, 1980]; the fraction of sediment transported by discharges greater 

than Qeff,  f+ [Vogel et al., 2003]; as well as the half yield discharge, Qs50, which is the  

discharge above and below which the a cumulative 50% of sediment yield occurs on 

average [Emmett and Wolman, 2001; Vogel et al., 2003] (Figure 2.2). A sediment yield 

metric introduced in this study is the spread of sediment yield, which I define as the 
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difference between the discharges that bracket 50% of cumulative sediment transported 

centered on either Qeff or Qs50 and normalized by those respective discharges. The 

sediment yield spread can also be thought of as a normalized interquartile range, IQR. 

Note that in some cases where the values of Qeff or Qs50 are very small or very large, the 

yield spread metric may not cover a full 50% of sediment yield as the lower or upper 

bounds of the sediment yield curves might be limiting. I also analyze percentiles and 

return intervals of these discharge-based sediment yield metrics.  

Relationships comparing both physical sediment properties and attributes of the 

flow regime with the sediment yield metrics described above have been reported in the 

literature for certain metrics in certain river types. For example, studies on the influence 

of sediment transport characteristics on the magnitude and frequency of sediment 

transport have demonstrated that as the value of the exponent of the power law 

sediment rating curve function increases for a particular channel (β in Qs = αQβ, 

Figure 2.2 Conceptual diagrams of sediment yield metrics plotted on sediment yield density (a) and 

cumulative probability (b) curves. The shaded areas delineate the bounds of the cumulative 50% of 

sediment transported centered on Qeff (orange) and Qs50 (blue), or normalized IQR. 
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where Qs is the sediment transport rate and Q is the water discharge) more sediment is 

transported over time by less frequent, higher magnitude flows [Nash, 1994; Vogel et al., 

2003; Bunte et al., 2014]. That is, larger exponent values, which tend to be associated 

with larger sediment sizes, and larger thresholds for entrainment, weight sediment 

transport and effective discharge towards these larger, infrequent flow events. The 

magnitude and frequency of sediment transport in channels with larger rating curve 

exponent values may be more sensitive to flow variability and changes in flow 

variability as the right tail of the flow distribution becomes more dominant [Chapter 1; 

Sholtes et al., 2014]. 

Regarding the influence of flow regime in MFA, previous theoretical work 

[Wolman and Miller, 1960; Vogel et al., 2003; Goodwin, 2004] and empirical work 

[Pickup and Warner, 1976; Nash, 1994; Klonsky and Vogel, 2011] in both sand and 

gravel dominated systems has found that an increasing relationship exists between 

estimates of Qeff and variability in the daily flow record. However, other empirical work 

in sand dominated alluvial channels demonstrates that these relationships might in fact 

be inverse [Soar et al., 2005]. As demonstrated in Chapter 1 and in Sholtes et al. [2014], 

by including a threshold for sediment transport in MFA, this divergent relationship 

between flow variability and Qeff can be explained. As flow variability increases, the 

mode of the flow distribution becomes smaller and the right tail thicker. The tail of the 

flow distribution dominates sediment yield in coarse bed systems with larger thresholds 

for transport, leading to an increase in Qeff with flow variability here. The mode of the 
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flow distribution dominates sediment transport in fine grain systems with little to no 

threshold for sediment entrainment, leading to a decrease in Qeff with flow variability. 

Some work has suggested that watershed scale relationships exist between 

sediment transport properties and flow regime. For example, Barry et al. [2004] and 

Bunte et al. [2014] found that in armored, snowmelt streams an increasing relationship 

exists between both the coefficient and the exponent of sediment rating curves in coarse 

bed channels and drainage area. This is likely linked to the reduction in bed grain size 

moving downstream as well as the increase in fine sediment supply. Andrews [1980] 

reports a decreasing trend in daily flow skewness and increasing trend in duration of Qeff 

with drainage area in the snowmelt driven Yampa River Basin. However, he found that 

the ratio of Qeff to Qbf remained close to unity throughout. Nash [1994] considered the 

recurrence interval of Qeff in a nationwide survey of suspended-load dominated rivers 

and found no significant correlation between drainage area and the recurrence interval 

of Qeff. Finally, Simon et al. [2004] found that Qeff calculated from daily flow records 

and total suspended load measurements had a recurrence interval that ranged from 1.1 

to 1.7 years across a wide range of drainage areas and physiographic regions. Their 

findings indicate that the frequency of Qeff remains fairly stable across a wide range of 

drainage areas. 

Individual studies on relationships between either flow variability or grain size 

with the magnitude and frequency of sediment yield in rivers may conflict with one 

another and general understanding of how these relationships play out across a wide 
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variety of rivers does not exist. This is partly due to workers’ focus on either coarse or 

fine bed rivers as well as a lack of standardization in methodology, not to mention the 

complexity in drivers and boundary conditions that create channel form. As Emmett 

and Wolman [2001, p. 1378-1379] reflected: 

Given this variety and plethora of controls of channel form, it is not surprising that no all-

encompassing relationship between morphology and transport has been constructed [Nash, 1994]. 
Parenthetically, it is interesting to note that, despite the accumulation of much data on flow 

duration, adequate quantitative comparisons remain difficult because comparable data on flow 

duration, sediment characteristics and transport, and channel characteristics are not reported 

consistently. This does not imply that consistent data would assure emergence of a universal 

relationship between sediment transport and river form. Nor, of course, does the absence of 

universality and the presence of variability imply only uniqueness and disorder. Given the noise, 

one might marvel at the order that can be discerned and used. (emphasis added) 

 

The present study extends on previous work by using consistent data and standardized 

methods to exploring the magnitude and frequency of sediment transport in a wide 

range of river types as a function of flow regime and channel boundary conditions. It 

introduces and characterizes the behavior of new sediment yield metrics, compares 

empirical results with theoretical ones, and explores how sediment yield metrics behave 

across coarse and fine bed sites. It is my hope that by asking some new questions about 

the magnitude and frequency of sediment transport with a standardized methodology I 

might achieve some “order that can be discerned and used” in science and management 

of sediment transport in rivers. 
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3 Data and Methods 

Empirical magnitude-frequency analysis of sediment transport in rivers requires 

1) either a calibrated sediment transport equation for a particular site or sediment 

transport–flow measurements, and 2) a relatively long flow record (>10 years, though 

>20 years is preferable, see Chapter 1). The methods described below primarily focus on 

how the sites were selected, what types of data are used in this study, how the sediment 

transport–flow relationships are derived, and how the general MFA is conducted. I also 

discuss and test several methods for representing the flow distribution in an effort to 

create an MFA approach that works well across a wide variety of systems. Detailed 

information on data sources and methods used to estimate Qbf using at-a-station 

hydraulic geometry—data used in this chapter—is provided in Chapter 3, where the 

bankfull discharge is a primary focus. Methods utilized to extend the flow records of 

sites with flows records < 10 years is provided in Appendix 4C. 

3.1 Site Selection and Description 

I use gaged flow and sediment flux data from 153 sites across the conterminous 

U.S. and Puerto Rico including 60 coarse bed sites and 93 fine bed sites for which ≥15 

paired bed material sediment load-discharge measurements were available near a flow 

gage with a long-term record (Figure 2.3). In general, these sites were selected because 

the majority have been previously published in MFA studies or are located along the 

same river as previously-published sites and deemed to meet the criteria for MFA. 
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However, because the percent of particles finer than 0.0625 mm (wash load fraction) of 

suspended load is often not evaluated in suspended load measurements and sites with 

smaller drainage areas (<100 km2) are under-represented in published MFA studies, 

other sites were brought in to this study to augment the data set. I included only 

alluvial rivers (mobile bed and banks) in dynamic equilibrium with the drivers of flow 

and sediment supply, meaning measured channel properties are likely to be stable over 

an engineering time frame (50-100 years). Impacts such as flow regulation, 

channelization, and land use change can result in transient influences on channel form 

and are therefore avoided in this study. I used aerial photograph reconnaissance as well 

as USGS gage notes as a rough method for determining if a river was either regulated or  

 

Figure 2.3 Map of co-located bed material load measurements and flow gages for fine bed sites (white 

circles) and coarse bed sites (black circles) used in Chapter 2. 
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channelized, and removed it if it was. Site specific information including data sources for 

sediment load measurements and channel properties is given in Tables 2A.1 and 2A.2 in 

the Appendix. 

Characteristics of each site have been summarized in Figure 2.4 a to f. These 

plots are symmetrical empirical density functions with box-and-whisker plots inside 

(black rectangle interquartile range with white dot at the median). The values of the 

sediment rating curve exponent, β (Qs  = αQβ ) have a median just below 2 for the fine 

bed sites, and just above two for the coarse bed sites, but the latter have a much 

greater spread in β and a larger average value of β (Figure 2.4a). While the drainage 

areas of both types of sites overlap, more sites in the 100 to 1,000 km2 range exist for 

coarse bed sites, and more sites in the 10,000 to 100,000 km2 range exist for the fine bed 

sites (Figure 2.4b). The difference in drainage area is due to the nature of USGS’ 

suspended sediment monitoring program, which targets larger rivers, as well as the 

upper limits in drainage area for coarse-bed rivers in the U.S. The majority of the coarse 

bed sites have a coefficient of variation of daily flow (Cv) that is less than 2, while a 

much broader range of Cv values exists for the fine bed sites, whose interquartile range 

falls between 1.5 and 3 (Figure 2.4c).  Flow record lengths between the two types of 

sites are fairly similar with a median record length for fine bed sites of approximately 65 

years and 45 years for coarse bed sites (Figure 2.4d). Median grain size data, where 

available, are also evaluated (Figure 2.4e). I use median grain size values to differentiate  
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Figure 2.4 Empirical density functions (violin shapes) and interquartile ranges (black rectangles with 

white median dots) for site attributes. Unless otherwise noted, n = 93 fine load sites and n = 60 coarse 

bed sites. 
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between fine-bed, suspended load-dominated sites and coarse bed, bed load-dominated 

sites. Here I am making the assumption that the suspended load dominates bed material 

load transport in sites with mostly sand beds, and that bed load dominates bed material 

transport in sites with gravel and cobble beds. Sites with mixes of sand and gravel in 

the bed have been avoided because bed material is transported both as bed and 

suspended load in significant proportions and data for both modes of transport at a 

particular site are rare.  

Although some of the fine bed sites do have an average median bed sediment 

grain size, D50, in the very fine gravel range (Figure 2.4e). I removed most sites from 

both fine and coarse bed categories for either being too coarse, or fine, respectively. The 

average median grain size of some fine bed sites lies in the very fine to fine gravel range 

(1 to 4 mm); however these sites were kept in the suspended load analysis because 

several bed sediment samples from these sites have D50 values in the sand range. I cut 

off coarse bed sites at the lower end of the fine gravel range (4 mm). While there are 

more objective methods for determining the dominate mode of sediment transport based 

on hydraulic properties and grain size, such as the Rouse number [Julien, 2010], 

calculating these for all sites was not possible given available data.  

Data were available for determining the value of dimensionless shear stress, τ*, at 

bankfull discharge, where τ* ≈ hS / (1.65D50) with h the flow depth at bankfull 

(approximation for hydraulic radius), S the stream bed slope (approximation for the 

energy slope), and D50 the median diameter of the bed material. This parameter is also 
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helpful for inferring the dominant mode of sediment transport in rivers [Dade and 

Friend, 1998]. Bed load-dominated rivers tend to have values of τ* ≤ τc*, where τc* is 

the critical value for incipient motion and ranges from 0.03 to 0.07 [Buffington and 

Montgomery, 1997]. Suspended load-dominated rivers tend to take on values of τ* ≥ 1 at 

bankfull discharge, and mixed load rivers have values of τ* that fall between bed- and 

suspended-load dominated rivers. I estimate values of τ* for sites having the necessary 

data (Figure 2.4f), finding that the median value of τ* for fine bed sites is 1.5 with an 

inter quartile range, IQR ∈ (0.4, 2.1), and the median value for coarse bed sites is 0.05 

with IQR ∈ (0.04, 0.1). The lower end of the τ* values for fine bed sites and the upper 

end of τ* values for coarse bed sites falls in the mixed load category, therefore some 

mixed load sites may exist in this dataset. 

3.2 Bed Material Load Data Sources 

Sediment moves through rivers by saltating and rolling along the bed as bed load 

and in suspension in the water column as suspended load. I have divided my sites along 

these two transport modes terming coarse bed, bed load-dominated sites “coarse bed”, 

and fine bed, suspended load-dominated sites “fine bed”. For the purposes of this study, 

these transport types are estimated using bed load samplers, and depth-integrated 

suspended load samplers, respectively. Of course, this binary distinction never absolutely 

exists in the real world. All forms of transport tend to occur in a given river at various 

points in time whether its bed is coarse or fine, depending on its sediment supply. In 
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some cases, the total sediment yield in coarse bed rivers can be dominated by fine 

sediment in suspension [Whiting et al., 1999]. Though fine sediment may travel in 

suspension in coarse bed rivers, it is the movement of the coarse bed material that 

ultimately forms the channel boundaries; therefore, I only use bed load measurements to 

conduct MFA at coarse bed sites. Bed load transport in fine bed rivers also plays an 

important role in sediment continuity, channel geometry (e.g., slope) [Hey, 1996] as well 

as in flow resistance calculations [Brownlie, 1981]. However, it has been shown that bed 

load in fine bed rivers is approximately a factor (e.g., 10%) of suspended load, and does 

not significantly influence the slope of the rating curve [Nash, 1994; Michels-Boyce, 

2014b]. Therefore, I limit my MFA in fine bed rivers to suspended sediment 

measurements only. 

I compile paired bed load–instantaneous discharge data sets from a range of 

sources listed below in Table 2.1. Specific information for all sites is compiled in 

Appendix 2A. In general, these data were collected using Helley-Smith bed load 

samplers, which collect grain sizes ranging from approximately 0.2 mm (depending on 

the mesh size used) to 64 mm, truncating the upper end of sediment size at the gravel-

cobble threshold [Emmett, 1980]. Bunte and Abt [2009] note that particles larger than 

64 mm are rarely sampled in larger bed load traps in small to medium sized streams. 

However, work by Bunte and her collaborators indicates that the short sampling times 

associated with the Helley-Smith sampler under-samples coarser particles in general, 

which move very sporadically. This, in addition to local flow acceleration caused by the 
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Helley-Smith sampler, can lead to rating curves with milder slopes than those generated 

from bed load traps [Bunte et al., 2004], a potential downfall. The coarse bed sites 

utilized in this study have drainage areas ranging from 10 to 10,000 km2 and are located 

primarily in the central and northern Rocky Mountain region where the majority of bed 

load data exist. Some bed load data for sites located in the U.S. Southwest and Pacific 

Northwest are available through the USGS National Water Inventory System Water 

Quality Samples for the Nation Database3. There is a substantial lack of published or 

government collected bed load data in the remainder of the country. 

A much greater amount of suspended sediment data are available in the U.S. and 

Puerto Rico. The focus of this study is bed material load, defined here as particle 

diameters > 0.0625 mm (sand-silt cutoff). Therefore, I limited my search to suspended 

sediment datasets that contained a minimum of 15 suspended sediment concentration 

measurements with grain size analysis to determine percent of sediment coarser than 

0.0625 mm (sand-sized component). I determined these sites to be primarily sand bed 

streams either from published bed sediment samples or from aerial photograph 

reconnaissance. I utilized the USGS Sediment Data Portal4, Discrete Site data [USGS, 

2014] for suspended sediment concentration, percent of suspended sediment sample with 

diameters > 0.0625 mm, and instantaneous discharge data. In some cases, instantaneous 

discharge data were not available at the time of the sediment concentration 

3 http://nwis.waterdata.usgs.gov/usa/nwis/qwdata 
4 http://cida.usgs.gov/sediment/ 

63 

http://nwis.waterdata.usgs.gov/usa/nwis/qwdata
http://cida.usgs.gov/sediment/


 

measurement. In these cases, average daily flow values were used. Some outliers were 

removed from the data based on visual assessment and confirmation that data were 

entered incorrectly (e.g., very large values of sediment transport at very low discharges, 

or vice sersa). 

Table 2.1 Bed material load measurement sources 

Reference Region / Site 

Coarse bed Sites  

Andrews [1994] Sagehen Creek, California 

Andrews [2000] East Fork Virgin River, Utah 

Bunte & Abt [2009] Rocky Mountains, Colorado 

Erwin et al. [2011] Pacific Creek, Wyoming 

Jones & Seitz [1980] Clearwater River, Idaho 

King et al. [2004] Rocky Mountains, Idaho 

Rankl & Smalley [1992] Rocky Mountains, Wyoming 

Smalley et al. [1994] Wind River, Wyoming 

USFS [2014] Rocky Mountains, Colorado & Wyoming 

USGS NWIS [2014] California 

Fine bed Sites  

Biedenharn & Thorne [1994] Mississippi River 

Crowder and Knapp [2005] Illinois 

Nash [1994] Conterminous US 

Nolan et al. [1987] California 

Soar & Thorne [2001] Midwestern & Eastern US 

Watson et al. [1997] Midwest, US 

USGS Sed. Data Portal [2014] Conterminous US and Puerto Rico 

 

3.3 Physical Site Metrics 

Physical site metrics describing channel geometry and bed sediment 

characteristics of each site were calculated where data were available. Estimates of the 

median and 84th percentile grain size were based on pebble count data for bed-load sites 

and from sieved bed sediment samples reported either in the literature or on NWIS. 

Bankfull discharge was either estimated based on matching a field-identified bankfull 
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stage with an estimated flow rate from a nearby gage, or from identifying a break in the 

discharge-channel geometry relationships described in the hydraulic geometry methods 

for bankfull discharge determination discussed in Williams [1978]. See Chapter 3 for 

further discussion on bankfull discharge estimation. Bankfull width and average depth 

were estimated from hydraulic geometry relationships based on site-specific 

measurements evaluated at the bankfull discharge. Drainage area data were collected 

from NWIS site descriptions as well as published values. Slope estimates are water 

surface slope estimates measured in the field at some sites. I used these values to 

calculate τ* using the D50 of the bed material and the average depth at bankfull. 

3.4 Sediment Rating Curve Generation 

Much effort has been given to statistically defining an accurate relationship 

between flow and sediment transport measurements. This can be a painstaking process 

with consideration of multiple flow-independent variables [Cohn et al., 1989], inter-

annual variability and seasonality [Walling, 1977a; Syvitski et al., 2000; Bunte and Abt, 

2009], hysteresis [Walling, 1977a; Moog and Whiting, 1998], and uncertainty [Rustomji 

and Wilkinson, 2008]. Finding the most accurate model for each site is not a primary 

goal of this study because I do not attempt to quantify an accurate absolute sediment 

load. Rather, I calculate metrics based on the sediment yield curve. Due to the broad 

nature of the present study and the large amount of sites used, a bivariate, log-linear 

regression equation was used to define the relationship between discharge and sediment 
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load (kg/sec).  Bed load measurements were generally reported as mass/time. Suspended 

load measurements were reported as concentrations (mass/volume) and were converted 

to mass/time by multiplying the concentration by the flow rate. Therefore, suspended 

sediment load observations were more highly correlated with flow than bed load 

measurements. Sites were culled in which a low log-linear correlation value resulted for 

sediment load and discharge relationships and/or a log-linear relationship did not 

appear to be a reasonable fit based on visual assessment. The interquartile range of R2 

values for suspended load sites is 0.65 to 0.86 with a minimum value of 0.22 and a 

maximum of 0.96. For coarse bed sites, the interquartile range is 0.57 to 0.77 with a 

maximum of 0.97 and a minimum of 0.25. The F statistic for log-linear model 

significance is large enough for all models such that all models had significant fits      

(R2 ≠ 0) at the α = 0.05 significance level (maximum p value is 0.02). Diagnostic plots 

for each model are provided in Appendix 2B. 

I examined the sensitivity of log-linear regression line slopes (exponent in 

untransformed power law equations) to two regression methods: the ordinary least 

squares model (OLS, lm() R function) and the robust linear model (RLM, rlm() R 

function, MASS package). A Bayesian log-linear model as well as uncertainty analysis 

associated with each method are explored in the following chapter.  

Each method has particular inherent assumptions, the most restrictive of which 

are those of OLS, which require residual error to be normally distributed and of equal 

variance. This method is also sensitive to outliers or largely divergent values at either 
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end of the independent variable range [Ott and Longnecker, 2001, p. 534]. The normally 

distributed error assumption is relaxed in RLM, which uses a weighting function that 

gives less weight to data further away from the mean [Huber and Ronchetti, 2009]. 

The two log-linear regression models require re-transformation bias correction 

factors to account for the lognormally distributed residual error [Ferguson, 1986; Cohn 

et al., 1989]. Because the residual error is not symmetric about the re-transformed power 

law regression line (assumed to be normal in log-space and log-normal in Cartesian 

space), an uncorrected power law function calculated from these methods will tend to be 

downward biased. Here, the quasi maximum likelihood estimate (QMLE) of the bias 

correction factor [Cohn et al., 1989], introduced by Ferguson [1986] in regards to 

estimating sediment loads using a power law rating curve, is used to correct for bias: 

2/2kseBCF = ( )∑= −
−= N
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2

2
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The s2 term is simply the variance of the log-transformed residuals, and k = 1 for 

natural logarithms and 5.3 for base 10 logarithms. The terms Yi and Ŷi refer to individual 

sediment load observations and predicted mean values of sediment load from the regression 

equation at discharge value i, and N is the number of paired discharge-sediment load 

observations. To eliminate bias in re-transformed load values, the bias correction factor is 

applied as follows: 

βαQeQ ks
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3.5 Hydrology and Hydrologic Metrics 

The majority of sediment measurement sites used in this study are co-located 

with USGS stream gages; therefore, I utilized the National Water Inventory System5 to 

acquire average daily flow data for each site. In some cases, daily flow data were 

supplied by the U.S. Forest Service [USFS Boise Adjudication Team, 2014]. Flow data 

with finer time resolution is preferred in MFA [Biedenharn et al., 2000; Soar and 

Thorne, 2001] due to the non-linear relationship between sediment load and discharge. 

