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ABSTRACT

ADVANCES IN SINGLE-PIXEL IMAGING TOWARD BIOLOGICAL APPLICATIONS

In this work, we discuss two new methods for single-pixel imaging. First, we leverage

advances in laser metrology and frequency synthesis to measure small shifts in the center

frequency of an optical pulse. Pulses acquire such shifts when probing a transient optical

susceptibility, as in impulsive stimulated Raman scattering, which we use to demonstrate

the technique. We analyze the limits of this technique with regard to fundamental noise, and

predict detection sensitivity in these limiting cases.

We then present work on imaging in two dimensions, both 𝑥–𝑦 and 𝑥–𝑧, using single

element detectors. We accomplish this by multiplexing spatial frequency projections in time,

allowing rapid two dimensional imaging without an imaging detector. As we eliminate the

imaging detector, the sensitivity to scattering is dramatically decreased, allowing themethod to

be used deep in scattering tissue. Results are shown for several geometries and experimental

con󰅮igurations, demonstrating imaging capabilities across a variety of sample types, including

󰅮luorescent and biological samples.
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CHAPTER 1

I󰀐󰀖󰀔󰀑󰀆󰀗󰀅󰀖󰀋󰀑󰀐

In this document, we present work done in two areas of optical imaging: the measurement

of small optical frequency shifts with application to high-sensitivity Raman measurements

and rapid one and two dimensional imaging with single element detectors by frequency

multiplexing spatial information. While these technologies appear disparate, both techniques

endeavor to expand the applicability of optical imaging to a wider range of biological problems.

Raman scattering is an attractive technology for the characterization of chemical samples,

as it is an endogenous contrastmethodwhich does not require the application of dyes or tags to

allow chemically speci󰅮ic imaging. Raman measurements also have excellent speci󰅮icity, as the

Raman spectrum gives information about the vibrational modes of a molecule, the molecule

can be identi󰅮ied by its Raman spectrum. A notable disadvantage of Raman measurements,

however, is the weak nature of the interaction leading to long acquisition times and low

sensitivity. Coherent techniques have made great strides in improving the sensitivity, yet the

sensitivity is still too low to probe many interesting biological systems.

In this work, we approach Raman measurements from a new direction. Instead of probing

the nuclear vibrations, as is often done, we’ll make a measurement of the electronic response

of the atom to a driving electric 󰅮ield. This electronic response gives rise to a time-dependent

index of refraction, which when sampled by an optical pulse, leads to a small shift in the center

optical frequency of the probe pulse. So, the problem of measuring small concentrations of

Raman active molecules turns to the measurement of small optical frequency shifts.

The simplest method would be to observe the shift in the center wavelength of the pulse

on an optical spectrometer. Optical Spectrum Analyzer (OSA) have a maximum resolution of
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about 1 GHz, too coarse for the Ramanmeasurements wewish tomake in this work. Therefore,

we need to convert this optical frequency shift into a more easily measurable quantity.

We can easily convert shifts in center frequency of the optical pulse into changes in

intensity through a narrow optical 󰅮ilter. This 󰅮iltering converts the optical frequency change

into a small change in optical power, which can be measured accurately using a balanced

photo detector. We’ll examine the measurement of such signals, including the implication of

noise to the sensitivity limit.

To obtain better performance in the face of shot noise, we look to convert the shift in

center wavelength of a pulse train to a delay in time (by propagation in a dispersive medium,

that is, one in which different colors travel at different speeds), rather than a change in

power. The measurement of timing jitter in laser oscillators is a mature and growing 󰅮ield

of research, which already possesses the capability to measure extremely small timing jitter

values. We’ll consider again the application of this technique in the presence of experimental

noise, and demonstrate the viability of this technique subject to our current, experimentally

imposed, sensitivity limits. Projections will also be made, showing a road map for sensitivity

improvement using this technique by improving the experimental setup.

This Raman measurement technique will be implemented as a laser-scanning microscope,

in which a single focal spot is raster scanned across the sample, acquiring an image point by

point. This is a slow process, but works well in the presence of optical scattering, as we often

󰅮ind in biological specimens. We also look for an approach to increase imaging speed while

still using a single-pixel detector to retain the ability to image in the presence of scattering.

Our single-pixel imagingmethod employs a spinning disk, onwhich is printed amodulation

pattern with a modulation frequency that depends on radial position. Thus, when the entire
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beam is collected on a single detector in space, the electronic spectrum of the photodiode

signal contains a spread of frequencies, the positions of which map to spatial position and

the amplitude of which give object contrast information. We’ll show the basic technique of

line imaging using a point detector, using both absorptive and 󰅮luorescent contrast, as well as

application of our linear measurement technique to an optical spectrometer. With different

wavelengths modulated at different frequencies, we can not only measure the pulse spectrum

on a single element detector, but also perform hyperspectral imaging by rapidly collecting the

spectrum of a single image point in a laser scanning technique.

With the one dimensional case demonstrated, we move to application of the technique to

two dimensions. The introduction of a second modulator allows two dimensional 𝑥–𝑦 images

to be collected using a single element, using a method analogous to the 1D case. Theory and

experiment will be presented on this system, as well as a discussion of experimental consid-

erations and alternate processing methods that can be employed to improve implementation

of such a system. Operation of a 2D modulation imaging system is also demonstrated using

an alternate modulator, a micro-mirror array.

The 󰅮inal application of this technology is also to two dimensional imaging, however, we

now collect 𝑥–𝑧 images using again a single modulator. This allows the collection of not only

transverse information from a line focus, but simultaneous collection of axial information

along the beam propagation direction, while still using a simple optical setup. This technique

is applicable not only to absorptive contrast, but also to linear and nonlinear 󰅮luorescence.

As optical frequencies are too high to be directly detected, the phase of optical 󰅮ields is

typically detected using holography, which measures the interference between the 󰅮ield

of interest and a reference 󰅮ield, and from this interference the phase difference can be
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determined [1, 2]. However, this interference requires coherence between the two 󰅮ields,

which limits its application to the incoherent 󰅮ields produced by 󰅮luorescence. Our modulation

imaging technique encodes the propagation phase of the coherent illumination beam in the

󰅮luorescence intensity. The propagation phase of the coherent illumination beam can then be

recovered and processed using standard holography techniques.
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CHAPTER 2

R󰀃󰀏󰀃󰀐 S󰀅󰀃󰀖󰀖󰀇󰀔󰀋󰀐󰀉

Raman scattering is a light matter interaction where a photon is inelastically scattered

from a molecule, such that the scattered photon has a different optical frequency than the

incident photon. While the vast majority of scattering events do not cause this change in

frequency, occasionally a scattered photon will leave the molecule in a higher ro-vibrational

state than before the scattering, causing the scattered photon to have an energy lower than

the incident photon by the energy of the ro-vibrational state. This is called Stokes Raman

scattering. The photonmay also be scattered by amolecule already in an excited ro-vibrational

state and leave that molecule in a lower energy state, causing the scattered photon energy

to be the sum of the incident energy and the energy of the ro-vibrational state energy, a

process known as anti-Stokes Raman scattering. The probability of anti-Stokes scattering is

comparatively less than that of Stokes Raman scattering since higher ro-vibrational states are

less populated, according to Boltzmann statistics.

By illuminating a molecule with light of a single frequency, and measuring the spectrum of

the light scattered from the material, the energy of the ro-vibrational states can be determined

by the energy difference between the incident light and the light scattered to various Stokes

and anti-Stokes lines. As the incident photon energy need not correspond to any energy

level of the molecule, this measurement can be made with any illumination frequency. At

frequencies far from electronic resonance, these spontaneous Raman lines are very weak and

measurement requires high illumination intensities and long integration times, ultimately

limited by the experimental background from sources such as scattered light and 󰅮luorescence.
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If the laser frequency is close to an electronic energy level of the system being studied, the

Raman scattering can be enhanced [3].

2.1. Stimulated Raman Scattering

To improve the signal strength, Raman scattering events can be stimulated instead of

relying upon spontaneous scattering. In this method, the molecule is illuminated with light at

two frequencies, separated by the ro-vibrational frequency of interest. The intensity of the

coherently scattered Stokes light is proportional to the product of the intensity of the pump

and Stokes beams [4]. To measure the Raman spectrum, one laser is typically 󰅮ixed while the

other is swept through a range of optical frequencies. When the difference between the two

frequencies corresponds to a ro-vibrational mode of the molecule, the measurement will show

an increase in power in the Stokes beam, Stimulated Raman Gain (SRG), and a corresponding

decrease in the power in the pump beam, Stimulated Raman Loss (SRL). When the frequency

difference does not correspond to a vibrational mode, both beams are unperturbed. These

effects are collectively known as Stimulated Raman Scattering (SRS). As the gain and loss

signals are small changes in power against the background of intense pump or stokes beams,

the signals can get lost in the laser and measurement noise.

A similar method can be used which still illuminates the sample with a pump and Stokes

beam, but produces the signal of interest at a third frequency. In this case, the sample is

illuminated with light of two frequencies, 𝜔1 and 𝜔2, where 𝜔1 > 𝜔2. If the sample has a

ro-vibrational frequency of 𝜔M, Stokes and anti-Stokes frequencies can be generated when

𝜔1 −𝜔2 = 𝜔M, in a 4-wave mixing process [5]. A strong Stokes signal at 𝜔2 −𝜔M is generated

when 2𝜔2 − 𝜔1, a process known as Coherent Stokes Raman Scattering (CSRS). A strong

anti-Stokes signal at 𝜔1 + 𝜔M is generated when 2𝜔1 − 𝜔2 in a process called Coherent
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Anti-Stokes Raman Scattering (CARS). In both of these cases energy is conserved between the

incident and generated photons, causing no net change in the energy of the sample.

While a CARSmeasurement of the transition encodes the vibrational energy of themolecule

in the output beam at a new frequency, 𝜔1 + 𝜔M, there is still a signi󰅮icant background

contribution that does not contain the desired information. This contribution is generated

from interaction between the 󰅮ields and electronic and nonresonant vibrational modes [6]. The

challenge in achieving high sensitivity in CARS microscopy is thus differentiation between the

resonant CARS signal and the non resonant background. Numerous methods exist to suppress

the non-resonant background, including through polarization [7], destructive interference

[8], and frequency modulation [9]. With the background suppression available through

Frequency-Modulated CARS (FM-CARS), CARS microscopy has been able to detect as few as

500000 molecules in a 100 attoliter focal volume with a 1.6 Hz update rate [9]. While this

method represents an orders of magnitude improvement in CARS sensitivity, SRS has recently

been shown to have the highest sensitivity [10], where as few as 300,000 methanol (5 mM)

or 3,000 retinol (50 µM) molecules were measured in a ∼100 attoliter volume [11].

2.2. Impulsive Stimulated Raman Scattering

To achieve higher sensitivity, we turn to a different coherent Raman approach, where

a short pulse is used to provide a large number of optical frequencies at the same time,

exciting all Raman transitions with vibrational periods longer than the pulse duration. In

this way, Raman scattering can occur driven by different colors within the same pulse. This

technique, called Impulsive Stimulated Raman Scattering (ISRS), creates a vibration coherence

in the molecule which leads to small, time dependant changes in the index of refraction [12].

Selectivity of the coherent excitation can be improved by shaping femtosecond pulses, either
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to create multiple pulse bursts at the desired frequency to drive strong interactions [13] or

using an appropriately shaped single pulse [14] to excite a speci󰅮ic mode.

This transient index of refraction can be measured by 󰅮iltering the probe spectrum and

observing the change in power through the 󰅮ilter as a function of pump probe delay, or by

introducing a reference beam and measuring the phase change directly, again as a function of

pump probe delay, using an interferometer [15]. This phase can also be recovered through

spectral interferometry [16] in a pump-probe con󰅮iguration, or without scanning by employing

chirped probe pulses [17] to probe low-frequency Raman modes.

Traditional Raman scattering looks at light scattered by the molecular nuclear vibration.

In this work, we look at the phase shift of a laser pulse interacting with the moving electronic

cloud of the molecules of interest. The moving charge density changes the index of refraction

as a function of time, leading to both phase and frequency shifts that are imposed on a laser

pulse propagating through the sample. The frequency shift depends not only on the vibrational

oscillation frequency but also on the velocity of vibrational motion. Among other effects, the

atomic displacement leads to a change of the molecule’s polarizability, which characterizes the

displacement of electrons in a molecule in response to an applied electric 󰅮ield. The magnitude

of the frequency shift is proportional to the molecular concentration and the intensity of the

pump pulse.

2.3. Susceptibility perturbation

Considering excitation by a short pulse, in which a superposition of modes will be excited,

for which the pulse is shorter than the vibrational period. The autocorrelation of the pulse

spectrum determines the mode excitation [14], with pairs of different colors from within the

bandwidth driving a coherence at their difference frequency. This gives a perturbation to

8



1/fr

Probe

τc

Ω

δω < 0 δω > 0

PumpProbe Probe

a b

τa
τb

Pump

F󰀋󰀉󰀗󰀔󰀇 2.1. Schematic depiction of the molecular coherence giving rise to a

transient index of refraction. (a) The transient index is then sampled by a probe

pulse that arrives after the pump at a variable time 𝜏. (b) The transient index

gives rise to temporal phase across the pulse duration, which can be seen as a

shift in the center frequency of the pulse.

the effective optical susceptibility in response to each pulse (quasi-Gaussian approximation)

given by [18]

𝛿𝜒(1)(𝜁, 𝑡; 𝜏) ≈
𝑁

𝜀0
(𝛼′)2

1

Ω𝑣

|𝐷 (Ω𝑣)| sin (Ω𝑣(𝑡 + 𝜏) + 𝜙0)Φ(𝜁) (2.1)

with

𝐷 (Ω𝑣) = 󰗂
∞

−∞

󰘵𝐸pu(𝑡)󰘵
2𝑒−𝚤Ω𝑣𝑡d𝑡 ≡ |𝐷 (Ω𝑣)| 𝑒

𝚤𝜙0 (2.2)

in units of V2m−2 s, where Φ(𝜁) = 󰘵𝐴(𝜁)󰘵
−2
, 𝐴(𝜁) = 1 − 𝚤 󰕿

𝜁−𝑧𝑤

𝑧𝑅
󰖃, 𝑁 is the number density

of harmonic oscillators, 𝜀0 is the permittivity of free space, 𝛼′ is the Raman differential

polarizability, Ω𝑣 is the vibrational frequency, and 𝜏 is the pump probe delay. 𝐸pu is the

temporal amplitude pro󰅮ile of the pump pulse.

For a medium of length ℓ with a linear refractive index 𝑛 in the presence of this suscep-

tibility perturbation, the phase shift picked up in the focus (neglecting 𝜁 dependence) by a

probe of center angular frequency 𝜔 at a delay 𝜏 relative to the pump pulse, as depicted in
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Fig. 2.1, can be written as

𝛿𝜙(𝑡; 𝜏) = 𝛿𝜙0 sin (Ω𝑣(𝑡 − 𝜏) + 𝜙0) . (2.3)

where we’ve de󰅮ined

𝛿𝜙0 =
𝜔ℓ

2𝑛𝑐

𝑁

𝜀0
(𝛼′)2

1

Ω𝑣

|𝐷 (Ω𝑣)| . (2.4)

This index perturbation will lead to a change in the center frequency of the probe pulse given

by the temporal derivative

𝛿𝜔(𝜏) =
d𝜙(𝑡; 𝜏)

d𝑡

≈ 𝛿𝜙0Ω𝑣 cos (Ω𝑣(𝑡 − 𝜏) + 𝜙0) . (2.5)

Themagnitude of this frequency shift can be seen to be proportional not only to the vibrational

frequencyΩ𝑣, but also to the number density𝑁 of the species, as well as the Raman differential

polarizability. This continuous frequency shift is distinct from the typical Raman scattering

in which the center wavelength of the scattered light is shifted by the vibrational frequency,

producing Stokes and anti-Stokes spectral sidebands. Measuring a pump-probe delay scan

to map out this cosine dependence allows for determination of the vibrational frequency,

with the magnitude of the frequency shift providing information about number density. From

the frequency shift, we can compute the peak change in index of refraction, allowing the

determination of molecular concentration.

As this frequency shift is born of time-dependent phase that arises from the index pertur-

bation created by this vibrational coherence, and that the vibrational coherence is relatively

short lived (dephasing typically within a few ps), such that each probe pulse sees a freshly
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F󰀋󰀉󰀗󰀔󰀇 2.2. Pump pulses at repetition rate 𝑓𝑟 set up coherent oscillations which

decay rapidly compared to the temporal separation of the pulses. The probe

pulses arrive delayed slightly from the pump pulses, each sampling a freshly

constructed coherence.

prepared coherence (as the pulse separation is on the order of nanoseconds), as depicted

schematically in Fig. 2.2. Thus, there is no coherence between pulses in the pulse train; each

pulse pair performs an independent experiment. Each pulse sees an identically prepared

perturbation that does not evolve pulse to pulse. This presents a challenge for measurement.

The simplest approach to measuring this constant change in the center frequency of the

pulse is to observe the spectral change using an optical spectrometer. The resolution of optical

spectrometers, however, is typically on the order of GHz, severely limiting the concentra-

tions that can be observed. Another common method of accurate frequency determination

is interferometry. While this is commonly employed with Constant Wave (CW) light, this

technique cannot be applied in our case as it would require a change in offset frequency or

repetition rate to get a heterodyne beat. As shown in Fig. 2.3, in our experiment the pulse

envelope shifts relative to the comb, so the energy in each comb line changes but the comb

lines are 󰅮ixed by the laser. This is distinct from the type of shift that would be applied by an

Acousto-Optic Modulator (AOM), for example, as the AOM adds an offset frequency, shifting

both the envelope and the underlying comb structure.

While the change in optical path from the a modulated index of refraction and from a

moving particle look the same when sampled by a CW 󰅮ield, when sampled using short pulses

the effects are seen to be quite different. In Doppler Optical Coherence Tomography (OCT)
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F󰀋󰀉󰀗󰀔󰀇 2.3. Two temporal pulse trains shown with phase modulations that (a)

are the same for each pulse and (b) vary from pulse to pulse. This phase shifts

the pulse spectrum relative to comb lines for (c) the modulation that is the

same for each pulse and (d) a slow phase change that leads to shift in offset

frequency 𝑓𝑜 (e.g., from an AOM).

[19], small frequency shifts born of moving particles are measured using an interferome-

ter. However, when attempting to measure a shift brought about by a changing index of

refraction that applies the same modulation to each pulse in the train, such interferometric

measurements prove ineffective.

Optical Path Length and the Generalized Doppler Shift. The effect of time varying

inhomogeneous media on frequency has been considered for the case of Radio Frequency

(RF) pulses in which the path length 󰅮luctuates slowly compare to pulse duration in the theory

of the so-called Generalized Doppler effect [20]. Work has been done on the Doppler shift of

laser pulses scattered by an inhomogeneous material [21]. Here, we’ll look at Doppler shifts

for both the case of time varying media and moving particles under both CW and pulsed laser

illumination.
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Starting with the optical path length, de󰅮ined by OPL = 𝑛𝐿, we calculate the time-derivative

as

dOPL

d𝑡
= 𝑛

𝜕𝐿

𝜕𝑡
+
𝜕𝑛

𝜕𝑡
𝐿, (2.6)

where the change in optical path is the sum of two terms. The 󰅮irst term looks like a moving

object, with length changing as a function of time, and the second term is a time-varying

index of refraction, as we’ll see from the Raman-induced index perturbation. These two

effects require different detection techniques, when measuring the changing path length or

the changing index of refraction. The method also depends on whether the 󰅮ield being used

to measure the effect are CW or pulses.

For the CW case, measurement of the two quantities is equivalent. Consider the light

backscattered from particles moving at a uniform velocity, where we can write the path length

as a function of time as 𝐿(𝑡) = 𝐿0 + 𝑣𝑧𝑡, and movement through a medium with a uniform

index change (e.g., linear index change: 𝑛(𝑡) = 𝑛0 + 𝑛′𝑡). We write the change in optical path

as

dOPL

d𝑡
= 𝑛0𝑣𝑧𝑡 + 𝑛′𝐿0𝑡 = (𝑛0𝑣𝑧 + 𝑛′𝐿0) 𝑡. (2.7)

This linear change in OPL gives rise to a frequency shift that can be written as

𝛿𝜔 = −
𝜔

𝑐
(𝑛0𝑣𝑧 + 𝑛′𝐿0) . (2.8)

The contribution from moving particles takes the same form as the changing index of re-

fraction. This frequency shifted 󰅮ield can then be mixed with an unshifted beam, allowing

the determination of the frequency shift from the heterodyne beat signal, using for example
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a Michelson interferometer. However, with short pulses, the measurement becomes more

complicated.

Interferometry with Frequency-Shifted Pulses. To examine the impact of short pulses

on the measurement, we look at the cross-correlation of a reference pulse and a frequency-

shifted pulse. We will look at both the case of a changing physical propagation distance as

well as scattering from a moving particle. Doppler OCT, for example, is just an effective time-

varying distance to the scattering point, an thus, we need only compute the cross-correlation

signal.

We will have a reference pulse that will be scanned with a delay 𝜏 relative to the frequency-

shifted pulse. The representation of the pulses in the reference pulse train is given by

𝐸ref(𝑡) =

∞

󰗞

𝑛=−∞

𝐸𝑟 󰛂𝑡 −
𝑛

𝑓rep
󰛃 exp (𝚤𝜔0𝑡) + c.c. (2.9)

where 𝐸𝑝 is the pulse envelope, 𝜔0 is the center frequency, and c.c. is the complex conjugate.

The modulated pulse train is given by

𝐸mod(𝑡) =

∞

󰗞

𝑛=−∞

𝐸𝑠 󰛂𝑡 −
𝑛

𝑓rep
󰛃 exp (𝚤𝜔0𝑡) + c.c.. (2.10)

We’ll measure the output signal of a Michelson interferometer to observe the modulation. For

femtosecond pulses, the current pulses from the detector are the detector impulse response

scaled by the pulse energy. A slow detector (i.e., with a bandwidth < 𝑓rep) will provide a

signal that corresponds to the average intensity of the pulse train ̄𝐼𝑗

⟨𝐼inst⟩ = ̄𝐼𝑠 + ̄𝐼𝑅 + 𝑓𝑟2Re [Γ (𝑇𝑑)] (2.11)
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where the correlation function is given by

Γ (𝜏) = 󰗂
∞

−∞

�̂�𝑝 (𝜔 − 𝜔0) �̂�
∗
𝑟 (𝜔 − 𝜔0 − 𝛿𝜔(𝜏)) exp (𝚤𝜔𝜏) d𝜔. (2.12)

This intensity will show a difference with changes to the pulse parameters involved in the

cross correlation measurement. For the case of slowly varying changes, those that vary from

pulse-to-pulse, we can write the modulated pulse train as

𝐸mod(𝑡) = 𝑚(𝑡)

∞

󰗞

𝑛=−∞

𝐸𝑝 󰛂𝑡 −
𝑛

𝑓𝑟
󰛃 exp (𝚤𝜔0𝑡) (2.13)

where𝑚(𝑡) = 𝑎(𝑡)𝑒𝑖𝜃(𝑡), with 𝑎(𝑡) and 𝜃(𝑡) are the amplitude and phase modulation of the

pulse train, respectively. This leads to an average intensity of

⟨𝐼inst⟩ = ̄𝐼𝑠 + ̄𝐼𝑅 + 2𝑓𝑟𝑎(𝑡)Re 󰕶Γ (𝜏) 𝑒
𝑖𝜃(𝑡)󰕺 , (2.14)

assuming the modulation, 𝑚(𝑡) and 𝜃(𝑡), vary slowly relative to bandwidth of the optical

detector. In this case, we can see that the modulation is faithfully transferred from the optical

pulse train to the intensity signal. For the case of a moving scatterer with a uniform velocity

along z of 𝑣𝑧, the modulated 󰅮ield takes the form of

𝐸mod(𝑡) = exp 󰕿𝚤
𝜔

𝑐
2𝑣𝑧𝑡󰖃

∞

󰗞

𝑛=−∞

𝐸𝑝 󰛂𝑡 −
𝑛

𝑓𝑟
−
2𝑣𝑧

𝑐
𝑡󰛃 exp (𝚤𝜔0𝑡) . (2.15)

The intensity can be written in terms of the effective delay, 𝜏 → 𝜏 +
2𝑣𝑧

𝑐
𝑡, as

⟨𝐼inst⟩ = ̄𝐼𝑠 + ̄𝐼𝑅 + 2𝑓𝑟Re 󰛄Γ 󰛂𝜏 +
2𝑣𝑧

𝑐
𝑡󰛃 exp 󰕿𝚤

𝜔

𝑐
2𝑣𝑧𝑡󰖃󰛅 (2.16)
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So in the case of the moving particle, we see again a modulation in the intensity signal encoded

directly in the intensity signal.

Lastly, we’ll look at the modulation that is pertinent to this work, in which the ampli-

tude and phase modulation is the same for each pulse in the pulse train. Again writing the

modulated pulse train,

𝐸mod(𝑡) =

∞

󰗞

𝑛=−∞

𝐸𝑝 󰛂𝑡 −
𝑛

𝑓𝑟
󰛃 exp 󰛄−𝚤𝛿𝜔(𝜏) 󰛂𝑡 −

𝑛

𝑓𝑟
󰛃󰛅 exp [−𝚤𝛿𝜙(𝜏)] exp (𝚤𝜔0𝑡) (2.17)

which allows us to write the correlation function of

Γ (𝜏) = 𝑒−𝚤𝛿𝜙(𝜏)󰗂
∞

−∞

�̂�𝑝 (𝜔 − 𝜔0) �̂�
∗
𝑝 (𝜔 − 𝜔0 − 𝛿𝜔(𝜏)) exp (𝚤𝜔𝜏) d𝜔. (2.18)

Substituting Ω = 𝜔 − 𝜔0 −
𝛿𝜔

2
and de󰅮ining

𝜂 (𝜏) = 󰗂
∞

−∞

�̂�𝑝 󰛂Ω +
𝛿𝜔

2
󰛃 �̂�∗

𝑝 󰛂Ω −
𝛿𝜔

2
󰛃 exp (𝚤Ω𝜏) dΩ (2.19)

gives a correlation function

Γ (𝜏) = 𝜂 (𝜏) exp 󰛄𝚤 󰛂𝜔0 +
𝛿𝜔

2
󰛃 𝜏 − 𝚤𝛿𝜙󰛅 . (2.20)

The intensity is then given by

⟨𝐼inst⟩ = ̄𝐼𝑠 + ̄𝐼𝑅 + 𝑓𝑟2 |𝜂 (𝜏)| cos 󰛄󰛂𝜔0 +
𝛿𝜔

2
󰛃 𝜏 − 𝛿𝜙 + ∠𝜂 (𝜏)󰛅 (2.21)

Here the intensity has information about the vibrational coherence encoded in the phase

𝛿𝜙(𝜏) of the interferogram or a change in the carrier frequency, but this effect will be very
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small. Note that any dispersion, 𝜑(Ω) will be the same for each pulse in our experiment,

exp (𝚤𝜑(Ω)), so in the cross correlation, the phase drops out, exp (𝚤𝜑(Ω)) exp (−𝚤𝜑(Ω)) = 1,

so that the cross-correlation depends only on the power spectrum and is independent of the

dispersion placed after any frequency shifting. Due to the identical modulation on each pulse,

we need an alternate method to detect the frequency shift that can overcome the limitations

of linear interferometry.

To measure these frequency shifts, we can measure power changes through a narrow

spectral 󰅮ilter proportional to the frequency shift. Though the magnitude of this change in

power will be small, differential detection allows for cancellation of common mode noise

allowing operation very near the shot noise limit. Alternately, we can convert the frequency

shift into a delay of the pulse train by applying dispersion. This delay can be measured directly,

leveraging work done on the measurement of timing jitter of laser cavities. This delay will also

manifest as a phase offset in the repetition rate of the laser (relative to the pulse train without

the in󰅮luence of the sample). Many techniques exist for the accurate measurement of RF phase,

including a great deal of work done on measuring the timing jitter of laser oscillators and

optically referenced RF frequency standards for optical metrology.
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CHAPTER 3

F󰀔󰀇󰀓󰀗󰀇󰀐󰀅󰀛 S󰀊󰀋󰀈󰀖 󰀖󰀑 A󰀏󰀒󰀎󰀋󰀖󰀗󰀆󰀇 C󰀑󰀐󰀘󰀇󰀔󰀕󰀋󰀑󰀐

The 󰅮irst measurement method for small frequency shifts is also the most direct. If we

observe the power through a spectral 󰅮ilter that is narrow relative to the overall spectrum,

then as the center frequency changes the power through the 󰅮ilter will change as well [22, 23].

