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ABSTRACT

P300 CLASSIFICATION USING DEEP BELIEF NETS

Electroencephalogram (EEG) is measure of the electrical activity of the brain. One of the

most important EEG paradigm that has been explored in BCI systems is the P300 signal.

The P300 wave is an endogenous event-related-potential which can be captured during the

process of decision making as a subject reacts to a stimulus. One way to detect the P300

signal is to show a subject two types of visual stimuli occurring at different rates. The event

occurring less frequently than the other elicits a positive signal component with a latency

of roughly 250-500 ms. P300 detection has many applications in the BCI field. One of the

most common applications of P300 detection is the P300 speller which enables users to type

letters on the screen.

Machine Learning algorithms play a crucial role in designing a BCI system. One impor-

tant purpose of using the machine learning algorithms in BCI systems is the classification

of EEG signals. In order to translate EEG signals to a control signal, BCI systems should

first capture the pattern of EEG signals and discriminate them into different command cat-

egories. This is usually done using different machine learning-based classifiers. In the past,

different linear and nonlinear methods have been used to discriminate the P300 signals from

nonP300 signals. This thesis provides the first attempt to implement and examine the per-

formance of the Deep Belief Networks (DBN) to model the P300 data for classification. The

highest classification accuracy we achieved with DBN is 97 percent for testing trials. In our

experiments, we used EEG data collected by the BCI lab at Colorado State University on

both healthy and disabled subjects.
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CHAPTER 1

Introduction

1.1. EEG

Electroencephalogram (EEG) is measure of the electrical activity of the brain. Many

practical imaging techniques like nuclear imaging and MRI have been developed over the

recent years. However, neurologists still use EEG as a complementary tool for assessment of

neurological disorders since EEG records electrical activity of the brain over a period of the

time while other imaging techniques do not provide such advantage. EEG has a variety of

applications in neurology including diagnosing sleep disorders, infections, tumors [17].

EEG can be recorded using EEG electrodes. EEG electrodes measure the electric poten-

tial difference of the electric field created by brain neural activities, at the scalp. This can

be done in two ways. The first way can be performed by choosing an arbitrary referencing

electric potential on the head. This is considered as a zero level potential. Having chosen

this referencing point, electric voltage of any interest points on the scalp will be calculated by

subtracting the recording electrode from the reference electrode. The resulting value shows

electrical potential difference of the interest point on the scalp. In the case of multichan-

nel EEG recording, rather than choosing a referencing potential electrode, we can average

among different recording electrodes and subtract this average from each electrode [17].

Researchers use standardized locations for EEG electrodes. This facilitates comparison

of different experiment results and studies. Exact locations are different from subject to

subject. Figure 1.1 shows the eight standardized locations we used to collect the EEG

signals.
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F3 F4

C3 C4

P3 P4

O1 O2

Figure 1.1. Standardized locations used to collect the EEG signals
.
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Physicians are not the only ones who use the EEG to diagnose different neurological

disorders. Brain Computer Interface (BCI) scientists use the EEG as a way of communication

between digital devices and the brain. The EEG is not the only brain function measurement

technology. However, researchers widely believe that the EEG is the best technology among

all of them. By using the EEG as an alternative way of communication, the BCI provides

a significant impact on the assistive care. For every activity, feeling or any decisions we

make, there are associated neural activities in our brain. Different neural activities result in

different EEG signals. Discriminating these different EEG signals provides unique commands

from the brain to the external world. For example, someday a completely paralyzed patient

may be able to control robotic arm movement by just thinking about it. BCI applications

are not limited to assistive care. BCI systems can also be applied to control a computer

application such as word processor or Graphic User Interface. Nowadays, gaming industries

use BCI technologies. However, it’s in an early stage [11].

1.2. EEG Paradigm

One of the most important EEG paradigms that has been explored in the BCI systems

is the P300 signal. The P300 wave is an endogenous event-related-potential which can be

captured during the process of decision making as a subject reacts to a stimulus. A usual

way to detect the P300 signal is to show a subject two types of the events occurring at

different rates. The event occurring less frequently than the other elicits a positive signal

component with a latency of roughly 250-500 ms.

The BCI lab at Colorado State University detected and recorded the elicitation of the

P300 signals by asking subjects to look at a computer screen in which different letters

randomly appeared in the middle. Then the subjects were asked to count how many times
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a specific letter (target letter) was shown in the middle of the screen. The Figure 1.2 shows

P300 and nonP300 signals recorded by the BCI lab at Colorado State University.

Figure 1.2. The P300 signal

P300 detection has many applications in the BCI field. One of the most common ap-

plications of P300 detection is the P300 speller which enables users to type letters on the

screen [5]. In the mid 1970s, P300 detection was also used for lie detection.

Machine Learning algorithms play a crucial role in designing a BCI system for a variety of

reasons. First of all, the machine learning algorithms enable a BCI device to extract useful

features for discrimination. The EEG recorded at the scalp is usually noisy for a variety

of reasons. The feature extraction module makes it easier for the classifier to discriminate
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the EEG signals into its corresponding brain activity pattern. In fact the feature extrac-

tion module tends to remove the noise, artifacts and other unnecessary features of the raw

data. The second purpose of using the machine learning algorithm in BCI systems is the

classification of EEG signals. In order to translate EEG signals to a control signal, BCI

systems should first capture the pattern of EEG signals and discriminate them into different

command categories. This is usually done using different machine learning-based classifiers

[3].

1.3. Related Work

In the past, different linear and nonlinear methods have been used to discriminate the

P300 signals from nonP300 signals. In this section, we briefly describe some of the popular

classifiers which have been used for the P300 classification. We do not provide classification

accuracy here since the classification accuracy that each method can achieve changes from

one data set to another data set.

Fisher’s Linear Discriminant Analysis (FLDA) [12] is one of the widely used methods for

P300 classification [15, 19, 20]. Many experimental results suggest that FLDA works better

than the other classifiers. The main difference between FLDA and Linear Discriminant

Analysis is that FLDA does not assume that the data is normally distributed or that the

classes have equal covariance.