Average daily flow data can underestimate sediment yields when compared to hourly or 

15-minute flow data [Holmquist-Johnson, 2002] because these data do not capture intra-

daily flow transience such as flood peaks from convective rainfall or the daily flow pulse 

in snow-melt rivers. However, limiting this study to sites with instantaneous flow data 

would make comparing the magnitude and frequency of sediment transport in rivers 

across a spectrum of river types—a primary goal of this study—infeasible due to the 

shorter record lengths and relative paucity of instantaneous flow data collocated with 

bed material load data. 

Flow data were used in magnitude frequency analysis as described below in 

Section 3.8. I also calculated metrics from these flow data describing their variability 

(Table 2.2, below). Flow metrics involving peak flow values such as the 1.5 year return 

interval (RI) flood magnitude, Q1.5, were calculated from the annual maximum 

5 http://waterdata.usgs.gov 
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instantaneous discharge for each site, where available, using the Weibull plotting 

method: RI = m/(n+1), where m is the rank of the flood event and n is the number of 

events on record.  

Some sites with bed material load data had relatively short record lengths (<10 

year). Generally, longer-term flow records are desirable in MFA to capture a better 

sample of flow variability at a site [Biedenharn et al., 2000; Soar and Thorne, 2001]. To 

extend the flow records, I first identified USGS stream gages located near gages with 

shorter records that had coincidental and longer-term flow records. Using the 

RecordExtension.R script created for this purpose, I used the modified MOVE 

method described by Moog et al. [1999] to extend short term flow records at a sediment 

measurement site using a statistical relationship between transformed, concurrent flow 

data at the site and at a nearby gage with a longer record. A detailed description of the 

methods used to extend flow records at selected sites as well as plots of the output are 

provided in Appendix 2C. 

Various hydrologic metrics describing the variability or flashiness of a flow regime 

were investigated. Skewness is calculated as μ3 / μ2
3/2, where μ2 and μ3 are the second 

and third central moments of the data. The coefficient of variation is calculated as s/ x , 

where s is the standard deviation of the sample and x  is its mean. In general, skewness 

characterizes the level of asymmetry of the data’s distribution. Flow data are nearly 

always positively skewed, meaning that the right tail of the flow distribution is thicker 

and/or longer than the left (a large quantity of smaller flows occur during base flow 
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periods punctuated by few large flows during floods, see curve “a” in Figure 2.1,). The 

Cv is a normalized estimate of the standard deviation and is highly correlated with 

skewness for these sites. Other flashiness metrics such as the Richards-Baker flashiness 

index (flash.RB) [Baker et al., 2004] and the ratio of Q1.5 to mean daily flow 

(Q1.5.mean) related to sediment yield metrics well. 

3.6 Magnitude-Frequency Analysis 

Magnitude-frequency analysis of sediment transport in rivers considers the 

product of a continuous or discrete representation of the flow regime (or bed shear 

stress) probability distribution (e.g., an histogram or a theoretical or empirical density 

function) with a sediment rating curve for sediment transport function that is either a 

function of discharge or another hydraulic parameter such as bed shear, stream power, 

or flow velocity. I have discussed the sediment rating curve methodologies used in this 

study above and now discuss the procedure for representing the flow regime as a density 

distribution, calculating the product of the flow density function and the sediment 

rating curve, and finally calculating metrics based on the sediment yield density and 

cumulative density functions. 

Numerous methods for representing the flow distribution in MFA have been 

presented. These range from the standard histogram, arithmetic binning method 

[Biedenharn et al., 2000; Soar and Thorne, 2001], to estimating the empirical 

probability density function using numerical differentiation of the empirical cumulative 
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distribution function [Orndorff and Whiting, 1999; Emmett and Wolman, 2001] or using 

kernel density function [Klonsky and Vogel, 2011], to fitting a continuous PDF to the 

flow data [Nash, 1994; Goodwin, 2004]. A preliminary analysis of the kernel density 

function approach to estimating the flow PDF for MFA outlined in Klonsky and Vogel 

[2011] resulted in peaky sediment yield curves and highly variable estimates of Qeff. I 

proceeded to assess the flow PDF estimation methods using only the histogram 

approach, the empirical density function approach, as well as fitting a log-normal PDF 

to the data (Figure 2.5). I calculated Qeff using all of these methods and examined the 

sensitivity of each method to flow record length (RL), the sediment rating curve 

exponent, β, and the daily flow coefficient of variation (Cv). I also examined the 

difference in estimates among one another as a function of these same variables.  

The histogram approach used in this study follows the general procedure outlined 

in Biedenharn et al. [2000] as well as Soar and Thorne [2001] who recommend starting 

with 25, equally-spaced bins spanning the range of flows. The density formulation of the 

histogram is then calculated following equation 2.3: 

QN

ni
Q ∆=ρ

 
(2.3) 

 

where ρQ is the probability density of a given discharge bin (ρQ ≡ [probability/(m3/s)]), 

ni is the count of observations in bin i, N is the total number of observations, and ΔQ is 

the bin width. I then calculate Qeff as the median of the discharges contained within the 

bin with the greatest sediment yield density value, that is, the product of the median 
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discharge within each histogram bin with the sediment rating curve value at that 

discharge value. If Qeff falls into the first bin, Biedenharn et al. [2000] recommend 

dividing that bin in half and recalculating Qeff. I repeated this procedure a maximum of 

10 times. Biedenharn et al. [2000] also recommend reducing the number of bins in the 

tails of the distribution so that it is continuous. I did not apply this rule to our analysis.  

The empirical density function approach is described by Orndoff and Whiting 

[1999] as well as Emmet and Wolman [2001]. First, an empirical cumulative density 

function (eCDF) is created by plotting the ordered flow observations (Qi) with their 

associated cumulative probability values Fn: 

∑= ≤= N

i
in QQ

N
QF
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}{1
1

)(
 

(2.4) 

where 1{A} is the indicator function for event A. This can also be done with the 

ecdf() function in R. The eCDF is then numerically differentiated to produce an ePDF. 

Using equally-spaced differentiation nodes produces results very similar to the histogram 

method described above. Using logarithmically spaced differentiation nodes results in a 

most continuous and smooth ePDF. I used 50 logarithmically distributed nodes to 

differentiate using central difference approximation. 

Soar and Thorne [2001] warn against logarithmic binning to represent the flow 

distribution function as it produces bias when compared to arithmetic binning. They  
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Figure 2.5 Comparison of methods used to represent the flow regime: arithmetically-spaced histogram, 

empirical cumulative distribution function (eCDF) based on the sorted flow record, a smoothed eCDF 

using log-spaced evaluation points, and the continuous log-normal distribution function fitted using the 

method of moments. 

argue that because logarithmic bins increase in width with increases discharge values, 

they will over-estimate the density of larger flows and over-estimate Qeff. The ePDF 

method with logarithmic differentiation nodes differs mathematically from logarithmic 

binning. The former is essentially a smoothing method that samples the eCDF  

constructed from daily flows. The latter estimates the frequency or density of flows 

within bins that change sizes, which can lead to the bias observed by Soar and Thorne 

[2001]. This bias was not observed in the present study when comparing estimates of 

Qeff based on the logarithmic smoothing method with those based on the arithmetic 

binning method as is discussed in Section 4.1, below. The eCDF of flow records often 

exhibits steps or jumps within the upper quantiles due to fewer larger flows in the 
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record (Figure 2.5). This results in singularities (division by zero) or large spikes when 

numerically differentiating this eCDF to generate the ePDF due to large or infinite 

slopes in the ePDF. By using logarithmically-spaced evaluation nodes to smooth the 

ePDF, this method differentiates the eCDF at an interval spacing that better matches 

its curvature. 

Finally, I estimated the flow distribution by fitting the two-parameter continuous 

log-normal PDF to the flow data using the method of moments [Yevjevich, 2010], as 

discussed in Chapter 1, equations 1.1, 1.5, and 1.6. The lognormal PDF has a long 

history of representing stream flows in MFA [Wolman & Miller, 1960; Nash, 1994; Vogel 

et al., 2003]. However, other skewed, continuous PDFs such as the gamma distribution 

or a broken power law function may provide a better fit to the data [Goodwin, 2004; 

Segura and Pitlick, 2010]. The three representations of the flow distribution used in this 

study—arithmetically-binned histograms, empirical PDF, and fitted lognormal PDF, are 

plotted together in Figure 2.5, and Figure 2.6b. As discussed further in the Results 

section, I calculated all Qeff -related sediment yield metrics using the estimate produced 

by the ePDF method, as it performed the most well over all sites. 

Once the flow distribution function has been calculated, it is multiplied by the 

sediment transport relation (sediment rating curve in this study, Figure 2.6a) to create 

the sediment yield density curve (Figure 2.6c). By integrating under the area of this 

curve, one calculates the average daily sediment yield over the flow record given a daily 

flow record. One can also calculate MFA metrics from this curve as well as the 
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cumulative sediment yield curve, calculated from the flow record directly (Figure 2.6d). 

The effective discharge is estimated as either the median of the discharges contained in 

the peak sediment yield density bin or the peak value of the eCDF or log-normal 

sediment yield density curves. 

3.7 Sediment Yield Metrics 

The previously-described flow and physical metrics are considered driving or 

independent variables to be related to the response, or dependent variables associated 

the magnitude frequency analysis. Sediment yield metrics calculated from the 

magnitude-frequency analysis are listed below in Table 2.2, and include the 

aforementioned effective discharge, or the peak of the sediment yield density curve, and 

the fraction of sediment transported by discharges smaller than the effective discharge: 

Qeff.yield, or its compliment, f+, as well as the difference in discharges associated with 

+/- 25% of cumulative sediment transport centered on the effective discharge and 

normalized by that discharge: Qeff.spread. I also calculated discharges and spread 

associated with the cumulative half yield of sediment transport, Qs50, or the half yield 

discharge as well as yield.spread, which is the difference between the discharges 

associated with 25% and 75% of cumulative sediment transport normalized by Qs50. 

Throughout this chapter, I refer to these metrics using italicized abbreviations as shown 

in Table 2.2. 
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I calculate the return intervals in years and percentiles of Qeff and Qs50 based on 

the daily flow record, and normalize these values using the Q1.5 and mean daily flow for 

inter-comparison. Figure 2.2, above visually demonstrates some of the sediment yield 

metrics just discussed. I used R to conduct all of the analyses in this study. A list and

description of R scripts created to implement the analyses for this study along with

reproductions of the R scripts themselves are included in Appendix 2D.

Table 2.2 Metric Definitions 

Metric Units Description 

Flow 

yrs (yrs) Number of years on flow record 

mean (m3/s) Mean of daily discharge 

Cv – Coefficient of variation of daily flow (s / x )

skewness – Skewness of daily flow

spread – (75th p-tile flow – 25th p-tile flow) / median flow

flash.RB – Daily flow flashiness metric [Baker et al., 2004]

Q1.5 (m3/s) 1.5 year return interval flood 

Q1.5.mean - Q1.5 normalized by the mean of the daily flows

Physical 

D50 (mm) Average median diameter of the bed sediment 

D84 (mm) 84th percentile diameter of the bed sediment 

Qbf (m3/s) Bankfull discharge 

tau.star, τ* – Dimensionless bed grain shear stress at bankfull depth

w.d – Bankfull width to depth ratio

da.km2 (km2) Drainage Area 

Yield 

Qs50.RI (yrs) Return interval of half yield discharge (Qs50) 

yield.spread – (Qs75 - Qs25) / Qs50

Qs50.Q1.5 – Half yield discharge normalized by Q1.5

Qeff.RI (yrs) Return interval of Qeff 

Qeff.spread – Similar to yield.spread, centered on/normalized by Qeff 

Qeff.yield (%) Percent of cumulative sediment transport below Qeff 

f+ (%) Percent of cumulative sediment transport above Qeff

Qeff.Q1.5 – Qeff normalized by the Q1.5

Beta, β  – Sediment rating curve exponent
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Figure 2.6 Example of MFA methods and output. A) The bias-corrected, log-log linear regression of the 

sediment rating curve with ordinary least squares line (OLS) and the robust linear regression line (RLM). 

B) The flow density distribution portrayed as 25 arithmetic bins, and empirical PDF, and a fitted,

continuous lognornmal PDF. C) Sediment yield curves from the three methods outlined in B) along with 

vertical lines indicated Qbf as well as the discharge limits of the sediment load data. D) A cumulative 

sediment yield curves with various sediment yield metrics. 

(b) (a) 

(c) (d) 
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4 Results 

I begin this section by first comparing estimates of Qeff using three methods for 

characterizing the flow frequency distribution. I then explore the outcomes of the 

empirical MFA by considering relationships between sediment yield metrics (response 

variables), and metrics based on the flow regime, bed material size, rating curve 

exponent, and physical channel properties (driving variables). Metrics used in this 

analysis are described above in Table 2.2. 

4.1 Magnitude-Frequency Analysis Method Assessment 

Of the three methods utilized to estimate Qeff, the arithmetic binning method 

tended to produce the largest estimates, followed by the ePDF method and finally the 

continuous lognormal PDF method (Figure 2.7). The arithmetic binning method is most 

sensitive to isolated large flood events in the right tail of the flow distribution, which 

produced spikes in the sediment yield curve at large discharge values (c.f., Figure 1.4 

and discussion in Chapter 1, Section 4.2). This phenomenon is more evident with the 

binning method for sites with shorter flow records and larger values of β. The ePDF 

method was less sensitive to these large events in the tail. It smoothes the tail of the 

flow distribution compared to the histogram method as does the fitted lognormal PDF, 

which is a continuous distribution function (Figure 2.5). 

The fitted lognormal PDF repeatedly under-estimates Qeff relative to the other 

two methods for fine bed sites and over-estimates Qeff for coarse bed sites when β > 2.5. 
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In cases where the rating curve exponent was low (≤ 2) and the flow record only 

marginally variable, the lognormal approximation method worked well. However, there 

were many more examples in which it performed poorly relative to the empirical 

methods. Fitting lognormal distributions using the method of moments produces results 

that are highly sensitive to the calculated value of the standard deviation of the logs of 

the samples (equation 1.6). Using the maximum likelihood method to fit this PDF to 

the data may produce better results because all data are used in the fit as opposed to 

estimates of only the first two statistical moments of the data as in the method of 

moments.  

 

 

Figure 2.7 Comparison of Qeff calculated from the three MFA methods studied for coarse (top row) and 

fine bed sites (bottom row): 25 arithmetic bins (Qeff.b), an empirical PDF (Qeff.e), and a fitted, 

continuous lognormal PDF (Qeff.l). 

Coarse Bed Sites 

Fine Bed Sites 
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MFA methods are sensitive to some important independent variables imbedded 

in the calculation: the sediment rating curve exponent, β, the daily flow coefficient of 

variation, Cv, and the flow record length, RL, among others (Figure 2.8). I also consider 

the sensitivity of the difference in estimated values of Qeff between each method by 

comparing the differences in estimated values of Qeff normalized by mean discharge for 

all methods. In general, all normalized estimates of Qeff increase with β approximately 

the same. As β increases, larger, less frequent flows in the tails of the distribution 

become more effective. As RL increases for coarse bed sites, these less frequent flows 

tend to have smaller densities making more frequent flows more effective. This produces 

a slight downward trend in values of Qeff for the two empirical methods in coarse bed 

sites. No clear relationship exists between RL and normalized Qeff for fine bed sites. 

The scatter in the Qeff–Cv relationships increases with Cv. This is due to two 

opposing trends in the sediment yield curve: as Cv increases, the right tail of the flow 

distribution becomes thicker and more influential in overall sediment yield. This may 

result in Qeff taking on a relatively large value for larger values of β. Concurrently, as 

the flow distribution becomes more positively skewed, smaller discharges also become 

more influential and the peak of the flow PDF moves to the left towards smaller 

discharges. For smaller values of β, the sediment yield density curve follows this trend, 

resulting in smaller discharge values becoming the most effective. The cone-shaped 

relationship (Figure 2.8, left column) results because of sites with relatively high (> 2) 
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and relatively low (< 2) values of β, though this relationship mostly shows an increasing 

trend in coarse bed sites because β > 2 for the majority of these sites. 

Though not plotted here, the magnitude of the difference between normalized 

estimates of Qeff increases with decreasing RL. This means that as the flow record 

increases in length, all MFA methods begin to converge in their estimates of Qeff. The 

differences are the greatest for intermediate values of β where some methods might 

produce a peak in the sediment yield density curve further out in the tails and some 

might favor a peak closer to the peak of the flow frequency distribution. 

Figure 2.8 Sensitivity of normalized estimates of Qeff as a function of Cv, β, and RL. Values of Qeff are 

normalized by mean daily flow. 
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For the remainder of this Chapter, all sediment yield metrics based on Qeff use 

the estimate produced by the ePDF method. It provides a numerically tractable method 

for representing the eCDF, which is the best estimate of the flow probability 

distribution available. The arithmetic binning method does not provide adequate 

resolution of the low flow range of the flow regime and is susceptible to a few large flows 

dominating the sediment yield analysis, especially for sites with shorter flow record 

lengths. 

4.2 Empirical Magnitude-Frequency Analysis 

I now turn to an exploration of the relationships between driving variable metrics 

that summarize various aspects of the flow regime (especially flow variability or 

flashiness, Table 2.2), and physical aspects of the channel and its boundaries (drainage 

area, sediment transport mode, grain size, the bankfull discharge, and width:depth ratio) 

with sediment yield response metrics: the metrics based on sediment transport 

magnitude-frequency analysis (MFA) (Table 2.2). The goal of this exploration is to 

understand what physical drivers most influence and best predict sediment yield metrics 

between fine bed and coarse bed rivers. In this section I also compare these empirical 

relationships with the theoretical relationships found in Chapter 1. An example of the 

sediment yield analysis for one site is provided above in Section 3, Methods (Figure 2.6). 

Sediment yield figures for each coarse bed and fine bed site are provided in Appendix 

2B. 
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The values of some sediment yield, flow, and physical metrics span several orders 

of magnitude; therefore, I begin this exploration by considering log-log linear 

correlations (Pearson correlation) between driving and response variables. The 

discussion in Sections 4.2.2 – 4.2.4 in part reference Figure 2.11, below, which shows 

matrices of the log-linear Pearson correlation coefficient, r, and slope of the relationship 

between driving and response variables as well as inter-correlations between flow and 

physical metrics. The size of each circle indicates the relative magnitude of the slope of 

the log-linear relationship up to a threshold used for plotting purposes. White circles 

indicate a positive slope and gray a negative slope. The Pearson correlation value is 

printed in each circle where the slope of the trend is significantly different from zero (p 

< 0.05). I also use scatterplots between driving and response variables to characterize 

these relationships in more detail below. 

4.2.1 Flow Percentiles and Return Intervals of Sediment Yield Metrics 

The effective discharge for fine bed sites covers a wide range of percentiles of 

daily flow; the interquartile range (IQR) of Qeff approximately spans from the 70th to 

the 95th percentile. The IQR of Qeff for coarse bed sites is much narrower, spanning 

approximately the 92th to the 99th percentiles (Figure 2.9).  

I also calculate the percentiles of daily flow for the discharge associated with the 

interquartile range and median of cumulative sediment yield (QS25, Qs50, QS75). The 

QS25, Qs50, QS75 are calculated by determining the discharge value associated with 25%, 
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50%, and 75% of cumulative sediment transport over the sorted flow record (Figure 

2.2b). The flow interquartile ranges associated with these metrics overlap much more. 

They expectedly increase up to very high percentiles up to the QS75 where the median 

values of this metrics fell between the 99th and 100th percentile for both types of sites. 

The median percentile value of Qs50 is 98 for fine and coarse bed sites. 

Using the annual maximum flow series for all sites and the Weibull plotting 

position, I calculate the return interval (RI) of Qeff and Qs50. For many fine bed sites, 

Qeff.RI < 1 year. However, these results are truncated at RI = 1 year because I use an 

annual maximum flood series (not a partial duration series), and do not fit a PDF to 

the data. The median value of Qeff.RI is < 1 year for fine bed sites and 1.4 years for 

coarse bed sites, whereas the median value of Q50.RI is 1.2 years and 1.5 years for these 

two types of sites. 

4.2.2 Flow – Sediment Yield Metric Relationships 

The skewness and coefficient of variation, Cv, of the daily flow data at each site 

had the most and the strongest relationships with sediment yield metrics (Figure 2.10, 

left column).  These two flow variability metrics are highly correlated and produce 

similar relationships with sediment yield metrics. Because Cv was an important variable 

in Chapter 1, I focus on relationships between sediment yield metrics and Cv herein. 

Scatter plots for the relationship between Cv and various sediment yield metrics are 

provided below in Figures 2.12 and 2.13. 
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Figure 2.9 Daily flow percentiles for sediment yield metrics for fine bed sites (“f”, green), and coarse bed 

sites (“c”, blue). 

Figure 2.10 Return intervals (years) of sediment yield metrics for fine bed sites (green), and coarse bed 

sites (blue).  
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Coarse Bed Sites 

86 

Fine Bed Sites

Figure 2.11 Log-linear Pearson correlation and slope matrices among flow, physical, and sediment yield metrics. Circle color indicates positive 
(white) or negative (grey) slope; numbers indicate Pearson r value and are only printed for slopes significantly different from zero (p < 0.05). Size 
of circles is proportional to the steepness of the slope of the relationship.



Figure 2.12 Relationships between daily flow coefficient of variation and various sediment yield metrics. 

Figure 2.13 Percentile values of Qeff and Qs50 as a function of Cv. 
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A significant increasing relationship is observed between Cv and Qeff.mean as well as 

Qs50.mean, which are sediment yield metrics normalized by the mean daily discharge. 

The r value is very small for the Qeff.mean relationship (0.16 and 0.05 for coarse and 

fine bed sites, respectively) and much higher for the Qs50.mean relationship (0.59 and 

0.65, Figure 2.11). When considering the scatterplot of the two relationships, the 

variability of Qeff.mean increases with Cv and little positive or negative trend is 

apparent (Figure 2.12a). Whereas Qs50.mean increases tightly with Cv for both types of 

sites (Figure 2.12c). This means that as flow variability increases, more sediment is 

transported by flows greater than the mean flow.  This is consistent for both types of 

sites. Trends in the return interval in years of Qeff (Qeff.RI) and Qs50 (Qs50.RI) (not 

plotted) as well as daily flow percentiles (Figure 2.13) reflect this increase with Cv as 

well. Daily flow percentiles increase with Cv to values > 95 very quickly. This 

relationship is better defined with Qs50. 