We’ll analyze the limit in sensitivity here in the fundamental, shot noise limit. This limit can

be reached with reasonable ease using autobalancing photoreceivers to compensate for laser

amplitude noise [24].

3.1. Theory

A schematic depiction of the center frequency shift converting into amplitude is shown in

Fig. 3.1. Considering a pulse with a Gaussian power spectrum, used to sample a vibrational

coherence at a pump–probe delay 𝜏 which gives rise to a center frequency shift as given in

Eq. 2.5, we 󰅮irst write

𝑆 (Ω) = 𝑆0 exp 󰛂−
Ω2

2𝑎0
󰛃 (3.1)

and integrating the power transmitted by a narrow Gaussian 󰅮ilter de󰅮ined by 𝐹(Ω) =

exp(−(Ω − √𝑎0)
2/(2Δ)). We’re further assuming here the 󰅮ilter is centered at the point of

maximum slope of the Gaussian, the best-case scenario. The 󰅮ilter width is given by Δ.

Δ𝑃

𝑃
=
∫
∞

−∞
𝑆(Ω − 𝛿𝜔)𝐹(Ω) dΩ − ∫

∞

−∞
𝑆(Ω)𝐹(Ω) dΩ

∫
∞

−∞
𝑆(Ω)𝐹(Ω) dΩ

(3.2)

De󰅮ining the 󰅮ilter as a fraction of the bandwidth Δ → √𝑎0/𝑁

Δ𝑃

𝑃
= exp󰛂

𝑁 󰕾2√𝑎0 − 𝛿𝜔󰖂 𝛿𝜔

2𝑎0(1 + 𝑁)
󰛃 − 1 (3.3)
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F󰀋󰀉󰀗󰀔󰀇 3.1. Schematic of the frequency shift approach, showing energy transfer

through a pair of 󰅮ilters.

For the moment, we’ll let the width of the Gaussian 󰅮ilter become in󰅮initely thin, approximating

a delta function at the peak of maximum slope

Δ𝑃

𝑃
= exp󰛂

𝛿𝜔

√𝑎0
−
𝛿𝜔2

2𝑎0
󰛃 − 1 (3.4)

As 𝛿𝜔 is much smaller than 𝑎0, we let the 𝛿𝜔
2 go to zero and we arrive simply at

Δ𝑃

𝑃
= exp󰛂

𝛿𝜔

√𝑎0
󰛃 − 1 (3.5)

We see good agreement for reasonably narrow 󰅮ilters, with the approximate value reaching

90% of the exact value for 𝑁 = 10 and 99% for 𝑁 = 99. For our experiment, we have about

10 THz of bandwidth in the pulse, and the Fiber Bragg Grating (FBG) we are using has a

30 GHz passband width, which gives an 𝑁 of about 333.

We’ll estimate the minimum detectable frequency shift that can be made using this method

by observing the limiting case, in which the shift is small enough that the change in power

through the 󰅮ilter is below the fundamental noise of the detection process. The single sideband

power spectral density of the shot noise as a function of power is 𝑆(𝑓) = 2ℎ𝜈𝑃, with a

corresponding shot noise power spectral density due to an average photocurrent 𝐼 of 𝑆(𝑓) =
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F󰀋󰀉󰀗󰀔󰀇 3.2. Shot noise limited frequency shift and CCl4 concentration as a

function of power. CCl4 concentration was determined using the parameters

speci󰅮ied in Appendix A.

2𝑞𝐼, where 𝑞 is the electron charge. The shot noise current is 𝑖sh = 󰖶2𝑞𝑖𝑑𝑓𝐵, where the diode

current is given by 𝑖𝑑 = 𝑅𝑝𝑃𝑑 where 𝑅𝑝=𝜂
𝑞

ℎ𝑓
is the photodiode responsivity (with 𝜂 being the

quantum ef󰅮iciency, ℎ is Planck’s constant, and 𝑓 is the frequency), 𝑓𝐵 is the bandwidth, and

𝑃𝑑 is the power incident on the photodiode.

The smallest power level that can be measured is assumed to be the change in diode

current equal to the shot noise current Δ𝑃 = 󰖶𝑓𝐵𝑞𝑃𝑑/𝑅𝑝. So the shot noise limited power

change is

ΔP

𝑃𝑑
= 󰖹

𝑓𝐵𝑞

𝑅𝑝𝑃𝑑
. (3.6)

Equating the approximate power change through the 󰅮ilter to the shot noise limited power

change, we can solve for the smallest 𝛿𝜔 achievable as

𝛿𝜔min = √𝑎0 log󰛈1 + 󰖹
𝑓𝐵𝑞

𝑅𝑝𝑃𝑑
󰛉 (3.7)

Let’s consider the parameters for our experiment. For an 80 fs pulse with an average power

of 10 µW and a detector with a responsivity of 0.9 A/W using a measurement bandwidth
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F󰀋󰀉󰀗󰀔󰀇 3.3. Minimum, shot-noise limited frequency shift as a function of 󰅮ilter

width.

of 1 Hz gives a minimum detectable shift of 1.9 MHz. Using these same parameters, we can

estimate the minimum resolvable shift as a function of power as shown in Fig. 3.2. Returning

to the full form of the 󰅮iltered signal as given in Eq. 3.3 to allow us to consider a wider 󰅮ilter.

The shot-noise limited minimum shift is then given by

𝛿𝜔min = √𝑎0 −
1

𝑁
󰖺𝑎0𝑁󰛈𝑁 − 2(1 + 𝑁) log󰛈1 + 󰖹

𝑓𝐵𝑞

𝑅𝑝𝑃𝑑
󰛉󰛉. (3.8)

The minimum shift, using the parameters given above, is calculated for a variety of power

levels as a function of 󰅮ilter width is shown in Fig. 3.3.

These estimates are based on a Gaussian spectrum. To calculate the frequency shift for

an arbitrary spectral shape, we’ll have to 󰅮irst write the photodiode signal, s(Ω) as a function

of the spectrum S(Ω), through the responsivity of the photodiode 𝑅𝑝 as 𝑠(Ω) = 𝑅𝑝𝑆(Ω).

The fractional shift in signal is given by Δ𝑠/𝑠 = (𝑆(Ω + 𝛿𝜔) − 𝑆(Ω)) /𝑆(Ω). To evaluate this

without a speci󰅮ic spectral shape, and arrive at an approximate expression for the change in

signal level which we can relate to the frequency shift, we’ ll rewrite the spectrum as a Taylor
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F󰀋󰀉󰀗󰀔󰀇 3.4. Optical setup of the Raman test microscope.

series (truncated here to 󰅮irst order)

𝑆(Ω) = 𝑅𝑆 󰕾Ω𝑓󰖂 + 𝑅𝑆′ 󰕾Ω𝑓󰖂 󰕾Ω − Ω𝑓󰖂 . (3.9)

Using this expression, and evaluating at the 󰅮ilter frequency for both the shifted and unshifted

spectra, we can write

Δ𝑠

𝑠
= 𝛿𝜔

1

𝑆 󰕾Ω𝑓󰖂

𝜕𝑆

𝜕Ω𝑓

󰛠

Ω→Ω𝑓

(3.10)

Then themeasurement of the frequency shift via the change in transmission through a spectral

󰅮ilter, you have only to measure the spectrum and the photodiode signal. Because the shift is

determined by the ratio of signal levels and the ratio of spectra and spectral slope, the exact

photodiode responsivity and spectral intensity calibration are not required.

3.2. Results

To test this setup, we built a simple Raman microscope. The microscope is a pump probe

con󰅮iguration built using a modi󰅮ied Mach Zender, as shown in Fig. 3.4. A controllable relative

pump and probe delay is introduced using a motorized stage, and the probe pulse train is

modulated with an optical chopper. The pump and probe beams are then made parallel and
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F󰀋󰀉󰀗󰀔󰀇 3.5. Power spectrum and spectral slope used in the calculation of the

frequency shift. The circles indicate the location of the spectral 󰅮ilter.

an close enough together to 󰅮ill the back aperture of the focusing objective. The beams are

brought to a focus and overlapped using a Zeiss APLAN 40x 0.65NA into a 150 µm thick

sample of BGO. The probe is then collected using a matching objective and coupled into an

optical 󰅮iber (SMF-28E). This 󰅮iber is sent through an 90%/10% power splitter, with the 10%

port connected to an OSA to measure the spectrum for each run. The 90% port is connected

to the input of the 󰅮iber 󰅮ilter. The 󰅮ilter has two output 󰅮ibers, the passband and reject band.

The passband is connected to the signal port of an auto-balanced detector while the reject

port is connected to the reference port of the auto-balanced detector through a variable

attenuator. The variable attenuator is adjusted to control the power ratio between the two

ports, which in turn effects the Common-Mode Rejection Ratio (CMRR) of the auto-balancing

detector. Measuring the power spectrum using a Data Acquisition (DAQ) and custom written

down-sampling periodogram estimation software (described in Appendix D), we can quickly

minimize the output noise, thus ensuring a high CMRR.

The pump power can be controlled with a waveplate and polarizer, allowing the magnitude

of the Raman signal to be varied. For each pump power, we 󰅮irst measure the spectrum using
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F󰀋󰀉󰀗󰀔󰀇 3.6. (a) Filter-based Raman induced frequency shift from BGO with

a pump power of 3 mW. The shift is plotted with respect to the pump–probe

time delay 𝜏, a measure of how much time elapses between the arrival of

the pump pulse and the arrival of the probe pulse. Negative delays show no

signal as the probe pulse arrives ahead of the pump pulse. At time zero, we

can see a strong signal due to cross-phase modulation. The temporal data

is then processed using the Linear Prediction Singular Value Decomposition

(LPSVD) algorithm, and the predicted trace plotted (green). (b) The Fourier

transform of the temporal data (blue) is plotted on to of the Lorentzian Raman

line from the parameters predicted by the LPSVD (green). The residual noise

left by subtracting the predicted trace from the data and Fourier transforming is

plotted (orange) along with the theoretical noise 󰅮loor calculated using Eq. 3.8

(red).

the OSA. From this spectrum, the power and slope at the 󰅮ilter location can be determined

and the fractional spectral slope calculated, as shown in Fig. 3.5. The 󰅮ilter used has a 30 GHz

passband width and is centered at 1580 nm. The fractional spectral slope at this point is

4.1/Hz, just off the peak of the spectral slope. If a custom 󰅮ilter were to be commissioned at

the point of peak spectral slope, the fractional slope could be increased by about 20%.

The autobalanced signal power output is connected to the input of a lock-in ampli󰅮ier.

The reference signal for the lock-in is generated using CW beam focused on the same optical

chopper and collected with a photodiode. The lock-in values are then recorded as a function of
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pump-probe delay, giving a trace as shown in Fig. 3.6(a). The average signal value is sampled

at each point using a DAQ, fromwhich we can calculate the fractional signal, and that combined

with the fractional slope gets us a measure of the optical frequency shift using Eq. 3.10.

The Raman spectrum can be found from this pump-probe trace via a Fourier transform.

The Raman spectrum given by transforming the entire trace is displayed on a log scale

showing BGO’s strong 89 cm−1 mode in Fig. 3.6(b). The time trace is also processed using an

LPSVD algorithm, which presumes the data is a linear combination of exponentially-decaying

sinusoids and determines the amplitude, phase, frequency, and damping coef󰅮icient of each

component. The data shown contains only a single Raman frequency, and the predicted

trace is plotted beneath the measured trace. The spectrum can be determined from these

predicted parameters, as the Fourier transform of an exponentially decaying sinusoid is a

Lorentzian. The predicted Lorentzian is plotted in terms of the parameters determined by the

LPSVD beneath the Fourier transform of the measured data. The noise 󰅮loor alone is plotted

by subtracting the predicted noise-free LPSVD trace from the measured data and Fourier

transforming the resulting data, which is assumed to contain only noise. This is plotted on

top of the data, with the expected shot-noise limited noise 󰅮loor, as predicted by Eq. 3.6 for

the power level used in this measurement, shown as a solid line.

The time trace is also processed using a Gabor transform, in which a Gaussian window

is used to select a region of the time trace at a time delay 𝜏 and Fourier transforming the

trace, producing a spectrogram shown in Fig. 3.7. Using a 1 ps Gaussian window, we see the

Raman signal fall into the noise near 2 MHz, in good agreement with the calculated value.

This transform shows the dependence of the frequency shift on the pump probe delay in a

quantitative way. The Fourier resolution of the spectrogram is inversely proportional to the
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F󰀋󰀉󰀗󰀔󰀇 3.7. Spectrogram produced by Gabor transform of the temporal Raman

signal, as shown in Fig. 3.6(a). The width of the Gaussian window used in the

Gabor transform is 1 ps. Near time-zero, we see the broad spectrum caused by

the cross-phasemodulation signal. At larger delays, we see only the contribution

of 89 cm−1 as it decays, before falling to the noise 󰅮loor.

width of the Gaussian time window with the amplitude of the line as the average frequency

across the time bin.

We’ve demonstrated here good performance of the system that converts a small optical

frequency shift to an intensity, consistent with the noise performance expected from our

experimental parameters. The system, while attractive given the simplicity of the experimental

setup, is limited by fundamental detector noise. To improve the sensitivity of themeasurement

of the Raman induced frequency shift, we’ll take a different approach, one which converts the

frequency shift into a time delay, and is subject to different fundamental noise constraints.
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CHAPTER 4

F󰀔󰀇󰀓󰀗󰀇󰀐󰀅󰀛 S󰀊󰀋󰀈󰀖 󰀖󰀑 D󰀇󰀎󰀃󰀛 C󰀑󰀐󰀘󰀇󰀔󰀕󰀋󰀑󰀐

The 󰅮inal method for measurement of the Raman-induced frequency shift is based on

measurement of time delay. We’ve seen that direct measurement with a grating spectrometer

is limited by spectrometer resolution to about a gigahertz, and the 󰅮ilter-based conversion of

frequency shift to power change is limited to shifts on the order of a few megahertz (for a

1 Hz measurement bandwidth in the shot noise limit).

The shift in optical frequency of an ultrafast pulse can be turned into a time delay through

the application of dispersion. As ultrafast pulses are made up of many different colors of

light, when the pulses travel in a dispersive material, these different colors travel at different

speeds. When the pulse exits the material, it will have picked up a time delay proportional to

the center frequency, as shown in Fig. 4.1. Mathematically, we can write the pulse propagation

through a material in terms of acquisition of a spectral phase, which we can write as a Taylor

expansion Φ(Ω) = 𝜑0 + 𝜑1Ω +
1

2
𝜑2Ω

2 + .... The transit time of a pulse through the system is

given by the group delay, 𝜏g = 𝜕Φ(Ω)/𝜕𝜔. The group delay can then be written in terms of

the dispersion as 𝜏g = 𝜑1 + 𝜑2Ω, where we’ve truncated terms beyond second order, as we

expect 𝜑2 to dominate the change in group delay. Thus, the transit time will change with a

change in center frequency as

Δ𝜏g = 𝜑2𝛿𝜔 (4.1)

Thus we are left with a time delay which is proportional to the frequency shift, which

is in turn proportional to the Raman response. The problem of measurement of the optical

frequency shift has turned to the measurement of small time delays, which we’ll look at

measuring in two ways. The 󰅮irst will be based on optical cross correlation, which will turn
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F󰀋󰀉󰀗󰀔󰀇 4.1. Schematic depiction of the time delay, Δ𝜏, induced by a shift in

center frequency, Δ𝜔, of a pulse in a dispersive material. The dispersion curve

shown is for fused silica glass centered at 1550 nm.

a small timing change into an amplitude change of the autocorrelation signal. The second

will also turn the delay signal into a power signal, but through the use of an electro-optic

intensity modulator, which will enable an RF oscillator to be phase locked to the pulse train.

The measurement of this timing change is then made as an RF phase measurement, 󰅮inally

translating task of measuring 𝛿𝜔 into 𝛿𝜙RF. Such phase measurements can be made very

accurately, giving this technique a detection limit much lower than systems which measure

power directly.

4.1. Balanced Cross-Correlator

The 󰅮irst approach we examined for the measurement of a small timing signal is using a

balanced cross correlator [25]. The delayed pulse is mixed with itself in a nonlinear crystal,

which maps the timing delay into a change in the amplitude of the correlation signal. This
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photodiode

F󰀋󰀉󰀗󰀔󰀇 4.2. Schematic of the balanced cross correlator for measurement of

laser timing jitter.

technique is common in short-pulse laser systems, which can generate steep nonlinear cor-

relation signals. The amplitude of the sum frequency signal sets the slope of the amplitude

versus time delay measurement, so for high sensitivity it is advantageous to have a large slope,

requiring short pulses. However, as the time delay we are attempting to measure is born of the

application of GDD to frequency-shifted pulses, our pulses are necessarily chirped. Moreover,

as seen in Eq. 4.1, the magnitude of the delay is linearly proportional to the applied GDD, thus

we have two countervailing effects on signal level: the sensitivity decreases for large chirp as

the square of the GDD but increases linearly with the GDD. To calculate this interplay, we’ll

start with a transform limited gaussian pulse in time 𝐸(𝑡) = exp (−𝑎0𝑡
2) exp (𝚤𝜔0𝑡), where

𝑎0 = 2 log(2)/𝜏2𝑝 , with a corresponding spectrum 𝐸(Ω) = 󰖶𝜋/𝑎0 exp 󰕾− (𝜔 − 𝜔0)
2
/ (4𝑎0)󰖂.

The dispersive element adds spectral phase, which (to second order) takes the form

𝜑(Ω) = 𝜑0 + 𝜑(1,𝛿𝜔)Ω +
1

2
𝜑(2,𝛿𝜔)Ω

2 (4.2)

where Ω = 𝜔 − 𝜔0 and 𝜑(𝑛,𝛿𝜔) = 𝜕𝑛𝜑/𝜕𝜔|
𝜔=𝜔0+𝛿𝜔

. 𝜔′ is the pulse center frequency, 𝜔0 for

the unshifted pulse and 𝜔0 + 𝛿𝜔 for the shifted pulse. This phase stretches and delays the
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temporal pulse, with the temporal pulse now given by

𝐸(𝑡) =
2𝜋

󰖶1 + 2𝚤𝑎0𝜑(2,𝛿𝜔)

exp 󰕶(𝑎 − 𝚤𝑏)(𝑡 − 𝜑(1,𝛿𝜔))
2󰕺 exp (−𝚤𝜑0) exp (𝚤𝜔0𝑡) (4.3)

with 𝑎 = 𝑎0/ 󰕾1 + (2𝑎0𝜑(2,0))
2󰖂 and 𝑏 = 2𝑎20𝜑(2,0)/ 󰕾1 + (2𝑎0𝜑(2,0))

2󰖂 for the unshifted pulse,

and similarly 𝑎 = 𝑎0/ 󰕾1 + (2𝑎0𝜑(2,𝛿𝜔))
2󰖂 and 𝑏 = 2𝑎20𝜑(2,𝛿𝜔)/ 󰕾1 + (2𝑎0𝜑(2,𝛿𝜔))

2󰖂 for the

frequency shifted pulse. Assuming a small 𝛿𝜔, these expansions simplify

𝜑(1,𝑠) =
𝐿

𝑐
(𝑛0 + 𝑛′0𝛿𝜔 + (𝜔0 + 𝛿𝜔)(𝑛′0 + 𝑛″0𝛿𝜔))

≈ 𝜑(1,0) + 𝜑(2,0)𝛿𝜔 +
𝐿

𝑐
(𝑛″0𝛿𝜔)𝛿𝜔

𝜑(2,𝑠) =
𝐿

𝑐
(2𝑛′0 + 3𝑛″0𝛿𝜔 + 𝜔0𝑛

″
0) (4.4)

≈ 𝜑(2,0) + 3
𝐿

𝑐
𝑛″0𝛿𝜔

≈ 𝜑(2,0) (4.5)

The temporal 󰅮ield of the shifted pulse, letting 𝜑2 ≡ 𝜑(2,0) = 𝜑(2,𝑠) and 𝜑1 ≡ 𝜑(1,0), can then be

approximated as

𝐸(𝑡) ≈
2𝜋

󰖶1 + 2𝚤𝑎0𝜑2
exp [− (𝑎 − 𝚤𝑏) (𝑡 − 𝜑1 + 𝜑2

2)] exp (−𝚤𝜑0) exp (𝑖(𝜔0 + 𝛿𝜔)𝑡) (4.6)

we can write the intensity autocorrelation as

𝐴(𝜏) =
8𝜋9/2

󰖶𝑎0 + 4𝑎30𝜑
2
2

exp 󰛄−
𝑎0𝜏

2

1 + 4𝑎20𝜑
2
2

󰛅 . (4.7)

The slope of the autocorrelation is given by is maximized at 𝜏 = 󰖶(1 + 4𝑎20𝜑
2
2)/(2𝑎0). The

slope at this point 𝜕𝐴/𝜕𝜏 = −√2𝑒−1/28𝜋9/2/(1 + 4𝑎20𝜑
2
2). As the delay is linear in 𝜑2, from
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F󰀋󰀉󰀗󰀔󰀇 4.3. Calculated normalized balanced photodiode signal as a function

(a) of the 𝜑2𝑎0, to which the frequency shift signal is proportional as can be

seen in Eq. 4.8, and (b) of 𝜑2 and length of SMF-28e 󰅮iber for transform-limited

pulse durations of 10 fs (orange), 100 fs (green), and 1 ps (blue). In both

󰅮igures, the dashed gray line represents the contribution of𝜑2 in the small-chirp

limit, 𝜑2/𝑎0 ≪ 1, and the dashed colored lines indicate the contribution in the

large-chip limit, 𝜑2/𝑎0 ≫ 1, for the corresponding pulse duration.

Eq. 4.1, the change in autocorrelation signal as a function of 𝛿𝜔 is given by 𝜕𝐴/𝜕𝜔 = 𝜑2𝜕𝐴/𝜕𝜏.

As shown in Fig. 4.3, the signal is maximized for 𝜑2 = 2/𝑎0, at which point the signal level

has been maximized owing to its linear dependance on the GDD to give rise to the delay, but

before the slope has begun to fall signi󰅮icantly due to the GDD−2 dependence of the pulse

duration.

To compensate for amplitude noise, and keep it from getting erroneously interpreted

as timing changes, the delays will be set such that the slope is sampled on either side of

the autocorrelation and the difference signal monitored. The error signal is thus twice the

maximum slope times the time delay, 𝛿𝜏. We can then calculate the minimum detectable

frequency, again in the shot noise limit, where as above the power spectral density of the

shot noise is given by 𝑆(𝑓) = 2𝑞𝐼. The fractional power change is given again per Eq. 3.6

and equated to the fractional autocorrelation signal, 𝛿𝐴/𝐴 = 𝛿𝜔𝜑2󰖶(2𝑎0)/(1 + 4𝑎20𝜑
2
2). This
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F󰀋󰀉󰀗󰀔󰀇 4.4. Shot-noise limited minimum shift, calculated from Eq. 4.9, for

several pulse durations assuming operation at the peak autocorrelation slope

and at the optimum GDD, assuming a 1 Hz measurement bandwidth.

yields a shot-noise limited minimum frequency shift of

𝛿𝜔 = 󰖹
2𝑓B𝑞

𝑃𝑑𝑅𝑝𝜑2

1 + 4𝑎20𝜑
2
2

𝑎0𝜑2
, (4.8)

where 𝑓𝐵 is again the measurement bandwidth, 𝑞 is the electron charge, 𝑃𝑑 is the average

power, and 𝑅𝑝 is the photodiode responsivity. At the ideal chirp, 𝜑2 = 2/𝑎0, this simpli󰅮ies to

𝛿𝜔 = 󰖹
17𝑓𝐵𝑞𝑎0

2𝑃𝑑𝑅𝑝
. (4.9)

From this equation, we calculate the shot-noise limited minimum frequency shift for a variety

of average powers and several transform-limited pulse durations, as shown in Fig. 4.4.

While the sensitivity predicted here is higher than the direct spectrometer measurement,

and slightly higher than the 󰅮ilter-based approach discussed in Chapter 3, this approach is

dif󰅮icult for two reasons. First, achieving high power levels is dif󰅮icult given the low nonlinear
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F󰀋󰀉󰀗󰀔󰀇 4.5. Schematic of frequency shift to time delay conversion. The optical

pulse train (a) acquires a shift in center frequency, shown for 2 different shifts

in (b). Propagation through a dispersive element, such as an optical 󰅮iber (c),

introduces a time delay on the pulse train when it is collected on a photodiode

(PD) (e). The electronic pulse train spectrum (d) consists of a series of harmon-

ics of the repetition rate, which can be separated through electronic 󰅮iltering,

as in the 󰅮irst and third harmonic shown in (f).

conversion ef󰅮iciency. Second, the GDD is limited to small values owing to the strong depen-

dence of the autocorrelator signal level on pulse duration. To reach higher sensitivity, we’ll

adopt an approach that does not require nonlinear conversion of short pulses.

4.2. Direct Pulse Train Measurement

As the previous method required the use of short pulses to get appreciable timing sensi-

tivity, we’ll turn to an alternate measurement technique based around locking of microwave

oscillators to optical pulse trains. In the simplest setup, the optical pulse train is converted to

an electronic pulse train using a photodetector. The electronic signal looks like a series of

electronic impulses, with a shape given by the impulse response of the photodetector. This

impulse train can be 󰅮iltered to generate a sine wave at the repetition rate or a harmonic of

the repetition rate (with the number of harmonics present limited by the bandwidth of the

photodetector). The timing change in the pulse train maps to a phase shift in this sinusoidal
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signal, which is measured using the phase measurement setup described in Appendix C. This

phase change is the signal of interest, as it gives a measurement of the frequency shift as

Δ𝜙RF = 2𝜋𝑚𝑓𝑟Δ𝜏 = 2𝜋𝑚𝑓𝑟𝜑2𝛿𝜔 (4.10)

where𝑚 is the chosen harmonic of the repetition rate frequency, 𝑓𝑟 .

The performance of this measurement system is degraded by noise introduced by the

photodetector, as well as noise present in the phase locking setup. Amplitude noise measured

on the photodiode will manifest as white phase noise written on to the locked oscillator [26].

The shot noise limited phase noise, converted from [26] in Appendix B, is

𝑆𝜙(𝑓) =
𝑃shot

𝑃signal𝑓𝐵
, (4.11)

which can be expressed in dBr/Hz (rad.2/Hz). In this equation, 𝑃signal is the power of the

microwave signal from the photodiode at the desired harmonic 𝑚 of the repetition rate

frequency 𝑚𝑓𝑟 and 𝑃shot = 2𝑞𝑓𝐵𝑅𝑝𝑃𝑑𝑅 is the shot-noise power of the light incident on the

photodiode, where 𝑞 is the electron charge, 𝑓𝐵 is the measurement bandwidth, 𝑅𝑝 is the

photodiode responsivity, 𝑃𝑑 is the average power incident on the photodiode, and 𝑅 is the

load impedance.

This expression is based on the shot noise as a result of average power incident on the

photodiode. In more recent work [27], correlations in the measured shot noise of short pulse

trains was used to operate at shot-noise limited levels several orders of magnitude below

that predicted using the average power. These experiments made use of a new class of fast

photodiodes with very high power handling, distinct from those used in our work.
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F󰀋󰀉󰀗󰀔󰀇 4.6. Measured phase noise 󰅮loor of a the pulse train incident on a single

diode for different power levels. The dashed lines show the shot-noise limited

noise 󰅮loor, calculated from Eq. 4.11, for each power level. The gray curve shows

the measured phase noise 󰅮loor of the reference oscillator, with the dashed line

giving the expected noise 󰅮loor.

Methods. To quantify the noise 󰅮loor in our single-detector measurement, we couple the

frequency shifted pulses into a ≈20 km length of optical 󰅮iber and then detect the pulse train

with a photodiode (Thorlabs DET10C). Figure 4.6 shows the single-sideband phase noise

of the repetition rate measured using the phase noise measurement system described in

Appendix C. This measurement is made for several power levels, and plotted along side the

shot-noise limited noise 󰅮loor calculated for each power level using Eq. 4.11.