Stepwise Linear Discriminant Analysis (SLDA) [18] is an extension of Fisher’s Linear

Discriminant Analysis which incorporates filter feature selection. This method has been

widely used for P300 classification and there are demonstrations that in many cases it works

better than several other classifiers such as Linear and Nonlinear Support Vector Machines,

Bayesian Linear Discriminant Analysis [21, 20]. SLDA fits the model to the training data
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set by adding and removing the terms from linear discriminant analysis based on their

significance on the discrimination [20].

Linear Support Vector Machines (LSVM) [24] find the hyperplane that maximizes the

margins of the two classes in the case of the binary classification. In the past, many attempts

have been made to classify P300 signals using LSVM [20, 21]. Since sometimes the separating

boundary between two classes is not linear, most of the researchers have used a regularizer

term to increase the power of this classifier. It has been reported in the literature that LSVM

works very well for P300 detection [20, 18].

Although researchers have examined the performance of different linear and nonlinear

methods, still no one has attempted to examine the performance of deep learning algorithms,

such as Deep Belief Networks as a P300 classifier. This thesis provides the first attempt to

implement and examine the performance of the Deep Belief Networks to model the P300

data for classification. We will show that this sophisticated nonlinear technique will deliver

a superior classifier for P300 classification.

1.4. Contributions

This work contributes to the Brain Computer Interface field since it provides the first

attempt to model the P300 data for classification using the Deep Belief Networks. In this

thesis, we will show that the Deep Belief Networks works very well as a P300 classifier. As

mentioned in the related work section, most of the previous experiments show that linear

classifiers work better than nonlinear classifiers and many researchers concluded that using

nonlinear classifiers may result in over fitting the training data sets and will result in a poor

generalization. In this thesis, we will show that a nonlinear classifier such as deep belief

networks could work even better than the linear classifiers. The highest accuracy we have
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achieved for classifying the P300 data is 97 % for one subject, though the average across 13

subjects was 76.4 %. In the following chapters, we will thoroughly discuss why Deep Belief

Networks works well. However, in brief, we can point to two unique features of the DBN.

The first feature is unsupervised pre-training using the Restricted Boltzmann Machine. The

second feature is using a deep architecture which leads to a lower number of the learning

modules, and as a result improved generalization.

1.5. Overview

In Chapter 2, we first motivate using deep architectures and then describe the deep

belief networks algorithm proposed by G. Hinton. We also provide our implementation

method in python. In Chapter 3, we discuss and provide the results we have achieved for

P300 classification using our implementation of deep belief networks. In this chapter, we

also discuss the parameter values and visualizing the higher layer units of the deep belief

networks. Finally, in Chapter 4, we provide some possible paths for future work and provide

a conclusion and a brief summary of what we did in this thesis.
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CHAPTER 2

Background and Methods

2.1. Deep Architecture Motivation and Challenges

In this section, we talk about the advantages of using deep architectures for modeling the

data and the challenges we face in training the deep architectures. The depth of an architec-

ture is defined as the longest path between any inputs and any outputs of the system. For

example, in neural networks, the depth of the architecture is the number of the hidden layers

plus one. Theoretical results suggest that some complex functions may not be represented

efficiently by shallow architectures [6]. This is due to the fact that deep architectures can

provide a more compact representation of a function compared with shallow architectures.

By compact representation here we mean that a few computational elements need to be

tuned in order to train the system. This will improve the generalization especially if the

number of the training data samples is not large.

On the other hand, training deep architectures is more challenging than training shallow

architectures [6, 7, 10]. Experimental results show that training deep neural networks with

random initialization of the weights and biases can become stuck in local minima [6, 7, 10].

However, unsupervised pre-training of each layer can improve the training results for deep

neural networks [6, 7, 10]. This unsupervised training phase is done in a greedy manner

(we start by pre-training of the first layer and we continue this layer by layer unsupervised

pre-training toward the last layer). Having finished unsupervised pre-training, the training

is followed by a supervised training with parameters initialized to the values optimized from

the pre-training phase.
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One reason that this unsupervised pre-training improves the training result is that it

directs the parameters of each layer toward a better region for initialization in the supervised

training phase [6]. On the other hand, when in neural networks the number of hidden

layers increases, the top layers will fit the data set and as a result the lower layers will be

trained poorly [10, 16]. This will result in poor generalization. One advantage of deploying

unsupervised pre-training is that it improves the training of the lower layers and hence will

result in better generalization [10]. In the next sections, we summarize the deep learning

architecture and training algorithm proposed by Hinton.

2.2. Energy Based Models

This section has been summarized from the textbook of “Predicting Structured Data”[4].

Machine Learning methods aim to encode the dependencies between the independent vari-

ables and the target variables. This can be seen as learning a complex function which

approximates the value of the target variables given the value of the independent variables.

Different methods perform this in different ways. Energy Based Models (EBM) associate

different scalar energy to different configuration of variables. The learning process in energy

based models will lead to finding optimal parameter values (i.e., weights and biases) which

associate the minimum energy to the correct value of the target variables and higher energy

to the incorrect value of target variables. This is the only constraint we have in training

energy based models and as a result these models are very flexible for training. Training can

be modeled by searching through the set of energy functions indexed by weights, W , as the

parameters of the system. This can be mathematically expressed as

{E(X, Y,W )|W ∈ w}.(1)
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In Equation (1), X is the vector of observed values, Y is the target vector. After training,

the resulting value of W is used to infer the target value Y ∗ as

Y ∗ = arg min
Y ∈y

E(X, Y,W ).(2)

In Equation (2), y is the set of the all possible values that can be assigned to the target

variable Y .