A significant decreasing (increasing) relationship is observed between Cv and 

Qeff.yield (f+) for both site types (f+ is the compliment of Qeff.yield). This means that 

the amount of sediment transported cumulatively below Qeff decreases as flow variability 

increases. The Cv–f+ relationship is plotted in Figure 2.12b. It shows that f+ increases 

sharply with Cv reaching above 90% for Cv > 3. The Cv–f+ scatterplot for fine bed sites 

follows the theoretical relationship between flow variability and the effective discharge 

assuming a continuous lognormal distribution [Vogel et al., 2003] (see also Figure 1.6). 
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The Cv–f+ relationship is highly variable for coarse 

bed sites but it roughly follows the theoretical 

relationship (Figure 2.12b).  

Though highly scattered, the width or spread 

of the discharges bracketing 50% of sediment 

transport centered on and normalized by Qeff 

(Qeff.spread) and Qs50 (yield.spread) increases with 

flow variability. As the variability of the flow regime 

increases, more sediment is transported by a broader 

range of flows. This relationship is tighter (higher r 

value) and lower for coarse bed sites, whereas larger 

values and more scatter are evident with fine bed sites (Figure 2.12d).  

The ratios of yield metrics Qeff and Qs50 to Qbf plotted against flow variability 

(Cv) indicates that, for coarse bed sites, as flow variability increases Qeff increases in 

magnitude relative to Qbf and even exceeds Qbf for large values of Cv (Figure 2.14). 

However, for fine bed sites, Qeff becomes smaller relative to Qbf as flow variability 

increases. The general trends for the Qs50:Qbf ratio tends to increase with flow variability 

for both types of sites. This relationship for Qeff parallels that found in Chapter 1 

(Figure 1.8) where Qeff increases with Cv in coarse bed sites and decreases in fine bed 

sites. The mechanism for this is discussed in more depth in Chapter 1. I do not 

explicitly consider theoretical relationships for Qs50 in Chapter 1; however, I discuss the 

Figure 2.14 Ratios of Qeff and 

Qs50 to Qbf as a function of Cv 

with LOESS smoothing lines. 
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general increase in the value of Qs50 with flow variability and how it compares with 

theoretical relationships in the Discussion Section 5.2.4 below. 

4.2.3 Physical – Sediment Yield Metric Relationships 

I now turn to relationships between sediment yield metrics and physical metrics 

describing properties of the sediment in the channel (grain size, β), the shear stress 

experienced by the sediment from flows in the channel (τ*, β), as well as physical 

aspects of the channel (slope, width:depth, and drainage area). With the exception of β 

and slope, most physical and sediment metrics did not greatly influence yield metrics for 

fine bed sites (Figure 2.11, middle column). In general, the relationships between grain 

size and sediment yield metrics are more prevalent, steeper, and stronger for coarse bed 

sites than they are for fine bed sites. 

The median and 84th percentile grain sizes (D50 and D84) are highly correlated 

with one another for both sites and I found similar relationships between both grain 

sizes and sediment yield metrics. The return interval of both Qeff and Qs50 increase with 

increasing grain size of the bed for coarse bed sites (Figure 2.11, middle column). Both 

yield spread metrics decrease with increasing grain size in coarse bed sites, but no 

significant relationships for these metrics occurred for fine bed sites. As the grain size of 

the bed material increases, a smaller, more infrequent range of flows is responsible for 

the bulk of sediment transport. 
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The value of β increases with grain 

size for coarse bed sites, and may slightly 

increase with grain size for fine bed sites, 

but the relationship is highly variable 

(Figure 2.15). This relationship is steeper 

for bed load sites. The sediment rating 

curve exponent is also a function of the 

flow – shear stress relationship. A larger β 

value may indicate that the channel is 

deeper and narrower with a greater 

sediment transport capacity for a given discharge and/or that it has a greater slope (see 

Discussion section 5.3.2). 

Nearly all sediment yield metrics have strong relationships with β (Figure 2.11, 

middle column), though β tends to explain more variance in the sediment yield metrics 

for coarse bed sites (greater r values). All metrics quantifying the relative magnitude of 

Qs50 and Qeff (Qeff.mean, Qs50.mean, Q50.RI, Qeff.RI) increase with β for both types of 

sites. I plot Qs50 normalized by Q1.5 as a function of β in Figure 2.16a, below, because 

there is less variability in the relationship using this normalization compared with using 

mean discharge. While the Qs50:Q1.5 ratio increases with β in general for fine bed sites, 

there is a large amount of variability. For coarse bed sites, the relationship is steep up 

until β ≈ 2, and Qs50:Q1.5 ≈ 1 where the slope breaks and becomes milder. Because Q1.5 is 

Figure 2.15 Relationship between grain 

size and sediment rating curve exponent, β for bed load (black stars) and 

suspended load (open circles). 
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a good estimator of Qbf for coarse bed sites, this could indicate that for β > 2, Qs50 

exceeds Qbf and less frequent overbank flows are more responsible for sediment 

transport. 

Both the yield.spread and f+ metrics decrease rapidly with increasing β (Figure 

2.16b and d). Again, the relationships are strongest for coarse bed sites. The 

yield.spread–β relationship parallels the yield.spread–D50 relationship for coarse bed 

sites. As β and grain size increase, the range of flows responsible for the middle 50% of 

sediment transport decreases. In addition, as β increases the frequency of Qeff and Qs50 

decrease resulting in less sediment being transported by discharges greater than Qeff, 

that is, these dominant discharge indices become rarer.  

 

Figure 2.16 Relationships between the sediment rating curve exponent, β, and various sediment yield 

metrics. 
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This is reflected in the RI.Q50 – β relationship and in the f+ – β relationship (Figure 

2.16b and c). 

Channel geometry-based metrics have some influence on sediment yield metrics 

(Figure 2.11, middle column). Slope influences sediment yield metrics for fine bed sites. 

As slope increases, the normalized value of Qs50 (Qs50.mean) increases, and Qeff.yield 

decreases. In steeper, fine bed rivers, more sediment is transported by less frequent flows 

(smaller drainage areas with larger flow variability). Stronger relationships between the 

width:depth ratio (w.d) were observed with the coarse bed sites. An increase in w.d 

leads to an increase in Qeff.yield (significant) and Qeff.mean (not significant) and a 

decrease in both yield spread metrics (not significant) in coarse bed sites. In coarse bed 

channels with larger w.d values, less frequent flows are more effective. Previous 

theoretical work has demonstrated that larger values of w.d result from high sediment 

loads in coarse bed streams [Parker, 1979; Millar, 2005]. It may be that a more narrow 

range of infrequent flows are most effective in these channels beginning with those that 

exceed the threshold for bed entrainment up to and including overbank flows.  

4.2.4 Combined Physical and Flow – Sediment Yield Metric Relationships 

As discussed above, Cv and β are two key driving variables that explain a large 

amount of variance in the values of several sediment yield metrics. Therefore, a final set 

of relationships I consider are yield metrics as a function of combined flow and physical 

metrics: the product and ratio of Cv and β (Figure 2.17). These combined metrics are 
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useful because Cv and β both range from 1 to 6 in absolute value. Both normalized 

values of Qeff and Qs50 increase with the product of Cv and β (Figure 2.17a and d). This 

relationship is very strong for the normalized Qs50 values for both types of sites, and for 

the normalized Qeff values for coarse bed sites only. Klonsky and Vogel [2011] found that 

Qeff and Qs50 normalized by the mean of daily flows both increase with Cvβ  in a fairly 

tight relationship. I found a similar trend for both types of sites in my data, with the 

relationship being much steeper for the normalized Qs50 for the fine bed sites (Figure 

2.17d). Because the maximum values of Cv at fine bed sites are greater than those for 

the coarse bed sites, flow variability may be dominating this steeper relationship for fine 

bed sites. 

Figure 2.17 Logarithmic scatter plots of relationships between normalized Qeff and Qs50 and the product 

(a and d) or ratio (b and e) of Cv and β. Plots a and d are normalized by mean annual flow and plots b 

and e are normalized by Q1.5. Plots c and f show scatterplots of the ratio of f+ and yield.spread as a 

function of the ratio of Cv and β. 
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The ratio of Cv : β is perhaps a more intuitive compound driving variable than its 

product in that larger values indicate flow variability is high and β low, while smaller 

values indicate that flow variability is low and β high. I found that normalized Qeff 

decreases, yield spread increases, and f+ increases with increasing Cv/β for both types of 

sites (Figure 2.17b, c, f). When flow variability dominates the ratio, Qeff becomes 

smaller and a wider range of flows are responsible for the middle 50% of cumulative 

sediment yield. When β dominates the ratio, Qeff takes on a larger value and the range 

of flows responsible for the middle 50% of cumulative sediment transport shrinks. 

5 Discussion 

5.1 Magnitude-Frequency Analysis Method Assessment 

While many MFA methods have been utilized in previous studies—specifically, 

methods for representing the flow frequency distribution—little consensus exists as to 

what method is most appropriate despite great efforts to study the robustness and 

sensitivity of different methodologies [Orndorff and Whiting, 1999; Sichingabula, 1999; 

Biedenharn et al., 2000; Emmett and Wolman, 2001; Soar and Thorne, 2001; Klonsky 

and Vogel, 2011]. Research and recommendations from the U.S. Army Corps of 

Engineers, Engineering and Research Development Center, Coastal and Hydraulics 

Laboratory argue that the simple and relatively robust arithmetic binning method 

provides the least bias and reasonable accuracy [Biedenharn et al., 2000; Soar and 
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Thorne, 2001]. However, this approach requires manual manipulation of bin widths to 

keep Qeff from falling in the first bin, if deemed appropriate, and to remove empty bins 

in the tails of the flow distribution. This inserts user bias into the calculation, and is not 

amenable to MFA across a large number of disparate sites.  

Others have brought in more advanced empirical statistical tools [Orndorff and 

Whiting, 1999; Klonsky and Vogel, 2011] as well as theoretical statistical approaches 

[Nash, 1994; Vogel et al., 2003; Goodwin, 2004] to conduct the analysis. In the present 

study I have found that a modification to Orndorff and Whiting’s [1999] empirical 

probability density function (ePDF) that utilizes a logarithmic smoothing technique, 

provides a relatively robust and unbiased methodology that can be used across a wide 

range of stream types (Figures 2.5, 2.7, and 2.8). This technique avoids the various 

forms of binning bias discussed by Soar and Thorne [2001] because it is not a 

logarithmic binning procedure. Rather, it uses a logarithmically-spaced window to 

smooth the empirical cumulative distribution function (eCDF) before it is numerically-

differentiated to produce an ePDF. Smoothing the eCDF removes any vertical steps or 

discontinuities that would lead to singularities in the ePDF. It also creates a continuous 

tail in the ePDF.  Estimates of Qeff produced by this method compared well with the 

arithmetic binning method favored by some, but had the advantage of being less 

sensitive to shorter, flashier flow records coupled with larger values of β (c.f., Flow 

Record Length Analysis, Chapter 1, Section 4.2). I used this ePDF methodology to 

conduct the magnitude-frequency analysis discussed herein.  
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Though this component of the present study focuses primarily on methodologies 

for calculating Qeff, it has also generated insight on the other primary sediment yield 

metric discussed herein: Qs50. As explored in detail in Chapter 3, Qs50 performs well in 

predicting bankfull discharge—especially in fine bed streams—and therefore serves as a 

dominant discharge index like Qeff. If a long-term flow record is available for a particular 

site, calculating Qs50 is much more straightforward and less sensitive to the assumptions 

and methodologies necessary for Qeff as it has the advantage of not requiring a 

mathematical representation of the flow frequency distribution. One must simply 

determine the discharge at which 50% of cumulative sediment yield occurs over the 

sorted flow record. If sediment load data are not available for a particular site, then Qs50 

must be calculated with a physically-based and site-calibrated sediment transport 

model. Estimates of Qs50 generated from total load models in fine bed streams compare 

well with those estimated from the empirical regression models used in this chapter as 

explored in Chapter 4. However, this does not appear to be the case for Qs50 estimates 

made from bed load equations in coarse bed streams. On the whole, Qs50 is a 

mathematically more robust dominant discharge index than Qeff, especially for fine bed 

rivers. It also have the advantage of predicting Qbf better than Qeff in fine bed rivers 

(Chapter 3). 
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5.2 Sediment Yield Metric Relationships 

I have presented some of the relationships found in this empirical analysis 

between the drivers and the response of sediment yield in fine and coarse bed rivers 

(Figure 2.11).  The flow–sediment yield metric relationships observed for fine bed sites 

tended to be stronger and more prevalent than those of the coarse bed sites, and vice 

versa for the physical–sediment yield metrics (Figure 2.11). This means that flow 

variability may exert a stronger control on sediment transport in fine bed rivers and 

physical boundary properties are more influential on coarse bed rivers. 

With some exceptions, the observed relationships were similar in direction of response 

between both site types, and represented a continuum of responses from, for example, 

high to low flow variability or from small to large values of β.  This is largely because I 

am using the same representation of the flow-sediment load relationship for fine and 

coarse bed sites: a single power law function. An alternative method, not feasible given 

limited data and the large number of sites, would be to represent bed load transport as 

a threshold function. Most semi-empirical bed load equations represent bed load as a 

threshold function, which requires site-specific calibration. Where I am able to make 

direct or near direct comparisons, empirical relationships tended to match the 

theoretical ones discussed in Chapter 1. 
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5.2.1 Flow Variability 

Results from this empirical analysis confirm previous empirical and theoretical 

findings that as flow variability (Cv) increases, the frequency of Qeff, as measured by the 

percentile, decreases (Figure 2.13) [Wolman and Leopold, 1957; Andrews, 1980; Soar and 

Thorne, 2001; Vogel et al., 2003]. This is also the case for Qs50, for which the 

relationship is better defined. Normalized values of Qeff and Qs50 also increase with flow 

variability for both types of sites (Figure 2.12 a and c). Theoretical relationships based 

on power law sediment rating curves with no threshold for entrainment reflect this trend 

(Figure 1.3 and 2.17, top row). When normalized by Qbf, a diverging relationship 

between Qeff and Cv was found in fine vs coarse sites as predicted by the theoretical 

relation with an entrainment threshold (Figure 1.8 a). This is discussed in more detail 

below in Section 5.2.3. 

The empirical relationship between f+ and Cv is fairly scattered for both types of 

sites, but a LOESS empirical regression line for fine bed sites parallels the trend of the 

theoretical relationship well, which predicts a nonlinear increase if f+ with Cv (Figure 

2.12b). This means that as flow variability increases, more sediment is transported by 

flows greater than Qeff. Additionally, though scatter is great, yield.spread increases with 

Cv for both types of sites as well (Figure 2.12d), reflecting the trend of the theoretical 

relationship (Figure 1.7). 
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5.2.2  Physical Metrics 

The value of the sediment rating curve exponent, β, exerts much influence on 

sediment yield metrics and on the frequency of the most effective flows for coarse bed 

sites and less influence on fine bed sites (Figures 2.11 and 2.16). I explore the physical 

meaning of β in more detail below in Section 5.32. In some cases relationships with β are 

similar for both types of sites (e.g. yield.spread). In this example, these relationships fall 

on a continuum with coarse bed sites continuing the decreasing relationships where fine 

bed sites leave off (Figure 2.16d). As the value of β increases, a narrower range of larger 

flows dominates sediment transport in channels. In the theoretical relationship 

yield.spread decreases with increasing bed sediment size for a given values of Cv (Figure 

1.7). The empirical results also reflect this trend with overall values of yield.spread being 

lower for coarse bed sites vs. fine bed sites. Greater values of β result in larger absolute 

and relative values of Qeff and Qs50 as well as the return intervals of these metrics, also 

resulting in smaller values of f+ (Figure 2.15). These empirical relationships parallel 

theoretical relationships discussed in Chapter 1 (see for example, Figures 1.3, 1.6, and 

1.8).  

Sediment yield metric relationships with β are stronger for coarse bed sites. This 

may in part be due to the fact that grain sizes in coarse bed rivers and the shear stress 

necessary to mobilize the bed can vary by orders of magnitude (i.e., 4 mm to 256 mm), 

resulting in a wider range and greater values of β. Whereas in fine bed rivers, sand-sized 

particles (0.063 mm to 2 mm) are often in motion over a wider range of flows. This is 
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evident in the value of τc* for fine bed sites, for which a majority are above the critical 

value range for incipient motion at Qbf (τc* ∈ {0.03, 0.07}, Figure 2.4f). An additional 

explanation lies in transport capacity and supply limitation. Often, larger grain sizes in 

coarse bed rivers are transport capacity limited as opposed to supply limited 

[Montgomery and Buffington, 1997]. In supply limited conditions, often found in lower 

gradient, fine bed rivers, the grain size of the bed is less influential on the discharge–

sediment load relationship as is indicated in Figure 2.15. 

5.2.3  Comparing Coarse and Fine Bed Sites 

Many of the relationships discussed above are qualitatively similar—or at least 

fall on the same spectrum of response—between the two types of sites due to the 

character of the empirical model used to represent the Q-Qs relationship for both coarse 

and fine bed sites. In some cases a well-defined relationship exists for one type of site 

and not another (e.g., f+ vs. Cv for fine bed sites and β vs. Qs50.RI and yield.spread for 

coarse bed sites).  In general, physical metrics tend to explain the variance in 

relationships with sediment yield metrics in coarse bed sites, whereas flow variability 

trends to explain more variance in fine bed sites. 

Additionally, some differences in sediment yield metric relationships between the 

two types of sites are observed as well. A divergent relationship is observed with flow 

variability and the ratio of Qeff : Qbf (Figure 2.14). In fine bed sites, this ratio decreases 

with Cv, meaning Qbf becomes larger relative to Qeff. The opposite is true for coarse bed 
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sites. The normalized values of Qs50 increase with Cv for both fine (weak to nonexistent 

relationship) and coarse bed sites (stronger relationship). 

Soar and Thorne [2001] found a similar relationship for fine bed sites in their 

study of Midwestern and Eastern U.S. sand bed streams. In coarse-bed, semi-alluvial 

streams in the U.S. Rocky Mountains, Bunte et al. [2014] found that Qeff ≫ Qbf and in 

many cases was equal to the maximum discharge value. Interpretation of their work also 

suggests that Qeff should increase with flow variability in these coarse sites. This finding 

relates to the value of the sediment rating curve exponent: very large values of β lead to 

very infrequent flows being more effective, especially with increasing flow variability 

(Chapter 1). Note that the sediment load measurement technique can influence this 

value as well, especially for bed load sites [Bunte and Abt, 2009]. As flow variability 

increases in coarse bed streams, Qeff takes on larger and larger values. The flow-

sediment load relationships for coarse bed streams observed in this study are generated 

from Helley-Smith bed load measurements and do not have such steep rating curves as 

those reported by Bunte et al. [2014], who use bed load traps and longer sampling times 

[Bunte et al., 2004]. Nevertheless, I observe that Qeff increases relative to Qbf, and even 

exceeds Qbf, in coarse bed streams and this relationship is due to larger values of β.  

These empirical results compare well with theoretical findings (Figures 1.9 and 

2.18). When considering the theoretical relationship among Qeff, Cv, and β in which a 

generic rating curve with no threshold is multiplied by the continuous lognormal PDF to 

represent the flow distribution (See Chapter 1, Section 2), both Qeff and Qs50 generally 
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monotonically increase with Cv and β, though the rate of increase in each is smaller at 

lower values of Cv and β (Figure 2.18a and b). For very small values of β (< 1.25, in 

this example), Qeff actually decreases with Cv. When a sediment load–discharge 

relationship that includes an entrainment threshold is introduced, such as Parker [1979], 

Qeff is no longer a monotonically-increasing function of Cv and, in this case, D50 (Figure 

2.18c). Rather, Qeff increases with Cv for larger sediment sizes, and decreases for smaller 

Figure 2.18 Contour plots of relationships between Cv, β, Qeff, and Qs50 using a generic rating curve 

function to represent the sediment load–discharge relationship and a lognormal PDF to represent the flow 

distribution (a and b), and an entrainment threshold function [Parker, 1979] to represent the sediment 

load–discharge relationship (c and d).  
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sizes. Though it is quantitatively different from the relationship among Qs50, Cv, and β, 

Qs50 increases monotonically with Cv and D50 as well when an entrainment threshold is 

introduced.  

5.3  Unpackaging the Primary Driving Variables of Sediment Yield 

Two primary driving variables that most influence sediment yield metrics have 

been identified in this study: Cv and β. In this section I unpackage some of the physical  

properties behind these two metrics and relate these to physically-meaningful river 

processes. 

5.3.1  Coefficient of Variation 

The coefficient of variation of daily flows, the standard deviation divided by the 

mean, has been used throughout this dissertation to describe flow variability. This has 

been a useful metric because it is normalized and can be used to compare flow 

variability across a wide range of sites. It is also highly correlated with other variability 

metrics, such as skewness and flashiness (flash.RB). However, a value of Cv for a specific 

river does not translate directly into an understanding of that river’s flow regime. 

Therefore, I briefly explore the nature of Cv and what it means for the flow regimes of 

the rivers used in this study. 

The relationship between the two components of Cv—standard deviation, s, and 

mean, x̅ —have a very tight and increasing log-linear relationship for the study sites (s 

as a function of x̅ ). This means that the absolute value of s increases nonlinearly with 
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the absolute value of x̅. However, upon normalization of s by x̅ no correlation exists 

between Cv and x̅ or drainage area, indicating that the normalization is effective in spite 

of the nonlinear relationship between these two variables. One way to understand Cv is 

in terms of flashiness, a term often used regarding flow regime [Baker et al., 2004; Walsh 

et al., 2005]. A flashy river is one in which base flows dominate and large peak flows 

punctuate. As the flashiness (and Cv) of a flow regime increases, the base flows tend to 

become smaller and the magnitude of a given flood frequency become larger. This 

phenomenon occurs with urbanization [Konrad et al., 2005; Walsh et al., 2005] and also 

naturally in arid environments [Graf, 1983]. 

Another way to conceptualize Cv is in terms of the temporal nature of floods. 