As the photodiode signal was not suf󰅮icient to drive the mixer in the phase measurement

setup, an RF ampli󰅮ier (Minicircuits ZHL-3010) was used which provided 30 dB gain with a

6 dB noise 󰅮igure. This accounts for some of the degradation of the expected performance (as
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the plotted theoretical 󰅮loor does not account for the noise 󰅮igure of this ampli󰅮ier), though

the difference between the measurement and the expected value is close to 14 dB. The extra

8 dB is likely due to excess noise coming from amplitude to phase noise conversion in the

photodiode and in the mixer, as well as noise picked up in propagation through the experiment

and through the long 󰅮iber.

4.3. Optical Phase-Locked Loop

In order to reduce the impact of this amplitude noise, and lower the noise 󰅮loor of the

measurement, we’ll follow the path of [28] and move to a system which is less dependant on

the impact of the photodetector. This approach balances two opposing signals to cancel out

any common amplitude noise, akin to the approach in Section 4. Unlike that case, however,

the cancelation does not require a nonlinear process, and thus, our chirped pulses will have

less of an impact on the overall stability of the measurement.

This approach, which is dubbed the “Optical PLL” is based on the use of optical amplitude

modulators driven by an electronic reference oscillator to generate an error signal by atten-

uating the pulse train at the repetition rate. The input pulse train is split in half, and each

half amplitude modulated with sinusoidal modulations out of phase with each other by 𝜋,

as shown in Fig. 4.7. The modulated pulse trains are then measured on photodetectors and

the difference signal taken. In this way, small changes in the arrival time of the pulses will

result in a small decrease in one signal and a small increase in the other. The difference signal

will then show a change proportional to twice the time change, while any amplitude noise

common to both channels will be removed. The difference signal serves as an error signal

which is fed back to a servo controlling the frequency of the microwave oscillators.
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F󰀋󰀉󰀗󰀔󰀇 4.7. Schematic depiction of the drive signals in the Optical PLL. Ampli-

tude modulation is applied to two copies of the pulse train, 𝜋 out of phase. This

differential modulation generates an error signal that doubles dependence on

Δ𝜏 while cancelling any common mode noise on the pulse train.

In this architecture, amplitude noise being written to the error signal is avoided, as the

two error signals vary with opposite signs with respect to timing jitter, but will react in the

same way to amplitude noise. Taking the difference between these signals as our error signal

gives rejection of common amplitude noise while doubling the dependance on timing jitter.

Using this method, Kim et al. measured an Root Mean Squared (RMS) timing jitter of 2.4 fs

(integrated from 1 mHz to 1 MHz) [29]. More recently, Jung and Kim measured an RMS timing

jitter of 0.847 fs (integrated from 1 Hz to 1 MHz) [30].

Theory. We’ll consider formally the sensitivity of the Optical PLL method. We’ll begin by

considering the difference signal taken between two photodiodes, measuring pulse trains

with intensity modulation driven by sine waves at the repetition rate, but 180° out of phase

with one another. Following the similar derivation in [29], the unmodulated pulse train has

the form

𝑃in(𝑡) =
𝑃avg.

𝑓𝑟

∞

󰗞

−∞

𝛿 󰛂𝑡 −
𝑛

𝑓𝑟
󰛃
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where 𝑃avg. is the average power. The 󰅮iber amplitude modulator considered here is a Mach-

Zehnder set up in a push-pull con󰅮iguration [31]. The applied voltage to themodulator changes

the phase relationship between the light in the two arms of the internal interferometer, leading

to a transmission given by

𝑇M =
1

2
󰛄1 + cos 󰛂𝜋

𝑉

𝑉𝜋
− 𝜙b󰛃󰛅

where 𝑉𝜋 is the voltage required to shift the modulator phase by 𝜋, e.g., the voltage differ-

ence between minimum and maximum attenuation, and is determined by the design of the

modulator [32]. The bias phase 𝜙b, is typically set to 𝜋/2 so that the modulator operates

in a quasi-linear regime. Driving the modulator with a sinusoidal voltage, 𝑉 at the chosen

harmonic of the repetition rate,𝑚𝑓𝑟 , leads to a power transmission that can be written

𝑃out(𝑡) = 𝑃in(1 − 𝛼M) 󰛄
1

2
+
1

2
sin 󰛂𝜋

𝑉0

𝑉𝜋
sin (2𝜋𝑚𝑓𝑟𝑡 + Δ𝜙 + 𝜙𝑒)󰛃󰛅 ,

where 𝑃in is the input power, 𝛼M is the insertion loss of the modulator, 𝜙𝑒 is the phase change

to be measured, and Δ𝜙 is the phase difference between the modulation signals. We’ll de󰅮ine

the phase depth as a function of the sine wave voltage amplitude 𝑉0 and 𝑉𝜋 as Φ0 = 𝜋𝑉0/𝑉𝜋.

We can then write the power in each channel, where we have set Δ𝜙 = 𝜋 such that the pulse

train is sampling the positive and negative slopes of the driving sine wave. The power in each

channel can be written

𝑃±(𝑡) =
𝑃′
avg.

𝑓𝑟

∞

󰗞

−∞

𝛼M 󰛄
1

2
±
1

2
sin (Φ0 sin (2𝜋𝑚𝑓𝑟𝑡 + 𝜙𝑒))󰛅 𝛿 󰛂𝑡 −

𝑛

𝑓𝑟
󰛃 ,

where 𝑃′
avg. = (1 − 𝛼M)𝑃avg. is the power coupled into the modulator. We’ll sample this

modulation at the zero crossing, so we can substitute 𝑡 = 𝑛/𝑓𝑟 and write the average current
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from the photodiode for each channel is then given in terms of the photodiode responsivity,

𝑅𝑝, as

⟨𝐼+⟩ = 𝑅𝑃𝑃
′
avg. 󰛄

1

2
+
1

2
sin (Φ0 sin (𝜙𝑒))󰛅

⟨𝐼−⟩ = 𝑅𝑃𝑃
′
avg. 󰛄

1

2
−
1

2
sin (Φ0 sin (𝜙𝑒))󰛅

The difference signal is then

⟨𝐼𝑑⟩ = ⟨𝐼+⟩ − ⟨𝐼−⟩

= 𝑅𝑝𝑃
′
avg. sin (Φ0 sin (𝜙𝑒)) .

As the phase error 𝜙𝑒 is assumed to be small, we can presume that we are operating in the

small-angle limit, and thus approximate

⟨𝐼𝑑⟩ = 𝑅𝑃𝑃
′
avg.Φ0𝜙𝑒 .

The phase detection sensitivity, 𝐾𝑑, can be written from Eq. 4.3 as, 𝐾𝑑 = ⟨𝐼𝑑⟩ /𝜙𝑒 =

𝑅𝑝𝑃
′
avg.Φ0. This method will again be fundamentally limited by shot noise, now shot noise

of the detected sinusoidally modulated power. The shot noise current density, in A2/Hz, is

given by 𝑆 = 2𝑞𝐼 = 𝑞𝑅𝑝𝑃
′
avg.. This current density can be converted to a phase noise spectral

density, rad2/Hz, by dividing by the square of the phase detection sensitivity, 𝐾𝑑 , giving

𝑆𝜑,𝐼shot =
𝑆

𝐾2
𝑑

=
𝑞

𝑅𝑝𝑃
′
avg.Φ

2
0

(4.12)
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where 𝑞 is the charge of an electron. This power spectrum is a white noise process limited by

the photocurrent, but with the added dependence onΦ2
0 . Like the single diode case, this noise

󰅮loor can be reduced by increasing the average power or the photodiode responsivity. Where

this is advantageous over the single diode case is the dependence on Φ0. We can increase

Φ0 to decrease the shot-noise limited 󰅮loor below the single-diode case by increasing the

RF power. This method is also not as in󰅮luenced by amplitude to phase noise conversion, as

common amplitude noise is canceled by the differential detection.

This analysis presumed the noise is dominated by the shot noise on the error signal. While

this is the fundamental limit, the measured noise 󰅮loor will always be the sum of all relevant

noise sources. If the noise of some component exceed the shot-noise, for example from one of

the oscillators, then the noise of that oscillator will dominate and appear as the noise 󰅮loor.

We will now estimate the magnitude of the shift that will be visible for some given noise 󰅮loor,

be it limited by oscillator phase noise, noise introduced by the error signal, or by timing jitter

from the laser itself.

Methods. To 󰅮ind the sensitivity of the detection system in the presence of the above

described noise, we’ll return to change in delay as a function of change in center frequency,

𝛿𝜏 = 𝜑2𝛿𝜔. This delay change corresponds to a phase change of𝜙(𝜏) = 2𝜋𝑓𝑟𝜑2𝛿𝜔, as depicted

in Fig. 4.7. Equating this phase change to the phase noise for various levels, we can solve for

the minimum frequency shift as

𝛿𝜔 =
󰖶2 × 10ℒ(𝑓)/10Δ𝑓

2𝜋𝑚𝑓𝑟𝜑2
(4.13)

where we have assumed a bandwidth narrow enough that the power spectrum does not

change appreciably over the bandwidth. The minimum detectable frequency is calculated
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F󰀋󰀉󰀗󰀔󰀇 4.8. Minimum frequency shift as a function of the measurement band-

width for a variety of oscillator phase noise levels, down to the thermal noise

󰅮loor (-174 dBc/Hz, for signal power of 0dBm). The trend shown in this plot

can be continued to lower thermal noise 󰅮loors, available with higher powers.

for 20.5 km of 󰅮iber and our 36.7 MHz fundamental (𝑚=1) repetition rate as a function of

measurement bandwidth and oscillator phase noise in Fig. 4.8. The dispersion of SMF-28e

is D=18 ps/nm/km (𝛽2 = -23 ps2/km), so 𝜑2 for 20.5 km of 󰅮iber is ≈471 ps2. The oscillator

runs at 24th the harmonic of the repetition rate, 880 MHz, with an output power of 6 dBm.

The phase noise is from the oscillator is -145 dBc/Hz for a 100 kHz offset. Dividing this down

to the repetition rate introduces a small amount of additive phase noise, 𝑆𝐷.

The optical setup is a simple variation of the previously describe test setup. The electronic

components and additional optical components used for the Optical PLL are shown in the

block diagram in Fig. 4.9. The Raman-shifted probe pulse (following the setup described

in the previous section) is coupled into the optical 󰅮iber (Corning SMF-28e) in place of the

spectral 󰅮ilter. The light is then split into the two channels using a -3 dB 󰅮iber splitter, and

each output channel of the 󰅮iber splitter is spliced to the input of a lithium-niobate amplitude

modulator (JDSU). The amplitude modulators only operate on one polarization, so the input

󰅮iber is laid in a polarization controller (General Photonics) which is used to project as much
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F󰀋󰀉󰀗󰀔󰀇 4.9. Optical PLL block diagram, described in detail in the text. PS is

phase shifter and AM is amplitude modulator. RF signals are shown with solid

blue lines, control signals are dashed blue lines, and optical 󰅮ibers are shown in

yellow. The pulse to be measured enters the 󰅮iber in the bottom left, propagates

through the optional long 󰅮iber, then is split 50/50 to be modulated before

being detected on matched photodetectors. The phase measurement setup is

described in detail in Appendix C.

light as possible on the active polarization axis of the modulator. The light is collected with

a pair of InGaAs photodiodes (Thorlabs DET10C), and the difference signal generated with

a summing ampli󰅮ier (SRS SIM980). This difference signal is the error signal, coupled in to

the input of the servo (Vescent Photonics). The output of this servo is the reference voltage

for a Voltage Controlled Oscillator (VCO) (Minicircuits ZX95-890C) that drives the amplitude

modulators. The servo parameters and optimization are discussed further in Appendix C.

The modulators are driven with a sine wave at the repetition rate, with the phase of the

electronic signals adjusted such that the pulses are sampling the peak slope of the modulators

attenuation on both the rising and falling signals. This signal is generated from a VCO that is

divided (Valon 3008) before being split into two channels (Minicircuits ZFRSC-42), each of

which goes into a voltage variable phase delay (Minicircuits JSPHS-51) before being ampli󰅮ied
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F󰀋󰀉󰀗󰀔󰀇 4.10. Laser noise measured with Optical PLL with (orange) and without

(blue) the dispersive delay line. The measured VCO phase noise 󰅮loor is shown

(gray) in good agreement with the expected value (gray dashed).

with a low noise power ampli󰅮ier (Minicircuits ZX60-100VH+). The ampli󰅮ied VCO signals

are then connected to the RF input of the amplitude modulators, and the feedback loop is

complete. To initiate the locking, the VCO is 󰅮irst locked to the pulse train using a photodiode

collecting the residual pump light. This puts the VCO at the nominal repetition rate, allowing

adjustment of the variable phase delays. The delays are use to ensure that the drive signals

relative to the optical pulse train maintain a 180° offset. Once the proper phase delays are

achieved, the error signal from the Optical PLL is restored, and the frequency lock is initiated.

The phase noise of the VCO is then measured by mixing with a tracking oscillator as described

in Appendix C.

To test the performance of the Optical PLL system, we 󰅮irst couple the pulse train into a

short length of 󰅮iber, bypassing the dispersive delay line. This will allow us to characterize the
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performance of the measurement system by observing the timing jitter of the laser oscillator

alone, which will provide a limit on the performance of the system. The other limit will be

imposed by the electronics used in the measurement system. The phase noise Power Spectral

Density (PSD) is shown in Fig. 4.10 with andwithout the dispersive delay line. The phase noise

󰅮loor reached about -130 dBc/Hz, limited in this case by optical power incident on the detector.

The in󰅮luence of the dispersive delay line can be seen in the difference between the two noise

󰅮loors, as there is a slight decrease in noise when the long 󰅮iber is removed, likely due to the

increase in optical power (as the loss in the 󰅮iber is ∼0.2 dB/km). The other difference of

note is the prominent gain peak that can be seen at about 100 kHz, due to the increased gain

necessary to compensate for the 󰅮iber loss. The noise 󰅮loor could be reduced by increasing

the power at the detector, which could be accomplished at several points in the experiment.

The amplitude modulators themselves introduce about 5 dB of loss, though modulators with

only 3 dB of loss are commercially available. The transmission of the objectives used to focus

onto the sample is quite low at our wavelength, as they objectives were designed for visible

light, so the focusing and collection ef󰅮iciency could be vastly improved by better matching

the optics to the laser.

To examine further the impact of power on the Optical PLL, we’ll temporarily bypass the

Raman setup, and couple the laser beam directly into the long optical 󰅮iber. We’ll then vary

the power into the 󰅮iber using a variable attenuator and measure the phase noise 󰅮loor. The

experimental setup and powers used in this data set are the same as those used in the single

diode case, shown in Fig. 4.6. The power dependance is important in this setup as not only

does it impact the noise 󰅮loor, but as power is shifted continuously from the pump to the

probe arm to investigate the effect of lower pump powers, the predicted shot-noise limited
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F󰀋󰀉󰀗󰀔󰀇 4.11. Phase noise 󰅮loor for the Optical PLL system, showing a decrease

in noise as power increases for the 󰅮irst few power levels. After this, the noise

󰅮loor does not fall off with power, as expected from Eq. 4.12, but rather is limited

by excess noise introduced by the detection. The power levels used here are

the same as used in Fig. 4.6 to allow direct comparison. The distinct peak at

high offset frequency is due to the servos limited bandwidth at this high gain

level.

phase noise will be a function of pump (probe) power. The results of this test are shown in

Fig. 4.11, and for the 󰅮irst two measurements show a decrease in noise 󰅮loor with increasing

power, as expected. However, further increases in power don’t result in changes to the noise

󰅮loor, as the noise 󰅮loor is now being limited by some other component that has dominated

the shot noise contribution. The limiting factor in this case is likely excess noise from the

servo controllers output stage, as voltage noise on the output stage will manifest as phase

noise on the VCO signal.

While the performance of the Optical PLL has not reached the theoretical shot-noise limited

levels, the technique could still be quite sensitivity in spite of the higher noise 󰅮loor shown
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in Fig. 4.11. As can be seen, there is a prominent gain peak shown near the high frequency

edge of the measured data. With higher optical powers, and thus higher RF powers, lower

gain levels could be used in the feedback loop, providing for a larger, 󰅮latter gain spectrum

lessening the gain peak in the measured phase noise. We may also be able to reduce the phase

noise by replacing the optical detectors with those able to operate at higher power, as in [27],

or by varying the optical power and measuring the amplitude to phase noise conversion to

ensure it is minimized, as in [33]. Both these would ensure there is less noise to be canceled

by the Optical PLL.

The Optical PLL components could also be improved. Using modulators with lower

insertion loss would allow large modulated power incident on the photodiode. The phase

depth of the modulation could also be improved by scaling to higher RF powers driving the

modulators, replacing the modulators with models featuring lower values of 𝑉𝜋, or both. We

could also implement the Sagnac experimental architecture, following [34], which uses a

single modulator, as that would ensure that the optical properties of the two modulation

paths are identical and ensures noise cancellation.

We’ll next verify that the Raman measurements setup works as expected, and that the

measurements are subject to the measured noise constraints, after which components can

be upgraded and excess noise sources eliminated to allow the system to reach the numbers

predicted in the previous section.

We nowmeasure the phase signal using a lock-in ampli󰅮ier while scanning the pump-probe

delay , as in Chapter 3. The measured voltage 𝑉meas. is proportional to the phase difference

between the Optical PLL signal and the reference oscillator though the conversion slope of the

double balanced mixer, 𝐾d,mix., as 𝑉meas. = 𝐾d,mix.Δ𝜙. Rearranging, we can write the frequency
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F󰀋󰀉󰀗󰀔󰀇 4.12. (a) Raman signal measured as a function of pump–probe delay

using the Optical PLL (blue). The temporal data is then processed using the

LPSVD algorithm, and the predicted trace plotted (green). (b) The Lorentzian

Raman line from the predicted parameters is plotted (green) along with the

Fourier transform of the temporal data (blue) and the residual noise left by

subtracting the predicted trace from the data and Fourier transforming (orange).

The theoretical Optical PLL noise 󰅮loor is calculated using the measured RF

noise 󰅮loor, shown in Fig. 4.10, and shown as a solid line (red).

shift as

𝛿𝜔 =
𝑉meas.

2𝜋𝑚𝑓𝑟𝜑2𝐾d,mix.

(4.14)

where Δ𝜙 is the phase difference as given by Eq. 4.10. The phase signal can then be related to

the frequency shift through the repetition rate (𝑓𝑟) and the GDD (𝜑2). However, an exact value

for the GDD is unknown in the experimental setup, as the length and exact dispersion of this

󰅮iber are both unknown. While the GDD of a short length of 󰅮iber and the length of the 󰅮iber

could be measured, these measurements are quite cumbersome to make and their accuracy

could still be suspect. To avoid this, we calibrate the instrument by simply relating the signal

measured using the Optical PLL to a measurement made using the 󰅮ilter-based approach. This

approach gives a reliable cross calibration between the two techniques, and as the shift in the
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F󰀋󰀉󰀗󰀔󰀇 4.13. Gabor transform of pump-probe trace for BGO sample, using the

same pump power as in Chapter 3

󰅮ilter based approach is subject only to the spectrometer calibration, the absolute calibration

of both techniques should be quite good. A pump-probe delay scan of the BGO crystal is taken

at a pump power of 3 mW, yielding the data shown in Fig. 4.12. The measured data shows

good agreement with the predicted noise 󰅮loor for this data, though the noise 󰅮loor isn’t quite

󰅮lat, indicating a deviation from the white noise expected in the shot noise limit.

To observe the point at which the Raman signal becomes equal to the noise (a signal

to noise ratio of 1, as we used in the predictions), we’ll process the data using a Gabor

transform, in which small sections of the data are selected using a Gaussian window and

Fourier transformed, giving the power spectrum at different delay values. The full Gabor

transform can be seen in Fig. 4.13, and line outs from the transform shown in Fig. 4.14 for a

delay very near time zero and a delay chosen to be the point at which the Raman line’s peak

is equal to the noise peaks surrounding it. The peak height at this point can be seen to be

approximately 450 kHz, in reasonable agreement with the expected minimum shift value
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F󰀋󰀉󰀗󰀔󰀇 4.14. Line outs from the Gabor transform (Fig. 4.13) showing two traces,

one at a delay very near time zero (blue) and the other at a delay chosen to be

the point at which the Raman line’s peak is equal to the noise peaks surrounding

it (green).

for a power noise 󰅮loor of -130 dBc/Hz. The decrease in spectral resolution in this data as

compared to the Raman spectrum shown in Fig. 4.12 is due to the width of the Gabor window

used. As we want a window narrow enough to give reasonable sampling in terms of delay, we

necessarily reduce the resolution in the Fourier domain. However, the peaks in the Raman

spectrum are still easily identi󰅮iable.

This sensitivity represents only a few fold increase over the sensitivity of the 󰅮ilter based

approach. However, while the 󰅮ilter based approach has reached its fundamental noise-limited

sensitivity, the current operation of the Optical PLL is sub-optimal. The phase noise 󰅮loor is

almost 20 dB above the shot-noise limited 󰅮loor, with the noise 󰅮loor currently being limited by

other components in the PLL. One likely limiting factor is the gain of the servo loop itself. We

can see a clear gain peak near 100 kHz in Fig. 4.10. If we can increase this servo bandwidth,
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pushing the gain peak out of the region of interest, we can not only decrease the noise 󰅮loor

but this would also allow us to operate at higher offset frequencies. At higher offsets, the

phase noise performance of the VCO is better. This can be seen in Fig. 4.10, where the noise

󰅮loor is limited to the phase noise of the reference oscillator the noise 󰅮loor falls at 20 dB per

decade, so we should see big improvements by moving to higher offset frequencies. Using the

same VCO as in our current setup, but pushing the modulation frequency from 50 kHz to near

1 MHz would decrease the phase noise 󰅮loor from the VCO to -165 dBc/Hz. This would be

below the shot noise limited noise 󰅮loor for the current setup. To achieve the full -165 dBc/Hz,

the optical power would need to be increased to at least 1 mW, or the optical power could be

increased by a smaller amount and the RF power increased as well. Increasing the optical

power could be as easy as replacing the objectives or modulators with lower loss models,

improving the 󰅮iber coupling ef󰅮iciency through better matching the beam to the collimator,

or decreasing the 󰅮iber length.
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CHAPTER 5

S󰀒󰀃󰀖󰀋󰀃󰀎 F󰀔󰀇󰀓󰀗󰀇󰀐󰀅󰀛 M󰀑󰀆󰀗󰀎󰀃󰀖󰀋󰀑󰀐 󰀈󰀑󰀔 I󰀏󰀃󰀉󰀋󰀐󰀉 (SPIFI)

Optical imaging is used across a broad range of scienti󰅮ic disciplines. Many systems can be

imaged using Silicon Charge-Coupled Device (CCD) or Complementary Metal–Oxide–Semicon-

ductor (CMOS) devices, which leverage years of development to offer excellent performance

and relatively low cost. However, many interesting systems exist outside of the absorption

band of Silicon, which require detection with exotic materials. These detectors are often

limited, either by technology or by cost, to relatively few elements. It is thus advantageous

to image using only a single element detector. While this is easily accomplished by raster-

scanning a point focus throughout a sample, this leads to slow update rates and limits the

observation of dynamics that occur faster than the scan time.

To reduce the acquisition time, we multiplex spatial information into the electronic spec-

trum of the detector, as single element detectors often have fast response times, and thus wide

available electronic bandwidth. The modulation technique we use was 󰅮irst demonstrated

for application to imaging in the 1990s [35], which grew out of the use of such modulators

for target tracking in the sidewinder missile program [36, 37]. Other masks types were also

considered, including a discrete frequency mask [36], as we employ later for two dimensional

modulation, and a mask consisting of a rapidly scanning aperture [38] used to temporally

multiplex line images for increase 2D acquisition speed.

More recently, we demonstrated the application of the imaging technique not only to

transmissive linear imaging, but also to linear 󰅮luorescence[39] and nonlinear 󰅮luorescence[40].

The ability to use this rapid line scan technique in these microscopy con󰅮igurations opens

up new possibilities in imaging in turbid media, as the speed increase allows much more
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F󰀋󰀉󰀗󰀔󰀇 5.1. Schematic of one dimensional SPIFI setup

rapid dynamics to be captured. This increase in imaging speed is advantageous even where

array detectors are available, and opens new possibilities to imaging in regimes where array

detectors are unavailable or prohibitively expensive.

Imaging with array detectors in scattering media is limited by the crosstalk between

signals from different areas of the sample being scattered to the same pixel in the array

detector, rapidly degrading the imaging 󰅮idelity of the system. As the SPIFI signal encodes its

position in the temporal signal, through modulation, it is largely insensitive to scattering once

the object transmission function has been imprinted on the beam, all that is necessary is to

collect a representative sample of the scattered light [41].

5.1. One Dimensional SPIFI

The foundation of the SPIFI method is the encoding of object spatial information on to

a line focus by modulation of the line focus at different frequencies across different lateral

positions. Following the derivation presented in [39], we consider a beam that has been

focused to a thin line, written

𝐸ex(𝑥, 𝑡) = 𝐸0𝑢(𝑥)𝑒
𝚤𝜔0𝑡
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where 𝑢(𝑥) is the normalized spatial pro󰅮ile of the coherent illumination 󰅮ield along the line

focus and 𝜔0 is the optical angular frequency. This 󰅮ield is passed through (or re󰅮lected off)

a modulator described by a function 𝑚(𝑥, 𝑡). The object transmission function is given (in

one dimension) as 𝑔(𝑥), which describes either the distribution of absorbers (or emitters)

along the beam dimension. It is this function that the SPIFI technique will recover in order to

describe the object. This leads to a beam given by

𝐸obj(𝑥, 𝑡) = 𝐸0𝑢(𝑥)𝑚(𝑥, 𝑡)𝑔(𝑥)𝑒𝚤𝜔0𝑡

This 𝑥 dependent 󰅮ield is then collected by a single element detector, leaving only a temporally

dependant signal after integration over the spatial coordinate that takes the form of 𝑠obj(𝑡) =

𝛾 ∫ 𝐼obj(𝑥, 𝑡)d𝑥 where the prefactor 𝛾 has been introduced to account for collection factors,

including detector ef󰅮iciency. The intensity of the object beam can be written as

𝐼obj(𝑥, 𝑡) = 𝐼0|𝑢(𝑥)𝑚(𝑥, 𝑡)𝑔(𝑥)|2 (5.1)

where 𝐼0 =
1

2
𝑛𝑐𝜀0|𝐸0|

2, and we have required that the detector exhibits a 󰅮lat frequency

response across the bandwidth of the SPIFI signal, and further that the detector is large

enough to capture the full extent of the beam.

The modulation pattern we choose for this work is a radially dependent cosine, the

frequency of which varies linearly along the radial axis of the modulator. The transmission

function of the modulator is given as

𝑚(𝑥, 𝑡) =
𝑤(𝑡)

2
[1 + cos (2𝜋𝜅𝑥𝑡)] . (5.2)
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F󰀋󰀉󰀗󰀔󰀇 5.2. Cartoon showing SPIFI operation in 1D. The (a) blue line indicates

a slice of the larger image being mapped into (b) the frequency domain of a

photodiode signal.

The application of this time-window, 𝑤(𝑡), leads to an object beam of

𝐸obj(𝑥, 𝑡) =
𝐸𝑜

2
𝑢(𝑥)𝑔(𝑥)𝑤(𝑡) [1 + cos(2𝜋𝜅𝑥𝑡)] 𝑒𝚤𝜔0𝑡. (5.3)

The collected intensity is given by squaring this 󰅮ield, leading 󰅮inally to

𝐼obj(𝑥, 𝑡) = 𝐼0
1

4
|𝑤(𝑡)𝑢(𝑥)𝑔(𝑥)|2 󰛄

3

2
+ 2 cos(2𝜋𝜅𝑥𝑡) +

1

2
cos(4𝜋𝜅𝑥𝑡)󰛅 (5.4)

The SPIFI signal 𝑠obj(𝑡) =
1

2
𝐼0𝛾 [𝑠0(𝑡) + 𝑠1(𝑡) + 𝑠2(𝑡)] is made up of three terms, the ’DC’

term, 𝑠0(𝑡) = |𝑤(𝑡)|2 ∫
3

4
|𝑢(𝑥)𝑔(𝑥)|2d𝑥 is the overlap integration of the excitation beam and

object. The time-dependent signals 𝑠1 and 𝑠2 are the 󰅮irst and second harmonic bands of the

modulation frequency, with

𝑠1(𝑡) = |𝑤(𝑡)|2󰗂 |𝑢(𝑥)𝑔(𝑥)|2𝑒𝚤2𝜋𝜅𝑡𝑥d𝑥 + c.c. (5.5)

𝑠2(𝑡) =
1

4
|𝑤(𝑡)|2󰗂 |𝑢(𝑥)𝑔(𝑥)|2𝑒𝚤4𝜋𝜅𝑡𝑥d𝑥 + c.c. (5.6)
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The 󰅮irst and second harmonic sidebands contain the same information about the signal.