The flexibility that EBMs offer us makes it hard to combine separately built energy based

models. In order to be able to use the output of energy based models as input to another

separately built EBM, we use the Gibbs distribution to provide the conditional distribution

of the output given input (P (Y |X))

P (Y |X) =
e−E(X,Y,W )∫

Y ∈y e
−E(X,Y,W )

.(3)

In Equation (3), the numerator is a continuous function. So the existence of the conditional

probability distribution is dependent on the convergence of the integral function in the

denominator of the Equation (3). In order to train the EBMs as probabilistic models,

negative log likelihood loss function is the best possible choice for loss function. In fact,

probabilistic models are a kind of energy based models which are trained by the negative

log likelihood as loss function. In order to explain the negative log likelihood, first we define

the training data set consisting of the K samples formally as

S = {(X i, Y i), i ∈ N and 0 < i ≤ K}.(4)
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Having given the training data set as defined in Equation (4) and conditional probability

distribution as given in Equation (3), our goal is to increase the conditional probability of

the target variables given the independent variables by changing the parameter values (i.e.,

weights and biases). To express this formally, we have

P (Y 1, Y 2..., Y i|X1, X2..., X i,W ) =
K∏
i=1

P (Y i|X i,W ).(5)

In Equation (5), we have assumed that the samples in the training data sets are independent

from each other, i.e., P (Y i|X1, X2, X3, ...., X i) = P (Y i|X i). By taking the negative log from

two sides of the Equation (5) and applying Equation (3), we will derive

L(W,S) = − log
K∏
i=1

P (Y i|X i,W ) =
K∑
i=1

(E(X i, Y i,W ) + log

∫
Y ∈y

e−E(Xi,Y,W )).(6)

In Equation (6), K is the number of the training data samples. In Equation (6), the derivative

of the integral term (second term), can be calculated as

∂ log
∫
Y ∈y e

−E(Xi,Y,W )

∂W
=

∫ ∂
∫
Y ∈y eE(Xi,Y,W )

∂W∫
Y ∈y e

−E(Xi,Y,W )
= −

∫
Y ∈y

e−E(Xi,Y,W ) ∂E(Xi,Y,W )
∂W∫

Y ∈y e
−E(Xi,Y,W )

.(7)

Having considered the Equation (7) and (3), we can calculate the derivative of Equation (6)

for a single sample i as

∂L(W,X i, Y i)

∂W
=
∂E(X i, Y i,W )

∂W
−
∫
Y ∈y

∂E(X i, Y,W )

∂W
P (Y |X i,W ).(8)
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In the above equation, approximating the second term, called the contrastive term, is not

always easy. In fact, for many models it is very difficult and sometimes impossible to ap-

proximate or calculate the integral term in Equation (8) since the conditional probability

and the energy function should have a very specific distribution in order to approximate the

integral. Here we introduce the contrastive divergence method proposed by Hinton to ap-

proximate the contrastive term in Equation (8) for the Restricted Boltzmann Machine which

is an undirected graphical model. In the Restricted Boltzmann Machine, the second term in

Equation (8) is approximated using a Gibbs sampling method with the chain starting from

the data. We will discuss this in the next session. Using contrastive divergence, Equation

(8) can be approximated as

∂L(W,X i, Y i)

∂W
=
∂E(X i, Y i,W )

∂W
− ∂E(X i, Ỹ ,W )

∂W
.(9)

In Equation (9), Ỹ is the approximation of the desired target value. In the next section,

we will explain how to approximate Ỹ by Gibbs sampling in order to train the Restricted

Boltzmann Machine. Using the gradient descent algorithm, the weight update rule would be

W = W − η(
∂E(X i, Y i,W )

∂W
− ∂E(X i, Ỹ ,W )

∂W
).(10)

In Equation (10), the first term will cause the energy surface to be pushed down at the

desired target variable and the second term will cause the energy surface to be pulled up

around the target variable. By doing this, we hope the desired target will eventually become

the local minima. Stochastic gradient descent is often suggested for optimization of the loss

function for high dimensional data [4, 8], so in this thesis we have used stochastic gradient

descent to optimize the loss function.
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2.3. Restricted Boltzmann Machine

The Restricted Boltzmann Machine (RBM) is a type of graphical undirected energy based

model. RBMs are the building block of the Deep Belief Networks [6]. Figure 2.1 shows the

architecture of the restricted boltzmann machine:

Figure 2.1. Restricted Boltzmann Machine

As you can see in the Figure 2.1, the hidden units are not connected to each other, nor

the visible units. As we show here, this makes the energy function simpler and makes the

inference easy. In this thesis, we have used two kinds of RBMs, Bernoulli-Bernoulli RBM

and Gaussian-Bernoulli RBM. In the next sections, we briefly describe them. Please note

that in this thesis, we have implemented the algorithm proposed by Hinton [13, 6].

2.4. Bernoulli-Bernoulli RBM

Bernoulli-Bernoulli RBM is a kind of RBM in which hidden units and visible units have

stochastic binary values [13]. Energy of the Bernoulli-Bernoulli RBM can be calculated as

[6]

E(x, h) = −b′x− c′h− h′Wx.(11)

In (11) b is the bias vector for visible units, c is the bias vector for hidden units, x is the

vector of visible units values, h is the vector of hidden units values and W is the weight
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matrix in which wij shows the edge value between Visible Unit i and Hidden Unit j. b′, c′

and h′ are column vectors. Please note that b′ is the transpose of vector b, c′ is the transpose

of vector c and h′ is the transpose of vector h.

Considering Gibbs sampling and Equation (11), we would have [6]

P (h|x) =
eb
′x+c′h+h′Wx∑

h̃ e
b′x+c′h̃+h̃′Wx

=
∏
i

ecihi+hiWix∑
h̃i
ecih̃i+h̃iWix

.

(12)

In Equation (12), h̃ is the set of all possible values can be assigned to the hidden vector h,

hi is the ith hidden unit, ci is the bias unit for the ith hidden unit and Wi is the ith row of

the weight matrix. The sigmoid function can be calculated as sig(x) = 1
1+e−x . Considering

Equation (12) and assuming hidden units are Bernoulli, for Hidden Unit i we would have

P (hi = 1|x) = sig(ci +Wix).(13)

Equation (13) shows how to infer each hidden unit value given the visible units values, x. Wi

is the ith row of the weight matrix. Assuming each visible unit is Bernoulli, in the similar

way to Equation (13), for Visible Unit j we can derive

P (xj = 1|h) = sig(bj +W ′
jh).(14)

Equation (14) shows how to infer each visible unit value given hidden units vector. Wj is

the jth row of the W . Using Gibbs distribution we can derive [13]

P (v) =
1

Z

∑
h

e−E(v,h,W ).(15)
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Equation (15) shows the probability that RBM assigns to visible vector v. By taking deriv-

ative of log probability of the training vector v and using contrastive divergence (Equations

(10) and (8)), we can train RBM using the following update rules for weights [13, 6, 4]

Wij ← Wij − η(〈vihj〉data − 〈vihj〉model)).(16)

The main question that Equation (16) raises is that how to collect the statistics for

〈vihj〉data − 〈vihj〉model . The statistics for 〈vihj〉data is collected by driving the training

datas and the statistics for 〈vihj〉model is collected using the first iteration of Gibbs sampling.