Wolman and Gerson [1978] expanded on Wolman and Miller’s [1960] consideration of 

the long-term effectiveness of geomorphically significant events. Wolman and Gerson 

explore the relationship between the temporal sequencing of these events and the 

recovery, or relaxation time of a river following these events. Inter-arrival times of many 

natural and social phenomena follow an exponential distribution [Kirby, 1969; Barabási, 

2005] with λ = 1 / T , where T  is the mean of the inter-arrival time: 

fT = λe-λT (2.5) 

I calculate T  for flood events greater than or equal to the Qs50 across all sites. The 

average inter-arrival time of these flood events increases nonlinearly with Cv and 

skewness (Figure 2.19) for both types of sites. Therefore, as Cv increases so does the 
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time between geomorphically significant events. Depending on the regional climate, this 

may mean that rivers with large Cv may spend more time outside of “equilibrium” form. 

In humid climates with abundant riparian vegetation, river morphology is less sensitive 

to the timing of geomorphic events due to shorter recovery times [Wolman and Gerson, 

1978]. However, in arid and semi-arid climates this is often not the case as lack of 

vegetation results in long recovery times [Wolman and Gerson, 1978; Graf, 1983]. 

5.3.2 Sediment Rating Curve Exponent 

Inluences on the sediment rating curve exponent, β, have received some attention 

limited to coarse bed sites. Emmett and Wolman [2001] observed an increasing 

relationships between β and the D84 of the bed in coarse bed sites. In formulating their 

generic sediment rating curve transport function for bed load, Barry et al [2004] 

 

Figure 2.19 Plots of mean inter-arrival time of flood events with magnitudes ≥ Qs50 as a function of Cv 

and skewness for fine bed sites only with LOESS smoothing lines (green). 

106 



use a metric related to bed armoring to calibrate the exponent value. They found that β 

values increase with the amoring ratio. Larger armoring ratios mean that the bed grain-

size distribution is coarser than that of the subsurface and can indicate sediment supply-

limited conditions [Dietrich et al., 1989]. 

I explore the influence of sediment supply, represented as the fraction of sand in 

the bed, on β using the Wilcock and Kenworthy [2002] transport relation in a synthetic 

channel. When fine sediment supply is relatively large, the slope of the Q-Qs 

relationship—and hence β—decreases (Figure 2.20). This holds for all grain sizes, 

especially at smaller discharge values, as more sand is available in the bed for transport 

at these smaller discharges. The largest change in slope of the Q-Qs relationship occurs 

in rivers with bed material in the large gravel and cobble size classes. 

The overall slope of the sediment rating curve decreases as a function of channel 

slope using the Parker [1979] bedload transport relation (Figure 2.21). Especially for 

coarser bed material. With a larger slope, greater bed shear stress occurs at all discharge 

values (larger τ* values) and more sediment is in transport over the range of discharges. 

Bunte et al. [2014] found that in small mountain streams, β increases with drainage area 

(hence increases with decreasing slope overall). However, when plotted directly with 

slope, they find a variable relationship between β and slope that is dependent on process 

domain [Montgomery and Buffington, 1997]. This relationship increases from pool-riffle 

to plane bed channels (low to medium slope) then decreases from plane bed towards 

step-pool channels (medium to high slope). 
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Channel geometry, such as the width-to-depth ratio as well as the amount of vegetation 

roughness along the banks also likely influence β, as these features influence channel 

hydraulics [Darby and Thorne, 1996; Bledsoe et al., 2011]. The influence of in-channel 

hydraulics on bed shear stress and ultimately the Q-Qs relationship is outside of the 

scope of this Chapter; however previous work on this topic does provide some clues.  

 

Figure 2.19 Sediment rating curves for a range of median grain sizes for a synthetic channel using the 

Wilcock and Kenworthy [2002] two-fraction sediment transport capacioty transport model with increasing 

fractions of sand in the bed. 

 

 

Figure 2.20 Sediment rating curves for a range of median grain sizes for a synthetic channel using the 

Parker [1979] gravel bed load transport capacity model with increasing values of slope. 
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Andrews [1984] found that τ* values associated with the D50 at bankfull discharge were 

appreciably greater in coarse bed channels with thick bank vegetation over those with 

thin vegetation. Carling [1983] found that the threshold shear stress for initation of 

motion of coarse bed material was greater in a narrow stream (w.d < 11) than in a wide 

stream (w.d > 11). These studies suggest that in narrower, deeper, channels with thick 

bank vegetation, shear stress more is concentrated on the bed resulting in more scour, 

leaving behind larger material in the bed. Such channels would likely have steeper Q-Qs 

relationships and larger values of β over wider channels assuming they are transport 

capacity limited. 

6 Conclusion 

In this chapter, I have tested and applied a robust and consistent magnitude 

frequency analysis of sediment transport (MFA) methodology to explore empirical 

relationships between the drivers of sediment yield in rivers, namely the flow regime and 

physical properties of the bed sediment and channel geometry, and the magnitude and 

frequency of sediment transport described by various metrics derived from the sediment 

yield curve (Table 2.2, Figure 2.2). I conduct this analysis for 153 sites across the 

conterminous U.S. and in Puerto Rico on fine and coarse bed rivers where bed material 

transport data were available adjacent to a stream gage with a long-term flow record. I 
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also compare empirical relationships derived in this chapter the theoretical relationships 

derived in Chapter 1. 

A comparison of MFA methods indicates that a logarithmically-smoothed 

empirical PDF, modified from Orndorf and Whiting [1999] best represents the flow 

regime and is less susceptible to isolated flood events overriding the sediment yield 

density curve for shorter flow records. In general, estimating Qeff is very sensitive to the 

MFA methodology used. The value of Qeff tends to produce very scattered relationships 

with physical and flow related metrics. The half-yield discharge, Qs50, tends to have 

stronger relationships with driving variables, and is less sensitive to the MFA 

methodology. In addition, it tends to predict the bankfull discharge better than Qeff 

across a wide range of river types as discussed in Chapter 3. However, unlike Qeff, Qs50 is 

calculated from a cumulative sediment yield record and therefore is more sensitive to 

the sediment transport model used if sediment transport measurements are not available 

and a physically-based model is required. This is due to cumulative error and is 

especially sensitive for coarse bed sites as is explored in Chapter 4. 

This analysis indicates that the magnitude and frequency of sediment transport 

in all river types is sensitive to the variability of the flow regime. In fine bed rivers, 

sediment yield metrics are more sensitive and more closely correlated with flow 

variability than in coarse bed rivers. As flow variability increases, the range of 

discharges responsible for the bulk of sediment transport increases and more sediment is 

transported by discharges greater than the effective discharge, Qeff (Figure 2.12b & d). 
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This is especially true in fine bed rivers where the Qeff : Qbf ratio decreases with flow 

variability (Figure 2.14), whereas this ratio increases with flow variability for coarse bed 

rivers following theoretical predictions (e.g., Figure 2.18c). The bankfull discharge is 

likely to be greater than Qeff in fine bed rivers, and may be greater, equal, or much 

smaller than Qeff depending on the coarseness of the bed and steepness of the rating 

curve. 

Bed sediment grain size plays a dominant role in sediment yield in coarse bed 

rivers. The median grain size of the bed is positively correlated with the steepness of the 

sediment rating curve, β, at coarse bed sites (Figure 2.15); however, its value 

incorporates more physical attributes of the channel and geomorphic setting than grain 

size alone (c.f., Section 2, Chapter 1 and Section 5.3, above).  For small values of β (e.g., 

< 2), generally associated with fine bed rivers, a larger range of discharges is responsible 

for sediment yield (Figure 2.16d). This range of flows narrows as the grain size of the 

bed—and the value of β—increases. In coarse bed rivers, with large values of β, a 

narrower range of less frequent flows dominates sediment yield (Figure 2.16c & d). The 

most effective discharge also increases in magnitude and decreases in frequency as grain 

size increases. Combining driving metrics Cv and β help explain much of the variance in 

normalized values of Qeff and Qs50 as well as other sediment yield metrics (Figure 2.17). 

The empirical relations derived in this chapter among sediment yield metrics, β, and Cv 

compare favorably with the theoretical relationships of Chapter 1. 
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Sediment yield in all river types is in some part sensitive to all aspects of the 

physical drivers and boundary conditions rivers experience: flow regime, sediment supply 

caliber and quantity, as well as channel geometry. Often, relationships between sediment 

yield metrics and these physical drivers reflect a continuum from fine to coarse bed 

rivers (e.g., Figures 2.12, 2.13, 2.16, and 2.17). However, in other cases, such as the ratio 

of Qeff:Qbf plotted against Cv, different relationships follow between coarse and fine bed 

rivers (Figure 2.14). In all, flow variability and the slope of the rating curve (in part 

influenced by bed material caliber) are controlling variables for MFA metrics. 

By considering the magnitude and frequency of sediment transport using the 

same methodology for fine and coarse bed rivers, this study bridges our understanding of 

relationships between physical drivers and sediment yield in fine and coarse bed rivers. 

It confirms and extends the understanding of the relative importance of the drivers of 

sediment yield in rivers by analyzing previously-published relationships in both fine and 

coarse bed rivers as well as exploring relationships with new sediment yield metrics. 

Finally, this work provides empirical validation of many of the theoretical relationships 

derived in Chapter 1. 

Channel form and geometry data were difficult to acquire for this large number of 

sites. The available channel geometry data (w.d and slope), did not yield any meaningful 

relationships with yield metrics. As discussed by Emmett and Wolman [2001], links 

between the magnitude and frequency of sediment yield and channel form are as of yet 

uncharacterized. Future work in this area could study the relationships between, for 
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example, downstream hydraulic geometry and trends in yield metrics across 

geographically disperse watersheds. Additionally, assuming a relationship between 

dominant discharge metrics, Qeff and Qs50 and the bankfull discharge [e.g., Tilleard, 

1999; Dodov and Foufoula-Georgiou, 2005] could provide a powerful tool for exploring 

the channel form sensitivity to changes in the discharge-sediment transport relationship 

as well as the flow frequency distribution as a result of environmental change. 
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CHAPTER 3 

The Half-Yield Discharge: A Process-Based Predictor of   

Bankfull Discharge6 

Summary 

The river management and restoration community has given much effort to predicting 

the bankfull discharge, Qbf, and associated channel geometry at Qbf for the purposes of 

channel study, classification, and design. Four types Qbf prediction methods 

predominate: (1) direct estimation based on field indicators of bankfull stage, (2) use of 

regional downstream hydraulic geometry statistical relations, (3) use of an annual flood 

with a specified return interval based on the annual maximum flood series (e.g., the 1.5 

to 2 year flood) or regional flood peak statistical relations, and (4) process-based 

approaches that incorporate the magnitude and frequency of sediment transport such as 

the most effective discharge: Qeff. I calculate process-based Qbf predictors using bed 

material sediment transport data from 98 gaged sites across the U.S. including coarse 

bed, bed load-dominated channels and fine bed, suspended load-dominated channels 

with drainage areas ranging from 1 to 3x106 km2. I compare these values with estimates 

Sholtes, J., and B. Bledsoe (In 2nd Review), The Half Yield Discharge: a Process-based predictor of 

bankfull discharge. Journal of Hydraulic Engineering. 

Joel S. Sholtes conceived the study, collected and analyzed the data, wrote the manuscript. Brian Bledsoe 

reviewed manuscript and provided feedback on applications and presentation of the findings. 
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of Qbf made from field measurements of bankfull indicators. I find that the discharge 

associated with 50% of cumulative sediment yield based on the flow record—Qs50: the 

half yield discharge—predicts Qbf better than most other methods, especially in fine-bed 

rivers. When compared to Qeff and the 1.5 and 2 year floods, Qs50 is the least biased 

estimator of Qbf and has the lowest mean absolute percent error and root mean square 

error for fine bed sites. Both process-based predictors and the 1.5 year flood perform 

well in coarse bed sites. I characterize the behavior of Qs50, a process-based predictor of 

Qbf to highlight circumstances in which sediment yield analysis may be important in 

estimating the bankfull discharge. My finding represents a novel estimator of Qbf for fine 

bed rivers not previously discussed in this context. 

1 Introduction 

Stable river form over engineering time frames (50 - 100 years) results from the 

balance of flow regime, sediment supply, and imposed valley slope with the resisting 

forces of boundary materials in the bed and banks and vegetation [Lane, 1954; Schumm 

and Lichty, 1965; Millar, 2005]. Though no one discharge is entirely responsible for river 

form, the bankfull discharge, Qbf, defined conceptually herein as the discharge which just 

fills the channel before spilling on to the floodplain [Wolman and Leopold, 1957; 

Williams, 1978], is one of several important channel geometry and design metrics. This 

is due to its connection with the dominant or channel forming discharge concept rooted 
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in river regime theory [Inglis, 1949; Benson and Thomas, 1966; Carling, 1988; Soar and 

Thorne, 2011] and early floodplain formation and hydraulic geometry studies [Leopold 

and Maddock, 1953; Wolman and Leopold, 1957; Hey and Thorne, 1986]. In some cases, 

Qbf may have the properties of a dominant discharge in alluvial rivers in that sediment 

transport effectiveness is at a maximum at bankfull [Wolman and Leopold, 1957; 

Andrews, 1980]. For this reason, Qbf or a proxy for Qbf such as a flood of a certain 

annual return interval are often used as a design discharge for channel restoration and 

management [Hey and Thorne, 1986; Shields et al., 2003; Doyle et al., 2007]. I refer 

readers to excellent reviews of dominant discharge concepts and methods for estimating 

it for channel design by Doyle et al. [2007] and Soar and Thorne [2011]. 

Four predominant approaches to estimating the dominant discharge are 

practiced: 1) direct estimate based on field indicators of bankfull stage, 2) indirect 

estimate based on a regional downstream hydraulic geometry statistical relation created 

from reference reaches, or scaled directly from a nearby reference reach, 3) indirect 

estimate based on a hydrologic metric (generally the 1.5 to 2 year flood: Q1.5 and Q2), 

and 4) indirect process-based estimate based on effective discharge analysis (herein 

referred to as magnitude-frequency analysis, MFA) to calculate the discharge that 

transports the most sediment over time or some other related sediment yield metric. In 

the present study, I compare indirect methods 3 (hydrologic) and 4 (process-based) to 

method 1: direct estimation of Qbf with field measurements of bankfull stage indicators, 

which integrate channel processes.  
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As has been previously discussed in depth, all of these approaches have their 

limitations. Identifying Qbf in the field is subject to error and interpretation [Williams, 

1978; Shields et al., 2003]. In some channels, a well-defined floodplain may not exist, or 

channel disturbance may create ambiguous indicators. Extrapolating information from a 

reference reach to a reach of interest [Rosgen, 1997, 2001] may not be appropriate in 

certain scenarios wherein the reach of interest is unstable or has different forcing and 

boundary conditions [Simon et al., 2007]. 

Hydrologic predictors of the dominant discharge may suffice for ''stable" channels 

lacking major anthropogenic influence such as river engineering or hydro-modification 

from land use change in the watershed or flow regulation [Doyle et al., 2007]. Multiple 

studies have found a wide range of return intervals for Qbf. The median value of the 

Figure 3.1 Conceptual diagram of process-based Qbf predictors, Qeff and Qs50, based on (a) the sediment 

yield probability density curve, and (b) the cumulative sediment yield curve. 

117 



 

return interval of Qbf often falls between 1 and 2 years on the maximum annual flood 

series, whereas the mean value is often greater than 2 years, indicating a positively 

skewed distribution in its return interval [Wolman and Leopold, 1957; Williams, 1978; 

Castro and Jackson, 2001]. The return interval of Qbf for channels that have adjusted to 

disturbance by incising and/or widening will generally be greater than two years [Doll et 

al., 2002].  

Process-based predictors of Qbf involve calculating discharge indices based on 

sediment yield curves, which are the product of a sediment transport relation with a 

representation of the flow frequency distribution. Though this calculation is more 

involved than other methods, it can provide more information to the channel designer or 

manager about sediment continuity, an important consideration in channel design and 

management [Soar & Thorne, 2001; Shields et al., 2003; Doyle et al., 2007]. The effective 

discharge, Qeff, is the maximum value of the sediment yield frequency curve (product of 

flow frequency distribution and a sediment transport relation) [Andrews, 1980; Wolman 

& Miller, 1960] (Figure 3.1a). The half yield discharge, Qs50, is the discharge associated 

with 50% of cumulative sediment yield [Emmett and Wolman, 2001; Vogel et al., 2003]. 

It is calculated from a cumulative sediment yield curve plotted as a function of the 

sorted flow record [Biedenharn and Thorne, 1994] (Figure 3.1b). Methods for calculating 

these predictors of Qbf, which rely on sediment transport magnitude-frequency analysis, 

are provided below in sections 2.3 and 4.3.  
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In general, Qeff predicts Qbf with mixed performance. In coarse bed rivers 

dominated by bed load sediment transport, Qeff appears to predict Qbf reasonably well 

[Andrews, 1980; Emmett and Wolman, 2001; Hassan et al., 2014], or may be much 

greater than Qbf [Bunte et al., 2014]. In fine bed rivers dominated by suspended load 

sediment transport, Qeff is often much smaller than Qbf especially in flashy systems, 

depending in part on MFA methods used and channel type [Pickup and Warner, 1976; 

Soar and Thorne, 2001; Hassan et al., 2014]. The half yield discharge tends to be larger 

than Qeff. As such it may pose a better metric for summarizing the magnitude of 

transported load in rivers than Qeff, especially in fine bed, suspended load-dominated 

rivers [Vogel et al., 2003].  

A small number of previous studies mention Qs50 [Emmett and Wolman, 2001; 

Copeland et al., 2005; Hassan et al., 2014]. To my knowledge, no work has directly 

evaluated the ability of Qs50 to predict Qbf. Copeland et al. [2005] found that the 

discharge associated with 75% of cumulative sediment yield, Qs75, predicts Qbf well in 

fine bed rivers; however, they use total suspended load in their estimates, which includes 

wash load. Wash load comprises silt and clay-sized particles and generally does not form 

the channel bed of most sand bed streams [Biedenharn and Thorne, 1994; Hey, 1996]. 

Here I use bed material load data, defined for fine bed rivers in this study as the 

fraction of the suspended load ≥0.0625 mm, to calculate Qeff and Qs50 and compare them 

with Q1.5 and Q2 in their ability to predict Qbf as estimated in the field from bankfull 
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stage indicators. I calculate these metrics using a national database of fine and coarse 

bed sites and compare their predictive ability with hydrologic metrics. 

I follow this introduction with a discussion of the sites, data, and methods used 

to estimate Qbf and its predictors. I compare the Qbf predictors using basic goodness-of-

fit metrics and consider the sensitivity of prediction accuracy and bias. I conclude with a 

discussion of the findings in the context of previous work and consider the accuracy, 

bias, and ease of calculation of the predictors, making practical recommendations for 

their usage. 

2 Data and Methods 

This study involves three methods for estimating Qbf: 1) direct estimation using 

measurements of field indicators of bankfull stage at a site with an established stage-

discharge rating curve, 2) indirect estimation using an flood peak discharge with a 

specified return interval based on the annual maximum peak discharge series at a gaged 

site (Q1.5 and Q2), and 3) indirect estimation using process-based discharge indices based 

on MFA (Qeff and Qs50). I use basic goodness of fit calculations to compare direct 

estimates of Qbf with predictors based on annual flood series and sediment yield MFA. I 

begin this section with a description of the sites used in for this study. 
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2.1 Site Data 

Sites used in this study are located across the conterminous U.S. and Puerto Rico 

and include 60 fine bed sites and 36 coarse bed sites for which estimates of Qbf were 

available near a gage with a long-term record and ≥15 paired bed material load-

discharge measurements (Figure 3.2). In general, these sites were selected because the 

majority have been previously published in MFA studies or are located along the same 

river as previously-published sites. However, because the sand fraction of suspended load 

measurements, representing the bed material load at fine bed sites, is not often 

evaluated and sites with smaller drainage areas (e.g., <100 km2) are under-represented 

in published MFA studies, other sites were brought in to this study to augment the data 

set. I included only alluvial rivers (mobile bed and banks) in dynamic equilibrium with 

the drivers of flow and sediment supply, meaning measured channel properties are likely 

to have a stable mean value over an engineering time frame (50-100 years). Fine bed 

sites are scattered geographically, whereas coarse bed sites are clustered in the U.S. 

Rocky Mountain and Northwest regions due to lack of concurrent bed load and stream 

gage data availability elsewhere. Anthropogenic impacts such as flow regulation, 

channelization, and land use change can result in transient influences on channel form 

and are therefore avoided in this study. I used aerial photograph reconnaissance as a 

rough method to verify that these sites are located on a river that was either regulated 

or channelized. Summary information for each site used in the present study can be 

found in Tables 3A.1 and 3A.2 in Appendix 3A.  
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Figure 3.2 Site map of fine bed and coarse bed sites utilized in Chapter 3. 

2.2 Bankfull Discharge Estimation 

Estimates of Qbf were primarily made directly in the field from surveyed 

elevations of the transition from bank to floodplain along a reach and then extrapolated 

to a nearby stream gage with an established stage--discharge rating curve [King et al., 

2004] or by using at-a-station hydraulic geometry relationships developed with USGS 

discharge field measurement data [Williams, 1978]. Regional downstream hydraulic 

geometry statistical relations were used to estimate Qbf for four coarse bed sites [Foster, 

2012]. 

Williams (1978) describes the following at-a-station hydraulic geometry relationships as 

useful for determining Qbf based on identifying the discharge associated with: 1) the 

minimum value of the width-to-depth ratio (Figure 3.3a), 2) a break in slope from 
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steeper to less steep in the stage--discharge relationship (Figure 3.3b), 3) a discontinuity 

or vertical jump in the top width--discharge relationship (Figure 3.3c), and 4) a 

discontinuity or horizontal jump in the top width--cross sectional area relationship 

3.3d). Not all of these relationships provided clear indicators of Qbf for all sites. Method 

(4) proved least helpful, followed by method (1) and (2). Method (3) provided the 

clearest indication of Qbf if such a break existed in the available data and at the cross  

section(s) where these measurements were collected. 

 

Figure 3.3 Example of Qbf determination made from USGS field discharge measurements made on the 

Pee Dee River at Pee Dee, South Carolina (USGS Gage 02131000). Dashed vertical line indicates Qbf. 