We’ll ignore for this analysis the presence of the second harmonic sideband, as well as any

other harmonic content that may arise from the use of non-cosine masks (such as the binary

masks used experimentally, which will be discussed later). These harmonics can be trivially

removed through electronic 󰅮iltering of the photodiode signal, or removed from the Fourier

transform of the signal in post-processing. Shifting the coordinate system to centroid of the

beam by the substitution 𝑥′ = 𝑥 − 𝑥𝑐 lets us write the sideband signal in the form of a spatial

Fourier transform, where the spatial frequencies are given as 𝑓𝑥 → 𝜅𝑡. This takes the form of

𝑠1(𝑡) = |𝑤(𝑡)|2𝑒𝚤2𝜋𝜅𝑥𝑐𝑡󰗂 |𝑢(𝑥′)𝑔(𝑥′)|2𝑒𝚤2𝜋𝜅𝑡𝑥
′

d𝑥′ + c.c. (5.7)

Writing the Fourier transform operator 𝔉{},

𝒢 ′(𝑓𝑥) = 󰗂 󰘵𝑢(𝑥)𝑔(𝑥)󰘵
2
𝑒𝚤2𝜋𝑓𝑥𝑥d𝑥 ≡ 𝔉 {|𝑢(𝑥)𝑔(𝑥)|2} , (5.8)

we return to the temporal frequency of the 󰅮irst sideband,

𝑠1(𝑡) = 2|𝑤(𝑡)|2|𝒢 ′(𝜅𝑡)| cos (2𝜋𝑓𝑐𝑡 + ∠𝒢 ′(𝜅𝑡)) (5.9)

where ∠𝒢 ′ is the phase of the spatial frequency distribution, 𝒢 ′, and the center frequency is

𝑓𝑐 = 𝜅𝑥𝑐 .

The Fourier transform of the temporal signal, �̂�1(𝑓) = 𝔉 {𝑠1(𝑡)}, gives an electronic

spectrum showing the positive and negative sidebands of the fundamental SPIFI signal.

�̂�1(𝑓) = 𝜅−1�̂�1+(𝑓) + 𝜅−1�̂�1−(𝑓)
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The sidebands are the spatial extent of the illuminated intensity limited in resolution by

convolution with the temporal window. The upper side band can be written as the convolution

�̂�1+(𝑥
′ = 𝑓𝜅−1) = 𝒲(𝜅𝑥′) ⊛ 󰘵𝑢(𝑥′)𝑔(𝑥′)󰘵

2
(5.10)

where 𝑓 is the frequency of the electronic signal, and ⊛ is the convolution operator. The

Fourier transform of the temporal window de󰅮ines the equivalent “point spread function” of

the system given by𝒲(𝑥′) = 𝔉 {|𝑤(𝑡)|2}
𝑓=𝑥′𝜅−1

.

This form of the point spread function gives the response of the imaging system to the 󰅮inite

time window of the modulator. To examine exactly how this 󰅮inite time window impacts the

resolution of the SPIFI imaging system, we consider the resolution as given by the numerical

aperture of the system. The numerical aperture is de󰅮ined as 𝑁𝐴 = 𝑛 sin 𝜃max, where 𝑛 is

the index of refraction and 𝜃max is the largest angle collected by the imaging system. The

spatial frequencies of an object are given (by de󰅮inition [42]) as 𝑓𝑥𝜆 = sin 𝜃. Substituting this

spatial frequency in to the expression for numerical aperture, we arrive at an expression for

numerical aperture given by

𝑁𝐴 = 𝑛𝜆𝑓𝑥max

where 𝑓𝑥max
is the maximum spatial frequency collected. As above, the spatial frequencies in

the SPIFI imaging systems are linearly related to time by the chirp rate 𝜅 by 𝑓𝑥 = 𝜅𝑡. Thus, the

maximum spatial frequency is simply 𝜅 times 𝑇𝑚, the duration of the modulator time-window,

𝑤(𝑡). Finally, the numerical aperture is

𝑁𝐴 =
1

2
𝜆𝜅𝑇𝑚
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The Rayleigh spatial resolution is (in 1D) 𝛿𝑥 = 𝜆(2NA)−1, which for SPIFI gives a resolution

𝛿𝑥 = (𝜅𝑇𝑚)
−1, (5.11)

the highest spatial frequency sampled on the mask.

The number of spatially resolved points, 𝑁, is given by the beam width, 𝑊 divided by

the spatial resolution, 𝛿𝑥. Making the substitutions for SPIFI, the number of spatial points is

𝑁 = 𝑊/𝛿𝑥 = 𝜅𝑊𝑇𝑚, which is the same as the space-spatial frequency bandwidth product,

𝑁 = 2𝑊𝑓𝑥max
. For the temporal signal, the number of points is the modulated bandwidth, Δ𝑓𝑚,

divided by the resolution bandwidth, 𝛿𝑓. The resolution bandwidth 𝛿𝑓 is the inverse of the

acquisition duration, 𝑇𝑚, leading to the time-bandwidth product, 𝑁 = Δ𝑓𝑚𝑇𝑚. For SPIFI the

signal bandwidth is

Δ𝑓𝑚 = 𝜅𝑊, (5.12)

and the resolution bandwidth of the trace is 𝑇−1𝑚 , giving a temporal number of points 𝜅𝑊𝑇𝑚,

identical to the spatial-spatial frequency bandwidth product. The limit on both the number of

points and the resolution is seen to be based only on the modulator design and is independent

of the wavelength of the illumination.

As the resolution of the system is tightly linked to the design of the modulation mask,

we’ll brie󰅮ly recast some of the parameters more directly in terms of the modulator. For these

experiments, we use one of a family of patterns de󰅮ined 󰅮irst by [43], shown in Fig. 5.3 and

written as

𝑚(𝑅, 𝜃) =
1

2
+
1

2
cos [(𝑘0 + Δ𝑘𝑅)𝜃] (5.13)
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F󰀋󰀉󰀗󰀔󰀇 5.3. Example mask pattern of Eq. 5.13 with chirp rate Δ𝑘 = 3mm−1.

where𝑅 is the radial coordinate relative to the center of the disk and𝜃 is the angular coordinate.

The beam to be modulated samples the modulation pattern across a radial line such that

𝑅 = 𝑥. Spinning the mask at a constant angular velocity d𝜃/d𝑡 = 2𝜋𝑓𝑟 so that we can make a

substitution 𝜃 → 2𝜋𝑓𝑟𝑡 in Eq. 5.2. provides the requisite linear chirp in modulation frequency

expressed in Eq. 5.2, where we can make the identi󰅮ication 𝜅 = 𝑓𝑟Δ𝑘, with an additional

offset of the modulator frequency given by 𝜅0 = 𝑓𝑟𝑘0. In the masks used, the pattern spatial

frequency offset was 𝑘0 = 0. Adjusting this parameter allows the center frequency of the

modulation band to be increased without requiring an increase in the motor spin rate (which

would also increase the modulation bandwidth). This 󰅮lexibility can allow the modulation

band to be moved away from low-frequency noise while being kept below the sampling limit

of the digitization board.

The limiting factor in moving to higher frequencies using this offset is this requires the

printing of higher spatial frequencies on the physical mask. As the resolution of the system

is limited to the highest spatial frequency on the mask (or the Numerical Aperture (NA)
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of the imaging system, whichever is lower), imposing a limitation on the print resolution

equivalently caps the potential range of spatial frequencies. Thus, the maximum chirp rate

able to be printed is just the inverse of the print resolution. Since print resolution ultimately

limits SPIFI resolution, we often choose mask that operate at the highest chirp rate available

for a given printing system, and are thus unable to use the 𝑘0 to adjust the center of the

frequency band. The spin rate of the modulator can still be adjusted to operate in a relatively

low noise region of the electronic spectrum.

The time-window of the modulator is given by 𝑇𝑚 = Δ𝜃/(2𝜋𝑓𝑟), where Δ𝜃 de󰅮ines the

angular width of the linearly-chirped modulator pattern. This gives a spatial resolution of

𝛿𝑥 = 2𝜋/(Δ𝜃Δ𝑘), a modulation bandwidth of Δ𝑓𝑚 = 𝑓𝑟𝑊Δ𝑘, the number of resolved points

𝑁 = Δ𝜃𝑊Δ𝑘/(2𝜋), and a center modulation frequency of 𝑓𝑐 = 𝑓𝑟(𝑘0 + Δ𝑘𝑥𝑐), where 𝑥𝑐 is the

beam center position on the modulator disk.

5.2. Fluorescent SPIFI

The previous analysis assumed the contrast function was just intensity transmission. How-

ever the analysis is still valid for linear and nonlinear 󰅮luorescence, as long as the modulation

of the 󰅮luorescence signal follows the modulation of the illumination light. As the 󰅮luorescent

light is emitted spontaneously from the excited state, 󰅮luorophores are characterized by their

lifetime—the average time a 󰅮luorophore spends in the excited state before decaying to the

ground state. If the timescale of the driving modulation is short compared to 󰅮luorescence

lifetime, the emitted light will exhibit a phase shift and a decrease in modulation depth.

To examine this condition, we’ll look at the response of 󰅮luorophores to modulated signals.

The rate equations for 󰅮luorphores driven by sinusoids have been solved [44] for application

to 󰅮luorescence lifetime imaging, in which the phase and amplitude response of a 󰅮luorphore
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is measured relative to a sinusoidally modulated illumination signal in order to identify the

󰅮luorophore. The depth of modulation and phase of the emitted 󰅮luorescence intensity can be

written as𝑚F = 󰕶1 + (2𝜋𝜅𝑥𝜏F)
2
󰕺
−1/2

and 𝜙F = 2𝜋𝜅𝑥𝜏F, respectively, such that the collected

intensity from the 󰅮luorescent object is written as

𝐼obj(𝑥, 𝑡) = 𝐼0
1

4
|𝑤(𝑡)𝑢(𝑥)𝑔(𝑥)|2 󰛄

2 + 𝑚2
F

2
+ 2𝑚F cos(2𝜋𝜅𝑥𝑡 + 𝜙F) +

𝑚2
F

2
cos(4𝜋𝜅𝑥𝑡 + 2𝜙F)󰛅 ,

in comparison to the equation for a transmissive object, given in Eq. 5.4. If the 󰅮luorophore of

interest exhibits a single exponential decay, then 𝜏F is just the 󰅮luorescence lifetime. If it is

non-exponential or multi-exponential, then 𝜏F is the apparent lifetime, given by a weighted

sum of the decay components [45].

If we select as our frequency limit the point where the modulation depth drops to 10%,

we can then write the maximum SPIFI frequency usable for a 󰅮luorophore with lifetime 𝜏F

as 𝑓max. = 3√11/(2𝜋𝜏F). As 󰅮luorescence lifetimes are typically near 10 nanoseconds [45],

this puts the maximum SPIFI frequency over 100 MHz. For the spinning disk implementation

described in this work, with a typical bandwidth on the order of 100 kHz, we can expect no

appreciable loss of modulation depth and negligible phase accumulation for a reasonable

lifetime. If the SPIFI technique were applied using high speed modulators, the lifetime could

impose an upper limit—though the available bandwidth would still be quite generous.

Methods. The samples used in the measurement of the SPIFI 󰅮luorescence images, an

example of which is shown in Fig. 5.4, were made by patterning 󰅮luorescent ink onto glass

slides using a rubber stamp. To improve adhesion of the ink, the slides were 󰅮irst sprayed

with a coat of aerosol hair spray. Inhomogeneity in the ink distribution can be seen in

both the absorptive and 󰅮luorescent images. The samples were illuminated using a 532 nm
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a b

F󰀋󰀉󰀗󰀔󰀇 5.4. SPIFI images of 󰅮luorescent ink stamped on a glass slide, in both

the (a) 󰅮luorescence absorptions and (b) 󰅮luorescence emission modes. Scale

bar is 2 mm.

continuous-wave solid-state laser (Coherent DPSS 532) with 23 mW average power. The

beam spatially 󰅮iltered and collimated to an ≈ 20 mm diameter before being focuses to the

modulator with a 50 mm focal length cylindrical lens. The modulator used in this work had

a chirp rate of Δ𝑘=7/mm and was spun at 30 Hz. The modulation plane was imaged to the

object plane using a 3:2 reducing telescope. After passing through the object, the fundamental

beam and the 󰅮luorescence were collected in the forward direction using a 50 mm lens. The

󰅮luorescent and fundamental light were separated using a 600/mm grating and the light

collected simultaneously using a pair of Silicon photodiodes (Thorlabs DET10A). The detector

used for the 󰅮luorescent light had a 600 nm long pass 󰅮ilter placed in front of it to suppress

spurious signal from scattered fundamental light.

As these 󰅮luorescent images were taken as SPIFI line images, the sample was translated

using a motorized translation stage perpendicular to the SPIFI line dimension, allowing the

measurement of two dimensional images. We used large objected for this 󰅮irst demonstration,

and so to capture an image of the entire stamp, we measured three such line scans, with the

sample translated laterally between each, which were combined in post processing to yield

the image seen in Fig. 5.4. Artifacts of this stitching process are evident on the left side of the
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image, as the overlap was not great enough to suppress the edge effects caused by the fall off

in beam intensity near the edges.

5.3. SPIFI Spectrometer

SPIFI replaces a line camera with a single-element detector by applying a position depen-

dent temporal intensity modulation to a line focus, then Fourier transforming the electronic

signal from the single-element detector to recover the spatial information. We’ll expand this

to a spectrometer using the setup shown in Fig. 5.5. While array based spectrometers are

widely available in the visible, the options for array spectrometers falls off quickly outside

of the visible. The cost of arrays is generally higher for devices in the infrared, so a number

of technologies exist to measure spectra using a single element detector. Common options

include scanning monochromators [46] and Fourier transform spectrometers [47]. Both

systems require mechanical scanning, leading to long acquisition times. Here, we apply

the one dimensional SPIFI imaging system to replace grating or stage scanning, leading to

improvements in speed.

In the simplest SPIFI spectrometer measurement, the optical spectrum of the input light

is spatially dispersed using a grating and then a position–dependent temporal modulation

is applied and the beam is simply collected on a photodetector. The optical spectrum can

then be recovered from the electronic spectrum of the photodetector signal. With this same

modulator con󰅮iguration, we can also perform hyperspectral imaging by illuminating a sample

with this spectrally modulated beam. The spectrum of the collected light would then have

been modulated by the response of the sample before being collected, encoding that spectral

response into the RF spectrum of the signal. We’ll consider brie󰅮ly the design parameters,

merging the theory of standard spectrometers with the SPIFI theory of Section 5.1.
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F󰀋󰀉󰀗󰀔󰀇 5.5. Diagram of a blazed grating (a) showing relevant parameters for

the SPIFI spectrometer and (b) diagram of the spectrometer setup showing both

re󰅮lective and transmissive beam paths. PD is photodiode and SPIFI modulator

is a mask, as given by Eq. 5.13 and shown in Fig. 5.3, mounted on a motor.

Theory. The SPIFI spectrometer is a standard grating spectrometer, with the array de-

tector replaced by the SPIFI modulator and a single element detector. The equation which

governs the diffraction from a grating is

sin(𝛽) + sin(𝛼) = 𝐺𝑚𝜆

where 𝑚 is the order of diffraction, 𝐺 is the grating groove density, 𝜆 is the wavelength of

incident light, 𝛼 and 𝛽 are the angles of incidence and diffraction, respectively, both with

respect to the grating normal, as shown in Fig. 5.5(a). Assuming the incidence angle to be

constant, the angular dispersion can be calculated from the grating equation [48] as

𝜕𝛽

𝜕𝜆
=

𝑚𝐺

cos(𝛽)
≡ 𝐷.

Operation in the Littrow con󰅮iguration (where the angle of incidence is equal to the angle of

diffraction) this angular dispersion becomes simply 𝐷 = 2/𝜆 tan(𝛽). Placing a lens a focal

length away from the grating, and measuring the spectrum a focal length again away from the

lens as shown in Fig. 5.5(b), we can translate this angular dispersion to a linear dispersion. The
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linear dispersion is just given as the angular dispersion times the focal length of the collection

lens. This dispersion is often written in the inverse, as the reciprocal linear dispersion

𝑃 =
𝜆

2𝑓 tan(𝛽)

where 𝑓 is the focal length of the lens. This term, usually expressed in nm/mm, expresses

the change in wavelength with translation in the focal plane. Using the 𝑥 width, 𝑊𝑥, and

resolution, 𝛿𝑥, for the SPIFI imaging system, as given in Section 5.1, we can convert these to

spectral parameters using the reciprocal linear dispersion. Thus, the bandwidth of the SPIFI

spectrometer is given by Δ𝜆 = 𝑃𝑊𝑥 and the resolution is given by

𝛿𝜆 =
𝑃

Δ𝑘

=
𝜆

2𝑓Δ𝑘 tan(𝛽)
. (5.14)

This gives the SPIFI-limited performance, based only on the grating, lens, andmask parameters.

As with all grating spectrometers, other design considerations may impact spectrometer

resolution [49, 50].

In the previous analysis, we’ve assumed that the photodiode and digitizer have suf󰅮icient

bandwidth to capture all relevant frequencies and that the laser repetition rate is high enough

that the source appears quasi-CW. However, targeting this toward use in the MIR, we must

consider the effect of low-repetition rate sources as many MIR systems operate at low fre-

quencies (on the order of kHz). This low-frequency pulsed operation limits the maximum

temporal frequency to be used in the SPIFI signal to be half of the repetition rate, and not half

of the sample rate as we’ve examined before. By setting the signal bandwidth, Eq. 5.12, equal
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F󰀋󰀉󰀗󰀔󰀇 5.6. Spectra of a Ti:Sapphire oscillator taken with the SPIFI spectrome-

ter (solid) and a CCD-based grating spectrometer (dashed). The mode-locked

oscillator spectrum (blue) is shown along side the spectra transmitted through

two bandpass 󰅮ilters, centered at 790 nm (orange) and 830 nm (pink). The

narrow CW oscillator spectrum (green) was used to calibrate the SPIFI spec-

trometer.

to half the repetition rate, we can formally state this requirement as 𝜅 = 𝑓0/ (2𝑊), where 𝑓0 is

the repetition rate of the laser. The update rate, 𝑡FR, of the spectrometer can then be written

as

𝑡FR =
2𝑊

𝑓0

𝑃

𝛿𝜆
, (5.15)

in terms of the modulator width 𝑊, chirp rate Δ𝑘, reciprocal linear chirp 𝑃, and desired

resolution 𝛿𝜆.

Methods. To test the performance of the SPIFI spectrometer, we build a test setup to

measure the spectrum of a Ti:Sapphire oscillator. The oscillator produces pulses with about

45 nm bandwidth (Full Width at Half Maximum (FWHM)) centered at 800 nm in mode-locked

operation. The oscillator can also be made to operate CW, where it produces a narrow spectral

peak centered at 780 nm. The beam 󰅮irst illuminates a 600/mm grating, causing the spectrum

to spread spatially in the 𝑥 direction while leaving the 𝑦 dimension unchanged. A 250 mm

focal length mirror placed a focal length away from the grating stops the angular spread of
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F󰀋󰀉󰀗󰀔󰀇 5.7. SampleMIR spectrum takenwith (a) the SPIFI spectrometer and (b)

an array spectrometer. The SPIFI spectrum is shown in position, as wavelength

to position calibration data was not taken.

the spectrum and focuses the beam in 𝑦 such that a spectrally dispersed line focus appears

at the modulator plane. A Δ𝑘=5/mm modulator encodes the spatial location of each part of

the beam (and thus, the wavelength) through a temporal modulation. The modulator disk

is tilted slightly out of plane, such that when the re󰅮lected light then travels back along (and

slightly below) its input path, it can be picked off by a mirror and directed on to the single

element detector.

To allow comparison of the performance of the transmissive and re󰅮lective con󰅮igurations,

we simultaneously collect the transmitted and re󰅮lected signals using two photodiodes. The

ability of the system to work in a re󰅮lective mode is important for the application of this

technique to a broad wavelength span, as the transmission of the glass substrate is spectrally

much narrower than the re󰅮lectivity of the aluminum features printed on the mask.

From the chirp rate of Δ𝑘 = 5/mm, we expect a spatial resolution of 200 µm (fromEq. 5.11).

Measuring the oscillator in CW operation gives us a point-like object in space, and we measure

the resolution to be 240 µm. Converting this spatial resolution to spectral resolution, we
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expect a spectral resolution of 1.2 nm (from Eq. 5.14) and measure 1.5nm (consistent with

measured resolution of 240 µm).

Test spectra are shown in Fig. 5.6, compared to the spectra taken with an array-based

spectrometer (Ocean Optics). The data was taken for the CW and mode-locked spectra, as

well as through two bandpass 󰅮ilters, centered at 790 nm and 830 nm. With the CW peak

used as a calibration point (to set the absolute wavelength to position mapping), the centers

wavelengths agree quite well. For the 󰅮ilters, the transmission appears a bit narrower in the

SPIFI case when compared to the grating spectrometer. The fall-off on the red side of the

mode-locked spectrum is from a slight clipping on the modulator. The spectral response

of the photodiode has not been corrected for, nor has the spectral response of the grating

spectrometer.

An initial spectral measurement, shown in Fig. 5.7, was taken on an MIR laser system

producing pulses centered at 6 µm at a 1 kHz repetition rate. The experimental setup is the

same as in Fig. 5.5, though operating only in a re󰅮lective con󰅮iguration due to the low MIR

transmissivity of the modulator substrate. The spectral data is shown on a position axis,

as the spectrometer was not calibrated in this initial test. It has also not been corrected

for the spectral response of the detector or the re󰅮lectivity of the modulation mask. This

initial data shows that a properly calibrated spectrometer could be used to make high-update

rate, high-resolution MIR spectral measurements. It also paves the way for other spectrally

dependent measurements in the MIR, such as pulse measurement using Frequency Resolved

Optical Gating (FROG) or hyperspectral measurements.
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CHAPTER 6

T󰀙󰀑 D󰀋󰀏󰀇󰀐󰀕󰀋󰀑󰀐󰀃󰀎 SPIFI

The SPIFI imaging method allows a line image to be captured by a single element detector

through temporal multiplexing. To acquire two dimensional images, we have either to scan the

sample in the orthogonal dimension, as was done in Fig. 5.4, or rotate the sample to measure

a set of projections from which the image can be recovered using tomographic processing

[51]. In this chapter, we look at three other ways to expand the previously described SPIFI

line imaging system to two dimensions, one which multiplexes many one dimensional signals

and two others which measure 2D images on a single element detector.

The 󰅮irst approach uses a fast line camera in place of a two dimensional array detector, with

the camera axis perpendicular to line focus. The camera then measures a set of SPIFI traces at

different 𝑦 positions, allowing a one dimensional array to do two dimensional imaging. While

this still requires an array, the reduction in pixel count is advantageous in applications where

the per-pixel cost of an array detector is high or multidimensional arrays are unavailable.

The second method we will explore is the application of two orthogonal modulators,

spinning at different rates, which encodes (𝑥, 𝑦) spatial information into a one-dimensional

temporal frequency axis as the sum of the x and y frequencies. As this method requires

only a single detector, we maintain the advantage of scattering immunity we saw with the

one-dimensional SPIFI. This method also does not require a potentially costly multi-element

detector.

The 󰅮inal method trades the spinning disk modulator for an array of mirrors that can

be rapidly switched between two angles. Such devices are commonly employed in movie

projectors, and invert the typical imaging system by switching the single source and multiplex
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F󰀋󰀉󰀗󰀔󰀇 6.1. Schematic of the optical setup for line camera SPIFI.

detector for a multiplexed source and a single detector. This inversion is useful as the usable

wavelength range of a metallic mirror exceeds the usable range of many detectors, allowing

the same mirror array to be used across a broad wavelength range.

6.1. Line Camera

The simplest approach to two dimensional SPIFI is simply to use the SPIFI modulator to

encode the spatial information in one dimension into the temporal trace, then use a linear

array detector to collect multiple SPIFI traces simultaneously. The experimental setup for

such a system is shown in Fig. 6.1. The setup is modi󰅮ied from the normal SPIFI setup, as

shown in Fig. 5.1, by replacing the spherical imaging lens with a second cylindrical lens,

collimating the beam after the 𝑥 modulation instead of re-imaging the modulated line focus to

the object plane. The expanded beam has the same modulation across the lateral coordinate,

so when the beam in incident on an object, the object contrast function is encoded into a y

dependant time signal. Such a modulation is shown in Fig. 6.2, taken from [51] in which the

beam is prepared in the same way.

The light from the object is focused to a vertical line and collection with a line camera

(Basler ruL 1024-57gm) at 40 kHz with an 8 bit depth. Collection of a reasonable proportion
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F󰀋󰀉󰀗󰀔󰀇 6.2. Modulation frequency as a function of position (gradient) with

beam intensity overlayed (contours). From [51].

of the sideband and un-diffracted beam proved dif󰅮icult in the optical setup used in this work.

As SPIFI only requires a representative sample of the light to be collected, we turned to a

scattering approach to ensure we get reasonable signal levels. While the position information

in 𝑥 has been encoded in frequency, the vertical position 󰅮idelitymust bemaintained to prevent

image degradation in the 𝑦 direction. To accomplish this, we used an engineered diffuser to

scatter the light horizontally, but not vertically, such that we don’t get blurring in the vertical

dimension of the image. This allows the formation of images but also introduces structure in

recovered images, owing to the grid of structures in the engineered diffuser. These structures

can be eliminated by averaging several images, with the diffuser moved slightly in between

each image, as shown in Fig. 6.3.

While this diffuser could be eliminated by using better collection optics, the introduction

of a diffractive element to ensure image formation is another statement of the scattering

immunity in the collection system. The line images are not degraded by the introduction of

this massive scattering, indeed the only degradation comes in due to the imprinting of vertical
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F󰀋󰀉󰀗󰀔󰀇 6.3. Retrieved image of an absorptive object (man), through averaging

of (a) 1, (b) 2, (c) 5, and (d) 20 individual retrieved images, with the line diffuser

moved ∼250 µm along 𝑥 and 𝑦 between images. From [52].

structure on the images from the diffuser, as in immunity to scattering is only present in the

SPIFI dimension.

6.2. Dual Disk

While the array detector allows us to expand the utility of the SPIFI line imaging method

rapidly into two dimensions, the advantages of scattering immunity are lost in the 𝑦 direction.

In the implementation shown, we also introduced unwanted speckle structure in the recovered

images. The speckle structure introduced by this line camera approach is avoided in the

sample scanning approaches, either linear scanning or tomography.

To restore the scattering immunity, avoid the speckle introduced by this line camera

approach, and eliminate the need for sample scanning, we expand the SPIFI approach to

two dimensions using a pair of SPIFI modulators, as shown schematically in Fig. 6.4. The

modulators are orthogonal to one another, the 󰅮irst modulating the 𝑥 dimension, then the

modulated horizontal line is expanded and refocused to a vertical line along 𝑦 where it is
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F󰀋󰀉󰀗󰀔󰀇 6.4. Optical setup of the dual-disk two-dimensional SPIFI imaging system.

modulated by the second modulator. The modulated beam is then imaged onto an object, and

the beam collected on a single element detector.

The two modulators impart a spatially dependent modulation on the horizontal and

vertical dimension in turn, such that each point in the object plane has a corresponding

temporal modulation frequency given by the product of its 𝑥 and 𝑦 modulation frequencies.

Here we expand the SPIFI theory to two dimensions and examine the design requirements

for the modulators.