Based on the recipe that Hinton [13] provides for collecting the statistics for Equation (16),

we use probability values for both visible units and hidden units rather than sampled values.

However, when the data is driven by hidden units, we use sampled values as opposed to

probability values. The statistics for hj in 〈vihj〉data is calculated as

P (hj = 1|v) = sig(bj +W ′
jv).(17)

In Equation (17), bj is the bias unit for the hidden units j and v is the data vector. The

statistics for 〈vihj〉model is calculated as

P (h|v) = sig(b+W ′v)

P (vi = 1|h) = sig(ci +W ′
ih)

P (hj = 1|v) = sig(bj +W ′
jv).

(18)

In Equation (18), b is the hidden bias vector, bj is the bias unit for the jth hidden unit and

ci is the bias unit for the ith visible unit.
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We have used momentum and weight decay in implementation of the RBM. Momentum

will increase the speed of the learning in RBM training [13]. Weight decay will result in

improved generalization and shrinking the large weights to get more smooth output [13].

As mentioned in the energy based models section, contrastive divergence attempts to

approximate the negative log likelihood derivative with respect to the weight . Intuitively

speaking, we aim to push down the energy surface at the desired target and pull up the

surface around the desired target value. By doing this we hope to create a local minima

at the desired target. However, it is not guaranteed that we create a global minima at the

desired target value. That is a theoretical problem but works well for training RBM.

Since hidden units and visible units are independent from each other, we use Gibbs

sampling in order to sample the hidden units and visible units. In fact, Equation (13) shows

how to infer the value of each hidden unit or each visible unit while Gibbs sampling is a way

to infer visible vector or hidden vector out of each visible unit or hidden unit.

2.5. Reconstruction of MNIST Data Set in Bernoulli-Bernoulli RBM

In this section, we show how Bernoulli-Bernoulli RBM can be used to reconstruct the

MNIST digit [2]. MNIST data sets are composed of 60000 training data samples and 10000

testing data samples. Each sample is a hand written digit with 28 pixels in each row and 28

pixels in each column. We have trained an RBM with 784 visible units and 500 hidden units.

The reason we have chosen Bernoulli-Bernoulli RBM for reconstruction of MNIST digit data

set is that each data vector is binary. In this section, we do not discuss the parameter values.

We are just showing that our implementation works. In order to reconstruct the MNIST

digits, first we have trained the Bernoulli-Bernoulli RBM with the training data sets. Having

trained the RBM, first we calculate the values of the hidden vector using the Equation (13).
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Then, we recalculate the values of the visible vector using the Equation (14) to reconstruct

the MNIST digit. Finally, we sample the probability values resulted from (14). Here we

have provided 100 samples of MNIST data set and their corresponding reconstruction with

Bernoulli-Bernoulli RBM. Figure 2.2 shows the MNIST digits and Figure 2.3 shows the

reconstructed MNIST digits by Bernoulli-Bernoulli RBM.

Figure 2.2. MNIST digits
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Figure 2.3. Reconstruction of MNIST digits
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As can be seen in Figure 2.2 and Figure 2.3, the training leads to a successful recon-

struction of MNIST digit. By increasing the number of the iterations or the number of the

hidden units we can even achieve a more accurate reconstruction of the MNIST data sets.

2.6. Gaussian-Bernoulli RBM

In Gaussian-Bernoulli RBM, visible units are linear with independent gaussian noise and

hidden units are stochastic binary variables as before [13]. The energy of the Gaussian-

Bernoulli RBM can be calculated as [13]

E(v, h, w) =

∑
i∈visible(vi − ai)2

σ2
−

∑
j∈hidden

bjhj −
∑
i

∑
j

vi
σi
hjwij.(19)

In Equation (19), σi is the standard deviation of the Visible Unit i and ai is the mean of

the ith visible unit. We can simplify the energy function in Equation (19) by normalizing

the data set to have mean of zero and variance of 1. Given the energy function and Gibbs

distribution, we can derive the inference rule as

xi = ci +Wih.(20)

Please note that in Equation (20), we have assumed that the data has mean of zero and

variance of 1. The inference rule for hidden units are the same as Bernoulli-Bernoulli

RBM. Please note that since visible units can get arbitrarily large, we should use a much

smaller learning rate in order to train Gaussian-Bernoulli RBM in comparison with Bernoulli-

Bernoulli RBM [13]. For Gaussian-Bernoulli RBM, we also use Gibbs sampling in order to
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sample for training and use contrastive divergence to approximate the negative log likelihood

derivative with respect to the weight.

2.7. Reconstruction of P300 Signal Using Gaussian-Bernoulli RBM

In this section, we show that Gaussian-Bernoulli RBM can be used to reconstruct a

P300 signal. Since the training data is not binary, we use Gaussian-Bernoulli RBM for

reconstruction of the P300 data. Having trained the Gaussian-Bernoulli RBM, first we

calculate the values of the hidden vector using the Equation (13). Then, we recalculate

the values of the visible vector using the Equation (20) to reconstruct the P300 signal.

Figure 2.4 shows the P300 signal and Figure 2.5 shows the reconstructed P300 signal using

Gaussian-Bernoulli RBM.

2.8. Minibatch Stochastic Gradient Descent

In mini batch stochastic gradient decent, we start by random initialization of the weights

and the biases of each layer. We denote the initialized value of the weight and bias with W0.

Having initialized the weights and biases, we calculate the gradient of error function with

respect to the weights and biases. We then update the weights and biases by moving a step

in the opposite direction of the gradient. We continue this process iteratively until we reach

the satisfactory condition. This can be mathematically expressed as

∆W r = −η∇E.(21)

In Equation (21), r is the iteration number. Having chosen the sufficiently small η which

is called learning rate, the error will be decreased at each step. The convergence of the
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Figure 2.4. P300 signal

Equation (21) is guaranteed if we choose a sufficiently small η and η ∝ 1
step−number

. In

this algorithm, using mini batch is specially helpful if the training data sets consist of the

redundant samples. Then at each step we can update the parameters based on the gradient

values calculated for each mini batch, which includes samples from all classes.