Note minimum value in the Q–W:D relationship (a), change in slope in stage--discharge relationship (b), 

as well as abrupt increase in width all at approximately the same discharge value (c). (d) indicates cross-

sectional area and top width relationship. 
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In some cases, estimates based on the USGS field discharge measurements 

coincided with sites that had previously published, direct estimates of Qbf (n = 18). 

Field-based estimates of bankfull stage and USGS field measurements were collected 

along the same reach of channel, though they may not coincide in time and space 

introducing some error. I used these concurrent estimates to evaluate the accuracy and 

bias of this approach to estimating Qbf. A 1:1 plot of observed (published) and estimated 

(USGS field measurement methods) shows little bias in the estimation method and a 

reasonably good fit with observations (Figure 3.4a). The mean percent error is +5% and 

mean absolute percent error 50% (Figure 3.4b). Percent error is calculated as: (Qbf,meas – 

Qbf,est)/ Qbf,meas. This indicates that the at-a-station hydraulic geometry method for 

estimating Qbf using USGS field measurements is only slightly positively biased and 

reasonably accurate.  

2.3 Bankfull Discharge Prediction 

I compare two different types of predictors of Qbf: hydrology- and process-based. I 

calculate the hydrologic predictors using the annual maximum flood series available on 

the USGS National Water Inventory Service (NWIS) online database7. I estimate Q1.5 

and Q2 floods using the Weibull plotting position, p = m/(n+1), and linear  

 

7 http://nwis.waterdata.usgs.gov/usa/nwis/peak 
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Figure 3.4 (a) Comparison between estimates of Qbf derived from at-a-station hydraulic geometry 

relationships made from USGS field measurements and estimates of Qbf directly determined in the field. 

(b) Values of the mean percent error (MPE), and mean absolute percent error (MAPE) are provided 

along with a dashed line indicating the value of the mean percent error (5%). 

interpolation, where p is the probability of exceedance, m is the rank of the event with 1 

being the largest, and n is the number of events on record. 

Process-based predictors of Qbf, such as sediment yield metrics Qeff or Qs50, rely 

on a frequency distribution (probability density function, PDF) or histogram of 

sediment yield or the cumulative distribution of sediment yield (sediment yield CDF). 

This can be thought of as the transformation of a flow duration curve into a sediment 

yield duration curve using a sediment rating curve (USACE, 1989). Biedenharn and 

Thorne [1994] demonstrate this with flow and sediment load data on the Mississippi 

River. Note that I use the terms PDF and CDF loosely here. This is because sediment 

yield PDFs and CDFs are not true PDFs and CDFs in the statistical sense. This is due 

to autocorrelation in flow records and the fact that they are derived distributions. I also 
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plot cumulative sediment yield and sediment yield density with discharge on the x-axis. 

I calculate Qeff from the product of the empirical PDF of average daily flow, which is 

estimated by numerically-deriving the smoothed empirical CDF, with a sediment rating 

curve [Orndorff and Whiting, 1999]. The discharge value at which the peak of this 

sediment yield density curve occurs is Qeff (Figure 3.1a). The half yield discharge, Qs50, 

is the discharge associated with 50% of cumulative sediment yield as calculated from the 

sediment yield CDF. This is either calculated from the empirical CDF of the sediment 

yield record, or from the integral of the sediment yield PDF (Figure 3b). 

The sediment rating curve is a log-linear regression equation of the form Qs = 

αQβ, between instantaneous discharge and bed material load. I used the rlm() function 

in the MASS package [Venables and Ripley, 2002] in  R [R Core Team, 2014], which is a 

robust linear regression method that is less sensitive to outliers than ordinary least 

squares (OLS) regression. I corrected for transformation bias using the bias correction 

factor discussed by [Ferguson, 1986]. All log-linear slopes (β) were significant using an 

approximation of normality test calculated with the lmRob() function in the robust 

package [Wang et al., 2014] (maximum p = 0.014). Multiple R2 values from these robust 

linear models are calculated from the weighted residuals and ranged from 0.21 to 0.79 

(median = 0.57); however, 70% of these values were greater than or equal to 0.5. These 

multiple R2 values are lower than the conventional R2 values derived from OLS 

regression. Values of R2 from OLS regression ranged from 0.22 to 0.96 (median = 0.74) 

with 84% ≥ 0.5. 
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Direct bed material load measurements are available for coarse bed rivers in units 

of (mass/time). I used Helley-Smith bed load sampler data only as this is the most 

widely available data. Bed material load for fine bed sites is calculated as the product of 

the sand fraction (≥0.0625 mm) of the measured suspended sediment concentration with 

the concurrent instantaneous discharge measurement to produce sediment load in units 

of (mass/time). Bed load data comes from a wide variety of sources listed in Table 3A.1 

in the supplemental material. Suspended load data for all sites comes from the USGS 

Sediment Data Portal8, an on-line database of suspended sediment measurements for 

sites across the U.S. and its territories. 

I should also note that because my calculations of cumulative sediment yield for 

fine bed sites are solely based on suspended sand load and neglect the unmeasured bed 

load, these are likely underestimates of cumulative yield. Nash [1994] argues that the 

value of the rating curve exponent is not greatly impacted by inclusion of bed load in 

sand bed stream, and therefore sediment yield metrics such as Qeff and Qs50 are not 

affected, as they are only sensitive to this parameter in the sediment rating curve. 

Unpublished work by Michels-Boyce [2014] supports this. 

8 http://cida.usgs.gov/sediment 
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3 Results 

Here I compare the performance of hydrologic (Q1.5 and Q2) and process-based 

(Qeff and Qs50) predictors of Qbf using basic goodness-of-fit metrics for coarse and fine 

bed sites (Table 3.1). The mean percent error (MPE) of the predicted values relative to 

the observed values gives a rough estimate of any bias in the predictors. If one type of 

predictor tends to over predict Qbf, then MPE will be positive. The mean of the absolute 

values of percent error (MAPE), and the square root of mean squared error (RMSE) 

estimate the absolute error of the predictors. Finally, the slope and R2 values of the 

ordinary least squares linear and log-linear regression lines fitted to the (Qbf,obs, Qbf,pred) 

data pairs aid in my characterization of the goodness-of-fit of each predictor (Table 3.1, 

Figure 3.5). I also consider the percent error of each predictor as a function of the 

sediment rating curve exponent β, the skewness of the daily flow record, and drainage 

area to determine if these factors influence the predictive error or create bias (Figure 

3.6). 

3.1  Performance of Bankfull Discharge Predictors 

I begin by considering the log-linear regression lines fitted to the predicted and 

observed Qbf values (Figure 3.5). This allows for rapid visual determination of bias and 

error. I calculate the median value and interquartile range (IQR) of cumulative sediment 

yields (Qs50, Qs25, and Qs75, respectively) to compare their relationships with Qbf as well 

(Figure 3.5, top row). The log-linear regression line for the Qs50–Qbf relationship falls 
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nearly on top of the 1:1 line for fine bed sites, and is bracketed by the Qs25, and Qs75 

(Figure 3.5, top row). The effective discharge tends to under predict Qbf for both river 

types (Figure 3.5, middle row). Finally, the hydrologic predictors result in a fairly close 

fit with Qbf for coarse bed sites, while tending to over predict Qbf for fine bed sites 

(Figure 3.5, bottom row). For coarse bed sites, the log-linear regression line for the Q1.5–

Qbf relationship nearly coincides with that of the Qs50–Qbf relationship, while Q2 slightly 

over predicts Qbf for these data. 

The linear and log-linear slopes of the Q1.5–Qbf relationship are closest to unity 

(0.99 and 0.80, respectively) for coarse bed sites and tie with the Q2–Qbf relationships for 

the largest linear R2 value (0.95), followed closely behind by Qs50 with an R2 value of 

0.94 (Table 3.1). In fact, all process-based and hydrologic metrics perform fairly 

similarly for coarse bed sites. The linear slope closest to unity for fine bed sites comes 

from the Q1.5–Qbf relationship. Both Qeff and Qs50 relationships with Qbf have slopes 

slightly larger than unity, though the intercept value for the Qeff relationship is very 

large compared with that of the Qs50 relationship for these sites (172 vs. 16). The log-

linear slope of the Qs50–Qbf relationship is closest to unity followed by Q1.5, Q2, and Qeff. 

Finally, the greatest R2 value for linear fits of fine bed Qbf predictors results from the 

Qs50–Qbf relationship, which is much larger than the R2 values of the other predictors 

(0.82 vs. 0.64 to 0.69). 

When considering goodness-of-fit metrics, the MPE is lowest for Q1.5 as are the MAPE 

and RMSE values for coarse bed sites, though the values of these metrics are not greatly  
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Table 3.1. Goodness of fit of various Qbf predictors to the actual value of Qbf 

 

different for Qs50 at these sites (Table 3.1). The effective discharge and then Q2 follow in 

error magnitudes, respectively. All relative and absolute estimates of error are lowest for 

Qs50 for fine bed sites, followed by Qeff, Q1.5, and Q2, though Q1.5 has a lower RMSE 

value than Qeff. 

3.2 Predictor Bias and Sensitivity 

I plot percent error for individual Qbf predictors as a function of the sediment 

rating curve exponent, β, the skewness of the daily flow record, and the drainage area 

for all sites to evaluate if the prediction error is sensitive to these parameters (Figure 

3.6). The hydrologic predictor Q1.5 should not be influenced by β, because it is based 

solely on the peak flood record; however, β strongly influences the values of the process-

based predictors [Barry et al., 2008; Bunte et al., 2014]. 

A positive trend between the percent error of Qeff and Qs50 as a function of β is 

evident for coarse bed sites. They tend to over-predict Qbf for larger values of β (greater 

than approximately 2.5). This same trend is also observed in fine bed sites, but it is not 

strong and the slope of the linear fit is not significant at α = 0.05 (p = 0.057 and 0.068 

for Qeff and Qs50, respectively). Because the value of β positively influences the absolute  
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Figure 3.5 Log-log plots with log-linear regression lines between hydrology- and process-based predicted 

values and estimations of Qbf made from field measurements of bankfull indicators. Values of Qs25,Qs50, 

and Qs75 represent the discharges associated with 25%, 50% and 75% of cumulative sediment yield, 

respectively.  
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Figure 3.6 Percent error of various estimators of Qbf as a function of the sediment rating curve 

exponent, β, the skewness of the daily flow record, and drainage area. Dashed lines indicate mean percent 

error values for each Qbf estimator. 

value of sediment yield, this is not surprising. Indeed, Bunte [2014] report values of Qeff 

much larger than Qbf in coarse bed streams with very large values of β. 

Percent error also appears to increase slightly with skewness in fine bed sites, but 

this trend is also not significant (α = 0.05). No trend or sensitivity is observed for any 

predictors as a function of skewness for coarse bed sites. As drainage area increases the  
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percent error of both Qs50 and Q1.5 predictors decreases for fine bed sites only. This 

trend is significant for Q1.5 but not for Qs50 (p = 0.011 and 0.218, respectively). 

Mean values of percent error can indicate bias in these predictors (dashed lines, 

Figure 3.6 and Table 3.1). The MPE for Qeff was negative for both types of sites 

indicating that it under-estimates Qbf in most cases. The Q1.5 and Qs50 estimators have 

small, negative MPE values for coarse bed sites. For fine bed sites, the Q1.5 over-predicts 

Qbf by a larger margin than Qs50. 

4 Discussion 

4.1 Performance of Bankfull Discharge Predictors 

Using a nationwide dataset of combined flow and sediment load data, I have 

found that Qs50 best predicts Qbf for fine bed sites over Qeff, Q1.5, and Q2. In coarse bed 

sites, Q1.5, Qs50, and Qeff all predict Qbf relatively well. However, Q1.5 comes out slightly 

ahead when considering the goodness-of-fit metrics summarized in Table 3.1. The two-

year return interval flood predicts Qbf least well for both types of sites.  

Hydrologic metrics based on annual maximum flow series such as Q1.5 and Q2 

have been reported to approximate Qbf fairly well, though considerable variability in the 

return interval of Qbf exists [Wolman and Leopold, 1957; Williams, 1978; Castro and 

Jackson, 2001]. Estimating these hydrologic Qbf predictors is much easier than process-

based predictors because they require only an annual maximum flood peak series from a 
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nearby stream gage or readily available regional peak discharge regression equations. I 

do not evaluate the accuracy or bias of regional flood peak regression equations in this 

study; this is generally included in the USGS reports that publish these equations 

[Jennings et al., 1994].  

Comparisons of Qeff with Qbf have produced mixed results. Some workers have 

found a close 1:1 relationship between the two [Andrews, 1980; Emmett and Wolman, 

2001; Torizzo and Pitlick, 2004], whereas others have found an inconsistent relationship, 

with Qeff falling below the value of Qbf [Pickup and Warner, 1976; Soar and Thorne, 

2001; Hassan et al., 2014] or well above [Bunte et al., 2014]. Judging from the literature, 

it seems that Qeff may approximate Qbf for coarse bed, bedload dominated rivers, though 

Bunte et al. [2014] argue that this is an artifact of bed load sampling method. In their 

study of the most effective discharges in mountain streams in British Columbia, Canada, 

Hassan et al. [2014] modeled sand and gravel bed load transport using the Wilcock and 

Kenworthy [2002] relation. They found that in sites with more sand present in the bed, 

smaller discharges were relatively more effective, sand transport dominated the total 

sediment yield, and Qeff < Qbf. In sites with less sand present, Qeff better approximated 

or even exceeded Qbf. Infrequently mobile gravel and cobble dominated the beds in these 

sites. The effective discharge better approximated Qbf for the coarse bed sites used in my 

study as well. In another study of the most effective flows for coarse bed material 

transport, Bunte et al. [2014] found that Qeff << Qbf. Sand was not included in the bed 

load measurements used in this study resulting in very large β values. Soar & Thorne 
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[2001] found that Qeff ≈ Qbf in fine bed rivers with low flow variability, but that Qeff 

became increasingly smaller relative to Qbf as flow variability increases.  

This may indicate that there are two end members of effective flow frequencies. 

Either Qeff is a very frequent flow that is less than bankfull in sand bed streams with 

more variable flow regimes and small β values. Or it is a vanishingly infrequent flow 

equal to or much greater than bankfull in infrequently-mobile, coarse bed streams with 

large β values and low flow variability. Low values of β (e.g., 1 to 2.5) are most often 

associated with fine bed, suspended load dominated rivers [Nash, 1994; Syvitski et al., 

2000]. 

The half yield discharge has not received much attention regarding its ability to 

predict Qbf or its use as a design discharge. Emmett & Wolman [2001] calculate it in 

coarse bed streams and note that it tends to approximate Qeff and Qbf. Vogel et al [2003] 

derive closed-form solutions for Qs50 based on a power-law sediment rating curve and 

lognormal flow distribution. They compare it with Qeff in suspended-load dominated 

rivers and argue that it may be a better discharge index for characterizing suspended 

and dissolved river loads because Qeff tends to be a relatively frequent discharge in 

suspended and wash-load dominated rivers. Copeland et al. [2005] report that the 

discharge associated with the 75th percentile of cumulative sediment yield, Qs75, best 

predicts Qbf. However, like Vogel et al. [2003] they used total suspended load data, 

which includes wash load and not simply suspended sand load (suspended bed material). 

This resulted in them predicting a larger suspended sediment load for a given discharge, 
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especially at lower flow rates, likely reducing the value of β and upwardly biasing the 

cumulative sediment yield percentile most closely associated with bankfull discharge. My 

study extends and adds on previous work regarding Qs50 by considering its predictive 

ability over a wide range of river sites across both coarse and fine bed channels using 

bed material load data. 

4.2 Cumulative Sediment Yield 

To explore the relationship between cumulative sediment yield and various Qbf 

predictors, I consider the cumulative sediment yield percentiles for Qbf and Qeff for the 

coarse and fine bed streams used in this study noting that this value is by definition 

50% for Qs50. The median value of cumulative sediment yield percentage at Qbf is 50% 

for fine bed sites (35% to 70% IQR) and 

53% for coarse bed sites (25% to 60% 

IQR) (Figure 3.7). The average value of 

cumulative sediment yield at Qbf is also 

approximately 50% for fine bed sites, 

but is much lower for coarse bed sites 

indicating a distribution of cumulative 

sediment yield at Qbf skewed to lower 

values. Median values of cumulative 

percent yield for Qeff are much lower 

Figure 3.7 Box and whisker plots of the 

percentage of cumulative sediment yield evaluated 

at Q
bf
 and Q

eff
 for fine and coarse bed sites. 
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than those of Qbf for fine bed sites, and slightly lower for coarse bed sites. 

The question stands: Why does Qs50 predict Qbf well? Choosing 50% as a value of 

cumulative sediment yield for Qbf is arbitrary—rivers are not concerned with medians—

though, as just discussed, this value matches the median value of cumulative sediment 

yield at Qbf for fine bed sites, and is very close for coarse bed sites (Figure 3.7). Many 

theories exist regarding why Qeff approximates Qbf well [Wolman and Miller, 1960; 

Carling, 1988; Hey, 1996; Soar and Thorne, 2011]. The effective discharge maximizes the 

magnitude and frequency of sediment transport over all discharges. In bed load-

dominated rivers, flow near bankfull tend to also be frequent and competent enough to 

meet this criterion [Torizzo and Pitlick, 2004]. Unlike Qeff, little theoretical argument 

can be made for the discharge associated with 50% of cumulative sediment yield 

approximating Qbf. The half yield discharge is nearly always larger than Qeff, especially 

in fine bed rivers, making it a potentially more accurate predictor of Qbf for these 

systems. It is a robust predictor of Qbf in these rivers as it performs well across a wide 

range of physiographic regions (Figure 3.2). Additionally, calculating Qs50 does not suffer 

from the sensitivity Qeff has to the flow frequency distribution estimation method such a 

histogram bin width selection [Soar and Thorne, 2001]. The ability of Qs50 to predict Qbf 

for suspended sediment sites is a novel finding and an argument for process-based 

methods for channel design for these sites. 
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4.3 Using Bankfull Discharge Predictors 

Calculating process-based Qbf predictors is much more involved than calculating 

hydrologic predictors. However, because they incorporate physical representations of 

river hydrology, hydraulics, and morphology, they can provide more insight into the 

influence of process on channel form [Soar and Thorne, 2011] and even allow for 

prediction of channel response to hydrologic changes [Tilleard, 1999]. Based on previous 

work evaluating the utility of Qeff in predicting Qbf and on the findings of this study, I 

re-affirm that Qeff is a good predictor of Qbf in bed load-dominated, coarse bed streams. 

However, Q1.5 appears to predict Qbf fairly accurately as well in stable, quasi-

equilibrium, coarse bed rivers. See Doyle et al. [2007] for criticisms and qualifications for 

the use of Q1.5 or other hydrologic predictors of Qbf, especially in unstable or urban 

channels. I submit that using Qs50 to predict Qbf in suspended load-dominated rivers 

with fine beds is more accurate than Qeff and the two hydrologic predictors evaluated in 

this study.  

Barry et al. [2008] demonstrate that the Qeff calculation based on calibrated 

sediment transport equations is not sensitive to the type of transport equation used in 

bed load-dominated, coarse bed rivers. This is because the location of peak of the 

sediment yield density curve (i.e., the discharge value or Qeff) does not shift across 

different sediment transport relations (Figure 3.1a). The location of this peak is a 

function only of β or the slope of the empirical discharge-sediment load relation. The 

same is likely to be true for Qs50 because it is based on the relative position along the 
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cumulative sediment yield curve. Errors in absolute sediment yield estimates will not 

affect this. The value of β at a particular site is largely influence by channel geometry 

and bed material grain size [Emmett and Wolman, 2001; Barry et al., 2004]. In the 

present study, I find that both Qeff and Qs50 tend to over predict Qbf for values of β > 

2.5 in coarse bed streams. In forthcoming work, I am exploring the sensitivity of Qs50 to 

prediction from semi-empirical sediment transport relations used where sediment 

measurements are not available.  

The Qs50 calculation requires the same data as the Qeff calculation. See 

Biedenharn et al. [2000] and Soar & Thorne [2001] for thorough explanations of data 

sources and calculation procedures for Qeff. Note that I use a method that diverges from 

conventional approaches in this study (see section 2.3). Below, I detail general 

approaches to calculating Qs50 given a variety of data sources and availability. Generic R 

code that can be used to perform some of these calculations is provided in Appendix 3C. 

1. Flow Record 

a. Ungaged Sites: a scaled regional flow duration curve (FDC) or scaled flow record 

from a nearby river. Note that if using an FDC, it must first be converted to a 

CDF (CDF = 1 – FDC), and then converted to a PDF through numerical 

differentiation.  

b. Gaged Sites: a flow record with at least 10 years of daily flow data. Sub-daily 

flow data is preferred (e.g., hourly) due to the highly nonlinear relationship 
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between flow and sediment transport, but is often hard to find for longer periods 

of time. 

2. Sediment Transport Relation 

a. No Sediment Transport Data: a calibrated sediment transport relation 

appropriate for the river of interested (e.g., total load equation for fine bed rivers 

and bed load equation for coarse bed rivers). See Hey [1996] and [Torizzo and 

Pitlick, 2004] for examples. I compare estimates of Qeff and Qs50 generated from 

modeled sediment loads with those generated from the empirical models used 

herein in Chapter 4. 

b. Measured Sediment Transport Data: an empirical relation between discharge and 

sediment transport. For suspended bed material data (>0.0625 mm) data in fine 

bed sites as well as bed load data for coarse bed sites a bias-corrected linear 

regression between log-transformed variables can perform well [Vogel et al., 2003; 

Bunte et al., 2014]. LOADEST a USGS statistical package provides other options 

for multivariate linear regression between suspended bed material load and 

various flow metrics, which may improve the fit [Runkle et al., 2004]. If using 

LOADEST, I recommend also using add-on software that formats data and outputs 
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for the USGS software such as LOADRUNNER9, Purdue University's online sediment 

regression tool10. 

If using a flow record to calculate Qs50 (either scaled or from a nearby gage on 

the same river) one must simply calculate the sediment yield record using an 

appropriate sediment transport relation of the form: Qs = f(Q). The cumulative 

sediment yield curve can then be calculated by sorting the sediment yield record and 

creating a cumulative sediment yield curve (e.g., Figure 3.1b), which is essentially the 

cumulative sum of m/n plotted as a function of the sorted flow record, where m = rank, 

and n = the number of values in the flow record. The value of Qs50 can then be 

determined by finding the discharge at which the cumulative sediment yield is equal to 

50% through linear interpolation.  