Theory. The modulation functions of the two modulators both take the form of Eq. 5.13,

where we write the horizontal modulation function as𝑚𝑥(𝑥, 𝑡) =
𝑤(𝑡)

2
[1 + cos (2𝜋𝜅𝑥𝑥𝑡)] and

the vertical modulation function 𝑚𝑦(𝑦, 𝑡) =
𝑤(𝑡)

2
󰕶1 + cos 󰕾2𝜋𝜅𝑦𝑦𝑡󰖂󰕺. The beam full beam,

𝑢(𝑥, 𝑦), is then modulated by the product of these two orthogonal modulation functions,
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𝑚𝑥(𝑥, 𝑡)𝑚𝑦(𝑦, 𝑡) (the case of a direct two-dimensional modulator,𝑚(𝑥, 𝑦, 𝑡), will be treated

separately in Section 6.3).

We begin by writing the modulation function, as the product of the two orthogonal modu-

lators, as

𝑚(𝑥, 𝑦, 𝑡) = 𝑚𝑥(𝑥, 𝑡)𝑚𝑦(𝑦, 𝑡) = 󰛄
1

2
+
1

2
cos(2𝜋𝜅𝑥𝑥𝑡)󰛅 󰛄

1

2
+
1

2
cos(2𝜋𝜅𝑦𝑦𝑡)󰛅 . (6.1)

We can then write the electric 󰅮ield as

𝐸obj(𝑥, 𝑦, 𝑡) = 𝐸0𝑢(𝑥, 𝑦)𝑔(𝑥, 𝑦)𝑤(𝑡) 󰛄
1

2
+
1

2
cos(2𝜋𝜅𝑥𝑥𝑡)󰛅 󰛄

1

2
+
1

2
cos(2𝜋𝜅𝑦𝑦𝑡)󰛅

=
𝐸0

4
𝑢(𝑥, 𝑦)𝑔(𝑥, 𝑦)𝑤(𝑡) 󰕶1 + cos(2𝜋𝑡𝑥𝜅𝑥) + cos(2𝜋𝑡𝑦𝜅𝑦)

+ cos(2𝜋𝑡𝑥𝜅𝑥) cos(2𝜋𝑡𝑦𝜅𝑦)󰕺

where 𝑢(𝑥, 𝑦) is the now two dimensional beam pro󰅮ile, 𝑔(𝑥, 𝑦) is the contrast function

(e.g. object transmission or 󰅮luorescence distribution), and 𝑤(𝑡) is the time window of the

measurement. The 󰅮ield can be seen to be the sum of four terms: a Direct Current (DC) term,

an 𝑥 projection term, a 𝑦 projection term and an 𝑥–𝑦 cross term. We write the collected

intensity as

𝐼obj(𝑥, 𝑦, 𝑡) = 󰘵𝑔(𝑥, 𝑦)𝑢(𝑥, 𝑦)𝑤(𝑡)󰘵
2
󰛆
9

64
+

3

16
cos [2𝜋𝜅𝑥𝑡𝑥] +

3

16
cos 󰕶2𝜋𝜅𝑦𝑡𝑦󰕺

+
1

8
cos 󰕶2𝜋(𝜅𝑥𝑡𝑥 + 𝜅𝑦𝑡𝑦)󰕺 +

1

8
cos 󰕶2𝜋(𝜅𝑥𝑡𝑥 − 𝜅𝑦𝑡𝑦)󰕺

+
1

32
cos 󰕶2𝜋(𝜅𝑥𝑡𝑥 + 2𝜅𝑦𝑡𝑦)󰕺 +

1

32
cos 󰕶2𝜋(𝜅𝑥𝑡𝑥 − 2𝜅𝑦𝑡𝑦)󰕺

+
1

32
cos 󰕶2𝜋(2𝜅𝑥𝑡𝑥 + 𝜅𝑦𝑡𝑦)󰕺 +

1

32
cos 󰕶2𝜋(2𝜅𝑥𝑡𝑥 − 𝜅𝑦𝑡𝑦)󰕺
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+
3

64
cos [2𝜋(2𝜅𝑥𝑡𝑥)] +

3

64
cos 󰕶2𝜋(2𝜅𝑦𝑡𝑦)󰕺

+
1

128
cos 󰕶2𝜋(2𝜅𝑥𝑡𝑥 + 2𝜅𝑦𝑡𝑦)󰕺 +

1

128
cos 󰕶2𝜋(2𝜅𝑥𝑡𝑥 − 2𝜅𝑦𝑡𝑦)󰕺󰛇

We can see here terms similar to those in the one-dimensional case, giving us again two SPIFI

sidebands, now in 𝑥 and 𝑦. These come from the 󰅮irst order sidebands in 𝑥 and 𝑦 only. We’ll

again ignore the second harmonic terms (those with dependence on 2𝜅𝑦 and 2𝜅𝑥), which can

be removed in post processing through appropriate 󰅮iltering of the Fourier transform for a

cosine modulator, and don’t arise from the binary modulators we commonly use. We can then

write the fundamental intensity

𝐼obj, fund(𝑥, 𝑦, 𝑡) = 󰘵𝑔(𝑥, 𝑦)𝑢(𝑥, 𝑦)𝑤(𝑡)󰘵
2
󰛆
9

64
+

3

16
cos [2𝜋𝜅𝑥𝑡𝑥] +

3

16
cos 󰕶2𝜋𝜅𝑦𝑡𝑦󰕺

+
1

8
cos 󰕶2𝜋(𝜅𝑥𝑡𝑥 + 𝜅𝑦𝑡𝑦)󰕺 +

1

8
cos 󰕶2𝜋(𝜅𝑥𝑡𝑥 − 𝜅𝑦𝑡𝑦)󰕺󰛇 (6.2)

We’ll consider these terms independently. We again have a single DC term, as well as our

𝑥 and 𝑦 projections. The terms of interest here are the cross terms. Considering this term

alone we, we proceed with an analysis similar to the single disk case, and start by writing the

intensity due to this term. We’ll again switch to centrosymmetric 𝑥 coordinates by making

the substitutions 𝑥′ = 𝑥 − 𝑥𝑐 and 𝑦
′ = 𝑦 − 𝑦𝑐 , writing

𝐼obj, cross(𝑥, 𝑦, 𝑡) =
1

8
󰘵𝑔(𝑥, 𝑦)𝑢(𝑥, 𝑦)𝑤(𝑡)󰘵

2
󰕶cos 󰕶2𝜋(𝜅𝑥𝑡(𝑥

′ + 𝑥𝑐) + 𝜅𝑦𝑡(𝑦
′ + 𝑦𝑐))󰕺

+ cos 󰕶2𝜋(𝜅𝑥𝑡(𝑥
′ + 𝑥𝑐) − 𝜅𝑦𝑡(𝑦

′ + 𝑦𝑐))󰕺󰕺

=
1

16
󰘵𝑔(𝑥, 𝑦)𝑢(𝑥, 𝑦)𝑤(𝑡)󰘵

2
󰕶𝑒−2𝚤𝜋(𝑡𝑥

′𝜅𝑥+𝑡𝑦
′𝜅𝑦)𝑒−2𝚤𝜋(𝑡𝑥𝑐𝜅𝑥+𝑡𝑦𝑐𝜅𝑦)

+ 𝑒−2𝚤𝜋(−𝑡𝑥
′𝜅𝑥+𝑡𝑦

′𝜅𝑦)𝑒−2𝚤𝜋(−𝑡𝑥𝑐𝜅𝑥+𝑡𝑦𝑐𝜅𝑦) + c.c.󰕺 (6.3)
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Using again a single detector, we’ll integrate now over both 𝑥 and 𝑦 and again make the

assumptions that the detector is large enough to capture the whole 󰅮ield and has suf󰅮icient

electronic bandwidth to allow us to assume the electronic frequency response is 󰅮lat across

the used bandwidth

𝐼obj, cross(𝑡) =
1

16
𝑤(𝑡)2 󰕿𝑒−2𝚤𝜋(𝑡𝑥𝑐𝜅𝑥+𝑡𝑦𝑐𝜅𝑦)󰗂󰗂 󰘵𝑔(𝑥, 𝑦)𝑢(𝑥, 𝑦)󰘵

2
𝑒−2𝚤𝜋(𝑡𝑥

′𝜅𝑥+𝑡𝑦
′𝜅𝑦)d𝑥 d𝑦

+𝑒−2𝚤𝜋(−𝑡𝑥𝑐𝜅𝑥+𝑡𝑦𝑐𝜅𝑦)󰗂󰗂 󰘵𝑔(𝑥, 𝑦)𝑢(𝑥, 𝑦)󰘵
2
𝑒−2𝚤𝜋(−𝑡𝑥

′𝜅𝑥+𝑡𝑦
′𝜅𝑦)d𝑥 d𝑦 + c.c.󰖃

=
1

16
𝑤(𝑡)2 󰕶𝒢{𝜅𝑥𝑡, 𝜅𝑦𝑡}𝑒

−𝚤2𝜋(𝑡𝑥𝑐𝜅𝑥+𝑡𝑦𝑐𝜅𝑦)

+𝒢{−𝜅𝑥𝑡, 𝜅𝑦𝑡}𝑒
−𝚤2𝜋(−𝑡𝑥𝑐𝜅𝑥+𝑡𝑦𝑐𝜅𝑦) + c.c.󰕺 (6.4)

where c.c. indicated the complex conjugate of the previous terms,

𝒢(𝑓𝑥, 𝑓𝑦) = 󰗂󰗂 󰘵𝑢(𝑥, 𝑦)𝑔(𝑥, 𝑦)󰘵
2
𝑒𝚤2𝜋(𝑓𝑥𝑥+𝑓𝑦𝑦)d𝑥 d𝑦 ≡ 𝔉 {|𝑢(𝑥, 𝑦)𝑔(𝑥, 𝑦)|2}

and 𝔉 is the spatial fourier transform. This is the temporal signal of the two dimensional

modulator, given by the spatial Fourier transform of the square of the object transmission

times the illumination spatial intensity. Fourier transforming this cross term into electronic

frequency this temporal signal becomes
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F󰀋󰀉󰀗󰀔󰀇 6.5. Cartoon showing SPIFI operation in 2D. The (a) colored regions

indicate different slices of larger image being mapped into (b) the frequency

domain of a photodiode signal, shown here with four 𝑥 line images of the object

encoded as sidebands of four discrete 𝑦 frequencies.

𝐼obj, cross(𝑓) =
1

16
𝔉{𝑤(𝑡)2} ⊗ 󰕸󰛠𝑔 󰛂

𝑓

𝜅𝑥
,
𝑓

𝜅𝑦
󰛃𝑢 󰛂

𝑓

𝜅𝑥
,
𝑓

𝜅𝑦
󰛃󰛠

2

+ 󰛠𝑔 󰛂−
𝑓

𝜅𝑥
,
𝑓

𝜅𝑦
󰛃𝑢 󰛂−

𝑓

𝜅𝑥
,
𝑓

𝜅𝑦
󰛃󰛠

2

+ 󰛠𝑔 󰛂
𝑓

𝜅𝑥
, −

𝑓

𝜅𝑦
󰛃𝑢 󰛂

𝑓

𝜅𝑥
, −

𝑓

𝜅𝑦
󰛃󰛠

2

+ 󰛠𝑔 󰛂−
𝑓

𝜅𝑥
, −

𝑓

𝜅𝑦
󰛃𝑢 󰛂−

𝑓

𝜅𝑥
, −

𝑓

𝜅𝑦
󰛃󰛠

2

󰕼

(6.5)

This cross term allows us to recover the contrast function 𝑔(𝑥, 𝑦) from one of two 𝑥 sidebands

of one of two 𝑦 carriers. Referring to the schematic depiction of the 2D data shown in Fig. 6.5,

we can see the contribution of each of these terms. Each 𝑥 line out show up four times, on

either side of the both the positive and negative 𝑦 carrier frequency.

Returning for a moment to 󰅮ill in the remaining DC, 𝑥 and 𝑦 dependant terms, we consider

󰅮irst the 𝑥 dependant term

𝐼obj, xSB(𝑥, 𝑦, 𝑡) =
1

8
󰘵𝑔(𝑥, 𝑦)𝑢(𝑥, 𝑦)󰘵

2
𝑤(𝑡)2 cos(2𝜋𝑡(𝑥′ + 𝑥𝑐)𝜅𝑥)

=
1

16
󰘵𝑔(𝑥, 𝑦)𝑢(𝑥, 𝑦)󰘵

2
𝑤(𝑡)2 󰕾𝑒−2𝚤𝜋𝑡𝑥

′𝜅𝑥𝑒−2𝚤𝜋𝑡𝑥𝑐𝜅𝑥 + c.c.󰖂
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again integrating over both spatial dimensions, we again have a spatial fourier transform

along 𝑥, but what is now being transformed is the contrast function integrated along 𝑦,

𝐼obj, xSB(𝑡) =
1

16
𝑤(𝑡)2𝑒−2𝚤𝜋𝑡𝑥𝑐𝜅𝑥 󰗂 𝑒−2𝚤𝜋𝑡𝑥

′𝜅𝑥 󰗂 󰘵𝑔(𝑥′, 𝑦)𝑢(𝑥′, 𝑦)󰘵
2
d𝑦 d𝑥′ + 𝑐.𝑐. (6.6)

Giving a temporal signal again as a spatial fourier transform where we’ll de󰅮ine lateral pro-

jections in 𝑥 and 𝑦 as 𝒢𝑥(𝑓𝑥) = ∫ 𝑒−2𝚤𝜋𝑡𝑥𝜅𝑥�̄�(𝑥) d𝑥 and 𝒢𝑦(𝑓𝑦) = ∫ 𝑒−2𝚤𝜋𝑡𝑦𝜅𝑦�̄�(𝑦) d𝑦 where

the integrated 𝑥 and 𝑦 pro󰅮iles are given by �̄�(𝑥) = ∫ 󰘵𝑔(𝑥, 𝑦)𝑢(𝑥, 𝑦)󰘵
2
d𝑦 and �̄�(𝑦) =

∫ 󰘵𝑔(𝑥, 𝑦)𝑢(𝑥, 𝑦)󰘵
2
d𝑥. Combining these terms with Eq. 6.5, we determine the total inten-

sity spectrum

𝐼obj(𝑓) =
1

16
𝔉{𝑤(𝑡)2} ⊗ 󰛄𝛿(𝑓) + �̄� 󰛂

𝑓

𝜅𝑥
󰛃 + �̄� 󰛂−

𝑓

𝜅𝑥
󰛃 + �̄� 󰛂

𝑓

𝜅𝑦
󰛃 + �̄� 󰛂−

𝑓

𝜅𝑦
󰛃

+ 󰛠𝑔 󰛂
𝑓

𝜅𝑥
,
𝑓

𝜅𝑦
󰛃𝑢 󰛂

𝑓

𝜅𝑥
,
𝑓

𝜅𝑦
󰛃󰛠

2

+ 󰛠𝑔 󰛂−
𝑓

𝜅𝑥
,
𝑓

𝜅𝑦
󰛃𝑢 󰛂−

𝑓

𝜅𝑥
,
𝑓

𝜅𝑦
󰛃󰛠

2

(6.7)

+ 󰛠𝑔 󰛂
𝑓

𝜅𝑥
, −

𝑓

𝜅𝑦
󰛃𝑢 󰛂

𝑓

𝜅𝑥
, −

𝑓

𝜅𝑦
󰛃󰛠

2

+ 󰛠𝑔 󰛂−
𝑓

𝜅𝑥
, −

𝑓

𝜅𝑦
󰛃𝑢 󰛂−

𝑓

𝜅𝑥
, −

𝑓

𝜅𝑦
󰛃󰛠

2

󰕼

where 𝛿(𝑓) is the Dirac delta function.

The many terms of this power spectrum are shown in Fig. 6.6, we now have terms that

correspond to each region of the power spectrum, 󰅮illing in the DC terms, as well as the

integrated projections. To recover the contrast function, we will need to select a cross terms.

In order to recover the signal from one of these cross term generated sidebands, which all

contain the same information, we need to not only ensure we can separate those sidebands

by 󰅮iltering, but we must also ensure that these mixing sidebands are not corrupted by the

presence of the 𝑥 or 𝑦 integral sidebands. This condition is met in the simulated data shown

in Fig. 6.6, as all the cross terms are well separated, both from one another and from the
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f

F󰀋󰀉󰀗󰀔󰀇 6.6. Plot of power spectrum as described by Eq. 6.7, using a Gaussian

beam illumination pro󰅮ile and a uniform transmission function (no object). The

”DC” peak is shown in black and the lateral 𝑥 projection close to ”DC” is shown

in grey. The 𝑦 projection pro󰅮ile is shown by discrete narrow frequency ”spikes”,

whose width are given by the time window of the measurement. The four cross

terms, which all contain the same information, are shown in different colors:

(−𝑥,−𝑦) in green, (+𝑥,−𝑦) in purple, (−𝑥,+𝑦) in orange, and (+𝑥,+𝑦) in blue.

carrier “spikes”. If the sidebands overlapped, we would be unable to select a single cross term

by 󰅮iltering, and the resulting image would be corrupted. To ensure this requirement is met

in an experiment, we return to the analysis of resolution in SPIFI. This will allow us to ensure

that the frequency separation in 𝑦 is suf󰅮icient to ensure that the 𝑥 sidebands don’t overlap.

The resolution of SPIFI is given by the inverse of the highest spatial frequency on the mask,

𝛿𝑥 = 1/Δ𝑘. The frequency separation of the effective pixels is then just the spatial resolution

times the chirp rate, 𝛿𝑓 = 𝛿𝑥𝜅 = 𝑓𝑟 . Now we require that the spacing between the frequencies

of the effective pixels of one disk be several times the frequency bandwidth of the other disk,

such that we can ensure there is suf󰅮icient electronic bandwidth to contain a positive and

negative SPIFI sideband for each of the effective pixels. In this analysis, we’ll assume that the

𝑥 modulator is spinning at the slower rate 𝑓𝑟𝑥, giving the time window of the experiment 𝑇𝑤,
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F󰀋󰀉󰀗󰀔󰀇 6.7. (a) Example of sweep of 𝑓𝑥 and 𝑓𝑦, showing multiple sweeps of 𝑓𝑦
over the time window of the 𝑥 modulator. This 󰅮igure is for 𝑁𝑥 = 5. Spatial

frequency distributions of the modulators𝑚𝑥,𝑚𝑦 and𝑚𝑥 ×𝑚𝑦, are shown for

three times in (b), (c), and (d) corresponding to the dotted lines in (a).

and the 𝑦 modulator will spin faster, at a rate of 𝑓𝑟𝑦 and have an electronic bandwidth of Δ𝑓𝑚

as given in Eq. 5.12. At minimum, this requires that the frequency separation of the 𝑦 pixels,

𝛿𝑓𝑟𝑦, be double the 𝑥 bandwidth, Δ𝑓𝑚𝑥 = 𝑓𝑟𝑥Δ𝑘𝑥𝑊𝑥, which gives 𝛿𝑓𝑟𝑦 ≥ 2Δ𝑓𝑚𝑥. This requires
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F󰀋󰀉󰀗󰀔󰀇 6.8. The Gaussian illumination beam is transmitted by the spatial fre-

quency modulation, as seen in Fig. 6.7, then transmitted by a simple object

yielding the distribution that is spatially integrated by the detector.

that the rotation rates of the two masks obey the relationship

𝑓𝑟𝑦

𝑓𝑟𝑥
≥ 2𝑁𝑥 (6.8)

where 𝑁𝑥 = Δ𝑘𝑥𝑊𝑥 is the number of points in 𝑥. This requires the 𝑦 disk to spin a great deal

faster than the 𝑥 disk. In the time window of the slow disk, the spatial frequencies of the

mask will be swept through once, while on that same time scale the spatial frequencies of

the 𝑦 disk will be swept through 2𝑁𝑥 times (at minimum), as displayed in Fig. 6.7. The time

window of the 𝑥 modulator also sets the width of the peaks from the 𝑦 integrated projection,

which must be narrower than the minimum frequency in 𝑥.

This requirement places some limitations on the dual disk system, namely, that the 𝑦 disk

would need to spin at a rate equal to double the number of 𝑥 pixels. For an imaging system in

which you would want to have hundreds of pixels in 𝑥, the 𝑦 disk would have to be spinning a

great deal faster than the 𝑥 disk. There are two ways to relax this requirement. First, we can

arti󰅮icially limit the number of frequencies on the disk. The number of frequencies for the

continuous case is 𝑁𝑦 = 𝑊𝑦Δ𝑘𝑦. We can reduce the number of frequencies on the mask by

constructing a modulator with a limited set of discrete frequencies, as detailed in Appendix E.

If we create a mask that has a reduced number of frequencies 𝑁′
𝑦, the spatial resolution is
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a b

F󰀋󰀉󰀗󰀔󰀇 6.9. Comparison of a (a) continuous SPIFI mask with a linear chirp rate

(b) a SPIFI mask with reduced number of frequencies. Both masks have a chirp

rate of Δ𝑘 = 3/mm and the discrete mask uses 20 frequencies.

reduced to the width of the discrete frequency bins on the mask, 𝛿𝑓′𝑟𝑦 =
𝑁𝑦

𝑁′
𝑦

𝑓𝑟𝑦. Equating this

to the 𝑥 bandwidth as in Eq. 6.8, the required ratio is reduced by the factor
𝑁′
𝑦

𝑁𝑦
to

𝑓𝑟𝑦

𝑓𝑟𝑥
≥ 2

𝑁′
𝑦

𝑁𝑦

𝑁𝑥. (6.9)

Alternately, modi󰅮ications can be made to the optical setup to allow the data to be processed

from the time trace, rather than in electronic frequency as described above, which allows

more 󰅮lexibility in recovering the image.

Discrete Mask. In this section, we’ll analyze the case of a discrete mask for the 𝑦 modula-

tor, that is, a mask with a limited set of discrete frequencies. To begin, we write the modulation

as a continuous modulation function, 𝑚𝑥(𝑥, 𝑡), in 𝑥 and the 𝑦 modulation, 𝑚𝑦(𝑦, 𝑡), as the

sum of 𝑁𝑚 discrete masks.

𝑚𝑥(𝑥, 𝑡) =
1

2
+
1

2
cos [2𝜋 (𝑓𝑜𝑥 + 𝜅𝑥) 𝑡]
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𝑚𝑦(𝑦, 𝑡) =

1

2
𝑁𝑦

󰗞

𝑛=−
1

2
𝑁𝑦

rect󰛂
𝑦 − 𝑛Δ

Δ
󰛃 󰛆

1

2
+
1

2
cos 󰕶2𝜋(𝑓𝑜𝑦 + 𝑛Δ𝑓)𝑡󰕺󰛇

where we use the parameters Δ as the 𝑦 pixel width, Δ𝑓 is the difference in carrier modulation

frequency between adjacent 𝑦 pixels, 𝑓ox is the 𝑥 offset frequency, 𝑓𝑜𝑦 is the 𝑦 offset frequency

and 𝑓𝑛𝑦 = 𝑓𝑜𝑦 + 𝑛Δf. A depiction of such a mask is shown in Fig. 6.9, where we compare the

continuous (limited by print resolution) and discrete masks. We’ll expand the modulation

function to write and then group into diffracted orders for the Fourier plane

𝑚(𝑥, 𝑦, 𝑡) =
1

4
+
1

4

1

2
𝑁𝑦

󰗞

𝑛=−
1

2
𝑁𝑦

rect󰛂
𝑦 − 𝑛Δ

Δ
󰛃 cos 󰕾2𝜋𝑓𝑛𝑦𝑡󰖂 +

1

4
cos [2𝜋 (𝑓𝑜𝑥 + 𝜅𝑥) 𝑡]

+
1

4
cos [2𝜋 (𝑓𝑜𝑥 + 𝜅𝑥) 𝑡]

1

2
𝑁𝑦

󰗞

𝑛=−
1

2
𝑁𝑦

rect󰛂
𝑦 − 𝑛Δ

Δ
󰛃 cos 󰕾2𝜋𝑓𝑛𝑦𝑡󰖂 .

Expand the x cosine term to simplify the 2D spatial Fourier transform

𝑚(𝑥, 𝑦, 𝑡) =
1

4
+
1

4

1

2
𝑁𝑦

󰗞

𝑛=−
1

2
𝑁𝑦

rect󰛂
𝑦 − 𝑛Δ

Δ
󰛃 cos 󰕾2𝜋𝑓𝑛𝑦𝑡󰖂 +

1

8
𝑒𝚤2𝜋(𝑓𝑜𝑥+𝜅𝑥)𝑡 +

1

8
𝑒−𝚤2𝜋(𝑓𝑜𝑥+𝜅𝑥)𝑡

+
1

8
𝑒𝚤2𝜋(𝑓𝑜𝑥+𝜅𝑥)𝑡

1

2
𝑁𝑦

󰗞

𝑛=−
1

8
𝑁𝑦

rect󰛂
𝑦 − 𝑛Δ

Δ
󰛃 cos 󰕾2𝜋𝑓𝑛𝑦𝑡󰖂

+
1

8
𝑒−𝚤2𝜋(𝑓𝑜𝑥+𝜅𝑥)𝑡

1

2
𝑁𝑦

󰗞

𝑛=−
1

2
𝑁𝑦

rect󰛂
𝑦 − 𝑛Δ

Δ
󰛃 cos 󰕾2𝜋𝑓𝑛𝑦𝑡󰖂

writing the modulator in terms of spatial frequencies as a sum of the different terms,

𝑀󰕾𝑓𝑥, 𝑓𝑦, 𝑡󰖂 =𝑀dc + 𝑀±carrier + 𝑀±SPIFI + 𝑀±SPIFI±𝑦, where we’ve de󰅮ined

𝑀dc = 𝛿 (𝑓𝑥) 𝛿 󰕾𝑓𝑦󰖂
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𝑀±carrier = 𝑒±𝚤2𝜋𝑓𝑜𝑦𝑡
sin 󰕶𝜋 󰕾Δ𝑓𝑦 ± Δ𝑓𝑡󰖂 󰕾1 + 𝑁𝑦󰖂󰕺

sin 󰕶𝜋 󰕾Δ𝑓𝑦 ± Δ𝑓𝑡󰖂󰕺

sin 󰕾𝜋Δ𝑓𝑦󰖂

2𝜋Δ𝑓𝑦

𝑀±SPIFI =
1

2
𝑒±𝚤2𝜋𝑓𝑜𝑥𝑡𝛿 󰕾𝑓𝑦󰖂 𝛿 (𝑓𝑥 ± 𝜅𝑡)

𝑀±SPIFI+𝑦 =
1

4
𝑒𝚤2𝜋󰕾𝑓𝑜𝑥±𝑓𝑜𝑦󰖂𝑡𝛿 (𝑓𝑥 ± 𝜅𝑡)

sin 󰕶𝜋 󰕾Δ𝑓𝑦 + Δ𝑓𝑡󰖂 󰕾1 + 𝑁𝑦󰖂󰕺

sin 󰕶𝜋 󰕾Δ𝑓𝑦 + Δ𝑓𝑡󰖂󰕺

sin 󰕾𝜋Δ𝑓𝑦󰖂

2𝜋Δ𝑓𝑦

𝑀±SPIFI−𝑦 =
1

4
𝑒−𝚤2𝜋󰕾𝑓𝑜𝑥∓𝑓𝑜𝑦󰖂𝑡𝛿 (𝑓𝑥 ± 𝜅𝑡)

sin 󰕶𝜋 󰕾Δ𝑓𝑦 − Δ𝑓𝑡󰖂 󰕾1 + 𝑁𝑦󰖂󰕺

sin 󰕶𝜋 󰕾Δ𝑓𝑦 − Δ𝑓𝑡󰖂󰕺

sin 󰕾𝜋Δ𝑓𝑦󰖂

2𝜋Δ𝑓𝑦

This modulation is convolved with the product of the spatial beam pro󰅮ile and the contrast

function, and the intensity is calculated. The resolution in this case is limited in 𝑦 by the width

of the frequency bins, with the 𝑦 object information being integrated across the widened

modulation bands. This analysis proceeds as in the continuous analysis, leading back to the

spin rate ratio we saw in Eq. 6.8. However, we can now create masks with an arbitrary number

of points, allowing us to balance our required number of 𝑦 pixels with our desired frame rate.

This does require that a mask be created with the speci󰅮ied number of points, and the ratio of

spin rates of the masks will be set by the design of the two masks used in the system.