2.9. Back Propagation

The back propagation technique provides an efficient way to calculate the derivative of

the error with respect to the weights and biases of each layer. Optimizing the error function

using back propagation is an iterative process which is composed of two phases. In the first

phase, we calculate the error derivatives with respect to the weights and biases of each layer.
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Figure 2.5. Reconstructed image of the P300 signal

In the second phase, we update the weights and biases by moving in the opposite direction of

the gradient. Please note that one important restriction that the back propagation algorithm

has is that the activation functions of all layers should be differentiable. The overall error

can be calculated as

E =

NumberofTrainingSamples∑
n=1

En.(22)

In Equation (22), the error is considered to be a sum of all the errors, each calculated

separately for a training data pattern. As mentioned in the previous paragraph, En should

be differentiable with respect to the weights and biases. In neural network, the activation of
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unit j can be calculated as

aj =
∑
i

Wjizi.(23)

In Equation (23), zi is the activation of the ith unit of the previous layer or the input.

Assuming that g(x) is a activation function, zi can be calculated as

zi = g(ai).

Using the chain rule, we can write the derivative of the nth training sample based on wji as

∂En

∂wji

=
∂En

∂aj

∂aj
∂wji

.

Here we define the δ notation as

δj =
∂En

∂aj
.

Please note that δj is referred to error. Using Equation (23), we would have

∂aj
∂wji

= zi.

δ for the output units can be calculated as

δk =
∂aj
∂wji

= g′(ak)
∂En

∂yk
.(24)
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In Equation (24), yk is the output of the system. Having calculated the δ for the output units

using Equation (24), we can back propagate the δ for the hidden units using the following

formula

δj = g′(aj)
∑
k

wkjδk.(25)

In Equation (25), δk is the error for the kth unit of the following layer. Having introduced the

back propagation formula, we summarize each iteration in the back propagation algorithm

as follows:

(1) Feed forward the input

(2) Calculate the δ for the output units using the Equation (24)

(3) Calculate the δ for the hidden units using Equation (25)

(4) Update the weights and biases using the mini batch stochastic gradient descent as

introduced in the previous section.

(5) If training needs to be continued, repeat the above steps.

2.10. Logistic Regression

Logistic Regression is a probabilistic model which is widely used for discrimination. In

this method, the number of the target variables are equivalent to the number of different

class labels. For example, for hand written digit recognition, since we have 10 different

numbers, the number of the target variables would be 10. Given the data vector X, we can

calculate the distribution of vector X belonging to different classes using this method. This

is called the 1− of − the− C coding scheme. One restriction we have here is that the sum

of all probability values for a given data vector X must be 1. This can be mathematically
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expressed using the following formula

P (C = k|X) = gk(X) =


f(X,Wk)

1 +
∑K−1

m=1 f(X,Wm)
, k < K

1

1 +
∑K−1

m=1 f(X,Wm)
, k = K.

(26)

Assuming we have K class labels, P (C = k|X) in Equation (26) is the probability of belong-

ing vector X to class k. W represents the parameter of function f and is tuned during the

training. In Equation (26), f(X,W ) can be calculated as

f(X,W ) = eWX .

We chose the negative log likelihood loss function to measure how good our model is during

the training. As discussed in energy based model section, logistic regression can be seen as

an energy based model with negative log likelihood as the loss function. Given the Equation

(26), the loss function can be calculated as

L(W ) =
N∏

n=1

K∏
k=1

p(C = k|xn)tn,k .(27)

In Equation (27), W is the parameter of function f and tn,k is a binary value(i.e. it is

always 0 or 1). tn,k is 1 if and only if the nth training sample belongs to the kth class.

Using stochastic gradient descent as optimization algorithm, we have the following rule for

updating W

W ← W + αXT (T − g(X)).
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W is updated in a direction which minimizes the loss function. Given X and W , the way

that we infer the target in linear logistic regression is as

T = argmax
k∈1,...,K

P (C = k|X).(28)

In (28) equation, we have assumed that there are K distinct classes. Among different prob-

ability values assigned to vector X belonging to different classes, we infer the target value

as a class label for which system assigned highest probability.

2.11. Deep Belief Network Architecture

In this section, we describe the architecture of the DBN implemented to model the P300

data. We have used the architecture and the training algorithm suggested by [14, 6]. Figure

2.6 shows the architecture of the deep belief networks implemented in this thesis.

We start by introducing the activation functions of different layers and the input data

pattern. The input data is standardized to have mean of 0 and standard deviation of 1.

The activation function for hidden layers is sigmoid function and the last layer is logistic

regression. In this thesis, we use the deep belief networks for classification purposes. The

parameters including the number of hidden layers will be discussed in the next chapter.

However, two output units were used since we have two class labels for the data. The

number of the input units is equivalent to the data dimension.

The training has two phases. The first phase is unsupervised pre-training of each layer.

We use Gaussian-Bernoulli RBM to pre-train the first layer and we use Bernoulli-Bernoulli

RBM to pre-train the rest of the layers except the final layer. The final layer, which is

the classifier, is trained using linear logistic regression. In pre-training phase, we pass the
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probability values as opposed to sampled values to the next layer as suggested by Hinton

[13].

Having finished the pre-training phase, we start the second phase of training called fine-

tuning. In this phase, we first initialize the parameters of each layer with the values learned

from RBM pre-training. The loss function we use for this section is negative log likelihood.

We use mini batch stochastic gradient descent in order to optimize the loss function. We

divide the training data sets into smaller sections called mini batch. In each iteration, we

update the weights and biases based on the gradient calculated for each mini batch. We

also use back propagation algorithm in order to calculate the error in different layers. We

propagate the data exactly the same as the usual neural network.
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210 visible units

150 hidden units

150 hidden units

500 hidden units

Figure 2.6. The Deep Belief Network Architecture
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CHAPTER 3

Experiments and Results

In this chapter, we discuss the results we have achieved by applying deep belief networks

to model P300 signal for classification. In the following sections, first we introduce our

algorithm for classification and then we present the classification accuracy we have achieved.