If using a regional FDC scaled to a particular site, calculating Qs50 becomes much 

more cumbersome because one cannot directly calculate the cumulative sediment yield 

curve from the FDC. As previously discussed one must first convert the FDC to a CDF 

by taking its compliment, and then into a PDF through numerical differentiation 

[Orndorff and Whiting, 1999]. The sediment transport relation may then by multiplied 

by the flow PDF to create a sediment yield density curve. The cumulative sediment 

yield curve may then be calculated by numerically integrating the sediment yield 

9 http://environment.yale.edu/loadrunner/ 

10 https://engineering.purdue.edu/~ldc/LOADEST/ 
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density curve. Data acquisition as well as the hydrologic and sediment transport 

analysis necessary for this calculation have been automated within eRAMS, an online 

hydrologic database and analysis toolset with options for gages and ungaged basins11.          

5 Conclusion 

I evaluate the accuracy and bias of two predominant methods used to predict Qbf: 

(1) Hydrologic predictors based on a flood with a specified return interval as an analog 

to Qbf based on the a flood series: the 1.5 to 2 year flood (Q1.5 and Q2, respectively), and 

(2) Process-based predictors based on the magnitude and frequency of sediment 

transport: the effective discharge, Qeff, and the half yield discharge, Qs50. I analyze bed 

material sediment transport data concurrent with long term flow records from 98 sites 

across the U.S. ranging from coarse bed, bed load-dominated channels and fine bed, 

suspended load-dominated channels with drainage areas ranging from 1 km2 to 3x106 

km2.  

I find that: 

1.  The half yield discharge—the discharge associated with 50% of cumulative sediment 

yield, Qs50—predicts Qbf better than most other methods, especially in fine bed 

rivers.  

11 http://www.erams.com/crosssection 
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2.  When compared to Qeff, Q1.5, and Q2, Qs50 is the least biased estimator of Qbf for 

fine bed sites, is nearly as unbiased as Q1.5 for coarse bed sites, and has the lowest 

mean absolute percent error and root mean square error for fine bed sites.  

3.  Q1.5 predicts Qbf approximately as well as Qeff and Qs50 for coarse bed sites.  

I characterize the behavior of this process-based predictor of Qbf to highlight 

circumstances where sediment yield analysis may be important in estimating the 

bankfull discharge. I also provide guidance for calculating and using process-based 

predictors of Qbf. The ability of Qs50 to predict Qbf in fine bed sites represents a novel 

finding not previously discussed in this context. 
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CHAPTER 4  

Quantifying the uncertainty of sediment yield and                    

sediment yield metrics12 

Summary 

Uncertainty is endemic in any activity involving sediment yield estimation in 

rivers, which generally relies on statistical or physically-based models of sediment 

transport and hydrologic records. Uncertainty in estimates of sediment transport and 

sediment yield have been studied extensively; however, uncertainty in metrics that 

describe the magnitude and frequency of sediment yield has received little attention. In 

this chapter I consider the uncertainty of two sediment yield metrics: the most effective 

and half-yield discharges, Qeff and Qs50, from the perspectives of statistical uncertainty, 

environmental variability and non-stationarity, as well as physical model error. 

To explore statistical uncertainty in estimating sediment yield metrics, I develop 

methods to propagate uncertainty in the sediment load-discharge relationship and in the 

Not yet published. Joel Sholtes collected the data, conducted all of the research, analysis, and writing on 

this chapter with input and feedback from his advisor. Mazdak Arabi provided guidance on statistical 

uncertainty analysis. Specific information on the sites used in the urbanization study, such as population 

growth, was provided by Tyler Rosburg. Brian Bledsoe, Peter Nelson, and Daniel Baker co-authored the 

research proposal that funded a portion of this work. The basic framework for quantifying the uncertainty 

of sediment yield metrics was outlined in that proposal. 
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flow frequency distribution to create confidence intervals for Qeff and Qs50. I explore the 

relationship between the relative width of the uncertainty intervals and the uncertainty 

in the flow and sediment data.  I find that as the number of sediment load observations, 

and the value of the sediment rating curve exponent increase, the relative width of the 

confidence interval for the half-yield discharge decreases. This uncertainty spread 

increases with the coefficient of variation of the flow record. In urbanizing watersheds, 

with increasing trends in flow variance, decadal estimates of Qeff and Qs50 increase 

dramatically compared to estimates based on the entire flow period of record. Finally, I 

estimate Qeff and Qs50 using empirical models of sediment load and one-dimensional, 

physically-based models. Physically-based models that match the slope of the sediment 

load-discharge relationship performed well. This is the case in estimating Qs50 using total 

load models for fine bed sites, but generally not the case for bed load models used on 

coarse bed sites. Estimates of Qeff are not sensitive to modeled sediment load except in 

cases of multimodal sediment yield curves. By exploring the nature of uncertainty in 

sediment yield from these perspectives, I provide tools and guidance for calculating and 

utilizing sediment yield metrics for river design and management.  

1 Introduction 

The most effective discharge, Qeff, and the half-yield discharge, Qs50: that which 

half of cumulative sediment yield over a sorted flow record occurs are sediment yield 
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metrics that have been touted as important and useful discharge indices for predicting 

bankfull discharge as well as predicting river response to environmental change 

[Andrews, 1980; Tilleard, 1999; Soar and Thorne, 2001; Doyle et al., 2007; Simon et al., 

2011, Chapters 2 and 3 of this Dissertation]. Many studies have estimated Qeff across a 

wide variety of rivers and estimated its frequency relative to the bankfull discharge as 

well as other peak flow indices [Andrews, 1980; Biedenharn and Thorne, 1994; Nash, 

1994; Emmett and Wolman, 2001; Hassan et al., 2014]. However, little work has been 

done to characterize the uncertainty associated with these metrics, focusing on Qeff only, 

and considering error associated with calculation methodology [Nash, 1994; Vogel and 

Fennessey, 1994; Orndorff and Whiting, 1999; Sichingabula, 1999; Soar and Thorne, 

2001; Goodwin, 2004; Klonsky and Vogel, 2011], rather than explicit quantification of 

uncertainty. To my knowledge, no studies consider uncertainty associated with Qs50, a 

relatively unexplored sediment yield metric. Previous work on this these topics is 

discussed in more depth in relevant subsections in the Background and Methods section 

of this chapter.  

Quantifying uncertainty for sediment yield metrics based on magnitude-frequency 

analysis must incorporate uncertainty associated with the sediment load-discharge 

relationship as well as the flow record. A multitude of factors contribute to uncertainty 

in sediment yield estimation on rivers. These include measurement error, model 

specification and parameter error, hysteresis in the sediment load-discharge relationship, 

as well as the cumulative error associated with integrating sediment load predictions 
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over an extended time series to name a few [Wilcock, 2001; Bunte et al., 2004; Grams 

and Schmidt, 2005; Schmelter et al., 2012; Grams et al., 2013]. In the case of sediment 

yield metrics, I consider uncertainty from the perspectives of statistical uncertainty, 

environmental variability, as well as model error, and explore the sensitivity of sediment 

yield metric uncertainty these sources. 

This chapter focusses on three main topics: 1) quantifying and propagating 

uncertainty associated with the sediment load-discharge relationship and the flow 

frequency distribution in calculating sediment yield metrics, 2) characterizing the 

influence of non-stationarity in the flow regime due to environmental change on 

sediment yield metrics, and 3) quantifying the error associated with calculating sediment 

yield metrics using measured vs. modeled sediment load.  

Part 1 considers the uncertainty inherent in statistical representations of the 

sediment load-discharge relationship as well as statistical representations of the flow 

frequency distribution. In general, gaged flow records are considered absolute and their 

uncertainty is not considered [Clarke, 1999]; however, as with any natural system, 

inferences and predictions made on a sample (even a large sample) are subject to 

uncertainty because the sample—in this case the daily or instantaneous flow record—

only captures a limited amount of variability from the underlying population. In this 

focus area, I explore methods to quantify uncertainty in the sediment load rating curve 

with confidence and prediction bands for log-linear regression models. I then consider 

methods for uncertainty analysis of the flow record, focusing on developing confidence 
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bands for representations of the flow probability density function (PDF). Using these 

representations of uncertainty in the sediment rating curve and flow PDF, I then 

propagate the uncertainty in calculating sediment yield metrics and consider its 

sensitivity to various sediment yield input and hydrologic variables. 

Part 2 considers uncertainty from the standpoint of stationarity of the flow 

record used in calculating sediment yield metrics. Stationarity assumes that the mean, 

variance, and other statistical moments of the underlying population of flows at a point 

on a river do not change with time. Put another way, stationary natural systems 

“…fluctuate within an unchanging envelope of variability” [Milly et al., 2008, p. 573]. 

This may not be the case in watersheds undergoing land use change due to urbanization 

or those acutely affected by climate change, for example.  

As discussed in Chapter 3, Qeff and Qs50 are in some cases useful in predicting the 

bankfull discharge for channel design and management. Part 3 of this chapter explores 

the question that practitioners may face when using sediment yield metrics: given the 

lack of site-specific sediment load data and the need to model this, how accurate are 

estimates of sediment yield metrics calculated from modeled sediment load? I compare 

estimates of sediment yield metrics calculated from empirical and physically-based 

sediment load models. 
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2 Background and Methods 

2.1 Uncertainty in the Sediment Load Rating Curve 

Continuous records of sediment load are limited and tend to exist only on larger 

rivers [Turcios and Gray, 2001; USGS, 2014]; therefore, regression methods are often 

necessary to develop continuous relationships between discharge—or other covariates 

such as turbidity—and sediment load. This is often referred to as double sampling 

[Gilbert, 1987] wherein simultaneous samples are collected of two variables and a 

statistical relationship is derived between the variable that is difficult or costly to 

measure (sediment load) and the variable that is easier to measure (discharge). 

Technically speaking, this is a triple sample problem because discharge is typically 

estimated as a statistical relationship between river stage (or some partial water column 

acoustic Doppler velocimeter measurement) and discrete discharge field measurements.   

Quantifying sediment yield has many implications for environmental quality, 

watershed management, river and reservoir design and maintenance. Therefore, 

uncertainty analysis of sediment yield estimates based on sparse sediment load 

measurements and continuous flow records has been studied extensively [Walling, 1977b; 

Moog and Whiting, 1998; Syvitski et al., 2000; Simon et al., 2004; Rustomji and 

Wilkinson, 2008; Vigiak and Bende-Michl, 2013]. Not all methods involve bivariate 

regression analysis between flow and sediment load as in this study. Many forms of 

multivariate regression models which use various flow and season-related covariates 
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(some autoregressive) have been proposed [Cohn et al., 1992; Wang et al., 2011], as well 

as weighted averaging and random sampling methods for more dense and semi-

continuous sampling designs [Thomas, 1985]. Incorporation of additional continuously-

sampled covariates such as turbidity and “backscatter” signals from acoustic Doppler 

devices has been shown to improve predictions of suspended sediment load [Topping et 

al., 2007; Landers and Sturm, 2013].  Finally, indirect methods that utilize geomorphic 

change over time from either topographic surveys or LiDAR differencing techniques are 

also used to estimate sediment yield and create sediment budgets [Grams and Schmidt, 

2005; Wheaton et al., 2009].  

The present study focuses on bivariate models fitted to measurements of 

sediment load and discharge. Fitted non-linear models (e.g., Qs = α(Q – Qc)
β , where Qc 

is a critical discharge below which Qs = 0) have been recommended, especially for bed 

load transport  [Wilcock et al., 1996]. However, Gaeuman et al. [2015] found that non-

linear least squares fitting produces large error and bias when zero transport data exist. 

They recommend a maximum likelihood fitting procedure for the critical discharge 

nonlinear model for Qs which requires specifying the log-likelihood function for sediment 

transport rate and finding model parameter combinations that maximize this function. 

While the method appears to perform better than log-linear and non-linear least squares 

regression mode, the data requirements for this approach extend beyond the data 

available for most coarse bed sites included in this study. Bayesian methods for 

150 



 

estimating nonlinear model parameters may also yield good model fits [Reitan and 

Petersen-Øverleir, 2007]. 

Due to the large number of sites in this study and limited data beyond sediment 

load and discharge measurements, I have chosen the generic log-linear model to fit to 

these data. As discussed in Chapter 2, I have culled sites where a poor log-linear fit 

exists between sediment load and discharge. I use three bivariate, log-linear regression 

methods that vary in their complexity based on assumptions about the data as well as 

methods for quantifying uncertainty. Bivariate sediment load–discharge data are often 

log-linear as sediment load is nearly always a non-linear function of discharge (e.g., Qs = 

αQβ, where β > 1 for sediment). I have used this type of transformation for my sediment 

rating curves because it works well in most cases (see results from Chapter 2 in 

Appendix 2A) and because I require a parsimonious model that can be applied on 153 

sites with limited data as discussed in Chapter 2.  

A drawback of this model choice is that it cannot accommodate zero sediment 

load data. This may be significant in coarse bed rivers where a threshold for sediment 

entrainment exists [Gaeuman et al., 2015]. However, the data needed to quantify Qc is 

not available for all coarse bed sites and I therefore neglect zero transport data in fitting 

my models. If zero transport data exists for a site, I incorporate this information into 

the sediment yield analysis as discussed in Chapter 2. Finally, mean response calculated 

from un-transformed regression models based on log-transformed data are biased 

downward because negative residuals near the mean are given similar weight as more 
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distant positive residual, necessitating  a log transformation bias-correction factor 

[Ferguson, 1986; Cohn et al., 1989]. This is discussed in more depth in Chapter 2, 

though it does not apply to the present question of quantifying the uncertainty of the 

sediment yield metrics Qeff and Qs50 because these metrics are not sensitive to the value 

of the coefficient in the sediment rating curve, only the exponent [e.g., Barry et al., 

2004]. 

I compare the following log-linear regression models: 1) an ordinary least squares 

model, 2) a robust linear regression model, and 3) a robust Bayesian linear regression 

model. With data from selected coarse and fine bed sites, I calculate the mean response 

or fitted regression line, a 95% confidence band for the mean response, as well as a 95% 

prediction band for a future predicted response using each method. Methods for each 

regression approach are outlined in Appendix 4A. 

2.2 Uncertainty in the Flow Record  

Uncertainty in a gaged flow record has not received much attention to date. 

Much work on flow uncertainty analysis has been focused on ungaged basins and 

continuous hydrologic model output [Beven and Freer, 2001; Castellarin et al., 2004; 

Pappenberger and Beven, 2006]. Insofar as a flow record is a sample from an underlying 

population, it is uncertain in a statistical sense. Vogel and Fennessey [1994] introduced 

the annual flow duration curve (AFDC), which they argue can be treated as a random 

sample itself for which statistics may be calculated, such as the median AFDC as well as 
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the 2.5th and 97.5th percentile AFDCs. In this manner, a confidence interval may be 

constructed for an annual flow duration curve. Though this may be of interest for water 

resources planning and environmental flows questions, it is unfortunately not useful for 

sediment yield analysis. Average annual sediment yield, a non-linear function of 

discharge, is grossly under-estimated by the median AFDC because, by definition, it 

does not represent larger flow events well. Less frequent, larger flow events tend to drive 

the majority of sediment yield, especially in coarse bed systems. 

Outside of this statistical uncertainty question, other forms of flow uncertainty 

exist. Some have considered the uncertainty inherent in the creation of discharge rating 

curves and quantified how this propagates to the flow record [Moyeed and Clarke, 2005; 

Reitan and Petersen-Øverleir, 2007]; but this is a measurement error question and I do 

not consider it here. Non-stationarity in precipitation due to climate change as well as in 

the runoff response due to both climate and land use change may create non-stationarity 

in the flow record. [Christensen and Lettenmaier, 2007; Milly et al., 2008; Vogel et al., 

2011]. If the mean flow rate or the flow variance changes with time, then a flow record 

may not be sampling a stable underlying population distribution.  

Here I consider the uncertainty in the flow record from a statistical standpoint as 

well as from an environmental non-stationarity standpoint. I first quantify uncertainty 

in the flow record by creating non-parametric confidence bands for the flow PDF. I also 

consider the influence of non-stationarity on the values of Qeff and Qs50. To do this, I 

compare estimates of these sediment yield metrics based on sequential decadal flow 
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records in several urbanizing watersheds previously studied by Konrad et al. [2005] to 

demonstrate their sensitivity to changing flow regimes. 

2.2.1 Flow Frequency Distribution 

Magnitude-frequency analysis of sediment transport involves representing the 

flow record probabilistically. When referring to the probability distribution of a flow 

record, I use the term PDF loosely. Representing a flow record as a probability 

distribution of independent samples, such as the lognormal distribution, has a long, 

inaccurate history of use in geomorphology and engineering [Wolman and Miller, 1960; 

Andrews, 1980; Vogel et al., 2003; Goodwin, 2004]. Flow records are by definition 

autocorrelated, violating the independence assumption inherent in representing them as 

PDFs [Salas, 1993]. Perhaps using histograms to represent the relative frequency of 

binned flows in MFA avoids the independence assumption by not claiming to represent 

the probability density distribution, rather the frequency distribution. However, that 

may simply be an argument of semantics. Representing flow records as or fitting 

continuous PDFs to flow records may be sufficient for the purposes of MFA; however, 

deriving uncertainty estimates of flow records based on fitted PDFs (empirical or 

parametric) may cross into more dangerous territory, statistically-speaking. 

Nevertheless, I explore methods for representing uncertainty in PDFs fitted to flow 

records with the aim of propagating all forms of uncertainty into sediment yield metrics. 
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To represent the frequency of flows, a histogram approach is most often used 

[Biedenharn et al., 2000] whereby flows are sorted into bins and the relative frequency of 

flows within each bin is calculated. Soar and Thorne [2001] have explored the sensitivity 

of the Qeff estimate to the binning method extensively, recommending on the order of 25 

arithmetically-spaced bins to be used in the calculation, finding that logarithmically-

space bins result in overestimating Qeff. Several studies have explored the sensitivity and 

error of estimates of Qeff generated from different PDFs [Nash, 1994; Vogel et al., 2003; 

Goodwin, 2004; Sholtes et al., 2014], finding mixed results in their ability to represent 

the flow regime well. 

In Chapter two, I compare several methods for representing the flow frequency 

distribution, including kernel density functions as proposed by Klonsky and Vogel 

[2011], and conclude that a modified method described by Orndorf and Whiting [1999] 

and also used by Emmett and Wolman [2001] performed the best over all data sets. 

This method involves numerical differentiation of the empirical CDF of the flow record 

to create a flow PDF, which can then be multiplied by a sediment transport function to 

generate the sediment yield curve.  

 This method works well when estimating a single PDF of a flow record, but does 

not work well when also calculating confidence bands of a PDF. Numerical 

differentiation is an approximate method and can result in unsmooth, and improper 

upper and lower-bound confidence band PDFs. Direct estimation of a statistic is 

preferred over indirect estimation. This means directly estimating confidence bands of a 
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PDF, rather than generating them by differentiating confidence bands for a CDF. I 

proceed with a method for calculating pointwise confidence bands for an empirical PDF, 

namely a kernel density function, using an asymptotic normality assumption [Härdle, 

1991, p.62].  

To my knowledge, no method exists for calculating confidence bands for 

parametric PDFs such as the lognormal distribution other than with bootstrap re-

sampling. Bootstrapping a flow record and creating a bootstrap sample of the fitted 

PDFs results in very narrow confidence bands. This is because a flow record is generally 

composed of 1000’s of highly auto-correlated samples. Any re-sample will be largely the 

same as the original.  Confidence intervals for the parameters of a PDF can be 

calculated using Bayesian or maximum likelihood methods, but a confidence interval for 

model parameters does not translate to a pointwise confidence band of a density 

function. Therefore, I proceed with only one method for creating confidence bands for 

the flow frequency distribution based on an empirical PDF or ePDF. 

 Kernel density functions (KDFs) estimate the empirical PDF, )(ˆ xf h , by fitting a 

series of continuous kernel functions to the sorted data over a moving window with a 

specified bandwidth, h. While the kernel function is parametric, the resulting ePDF is 

non-parametric in that it takes on whatever shape the data distribution has as a 

function of the bandwidth value and choice of kernel function. As discussed in Chapter 

2, KDFs did not perform well in MFA. This is due to the spiky and highly variable 
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nature of the sediment yield curve they generate upon transformation. While this 

behavior can be remedied by over-smoothing (large bandwidth value), over-smoothing 

results in increase bias in the estimate of density (generally reducing estimated density 

at a given discharge value), potentially leading to erroneous results. Nevertheless, KDFs 

represent the most direct method for calculating the uncertainty in the flow PDF. 

 While more accurate and complex methods exist [e.g., Hall and Horowitz, 2013], a 

basic approach to pointwise confidence bands for a KDF rely on the fact that under 

certain specifications of the bandwidth, the sampling distribution of the density 

estimate, )(ˆ xf h , is asymptotically-normal [Härdle, 1991]. The equation for the pointwise 

confidence band is: 
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where Κ2 is the square of the integral of the kernel function evaluated from (-∞, ∞). I 

used a Gaussian kernel resulting in Κ2 = 1 / (2√π). The width of this confidence band 

increases with the values of the estimated density, )(ˆ xf h , and decreases with the sample 

size (length of flow record). Note that I used the value of the effective sample size for n 

in (4.1). This adjusts the sample size by accounting for autocorrelation in the flow 

record and is an estimate of the number of independent samples. To calculate this, I 

used the effectiveSize() function in the coda package in R [Plummer et al., 2006].  