While this allows more 󰅮lexibility in the design of the system, we are still in the position of

requiring the mask parameters and motor parameters to be chosen at design time. It would

be desirable for the system to have more 󰅮lexibility, to be able to chose the desired motor

spin rate at the time of the actual measurement, and simply have whatever 𝑦 resolution is

supported by the chosen con󰅮iguration.

Image Reconstruction. With the appropriate spin rates chosen for the resolution as per

Eq. 6.8, the time window of the experiment is set. The intensity can then be measured as

a function of time over a single rotation of the “slow” modulator, giving a signal that takes

the form given in Eq. 6.7. As the object spatial information is contained within the power
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spectrum of this photodetector signal, we 󰅮irst calculate the power spectrum. This can be

trivially done using a Fast Fourier Transform (FFT), or by using a more advanced power

spectral density estimator, such as multitaper [53].

The power spectrum looks akin to Fig. 6.6, with a narrow “spike” corresponding to each 𝑦

position and a positive and negative sideband on either side of that 𝑦 frequency containing the

corresponding 𝑥 data. As there are two sidebands for each 𝑦 location as well as two overall

sidebands, there are four copies of the image data contained within this power spectrum. We

can reconstruct the four degenerate two-dimensional images by reshaping the power spectral

data from temporal frequency into space, mapping temporal frequency into space using the

factors 𝜅𝑥 and 𝜅𝑦.

To construct an image, we reshape the power spectrum by starting with the lowest

frequency 𝑦 value, then collecting a set of data points that corresponds to the 𝑥 sideband and

placing it as the 󰅮irst row of a pixel array. The second row is then calculated by shifting the

frequency spectrum by the frequency difference between the two adjacent 𝑦 carriers, given by

𝜅𝑦𝛿𝑦, and taking the next 𝑥 sideband. This process can be repeated until all the 𝑥 sidebands

have been extracted and the image is complete. The process is then repeated for each of the

remaining three images.

Direct Fourier Synthesis Reconstruction. In this section, we will consider the signal in

terms of time, rather than the frequency domain version as in previous sections. In our analysis

of 1D SPIFI, we cast the time trace 󰅮irst as the sum of a set of sinusoids, each weighted by the

object contrast function at the position corresponding to that location. Fourier transforming

this temporal trace gives the electronic spectrum, which contains the object contrast function.
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F󰀋󰀉󰀗󰀔󰀇 6.10. (a) Simulated temporal SPIFI signal generated for a square aper-

ture and (b) the same trace interpolated onto spatial frequency axes.

We have equivalently considered the mask not as a radially dependant cosine, but rather as

a swept grating, whose spatial frequency is swept as a function of time over the scan window

𝑇𝑥,𝑦 = 1/𝑓𝑟(𝑥,𝑦). Each point in the time trace is then a measure of the projection of a single

spatial frequency grating on to the object contrast function. The time trace is thus the spatial

frequency spectrum, and Fourier transforming this spatial frequency data gives the object

spatial information. Expanding this to the two dimensional case we consider the product of

two orthogonal time variant gratings, each of whose spatial frequencies is traced out over

time, as depicted in Fig. 6.7. The temporal trace, as shown in Fig. 6.10(a) is reshaped into a

2D array, as shown in Fig. 6.10(b), which can be inverse 2D Fourier transformed to recover

the object information.

Cast in this light, it is easy to see why one disk must rotate many times in the rotation time

of the other; to measure an accurate spatial frequency spectrum of the object, the overlap

integral must be measured between the object and all spatial frequencies in both 𝑥 and 𝑦. To

accomplish this, the grating of the slow disk must not change over the rotation time of the

faster disk, leading to the spin rate requirement set by Eq. 6.8.

Under this constraint, we process SPIFI trace as a list of 𝑥 and 𝑦 spatial frequency pro-

jections, which along with the spatial frequencies as a function of time, can be converted to
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F󰀋󰀉󰀗󰀔󰀇 6.11. Simulated image recovery by direct Fourier synthesis. A simple

object (a) illuminated by a Gaussian beam and the reconstructions from (b)

the full intensity as given by Eq. 6.2 and (c) the single sideband intensity, from

Eq. 6.3.

the object contrast function by 2D Fourier transform. To demonstrate this method, SPIFI

traces are simulated and reconstructed using this method and the resulting images shown in

Fig. 6.11. A simple test object, a series of diagonal lines, is illuminated with a Gaussian beam,

giving a contrast function as shown in Figure 6.11(a). The temporal SPIFI intensity trace is

calculated from Eq. 6.2 for a set of spatial frequencies 𝑓𝑥 and 𝑓𝑦. The temporal SPIFI trace

is then reshaped from time vector into a two-dimensional array in terms of the two spatial

frequencies, 𝑓𝑥 and 𝑓𝑦. This 2D array is then inverse Fourier transformed using an inverse

two-dimensional fast Fourier transform (ifft2) algorithm to yield the object transmission

function, shown in Fig. 6.11(b). As the intensity trace contains four degenerate copies of

the image, two normal images and two conjugate images, the reconstruction based on the

full intensity trace yields a corrupted image, namely the sum of all four images. To get a

single image, the process must be performed on an intensity trace that contains only a single

sideband, as given by Eq. 6.3, which yields a recovered image as shown in Fig. 6.11(c).In this

simulation, the spin rates of the disks were made to exceed the requirement given in Eq. 6.8,

and thus a single sideband could be selected by Fourier 󰅮iltering. The image recovered for the

single sideband is in good agreement with the test object. The image recovered from the full

SPIFI trace is clearly corrupted by the presence of other sidebands.
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F󰀋󰀉󰀗󰀔󰀇 6.12. Spatial frequency sweeps (blue lines) at each time sample (black

dots) for (a) a high spin rate and (b) a low spin rate. The effective 𝑓𝑥 sampling

is marked in the 󰅮igure as Δ𝑓𝑥.

Spatial Aliasing. In the previous description, we’ve assume that the rotation rates met

the requirement given in Eq. 6.8. In that case, the 𝑥 modulator grating doesn’t change over the

timescale of the 𝑦 modulator. If the ratio of the spin rates is lower, then there is some change

in 𝑥 spatial frequency over the rotation time of the 𝑦 disk. The 𝑦 grating sweep then happens

over a narrow sweep in 𝑥, leading to a greater tilt in spatial frequency and an increase in 𝑓𝑥

sample separation, as shown in Fig. 6.12. In the limiting case of Eq. 6.8 we have a number

of 𝑥 points given by 𝑁𝑥 = 𝑓𝑟𝑦/𝑓𝑟𝑥. As the maximum spatial frequency on the mask, 𝑓x,max, is

󰅮ixed by the mask design we can write the spatial frequency sampling, Δ𝑓𝑥 as

Δ𝑓𝑥 =
𝑓x,max

𝑁𝑥

. (6.10)

As the spatial frequency sampling is related to the spatial resolution, 𝑑𝑥 through

Δ𝑓𝑥 =
1

𝑁𝑥𝑑𝑥
=

1

𝑊𝑥

, (6.11)

an increase in spatial frequency separation leads to a corresponding decrease in the spatial

window,𝑊𝑥. This reduces the 󰅮ield of view possible at the reduced spin rate. This is consistent
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F󰀋󰀉󰀗󰀔󰀇 6.13. Reconstructed 2D SPIFI image of a set of diagonal lines as a

function of lowering spin rates. The total width of each panel is the same, with

the object width being reduced by the reduction in spin ratio and indicated by

the red square.

with Eq. 6.8, where instead of determining the required spin rate from the number of points,

we instead look at the number of points possible for a desired spin rate ratio,

𝑁𝑥 ≤
𝑓𝑟𝑦

𝑓𝑟𝑥
. (6.12)

The factor of two has been eliminated here by using a single SPIFI sideband. In this case the

required 󰅮iltering would need to be accomplished optically, before the trace is measured. To

accomplish this, we’ll use the same sideband selection technique that plays an important role

in Coherent Holographic Imaging by Recovered Phase from Emission Distributions (CHIRPED)

(Chapter 7), namely 󰅮iltering the sideband in the dimension orthogonal to the dimension of

modulation.

The reduction in 󰅮ield of view is shown again using a simulation in Fig. 6.13. The simulated

experiment is set up with a 4 mm 󰅮ield of view, and a trace simulated and reconstructed using

a single sideband and the spin rate as required by Eq. 6.8. The spin rate is then reduced, and

the used 󰅮ield of view is also reduced, allowing more 󰅮lexibility in experimental design.
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Results. The setup for this experiment, shown schematically in Fig. 6, begins with a

405 nm laser diode (Q Photonics QLD-405-100S) in a temperature-controlled diode mount

(Thorlabs LDM9T). The diode output is collected using a 4 mm focal length lens and spatially

󰅮iltered using a 20x objective and a 10 µm pinhole. The beam is then expanded to its 󰅮inal

size, an approximate diameter of 20 mm. This large beam is then brought to a horizontal

line focus using a 50 mm focal length cylindrical lens and then modulated by the spinning

cosine modulator (Inlight GOBOs) with a chirp rate of Δ𝑘 = 5/mm. The modulator disk is

mounted on a custom designed and machined mounting chuck to the shaft of a brushless

DC motor (Faulhaber 2057). The motor is held at a constant angular velocity using a speed

controller (Faulhaber MCBL3006) reading hall sensors packaged within the motor. These hall

sensors also provide a synchronization signal useful in timing the data acquisition. The beam

proceeds from this modulator to a 50 mm spherical lens, which collimates the beam in the

vertical dimension and simultaneously focused it to a vertical line at the plane of the second

modulator. The second modulator has a chirp rate of 7/mm and is mounted similarly to the

󰅮irst motor. The second modulator, like the 󰅮irst, is printed in aluminum on soda-lime glass

and has an outer diameter of 62 mm and an inner diameter of 15 mm, used for mounting.

Finally, the second mask plane is imaged in to the object plane, using a 50 mm spherical

plano-convex lens and a 50 mm plano-convex cylindrical lens placed back to back, creating an

ersatz optic with a sagittal (𝑥–𝑧) focal length of 50 mm and a tangential (𝑦–𝑧) focal length

of 25 mm. This creates an image of the x modulator and the y modulator both in the object

plane. The beam is then transmitted by an object in this plane, the collected using a 25 mm

condenser lens on to a single element photodiode (Thorlabs DET-100A). The photodiode

signal is ampli󰅮ied using a current preampli󰅮ier (Stanford Research Systems SR570) before
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F󰀋󰀉󰀗󰀔󰀇 6.14. Two dimensional SPIFI image of the number ”6” printed on a

transmissive mask. The object here is absorptive, so we see the illumination

beam pro󰅮ile with the absorptive number 6 in the middle. The four images are

constructed using the four cross terms, showing each sideband contains the

same information.

being digitized (National Instruments PCI-6110). The aforementioned sync signal is used

to trigger the start of data acquisition using custom software, which collects the traces and

displays their Fourier transform for rapid analysis. The program saves the digitized traces for

of󰅮line analysis using MATLAB.

The “slow” 𝑥 modulator was spun at a rate of 0.5 Hz while the “fast” 𝑦 modulator was

spun at a rate of 100 Hz and a SPIFI trace taken over the time duration of several “slow”

motor revolutions, to ensure ample data for of󰅮line processing. The data is then processed by

󰅮irst selecting a time trace out of the collected data corresponding to a single rotation of the

“slow” disk. The Fourier transform of this data produces an electronic spectrum that looks,
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F󰀋󰀉󰀗󰀔󰀇 6.15. Two dimensional SPIFI image of the number ”6” printed on a

transmissive mask and imaged using the dual disk SPIFI setup. Images were

taken with and without the object in place, then subtracted to remove the

illumination beam pro󰅮ile. Note that the image has been inverted for clarity.

The four images are constructed using the four cross terms, as in Fig. 6.14.

schematically, like that in Fig. 6.6, with the four cross terms, as well as DC terms and the

integrated projection terms. The desired cross term (any of the four will do) is isolated by

reading out sections of the Fourier transform array into a new matrix, each row of which is

one of the 𝑥 sidebands. When this matrix is complete, the rows will contain the 𝑥 information

at each 𝑦 location, and the image will be completed. This process can easily be done for each

of the four cross terms, yielding four images, like those shown in Fig. 6.14. This image was

taken with a simple absorptive object, and shows an image of the beam pro󰅮ile blocked by the

number “6” printed on a glass slide. This image is not just the object contrast function, but

the product of the object contrast function and the spatial intensity pro󰅮ile of the beam. To
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F󰀋󰀉󰀗󰀔󰀇 6.16. Two dimensional SPIFI image taken without an object, showing

only the recovered beam pro󰅮ile.

recover only the contrast function, we make the same measurement without an object, yield

an image of only the intensity pro󰅮ile as shown in Fig. 6.16, which can then be subtracted off

the original image to yield only the contrast function, as shown in Fig. 6.15.

Discussion. In the previous analysis, we’ve assumed that we can adequately separate

in electronic frequency the positive and negative SPIFI sidebands from the carrier 𝑦 pixel

frequency. We have further assumed that the second harmonic of the 𝑥 sidebands do not

overlap with the fundamentals. However, we have operated in this data in the limiting case,

where the fundamental 𝑥 sideband separation is half the 𝑦 pixel separation. In this case, the

second harmonic of each positive SPIFI sideband will overlap with the fundamental negative

sideband of the next 𝑦 pixel. This could be easily eliminated by increasing the rotation rate

of the fast disk or decreasing the spin rate of the slow disk, increasing the 𝑦 separation or

decreasing the 𝑥 sideband offset, respectively.
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The other issue that may arise in extension of this technique is stability or the modulator

spin rate. We have looked at the impact of motor instabilities and errors in modulation mask

mounting previously [39], for the case of a single modulator. Any error in mounting or drift

in motor speed will cause a variation in the frequency seen by each point on the beam as

the disk rotates. When the power spectrum is estimated, this will cause broadening in the

spectral features, which leads to blurring in the recovered image.

To ensure the frequency bins remain separate in the case of the dual disk system, the

broadening of the frequencies due to instability in the fast disk has to be small compared to

the frequency separation of features in the slow masks. As the dual disk approach requires

two spinning disks at very different rates, this may require very high stability in the fast

disk. This effect was minimized in the data presented by using moderate resolution SPIFI

modulators. This error could also be easily minimized by using a non inertial modulator, such

as an Acousto-Optic De󰅮lector (AOD) or DMD.

6.3. DMD

Thus far we have examined three approaches to two-dimensional modulation based on the

spinning disk modulator. As has been show, the main limitation of the spinning disk approach

for two dimensional modulation is the requirement that one disk spins much faster than the

other, limiting the update rates that are achievable. In order to alleviate these issues, we look

to a modulator that does not depend on a rotating disk.

Using a 2D dimensional high-speed modulated optic, such as a DMD or an AOD. The DMD

is an array of small aluminum mirrors which are able to switch rapidly between two small

angular deviations. These mirrors are individually controllable, allowing the formation of

binary images. Such arrays are commonly used in digital movie projectors, and are 󰅮inding
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F󰀋󰀉󰀗󰀔󰀇 6.17. (a) Schematic of the DMD setup and (b) the DMD operation.

application inmicroscopy systems, such as confocal [54] and programmable arraymicroscopes

[55], as well as for structured illumination microscopy [56].

AOD sweep the beam path through an angular range proportional to the frequency of the

acoustic wave present. The different acoustic wave periods manifest as a time dependent

grating. 2D AOD systems exist, consisting of a pair of orthogonal one-dimensional AOD. The

crossed gratings of different periods can be analyzed in the same way as the dual disk case,

however the frequencies can be directly controlled, allowing the use of very high frequencies

and sources with very good frequency stability. Such systems are not subject to the environ-

mental perturbations of a mechanical modulator system. Such de󰅮lectors have been used in

previous microscopy systems, for example for rapid raster [57] and random-access scanning

[58].

We implement our 2D modulator using a DMD in an experimental setup shown in Fig.

6.17(a). The DMD is illuminated and the light re󰅮lected collected when the mirrors are in the

“on” state with a lens that images the DMD to the object plane. The light transmitted by the

object is collected with a condenser lens onto a single element detector. As each mirror of the

DMD is modulated at a unique frequency that corresponds to its location, the temporal signal

from the DMD is a sum of square waves each weighted by the object transmission function
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at that location. The object transmission function can then be recovered from the electronic

spectrum of the photodetector signal.

Theory. The DMD modulator divides the modulation plane into an array of pixels, with

𝑁𝑥 pixels of width 𝑤𝑥 in the 𝑥 direction and 𝑁𝑦 pixels of height 𝑤𝑦 in the 𝑦 dimension. The

pixel function, given by

𝑝(𝑥, 𝑦; 𝑛𝑥, 𝑛𝑦) = rect󰛂
𝑥 − 𝑛𝑥𝑤𝑥

𝑤𝑥

󰛃 rect󰛂
𝑦

𝑤𝑦

󰛃

will multiplied by the object contrast function, 𝑔(𝑥, 𝑦), and the two dimensional beam pro󰅮ile,

𝑢(𝑥, 𝑦) and spatially integrated on the single element detector. This then gives the weighting

function of the discrete frequencies in terms of pixel number as

𝐺(𝑛𝑥, 𝑛𝑦) = ∬
∞

−∞

𝑔(𝑥, 𝑦)𝑢(𝑥, 𝑦)𝑝(𝑥, 𝑦; 𝑛𝑥, 𝑛𝑦) d𝑥 d𝑦 (6.13)

Using a two dimensional modulation function that can directly modulate any spatial location

at any frequency (subject to limitations of the 2D modulator itself), we have a modulation

function that is not necessarily separable in 𝑥 and 𝑦, allowing 󰅮lexibility in the modulation

design. For simplicity, we choose a modulation that is a linear frequency ramp wrapped into

𝑁𝑥 columns and 𝑁𝑦 rows as shown in Fig. 6.18. This modulation function is given by

𝑀(𝑛𝑥, 𝑛𝑦, 𝑡) =
1

2
+
1

2
cos 󰕮2𝜋 󰕶(𝑛𝑦𝑁𝑥 + 𝑛𝑥)𝜅𝑝 + 𝜅0󰕺 𝑡󰕲 (6.14)

where 𝑛𝑥 and 𝑛𝑦 are the pixel indices, 𝜅0 is the frequency offset, and 𝜅𝑝 is the frequency slope

in Hz/pixel, analogous to 𝜅 in Hz/mm as de󰅮ined for the spinning disk modulator. If the pixels

are being grouped into super-pixels, the pixel width can simply be replaced by the effective
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pixel width 𝑤′
𝑥 = 𝑤𝑥𝑁

′
𝑥/𝑁𝑥, where 𝑁

′
𝑥 is the number of superpixels. The 𝑦 indices can be

determined in the same way. The temporal signal from the photo detector is then given as

the superposition of the frequencies from each pixel on the mask, Eq. 6.14, weighted by the

object transmission function and beam pro󰅮ile on each pixel, given by Eq. 6.13. Summing the

contributions from each pixel yields the total electric 󰅮ield

𝐸(𝑡) =

𝑁𝑥

󰗞

𝑛𝑥=0

𝑁𝑦

󰗞

𝑛𝑦=0

𝐸0𝐺(𝑛𝑥, 𝑛𝑦)𝑀(𝑛𝑥, 𝑛𝑦, 𝑡)

=
𝐸0

2

𝑁𝑥

󰗞

𝑛𝑥=0

𝑁𝑦

󰗞

𝑛𝑦=0

𝐺(𝑛𝑥, 𝑛𝑦) +
𝐸0

2

𝑁𝑥

󰗞

𝑛𝑥=0

𝑁𝑦

󰗞

𝑛𝑦=0

𝐺(𝑛𝑥, 𝑛𝑦) cos 󰕮2𝜋 󰕶(𝑛𝑦𝑁𝑥 + 𝑛𝑥)𝜅𝑝 + 𝜅0󰕺 𝑡󰕲

where 𝐸0 is the electric 󰅮ield amplitude. We’ll again consider only the fundamental, and neglect

the second harmonic. We’ll also de󰅮ine the “DC” component as 𝐼0 = 󰚼
𝐸0

2
∑
𝑁𝑥
𝑛𝑥=0

∑
𝑁𝑦
𝑛𝑦=0

𝐺(𝑛𝑥, 𝑛𝑦)󰚽
2

,

allowing us to write

𝐼(𝑡) ∝ 𝐼0 +󰖶𝐼0𝐸0

𝑁𝑥

󰗞

𝑛𝑥=0

𝑁𝑦

󰗞

𝑛𝑦=0

𝐺(𝑛𝑥, 𝑛𝑦) cos 󰕮2𝜋 󰕶(𝑛𝑦𝑁𝑥 + 𝑛𝑥)𝜅𝑝 + 𝜅0󰕺 𝑡󰕲 . (6.15)

Taking the Fourier transform of this temporal signal gives an electronic frequency spectrum

given by

𝐼(𝑓) ∝

𝑁𝑥

󰗞

𝑛𝑥=0

𝑁𝑦

󰗞

𝑛𝑦=0

𝐺(𝑛𝑥, 𝑛𝑦)𝛿 󰕮𝑓 − 󰕶(𝑛𝑦𝑁𝑥 + 𝑛𝑥)𝜅𝑝 + 𝜅0󰕺󰕲 (6.16)

which allows the recovery of the object contrast function 𝑔(𝑥, 𝑦) from Eq. 6.13.

The number of unique frequencies on the mask then is simply the total number of pixels,

assuming we are operating in the regime where the resolution is limited by pixel count. In

order to reach this limit, the modulation bandwidth of the DMD must support a number
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F󰀋󰀉󰀗󰀔󰀇 6.18. Diagram of the fundamental frequency distribution across the

DMD, left, and the corresponding frequency spectrum, right. While the mod-

ulator produces binary modulations, and thus will produce harmonics in the

electronic spectrum, only the fundamental frequency is shown. We are assum-

ing here that the harmonics caused by the binary modulation do not overlap

any of the fundamental frequencies.

of frequencies equal to the spatial resolution of the modulator. The frame rate, 𝑓𝐷𝑀𝐷, of

the modulator supports a maximum frequency of 𝑓𝑚𝑎𝑥 = 𝑓𝐷𝑀𝐷/2 per the Nyquist-Shannon

sampling theorem [59, 60]. The frequency step that will be resolvable is limited by the time

window of the modulator, as in the SPIFI case, to 𝛿f = 1/𝑡𝑟. Assuming that we want the

number of pixels in the 𝑥 and 𝑦 direction to be the same, we can then write the total number

of supported pixels, 𝑁px, as a function of these frequency parameters as

𝑁px =
𝑓𝑚𝑎𝑥

𝛿f
(6.17)

assuming that the entire electronic spectrum of the modulator is usable. The limiting factor

for our implementation is the binary nature of our modulator. In order to support high-speed

modulation, many available 2D modulators operate in a binary mode, which means that

our sinusoidal modulations will appear as square waves and not true sinusoids. This will

lead to harmonic content of low-frequency pixels corrupting higher frequency pixels if the
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T󰀃󰀄󰀎󰀇 6.1. Update rate and super-pixel resolution as a function of the number

of pixels from the modulator used in this work. The resolution stated is for

super-pixels distributed across the modulator, though this theory could be

applied to a small subset of the modulator at full device resolution. The dashed

line indicates resolutions not available on our device due tomemory limitations.

Number of Pixels Effective Resolution Update Rate

32x32 437.8 µm 146 ms

64x64 218.9 µm 585 ms

120x120 116.7 µm 2 s

256x256 54.72 µm 9.1 s

512x512 27.36 µm 37 s

1024x768 13.68 µm 112 s

frequencies are chosen to span more than an octave. To suppress this effect, we’ll choose

the highest octave range present in the modulators bandwidth, namely (𝑓𝑚𝑎𝑥/2, 𝑓𝑚𝑎𝑥]. The

number of supported pixels is then reduced by 2 from Eq. 6.17. Assuming wewant the number

of pixels in the 𝑥 and 𝑦 dimensions to be the same, we write

𝑁𝑥 = 𝑁𝑦 = 󰖹
𝑓𝑚𝑎𝑥

2𝛿f
(6.18)

While the time window of the modulator is not necessarily limited by the DMD, it is likely

limited practically either by the memory of the device or the desired update rate of the

experimental con󰅮iguration.

Results. We implement this setup using a Texas Instruments DMD with a resolution of

1024 x 768 (Extended Graphics Array (XGA)). The frame rate of this device is 22,727 Hz and

our evaluation board has 4 GB of memory allowing for storage of 43,690 images. The square

aluminum mirrors are 13.68 µm on a side and tilt by ±12° in response to the drive voltage.

The array measures 20.736 mm x 11.664 mm. Following Eq. 6.18, we can use a maximum of

Nx = Ny = 120 pixels (14400 total pixels). To accomplish this, we simply bin together groups

of pixels on the DMD to act to move together as superpixels allowing use to con󰅮irm the
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a b

F󰀋󰀉󰀗󰀔󰀇 6.19. Images of a USAF test pattern taken using the DMD device and a

single-element photodetector, for both (a) a 32×32 pixel grid and (b) a 20×20

pixel grid. The scale bar is 1 mm.

operation of this imaging technique using large superpixels. We could equivalently restrict

the illuminated region of the DMD to a 120 square pixel area and use the pixels individually.

The update rate for a variety of superpixel grids is given for this DMD in Table 6.1.

We illuminated the DMD using the same 405-nm CW laser as in section 6.2 with 30 mW

of power. The DMD is them imaged with a single 35 mm lens in a 4–𝑓 con󰅮iguration to the

object plane. The object used is an absorptive 1951 USAF resolution test target, line group -2

element 1. The lines in this group have a width of 2 mm. The target was rotated to show the

2D imaging capability of the system. The light transmitted by the target was collected using a

25 mm condenser lens and measured with a large-area photodiode (Thorlabs DET100A). The

photodiode signal was sampled using a digitizer board (National Instruments PCI-6110) at a

sample rate of 100 kHz, oversampling the DMD update frequency of 10 kHz. The target was

imaged using both a 32x32 and a 20x20 superpixel grid both of which used 10000 frames
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for a SPIFI frame rate and frequency resolution of 1 Hz. The resulting images are shown in

Fig. 6.19.

Discussion. While these images clearly demonstrate two dimensional imaging using a

DMD, the device is limited to a fairly small number of pixels due to the update rate of the device

demonstrated. However, these technologies may 󰅮ind application in spectral regions where

array detectors are not readily available or are cost prohibitive for large arrays. This system

could be used across a broad spectral range, limited by the responsivity of the single-element

detector and the re󰅮lectivity of the modulator. Our modulator is aluminum coated, which

allows operating with reasonable ef󰅮iciency out to 20 µm, so the 2D imaging system build here

and operated with blue light could, by appropriate choice of detector, operate with thousands

of pixels across the near-infrared and well in to the mid-infrared.

The number of pixels available can also be quite easily expanded. The limitation in this

work is based on the on-board memory of the DMD. If more memory were added, the number

of pixels could be expanded. In this work, the masks are all pre-loaded into a large memory

buffer and then displayed at high speed. As the masks are quite simple, one could image a

system which would create the modulation patterns on the 󰅮ly, displaying each shortly after it

was generated and disposing of it once it has been displayed. In this way, the limitation is

then not on-board memory, but rather on the desired frame rate of the setup. Alternately, if a

higher speed modulator were used, the number of pixels would correspondingly increased.

This would allow operation at larger pixel counts (up to the number of pixels on the device

itself) while using the same amount of memory.
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CHAPTER 7

C󰀑󰀊󰀇󰀔󰀇󰀐󰀖 H󰀑󰀎󰀑󰀉󰀔󰀃󰀒󰀊󰀋󰀅 I󰀏󰀃󰀉󰀋󰀐󰀉 󰀄󰀛 R󰀇󰀅󰀑󰀘󰀇󰀔󰀇󰀆 P󰀊󰀃󰀕󰀇 󰀈󰀔󰀑󰀏

E󰀏󰀋󰀕󰀕󰀋󰀑󰀐 D󰀋󰀕󰀖󰀔󰀋󰀄󰀗󰀖󰀋󰀑󰀐󰀕 (CHIRPED)

In the previous section, we looked at expanding the SPIFI line imaging system to two

dimensions, providing an 𝑥–𝑦 image using a single element detector. Here, we’ll also expand

the line image to two dimensions, this time in 𝑥–𝑧, so we’re able to simultaneously collect

information about the object contrast function along the line focus dimension 𝑥 and propaga-

tion phase information that gives the location of objects axial, along the beam propagation

direction. Axial phase information is of interested as, even for systems with good lateral

resolution, it can be challenging to get high axial resolution as the illumination beam has to

pass through the sample to reach the detector, and will excite 󰅮luorophores or be absorbed by

objects on either side of the focal plane. While this will still happen in this case, by encoding

axial position information through propagation phase (analogous to holography), we can

recover the location of objects along the propagation direction.