Finally, we analyze the effect of the unsupervised pre-training and fine-tuning on classification

and will discuss two testing data samples one of which has been classified correctly and the

other has been misclassified.

3.1. Experimental Data

In this section, we introduce the data sets we used to conduct our experiments. Colorado

State University has collected P300 data sets from healthy subjects in the lab and disabled

subjects at home. The data set is available at [1]. In this thesis, we have modeled the

data recorded at home and the lab by g.GAMMAsys EEG recording system. The data

sample rate is 256 HZ. The Brain Computer Interface Lab at Colorado State University [1]

provides us with the data recorded from nine different subjects at the lab and four different

subjects at home. The DBN was trained and tested on each subject separately. Although

[1] provides a tutorial for how to preprocess the data, we reiterate some part of this tutorial

here since it is crucial for the reader to understand. For each subject, the EEG data is

collected under different protocols. In this thesis, we have just conducted experiments for

the EEG data collected under letter-b, letter-p and letter-d protocols. Letter-b, letter-p and

letter-d protocol are visual stimuli protocols designed to elicit the P300 signal. During each

protocol, letters are presented about every second and each trial consists of 210 samples.

For example for the letter-d protocol, the subjects were asked to count the number of the
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times that letter d appeared in the middle of the screen. Figure 3.1 shows the EEG signals

collected by eight different channels under the letter-d visual stimuli protocol.

Figure 3.1. EEG signals collected by 8 different channels under the letter-d
visual stimuli protocol

30



In Figure 3.1 the green line at the bottom shows the ASCII number of the figure displayed

on the screen. The negative values represent the ASCII of the non-target letters and the

positive values represent the ASCII of the target letter.

3.2. Parameter Selection

In this section, we discuss the parameter values used in our experiments. As discussed in

the previous chapter, deep belief networks training has two main sections. The first section

is the pre-training section and the next section is the fine-tuning section. In the pre-training

section, we have chosen most of the parameter values as advised by Hinton [13]. However,

we have initialized some parameters intuitively and we have not completely followed [13].

The weights and biases are initialized to have a mean of 0 and a standard deviation of 0.01.

The bias values are initialized to 0. Hinton suggests to set the mini batch size to the number

of different class labels. Although we have just two class labels here, since the EEG data is

very noisy, we have set mini batch size to 10. We have set the learning rate for Bernoulli-

Bernoulli RBM to 0.1 and Gaussian-Bernoulli RBM to 0.001. As far as momentum values

go, we have set the momentum value to be 0.5 for the first five iterations and 0.9 for the rest

of the training. We have used the value of 0.0002 for the weight decay. Table 3.1 and Table

3.2 summarizes the parameter values we chose for pre-training the DBN.

Table 3.1. pre-training parameter values for Bernoulli-Bernoulli RBM

parameter value

mini batch size 10
momentum value [0.5-0.9]

learning rate 0.1
number of iterations 200

weight decay 0.0002
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Table 3.2. pre-training parameter values for Gaussian-Bernoulli RBM

parameter value

mini batch size 10
momentum value [0.5-0.9]

learning rate 0.001
number of iterations 500

weight decay 0.0002

Our DBN architecture consists of four different layers. The first three layers RBMs

machines and the last layer is the classifier layer. The first layer is believed to capture the

low level feature of the P300 data. The second layer is believed to capture the higher level

feature of the P300 data or in other words, the second layer captures the feature of the

features of the P300 data. Finally, the third layer is believed to represent the high level

features in a high dimensional space which makes the classification simpler. Hinton suggests

that the number of hidden units in the first and the second layer should be the same. So

we have chosen the same number of hidden units for the first and the second layers. We

have not made experiments to choose the number of the hidden units in different layers and

we have done this intuitively. Since the data is noisy, we have chosen the number of hidden

units to be 150 for the first two layers and 500 for the third layer. The reason that we

have chosen 500 hidden units for the third layer is that we want to represent the data in a

high dimensional space before classification. We have chosen the learning rate to be 0.001

since in the previous chapter we mentioned that if we use a small enough learning rate, the

stochastic gradient descent optimization algorithm will converge. So we chose the learning

rate to be as small as 0.001. We set the number of iterations to be very large. We stop

training using validation data sets. When the training likelihood of the validation data sets

start decreasing for a certain number of iterations, we stop the training. This is the way

suggested by Stephen Marsland [23].
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3.3. Classification Accuracy

In this section, we provide the results we achieved for the classification accuracy for

different subjects. In our experimental data, we have a total of 80 trials for each subject.

Each trial, consists of eight EEG channels of data. We have divided the data sets into the

disjoint training, testing and validation data subsets. Our training data sets consist of 70

percent of all of the data and each of the validation and the testing data set consist 15

percent of all of the data sets. Our training algorithm is as follows:

(1) We randomly choose 70 percent of the target trials and 70 percent of the non-target

trials as training trials. Since we have 80 trials, we would have 56 training trials for

each subject.

(2) Each trial consists of eight channels. We combine the different channels of the

various trials together. These are our training data sets. Since we have 56 training

data trials, we would have 56 ∗ 8 = 448 different training samples for each subject.

Each training sample has a dimension of 210.

(3) We build our validation data sets similarly to our training data sets. The only

difference is that we randomly choose 15 percent of the target trials and 15 percent

of the non-target trials as the validation data set. So we would have 12 trials as

validation trials and the number of the validation data samples would be 12∗8 = 96.

(4) We build our testing data sets in the same way as the validation data sets.

(5) We start training (pre-training and fine-tuning) the system using training data sam-

ples. We stop training when the likelihood of the validation data sets decreases for

a certain number of the iterations.

(6) After training the system, we classify testing data samples using DBN.
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(7) The class labels for all 8 channels are collected. The predicted label that results most

often among the 8 outputs is selected, performing a majority vote. If there are equal

number of P300 and nonP300 labels, then the trial will be classified as nonP300. For

example, if 5 channel are classified as P300 and 3 channels are classified as nonP300,

then we classify that trial as a P300 trial.