157 



 

2.2.2 Flow Cumulative Probability Function 

I derive the cumulative sediment yield curve FQs(Q) from the following equation: 

),...,1(,
)(

)(
)(

1

1

0

0 nk

Q

Q

dQQf

dQQf
QF

n

i
s

k

i
s

Qs

Q

Qs

Qs ∈≈= ∑
∑

∫
∫

=

=
∞  (4.2) 

where fQs(Q) is the sediment yield curve, a continuous function of Q, estimated by the 

cumulative summation of sorted sediment yield normalized by the total summation of 

sediment yield with k equal to the ith sorted Qs value and n equal to the total number 

of values in the flow record. Note that this is not a CDF. For this study, I estimate FQs 

by taking the cumulative numerical integral of the sediment yield curve normalized by 

the total area under the sediment yield curve. Deriving the cumulative sediment yield 

curve from the sediment yield curve rather than directly from the flow record is required 

to incorporate the uncertainty bands estimated for the PDF. This cumulative integral 

estimate compares well with the direct estimate from the cumulative sediment yield 

record.  

I cannot estimate the uncertainty of the cumulative sediment yield curve directly 

because it is not a cumulative probability function, which is defined as follows for a 

positive, random variable X = {x1, x2, … , xn}: 
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where the right most equality defines the empirical CDF with {} equaling unity if the 

argument inside is true and zero if not. To estimate FX for sediment yield, one could 
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calculate the eCDF of the sediment yield record or numerically-integrate the PDF of the 

sediment yield record. The distinction between 4.3 and 4.2 lies in the fact that equation 

4.2 is generated from the product of a sediment rating curve and a PDF of flow, both a 

function of discharge, or from the cumulative, normalized sum of sediment yield. 

Whereas equation 4.3 would simply be calculated from a PDF of sediment yield or 

directly from an eCDF of the sediment yield record. Equation 4.2 is plotted with the 

fraction of cumulative sediment yield as ordinates and discharge as abscissa, whereas 

equation 4.3 is plotted with ordinate units of cumulative probability of sediment yield 

and abscissa units of sediment yield. While the cumulative probability of sediment yield 

is an interesting function to explore, the discharge values associated with its quantiles 

are not as physically-meaningful as those from the cumulative sediment curve. 

2.2.3 Non-stationary Flow Record 

Up to this point, I have calculated sediment yield metrics using all of the daily 

flow data within the period of record. This approach allows one to use more data (a 

larger sample), but it also assumes that the mean and variance in the flow record are 

constant or stationary over time. In other words, it assumes that the statistical 

moments of the population of flows, of which the gaged record is a sample, are 

temporally invariant. Because of environmental change (e.g., climate and land use 

change), precipitation patterns and intensity, evapotranspiration, the runoff response, 

and ultimately the flow regime may be changing with time [Christensen and 
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Lettenmaier, 2007; Milly et al., 2008; Vogel et al., 2011]. Discerning trends in the 

historical flow record due to climate change can be difficult given the variability in flow 

in most rivers resulting in many different interpretations of flow trends due to climate 

change [Easterling et al., 2000; Cayan et al., 2001; Barnett et al., 2008; Ray et al., 2008; 

Rajagopalan et al., 2009]. However, discerning trends in the runoff response due to 

urbanization is often hard to miss from a statistical as well as geomorphic point of view 

[Booth, 1990; Konrad et al., 2005; Vogel et al., 2011].  

To this end, I consider how a temporally variant mean and/or variance in a flow 

record might influence estimates of sediment yield metrics. I evaluate this in several 

urbanizing watersheds in which Konrad et al. [2005] studied how urbanization influences 

the values of certain flow percentiles. These streams are located in the greater 

metropolitan area of Seattle and have coarse beds. The watersheds of these streams 

began urbanizing in the 1970s with subsequent increases in flashiness and the magnitude 

of peak discharges over time. Konrad et al. [2005] provide additional background 

information on these sites. Rosburg [2015] did not find significant trends in annual 

precipitation depths near these watershed over the study period indicating that the 

change in flow mean and variance resulted primarily from land use change. 

To study the influence of a non-stationary flow record, I divide the flow records 

from each stream by decade and calculate MFA metrics based on flows within each 

decade as well as for the entire period of record. As demonstrated in Chapter 1, MFA 

conducted using short flow records (e.g., ≤ 10 years) is sensitive to large values of β, 

160 



 

often resulting in Qeff becoming the largest discharge on record (Figure 1.4). Using 

decadal flow records to directly calculate Qeff, for example, results in highly-scattered 

values of Qeff that are likely inaccurate. To explore how trends in mean and variance in 

the flow record due to urbanization influence sediment yield metrics, I fit continuous 

lognormal distributions to these data using the method of moments as discussed in 

Chapter 1. Because no sediment load data are available for these sites, I calculate 

sediment yield metrics using β values ranging from 1.5 to 4 (reasonable for coarse bed 

rivers such as these). I then explore sediment yield metric sensitivity to non-stationary 

flow records as a function of β. Note that the value of α does not influence these 

calculations and is therefore set to an arbitrary value of 0.01. As a control, I also 

conduct this same procedure on two rural watersheds from the same area that have not 

urbanized [Konrad et al., 2005, Rosburg 2015].   

2.3 Sediment Yield Metric Uncertainty 

By combining uncertainty bands from the log-linear regression sediment load 

model with those of the flow PDF, I can generate confidence and prediction bands for 

the sediment yield curve as well as the cumulative sediment yield curve. Finding the 

discharge values associated with the upper and lower confidence and prediction bands 

for the sediment yield curve will then produce confidence and prediction intervals for 

Qeff. Evaluating the confidence and prediction bands of the cumulative sediment yield 
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curve at values of 50% of cumulative yield will produce confidence and prediction 

intervals for Qs50. The generic equation for sediment yield uncertainty bands is: 

lowslowhlowQs QQQfQf )()(ˆ)( ×=  

uppsupphuppQs QQQfQf )()(ˆ)( ×=  

(4.4) 

where fQs(Q) is the sediment yield curve, Qs(Q) is the sediment rating curve—both a 

function of Q—and the subscript low and upp indicate the lower and upper 95% 

confidence or prediction band value of these functions evaluated at Q. 

The generic equation for cumulative sediment yield uncertainty bands is: 
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I calculate confidence intervals for Qeff and Qs50 using this methodology for all fine and 

coarse bed sites. I also calculate the normalized width of these intervals, (Qeff,upp – 

Qeff,low)/Qeff, and search for aspects of the flow and sediment load data that might 

influence the value of this normalized width. 

As discussed in the Results below in Section 3.2, uncertainty intervals for Qeff 

calculated from the product of upper and lower uncertainty bands for the sediment 

rating curve with upper and lower bands for the flow frequency distribution do not 

result in much uncertainty in the value of Qeff, that is, the peak of the upper and lower 

sediment yield curve confidence and prediction bands tend to line up or fall very close to 
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one another. Therefore, I also use a different method to propagate uncertainty in 

sediment yield metrics: I bootstrap them. 

To do this, I use bootstrap samples of the rating curve coefficients (see bootstrap 

confidence band description in Section 4A.2) to create bootstrap samples of the upper, 

middle, and lower sediment yield curves. These are calculated from the product of the 

bootstrapped sediment rating curves with the upper and lower confidence bands for the 

kernel density function of flow (red bounds, Figure 4.3b) as well as the originally-

estimated (middle) kernel density function (black line, Figure 4.3b). I then calculate the 

cumulative integral of these bootstrapped curves to create bootstrap samples of the 

upper, middle, and lower cumulative sediment yield curves. This results in bootstrapped 

samples of upper, middle, and lower values of Qeff and Qs50. I calculate the outer 

confidence interval values for each metric using the 97.5th and 2.5th percentile values 

from the upper and lower bootstrapped samples, respectively. I also calculate these 

percentile values from the bootstrapped sediment curves themselves at gridded discharge 

values to create pointwise confidence bands for the sediment yield and cumulative 

sediment yield curves (Figure 4.5). However, confidence intervals for Qeff and Qs50 are 

not based on these confidence bands, rather the bootstrapped values of these metrics 

themselves.  
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2.4  Modeled vs. Measured Sediment Yield Calculation  

Here I compare estimates of Qeff and Qs50 generated from empirical, statistical 

models of log-transformed sediment load and instantaneous discharge data (empirical 

models) with those generated from calibrated, physically-based, sediment transport 

capacity models (physical models). Note that I use the phrase “physical models” here to 

refer to physically-based equations and not in the literal sense of a physical model. In 

general, sediment load data are not available for a particular stream or river of interest 

as they are time consuming and expensive to collect. Therefore, I evaluate how robust 

estimates of sediment yield metrics are to the additional uncertainty associated with the 

lack of such data and the need to model sediment transport. In a comprehensive study 

of effective discharge calculation using bed load sediment transport relations, Barry et 

al. [2008] found that the choice of equation largely did not influence the value of Qeff for 

a particular site. This is because the steepness of the sediment transport-discharge 

relationship in log-space is what influences the position of the peak of the sediment yield 

curve. The absolute value of sediment yield (area under the sediment yield curve) is not 

important in this particular calculation, hence the absolute accuracy of estimating 

sediment yield does not come into play. Like Qeff, the Qs50 yield metric is also only 

sensitive to the rate of increase in sediment transport with discharge (e.g., the value of 

β). This is because the cumulative sediment yield curve is normalized by the total yield 

value removing the influence of uncertainty in the absolute value of yield and hence the 

values of the coefficient, α. 
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I compare estimates of Qeff and Qs50 using various physically-based models with 

those calculated from the empirical models used in Chapters 2 and 3. I conduct this 

analysis on two coarse and two fine bed sites to explore the strengths and weaknesses of 

various sediment transport models as well as representations of the modeled stage-

discharge relationship (Table 4.1). In an effort to include a variety of flow regimes and 

channel geometries, I selected sites with relatively small and large drainage areas in each 

bed material category.  

For this comparison on coarse bed sites, I use three physical models and three 

representations of the stage-discharge relationship to model sediment transport. The two 

coarse bed sites studied are: Trapper Creek, Idaho (TC); and the South Fork of the 

Salmon River, Idaho (SR) (site numbers: 1333850F and 13310700). I use the following 

bed load models: Parker [1979], a single grain size, surface-based model; Wilcock and 

Kenworthy [2002], a two-fraction surface- or sub-surface based model; and Barry et al. 

[2004], a semi-empirical power-law model that is a direct function of discharge rather 

than bed shear stress (referred to as Parker, WK, and Barry hereafter).  

Using the Parker model, I also explore different representations of the stage-

discharge relationship, an important aspect and additional source of uncertainty in 

sediment transport modeling. Using Manning’s flow resistance equation, cross-section 

geometry, and channel slope, I calculate cross-section averaged depth, bed shear stress, 

width, velocity, and discharge as a function of water surface elevation (averaged 

depths). However, due to the spatially-variable nature of sediment transport across a 
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Table 4.1. Modeled vs. Measured Sediment Yield Site Characteristics 

Site No. Site Name Type 
Q-D 

Relation 
DA Slope FS D16 D50 D84 

(km2) (m/m) (%) (mm) (mm) (mm) 

1333850F Trapper Ck, ID Coarse XS, HG 21 0.0414 5.2 79 210 

13310700 SF Salmon River, ID Coarse XS, HG 855 0.0025 46 14 75 

09260050 Yampa R. at Deerlodge, CO Fine XS, HG 20,541 0.0030 100 0.27 0.41 0.68 

05568800 Indian Ck near Wyoming, IL Fine HG 162 0.0010 84 0.27 1.00 5.60 

NOTE: “XS” refers to cross-section derived depth-discharge relationship using Manning’s equation, and HG refers to      

at-a-station hydraulic geometry relation based on field measurements of channel and flow geometry at a range of discharges. 
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cross-section and the high degree of nonlinearity of sediment transport with discharge, 

using cross-section averaged values of hydraulic parameters to estimate sediment 

transport introduces additional error and may over- or under estimate sediment 

transport rate. Therefore, using the same flow resistance equation, I also calculate these 

hydraulic variables for vertical sections over the entire cross-section and sum sediment 

transport estimates across these intervals to calculate sediment load for a given 

discharge and water surface elevation (discrete depths). Finally, because a considerable 

number of stage, width, and flow area measurements were available for these two sites 

[BAT, 2013, describe by King et al. 2004] and are generally available at all USGS gages, 

I also used at-a-station hydraulic geometry relations derived from these data to calculate 

cross-section averaged shear stress and width as a function of discharge (hydraulic 

geometry depths). I provide graphs comparing the hydraulic geometry measurements, 

fitted at-a-station power law functions, and modeled results produced from the cross-

section geometry and Manning’s flow-resistance equation in Appendix 4C. There I also 

include the R code used to model the depth-discharge relationship at a cross section, 

create the at-a-station hydraulic geometry relations, and model sediment transport, and 

calculate the sediment yield metrics. 

The fine bed sites included in this portion of the study are the Yampa River at 

Deerlodge, CO (YR) and Indian Creek near Wyoming, IL (IC) (gage numbers: 09260050 

and 05568800, respectively). Considerably less channel geometry data are available for 

the fine bed sites used in Chapters 2 and 3. For these two sites, I relied on either a 
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cross-section derived from LiDAR and bathymetry surveys (YR), or hydraulic geometry 

data collected by the USGS at or near the stream gage as part of their regular field 

discharge measurements (YR and IC). I used the latter channel geometry data to create 

at-a-station hydraulic geometry relations for width, cross-sectional area, and average 

flow depth as a function of discharge. Channel slope was estimated from bed profile 

LiDAR data (YR) and from the topographic slope along the channel length as measured 

with a USGS topographic map in Google Earth (IC). I compare empirical models of 

sediment transport for these two sites with the following total load physical models: 

Yang’s [1979] d50 sand model, and Brownlie’s [1981] total load and depth predictor 

model, both of which model suspended bed material load (sand) (referred to as Brownlie 

and Yang hereafter). These models are driven by depth-, area- and velocity-discharge 

relationships derived from cross-sectional geometry and the Manning’s flow resistance 

equation (YR) as well as at-a-station hydraulic geometry relations generated from USGS 

field measurements (YR and IC). 

3 Results and Discussion 

3.1  Uncertainty in the Sediment Load Rating Curve 

Here I consider how the three different regression methods—ordinary least 

squares, robust, and Bayesian—compare in their representation of the mean response of 

sediment yield as well as their representation of confidence and prediction intervals for 
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coarse and fine sediment loads. At first glance over selected sites they all produce 

similar results (Figures 4.1 and 4.2, additional plots for three bed load sites are included 

in Appendix 4A). These sites were chosen to represent examples of regression with data 

having a small sample size, a large sample size, and heteroscedastic residuals. As 

discussed in Chapter 2 and Appendix 4A, OLS regression is sensitive to outliers. I have 

removed some outliers after an initial comparison between OLS and RLM models. These 

outliers were generally either incorrectly input data or very large or very small sediment 

loads at very small or very large discharge values and did not follow the general trend of 

the data. Having removed outliers from the sediment load data, OLS regression 

generated mean response lines that matched well with RLM and Bayesian lines. 

Bayesian mean response lines as well as confidence and prediction bands matched 

those of OLS fairly closely (Figure 4.2). This is likely due to the similar model structure 

of the two. OLS regression assumes normally-distributed residuals and this Bayesian 

model assumes a Student’s t-distribution with variable degrees of freedom based on the 

residual distribution for each site. Robust mean response lines tended to match Bayesian 

and OLS lines as well. However, the bootstrapped confidence and prediction bands tend 

to differ depending on the data variance structure. For example, with sparse data and a 

smaller log-linear correlation, case-resampling to construct a confidence band can lead to 

wildly varying model fits (mostly due to slope variation), and unrealistically-wide 

confidence bands. In one case, the variability was so large that the confidence bands 

crossed outside of the prediction band (Figure 4.2, top right). This is unrealistic and an 
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artifact of sparse and highly variable data as models fit with greater amounts of data—

heteroscedastic or not—do not exhibit this behavior. In another example, case 

resampling to create a bootstrapped confidence band seems to capture heteroscedasticity 

in the residuals well resulting in a broader confidence interval on one side (Figure 4.2, 

bottom middle).  

Bootstrapped prediction intervals tend to have the same width as those from the 

OLS and Bayesian models, though are often slightly out of phase. This may be 

associated with bootstrap bias—a result of slightly more positive vs. negative residuals, 

for example—for which I do not account. In all, prediction intervals from the three 

methods are approximately equal because all methods assume equal variance and 

sample from either the residuals themselves (bootstrap) or from symmetric distributions 

fitted to the residuals (OLS and Bayesian). Exploring unequal residual variance models 

is outside of the scope of this research, though Gaueman et al. [2015] propose such a 

model for bed load transport data with many zero transport observations. 

Moving forward, I would recommend using the robust Bayesian linear regression 

model because it can account for heavy-tailed residual distributions, unlike OLS, and is 

not sensitive to outliers. However, it is much more computationally-intensive, taking one 

to 15 minutes to run on a consumer grade 2011 desktop computer (3.1 GHz dual core 

processor with 4GB of RAM)—depending on the amount of data being modeled—and is 

best suited for site-by-site analysis rather than processing scores of datasets as a batch. 
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Figure 4.1 Side-by-side comparisons of OLS, RLM, and Bayesian regression models (left to right) for 

suspended sediment load at the Little Snake River near Lily, CO; the Potomac River at Shepardston, 

WV; and  Bullfrog Creek near Wimauma, FL, respectively (top to bottom). Gray lines in middle column 

are bootstrapped mean response lines. 
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Figure 4.2 Overlapping mean response lines, confidence, and prediction bands using OLS (solid), RLM 

(dashed), and Bayesian (dot-dashed) models for suspended sediment load at the Little Snake River near 

Lily, CO; the Potomac River at Shepardston, WV; and Bullfrog Creek near Wimauma, FL (top row) and 

Eggers Creek, ID; Big Sandstone Creek near Savery, WY; and the Big Wood River near Ketchum, ID 

(bottom row). 

 

All Bayesian models should be checked individually to ensure that the sampling scheme 

has converged on a stable posterior distribution for model parameters and predictions.  

The bootstrapped method for prediction bands is also computationally intensive 

as it requires on the order to 50,000+ re-samples to create smooth bands. The 

bootstrapped confidence band requires much fewer re-samples (on the order 1,000), but 

can be unstable (producing different results over different bootstraps) and artificially 
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wide under conditions of sparse, highly variable data. Therefore, to conduct uncertainty 

analysis on sediment yield metrics across all sites in this study, I use the OLS methods 

to generate confidence and prediction bands because they perform nominally as well as 

the Bayesian method in most cases. Also, because they have closed form solutions, they 

are orders of magnitude faster to calculate. 

3.2 Propagating Uncertainty in Sediment Yield Metrics 

The majority of emphasis in this section is on method development; however, I 

also explore what aspects of uncertainty in the data most influence the magnitude of the 

uncertainty in sediment yield metrics. 

3.2.2 Understanding Uncertainty of Sediment Yield Metrics 

Here, I demonstrate how one may quantify the statistical uncertainty associated 

with the sediment load-discharge relationship and the flow frequency distribution, and 

propagate this to create confidence bands for the sediment yield and the cumulative 

sediment yield curves (Figure 4.3). Results from this analysis for all sites are given in 

Tables 4A.1 and 4A.2 in Appendix 4A. Here I use a parametric technique to estimate 

confidence bands for the sediment rating curve (OLS regression) and a non-parametric 

kernel density function to estimate the confidence bands for the flow frequency 

distribution.  

One could also use a parametric technique for the flow frequency distribution 

uncertainty analysis and create a purely parametric confidence band for the sediment 
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yield curve. This would involve fitting a parametric PDF to the flow frequency 

distribution using the method of maximum likelihood, which generates confidence 

intervals for the parameters of a particular distribution. Confidence intervals for the 

regression coefficients of the sediment rating curve are also produced and depend on the 

linear model type such as OLS and RLM. In the case of the parametric sediment yield 

curve, the uncertain parameters are the sediment rating curve coefficients, α and β, and 

the parameters of the fitted PDF. In the case of the lognormal PDF, this would be μy 

and σy, or the mean and standard deviation of the logs of flow. Assuming normal  

 

Figure 4.3 Example of combining uncertainty in sediment rating curve in the form of confidence bands 

(a), with uncertainty in flow PDF in the form of a confidence band for the kernel density function (b), to 

generate uncertainty bands for sediment yield curves (c), as well as cumulative sediment yield curves (d). 

Plots are based on sediment load and flow record data from the Dee Pee River at Pee Dee, SC. 
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distributions for all parameters and using the confidence intervals to define the 

distributions of each parameter, one can then use a Monte Carlo sampling scheme to 

generate a large sample of sediment yield and cumulative sediment yield curves.  

A brief discussion on the use of prediction vs. confidence bands in calculating 

uncertainty intervals for sediment yield metrics is merited here. From both a frequentist 

and Bayesian perspective, prediction bands or intervals are the bounds within which 

future observations (a point rather than a mean) have a (1 – α)*100% probability of 

falling. In a regression setting, this is a function of the variance of the residuals as well 

as the value of the covariates, in this case discharge. Whereas confidence intervals or 

bands bound the mean response as opposed to some future observation. In calculating 

Qeff, one is simply interested in the mean frequency (or probability density) of sediment 

yield over time as well as the peak of that mean yield frequency. Therefore, using 

confidence bounds in the sediment yield curve as well as intervals for Qeff is reasonable. 

However, in estimating the uncertainty of Qs50, which is based cumulative sediment 

yield from individual observations, one could argue that using the prediction interval 

from the sediment rating curve is more appropriate.  

If one were to only incorporate uncertainty from the sediment rating curve and 

not the flow frequency distribution, I recommend using the prediction bands of the 

sediment rating curve to create a prediction interval for Qs50 based on the sorted, 

cumulative sediment yield record.  If incorporating statistical uncertainty from the 

sediment rating curve as well as the flow frequency distribution, then I recommend 
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using the confidence bands from the sediment rating curve as well as the flow frequency 

distribution. For the remainder of this section, I chose the confidence interval to 

calculate the relative width of uncertainty intervals for these metrics because they are 

based on long-term average sediment yields. 

3.2.2 Propagating Uncertainty in Sediment Yield Metrics 

I now turn to the results from propagating uncertainty in sediment yield metric 

estimates. As can be seen in Figure 4.3c, the above-reference method for propagating 

uncertainty into sediment yield metrics does not result in much variability in the 

estimate of Qeff—the prediction interval appears as a single line in the figure. The 

confidence and prediction intervals for the effective discharge values were generally very 

narrow in absolute terms because the position of the peak of the sediment yield curve is 

influenced largely by the slope (in log space) of the sediment rating curve (β value). 