Holography encodes allows the capture of propagation phase through the interference

of the object 󰅮ield and a reference 󰅮ield, which produces a fringe pattern which encodes the

phase information and allows the 󰅮ield to be determined and propagated. This interference

requires that coherence be maintained between the object and the reference beams, limiting

its application to 󰅮luorescence emission as it lacks the requisite coherence. Attempts have been

made at holographic imaging using incoherent illumination sources dating back practically

to the invention of holography [61, 62]. These techniques involve imprinting a fresnel zone

plate-type structure on the illumination light, then recording the zone plates transmitted by
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the sample and using the recorded intensity to determine the distance from the sample to the

camera. Similar techniques have been used to image 󰅮luorescent objects more recently [63].

While such techniques allow for holographic processing of 󰅮luorescent data, they require the

user to project a Fresnel zone plate onto the sample and then raster scan the sample and

record the 󰅮luorescent emission. This scanning can be eliminated by using a Spatial Light

Modulator (SLM) and a CCD camera, as in [64]. In this case, the spatial light modulator is used

to diffract 󰅮luorescent light from an object into two beams, which interfere with each other

(as they are self-coherent) on a CCD camera. This method requires an SLM and a camera, and

the update rate of one frame per second is limiting in the ability to capture rapid biological

dynamics.

We introduce a method based on the SPIFI, called CHIRPED, that enables encoding of

spatial phase information on a 󰅮luorescent signal by transferring the burden of coherence

from the collection system to the illumination system. In a traditional holography system, the

sample is illuminated by a coherent source and the light is coherently scattered by a sample

and collected on a camera. A reference beam, which bypasses the sample, also illuminates the

camera. Since the light is coherent, the camera captures an interference pattern created by the

phase difference between the two 󰅮ields. Encoded in this phase difference is the distance of

the object that scattered the light from the camera. While the axial phase allows the location

of these scatterers to be determined, the axial resolution will still be limited by the geometry

of the experiment. As the conservation of momentum will require that the light is scattered

to a small set of spatial frequencies, the axial resolution will be limited. This limitation is

common to all types of holography, and can be remedied by making multiple measurements
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F󰀋󰀉󰀗󰀔󰀇 7.1. 𝐤 vector depiction of plane wave grating interaction.

at a variety of incident angles (relative to the sample) and combining them, a process called

diffraction tomography [65].

In CHIRPED, the phase information is encoded in by the sample as each point in the 𝑥–𝑧

plane experiences a unique temporal modulation, which encodes the position information

in the 󰅮luorescence emission that faithfully follows the illumination intensity (per Sec. 5.2).

The 󰅮luorescent signal from all parts of the object are then collected using a single element

detector, with the 󰅮luorescence intensity from each position in 𝑥–𝑧 space also occupying a

unique position in electronic frequency. The lateral position is encoded through frequency

and the axial position encoded through electronic phase. Mapping these electronic frequency

coordinates into spatial coordinates then allows the processing of these CHIRPED traces using

standard holography techniques.

7.1. Theory

The analysis of this system begins by considering a mask, of the same form as in the one

dimensional case (as shown in Fig. 5.3), illuminated by a plane wave travelling along the �̂�

direction and characterized by a wavevector 𝐤0 = 𝑘0�̂� with 𝑘0 = 2𝜋/𝜆. This wave is incident

upon the mask grating, as shown in Fig. 7.1, where it is diffracted to some angle 𝜃 with respect

to the optic axis. This diffracted vector can be written as the sum of its axial and transverse

components, 𝐤
′

0 = 𝐤⊥ + 𝐤𝑧, where 𝐤⊥ = 𝑘𝑥�̂� + 𝑘𝑦�̂� is the transverse k-vector. The axial

and transverse components of the diffracted wavevector can be written as projections of the
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incident vector

𝐤⊥ = 𝑘0 sin(𝜃)⊥̂

𝐤𝑧 = 𝑘0 cos(𝜃)�̂�

where the ⊥̂ is the grating direction. From geometry the axial k vector can also be written in

terms of the input k vector and the transverse k vector

𝐤𝑧 = 𝑘0󰖹1 −
󰘵𝐤(⊥,𝑗)󰘵

2

|𝐤0|
2 �̂�. (7.1)

Here the subscript 𝑗 has been introduced to signify the different k vectors corresponding to

different orders of the grating diffraction. As the diffraction angle is assumed to be small,

sin(𝜃) ≪ 1 (equivalent here to 󰘵𝐤(⊥,𝑗)󰘵 / 󰘵𝐤(𝑧,𝑗)󰘵 ≪ 1), allowing us to write the above as an

approximate

𝐤𝑧 ≈ 𝑘0 󰖀1 −
1

2

󰘵𝐤(⊥,𝑗)󰘵
2

|𝐤0|
2 󰖄 �̂�. (7.2)

The mask is then imaged to the object plane, where the magni󰅮ied version of the mask can be

written as

𝑀𝐤𝑧 ≈ 𝑘0 󰖀1 −
𝑀2

2

󰘵𝐤(⊥,𝑗)󰘵
2

|𝐤0|
2 󰖄 �̂� (7.3)

with magni󰅮ication𝑀. Considering the modulator as a time varying diffraction grating, we

can write the diffraction angle as sin(𝜃) = 𝑗𝜆/𝑑 where 𝑑 is the period of the grating and 𝜆 is

the wavelength of the illuminating light. For our radially-dependent cosine mask, this grating

period is time dependant and given by 𝑑 = (𝜅𝑡)−1. This gives the transverse k vector as

𝐤(⊥,𝑗) = 2𝜋𝑗𝜅𝑡⊥̂. (7.4)
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Considering the mask used our imaging system, which is aligned such that the beam is

focused to a thin line in 𝑥, with the modulator placed such that �̂� and ⊥̂ are collinear. The

modulator is de󰅮ined by

𝑚(𝑟, 𝜃) = 1/2 + 1/2 cos(Δ𝑘𝑟𝜃) (7.5)

The local spatial frequencies of this mask can then be found using the relations [42]

𝑘𝑥 =
1

2𝜋

𝜕

𝜕𝑥
= cos 𝜃

𝜕

𝜕𝑟
−
1

𝑟

𝜕

𝜕𝜃
(7.6)

𝑘𝑦 =
1

2𝜋

𝜕

𝜕𝑦
= cos 𝜃

𝜕

𝜕𝑟
−
1

𝑟

𝜕

𝜕𝜃
(7.7)

which gives the spatial frequencies in the 𝑥 and 𝑦 directions for a modulation mask in 𝑥 as

𝑘(𝑥,𝑗) = 2𝜋𝑗Δ𝑘x𝑓𝑟𝑡

𝑘(𝑦,𝑗) = Δ𝑘y.

This allows us to write the perpendicular component as 𝐤(⊥,𝑗) = 𝑘(𝑥,𝑗)�̂� + 𝑘(𝑦,𝑗)�̂�. The 󰅮ield of

each diffracted beam 𝑗 can be written in terms of 𝐤, as

𝐸𝑗(𝐫) = 𝑎𝑗 exp 󰕾𝚤𝑀𝐤(⊥,𝑗) ⋅ 𝐫⊥󰖂 exp 󰛄𝚤𝑘0𝑧 󰛂1 −
𝑀2

2

𝑘2(⊥,𝑗)

𝑘20
󰛃󰛅 (7.8)

which in terms of mask parameters is given by

𝐸𝑗(𝐫, 𝑡) = 𝑎𝑗 exp [𝚤𝑀 (2𝜋𝑗𝜅𝑡𝑥 + Δ𝑘𝑦)] exp 󰛄𝚤𝑘0𝑧 󰛂1 −
𝑀2

2

(2𝜋𝑗𝜅𝑡)2 + Δ𝑘2y

𝑘20
󰛃󰛅 (7.9)

The total 󰅮ield is then just given by the sum over all ±𝑗 gratings that can be collected by the

imaging system. As there is diffraction in both 𝑥 and 𝑦, we can use the fact that the positive and
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negative sidebands are diffracted in opposite directions to easily block the negative sideband.

By limiting our collection to only the zero and positive 󰅮irst diffracted order, we can write the

󰅮ield as

𝐸(𝐫, 𝑡) =
1

2
exp (𝚤𝑘0𝑧) +

1

4
exp 󰕶𝚤𝑀 󰕾2𝜋𝜅𝑡𝑥 + Δ𝑘y𝑦󰖂󰕺

× exp 󰛄𝚤𝑘0𝑧 󰛂1 −
𝑀2

2

(2𝜋𝜅𝑡)2 + Δ𝑘2y

𝑘20
󰛃󰛅

If we collect this 󰅮ield using a lens which has been displaced slightly in �̂�, we can effectively

remove the diffraction in 𝑦, allowing us to let Δ𝑘y → 0 and write the intensity as only a function

of 𝑥 and 𝑧 as

𝐼(𝑥, 𝑧, 𝑡) =
5

16
+
1

4
cos 󰕶2𝜋 (𝑀𝜅𝑡) 𝑥 − 𝜋𝜆 (𝑀𝜅𝑡)

2
𝑧󰕺 . (7.10)

Illuminating an object with contrast function 𝑔(𝑥, 𝑦) with this intensity and integrating on a

single element detector we can write the temporal signal as

𝑆(𝑡) = 𝑆0 + 𝑆1(𝑡)

= 𝑆0 +
1

4
∬

∞

−∞

cos 󰕶2𝜋 (𝑀𝜅𝑡) 𝑥 − 𝜋𝜆 (𝑀𝜅𝑡)
2
𝑧󰕺 𝑔(𝑥, 𝑧) d𝑥d𝑧 (7.11)

The signal, given by Eq. 7.11, is shown in Fig. 7.2(a) as a function of 𝑥 and 𝑧 for a few different

times. The modulated intensity of a gaussian beam is plotted in Fig. 7.2(b) for several values

of defocus, indicated by dots in Fig. 7.2(a). The instantaneous frequency of the modulation

is shown for the same defocus values in Fig. 7.2(c). Selecting a single sideband transforms

Eq. 7.11 simply into

𝑆1+(𝑡) ∝ 𝑒𝚤2𝜋𝑀𝜅𝑥0𝑡∬
∞

−∞

𝑒𝚤2𝜋𝑀𝜅𝑥𝑡𝑒−𝚤𝜋𝜆(𝑀𝜅𝑡)
2
(𝑧−𝑧0)𝑔(𝑥, 𝑧) d𝑥d𝑧. (7.12)
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F󰀋󰀉󰀗󰀔󰀇 7.2. Spatial intensity modulation patterns over the rotation time are

unique for all points in the 𝑥–𝑧 plane. (a) Illumination intensity patterns for

several time instances during the time window of the modulator, T. (b) Illumi-

nation intensities and (c) instantaneous frequencies at three points with the

same lateral shift but varying magnitude and sign of defocus. (d) Amplitude of

the photodetector signal, 𝑆1+(𝑡). (e) Amplitude and phase of the lateral spatial

frequencies calculated from (d). (f) Amplitude and phase for each emitter in

real space. From [66]

Where the 𝑥 and 𝑧 coordinates have been shifted to the beam center 𝑥0 and focal plane 𝑧0.

Equation 7.12 plotted for positive, negative, and no defocus is shown in Fig. 7.2(d). Making
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F󰀋󰀉󰀗󰀔󰀇 7.3. Diagram of the 𝑥 and 𝑦 diffraction and corresponding 󰅮iltering.

Multiple spots shown in the diffracted beams depict the scanning of diffracted

beams laterally over the rotation of the modulator. The aperture, shown in gray,

blocks the negative beam and the objective aperture, seen through the slit, is

centered in the slit such that the 𝑦 shear is eliminated.

the substitution from time to spatial frequency, 𝑡 → 𝑓𝑥/(𝑀𝜅), we can write

𝑆1+(𝑓𝑥/(𝑀𝜅)) ∝ 𝑒𝚤2𝜋𝑓𝑥𝑥0 󰗂
∞

−∞

𝑒−𝚤𝜋𝜆(𝑀𝜅𝑡)
2
(𝑧−𝑧0)𝐺(𝑓𝑥, 𝑧) d𝑧. (7.13)

where 𝐺(𝑓𝑥, 𝑧) is the spatial Fourier transform in 𝑥. The amplitude and phase of the spatial

frequencies are plotted in Fig. 7.2(e). Fourier transforming the temporal data gives back

spatial information, shown in Fig. 7.2(f) for each defocus value.

7.2. Methods

The test setup for this experiment is a modi󰅮ication of the standard SPIFI setup (Fig. 5.1),

where the previously discussed slit is inserted in an intermediate plane between the modu-

lation plane and the sample plane and transmits only the positive sideband, as depicted in

Fig. 7.3. The illumination source was a 532 nm diode pumped solid state continuous-wave

laser with 200 mW average power (Changchun New Industries Optoelectronics Technology

Co., Ltd., MGL-III-532).

The beam was spatially 󰅮iltered with a 10x/0.25 NA objective lens (Zeiss A-Plan UIS) and

a 10-µm pinhole before being collimated to a with of ∼8.5 mm 1/𝑒2 width an 80-mm focal

length achromatic lens. The beam was then focused to a ∼26 µm line in the mask plane using
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a 300-mm focal length cylindrical lens. After passing through the modulator, the modulated

line focused beam was re-imaged and demagni󰅮ied with a 250-mm tube lens and a 10x/0.25

NA objective (Zeiss A-Plan UIS), which resulted in a magni󰅮ication of 15.2.

An adjustable slit was placed in the focal plane between the tube lens and the objective,

adjusted to block the negative diffracted order from the mask, as shown in Fig. 7.3. The

󰅮luorescent light was measured with a photomultiplier tube (Hamamatsu H9305-03). The

current from the Photomultiplier Tube (PMT) was ampli󰅮ied and bandpass 󰅮iltered (3 kHz–100

kHz) by a current pre-ampli󰅮ier (Stanford Research Systems, SR570). Ampli󰅮ied and 󰅮iltered

signals were digitized with a data acquisition card (National Instruments PCI-6110).

To test the phase recovery, we imaged a single 󰅮luorescent sphere as we scanned it along

the axis using a translation stage. Lateral images were taken at each axial position, and the

stage position recorded. Having mapped out the amplitude of the signal in both 𝑥 and 𝑧, we

then select a single trace, taken at some position in 𝑧, and use this single trace to recover the

amplitude and phase information using a standard Fresnel propagator for all other positions

in 𝑥 and 𝑧. This data is shown in Fig. 7.4, in which we can see excellent agreement between

the measured and recovered images. To further show the dependence on the recovered

propagation phase, we also propagate the amplitude from the same line out in 𝑧 without the

use of the propagation phase. This propagation deviates signi󰅮icantly from the measured data,

demonstrating the accurate recovery of the propagation phase.

We then imaged multiple objects, distributed in both 𝑥 and 𝑧. Two prepared slides of

󰅮luorescent spheres (LifeTechnologies, Focal Check Slides), stacked atop one another (and

thus separated by their 1 mm thickness), and a set of lateral images were taken as a function

of defocus by translating the slides along the optical axis and measuring a set of traces. A
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F󰀋󰀉󰀗󰀔󰀇 7.4. Amplitude and phase reconstruction of a 󰅮luorescent polystyrene

bead (a) measured as a function of defocus and calculated by Fresnel propaga-

tion of the temporal data corresponding to the line in (a), both with (b) and

without (c) using the recovered phase. The recovered phase corresponding

to (a-c) is shown in panels (d-f). The digitally refocused image has an overall

energy vs. defocus that is greater than the measured data. We attribute this to

the 󰅮inite depth of 󰅮ield of the measurement, which is not accounted for in the

computed image.
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F󰀋󰀉󰀗󰀔󰀇 7.5. Image of a group of small beads axially separated from a group of

large beads by 1 mm. These images were taken by (a) scanning the sample

axially, then taking a single line image from the scan and (b) propagating it

through the scan range.

single lateral trace is then extracted from the scan and propagated to each defocus position.

Comparison of the propagated and translated traces, which are shown in Fig. 7.5, are in good

agreement, demonstrating the captured phase information. As expected the axial extent of

the object appears much longer that the lateral, demonstrating the expected limited axial

resolution.
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CHAPTER 8

F󰀗󰀖󰀗󰀔󰀇 W󰀑󰀔󰀍

In this work, we’ve demonstrated new avenues for Raman detection by converting small

frequency shifts born of the interaction of short probe pulse with the transient index of

refraction created by impulsive interaction of a pump pulse with a Raman-active material into

time delays using dispersion of a material. Also demonstrated were a series of single-pixel

imaging techniques applied to one dimensional line imaging, two dimensional 𝑥–𝑦 imaging,

and two dimensional 𝑥–𝑧 imaging.

The groundwork has been laid here for signi󰅮icant improvement in Raman sensitivity.

The sensitivity in this work was limited by excess noise in locking electronics used to make

the phase measurements, as well as the 1/𝑓 noise of the VCO themselves. To improve upon

this sensitivity, we can press in two directions: improvement of the locking electronics and

moving to higher modulation frequencies. Using a higher modulation frequency is the most

straightforwardway to improve the sensitivity. Evenwith the VCOwe currently have, the phase

noise is lower by 20 dB if we move from a modulation frequency of 100 kHz to a modulation

frequency of 1 MHz. To ensure we can reach these low phase noise levels, we’ll require

improved locking electronics. We’ll also need to ensure that the power level is suf󰅮icient to be

in a regime where the noise 󰅮loor will be limited by the VCO and not by shot noise.

To keep our power high, we must eliminate as many sources of loss as possible. Currently,

the main sources of power loss in our probe measurement system are the amplitude modu-

lators and the long 󰅮iber. The amplitude modulators have a loss of about 5 dB. These could

be replaced with lower loss models, as 3 dB insertion loss modulators are widely available

at a premium price. We could lower the 󰅮iber loss by either using a 󰅮iber with lower loss
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per kilometer, or by using less 󰅮iber. As reducing the loss of the 󰅮iber is not feasible (most

reasonable 󰅮ibers have similar losses), we must look at reducing 󰅮iber length. Such length

reductions will necessarily decrease the applied dispersion, and thus reduce the change in

time delay for a given frequency shift. To compensate for this loss in timing, we can measure

the signal as a function of a higher harmonic of the repetition rate, such that the time delay is

divided a factor of 𝑁 but the frequency is multiplied by the same factor, keeping the phase

to be measured constant. In this way, we should be able to employ shorter 󰅮ibers without a

loss of sensitivity. This scheme may also have the added bene󰅮it of lower noise, as we may be

picking up noise from 󰅮luctuations in such a long 󰅮iber.

Future work in the SPIFI experiments is also plentiful, as many applications shown here

are the 󰅮irst demonstrations of the technology, and many re󰅮inements are possible. The SPIFI

spectrometer has taken only preliminary data, and many exciting MIR spectral measurements

are waiting to be made with the next generation instrument, which will feature a larger

bandwidth made possible by the construction of a larger modulator. The application of the

modulated spectrum to a hyperspectral measurement is another exciting avenue ready to be

explored. Experiments are ongoing in both of these areas.

Two dimensional SPIFI has been demonstrated showing 𝑥–𝑦 and 𝑥–𝑧 imaging. A simple

modi󰅮ication of the dual-disk 𝑥–𝑦 SPIFI system will be built to take advantage of some of

the novel reconstruction methods described in this document, allowing higher frame rates

and increased resolution. To further increase speed, a next generation system could be built

using a disk to modulate in one dimension and an AOD in the other dimension, potentially

allowing the slower disk to be run at several hundred hertz due to the very high bandwidth

of AOD. Such a system could also be implemented using a two dimensional AOD, which would

113



not require any spinning disks, eliminating a potential source of error. This 2D system could

also be improve with more sophisticated reconstruction algorithms, relaxing the spin rate

requirement and adding 󰅮lexibility to the optical setup at the cost of more advanced processing.

Further improvements on the CHIRPED imaging system could bemade by increasing speed

using a modulator disk printed with multiple masks per disk, relaxing the speed constraint

imposed by themotor. A galvonometer could be used to rapidly scan in the alternate dimension,

allowing for three dimensional scans to be completed on a time scale limited by the spinning

disk. Three dimensional imaging could also be achieved by combining both two-dimensional

SPIFI techniques to yield full three dimensional information using a single detector, without

need for scanning. Axial resolution can also be enhanced by building diffraction tomography

in to the CHIRPED setup.

Finally, the DMD could be readily applied to mid-infrared wavelength, which could readily

bene󰅮it from even the 1000 pixel arrays demonstrated here. Moving to a larger number

of pixels would require longer acquisition times, given the limited update rate of the DMD.

We are currently limited in time duration by on-board memory, as we are generating the

masks of󰅮line, loading them into memory, and the Field-Programmable Gate Array (FPGA)

that controls the DMD then displays the images one at a time. As the calculation of the masks

is quite simple, it may be reasonable to program the FPGA to generate the masks on the 󰅮ly,

just before they are displayed. This would allow the acquisition time to be made arbitrarily

long, limited only by the patience of the experimenter.
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APPENDIX A

C󰀃󰀔󰀄󰀑󰀐 T󰀇󰀖󰀔󰀃󰀅󰀊󰀎󰀑󰀔󰀋󰀆󰀇 C󰀑󰀐󰀅󰀇󰀐󰀖󰀔󰀃󰀖󰀋󰀑󰀐

As an example of the conversion of Raman excitation into frequency shift, we’ll use Carbon

Tetrachloride (CCl4), as it has well know modes and absolute cross sections. Starting with the

expression for the amplitude of the sinusoidal modulation given in Eq. 2.4,

𝛿𝜙0 =
𝜔ℓ

2𝑛𝑐

𝑁

𝜀0
(𝛼′)2

1

Ω𝑣

|𝐷 (Ω𝑣)| . (A.1)

We begin by making the substitution to convert from the differential polarizability, 𝛼′ to the

differential Raman cross-section,
𝜕𝜎

𝜕Ω
, from [1]
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(A.2)

where �̃� and �̃�𝑄 are the frequencies of the incident light and the vibrational mode in wavenum-

bers, respectively, 𝑐 is the speed of light, 𝜀0 is the permittivity of free space, ℎ is Planck’s

constant, 𝑘𝐵 is Boltzmann’s constant, 𝑇 is temperature, and 𝛼′ and 𝛾′ are the isotropic and

anisotropic polarizability derivatives.

As Carbon Tetrachloride is isotropic [2], the anisotropic term goes to zero, 𝛾′ = 0. The

temperature dependance will be dropped, as it is negligible near room temperature. We’ll

also convert the frequencies from wavenumbers to angular frequency and format the notation

to be consistent with the Eq. A.1.

𝜕𝜎

𝜕Ω
=

ℏ

32𝜀20𝑐
4𝜋2Ω𝑣

(𝜔 − Ω𝑣)
4
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2
. (A.3)
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Solving this equation for |𝛼′|
2
and substituting into Eq. A.1, we get 𝛿𝜙0 in terms of

𝜕𝜎

𝜕Ω
,

𝛿𝜙0 = 𝜔ℓ
16𝑁𝜀0𝑐

3𝜋2

𝑛ℏ (𝜔 − Ω𝑣)
4
|𝐷 (Ω𝑣)| . (A.4)

The 󰅮inal necessary variable is the autocorrelation 𝐷(Ω𝑣). To calculate this, we’ll consider a

Gaussian temporal pulse

𝐸(𝑡) = 𝐸0 exp (𝑎𝑡
2) (A.5)

where 𝑎 = 2 log(2)/𝜏2𝑝 and 𝜏𝑝 is the transform limited pulse duration full-width at half max.

The spectrum is then given as

𝐸(𝜔) =
𝐸0

√2𝑎
exp 󰛂

𝜔2

4𝑎
󰛃 (A.6)

From the de󰅮inition of 𝐷(Ω𝑣) we write the autocorrelation as

󰘵𝐷(Ω𝑣)󰘵 = 󰗂
∞

−∞

𝐸(𝜔)𝐸∗(𝜔 − Ω𝑣)d𝜔

=
𝐸2
0𝜏

8 log(2)
󰖹
log(16)

𝜋
exp 󰛂−

𝜏2𝑝Ω
2
𝑣

16 log(2)
󰛃

From the temporal intensity, we can calculate the 󰅮luence of the pulse

𝑈 = 󰗂
∞
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F󰀋󰀉󰀗󰀔󰀇 A.1. Frequency shift as a function of molar concentration of CCl4.

Assuming a uniform circular beam, we can write the area of the beam in terms of the width

parameter 𝑤 simply as 𝐴 = 𝜋𝑤2. We can then write the 󰅮luence in terms of the pulse energy

ℰ and solve for 𝐸2
0 , bringing us 󰅮inally to

󰘵𝐷(Ω𝑣)󰘵 =
ℰ
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1
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2
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which allows us to write the differential phase as

𝛿𝜙0 =
ℰ

𝑤2
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ℏ𝑛2(𝜔 − Ω𝑣)
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󰛃 . (A.7)

To get an idea of the magnitude of the frequency shift, we’ll calculated the expected shifts

in terms of the laser parameters used in this work. The differential scattering cross section of

pure CCl4 is 5.6×10
−35 m2 and its molar concentration is 10.3 mol/L. Illuminating it with a

Ti:Sapphire laser with a center wavelength 𝜆 = 800 nm, with a pulse duration 𝜏 = 15 fs, and
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a pulse energy of ℰ = 1 nJ. The beam is focus with a 0.95 NA objective, which was used to

calculate the focal volume following [3]. These parameters give a frequency shift of 61 GHz

for neat CCl4. Varying the molar concentration allows us to see how concentration maps to

frequency shift, as shown in Fig. A.1.
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APPENDIX B

A󰀎󰀎󰀃󰀐 V󰀃󰀔󰀋󰀃󰀐󰀅󰀇 󰀖󰀑 P󰀊󰀃󰀕󰀇 N󰀑󰀋󰀕󰀇

Allan variance, typically written as 𝜎2
𝑦 (𝜏), is a time-domain measure of the frequency

stability of a clock. In this measurement, the average fractional frequency �̄�𝑛 of a clock is mea-

sured over some time period 𝜏, where 𝑛 is the measurement number [4]. The Allan variance

is then calculated from the square of the difference between two adjacent measurements,

𝜎2
𝑦 (𝜏) =

1

2
⟨(�̄�𝑛+1 − �̄�𝑛)

2
⟩ (B.1)

where the angle braces, ⟨⟩, indicate the expectation value of the measurement. The 𝜏 depen-

dence here shows that the value of the Allan variance changes with the observation time, and

thus Allan variance is often plotted as a function of 𝜏. The type of noise can then be estimated

from this plot by looking at the dependence of the variance on 𝜏.

In this work, we’ve previously characterized our measurement system in terms of phase

noise. As both the time-domain Allan variance and the frequency-domain phase noise express

the stability of frequency sources, the value of one metric can be determined from the other

[5]. For an oscillator dominated by white phase noise, the Allan variance can be converted to

the single-sideband phase noise using the relation

𝑆𝜙(𝑓) =
4𝜋2

3𝑓𝐵
𝜏2𝜎2

𝑦 (𝜏)𝑓
2 (B.2)

where 𝜎2
𝑦 (𝜏) is the Allan variance for a nominal frequency 𝑓, 𝜏 is again the sample separation,

and 𝑓𝐵 is the measurement bandwidth.
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Amplitude noise measured on the photodiode will manifest as white phase noise in the

photodiode pulse train. In the shot noise limit of the photodetector, the Allan variance of the

recovered RF signal is [6]

𝜎𝑦(𝜏) ≈
1

2𝜋𝜏𝑚𝑓𝑟
󰖹
3𝑃shot

𝑃signal

(B.3)

where the approximate relation indicates this contribution is assumed to be white phase

noise. In this equation, 𝑃signal is the power of the microwave signal from the photodiode at

the desired harmonic 𝑚 of the repetition rate frequency 𝑚𝑓𝑟 and 𝑃shot = 2𝑞𝑓𝐵𝑅𝑝𝑃𝑑𝑅 is the

shot-noise power of the incident light on the photodiode, where 𝑞 is the electron charge, 𝑅𝑝

is the photodiode responsivity, 𝑃𝑑 is the average power incident on the photodiode, and 𝑅 is

the load impedance. The sample separation in the Allan variance is again 𝜏.