Using the above algorithm, the highest percent count we achieve for testing individual chan-

nels is 85.33 and combining individual channel results with majority vote gives testing trial

accuracy of 83.33. The average classification accuracy we achieved across all subjects is 76.38

for testing individual channels and 75.6 for testing trials. Please note that if all the trials

are classified as non-target, we will get 75% accuracy. The Figures 3.2, 3.3 and 3.4 show

the results of our experiments using the above algorithm. In Figures 3.2, 3.3 and 3.4, the

x-axis shows the subject number and the y-axis shows the classification accuracy percentage.

As you can see, the highest accuracy we achieved belonged to the first subject. Figure 3.2

shows the training likelihood for each subject. Figure 3.3 shows the classification accuracy

percentage of the EEG channels for each subject, while Figure 3.4 shows the classification

accuracy of the trials for each subject.

In order to increase the accuracy of our trial classification, we use only the four channels

at the top of the head which are more sensitive to capturing the P300 signals. The rest of

the algorithm is similar to what we explained above. Our new algorithm would be as follows:

(1) - We randomly choose 70 percent of the trials as training trials. Since we have 80

trials, we would have 56 training trials

(2) - Each trial consists of eight channels. We throw four channels out and we just con-

tinue our experiments with C3, C4, P3 and P4 channels. We combine the different

channels of the different trials together. These our training data sets. Since we have
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Figure 3.2. The training likelihood of the data for each subject

Figure 3.3. The classification accuracy of the EEG channels for each subject

56 training data trials, we would have 56 ∗ 4 = 224 different training samples. Each

training sample has a dimension of 210.
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Figure 3.4. The classification accuracy of the trials for each subject

(3) - We build our validation data sets similarly to our training data sets. The only

difference is that we randomly choose 15 percent of the trials as the validation data

set. So we would have 15 trials as validation trials and the number of the validation

data samples would be 12 ∗ 4 = 48.

(4) - We build our testing data sets in the same way as the validation data sets.

(5) - We start training the system using training data samples. We stop training when

the likelihood of the validation data sets starts decreasing for a certain number of

the iterations.

(6) - After training the system, we classify each channel using DBN.

(7) - The channel output with majority vote will determine the trial label. If there

are equal number of P300 and nonP300 labels, then the trial will be classified as

nonP300. For example, if three channels are classified as P300 and one channel is

classified as nonP300, then we classify that trial as P300 trial.
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The Figure 3.5 show the result of our experiments for different subjects. In Figure 3.5,

the x-axis shows the subject and the y-axis shows the classification accuracy for testing

and training samples. In Figure 3.5, the left column of plots show he classification accuracy

achieved for each channel and the right column shows the claasification accuracy achieved for

each trial. In Figure 3.5 each row is for a different letter. Table 3.3 summarizes the average

classification accuracy we achieved for each subject across letter b, letter d and letter p.
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Figure 3.5. Classification accuracy achieved for different subjects
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Table 3.3. Average classification accuracy achieved for each subject across
letter b, letter p and letter d

subject percentage

subject-1 97
subject-2 75
subject-3 75
subject-4 77.6
subject-5 75
subject-6 75
subject-7 77.6
subject-8 75
subject-9 75
subject-10 75
subject-11 69.6
subject-12 69.6
subject-13 77.6

In the next section, we will look at the samples that DBN could classify correctly and

the samples that DBN failed to classify correctly and we try to justify the response.

3.4. Analyzing Classified Samples

In this section, we will have a closer look at the samples that DBN classified correctly

and the samples that DBN misclassified. However, first we analyze the effect of pre-training

and fine-tuning on the classification results of the first subject. After pre-training, the DBN

classifies all of the testing data samples as nonP300 signals and it does not classify any P300

signals correctly. This is expected since with unsupervised pre-training, the system does

not have any information to discriminate the signals from each other. The system is just

able to capture the features of the input at different layers waiting for supervised fine-tuning

to learn how to correspond higher level feature representation of the input to the correct

labels. So the classification accuracy we achieve after the pre-training is 75 percent. After

the fine-tuning, the DBN can correctly discriminate all of the P300 signals.
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Figure 3.6 shows a P300 signal which has been classified correctly. Figure 3.7 shows a

P300 signal which has been misclassified as nonP300 signal using DBN. As you can see, the

P300 signal in Figure 3.7 is much noisier compared with the P300 signal showed in Figure

3.6. Another possible reason that the DBN misclassified this P300 sample is that this sample

may actually be missing the expected P300, perhaps the subject was not concentrating. One

possible way for DBN to classify the P300 signal, represented in Figure 3.7, is to increase

the number of the layers or de-noising the signals before the classification. In this case, the

higher level representation of the signal might contain more of the P300 signal features and

as a result would be easier for the classifier to classify correctly.

As stated in the previous chapter, in RBMs hidden units represent some features of the

data. In this section we visualize what features each hidden unit represents by determining

what maximizes the activation of each hidden unit. We have done this in two ways. In the

next sections, we briefly describe the algorithms and represent the results we achieve using

each method.
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Figure 3.6. A correctly classified P300 sample
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Figure 3.7. A misclassified P300 sample
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3.5. Hidden Unit Visualization by Solving an Optimization Problem

One way to determine what aspects of the input data maximizes the activation of each

hidden unit is solving the optimization problem proposed by Bengio [9]. In this algorithm,

we first train the system using the algorithm mentioned in the previous chapter. Having

trained the system, we have the values of the weights and biases of the DBN. In order to

determine the input pattern which maximizes the hidden unit of interest, we can solve the

optimization problem with respect to the input vector. In order to do that, first we write

the activation of the hidden unit of interest with respect to the input vector. Since in our

architecture we have used three layers of the RBMs, we provide the activation of the hidden

units of each layer with respect to the input pattern. For the first layer we would have

Hj = W1jX + b1j.(29)

In Equation (29), Hj is the activation of the hidden units of the interest in the first layer and

W1j is the jth column of the weights in the first layer and b is the bias for the jth hidden

units. The derivative of the Hj in Equation (29) with respect to X can be calculated as

∂Hj

∂X
= W1j.(30)

In order to calculate the activation of the hidden unit of interest in the second layer, we

would have
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Hj = W2jsigm(W1X + b1) + b2j.(31)

In Equation (31), W1 is the matrix weight of the first layer and W2j is the jth column of

the second layer weight matrix. b1 is the bias for the hidden units of the first layer and b2j

is the bias of the jth hidden units of the second layer. The derivative of the activation with

respect to the input vector can be calculated as

∂Hj

∂X
= W ′

2jdiag(sigm(W1X + b1) ∗ (1− sigm(w1X + b1))W
′
1.(32)

In Equation (32), ∗ implies element-wise matrix multiplication. In order to calculate the

activation of the hidden unit of interest in the second layer, we would have

Hj = W3jsigm(W2sigm(W1X + b1) + b2) + b3j.(33)

In Equation (33), W1 and W2 are the weights of the first and the second layer and W3j is

the jth column of the matrix weight in the third layer. b1 and b2 are the hidden biases of

the first and the second layer and b3j is the bias of the jth hidden units in the third layer.