Upper and lower confidence and prediction bands for the sediment rating curve are 

essentially parallel (though curvilinear) to the mean response regression line. In 

addition, the confidence bands for the kernel density function are vertically symmetric. 

This means that while great uncertainty exists within the absolute value of sediment 

yield as well as the probability density of a particular discharge, very little uncertainty 

exists in the location (discharge value) of the peak of the sediment yield curve. 

To further investigate the sensitivity of the relative width of the uncertainty 

interval for Qeff to the variability in the sediment load data about the mean response 
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line, I explore an additional method to propagate uncertainty in sediment yield metrics: 

I bootstrap the sediment yield and cumulative sediment yield curves (Figure 4.5). This 

creates a bootstrapped sample of Qeff and Qs50 values for which I calculate a confidence 

interval based on quantiles of the samples. Because these confidence bands are 

calculated from a bootstrap sample, they must be directly compared to the median 

estimate of the bootstrapped sediment yield and cumulative sediment yield curves and 

not the original, mean response estimate of these curves, the former are depicted as 

black lines in Figure 4.5. Confidence bands for Qeff and Qs50 tend to be wider than those 

calculated using the first approach discussed. This is because uncertainty in the slope of 

the sediment rating curve is propagated through the bootstrap re-sampling 

methodology. The site-specific results presented in Tables 4A.1 and 4A.2 in Appendix  

 

 

Figure 4.5 Uncertainty propagated using bootstrapped samples of the sediment rating curves (left) to 

generate bootstrap samples of the sediment yield curve (middle) and cumulative sediment yield curve 

(right) using sediment load and flow record data from the Dee Pee River at Pee Dee, SC. Upper and 

lower 95% confidence intervals for Qeff and Qs50 are displayed based on the bootstrap sample of these 

values (vertical white dashed lines). Pointwise confidence bands for the curves themselves (shaded green 

and red areas) are also plotted. 
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4A, are from this latter uncertainty analysis.  

Much greater absolute uncertainty is found in the estimation of Qs50 over Qeff 

(Figure 4.3 and 4.5). However, when comparing the relative width of uncertainty for 

Qs50, the “uncertainty spread” or (Qs50.upp – Qs50.low) / Qs50, the uncertainty in Qs50 

actually compares well with that of Qeff for coarse bed sites and is overall much lower 

than that of Qeff in fine bed sites under both uncertainty propagation methods (Figure 

4.6). Results from the bootstrap method (Figure 4.6, right) produces median Qeff 

uncertainty spread values of approximately one for coarse sites and just above one for 

fine bed sites. This means that the width of the uncertainty interval has approximately 

the same value as the value of the metric itself. However, the distribution of uncertainty 

spread values for Qeff at fine bed sites is positively skewed with an upper interquartile 

range extending approximately six. Median values of uncertainty spread for Qs50 range  

  

Figure 4.6 Boxplots of the calculated values of the spread or normalized difference between upper and 

lower uncertainty intervals for sediment yields metrics using OLS methods (left), and bootstrap methods 

(right). The upper whisker for bootstrapped Qeff uncertainty spread at fine bed sites is approximately 13. 
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from just above one for coarse bed sites to about 1.5 for fine bed sites. 

In Chapter 3, I found that both Qeff and Qs50 approximated Qbf well in coarse bed 

streams whereas Qs50 performed well in fine bed stream. This uncertainty analysis 

demonstrates that channel designs based on these metrics will have 95% confidence 

intervals that span approximately ± 50% to 75% of the estimated value in coarse bed 

streams and ± 75% to 100% in fine bed streams assuming a flow gage record and 

sediment load data are available.  

3.2.3 Sensitivity of Sediment Yield Metric Uncertainty to Data Uncertainty 

Here I examine the how the uncertainty spread for Qeff and Qs50 is influenced by 

aspects of the flow and sediment load data that may lend themselves to increased 

uncertainty. Variability in the sediment load-discharge relationship, represented by the 

standard error of the residuals, as well as the strength of the correlation, represented by 

the R2 value, influence the width of the confidence and prediction bands about the 

regression line. However, they do not largely influence the slope of this line, resulting in 

little influence on the spread of uncertainty in Qeff and Qs50. I also considered 

relationships between the variance term for the KDF (equation 4.1), the flow record 

length, the value of β, the number of sediment load measurements, nsed, and the 

coefficient of variation of the flow regime, Cv.  

With the exception of nsed, Cv, and β, no clear relationships are observed between 

the uncertainty spread values and these metrics of hydrologic and sediment load 

179 



 

variability (Figure 4.7). A general increase in the uncertainty spread of Qs50 with Cv is 

observed for both site types, though the increase appears to flatten out for Cv > 3. For 

large values of nsed, found mostly in the fine bed data set, Qs50 uncertainty spread 

decreases. Finally, the variability in the estimates of Qs50 uncertainty spread decrease 

with increasing β for coarse bed sites. This relationship was also found for the 

uncertainty spread of Qeff; however, no other strong relationships were observed for this 

particular metric.  

As discussed in Chapter 1, and below in the flow non-stationary analysis section, 

flow variability tends to be very influential on the value of Qeff and Qs50. Increases in 

flow variability, or Cv, result in increases in the absolute value of these metrics as well 

as the spread in sediment yield about them. Therefore, it is not surprising that an 

increasing relationship between Cv and Qs50 spread is evident. As the number of 

sediment load measurements increases, the width of the prediction and confidence bands 

for the regression line tends to decrease, unless the additional data add variability to the 

relationship. This may explain the reduction in Qs50 spread for the fine bed sites for 

which more measurements (> 200) where available. Finally, as the value of β increases, 

the variability and value of the uncertainty spread for of Qs50 and Qeff decrease. This is 

similar to the relationship between the spread in sediment yield and β discussed in 

Chapter 2. It may be that because larger values of β lead to large estimates of Qs50 and 

Qeff, the uncertainty about these larger values is narrower in a relative sense. 
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Figure 4.7 Relationships between the uncertainty spread in Qs50 and the flow coefficient of variation, Cv, 

the number of sediment load measurements, nsed, the value of the sediment rating curve exponent, β, and 
the maximum value of the variance of the kernel density function of flows, Var(KDF). LOESS smoothing 

lines as well as log-linear OLS lines are included to show trends where appropriate. 

 

 

Figure 4.8 Relationship between the uncertainty spread in Qeff as a function of the sediment rating 

curve exponent, β for coarse and fine bed sites. 
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3.3  Non-stationary Flow Record 

To illustrate how a non-stationary flow record might influence sediment yield 

metric values, I compare sediment yield and cumulative sediment yield curves calculated 

from sequential, decadal flow records from a streams whose watersheds have urbanized 

over time and from those whose watersheds remained rural. I begin with Mercer Creek 

near Bellevue, WA, whose decadal flow duration curves (FDCs) demonstrate that both 

low (< 10%) and high (>90%) exceedance flows increased with time (Figure 4.9, top) as 

population density in the watershed increased nearly 600% from approximately 250 

people/km2 to 1,500 people/km2 from 1960 to 2010 [Rosburg, 2015]. Temporal plots of 

the mean and variance of decadal discharge records demonstrate that while there is no 

trend in mean discharge, the variance increases significantly with time (0.07/decade,     

p = 0.04) (Figure 4.9, bottom). This follows the common trend of streams becoming 

flashier with urbanization [Walsh et al., 2005]. 

 Sediment yield and cumulative sediment yield curves calculated for each decade 

over a range of hypothetical β values demonstrate that for low values of β (≤ 2) the 

increase in flow variability does not have a large impact on Qeff or Qs50. However, as β 

increases beyond a value of 2, the influence of larger variance values increases 

dramatically resulting in much larger values of Qeff and Qs50 (Figures 4.10). In general, 

as flow variability increases, the values of Qeff and Qs50 also increase for larger values of 

β (Figure 4.11, top two plots of upper figure). As discussed in Chapter 2, the value of β 
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increases with increasing bed coarseness [Emmett and Wolman, 2001] as well as bed 

armor ratio [Barry et al., 2004]. 

 The population density in the watershed of Newakum Creek near Black 

Diamond, WA has not changed significantly from the 1950s when flows were first gaged 

on this creek, holding steady around 50 people/km2 up through 2010 [Rosburg, 2015]. 

Decadal FDCs show some deviance around the period of record FDC; however, no 

secular trends are evident (Figure 4.11, top). Though variability exists, no significant 

trend in decadal mean flow or variance are evident either (Figure 4.11, bottom). This 

results in values of Qeff and Qs50 that largely cluster around the values calculated from 

the period of record with the exception of the 1990s. Two exceptionally large, regional 

flood events during this decade result in a large discharge variance value, which 

influence the values of Qeff and Qs50 calculated for this decade for values of β > 2 

(Figure 4.12). Additional urban and rural examples demonstrating the relationships 

discussed herein are provided in Appendix 4B. 

As urbanization progresses, and flow variability increases, these metrics increase 

from values smaller than the period of record value to values larger than the period 

record values (grey curves in Figures 4.10 and 4.12). This means that sediment yield 

metrics calculated from entire period of flow records in urbanizing watersheds may be 

underestimates, because period of record flow variability will likely be less than 

contemporary flow variability. Channel response to changes in flow variability or 

flashiness may occur over the course of years to decades [Booth, 1990; Trimble, 1997].  
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Figure 4.9 Flow duration curves by period of record and by 

decade for Mercer Creek near Bellevue, WA, an urban 

watershed (top), and daily flow record (left axis) plotted 

with decadal mean and standard deviation values (right 

axis) (bottom). Note that the mean and standard deviation 

are referenced to the right, vertical axis. 

Figure 4.10 Sediment yield (effectiveness) curves for period of 

record as well as decade for a range of hypothetical β values for 
Mercer Creek near Bellevue, WA, an urban watershed (top). 

Cumulative sediment yield curves for period of record and by decade 

for various hypothetical values of β (bottom).  
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Figure 4.11 Flow duration curves by period of record and 

by decade for Newakum Creek near Black Diamond, WA, a 

rural watershed (top), and daily flow record (left axis) 

plotted with decadal mean and standard deviation values 

(right axis) (bottom). Note that the mean and standard 

deviation are referenced to the right, vertical axis. 

Figure 4.12 Sediment yield (effectiveness) curves for period of 

record as well as decade for a range of hypothetical β values for 
Newakum Creek near Black Diamond, WA, a rural watershed (top). 

Cumulative sediment yield curves for period of record and by decade 

for various hypothetical values of β (bottom). 
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Though a channel may be actively adjusting to hydro-modification due to urbanization, 

contemporary geomorphology will likely reflect contemporary hydrology. These trends in 

sediment yield metrics are also apparent for other urbanizing watersheds analyzed. 

Similar figures for additional urban and rural sites are included in Appendix 4B. 

3.3  Modeled vs. Measured Sediment Yield 

3.3.1  Coarse Bed Sites 

Though sediment yield metrics are insensitive to absolute values of predicted 

sediment yield, quite a range of values result when comparing empirical and physical 

models to calculate Qeff and Qs50 (Figure 4.13, Table 4.2). The peak of the various 

sediment yield curves tend to match well for Trapper Creek (TC) and South Fork 

Salmon River (SR); however, in some cases an additional peak at smaller discharges 

associated with sand transport dominates over the central peak associated with gravel 

transport. In some models, including the empirical model for TC, this results in a very 

low predicted value of Qeff. This “sand peak” becomes the most effective for sediment 

transport-discharge (Qs–Q) relationships that have a milder slope in logarithmic space. 

The Parker equation becomes very steep in log space as the value of the dimensionless 

shear stress, τ*, approaches the critical dimensionless shear stress τc*, at smaller 

discharge values. This means that it under-estimates sand bed load transport for TC. 

Indeed, it was derived for coarse gravel (> 16 mm) bed load transport [Parker, 1979], 

suggesting it is not appropriate for TC, which is a steep, armored channel whose 
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bedload is dominated by sand and fine gravel transport over cobbles [Whiting et al., 

1999; King et al., 2004]. 

The Barry model emulates a power law equation whose coefficient is a function 

drainage area and whose exponent is a function of the ratio of critical shear stress for 

the surface and subsurface median sediment size: essentially a bed armoring ratio [Barry 

et al., 2004], and was calibrated using sediment load data that included these two coarse 

bed sites. The Qs–Q relationship it predicts matches that of the empirical model fairly 

well and tends to produce sediment yield metric estimates closest to those estimated 

from the empirical model. 

To accommodate the transport of sand at smaller discharges evident in the TC 

sediment load data, I also implement the Wilcock and Kenworthy [2002] two-fraction 

bed load model (WK), which accounts for the sand-gravel interaction. The WK model 

over-estimates sediment load at both sites. However, it does capture the general slope of 

the Qs–Q relationship resulting in the same peak location in the sediment yield curve as 

predicted with the empirical model for TC (Figure 4.13, top middle graph). 

The slope of the Qs–Q relationship from the sediment load data for SR is steeper 

than that of TC, indicating more gravel transport. This results in a peak in the 

empirical sediment yield curves which occurs in the middle of the range of flows. The 

Qs–Q relationship predicted by the WK model for SR is too mild relative to the 

empirical relationship resulting in a sediment yield curve peak that occurs at a much 

smaller discharge value relative to the position of the peaks predicted by the empirical 
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and other physical models (Figure 4.13, bottom row). Again, the Barry model best 

predicts the location of Qeff. 

All physical models perform relatively poorly in predicting Qs50 (Figure 4.13, 

right column). Differences in the slope of the Qs–Q relationship between the empirical 

and physical models results in cumulative error in predicting relative sediment yield as a 

function of the sorted flow regime. For TC, the Parker and Barry curves under-predicts 

the rate of cumulative sediment transport for low flows resulting in large predicted 

values of Qs50. The WK curve over-predicts cumulative transport of sand at low flows 

resulting in an underestimation of Qs50. For SR, all physical models have milder Qs–Q 

slopes resulting in them over-predicting the rate of cumulative sediment transport at low 

discharges and underestimating Qs50. 

Some influence of the different methods for representing the one-dimensional 

stage-discharge relationship used to drive the physical models can be seen in the Qs–Q 

relationship for both sites; however, this influence does not translate to influencing 

estimates of Qeff. The cross section-averaged and discrete width relationships also do not 

produce meaningful differences in the estimate of Qs50 with the Parker model. The at-a-

station hydraulic geometry relation perform better than both cross section methods in 

the case of TC and poorer in the case of SR. This could be due to how well the cross 

section geometry and slope—single, one-dimensional estimates of channel geometry—

reflect the three dimensional hydraulics at these sites. 
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Table 4.2 Sediment yield metric values calculated from various transport equations. 

Site Metric RLM 
Parker 

Avg. 

Parker 

Disc. 

Parker 

HG 
Barry WK Brownlie 

Brownlie 

HG 
Yang 

Yang 

HG 

Trapper Ck. 

Qs50 0.97 1.63 1.56 1.47 1.44 0.54 

Qeff 0.09 1.68 1.68 1.52 1.52 0.09 

τc* 0.030 0.030 0.042 0.030 

S.F. Salmon 

Qs50  90.3 67.4 65.4 53.8 75.0 49.3 

Qeff  90.1 50.8 50.8 50.8 81.9 4.3 

τc* 0.030 0.030 0.030 0.030 

Yampa 
Qs50 291 274 261 254 245 

Qeff 278 228 11.6 11.6 11.6 

Indian Ck. 
Qs50 6.8 11.3 8.9 

Qeff 1.55 1.98 1.98 
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Figure 4.13 Comparison of sediment yield estimates and metric values calculated from empirical 

relations (log-linear regression), as well as calibrated sediment transport relations for bed load transport 

using various representations of the stage-discharge relationship for Trapper Creek (top) and the S.F. of 

the Salmon River (bottom). 

3.3.2  Fine Bed Sites 

Total sediment load physical models for fine bed streams estimate sediment yield 

metrics better than bed load physical models do in coarse bed sites (Figure 4.14, Table 

4.2). For these sites, I used the Brownlie and Yang total load models as well as at-a-

station hydraulic geometry and a cross section-averaged flow-resistance (Manning’s) 

model for the relationship between flow, depth, area, and velocity. 
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Though these physical models tend to over-estimate absolute sediment load at 

YR, the slopes of both the Brownlie and Yang predicted Qs–Q relationships match those 

of the empirical models well at both sites. This results in the sediment yield curve peaks 

produced from the physical models lining up well with those from the empirical model 

for both sites. However, at YR a peak for very fine material results in very low values of 

Qeff for all but the Brownlie–Manning and empirical models. Judging from the shape of 

the sediment yield curves for YR as well as the location of Qeff from the empirical  

 

 

 

Figure 4.14. Comparison of sediment yield estimates and metric values calculated from empirical 

relations (log-linear regression), as well as calibrated sediment transport relations for total bed material 

load (sand) transport using various representations of the stage-discharge relationship for the Yampa 

River (top) and Indian Creek (bottom). 
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model, this small value of Qeff is likely not the most effective discharge. Rather, the 

central peaks appear to be more effective and these line up well among all models. The 

sediment yield curves for IC are all unimodal and match well at relatively small 

discharge values. 

All models and depth-discharge representations predict values of Qs50 relatively 

close to the empirical value for both sites. Because the physical models over-predict 

sediment load compared to the empirical model for YR, especially for smaller flows, they 

also over-predict the rate of cumulative sediment transport for small flows resulting in 

slight under-predictions Qs50. The physical models for IC fit the data better, though 

slightly under-predict Qs for lower discharges resulting in slightly greater predicted 

values of Qs50. The hydraulic geometry relations result in Qs–Q relationships that are 

slightly closer to the empirical relationship for YR. A cross section survey was not 

available for IC, therefore only hydraulic geometry relations are used to drive the 

physical models. 

On whole, using physical bed load and total load models to calculate sediment 

yield metrics produces similar results to empirical models for Qeff for both coarse and 

fine bed sites, respectively. This finding parallels that of Barry et al. [2008], who studied 

this in coarse bed streams. However, in cases of multimodal sediment yield curves, one 

must use their judgment in choosing a particular peak to represent Qeff. This is 

especially true in modeled bed load scenarios where peaks for sand and fine gravel as 

well as coarse gravel may exist depending on the flow regime. The value of Qs50 is much 
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more sensitive to model error for both types of sites due to cumulative error. Given the 

wide range of results produced from bed load equations, estimates of Qs50 in coarse bed 

streams are likely to have large error in general. Because this portion of the study was 

not comprehensive and only includes two of each types of sites and physical models, I 

cannot make quantitative estimates of error or uncertainty associated with modeling bed 

material load in calculating these sediment yield metrics. I recommend calculating Qs50 

using multiple models and using the median or average value from these results in 

coarse bed sites. These results indicate that estimating Qs50 in fine bed streams using 

physical models produces much more accurate results. This is a welcomed finding 

because Qs50 performs most well in predicting bankfull discharge (Chapter 3).  

4 Conclusion 

In this chapter, I examine the sensitivity of sediment yield metrics to uncertainty 

from the perspectives of statistical uncertainty, environmental variability and non-

stationarity, as well as sediment transport model error. By exploring the nature of 

uncertainty in sediment yield metrics from multiple new perspectives, I provide tools 

and guidance for calculating and utilizing sediment yield metrics for river design and 

management. 

Using established statistical uncertainty methods for log-linear regression and 

kernel density function models I develop confidence and prediction bands for sediment 
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yield and cumulative sediment yield curves as well as confidence and prediction intervals 

for the most effective discharge, Qeff, and the half yield discharge, Qs50 (Figures 4.3 and 

4.5). I find that the relative width of the confidence interval for Qs50—the uncertainty 

spread—decreases as the number of sediment load observations, the value of the 

sediment rating curve exponent, and the kernel density function maximum variance 

value all increase (Figure 4.6). Half yield discharge uncertainty spread increases with 

flow record coefficient of variation. This uncertainty analysis demonstrates that coarse 

bed channel designs based on Qeff or Qs50 will have 95% confidence intervals that span 

approximately ± 50% to 75% of the estimated value and ± 75% to 100% of estimated 

Qs50 in fine bed streams assuming a flow gage record and sediment load data are 

available. 

In urbanizing watersheds, with increasing trends in flow variance, decadal 

estimates of Qeff and Qs50 increase dramatically relative to estimates based on the entire 

period of flow record (Figures 4.9 to 4.12). Therefore, using an entire flow period of 

record to calculate sediment yield metrics in an urbanizing watershed will likely under-

estimate their value. This means that channels design to match Qeff orQs50 calculated 

from an entire flow period of record will likely be undersized in this setting. 

Physically-based models must be used to estimate values of sediment yield 

metrics where no sediment load data are available. Physical models that match the 

slope of the sediment load-discharge relationship in log-space—the rate of increase of 

sediment transport with discharge in arithmetic space—performed reasonably well. This 
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was the case with total load models for fine bed sites, but generally not true for bed load 

models for coarse bed sites. As found previously for bed load sites, the value of Qeff is 

not sensitive to modeled results, except in cases where the sediment yield curve is 

multimodal. The value of Qs50 was more sensitive to model error than Qeff because error 

accumulates over the calculated sediment yield record used to estimate this metric. 

Modeled total load in fine bed sites produced fairly accurate estimates of Qs50, but 

modeled bed load in coarse bed sites did not. 

The preceding three chapters develop relationships between the physical drivers 

of sediment yield in rivers and sediment yield metrics that integrate aspects of the 

magnitude and frequency of sediment yield relationship. In Chapter 3, I also evaluate 

how well some of these metrics perform as estimates of the dominant discharge by their 

ability to predict bankfull discharge. To date, little work has been done to quantify the 

uncertainty associated with Qeff and no work for Qs50. Additionally, no previous work 

explicitly creates confidence intervals for these metrics. In the present chapter, I 

quantify uncertainty in these metrics from multiple aspects, including explicit 

calculation of confidence intervals for Qeff and Qs50. I also quantify the range of relative 

uncertainty interval widths across a large number of sites in coarse and fine bed rivers. 

Others have used Qeff to examine how changes in flow regime and sediment properties 

might influence channel form over time [e.g., Tilleard, 1999; Dodov and Foufoula-

Georgiou, 2005]. With the methods and findings presented in this chapter, managers 
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and channel designers may now also quantify the uncertainty associated with designs or 

predicted changes based on these sediment yield metrics. 
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