As Eq. B.3 has already been assumed to be only white phase noise, we can use Eq. B.2 to

convert the Allan variance given in Eq. B.3 to phase noise, yielding

𝑆𝜙(𝑓) =
𝑃shot

𝑃signal𝑓𝐵
(B.4)

where 𝑃signal and 𝑃shot are as above, and 𝑓𝐵 is the measurement bandwidth.
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APPENDIX C

P󰀊󰀃󰀕󰀇 M󰀇󰀃󰀕󰀗󰀔󰀇󰀏󰀇󰀐󰀖

Measurement of frequency 󰅮luctuations are made by measuring the oscillator under test

against a reference oscillator using a phase sensitive detector. The detector converts the

phase 󰅮luctuations into a voltage which can be easily recorded. As the time delay of the pulse

through the optical 󰅮iber changes, the phase of the repetition rate frequency measured at

the photodetector will also change. The magnitude of this phase change is related to the

magnitude of the frequency shift, which is the desired measurement quantity.

We’ll modulate the experimentally produced delay signal, giving rise to an RF phase change

which varies with time. This variation in RF phase will manifest as a peak in the spectrum at

a small offset from the carrier frequency, which will be easier to measure accurately than a

direct phase measurement. The measurement accuracy as a function of the offset frequency

is ultimately limited by the phase noise at that offset, which is to say that the measurement

of the induced timing signal can be no smaller than the intrinsic jitter of the system. Thus,

we’re interested in the measurement not only of the signal of interest, but also the noise

characteristics of both the optical system and the associated measurement electronics for

offsets near the carrier frequency.

All frequency sources exhibit some 󰅮luctuation in frequency over some period of time.

This instability in an assumed pure frequency can be characterized by the phase noise of the

oscillator in the frequency domain [7] or by the Allan variance [4] in the time domain. For a

pure sinusoidal signal 𝑆(𝑡) = sin (2𝜋𝜈𝑡) corrupted by a random time-dependant phase Δ𝜙(𝑡),

we can write the phase argument as Φ = 2𝜋𝜈𝑡 + 𝛿𝜙(𝑡). The phase noise of this oscillator can
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then be written in terms of the single-sided spectral density as

𝑆Δ𝜑(𝑓) =
Δ𝜑2

rms

𝑓BW
(C.1)

where 𝑓 is the positive frequency offset from the carrier frequency 𝜈 and 𝑓BW is the bandwidth

used in the measurement of Δ𝜑rms. The units of this measure are
rad.

2

Hz
. Another common

de󰅮inition of phase noise is given as the ratio of the one-sided power spectral density of the

oscillator to the oscillator power. This is often denoted ℒ(𝑓), where 𝑓 is again the offset

frequency, and for small phase deviations can be approximated [7] as

ℒ(𝑓) =
𝑃SSB

𝑃S

≈
1

2
𝑆Δ𝜑(𝑓). (C.2)

ℒ(𝑓) is typically expressed in units of dBc/Hz, decibels relative to the carrier per Hz.

This power measurement can be easily made directly using a spectrum analyzer by con-

necting the device to be measured to the analyzer and measuring the single-sideband power

spectral density of the device. This can then be scaled by the oscillator power to yield a

measure of ℒ(𝑓). While this measurement is simple to make, it is limited in sensitivity for two

reasons: 󰅮irst, the phase noise of the device to be measured needs to signi󰅮icantly less than

the phase noise of the spectrum analyzer, as the measured value will be the sum of the two

noise contributions. Second, amplitude noise on the device under test and spurious signals

will also be seen by the spectrum analyser, further corrupting the measured phase noise.

To measure oscillators with noise levels below or near the level of the spectrum analyzer,

a more sophisticated measurement setup must be used. This method measures the test

oscillator again against a reference oscillator, as in the case of the spectrum analyzer, and

like the analyzer, requires the phase noise of the reference oscillator to be below or at the
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F󰀋󰀉󰀗󰀔󰀇 C.1. Phase noise measurement block diagram.

noise level of the device under test at the offset of interest. The relative phase of the device

under test is measured against the reference oscillator using a double balanced mixer, as

shown in the block diagram in Fig. C.1. The mixer produces frequencies at the sum and

difference of the two input frequencies, so when the reference and test oscillator have the

same nominal frequency, the signal produced by the mixer has components near DC and near

twice the oscillator frequency. A low pass 󰅮ilter is employed to give only the DC-centered phase

signal. To ensure cancelation of the carrier, the oscillator must be held in quadrature with

the reference oscillator. This may be accomplished without active feedback for very stable

oscillators and/or short time scales, but to ensure quadrature we will employ a feedback loop

to allow the reference oscillator to track the test oscillator.

With ℒ(𝑓) as the oscillator phase noise in dBc/Hz, and assuming an oscillator power of

𝑃RF (in dBm), then the noise power in a 1 Hz band can be given by 𝑃SB(𝑓) = 𝑆(𝑓) + 𝑃RF +𝐾𝑚,

where the noise 󰅮igure of the mixer (used here as a phase detector) is approximated by the

conversion loss and added on as well. Assuming that the noise PSD is relatively 󰅮lat over some

reasonable 󰅮ilter bandwidth, we can calculate the noise power through the 󰅮ilter by

𝑁𝑃 = 󰗂
𝑓2

𝑓1

𝑃SB(𝑓) d𝑓 = 𝑃SB󰗂
𝑓2

𝑓1

d𝑓 = 𝑃SBΔf (C.3)

131



where the power is expressed in dBm. Converting noise power to signal,

𝑁𝑆 = 󰖹
10𝑁𝑃/10

1000
50 (C.4)

where 𝑁𝑠 is now in V (assuming a 50 Ω system). This voltage is related to phase through the

mixer parameters. We’re using a diode-based double balanced mixer, which we require the

local oscillator saturate, and thus generate some harmonics. Following the notation from [8],

which accounts for in󰅮inite harmonics, the temporal signal of the local oscillator is given by

𝑉LO(𝑡) = 2

∞

󰗞

𝑛=1

sin(𝑛𝜋/2)

𝑛𝜋/2
cos (𝑛𝜔LO𝑡 + 𝜙LO) (C.5)

The intermediate frequencies are generated by the product of the RF and local oscillator

(LO) signals,

𝑉IF(𝑡) = 𝑉RF cos (𝑡𝜔RF + 𝜙RF) 𝑉LO(𝑡)

= 2𝑉RF cos (𝑡𝜔RF + 𝜙RF)

∞

󰗞

𝑛=1

sin(𝑛𝜋/2) cos (𝑛𝑡𝜔LO + 𝜙LO)

𝑛𝜋/2

≈ 2𝑉RF cos (𝑡𝜔RF + 𝜙RF)
sin(𝜋/2) cos (𝑡𝜔LO + 𝜙LO)

𝜋/2

where we’re now considering only the 󰅮irst term (which we can easily separate by 󰅮iltering)

2

𝜋
[cos (𝜙LO − 𝜙RF + 𝑡𝜔LO − 𝑡𝜔RF) 𝑉RF + cos (𝜙LO + 𝜙RF + 𝑡𝜔LO + 𝑡𝜔RF) 𝑉RF] . (C.6)
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After low-pass 󰅮iltering, the intermediate frequency (IF) is just the RF voltage times the

conversion loss,
2

𝜋
≈ −3.92dB, leading to

𝑉IF(𝑡) =
2

𝜋
𝑉RF cos [𝑡 (𝜔LO − 𝜔RF) + (𝜙LO − 𝜙RF)] . (C.7)

As a phase detector, the voltage/phase slope is given by the derivative of this signal (now with

respect to phase), where Δ𝜙 = 𝜙LO −𝜙RF and the more general conversion loss term, 𝐾𝑚, has

been introduced. For degenerate frequencies in quadrature, this can be generally given as

𝑉IF = −𝐾𝑚𝑉RF (C.8)

in units of V/radian.

The noise sensitivity of themeasurement systemwill be limited by noise from themixer, the

ampli󰅮ier, and the digitizer. Each components effects the noise level in a rather straightforward

way. First the choice of mixer impacts not only the conversion loss of mixer, but also the

level (the RF power at which the mixer operates) of the mixer is important. The higher the

level of the mixer, the larger the phase to voltage slope will be. The excess conversion loss

of the mixer should also be minimized. In this work, we employ a level 7 (Local Oscillator

(LO) Power +7 dBm) mixer with a maximum conversion loss of 7 dB for oscillators up to

50 MHz. Noise from the ampli󰅮ier used to increase the signal level of the 󰅮iltered mixer signal

will also limit the noise performance of the system. The ampli󰅮ier in this work was an SRS

SR560 voltage preampli󰅮ier with the gain set to 1000 V/V, a 1 MHz bandwidth, and noise of

4 nV/√Hz.

The measured voltage signal is just given 𝛿𝑣 = 1/2𝑉𝛿𝜑, where 𝑉 is the conversion factor of

the mixer from radians to volts. This conversion factor, which is a function of the RF power and
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the mixer loss, can be easily measured by tuning the reference oscillator to a frequency very

close to the test oscillator and viewing the mixer output on an oscilloscope. The peak-to-peak

voltage can then be read off the scope. Once the locking loop is engaged, and the oscillators

held at the same frequency in quadrature, the slope will be the same and any (small) phase

󰅮luctuations will be converted to voltage through that simple linear relationship. Measuring

the power spectrum of 𝛿𝑣, and measuring the root mean square of the conversion factor as

described above, we can then write [7]

ℒ(𝑓) = 20 log
10
(𝛿𝑣rms) − 20 log

10
(𝑉rms) − 10 log

10
(𝑓BW) − 6. (C.9)

The 󰅮inal piece of the measurement is the locking loop. The reference oscillator frequency

must track the frequency of the test oscillator, requiring the two to be locked together. However,

the locking loop will compensate for phase noise within its bandwidth, so the bandwidth of

the locking loop must be kept smaller than the smallest frequency offset at which a phase

noise measurement is desired.

C.1. Measurement of Phase Noise

Practical considerations complicate the seemingly straightforward measurement of phase

noise levels. Each component will impact the noise measurement, introducing noise and

distorting the noise spectrum. As the noise measured will be the total noise added by all

components, we must measure the noise from each component carefully to ensure that

the noise measured is dominated by the noise of the target system, and not simply by the

measurement system itself.
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To measure the noise added by each component in turn, we start by measuring the noise

󰅮loor of the component at the end of the chain and adding the other components back in

until the full measurement is being made. To start, we terminate the input of the digitizer

and measure the noise 󰅮loor from the digitizer. Then, the input is connected to the output

of the low noise ampli󰅮ier, with the ampli󰅮ier input terminated, and measure the noise 󰅮loor

of the ampli󰅮ier and digitizer (making a separate record at each relevant gain setting for

the variable-gain ampli󰅮ier). This value can be compared to the stated noise value from the

ampli󰅮ier manufacturer to ensure that the ampli󰅮ier is performing within speci󰅮ication.

Then the input of the ampli󰅮ier is connected to the mixer output, with both mixer inputs

terminated. This measurement, through the ampli󰅮ier, should give the thermal noise of the

mixer components along with the noise introduced by the ampli󰅮ier. This noise 󰅮loor should

be 󰅮lat, with a value of thermal noise (-174 dBc/Hz for a 0 dBm signal) plus the noise 󰅮igure of

the ampli󰅮ier.

We then introduce the reference oscillator, connecting the reference oscillator output

to both the LO and RF ports of the mixer, choosing cable lengths to ensure the signals are

in quadrature. The control voltage of the reference oscillator can be adjusted to tune the

reference frequency and correct for slight mismatch in cable length, allowing quadrature to

be easily found. This con󰅮iguration allows the measurement of residual amplitude noise from

the oscillator, as the phase noise should be at the noise 󰅮loor of the measurement system. The

LO and RF powers should be attenuated as necessary to match those that will be used in the

ultimate experiment.

The noise 󰅮loor of the phase measurement system is thus measured, allowing higher noise

levels to be measured with con󰅮idence that they re󰅮lect the true noise performance of the
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device under test. Excess noise in the measurement system can be minimized by choice of

low noise 󰅮igure ampli󰅮iers, as well as high level mixers. The sensitivity of this system will

be maximized by choosing as high a level mixer as can be driven by the desired reference

oscillator. If insuf󰅮icient reference oscillator power exists to drive the mixer, another low noise

ampli󰅮ier can be used to allow use of a reasonable mixer. While this ampli󰅮ier will introduce

more noise, it will likely be worth the added noise on the LO to allow the use of a higher level

mixer.

The noise 󰅮loor will also contain some number of spurious signals, sharp peaks at speci󰅮ic

frequencies as opposed to a rise in the overall noise level. Many of these spurious signals come

from power supplies of the ampli󰅮iers, VCO, and servo controllers. These can be eliminated

if the component can be run from a battery, though this is only feasible if the component

requires relatively low DC power (or has built in battery capability, as is the case of the SR560

ampli󰅮ier). In this work, the VCO and ampli󰅮iers are running on battery power, but there are

still a large number of spurious signals due to the servo power supplies.

With the noise 󰅮loor of the measurement established, we then endeavor to measure a

low phase noise source and ensure the noise measured is in reasonable agreement with

the expected noise. For this, we choose a crystal oscillator, which offer attractive noise

performance at quite a low cost. We select a crystal oscillator with a 󰅮ixed frequency near

our oscillator repetition rate, at about 21 MHz. The reference oscillator is locked to the

crystal oscillator and the phase noise measured. As the noise measurement is relative, and the

crystal oscillator phase noise is signi󰅮icantly lower than the reference oscillator, the measured

noise is dominated by the reference oscillator, producing noise values consistent with the

expected values for the reference oscillator. In our experiment, we will lock an oscillator to
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the repetition rate our laser, then use an identical oscillator to measure the relative phase shift.

To ensure we have reasonable noise performance from both oscillators, we 󰅮irst measure each

with respect to the crystal oscillator. The phase measurement system is now well quali󰅮ied

and ready to be used to measure our experimental values.

Closing the loop. With the RF and LO signals conditioned, and the mixer characterized

and 󰅮iltered to provide the difference-frequency error signal, the 󰅮inal step is to monitor

the error signal and adjust the local oscillator as necessary to track any drift in the RF

frequency. This is accomplished using a servo controller, typically implemented using a

Proportional-Integral-Derivative (PID) controller. The PID monitors the error signal, changing

the control signals as a response to the current error, the accumulated past error, and the

predicted future error. The creation of these three control signals are the function of the three

components P, I, and D, in the controller. A weighted sum of these control signals will be

fed back to the reference oscillator, causing a change which compensates for the difference

between the reference oscillator and the oscillator under test, driving the error signal to

zero. If the desired error signal level is non-zero, the error signal may 󰅮irst be summed with

a set point voltage, allowing the controller to drive the system to the desired point. Some

controllers have this capability built in.

Engaging the servo is as simple as connecting the error monitor signal and the control

cables, and monitoring the error signal on an oscilloscope. The gain is set to a low value and

the servo loop enabled. The error signal should react to this applied control signal, and the

set point can be adjusted such that the error signal under locked conditions is near zero. This

low gain con󰅮iguration is a loose lock, in which the controller compensates for errors over a

relatively small bandwidth. If this is desired, as for the phase measurement, then the loop
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can be left in this con󰅮iguration. However, it may be desirable to increase bandwidth. To

accomplish this, the gain may be increased while making any necessary small adjustments to

the set point.
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APPENDIX D

P󰀇󰀔󰀋󰀑󰀆󰀑󰀉󰀔󰀃󰀏 E󰀕󰀖󰀋󰀏󰀃󰀖󰀋󰀑󰀐

In the analysis of the noise performance of our measurement system, we’ve characterized

the noise in terms of its PSD. For use of the system, we desire a PSD estimate technique that

allows the PSD to be displayed is quasi-real time. We also would like to observe the PSD to low

frequencies, as slow 󰅮luctuations are of interest in this system. The basic method to perform

this spectral estimation (󰅮irst proposed by [9]), a long time series is collected and divided

into a series of temporal buffers. These buffers are individually Fourier transformed and

then averaged to arrive at the approximate power spectrum. The sample rate at which the

buffers are gathered determines the maximum frequency in the PSD by the Nyquist sampling

limit. The lowest frequency that can be resolved is the inverse of the buffer length. The

averaging of multiple buffers tends toward the true PSD, with a variance the decreases linearly

with the number of buffers averaged (assuming no overlap) [10]. While this technique in

principle allows us to observe low frequencies, and the periodogram can be averaged as the

are collected, the update still requires the collection and transform of long buffers.

To allow us to use short buffers at high sample rates, allowing rapid display update and

computational speed, while still providing a spectral estimate at low frequency, we combine

the above technique with cascaded decimation [11]. Following the block diagram shown in

Fig. D.1, we estimate the PSD as stated above, but instead of requiring that we collect buffers

to average that are as long in time as the inverse of the smallest frequency we’d like to resolve,

we instead collect a large number of short buffers that we average. From these consecutive

short buffers, we then harvest every 𝑁th point and put them into a new buffer. Prior to this

downsampling, a low-pass aliasing 󰅮ilter is employed to remove frequency content above the
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F󰀋󰀉󰀗󰀔󰀇 D.1. Block diagram of decimation PSD estimation.

effective sample rate. This downsampled buffer is then effectively 𝑁 times the duration of

the short buffer, with a sample rate reduced by 𝑁. The reduced buffer is transformed and

displayed, providing lower frequency coverage. This process can be repeated, allowing the

creation of buffers as long as this process is running. While the resolution of low frequencies

will still require long data runs, decimation allows update of the higher frequency data while

waiting for the lower frequency data, allows a higher averaging to be done of the fast data

relative to the slow data (increasing noise suppression at higher frequencies), and increasing

computational ef󰅮iciency.

The effective sample rate for the decimated buffers is just given by 𝑓𝑠 = 𝑓𝑠0/𝑁
𝐷, where 𝑓𝑠0

is the base sample rate, 𝑁 is the decimation factor, and 𝐷 is the decade number. The measured

signal is in volts giving an array of samples in volts vs time. The data is then windowed using

a Blackman-Harris window before being fourier transformed. The resulting transform gives

the power spectrum of the signal, that is, how much power is contained in each frequency of

the measured signal. This is more conveniently expressed as a density, which requires simply

scaling the power spectrum by the appropriate effective bandwidth for the window used. The

140



effective noise bandwidth is given by [12]

𝐸𝑁𝐵𝑊 = 𝑓𝑠
𝑆2

𝑆21
(D.1)

where 𝑓𝑠 is the sample rate, and 𝑆1 = ∑
𝑁−1

𝑗=0
𝑤𝑗 and 𝑆2 = ∑

𝑁−1

𝑗=0
𝑤2
𝑗 are sums of the window and

the square of the window, respectively. The power spectrum, PS, can be calculated from the

averaged Fourier transforms, 𝑆, as

𝑃𝑆 =
2 |𝑆|

2

𝑆21
. (D.2)

The PSD is then given by the power spectrum divided by the bandwidth,

𝑃𝑆𝐷 =
𝑃𝑆

𝐸𝑁𝐵𝑊
. (D.3)

These can be converted to the linear spectral density and linear spectrum by √𝑃𝑆𝐷 and √𝑃𝑆,

respectively.
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APPENDIX E

SPIFI M󰀃󰀕󰀍 G󰀇󰀐󰀇󰀔󰀃󰀖󰀋󰀑󰀐

The masks used in SPIFI were printed by one of three companies: MAM-A, Inlight or

Photosciences. The different mask producers had different requirements for the data 󰅮iles

used for printing. MAM-A is a Compact Disc (CD) replication company that printed using a

400 Dots Per Inch (DPI) thermal printer on polycarbonate CD blanks and required a raster

image 󰅮ile. Inlight is a theater lighting company, who printed aluminum on glass disks at

3600 DPI. They also required a raster image. Photosciences is a lithography company that can

pattern a variety of metals on a glass substrate with features as small as 1 µm (25400 DPI).

They required a Computer Aided Design (CAD) style vector drawing.

The 󰅮irst step in creating the mask 󰅮iles is determination of the desired mask function. The

masks used in SPIFI are radially varying cosines, of the form

𝑀(𝑟, 𝜃) = 1/2 + 1/2 sign[cos(Δ𝑘𝑟𝜃)] (E.1)

F󰀋󰀉󰀗󰀔󰀇 E.1. A continuous mask with a Δ𝑘 = 3/mm and an outer radius of 31 mm.
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F󰀋󰀉󰀗󰀔󰀇 E.2. A rounded mask with a Δ𝑘 = 3/mm and an outer radius of 31 mm.

where Δ𝑘 describes change in modulation as a function of radius. In this case, the mask chirp

rate is continuous, subject only to the resolution of the mask printing. Such a mask is shown

in Fig. E.1.

This mask is de󰅮ined over the angular span of ±𝜋, so the there will be a phase jump in the

frequencies as the disk rotates. To make a mask without a phase discontinuity, we can simply

restrict the frequencies printed on the mask to be integer frequencies. The mask function is

then given by

𝑀(𝑟, 𝜃) = 1/2 + 1/2 sign{cos [round(Δ𝑘𝑟𝜃)]} . (E.2)

Such a mask is shown in Fig. E.2.

If simply rounding to the nearest integer frequency yields a mask with more radial bins

than are desired, we can arti󰅮icially restrict the number of bins to a given value 𝑁𝑏. The

radial span of the disk is divided by the number of bins to yield the radial width of the

desired bins, 𝑅step. A new radius is then constructed that is a stepped approximation of the

continuous version, de󰅮ined 𝑅bin = 󰅮loor󰕾𝑅/𝑅step󰖂. The mask is then de󰅮ined by Eq. E.1, with

the replacement 𝑅 → 𝑅bin. A binned mask with 40 radial bins is shown in Fig. E.3.
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F󰀋󰀉󰀗󰀔󰀇 E.3. A binned discretemaskwith a Δ𝑘 = 3/mm, an outer radius of 31mm,

and 40 radial bins.

The masks may need to be produced as either raster graphics or as vector graphics (in the

form of CAD 󰅮iles, such as Caltech Intermediate Format (CIF) or Drawing Exchange Format

(DXF)), depending on the printing technology and printing company being used. The simplest

method is producing a raster graphics 󰅮ile, such as a Tagged Information File Format (TIFF)

󰅮ile. To generate a mask using raster graphics, we generate an array of binary values that has

the same number of points as the printer has pixels. Each of these pixels will have an 𝑥 and 𝑦

coordinate that corresponds to a position in real space through the printer’s resolution. The

𝑥 and 𝑦 position values are then re-cast into polar coordinates and the radially dependant

cosine is then calculated. The array is 󰅮illed with the cosine values, with the value of 1 being

given to positive cosine values and a value of 0 being given to negative cosine values, as the

printing process is binary. The mask is trimmed to the inner and outer radii by setting those

values to zero as well. Example code is given in section E.1.

To create a vector graphics 󰅮ile, we create the mask as a series of polygons the de󰅮ine areas

of the mask where the cosine value is greater than zero. To draw such a polygon, we calculate

the edges of these positive regions, then write a 󰅮ile containing the vertices that de󰅮ine this
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region and 󰅮ill the polygon. The example code, given in section E.2, uses the CIF 󰅮ile format

commonly used by photolithography companies. The list of vertices created can also be used

to create a DXF 󰅮ile. To create the vertices, we proceed by calculating the zeros of the cosine

for each period. These could be directly calculated, starting at zero and moving along the

edge of the region in steps no larger than the desired resolution, but this approach proved

woefully slow. Instead, we create a quantized 𝑟 axis, being careful to ensure that we have

suf󰅮icient 𝑟 resolution such that the spacing between adjacent points on the cosine curve

meets or exceeds the desired resolution. From this 𝑟 vector, we generate the corresponding

𝜃 values such that the points lie along the edge of the positive cosine region. Once again,

minimum and maximum radii are enforced by rejecting vertices outside the printable area.

E.1. Raster Mask Code

1 % -- Mask Parameters --

2 Router = 31; % (mm) Outer Radius

3 Rinner = 8; % (mm) hole cutout

4 Rdrill = 15/2; % (mm) Drill Size

5 DPI = 400; % (dots per inch) Print Resolution

6 Dk = 3; % (mm^-1) Chirp Rate

7 PhiMult = 1; % Number of masks per disk

8

9 % -- Axes ------------

10 DPmm = DPI / 25.4; % (dots per mm) Print Resolution

11 N = 2*Router*DPmm; % (#) Number of points

12 x = (-N/2:N/2-1)/DPmm; % (mm) Horizontal axis

13 y = (-N/2:N/2-1)/DPmm; % (mm) Vertical axis

14 [X, Y] = meshgrid(x,y); % (mm) Matrices of x & y coordinates

15 R = sqrt(X.^2+Y.^2); % (mm) Matrix of radius positions

16 Phi = atan2(Y, X); % (rad.) Matrix of angular values

17 Nbin = 20; % (#) Number of radial bins

18

19 % -- Phase Wrapping --

20 Phi = (PhiMult*Phi) + (PhiMult-1)*pi;

21 while(sum(sum(Phi > pi)))

22 Phi(Phi > pi) = Phi(Phi > pi) - 2*pi;

23 end

24

25 % -- Calculate Mask --

26 switch(maskType)
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27 case 'Continuous'

28 PhiRadial = Dk*R.*Phi;

29 case 'Discrete'

30 PhiRadial = floor(Dk*R).*Phi;

31 case 'Binned'

32 Rspan = Router-Rinner;

33 Rstep = Rspan / Nbin;

34 RR = floor((R-Rinner)/Rstep)*Rstep+Rinner;

35 PhiRadial = floor(Dk*RR).*Phi;

36 end

37 Z = round((0.5+0.5*cos(PhiRadial)));

38

39 % -- Clipping --------

40 Z(R < Rinner) = 1;

41 Z(R > Router) = 1;

E.2. Vector Mask Code

1 %--- Mask Parameters -------------------------------------------

2 OD = 120; % Outer Diameter, mm

3 ID = 20; % Inner Diameter, mm

4 dk = 5; % Radial Chirp, 1/mm

5 N = 2^8; % Number of r Points

6 qMax = pi-0.0; % Theta Max. (pi-Gap Width)

7 R = linspace(ID/2, OD/2, N); % Radial Coordinate, mm

8 NumQ = ceil(dk*max(R)/2); % Approx. Number of Patches

9 q = 0;

10

11 %--- Open CIF File ---------------------------------------------

12 tfWriteCIF = false;

13 if (tfWriteCIF)

14 fName = fopen(sprintf('SPIFI_Mask_Dk%f.cif',dk),'w');

15 fprintf(fName,'L L1;\n');

16 fprintf(fName,'(Layout definition:);\n');

17 fprintf(fName,'DS1 1 1;\n');

18 end

19

20 %--- Make Patches! ---------------------------------------------

21 for(iq=-NumQ : NumQ)

22 q = 2*pi*iq;

23 RR = [R;R];

24 qq = [

25 (q+pi/2)./(dk*R)

26 (q-pi/2)./(dk*R)

27 ];

28 if((all(qq > qMax)) | (all(qq <-qMax))) continue; end;

29 RR(2,:) = fliplr(RR(2,:));

30 qq(2,:) = fliplr(qq(2,:));

31 qq = reshape(qq',[],1);
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32 RR = reshape(RR',[],1);

33 % Reject large angles

34 indx = (qq<qMax)&(qq>-qMax);

35 RR = RR(indx);

36 qq = qq(indx);

37 % Write file (or display)

38 if (tfWriteCIF)

39 fprintf(fName,['P ' sprintf('%.0f ',100000*reshape( ...

40 [RR.*cos(qq) RR.*sin(qq)]',1,numel([RR.*cos(qq) ...

41 RR.*sin(qq)]))) ';\n']);

42 else

43 patch(RR.*cos(qq), RR.*sin(qq), [0 0 0]);

44 end

45 end

46

47 %--- Finish File -----------------------------------------------

48 if (tfWriteCIF)

49 fprintf(fName,'DF;\n');

50 fprintf(fName,'C 1;\n');

51 fprintf(fName,'E;\n');

52 fclose(fName);

53 end
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