The derivative of the activation with respect to the input vector can be calculated as
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∂Hj

∂X
= W ′

3jdiag(sigm(W2sigm(W1X + b1) + b2) ∗ (1− sigm(W2sigm(W1X + b1) + b2)))

W ′
2diag(sigm(W1X + b1) ∗ (1− sigm(w1X + b1))W

′
1.

(34)

In Equation (34), ∗ implies element-wise matrix multiplication. In our experiment, first

we initialized each visible unit independently to a have normal distribution with mean of 0

and variance of 1. We then optimized the input vector using stochastic gradient ascent to

maximize the activation of each unit. In Figure 3.8, we have provided the input patterns

which maximize the activation of 100 hidden units, randomly chosen from the third layer.

As you can see in Figure 3.8, the patterns that maximize the activations are very similar to

each other. The first reason for this is that the number of the training data samples is too

low compared to the number of the hidden units in the third layer. The second reason is

that there is no guarantee that the pattern we find to maximize the hidden units is among

the training data samples. This could be also the reason that the data looks very noisy.
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Figure 3.8. Solving optimization problem method- the patterns which max-
imize the activation of 100 hidden units.
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3.6. Hidden Unit Visualization by Weighted Average of Inputs

In this section we provide another way to visualize the hidden units in the third layer.

In this method, first we calculate the probability value that each hidden unit represents for

each training data sample. Then, we calculate the weighted average of the training data

samples. The formula for calculating the weighted average is as

∑n
i=0AjiXi∑n
i=0Aji

.(35)

In Equation (35), Aij is the probability value of the jth hidden unit for the ith training

sample, Xi is the ith training sample and n is the number of the training samples. The

result we get for visualizing the 100 hidden units, randomly chosen from the third layer is

shown in Figure 3.9. As you can see in Figure 3.9, the patterns that maximize the activation

of hidden units are very similar to each other. Many patterns contain the P300 signal, but

some patterns do not contain P300 signals.
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Figure 3.9. Weighted-Average Method-the average of training samples
weighted by hidden unit activations.
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CHAPTER 4

Conclusion

In this thesis, we provided the first attempt to model P300 data for classification using

deep belief networks. In order to do that, we implemented a DBN package in python based

on the algorithm that Hinton provided for training the DBN. Our DBN consists of four

layers. The final layer is the classifier layer and we have implemented logistic regression for

this purpose. The first three layers are pre-trained using RBMs. We pre-trained the first

layer using Gaussian-Bernoulli RBM and pre-trained the two following layers using Bernoulli-

Bernoulli RBM. We used weight decay and momentum in our implementation of the RBM.

For the fine-tuning section, we used negative log likelihood as loss function and used back

propagation algorithm to calculate the derivative of the error with respect to weights and

biases. We optimized the parameters using mini batch stochastic gradient descent algorithm.

In the past, researchers have examined different classifiers to discriminate P300 signal

from nonP300 signals. However, no one has tried any kind of deep learning algorithms for

P300 classification. The application of deep learning algorithms on EEG time series are

limited to analysis of epilepsy [25], but this article has not paid much attention to model

P300 waves for classification. Researchers mostly have applied DBN for image classification,

voice recognition, or other high dimensional data. This thesis, provides the first attempt to

implement and apply the DBN to model the P300 signals for classification. In this thesis

we showed that DBN works very well in modeling the P300 signals for classification. As

summarized in the review by Sharma [22], other methods on average achieve between 60 % to

90 % classification accuracy for a single P300 trial. Our method on average achieves between

69 % and 97 % classification accuracy for a single P300 trial. The average classification

49



accuracy we achieved across all subjects was higher for testing individual channels than

testing trials. This suggests that maybe the majority vote is not the best way to determine

the label of each trial. In our experiments, we used EEG data set collected by the BCI lab

at Colorado State University on both healthy and disabled subjects.

The deep belief networks is a young algorithm and there is a lot to be done in this field

to improve the algorithm. In this thesis, we focused on reporting classification accuracy we

achieved for subjects. However, we did not investigate the training and the classification

time of this algorithm which is a crucial factor for building a real time BCI system. In fact,

the training and classification time of this algorithm seem to be higher than most of the

other machine learning classifiers.

We also used a logistic regression as the final layer of our DBN. Researchers have also

proposed other options such as Support Vector Machines and RBM to be used in the final

layer of the DBN as a classifier. Investigating these options may lead to a faster and more

accurate implementation of DBN for modeling P300 data.

We also did not investigate the effects of the different parameters such as the number of

the hidden layers, learning rate, momentum value and weight decay values formally. We used

Hinton’s guide to set up most of the parameters in pre-training. The rest of the parameters

were set up intuitively. We believe it is worth trying to examine the effect of different

parameters throughly to improve the performance.

One important question is how would a deep architecture model P300 data for classi-

fication with supervised pre-training or semi-supervised fine-tuning. As stated earlier, in

this thesis, we used unsupervised pre-training. However, supervised pre-training of deep

architectures may lead to a faster and more accurate deep learning algorithm.
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As stated earlier, the training of the deep belief network is time consuming. One approach

that could decrease the training time is to transfer the learning between two independently

trained DBN. For example, we may initialize the DBN parameter values using the result of

another subject’s pre-training. This approach may result in faster training of the DBN. This

is an approach which has not gained much attention in the literature.
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